1
|
Jang MH, Song J. Adenosine and adenosine receptors in metabolic imbalance-related neurological issues. Biomed Pharmacother 2024; 177:116996. [PMID: 38897158 DOI: 10.1016/j.biopha.2024.116996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/08/2024] [Accepted: 06/15/2024] [Indexed: 06/21/2024] Open
Abstract
Metabolic syndromes (e.g., obesity) are characterized by insulin resistance, chronic inflammation, impaired glucose metabolism, and dyslipidemia. Recently, patients with metabolic syndromes have experienced not only metabolic problems but also neuropathological issues, including cognitive impairment. Several studies have reported blood-brain barrier (BBB) disruption and insulin resistance in the brain of patients with obesity and diabetes. Adenosine, a purine nucleoside, is known to regulate various cellular responses (e.g., the neuroinflammatory response) by binding with adenosine receptors in the central nervous system (CNS). Adenosine has four known receptors: A1R, A2AR, A2BR, and A3R. These receptors play distinct roles in various physiological and pathological processes in the brain, including endothelial cell homeostasis, insulin sensitivity, microglial activation, lipid metabolism, immune cell infiltration, and synaptic plasticity. Here, we review the recent findings on the role of adenosine receptor-mediated signaling in neuropathological issues related to metabolic imbalance. We highlight the importance of adenosine signaling in the development of therapeutic solutions for neuropathological issues in patients with metabolic syndromes.
Collapse
Affiliation(s)
- Mi-Hyeon Jang
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, United States.
| | - Juhyun Song
- Department of Anatomy, Chonnam National University Medical School, Hwasun 58128, Republic of Korea.
| |
Collapse
|
2
|
dos Santos PMF, Díaz Acosta CC, Rosa TLSA, Ishiba MH, Dias AA, Pereira AMR, Gutierres LD, Pereira MP, da Silva Rocha M, Rosa PS, Bertoluci DFF, Meyer-Fernandes JR, da Mota Ramalho Costa F, Marques MAM, Belisle JT, Pinheiro RO, Rodrigues LS, Pessolani MCV, Berrêdo-Pinho M. Adenosine A 2A receptor as a potential regulator of Mycobacterium leprae survival mechanisms: new insights into leprosy neural damage. Front Pharmacol 2024; 15:1399363. [PMID: 39005937 PMCID: PMC11239521 DOI: 10.3389/fphar.2024.1399363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 05/15/2024] [Indexed: 07/16/2024] Open
Abstract
Background Leprosy is a chronic infectious disease caused by Mycobacterium leprae, which can lead to a disabling neurodegenerative condition. M. leprae preferentially infects skin macrophages and Schwann cells-glial cells of the peripheral nervous system. The infection modifies the host cell lipid metabolism, subverting it in favor of the formation of cholesterol-rich lipid droplets (LD) that are essential for bacterial survival. Although researchers have made progress in understanding leprosy pathogenesis, many aspects of the molecular and cellular mechanisms of host-pathogen interaction still require clarification. The purinergic system utilizes extracellular ATP and adenosine as critical signaling molecules and plays several roles in pathophysiological processes. Furthermore, nucleoside surface receptors such as the adenosine receptor A2AR involved in neuroimmune response, lipid metabolism, and neuron-glia interaction are targets for the treatment of different diseases. Despite the importance of this system, nothing has been described about its role in leprosy, particularly adenosinergic signaling (AdoS) during M. leprae-Schwann cell interaction. Methods M. leprae was purified from the hind footpad of athymic nu/nu mice. ST88-14 human cells were infected with M. leprae in the presence or absence of specific agonists or antagonists of AdoS. Enzymatic activity assays, fluorescence microscopy, Western blotting, and RT-qPCR analysis were performed. M. leprae viability was investigated by RT-qPCR, and cytokines were evaluated by enzyme-linked immunosorbent assay. Results We demonstrated that M. leprae-infected Schwann cells upregulated CD73 and ADA and downregulated A2AR expression and the phosphorylation of the transcription factor CREB (p-CREB). On the other hand, activation of A2AR with its selective agonist, CGS21680, resulted in: 1) reduced lipid droplets accumulation and pro-lipogenic gene expression; 2) reduced production of IL-6 and IL-8; 3) reduced intracellular M. leprae viability; 4) increased levels of p-CREB. Conclusion These findings suggest the involvement of the AdoS in leprosy neuropathogenesis and support the idea that M. leprae, by downmodulating the expression and activity of A2AR in Schwann cells, decreases A2AR downstream signaling, contributing to the maintenance of LD accumulation and intracellular viability of the bacillus.
Collapse
Affiliation(s)
| | - Chyntia Carolina Díaz Acosta
- Laboratório de Microbiologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones en Ciencias de la Salud, Universidad Nacional de Asunción, San Lorenzo, Paraguay
| | | | - Michelle Harumi Ishiba
- Laboratório de Microbiologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - André Alves Dias
- Laboratório de Microbiologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | | | - Luísa Domingos Gutierres
- Laboratório de Microbiologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Melissa Pontes Pereira
- Laboratório de Microbiologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Matheus da Silva Rocha
- Laboratório de Microbiologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | | | - Daniele F. F. Bertoluci
- Divisão de Pesquisa e Ensino, Instituto Lauro de Souza Lima, São Paulo, Brazil
- Departamento de Doenças Tropicais, Faculdade de Medicina de Botucatu, Universidade Estadual Paulista, Botucatu, Brazil
| | - José Roberto Meyer-Fernandes
- Laboratório de Bioquímica Celular, Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Maria Angela M. Marques
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| | - John T. Belisle
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Roberta Olmo Pinheiro
- Laboratório de Hanseníase, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Luciana Silva Rodrigues
- Laboratório de Imunopatologia, Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Marcia Berrêdo-Pinho
- Laboratório de Microbiologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| |
Collapse
|
3
|
Bahadoran Z, Mirmiran P, Ghasemi A. Adipose organ dysfunction and type 2 diabetes: Role of nitric oxide. Biochem Pharmacol 2024; 221:116043. [PMID: 38325496 DOI: 10.1016/j.bcp.2024.116043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/07/2024] [Accepted: 02/01/2024] [Indexed: 02/09/2024]
Abstract
Adipose organ, historically known as specialized lipid-handling tissue serving as the long-term fat depot, is now appreciated as the largest endocrine organ composed of two main compartments, i.e., subcutaneous and visceral adipose tissue (AT), madding up white and beige/brown adipocytes. Adipose organ dysfunction manifested as maldistribution of the compartments, hypertrophic, hypoxic, inflamed, and insulin-resistant AT, contributes to the development of type 2 diabetes (T2D). Here, we highlight the role of nitric oxide (NO·) in AT (dys)function in relation to developing T2D. The key aspects determining lipid and glucose homeostasis in AT depend on the physiological levels of the NO· produced via endothelial NO· synthases (eNOS). In addition to decreased NO· bioavailability (via decreased expression/activity of eNOS or scavenging NO·), excessive NO· produced by inducible NOS (iNOS) in response to hypoxia and AT inflammation may be a critical interfering factor diverting NO· signaling to the formation of reactive oxygen and nitrogen species, resulting in AT and whole-body metabolic dysfunction. Pharmacological approaches boosting AT-NO· availability at physiological levels (by increasing NO· production and its stability), as well as suppression of iNOS-NO· synthesis, are potential candidates for developing NO·-based therapeutics in T2D.
Collapse
Affiliation(s)
- Zahra Bahadoran
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parvin Mirmiran
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Asghar Ghasemi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Qian S, Shi Y, Senfeld J, Peng Q, Shen J. The P2Y 2 receptor mediates terminal adipocyte differentiation and insulin resistance: Evidence for a dual G-protein coupling mode. J Biol Chem 2024; 300:105589. [PMID: 38141758 PMCID: PMC10828443 DOI: 10.1016/j.jbc.2023.105589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 11/29/2023] [Accepted: 12/12/2023] [Indexed: 12/25/2023] Open
Abstract
Several P2Y nucleotide receptors have been shown to be involved in the early stage of adipocyte differentiation in vitro and insulin resistance in obese mice; however, the exact receptor subtype(s) and its underlying molecular mechanism in relevant human cells are unclear. Here, using human primary visceral preadipocytes as a model, we found that during preadipocyte-to-mature adipocyte differentiation, the P2Y2 nucleotide receptor (P2Y2R) was the most upregulated subtype among the eight known P2Y receptors and the only one further dramatically upregulated after inflammatory TNFα treatment. Functional studies indicated that the P2Y2R induced intracellular Ca2+, ERK1/2, and JNK signaling but not the p38 pathway. In addition, stimulation of the P2Y2R suppressed basal and insulin-induced phosphorylation of AKT, accompanied by decreased GLUT4 membrane translocation and glucose uptake in mature adipocytes, suggesting a role of P2Y2R in insulin resistance. Mechanistically, we found that activation of P2Y2R did not increase lipolysis but suppressed PIP3 generation. Interestingly, activation of P2Y2R triggered Gi-protein coupling, and pertussis toxin pretreatment largely inhibited P2Y2R-mediated ERK1/2 signaling and cAMP suppression. Further, treatment of the cells with AR-C 118925XX, a selective P2Y2R antagonist, significantly inhibited adipogenesis, and P2Y2R knockout decreased mouse body weight gain with smaller eWAT mass infiltrated with fewer macrophages as compared to WT mice in response to a Western diet. Thus, we revealed that terminal adipocyte differentiation and inflammation selectively upregulate P2Y2R expression and that P2Y2R mediates insulin resistance by suppressing the AKT signaling pathway, highlighting P2Y2R as a potential new drug target to combat obesity and type-2 diabetes.
Collapse
Affiliation(s)
- Shenqi Qian
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, Alabama, USA; Department of Pharmacy, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yi Shi
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, Alabama, USA
| | - Jared Senfeld
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, Alabama, USA
| | - Qianman Peng
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, Alabama, USA
| | - Jianzhong Shen
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, Alabama, USA.
| |
Collapse
|
5
|
Ziqubu K, Dludla PV, Mabhida SE, Jack BU, Keipert S, Jastroch M, Mazibuko-Mbeje SE. Brown adipose tissue-derived metabolites and their role in regulating metabolism. Metabolism 2024; 150:155709. [PMID: 37866810 DOI: 10.1016/j.metabol.2023.155709] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 09/28/2023] [Accepted: 10/14/2023] [Indexed: 10/24/2023]
Abstract
The discovery and rejuvenation of metabolically active brown adipose tissue (BAT) in adult humans have offered a new approach to treat obesity and metabolic diseases. Beyond its accomplished role in adaptive thermogenesis, BAT secretes signaling molecules known as "batokines", which are instrumental in regulating whole-body metabolism via autocrine, paracrine, and endocrine action. In addition to the intrinsic BAT metabolite-oxidizing activity, the endocrine functions of these molecules may help to explain the association between BAT activity and a healthy systemic metabolic profile. Herein, we review the evidence that underscores the significance of BAT-derived metabolites, especially highlighting their role in controlling physiological and metabolic processes involving thermogenesis, substrate metabolism, and other essential biological processes. The conversation extends to their capacity to enhance energy expenditure and mitigate features of obesity and its related metabolic complications. Thus, metabolites derived from BAT may provide new avenues for the discovery of metabolic health-promoting drugs with far-reaching impacts. This review aims to dissect the complexities of the secretory role of BAT in modulating local and systemic metabolism in metabolic health and disease.
Collapse
Affiliation(s)
- Khanyisani Ziqubu
- Department of Biochemistry, North-West University, Mmabatho 2745, South Africa
| | - Phiwayinkosi V Dludla
- Cochrane South Africa, South African Medical Research Council, Tygerberg 7505, South Africa; Department of Biochemistry and Microbiology, Faculty of Science and Agriculture, University of Zululand, KwaDlangezwa 3886, South Africa
| | - Sihle E Mabhida
- Non-Communicable Diseases Research Unit, South African Medical Research Council, Tygerberg 7505, South Africa
| | - Babalwa U Jack
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg 7505, South Africa
| | - Susanne Keipert
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Martin Jastroch
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden
| | | |
Collapse
|
6
|
Wu K, Zheng H, Wu W, Chen G, Cai Z, Cai Z, Lan Y, Wu D, Wu S, Chen Y. Temporal relationship between triglyceride-glucose index and blood pressure and their joint cumulative effect on cardiovascular disease risk: a longitudinal cohort study. Cardiovasc Diabetol 2023; 22:332. [PMID: 38017521 PMCID: PMC10685547 DOI: 10.1186/s12933-023-02058-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/08/2023] [Indexed: 11/30/2023] Open
Abstract
BACKGROUND Concurrent insulin resistance and elevated blood pressure are commonly observed in cardiovascular disease (CVD) and have long been proposed to contribute to CVD. However, the temporal relationship between them and the effect of their cumulative co-exposure on future incident CVD remains unclear. METHODS Longitudinal analysis of data on 57,192 participants from a real-world, prospective cohort study (Kailuan Study) was performed to address the temporal relationship between Triglyceride-Glucose Index (TyG, calculated as ln [TG (mg/dL) × FBG (mg/dL)/2]) and blood pressure (BP) assessed by cross-lagged analyses in an approximately 4-year exposure period (2006/2007 to 2010/2011). After excluding 879 participants with known diabetes, 56,313 nonCVD participants were included for further analysis of the CVD outcome. Cox regression models were used to examine the hazard ratios (HRs) upon the cumulative TyG (CumTyG) and BP(CumBP) in the exposure period. RESULTS The standard regression coefficient from baseline TyG to follow-up systolic BP was 0.0142 (95% CI 0.0059-0.0226), which was greater than the standard regression coefficient from baseline systolic BP to follow-up TyG (- 0.0390; 95% CI - 0.0469 to - 0.0311). The same results were observed in the cross-lag between TyG and diastolic blood pressure [0.0271 (0.0185 to 0.0356) vs. - 0.0372 (- 0.0451 to - 0.0293)]. During a median follow-up of 9.98 years, 3981 CVD cases occurred. Significant interactions were observed between the median CumTyG (8.61) and CumSBP thresholds (130, 140 mmHg) (P = 0.0149), the median CumTyG (8.61) and CumDBP thresholds (80, 90 mmHg) (P = 0.0441). Compared to CumTyG < 8.61 and CumSBP < 130 mmHg, after adjusting for potential confounding factors, the HR gradually increased in the high co-exposure groups. The hazard ratios (HRs) and 95% confidence intervals (CIs) for Q2-Q6 were 1.39 (1.24, 1.57), 1.94 (1.69, 2.22), 2.40 (2.12, 2.71), 2.74 (2.43, 3.10), and 3.07 (2.74, 3.45). Additionally, the CVD risks in the co-exposure were more prominent in younger participants. CONCLUSIONS These findings suggest that elevated TyG has a greater impact on future blood pressure changes than vice versa. Dual assessment and management of insulin resistance and blood pressure contribute to the prevention of CVD, especially in younger individuals.
Collapse
Affiliation(s)
- Kuangyi Wu
- Department of Cardiology, Second Affiliated Hospital of Shantou University Medical College, 69 Dongxia North RD., Shantou, 515000, China
- Shantou University Medical College, Shantou, China
| | - Huancong Zheng
- Department of Cardiology, Second Affiliated Hospital of Shantou University Medical College, 69 Dongxia North RD., Shantou, 515000, China
- Shantou University Medical College, Shantou, China
| | - Weiqiang Wu
- Department of Cardiology, Second Affiliated Hospital of Shantou University Medical College, 69 Dongxia North RD., Shantou, 515000, China
- Shantou University Medical College, Shantou, China
| | - Guanzhi Chen
- Cardiac Arrhythmia Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zefeng Cai
- Shantou University Medical College, Shantou, China
| | - Zhiwei Cai
- Department of Cardiology, Second Affiliated Hospital of Shantou University Medical College, 69 Dongxia North RD., Shantou, 515000, China
- Shantou University Medical College, Shantou, China
| | - Yulong Lan
- Department of Cardiology, Second Affiliated Hospital of Shantou University Medical College, 69 Dongxia North RD., Shantou, 515000, China
- Department of Cardiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Dan Wu
- Department of Cardiology, Second Affiliated Hospital of Shantou University Medical College, 69 Dongxia North RD., Shantou, 515000, China
- Department of Cardiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Shouling Wu
- Department of Cardiology, Kailuan General Hospital, 57 Xinhua East RD., Tangshan, 063000, China.
| | - Youren Chen
- Department of Cardiology, Second Affiliated Hospital of Shantou University Medical College, 69 Dongxia North RD., Shantou, 515000, China.
- Shantou University Medical College, Shantou, China.
| |
Collapse
|
7
|
Kaczmarek I, Wower I, Ettig K, Kuhn CK, Kraft R, Landgraf K, Körner A, Schöneberg T, Horn S, Thor D. Identifying G protein-coupled receptors involved in adipose tissue function using the innovative RNA-seq database FATTLAS. iScience 2023; 26:107841. [PMID: 37766984 PMCID: PMC10520334 DOI: 10.1016/j.isci.2023.107841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/26/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
G protein-coupled receptors (GPCRs) modulate the function of adipose tissue (AT) in general and of adipocytes, specifically. Although it is well-established that GPCRs are widely expressed in AT, their repertoire as well as their regulation and function in (patho)physiological conditions (e.g., obesity) is not fully resolved. Here, we established FATTLAS, an interactive public database, for improved access and analysis of RNA-seq data of mouse and human AT. After extracting the GPCRome of non-obese and obese individuals, highly expressed and differentially regulated GPCRs were identified. Exemplarily, we describe four receptors (GPR146, MRGPRF, FZD5, PTGER2) and analyzed their functions in a (pre)adipocyte cell model. Besides all receptors being involved in adipogenesis, MRGPRF is essential for adipocyte viability and regulates cAMP levels, while GPR146 modulates adipocyte lipolysis via constitutive activation of Gi proteins. Taken together, by implementing and using FATTLAS we describe four hitherto unrecognized GPCRs associated with AT function and adipogenesis.
Collapse
Affiliation(s)
- Isabell Kaczmarek
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, 04103 Leipzig, Germany
| | - Isabel Wower
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, 04103 Leipzig, Germany
| | - Katja Ettig
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, 04103 Leipzig, Germany
| | - Christina Katharina Kuhn
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, 04103 Leipzig, Germany
| | - Robert Kraft
- Carl Ludwig Institute for Physiology, Medical Faculty, Leipzig University, 04103 Leipzig, Germany
| | - Kathrin Landgraf
- Center for Pediatric Research Leipzig, Hospital for Children & Adolescents, Medical Faculty, Leipzig University, 04103 Leipzig, Germany
| | - Antje Körner
- Center for Pediatric Research Leipzig, Hospital for Children & Adolescents, Medical Faculty, Leipzig University, 04103 Leipzig, Germany
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, 04103 Leipzig, Germany
| | - Torsten Schöneberg
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, 04103 Leipzig, Germany
- School of Medicine, University of Global Health Equity (UGHE), Kigali, Rwanda
| | - Susanne Horn
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, 04103 Leipzig, Germany
- Department of Dermatology, University Hospital Essen, University Duisburg-Essen, and German Cancer Consortium (DKTK) partner site Essen/Düsseldorf, 45122 Essen, Germany
| | - Doreen Thor
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, 04103 Leipzig, Germany
| |
Collapse
|
8
|
Arroyave-Ospina JC, Buist-Homan M, Schmidt M, Moshage H. Protective effects of caffeine against palmitate-induced lipid toxicity in primary rat hepatocytes is associated with modulation of adenosine receptor A1 signaling. Biomed Pharmacother 2023; 165:114884. [PMID: 37423170 DOI: 10.1016/j.biopha.2023.114884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 05/05/2023] [Accepted: 05/12/2023] [Indexed: 07/11/2023] Open
Abstract
BACKGROUND Epidemiological evidence has shown an association between coffee consumption and reduced risk for chronic liver diseases, including metabolic-dysfunction-associated liver disease (MALFD). Lipotoxicity is a key cause of hepatocyte injury during MAFLD. The coffee component caffeine is known to modulate adenosine receptor signaling via the antagonism of adenosine receptors. The involvement of these receptors in the prevention of hepatic lipotoxicity has not yet been explored. The aim of this study was to explore whether caffeine protects against palmitate-induced lipotoxicity by modulating adenosine receptor signaling. METHODS Primary hepatocytes were isolated from male rats. Hepatocytes were treated with palmitate with or without caffeine or 1,7DMX. Lipotoxicity was verified using Sytox viability staining and mitochondrial JC-10 staining. PKA activation was verified by Western blotting. Selective (ant)agonists of A1AR (DPCPX and CPA, respectively) and A2AR (istradefyline and regadenoson, respectively), the AMPK inhibitor compound C, and the Protein Kinase A (PKA) inhibitor Rp8CTP were used. Lipid accumulation was verified by ORO and BODIPY 453/50 staining. RESULTS Caffeine and its metabolite 1,7DMX prevented palmitate-induced toxicity in hepatocytes. The A1AR antagonist DPCPX also prevented lipotoxicity, whereas both the inhibition of PKA and the A1AR agonist CPA (partially) abolished the protective effect. Caffeine and DPCPX increased lipid droplet formation only in palmitate-treated hepatocytes and decreased mitochondrial ROS production. CONCLUSIONS The protective effect of caffeine against palmitate lipotoxicity was shown to be dependent on A1AR receptor and PKA activation. Antagonism of A1AR also protects against lipotoxicity. Targeting A1AR receptor may be a potential therapeutic intervention with which to treat MAFLD.
Collapse
Affiliation(s)
- Johanna C Arroyave-Ospina
- Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands; Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.
| | - Manon Buist-Homan
- Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands; Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Martina Schmidt
- Department Molecular Pharmacology, Groningen Research Institute of Pharmacy, Groningen Research Institute for Asthma and COPD, GRIAC, University Medical Center Groningen University of Groningen, Groningen, the Netherlands
| | - Han Moshage
- Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands; Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
9
|
Purinergic receptor: a crucial regulator of adipose tissue functions. Purinergic Signal 2023; 19:273-281. [PMID: 36515790 PMCID: PMC9984650 DOI: 10.1007/s11302-022-09907-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 11/14/2022] [Indexed: 12/15/2022] Open
Abstract
Obesity is a public-health challenge resulting from an imbalance between energy expenditure and calorie intake. This health problem exacerbates a variety of metabolic complications worldwide. Adipose tissue is an essential regulator of energy homeostasis, and the functions within it are regulated by purinergic receptors. A1R, P2X7R, and P2YR mainly mediate energy homeostasis primarily through regulating energy storage and adipokines secretion in white adipose tissue (WAT). P2X5R is a novel-specific cell surface marker in brown/beige adipocytes. A2R is a promising therapeutic target for stimulating energy expenditure in brown adipose tissue (BAT) and also mediating WAT browning. Based on these features, purinergic receptors may be an appropriate target in treating obesity. In this review, the role of purinergic receptors in different types of adipose tissue is summarized. An improved understanding of purinergic receptor functions in adipose tissue may lead to more effective treatment interventions for obesity and its related metabolic disorders.
Collapse
|
10
|
Kim K, Im H, Son Y, Kim M, Tripathi SK, Jeong LS, Lee YH. Anti-obesity effects of the dual-active adenosine A 2A/A 3 receptor-ligand LJ-4378. Int J Obes (Lond) 2022; 46:2128-2136. [PMID: 36167764 DOI: 10.1038/s41366-022-01224-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 09/06/2022] [Accepted: 09/12/2022] [Indexed: 11/09/2022]
Abstract
BACKGROUND AND OBJECTIVES A2A adenosine receptor (A2AAR)-mediated signaling in adipose tissues has been investigated as a potential target for obesity-related metabolic diseases. LJ-4378 has been developed as a dual-acting ligand with A2AAR agonist and A3 adenosine receptor (A3AR) antagonist activity. The current study aimed to investigate the anti-obesity effects of LJ-4378 and its underlying molecular mechanisms. METHODS Immortalized brown adipocytes were used for in vitro analysis. A high-fat diet (HFD)-induced obesity and cell death-inducing DFFA-like effector A reporter mouse models were used for in vivo experiments. The effects of LJ-4378 on lipolysis and mitochondrial metabolism were evaluated using immunoblotting, mitochondrial staining, and oxygen consumption rate analyses. The in vivo anti-obesity effects of LJ-4378 were evaluated using indirect calorimetry, body composition analyses, glucose tolerance tests, and histochemical analyses. RESULTS In vitro LJ-4378 treatment increased the levels of brown adipocyte markers and mitochondrial proteins, including uncoupling protein 1. The effects of LJ-4378 on lipolysis of adipocytes were more potent than those of the A2AAR agonist or A3AR antagonist. In vivo, LJ-4378 treatment increased energy expenditure by 17.0% (P value < 0.0001) compared to vehicle controls. LJ-4378 (1 mg/kg, i.p.) treatment for 10 days reduced body weight and fat content by 8.24% (P value < 0.0001) and 24.2% (P value = 0.0044), respectively, and improved glucose tolerance in the HFD-fed mice. LJ-4378 increased the expression levels of brown adipocyte markers and mitochondrial proteins in interscapular brown and inguinal white adipose tissue. CONCLUSION These findings support the in vivo anti-obesity effects of LJ-4378, and suggest a novel therapeutic approach to combat obesity and related metabolic diseases.
Collapse
Affiliation(s)
- Kyungmin Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Korea
| | - Hyeonyeong Im
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Korea
| | - Yeonho Son
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Korea
| | - Minjae Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Korea
| | - Sushil Kumar Tripathi
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Korea
| | - Lak Shin Jeong
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Korea
| | - Yun-Hee Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Korea.
| |
Collapse
|
11
|
High-intensity interval training and moderate intensity training with exogenous adenosine counteract development of obesity in rats. Sci Sports 2022. [DOI: 10.1016/j.scispo.2021.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
12
|
Marucci G, Buccioni M, Varlaro V, Volpini R, Amenta F. The possible role of the nucleoside adenosine in countering skin aging: A review. Biofactors 2022; 48:1027-1035. [PMID: 35979986 PMCID: PMC9804842 DOI: 10.1002/biof.1881] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 07/12/2022] [Indexed: 01/07/2023]
Abstract
Skin aging is a complex biological process. Skin aspect is considered as a sign of well-being and of beauty. In view of this, noninvasive and/or minimally invasive anti-aging strategies were developed. Adenosine, a well-known nucleoside, may play a role in skin rejuvenation. Adenosine receptors belong to the G protein-coupled receptors superfamily and are divided into four subtypes: A1 , A2A , A2B , and A3 . The adenosine receptors expressed by skin are mainly the A1 and A2A subtypes. In the hypodermis, adenosine through the A1 receptor stimulates lipogenesis and adipogenesis. In the dermis, adenosine through the A2A receptor subtype stimulates collagen production. Moreover, the nucleoside increases new DNA synthesis and subsequently protein synthesis in dermal cells. Activation of adenosine receptors by interacting with various skin layers may induce a decrease in the amount of wrinkles, roughness, dryness, and laxity. This article has reviewed the mechanisms through which adenosine modulates biological mechanisms in the skin tissues and the effect of preparations containing adenosine or its derivatives on the skin.
Collapse
Affiliation(s)
- Gabriella Marucci
- School of Medicinal and Health Products Sciences, Master in Aesthetic Medicine and TherapeuticsUniversity of CamerinoCamerinoItaly
| | - Michela Buccioni
- School of Medicinal and Health Products Sciences, Master in Aesthetic Medicine and TherapeuticsUniversity of CamerinoCamerinoItaly
| | - Vincenzo Varlaro
- School of Medicinal and Health Products Sciences, Master in Aesthetic Medicine and TherapeuticsUniversity of CamerinoCamerinoItaly
| | - Rosaria Volpini
- School of Medicinal and Health Products Sciences, Master in Aesthetic Medicine and TherapeuticsUniversity of CamerinoCamerinoItaly
| | - Francesco Amenta
- School of Medicinal and Health Products Sciences, Master in Aesthetic Medicine and TherapeuticsUniversity of CamerinoCamerinoItaly
| |
Collapse
|
13
|
Granade ME, Hargett SR, Lank DS, Lemke MC, Luse MA, Isakson BE, Bochkis IM, Linden J, Harris TE. Feeding desensitizes A1 adenosine receptors in adipose through FOXO1-mediated transcriptional regulation. Mol Metab 2022; 63:101543. [PMID: 35811051 PMCID: PMC9304768 DOI: 10.1016/j.molmet.2022.101543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/24/2022] [Accepted: 07/04/2022] [Indexed: 12/03/2022] Open
Abstract
OBJECTIVE Adipose tissue is a critical regulator of energy balance that must rapidly shift its metabolism between fasting and feeding to maintain homeostasis. Adenosine has been characterized as an important regulator of adipocyte metabolism primarily through its actions on A1 adenosine receptors (A1R). We sought to understand the role A1R plays specifically in adipocytes during fasting and feeding to regulate glucose and lipid metabolism. METHODS We used Adora1 floxed mice with an inducible, adiponectin-Cre to generate FAdora1-/- mice, where F designates a fat-specific deletion of A1R. We used these FAdora1-/- mice along with specific agonists and antagonists of A1R to investigate changes in adenosine signaling within adipocytes between the fasted and fed state. RESULTS We found that the adipose tissue response to adenosine is not static, but changes dynamically according to nutrient conditions through the insulin-Akt-FOXO1 axis. We show that under fasted conditions, FAdora1-/- mice had impairments in the suppression of lipolysis by insulin on normal chow and impaired glucose tolerance on high-fat diet. FAdora1-/- mice also exhibited a higher lipolytic response to isoproterenol than WT controls when fasted, however this difference was lost after a 4-hour refeeding period. We demonstrate that FOXO1 binds to the A1R promoter, and refeeding leads to a rapid downregulation of A1R transcript and desensitization of adipocytes to A1R agonism. Obesity also desensitizes adipocyte A1R, and this is accompanied by a disruption of cyclical changes in A1R transcription between fasting and refeeding. CONCLUSIONS We propose that FOXO1 drives high A1R expression under fasted conditions to limit excess lipolysis during stress and augment insulin action upon feeding. Subsequent downregulation of A1R under fed conditions leads to desensitization of these receptors in adipose tissue. This regulation of A1R may facilitate reentrance into the catabolic state upon fasting.
Collapse
Affiliation(s)
- Mitchell E Granade
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Stefan R Hargett
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Daniel S Lank
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Michael C Lemke
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Melissa A Luse
- Department of Molecular Physiology and Biophysics, University of Virginia, Charlottesville, VA, USA
| | - Brant E Isakson
- Department of Molecular Physiology and Biophysics, University of Virginia, Charlottesville, VA, USA
| | - Irina M Bochkis
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Joel Linden
- Department of Medicine, Center for Immunity, Inflammation and Regenerative Medicine, University of Virginia, Charlottesville, VA, USA
| | - Thurl E Harris
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
14
|
Li S, Yang J, Mohamed H, Wang X, Pang S, Wu C, López-García S, Song Y. Identification and Functional Characterization of Adenosine Deaminase in Mucor circinelloides: A Novel Potential Regulator of Nitrogen Utilization and Lipid Biosynthesis. J Fungi (Basel) 2022; 8:jof8080774. [PMID: 35893142 PMCID: PMC9332508 DOI: 10.3390/jof8080774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/17/2022] [Accepted: 07/22/2022] [Indexed: 02/05/2023] Open
Abstract
Adenosine deaminase (ADA) is an enzyme distributed in a wide variety of organisms that cleaves adenosine into inosine. Since inosine plays an important role in nitrogen metabolism, ADA may have a critical function in the regulation of fatty acid synthesis. However, the role of ADA in oleaginous fungi has not been reported so far. Therefore, in this study, we identified one ada gene encoding ADA (with ID scaffold0027.9) in the high lipid-producing fungus, Mucor circinelloides WJ11, and investigated its role in cell growth, lipid production, and nitrogen metabolism by overexpressing and knockout of this gene. The results showed that knockout of the ada altered the efficiency of nitrogen consumption, which led to a 20% increment in the lipid content (25% of cell dry weight) of the engineered strain, while overexpression of the ada showed no significant differences compared with the control strain at the final growth stage; however, interestingly, it increased lipid accumulation at the early growth stage. Additionally, transcriptional analysis was conducted by RT-qPCR and our findings indicated that the deletion of ada activated the committed steps of lipid biosynthesis involved in acetyl-CoA carboxylase (acc1 gene), cytosolic malic acid enzyme (cme1 gene), and fatty acid synthases (fas1 gene), while it suppressed the expression of AMP-activated protein kinase (ampk α1 and ampk β genes), which plays a role in lipolysis, whereas the ada-overexpressed strain displayed reverse trends. Conclusively, this work unraveled a novel role of ADA in governing lipid biosynthesis and nitrogen metabolism in the oleaginous fungus, M. circinelloides.
Collapse
Affiliation(s)
- Shaoqi Li
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China; (S.L.); (H.M.); (X.W.); (S.P.); (C.W.)
| | - Junhuan Yang
- Department of Food Sciences, College of Food Science and Engineering, Lingnan Normal University, Zhanjiang 524048, China;
| | - Hassan Mohamed
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China; (S.L.); (H.M.); (X.W.); (S.P.); (C.W.)
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt
| | - Xiuwen Wang
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China; (S.L.); (H.M.); (X.W.); (S.P.); (C.W.)
| | - Shuxian Pang
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China; (S.L.); (H.M.); (X.W.); (S.P.); (C.W.)
| | - Chen Wu
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China; (S.L.); (H.M.); (X.W.); (S.P.); (C.W.)
| | - Sergio López-García
- Department of Genetics and Microbiology (Associated Unit to IQFR-CSIC), Faculty of Biology, University of Murcia, 3100 Murcia, Spain;
| | - Yuanda Song
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China; (S.L.); (H.M.); (X.W.); (S.P.); (C.W.)
- Correspondence: ; Tel.: +86-13964463099
| |
Collapse
|
15
|
Wu Z, Rao S, Li J, Ding N, Chen J, Feng L, Ma S, Hu C, Dai H, Wen L, Jiang Q, Deng J, Deng M, Tan C. Dietary adenosine 5’-monophosphate supplementation increases food intake and remodels energy expenditure in mice. Food Nutr Res 2022; 66:7680. [PMID: 35844957 PMCID: PMC9250134 DOI: 10.29219/fnr.v66.7680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 06/30/2021] [Accepted: 10/04/2021] [Indexed: 11/20/2022] Open
Abstract
Background Methods Results Conclusions
Collapse
Affiliation(s)
- Zifang Wu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Sujuan Rao
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Jiaying Li
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Ning Ding
- Guangzhou Customs Technology Center, 510623, China
| | - Jianzhao Chen
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Li Feng
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Shuo Ma
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Chengjun Hu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Haonan Dai
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Lijun Wen
- Guangdong Hinabiotech Co., Ltd., Guangzhou, China
| | - Qingyan Jiang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Jinping Deng
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
- Ming Deng,
| | - Ming Deng
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
- Ming Deng,
| | - Chengquan Tan
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
- Chengquan Tan, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China.
| |
Collapse
|
16
|
Liu Z, Wu X, Wang Q, Li Z, Liu X, Sheng X, Zhu H, Zhang M, Xu J, Feng X, Wu B, Lv X. CD73-Adenosine A 1R Axis Regulates the Activation and Apoptosis of Hepatic Stellate Cells Through the PLC-IP 3-Ca 2+/DAG-PKC Signaling Pathway. Front Pharmacol 2022; 13:922885. [PMID: 35784730 PMCID: PMC9245432 DOI: 10.3389/fphar.2022.922885] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 05/25/2022] [Indexed: 12/12/2022] Open
Abstract
Alcohol-related liver fibrosis (ALF) is a form of alcohol-related liver disease (ALD) that generally occurs in response to heavy long-term drinking. Ecto-5'-nucleotidase (NT5E), also known as CD73, is a cytomembrane protein linked to the cell membrane via a GPI anchor that regulates the conversion of extracellular ATP to adenosine. Adenosine and its receptors are important regulators of the cellular response. Previous studies showed that CD73 and adenosine A1 receptor (A1R) were important in alcohol-related liver disease, however the exact mechanism is unclear. The aim of this study was to elucidate the role and mechanism of the CD73-A1R axis in both a murine model of alcohol and carbon tetrachloride (CCl4) induced ALF and in an in vitro model of fibrosis induced by acetaldehyde. The degree of liver injury was determined by measuring serum AST and ALT levels, H & E staining, and Masson's trichrome staining. The expression levels of fibrosis indicators and PLC-IP3-Ca2+/DAG-PKC signaling pathway were detected by quantitative real-time PCR, western blotting, ELISA, and calcium assay. Hepatic stellate cell (HSC) apoptosis was detected using the Annexin V-FITC/PI cell apoptosis detection kit. Knockdown of CD73 significantly attenuated the accumulation of α-SMA and COL1a1 damaged the histological architecture of the mouse liver induced by alcohol and CCl4. In vitro, CD73 inhibition attenuated acetaldehyde-induced fibrosis and downregulated A1R expression in HSC-T6 cells. Inhibition of CD73/A1R downregulated the expression of the PLC-IP3-Ca2+/DAG-PKC signaling pathway. In addition, silencing of CD73/A1R promoted apoptosis in HSC-T6 cells. In conclusion, the CD73-A1R axis can regulate the activation and apoptosis of HSCs through the PLC-IP3-Ca2+/DAG-PKC signaling pathway.
Collapse
Affiliation(s)
- Zhenni Liu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
- Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Xue Wu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
- Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Qi Wang
- Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - Zixuan Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
- Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Xueqi Liu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
- Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Xiaodong Sheng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
- Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Hong Zhu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
- Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Mengda Zhang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
- Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Junrui Xu
- General Thoracic Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xiaowen Feng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
- Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Baoming Wu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
- Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Xiongwen Lv
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
- Institute for Liver Diseases of Anhui Medical University, Hefei, China
| |
Collapse
|
17
|
Erukainure OL, Matsabisa MG, Salau VF, Olofinsan KA, Oyedemi SO, Chukwuma CI, Nde AL, Islam MS. Cannabidiol improves glucose utilization and modulates glucose-induced dysmetabolic activities in isolated rats' peripheral adipose tissues. Biomed Pharmacother 2022; 149:112863. [PMID: 35358799 DOI: 10.1016/j.biopha.2022.112863] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/16/2022] [Accepted: 03/23/2022] [Indexed: 11/02/2022] Open
Abstract
Reduced glucose uptake and utilization, with concomitant lipolysis in adipose tissues has been linked to the pathogenesis of obesity and its complications. The present study investigated the effect of cannabinoid-stimulated glucose uptake on redox imbalance, glucose and lipid metabolisms, as well as cholinergic and purinergic dysfunctions in isolated rats' adipose tissues. Freshly Isolated rats' adipose tissues were incubated with glucose and different concentrations of cannabidiol for 2 h at 37 °C. The negative control consisted of incubation without cannabidiol, while normal control consisted of incubations without glucose and/or cannabidiol and Metformin served as the standard drug. Cannabidiol caused an increase in adipose-glucose uptake, with concomitant elevation of glutathione, triglyceride level, superoxide dismutase, catalase and 5'nucleoidase activities. It also caused suppression in malondialdehyde and cholesterol levels, acetylcholinesterase, ENTPDase, fructose-1,6-biphosphatase, glucose 6-phosphatase, glycogen phosphorylase, and lipase activities. In silico studies revealed a strong molecular interaction of cannabidiol with adipose triglyceride lipase, hormone-sensitive lipase, and monoglyceride lipase. These results indicate that cannabidiol-enhanced glucose uptake in adipose tissues is associated with enhanced antioxidative activities, concomitant modulation of cholinergic and purinergic dysfunctions, and improved glucose - lipid homeostasis.
Collapse
Affiliation(s)
- Ochuko L Erukainure
- Department of Pharmacology, School of Clinical Medicine, Faculty of Health Sciences, University of the Free State, Bloemfontein 9300, South Africa
| | - Motlalepula G Matsabisa
- Department of Pharmacology, School of Clinical Medicine, Faculty of Health Sciences, University of the Free State, Bloemfontein 9300, South Africa.
| | - Veronica F Salau
- Department of Pharmacology, School of Clinical Medicine, Faculty of Health Sciences, University of the Free State, Bloemfontein 9300, South Africa
| | - Kolawole A Olofinsan
- Department of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, (Westville Campus), Durban 4000, South Africa
| | - Sunday O Oyedemi
- Department of Pharmacology, School of Clinical Medicine, Faculty of Health Sciences, University of the Free State, Bloemfontein 9300, South Africa; Department of Pharmacology, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Chika I Chukwuma
- Center for Quality of Health and Living, Faculty of Health Sciences, Central University of Technology, Bloemfontein 9301, South Africa
| | - Adeline Lum Nde
- Department of Pharmacology, School of Clinical Medicine, Faculty of Health Sciences, University of the Free State, Bloemfontein 9300, South Africa
| | - Md Shahidul Islam
- Department of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, (Westville Campus), Durban 4000, South Africa
| |
Collapse
|
18
|
EBI2 is a negative modulator of brown adipose tissue energy expenditure in mice and human brown adipocytes. Commun Biol 2022; 5:280. [PMID: 35351968 PMCID: PMC8964700 DOI: 10.1038/s42003-022-03201-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 02/28/2022] [Indexed: 11/16/2022] Open
Abstract
Pharmacological activation of brown adipose tissue (BAT) is an attractive approach for increasing energy expenditure to counteract obesity. Given the side-effects of known activators of BAT, we studied inhibitors of BAT as a novel, alternative concept to regulate energy expenditure. We focused on G-protein-coupled receptors that are one of the major targets of clinically used drugs. Here, we identify GPR183, also known as EBI2, as the most highly expressed inhibitory G-protein-coupled receptor in BAT among the receptors examined. Activation of EBI2 using its endogenous ligand 7α,25-dihydroxycholesterol significantly decreases BAT-mediated energy expenditure in mice. In contrast, mice deficient for EBI2 show increased energy dissipation in response to cold. Interestingly, only thermogenic adipose tissue depots — BAT and subcutaneous white adipose tissue —respond to 7α,25-dihydroxycholesterol treatment/EBI2 activation but not gonadal white fat, which has the lowest thermogenic capacity. EBI2 activation in brown adipocytes significantly reduces norepinephrine-induced cAMP production, whereas pharmacological inhibition or genetic ablation of EBI2 results in an increased response. Importantly, EBI2 significantly inhibits norepinephrine-induced activation of human brown adipocytes. Our data identify the 7α,25-dihydroxycholesterol/EBI2 signaling pathway as a so far unknown BAT inhibitor. Understanding the inhibitory regulation of BAT might lead to novel pharmacological approaches to increase the activity of thermogenic adipose tissue and whole body energy expenditure in humans. Francesca Copperi et al. evaluate the role of the Gi-protein coupled receptor, EBI2, on regulation of thermogenic activity in murine and human adipocytes. They report that loss of Ebi2 in mice increases brown adipocyte energy expenditure in response to cold exposure, providing insight into ways to potentially modulate energy expenditure in humans.
Collapse
|
19
|
Li Y, Li Z, Ngandiri DA, Llerins Perez M, Wolf A, Wang Y. The Molecular Brakes of Adipose Tissue Lipolysis. Front Physiol 2022; 13:826314. [PMID: 35283787 PMCID: PMC8907745 DOI: 10.3389/fphys.2022.826314] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/10/2022] [Indexed: 12/11/2022] Open
Abstract
Adaptation to changes in energy availability is pivotal for the survival of animals. Adipose tissue, the body’s largest reservoir of energy and a major source of metabolic fuel, exerts a buffering function for fluctuations in nutrient availability. This functional plasticity ranges from energy storage in the form of triglycerides during periods of excess energy intake to energy mobilization via lipolysis in the form of free fatty acids for other organs during states of energy demands. The subtle balance between energy storage and mobilization is important for whole-body energy homeostasis; its disruption has been implicated as contributing to the development of insulin resistance, type 2 diabetes and cancer cachexia. As a result, adipocyte lipolysis is tightly regulated by complex regulatory mechanisms involving lipases and hormonal and biochemical signals that have opposing effects. In thermogenic brown and brite adipocytes, lipolysis stimulation is the canonical way for the activation of non-shivering thermogenesis. Lipolysis proceeds in an orderly and delicately regulated manner, with stimulation through cell-surface receptors via neurotransmitters, hormones, and autocrine/paracrine factors that activate various intracellular signal transduction pathways and increase kinase activity. The subsequent phosphorylation of perilipins, lipases, and cofactors initiates the translocation of key lipases from the cytoplasm to lipid droplets and enables protein-protein interactions to assemble the lipolytic machinery on the scaffolding perilipins at the surface of lipid droplets. Although activation of lipolysis has been well studied, the feedback fine-tuning is less well appreciated. This review focuses on the molecular brakes of lipolysis and discusses some of the divergent fine-tuning strategies in the negative feedback regulation of lipolysis, including delicate negative feedback loops, intermediary lipid metabolites-mediated allosteric regulation and dynamic protein–protein interactions. As aberrant adipocyte lipolysis is involved in various metabolic diseases and releasing the brakes on lipolysis in thermogenic adipocytes may activate thermogenesis, targeting adipocyte lipolysis is thus of therapeutic interest.
Collapse
|
20
|
Comparative Transcriptomic Profiles of Differentiated Adipocytes Provide Insights into Adipogenesis Mechanisms of Subcutaneous and Intramuscular Fat Tissues in Pigs. Cells 2022; 11:cells11030499. [PMID: 35159307 PMCID: PMC8834144 DOI: 10.3390/cells11030499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 02/04/2023] Open
Abstract
Subcutaneous fat thickness and intramuscular fat content are closely related to meat production and quality in the pig industry. Adipogenesis in adipocytes from subcutaneous and intramuscular fat tissues involves different genes and regulatory mechanisms. Analyzing the data of mRNA and miRNA transcriptomes during the differentiation of adipocytes from these two sources will help identify the different mechanisms of subcutaneous and intramuscular fat deposition. In this study, RNA sequencing technology was used to analyze the differential expression of genes and miRNAs in subcutaneous and intramuscular adipocytes at days 0, 2, 4, and 8 of differentiation. We mainly attributed the difference between fat depositions of the two types of adipocytes to variations in the expression patterns of related genes. Through combined weighted gene co-expression network analysis and K-MEANS, we identified 30 and 22 genes that mainly regulated the differentiation of subcutaneous adipocytes and intramuscular adipocytes, respectively. A total of 17 important candidate miRNAs were identified. This study provides valuable reference for the study of different mechanisms of adipogenesis among subcutaneous and intramuscular fat and contributes to improving pig breeding.
Collapse
|
21
|
Adenosine deaminase gene variant in diabetes and obesity. J Diabetes Metab Disord 2022; 21:333-338. [PMID: 35673471 PMCID: PMC9167162 DOI: 10.1007/s40200-022-00978-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 01/09/2022] [Indexed: 01/27/2023]
Abstract
Purpose Personal medicine is a new notion for individualizing treatment in the future. Studying pathogenic markers including genetic variants would be beneficial in better diagnosis and management of complex diseases such as diabetes and obesity. Adenosine deaminase (ADA) is a purine metabolic enzyme and modulates insulin activity in various tissues through several different mechanisms. Increased ADA activity is associated with decreased glucose uptake. A significant increase in serum deaminase activity has been reported in patients with T2DM and obesity. ADA gene polymorphisms seem to affect ADA enzymatic activity and a polymorphism at the position 4223 in the first intron of ADA gene (ADA 4223 A/C) has been previously associated with obesity. The aim of this study was to explore ADA gene 4223 A/C polymorphism and its association with obesity in patients with Type 2 diabetes. Methods Obese patients (N = 133: 64 diabetic +69 non-diabetic) with BMI ≥ 30 and subjects with BMI < 30 (N = 152: 83 diabetics +69 non-diabetic) were recruited into a case-control association study. Blood samples were collected and after DNA extraction, the allele and genotype frequency for ADA gene polymorphism was determined using PCR-RFLP technique. Results We observed a significant increase for the frequency of AA+CA genotype in non-obese patients with diabetes compared to obese patients with diabetes (P = 0.04, OR = 2.1, 95%CI; 0.93-4.9). Conclusion The higher frequency of AA+CA genotype in none obese diabetes individuals and lower frequency of this genotype in obese diabetes subjects indicates an important role for ADA gene polymorphism in diabetes subjects without obesity.
Collapse
|
22
|
Theobromine enhances the conversion of white adipocytes into beige adipocytes in a PPARγ activation-dependent manner. J Nutr Biochem 2021; 100:108898. [PMID: 34748921 DOI: 10.1016/j.jnutbio.2021.108898] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 07/07/2021] [Accepted: 09/29/2021] [Indexed: 12/13/2022]
Abstract
The adipocytes play an important role in driving the obese-state-white adipose tissue (WAT) stores the excess energy as fat, wherein brown adipose tissue (BAT) is responsible for energy expenditure via the thermoregulatory function of uncoupling protein 1 (UCP1)-the imbalance between these two onsets obesity. Moreover, the anti-obesity effects of brown-like-adipocytes (beige) in WAT are well documented. Browning, the process of transformation of energy-storing into energy-dissipating adipocytes, is a potential preventive strategy against obesity and its related diseases. In the present study, to explore an alternative source of natural products in the regulation of adipocyte transformation, we assessed the potential of theobromine (TB), a bitter alkaloid of the cacao plant, inducing browning in mice (in vivo) and primary adipocytes (in vitro). Dietary supplementation of TB significantly increased skin temperature of the inguinal region in mice and induced the expression of UCP1 protein. It also increased the expression levels of mitochondrial marker proteins in subcutaneous adipose tissues but not in visceral adipose tissues. The microarray analysis showed that TB supplementation upregulated multiple thermogenic and beige adipocyte marker genes in subcutaneous adipose tissue. Furthermore, in mouse-derived primary adipocytes, TB upregulated the expression of the UCP1 protein and mitochondrial mass in a PPARγ ligand-dependent manner. It also increased the phosphorylation levels of PPARγ coactivator 1α without affecting its protein expression. These results indicate that dietary supplementation of TB induces browning in subcutaneous WAT and enhances PPARγ-induced UCP1 expression in vitro, suggesting its potential to treat obesity.
Collapse
|
23
|
Campos-Martins A, Bragança B, Correia-de-Sá P, Fontes-Sousa AP. Pharmacological Tuning of Adenosine Signal Nuances Underlying Heart Failure With Preserved Ejection Fraction. Front Pharmacol 2021; 12:724320. [PMID: 34489711 PMCID: PMC8417789 DOI: 10.3389/fphar.2021.724320] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 08/04/2021] [Indexed: 12/30/2022] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) roughly represents half of the cardiac failure events in developed countries. The proposed 'systemic microvascular paradigm' has been used to explain HFpHF presentation heterogeneity. The lack of effective treatments with few evidence-based therapeutic recommendations makes HFpEF one of the greatest unmet clinical necessities worldwide. The endogenous levels of the purine nucleoside, adenosine, increase significantly following cardiovascular events. Adenosine exerts cardioprotective, neuromodulatory, and immunosuppressive effects by activating plasma membrane-bound P1 receptors that are widely expressed in the cardiovascular system. Its proven benefits have been demonstrated in preclinical animal tests. Here, we provide a comprehensive and up-to-date critical review about the main therapeutic advantages of tuning adenosine signalling pathways in HFpEF, without discounting their side effects and how these can be seized.
Collapse
Affiliation(s)
- Alexandrina Campos-Martins
- Laboratório de Farmacologia e Neurobiologia, Centro de Investigação Farmacológica e Inovação Medicamentosa (MedInUP), Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto (ICBAS-UP), Porto, Portugal
| | - Bruno Bragança
- Laboratório de Farmacologia e Neurobiologia, Centro de Investigação Farmacológica e Inovação Medicamentosa (MedInUP), Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto (ICBAS-UP), Porto, Portugal.,Department of Cardiology, Centro Hospitalar Tâmega e Sousa, Penafiel, Portugal
| | - Paulo Correia-de-Sá
- Laboratório de Farmacologia e Neurobiologia, Centro de Investigação Farmacológica e Inovação Medicamentosa (MedInUP), Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto (ICBAS-UP), Porto, Portugal
| | - Ana Patrícia Fontes-Sousa
- Laboratório de Farmacologia e Neurobiologia, Centro de Investigação Farmacológica e Inovação Medicamentosa (MedInUP), Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto (ICBAS-UP), Porto, Portugal
| |
Collapse
|
24
|
ADORA 1-driven brain-sympathetic neuro-adipose connections control body weight and adipose lipid metabolism. Mol Psychiatry 2021; 26:2805-2819. [PMID: 33067580 PMCID: PMC8050129 DOI: 10.1038/s41380-020-00908-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 09/14/2020] [Accepted: 10/01/2020] [Indexed: 12/21/2022]
Abstract
It is essential to elucidate brain-adipocyte interactions in order to tackle obesity and its comorbidities, as the precise control of brain-adipose tissue cross-talk is crucial for energy and glucose homeostasis. Recent studies show that in the peripheral adipose tissue, adenosine induces adipogenesis through peripheral adenosine A1 receptor (pADORA1) signaling; however, it remains unclear whether systemic and adipose tissue metabolism would also be under the control of central (c) ADORA1 signaling. Here, we use tissue-specific pharmacology and metabolic tools to clarify the roles of cADORA1 signaling in energy and adipocyte physiology. We found that cADORA1 signaling reduces body weight while also inducing adipose tissue lipolysis. cADORA1 signaling also increases adipose tissue sympathetic norepinephrine content. In contrast, pADORA1 signaling facilitates a high-fat diet-induced obesity (DIO). We propose here a novel mechanism in which cADORA1 and pADORA1 signaling hinder and aggravate DIO, respectively.
Collapse
|
25
|
Cao J, Wang H, Su JB, Wang XQ, Zhang DM, Wang XH, Liu WS, Ge XQ. Inverse relationship between serum adenosine deaminase levels and islet beta cell function in patients with type 2 diabetes. Diabetol Metab Syndr 2021; 13:54. [PMID: 34001220 PMCID: PMC8127294 DOI: 10.1186/s13098-021-00671-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/28/2021] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVE Type 2 diabetes (T2D) is a chronic low-grade inflammatory disease, which characterized by islet beta cell dysfunction. Serum adenosine deaminase (ADA) is an important enzyme that regulates the biological activity of insulin, and its levels are greatly increased in inflammatory diseases with insulin resistance. The present study was designed to explore the relationship between serum ADA levels and islet beta cell function in patients with T2D. METHODS This cross-sectional study recruited 1573 patients with T2D from the Endocrinology Department of the Affiliated Hospital 2 of Nantong University between 2015 and 2018. All participants were received serum ADA test and oral glucose tolerance test (OGTT). Insulin sensitivity index (assessed by Matsuda index using C-peptide, ISIM-cp), insulin secretion index (assessed by ratio of area under the C-peptide curve to glucose curve, AUCcp/glu) and islet beta cell function (assessed by insulin secretion-sensitivity index 2 using C-peptide, ISSI2cp) were derived from OGTT. And other clinical parameters, such as HbA1c, were also collected. RESULTS It was showed that HbA1c was significantly increased, while ISIM-cp, AUCcp/glu and ISSI2cp significantly decreased, across ascending quartiles of serum ADA levels. Moreover, serum ADA levels were negatively correlated with ISSI2cp (r = - 0.267, p < 0.001). Furthermore, after adjusting for other clinical parameters by multiple linear regression analysis, serum ADA levels were still independently associated with ISSI2cp (β = - 0.125, t = - 5.397, p < 0.001, adjusted R2 = 0.459). CONCLUSIONS Serum ADA levels are independently associated with islet beta cell function in patients with T2D.
Collapse
Affiliation(s)
- Jie Cao
- Department of Endocrinology, Affiliated Hospital 2 of Nantong University, and First People’s Hospital of Nantong City, No. 6, Haierxiang North Road, Nantong, 226001 China
| | - Hong Wang
- Department of Endocrinology, Affiliated Hospital 2 of Nantong University, and First People’s Hospital of Nantong City, No. 6, Haierxiang North Road, Nantong, 226001 China
| | - Jian-bin Su
- Department of Endocrinology, Affiliated Hospital 2 of Nantong University, and First People’s Hospital of Nantong City, No. 6, Haierxiang North Road, Nantong, 226001 China
| | - Xue-qin Wang
- Department of Endocrinology, Affiliated Hospital 2 of Nantong University, and First People’s Hospital of Nantong City, No. 6, Haierxiang North Road, Nantong, 226001 China
| | - Dong-mei Zhang
- Medical Research Center, Affiliated Hospital 2 of Nantong University, and First People’s Hospital of Nantong City, No. 6, Haierxiang North Road, Nantong, 226001 China
| | - Xiao-hua Wang
- Department of Endocrinology, Affiliated Hospital 2 of Nantong University, and First People’s Hospital of Nantong City, No. 6, Haierxiang North Road, Nantong, 226001 China
| | - Wang-shu Liu
- Department of Endocrinology, Affiliated Hospital 2 of Nantong University, and First People’s Hospital of Nantong City, No. 6, Haierxiang North Road, Nantong, 226001 China
| | - Xiao-qin Ge
- Department of Endocrinology, Affiliated Hospital 2 of Nantong University, and First People’s Hospital of Nantong City, No. 6, Haierxiang North Road, Nantong, 226001 China
| |
Collapse
|
26
|
Barella LF, Jain S, Kimura T, Pydi SP. Metabolic roles of G protein-coupled receptor signaling in obesity and type 2 diabetes. FEBS J 2021; 288:2622-2644. [PMID: 33682344 DOI: 10.1111/febs.15800] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 01/31/2021] [Accepted: 03/03/2021] [Indexed: 12/12/2022]
Abstract
The incidence of obesity and type 2 diabetes (T2D) has been increasing steadily worldwide. It is estimated that by 2045 more than 800 million people will be suffering from diabetes. Despite the advancements in modern medicine, more effective therapies for treating obesity and T2D are needed. G protein-coupled receptors (GPCRs) have emerged as important drug targets for various chronic diseases, including obesity, T2D, and liver diseases. During the past two decades, many laboratories worldwide focused on understanding the role of GPCR signaling in regulating glucose metabolism and energy homeostasis. The information gained from these studies can guide the development of novel therapeutic agents. In this review, we summarize recent studies providing insights into the role of GPCR signaling in peripheral, metabolically important tissues such as pancreas, liver, skeletal muscle, and adipose tissue, focusing primarily on the use of mutant animal models and human data.
Collapse
Affiliation(s)
- Luiz F Barella
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA.,Indiana Biosciences Research Institute, Indianapolis, IN, USA
| | - Shanu Jain
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Takefumi Kimura
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Sai P Pydi
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA.,Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, India
| |
Collapse
|
27
|
Galgaro BC, Beckenkamp LR, van den M Nunnenkamp M, Korb VG, Naasani LIS, Roszek K, Wink MR. The adenosinergic pathway in mesenchymal stem cell fate and functions. Med Res Rev 2021; 41:2316-2349. [PMID: 33645857 DOI: 10.1002/med.21796] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/02/2021] [Accepted: 02/17/2021] [Indexed: 12/18/2022]
Abstract
Mesenchymal stem cells (MSCs) play an important role in tissue homeostasis and damage repair through their ability to differentiate into cells of different tissues, trophic support, and immunomodulation. These properties made them attractive for clinical applications in regenerative medicine, immune disorders, and cell transplantation. However, despite multiple preclinical and clinical studies demonstrating beneficial effects of MSCs, their native identity and mechanisms of action remain inconclusive. Since its discovery, the CD73/ecto-5'-nucleotidase is known as a classic marker for MSCs, but its role goes far beyond a phenotypic characterization antigen. CD73 contributes to adenosine production, therefore, is an essential component of purinergic signaling, a pathway composed of different nucleotides and nucleosides, which concentrations are finely regulated by the ectoenzymes and receptors. Thus, purinergic signaling controls pathophysiological functions such as proliferation, migration, cell fate, and immune responses. Despite the remarkable progress already achieved in considering adenosinergic pathway as a therapeutic target in different pathologies, its role is not fully explored in the context of the therapeutic functions of MSCs. Therefore, in this review, we provide an overview of the role of CD73 and adenosine-mediated signaling in the functions ascribed to MSCs, such as homing and proliferation, cell differentiation, and immunomodulation. Additionally, we will discuss the pathophysiological role of MSCs, via CD73 and adenosine, in different diseases, as well as in tumor development and progression. A better understanding of the adenosinergic pathway in the regulation of MSCs functions will help to provide improved therapeutic strategies applicable in regenerative medicine.
Collapse
Affiliation(s)
- Bruna C Galgaro
- Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - Liziane R Beckenkamp
- Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - Martha van den M Nunnenkamp
- Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - Vitória G Korb
- Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - Liliana I S Naasani
- Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - Katarzyna Roszek
- Department of Biochemistry, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Toruń, Poland
| | - Márcia R Wink
- Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
28
|
Im H, Park JH, Im S, Han J, Kim K, Lee YH. Regulatory roles of G-protein coupled receptors in adipose tissue metabolism and their therapeutic potential. Arch Pharm Res 2021; 44:133-145. [PMID: 33550564 PMCID: PMC7907040 DOI: 10.1007/s12272-021-01314-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 01/18/2021] [Indexed: 12/12/2022]
Abstract
The high incidence of obesity has increased the need to discover new therapeutic targets to combat obesity and obesity-related metabolic diseases. Obesity is defined as an abnormal accumulation of adipose tissue, which is one of the major metabolic organs that regulate energy homeostasis. However, there are currently no approved anti-obesity therapeutics that directly target adipose tissue metabolism. With recent advances in the understanding of adipose tissue biology, molecular mechanisms involved in brown adipose tissue expansion and metabolic activation have been investigated as potential therapeutic targets to increase energy expenditure. This review focuses on G-protein coupled receptors (GPCRs) as they are the most successful class of druggable targets in human diseases and have an important role in regulating adipose tissue metabolism. We summarize recent findings on the major GPCR classes that regulate thermogenesis and mitochondrial metabolism in adipose tissue. Improved understanding of GPCR signaling pathways that regulate these processes could facilitate the development of novel pharmacological approaches to treat obesity and related metabolic disorders.
Collapse
Affiliation(s)
- Hyeonyeong Im
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University; Bio-MAX Institute, Seoul National University, 29-Room # 311, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Ji-Hyun Park
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University; Bio-MAX Institute, Seoul National University, 29-Room # 311, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Seowoo Im
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University; Bio-MAX Institute, Seoul National University, 29-Room # 311, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Juhyeong Han
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University; Bio-MAX Institute, Seoul National University, 29-Room # 311, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Kyungmin Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University; Bio-MAX Institute, Seoul National University, 29-Room # 311, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Yun-Hee Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University; Bio-MAX Institute, Seoul National University, 29-Room # 311, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.
| |
Collapse
|
29
|
Van Schaik L, Kettle C, Green R, Irving HR, Rathner JA. Effects of Caffeine on Brown Adipose Tissue Thermogenesis and Metabolic Homeostasis: A Review. Front Neurosci 2021; 15:621356. [PMID: 33613184 PMCID: PMC7889509 DOI: 10.3389/fnins.2021.621356] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 01/11/2021] [Indexed: 12/11/2022] Open
Abstract
The impact of brown adipose tissue (BAT) metabolism on understanding energy balance in humans is a relatively new and exciting field of research. The pathogenesis of obesity can be largely explained by an imbalance between caloric intake and energy expenditure, but the underlying mechanisms are far more complex. Traditional non-selective sympathetic activators have been used to artificially elevate energy utilization, or suppress appetite, however undesirable side effects are apparent with the use of these pharmacological interventions. Understanding the role of BAT, in relation to human energy homeostasis has the potential to dramatically offset the energy imbalance associated with obesity. This review discusses paradoxical effects of caffeine on peripheral adenosine receptors and the possible role of adenosine in increasing metabolism is highlighted, with consideration to the potential of central rather than peripheral mechanisms for caffeine mediated BAT thermogenesis and energy expenditure. Research on the complex physiology of adipose tissue, the embryonic lineage and function of the different types of adipocytes is summarized. In addition, the effect of BAT on overall human metabolism and the extent of the associated increase in energy expenditure are discussed. The controversy surrounding the primary β-adrenoceptor involved in human BAT activation is examined, and suggestions as to the lack of translational findings from animal to human physiology and human in vitro to in vivo models are provided. This review compares and distinguishes human and rodent BAT effects, thus developing an understanding of human BAT thermogenesis to aid lifestyle interventions targeting obesity and metabolic syndrome. The focus of this review is on the effect of BAT thermogenesis on overall metabolism, and the potential therapeutic effects of caffeine in increasing metabolism via its effects on BAT.
Collapse
Affiliation(s)
- Lachlan Van Schaik
- Department of Pharmacy and Biomedical Sciences, La Trobe Institute for Molecular Science, La Trobe University, Bendigo, VIC, Australia
| | - Christine Kettle
- Department of Pharmacy and Biomedical Sciences, La Trobe Institute for Molecular Science, La Trobe University, Bendigo, VIC, Australia
| | - Rodney Green
- Department of Pharmacy and Biomedical Sciences, La Trobe Institute for Molecular Science, La Trobe University, Bendigo, VIC, Australia
| | - Helen R. Irving
- Department of Pharmacy and Biomedical Sciences, La Trobe Institute for Molecular Science, La Trobe University, Bendigo, VIC, Australia
| | - Joseph A. Rathner
- Department of Pharmacy and Biomedical Sciences, La Trobe Institute for Molecular Science, La Trobe University, Bendigo, VIC, Australia
- Department of Physiology, School of Biomedical Sciences, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
30
|
Jain S, Jacobson KA. Purinergic signaling in diabetes and metabolism. Biochem Pharmacol 2020; 187:114393. [PMID: 33359363 DOI: 10.1016/j.bcp.2020.114393] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 12/22/2022]
Abstract
Purinergic signaling, a concept originally formulated by the late Geoffrey Burnstock (1929-2020), was found to modulate pathways in every physiological system. In metabolic disorders there is a role for both adenosine receptors and P2 (nucleotide) receptors, of which there are two classes, i.e. P2Y metabotropic and P2X ionotropic receptors. The individual roles of the 19 receptors encompassed by this family have been dissected - and in many cases the effects associated with specific cell types, including adipocytes, skeletal muscle, liver cells and immune cells. It is suggested that ligands selective for each of the four adenosine receptors (A1, A2A, A2B and A3), and several of the P2 subtypes (e.g. P2Y6 or P2X7 antagonists) might have therapeutic potential for treating diabetes and obesity. This is a developing story with some conflicting conclusions relevant to drug discovery, which we summarize here.
Collapse
Affiliation(s)
- Shanu Jain
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA
| | - Kenneth A Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA.
| |
Collapse
|
31
|
Husted AS, Ekberg JH, Tripp E, Nissen TAD, Meijnikman S, O'Brien SL, Ulven T, Acherman Y, Bruin SC, Nieuwdorp M, Gerhart-Hines Z, Calebiro D, Dragsted LO, Schwartz TW. Autocrine negative feedback regulation of lipolysis through sensing of NEFAs by FFAR4/GPR120 in WAT. Mol Metab 2020; 42:101103. [PMID: 33091626 PMCID: PMC7683346 DOI: 10.1016/j.molmet.2020.101103] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/11/2020] [Accepted: 10/13/2020] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVES Long-chain fatty acids (LCFAs) released from adipocytes inhibit lipolysis through an unclear mechanism. We hypothesized that the LCFA receptor, FFAR4 (GPR120), which is highly expressed in adipocytes, may be involved in this feedback regulation. METHODS AND RESULTS Liquid chromatography mass spectrometry (LC-MS) analysis of conditioned media from isoproterenol-stimulated primary cultures of murine and human adipocytes demonstrated that most of the released non-esterified free fatty acids (NEFAs) are known agonists for FFAR4. In agreement with this, conditioned medium from isoproterenol-treated adipocytes stimulated signaling strongly in FFAR4 transfected COS-7 cells as opposed to non-transfected control cells. In transfected 3T3-L1 cells, FFAR4 agonism stimulated Gi- and Go-mini G protein binding more strongly than Gq, effects which were blocked by the selective FFAR4 antagonist AH7614. In primary cultures of murine white adipocytes, the synthetic, selective FFAR4 agonist CpdA inhibited isoproterenol-induced intracellular cAMP accumulation in a manner similar to the antilipolytic control agent nicotinic acid acting through another receptor, HCAR2. In vivo, oral gavage with the synthetic, specific FFAR4 agonist CpdB decreased the level of circulating NEFAs in fasting lean mice to a similar degree as nicotinic acid. In agreement with the identified anti-lipolytic effect of FFAR4, plasma NEFAs and glycerol were increased in FFAR4-deficient mice as compared to littermate controls despite having elevated insulin levels, and cAMP accumulation in primary adipocyte cultures was augmented by treatment with the FFAR4 antagonist conceivably by blocking the stimulatory tone of endogenous NEFAs on FFAR4. CONCLUSIONS In white adipocytes, FFAR4 functions as an NEFA-activated, autocrine, negative feedback regulator of lipolysis by decreasing cAMP though Gi-mediated signaling.
Collapse
Affiliation(s)
- Anna Sofie Husted
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark.
| | - Jeppe H Ekberg
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark.
| | - Emma Tripp
- Institute of Metabolism and Systems Research and Center of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham B15 2TT, United Kingdom.
| | - Tinne A D Nissen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark.
| | - Stijn Meijnikman
- Departments of Internal and Experimental Vascular Medicine, Amsterdam University Medical Centers, Location AMC, Amsterdam, the Netherlands.
| | - Shannon L O'Brien
- Institute of Metabolism and Systems Research and Center of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham B15 2TT, United Kingdom.
| | - Trond Ulven
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense, Denmark; Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark.
| | - Yair Acherman
- Department of Surgery, Spaarne Hospital, Hoofddorp, the Netherlands.
| | - Sjoerd C Bruin
- Department of Surgery, Spaarne Hospital, Hoofddorp, the Netherlands.
| | - Max Nieuwdorp
- Departments of Internal and Experimental Vascular Medicine, Amsterdam University Medical Centers, Location AMC, Amsterdam, the Netherlands.
| | - Zach Gerhart-Hines
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark.
| | - Davide Calebiro
- Institute of Metabolism and Systems Research and Center of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham B15 2TT, United Kingdom.
| | - Lars O Dragsted
- Department of Nutrition, Exercise, and Sports, Section of Preventive and Clinical Nutrition, University of Copenhagen, Rolighedsvej 30, Frederiksberg C, 1958, Denmark.
| | - Thue W Schwartz
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark.
| |
Collapse
|
32
|
Eisenstein A, Chitalia SV, Ravid K. Bone Marrow and Adipose Tissue Adenosine Receptors Effect on Osteogenesis and Adipogenesis. Int J Mol Sci 2020; 21:E7470. [PMID: 33050467 PMCID: PMC7589187 DOI: 10.3390/ijms21207470] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/01/2020] [Accepted: 10/06/2020] [Indexed: 12/12/2022] Open
Abstract
Adenosine is an extracellular signaling molecule that is particularly relevant in times of cellular stress, inflammation and metabolic disturbances when the levels of the purine increase. Adenosine acts on two G-protein-coupled stimulatory and on two G-protein-coupled inhibitory receptors, which have varying expression profiles in different tissues and conditions, and have different affinities for the endogenous ligand. Studies point to significant roles of adenosine and its receptors in metabolic disease and bone health, implicating the receptors as potential therapeutic targets. This review will highlight our current understanding of the dichotomous effects of adenosine and its receptors on adipogenesis versus osteogenesis within the bone marrow to maintain bone health, as well as its relationship to obesity. Therapeutic implications will also be reviewed.
Collapse
Affiliation(s)
- Anna Eisenstein
- Department of Dermatology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Shlok V. Chitalia
- Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA 02118, USA; (S.V.C.); (K.R.)
| | - Katya Ravid
- Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA 02118, USA; (S.V.C.); (K.R.)
| |
Collapse
|
33
|
de Oliveira M, Mathias LS, de Sibio MT, Noronha-Matos JB, Costa MA, Nogueira CR, Correia-de-Sá P. Pitfalls and challenges of the purinergic signaling cascade in obesity. Biochem Pharmacol 2020; 182:114214. [PMID: 32905795 DOI: 10.1016/j.bcp.2020.114214] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/31/2020] [Accepted: 09/01/2020] [Indexed: 12/15/2022]
Abstract
Obesity is a worldwide health problem which have reached pandemic proportions, now also including low and middle-income countries. Excessive or abnormal fat deposition in the abdomen especially in the visceral compartment is tightly associated with a high metabolic risk for arterial hypertension, type II diabetes, cardiovascular diseases, musculoskeletal disorders (especially articular degeneration) and some cancers. Contrariwise, accumulation of fat in the subcutaneous compartment has been associated with a neutral metabolic impact, favoring a lower risk of insulin resistance. Obesity results more often from an avoidable imbalance between food consumption and energy expenditure. There are several recommended strategies for dealing with obesity, including pharmacological therapies, but their success remains incomplete and may not compensate the associated adverse effects. Purinergic signaling operated by ATP and its metabolite, adenosine, has attracted increasing attention in obesity. The extracellular levels of purines often reflect the energy status of a given cell population. Adenine nucleotides and nucleosides fine tuning control adipogenesis and mature adipocytes function via the activation of P2 and P1 purinoceptors, respectively. These features make the purinergic signaling cascade a putative target for therapeutic intervention in obesity and related metabolic syndromes. There are, however, gaps in our knowledge regarding the role of purines in adipocyte precursors differentiation and mature adipocytes functions, as well as their impact among distinct adipose tissue deposits (e.g. white vs. brown, visceral vs. subcutaneous), which warrants further investigations before translation to clinical trials can be made.
Collapse
Affiliation(s)
- Miriane de Oliveira
- São Paulo State University (UNESP), Botucatu Medical School, District of Rubião Jr, s/n, 18618-000, Botucatu, São Paulo, Brazil
| | - Lucas Solla Mathias
- São Paulo State University (UNESP), Botucatu Medical School, District of Rubião Jr, s/n, 18618-000, Botucatu, São Paulo, Brazil
| | - Maria Teresa de Sibio
- São Paulo State University (UNESP), Botucatu Medical School, District of Rubião Jr, s/n, 18618-000, Botucatu, São Paulo, Brazil
| | - José Bernardo Noronha-Matos
- Laboratório de Farmacologia e Neurobiologia, Departamento de Imuno-Fisiologia e Farmacologia, Instituto de Ciências Biomédicas Abel Salazar - Universidade do Porto (ICBAS-UP); Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas Abel Salazar - Universidade do Porto (ICBAS-UP)
| | - Maria Adelina Costa
- Laboratório de Farmacologia e Neurobiologia, Departamento de Imuno-Fisiologia e Farmacologia, Instituto de Ciências Biomédicas Abel Salazar - Universidade do Porto (ICBAS-UP); Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas Abel Salazar - Universidade do Porto (ICBAS-UP); Departamento de Química, Instituto de Ciências Biomédicas Abel Salazar - Universidade do Porto (ICBAS-UP)
| | - Célia Regina Nogueira
- São Paulo State University (UNESP), Botucatu Medical School, District of Rubião Jr, s/n, 18618-000, Botucatu, São Paulo, Brazil
| | - Paulo Correia-de-Sá
- Laboratório de Farmacologia e Neurobiologia, Departamento de Imuno-Fisiologia e Farmacologia, Instituto de Ciências Biomédicas Abel Salazar - Universidade do Porto (ICBAS-UP); Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas Abel Salazar - Universidade do Porto (ICBAS-UP).
| |
Collapse
|
34
|
Gratal P, Lamuedra A, Medina JP, Bermejo-Álvarez I, Largo R, Herrero-Beaumont G, Mediero A. Purinergic System Signaling in Metainflammation-Associated Osteoarthritis. Front Med (Lausanne) 2020; 7:506. [PMID: 32984382 PMCID: PMC7485330 DOI: 10.3389/fmed.2020.00506] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 07/22/2020] [Indexed: 12/18/2022] Open
Abstract
Inflammation triggered by metabolic imbalance, also called metainflammation, is low-grade inflammation caused by the components involved in metabolic syndrome (MetS), including central obesity and impaired glucose tolerance. This phenomenon is mainly due to excess nutrients and energy, and it contributes to the pathogenesis of osteoarthritis (OA). OA is characterized by the progressive degeneration of articular cartilage, which suffers erosion and progressively becomes thinner. Purinergic signaling is involved in several physiological and pathological processes, such as cell proliferation in development and tissue regeneration, neurotransmission and inflammation. Adenosine and ATP receptors, and other members of the signaling pathway, such as AMP-activated protein kinase (AMPK), are involved in obesity, type 2 diabetes (T2D) and OA progression. In this review, we focus on purinergic regulation in osteoarthritic cartilage and how different components of MetS, such as obesity and T2D, modulate the purinergic system in OA. In that regard, we describe the critical role in this disease of receptors, such as adenosine A2A receptor (A2AR) and ATP P2X7 receptor. Finally, we also assess how nucleotides regulate the inflammasome in OA.
Collapse
Affiliation(s)
- Paula Gratal
- Bone and Joint Research Unit, IIS-Fundación Jiménez Díaz UAM, Madrid, Spain
| | - Ana Lamuedra
- Bone and Joint Research Unit, IIS-Fundación Jiménez Díaz UAM, Madrid, Spain
| | - Juan Pablo Medina
- Bone and Joint Research Unit, IIS-Fundación Jiménez Díaz UAM, Madrid, Spain
| | | | - Raquel Largo
- Bone and Joint Research Unit, IIS-Fundación Jiménez Díaz UAM, Madrid, Spain
| | | | - Aránzazu Mediero
- Bone and Joint Research Unit, IIS-Fundación Jiménez Díaz UAM, Madrid, Spain
| |
Collapse
|
35
|
Geneste A, Duong MN, Molina L, Conilh L, Beaumel S, Cleret A, Chettab K, Lachat M, Jordheim LP, Matera EL, Dumontet C. Adipocyte-conditioned medium induces resistance of breast cancer cells to lapatinib. BMC Pharmacol Toxicol 2020; 21:61. [PMID: 32795383 PMCID: PMC7427918 DOI: 10.1186/s40360-020-00436-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 07/27/2020] [Indexed: 12/22/2022] Open
Abstract
Background The existence of a cross-talk between peritumoral adipocytes and cancer cells has been increasingly investigated. Several studies have shown that these adipocytes protect tumor cells from the effect of anticancer agents. Methods To investigate a potential protective effect of adipocyte-conditioned medium on HER2 positive breast cancer cells exposed to tyrosine kinase inhibitors (TKI) such as lapatinib, we analyzed the sensitivity of HER2 positive breast cancer models in vitro and in vivo on SCID mice in the presence or absence of adipocytes or adipocyte-conditioned medium. Results Conditioned medium from differentiated adipocytes reduced the in vitro sensitivity of the HER2+ cell lines BT474 and SKBR3 to TKI. Particularly, conditioned medium abrogated P27 induction in tumor cells by lapatinib but this was observed only when conditioned medium was present during exposure to lapatinib. In addition, resistance was induced with adipocytes derived from murine NIH3T3 or human hMAD cells but not with fibroblasts or preadipocytes. In vivo studies demonstrated that the contact of the tumors with adipose tissue reduced sensitivity to lapatinib. Soluble factors involved in this resistance were found to be thermolabile. Pharmacological modulation of lipolysis in adipocytes during preparation of conditioned media showed that various lipolysis inhibitors abolished the protective effect of conditioned media on tumor cells, suggesting a role for adipocyte lipolysis in the induction of resistance of tumor cells to TKI. Conclusions Overall, our results suggest that contact of tumor cells with proximal adipose tissue induces resistance to anti HER2 small molecule inhibitors through the production of soluble thermolabile factors, and that this effect can be abrogated using lipolysis inhibitors.
Collapse
Affiliation(s)
- A Geneste
- Centre de Recherche en Cancérologie de Lyon (CRCL), INSERM UMR 1052, CNRS 5286, 8 Avenue Rockefeller, 69008, Lyon, France
| | - M N Duong
- Department of Oncology, Lausanne University Hospital Center (CHUV) and University of Lausanne, Epalinges, Switzerland
| | - L Molina
- Centre de Recherche en Cancérologie de Lyon (CRCL), INSERM UMR 1052, CNRS 5286, 8 Avenue Rockefeller, 69008, Lyon, France
| | - L Conilh
- Centre de Recherche en Cancérologie de Lyon (CRCL), INSERM UMR 1052, CNRS 5286, 8 Avenue Rockefeller, 69008, Lyon, France.
| | - S Beaumel
- Centre de Recherche en Cancérologie de Lyon (CRCL), INSERM UMR 1052, CNRS 5286, 8 Avenue Rockefeller, 69008, Lyon, France
| | - A Cleret
- Centre de Recherche en Cancérologie de Lyon (CRCL), INSERM UMR 1052, CNRS 5286, 8 Avenue Rockefeller, 69008, Lyon, France
| | - K Chettab
- Centre de Recherche en Cancérologie de Lyon (CRCL), INSERM UMR 1052, CNRS 5286, 8 Avenue Rockefeller, 69008, Lyon, France
| | - M Lachat
- Hospices Civils de Lyon, Banque de tissus et cellules, 5 place d'Arsonval, 69003, Lyon, France
| | - L P Jordheim
- Centre de Recherche en Cancérologie de Lyon (CRCL), INSERM UMR 1052, CNRS 5286, 8 Avenue Rockefeller, 69008, Lyon, France
| | - E L Matera
- Centre de Recherche en Cancérologie de Lyon (CRCL), INSERM UMR 1052, CNRS 5286, 8 Avenue Rockefeller, 69008, Lyon, France
| | - C Dumontet
- Centre de Recherche en Cancérologie de Lyon (CRCL), INSERM UMR 1052, CNRS 5286, 8 Avenue Rockefeller, 69008, Lyon, France.,Hospices Civils de Lyon, Services d'Hématologie, 165 Chemin du Grand Revoyet, 69310, Pierre-Bénite, France
| |
Collapse
|
36
|
Onogi Y, Khalil AEMM, Ussar S. Identification and characterization of adipose surface epitopes. Biochem J 2020; 477:2509-2541. [PMID: 32648930 PMCID: PMC7360119 DOI: 10.1042/bcj20190462] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 06/11/2020] [Accepted: 06/12/2020] [Indexed: 12/14/2022]
Abstract
Adipose tissue is a central regulator of metabolism and an important pharmacological target to treat the metabolic consequences of obesity, such as insulin resistance and dyslipidemia. Among the various cellular compartments, the adipocyte cell surface is especially appealing as a drug target as it contains various proteins that when activated or inhibited promote adipocyte health, change its endocrine function and eventually maintain or restore whole-body insulin sensitivity. In addition, cell surface proteins are readily accessible by various drug classes. However, targeting individual cell surface proteins in adipocytes has been difficult due to important functions of these proteins outside adipose tissue, raising various safety concerns. Thus, one of the biggest challenges is the lack of adipose selective surface proteins and/or targeting reagents. Here, we discuss several receptor families with an important function in adipogenesis and mature adipocytes to highlight the complexity at the cell surface and illustrate the problems with identifying adipose selective proteins. We then discuss that, while no unique adipocyte surface protein might exist, how splicing, posttranslational modifications as well as protein/protein interactions can create enormous diversity at the cell surface that vastly expands the space of potentially unique epitopes and how these selective epitopes can be identified and targeted.
Collapse
Affiliation(s)
- Yasuhiro Onogi
- RG Adipocytes and Metabolism, Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, 85764 Neuherberg, Germany
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Ahmed Elagamy Mohamed Mahmoud Khalil
- RG Adipocytes and Metabolism, Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, 85764 Neuherberg, Germany
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Siegfried Ussar
- RG Adipocytes and Metabolism, Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, 85764 Neuherberg, Germany
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
- Department of Medicine, Technische Universität München, Munich, Germany
| |
Collapse
|
37
|
Gnad T, Navarro G, Lahesmaa M, Reverte-Salisa L, Copperi F, Cordomi A, Naumann J, Hochhäuser A, Haufs-Brusberg S, Wenzel D, Suhr F, Jespersen NZ, Scheele C, Tsvilovskyy V, Brinkmann C, Rittweger J, Dani C, Kranz M, Deuther-Conrad W, Eltzschig HK, Niemi T, Taittonen M, Brust P, Nuutila P, Pardo L, Fleischmann BK, Blüher M, Franco R, Bloch W, Virtanen KA, Pfeifer A. Adenosine/A2B Receptor Signaling Ameliorates the Effects of Aging and Counteracts Obesity. Cell Metab 2020; 32:56-70.e7. [PMID: 32589947 PMCID: PMC7437516 DOI: 10.1016/j.cmet.2020.06.006] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 03/15/2020] [Accepted: 06/08/2020] [Indexed: 12/17/2022]
Abstract
The combination of aging populations with the obesity pandemic results in an alarming rise in non-communicable diseases. Here, we show that the enigmatic adenosine A2B receptor (A2B) is abundantly expressed in skeletal muscle (SKM) as well as brown adipose tissue (BAT) and might be targeted to counteract age-related muscle atrophy (sarcopenia) as well as obesity. Mice with SKM-specific deletion of A2B exhibited sarcopenia, diminished muscle strength, and reduced energy expenditure (EE), whereas pharmacological A2B activation counteracted these processes. Adipose tissue-specific ablation of A2B exacerbated age-related processes and reduced BAT EE, whereas A2B stimulation ameliorated obesity. In humans, A2B expression correlated with EE in SKM, BAT activity, and abundance of thermogenic adipocytes in white fat. Moreover, A2B agonist treatment increased EE from human adipocytes, myocytes, and muscle explants. Mechanistically, A2B forms heterodimers required for adenosine signaling. Overall, adenosine/A2B signaling links muscle and BAT and has both anti-aging and anti-obesity potential.
Collapse
Affiliation(s)
- Thorsten Gnad
- Institute of Pharmacology and Toxicology, University Hospital, University of Bonn, 53127 Bonn, Germany
| | - Gemma Navarro
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Barcelona, Spain; Centro de Investigación en Red, Enfermedades Neurodegenerativas (CiberNed), Instituto de Salud Carlos III, Madrid, Spain
| | - Minna Lahesmaa
- Turku PET Centre, Turku University Hospital, University of Turku, Turku, Finland
| | - Laia Reverte-Salisa
- Institute of Pharmacology and Toxicology, University Hospital, University of Bonn, 53127 Bonn, Germany
| | - Francesca Copperi
- Institute of Pharmacology and Toxicology, University Hospital, University of Bonn, 53127 Bonn, Germany
| | - Arnau Cordomi
- Laboratory of Computational Medicine, Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Jennifer Naumann
- Institute of Pharmacology and Toxicology, University Hospital, University of Bonn, 53127 Bonn, Germany
| | - Aileen Hochhäuser
- Institute of Pharmacology and Toxicology, University Hospital, University of Bonn, 53127 Bonn, Germany
| | - Saskia Haufs-Brusberg
- Institute of Pharmacology and Toxicology, University Hospital, University of Bonn, 53127 Bonn, Germany
| | - Daniela Wenzel
- Institute of Physiology I, Life&Brain Center, Medical Faculty, University of Bonn, 53105 Bonn, Germany; Department of Systems Physiology, Medical Faculty, Ruhr University Bochum, Bochum, Germany
| | - Frank Suhr
- Molecular and Cellular Sport Medicine, German Sport University Cologne, Cologne, Germany; Exercise Physiology Research Group, Biomedical Sciences Group, KU Leuven, Leuven, Belgium
| | - Naja Zenius Jespersen
- Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Camilla Scheele
- Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Christian Brinkmann
- Department of Preventive and Rehabilitative Sport Medicine, German Sport University Cologne, Cologne, Germany
| | - Joern Rittweger
- Department of Muscle and Bone Metabolism, German Aerospace Center (DLR), Institute of Aerospace Medicine, Cologne, Germany
| | - Christian Dani
- Université Côte d'Azur, CNRS, Inserm, iBV, Faculté de Médecine, 06107 Nice Cedex 2, France
| | - Mathias Kranz
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiopharmaceutical Cancer Research, Research Site Leipzig, Leipzig, Germany
| | - Winnie Deuther-Conrad
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiopharmaceutical Cancer Research, Research Site Leipzig, Leipzig, Germany
| | - Holger K Eltzschig
- Department of Anesthesiology, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX, USA
| | - Tarja Niemi
- Department of Plastic and General Surgery, Turku University Hospital, Turku, Finland
| | - Markku Taittonen
- Department of Anesthesiology, Turku University Hospital, Turku, Finland
| | - Peter Brust
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiopharmaceutical Cancer Research, Research Site Leipzig, Leipzig, Germany
| | - Pirjo Nuutila
- Turku PET Centre, Turku University Hospital, University of Turku, Turku, Finland
| | - Leonardo Pardo
- Laboratory of Computational Medicine, Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Bernd K Fleischmann
- Institute of Physiology I, Life&Brain Center, Medical Faculty, University of Bonn, 53105 Bonn, Germany
| | - Matthias Blüher
- Department of Medicine, University of Leipzig, Leipzig, Germany
| | - Rafael Franco
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Barcelona, Spain; Centro de Investigación en Red, Enfermedades Neurodegenerativas (CiberNed), Instituto de Salud Carlos III, Madrid, Spain
| | - Wilhelm Bloch
- Molecular and Cellular Sport Medicine, German Sport University Cologne, Cologne, Germany
| | - Kirsi A Virtanen
- Turku PET Centre, Turku University Hospital, University of Turku, Turku, Finland; Institute of Public Health and Clinical Nutrition, University of Eastern Finland (UEF), Kuopio, Finland
| | - Alexander Pfeifer
- Institute of Pharmacology and Toxicology, University Hospital, University of Bonn, 53127 Bonn, Germany.
| |
Collapse
|
38
|
Ceddia RP, Collins S. A compendium of G-protein-coupled receptors and cyclic nucleotide regulation of adipose tissue metabolism and energy expenditure. Clin Sci (Lond) 2020; 134:473-512. [PMID: 32149342 PMCID: PMC9137350 DOI: 10.1042/cs20190579] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 02/17/2020] [Accepted: 02/24/2020] [Indexed: 12/15/2022]
Abstract
With the ever-increasing burden of obesity and Type 2 diabetes, it is generally acknowledged that there remains a need for developing new therapeutics. One potential mechanism to combat obesity is to raise energy expenditure via increasing the amount of uncoupled respiration from the mitochondria-rich brown and beige adipocytes. With the recent appreciation of thermogenic adipocytes in humans, much effort is being made to elucidate the signaling pathways that regulate the browning of adipose tissue. In this review, we focus on the ligand-receptor signaling pathways that influence the cyclic nucleotides, cAMP and cGMP, in adipocytes. We chose to focus on G-protein-coupled receptor (GPCR), guanylyl cyclase and phosphodiesterase regulation of adipocytes because they are the targets of a large proportion of all currently available therapeutics. Furthermore, there is a large overlap in their signaling pathways, as signaling events that raise cAMP or cGMP generally increase adipocyte lipolysis and cause changes that are commonly referred to as browning: increasing mitochondrial biogenesis, uncoupling protein 1 (UCP1) expression and respiration.
Collapse
Affiliation(s)
- Ryan P Ceddia
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, U.S.A
| | - Sheila Collins
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, U.S.A
| |
Collapse
|
39
|
Sacramento JF, Martins FO, Rodrigues T, Matafome P, Ribeiro MJ, Olea E, Conde SV. A 2 Adenosine Receptors Mediate Whole-Body Insulin Sensitivity in a Prediabetes Animal Model: Primary Effects on Skeletal Muscle. Front Endocrinol (Lausanne) 2020; 11:262. [PMID: 32411098 PMCID: PMC7198774 DOI: 10.3389/fendo.2020.00262] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 04/08/2020] [Indexed: 12/20/2022] Open
Abstract
Epidemiological studies showed that chronic caffeine intake decreased the risk of type 2 diabetes. Previously, we described that chronic caffeine intake prevents and reverses insulin resistance induced by hypercaloric diets and aging, in rats. Caffeine has several cellular mechanisms of action, being the antagonism of adenosine receptors the only attained with human coffee consumption. Here, we investigated the subtypes of adenosine receptors involved on the effects of chronic caffeine intake on insulin sensitivity and the mechanisms and sex differences behind this effect. Experiments were performed in male and female Wistar rats fed either a chow or high-sucrose (HSu) diet (35% of sucrose in drinking water) during 28 days, to induce insulin resistance. In the last 15 days of diet the animals were submitted to DPCPX (A1 antagonist, 0.4 mg/kg), SCH58261 (A2A antagonist, 0.5 mg/kg), or MRS1754 (A2B antagonist, 9.5 μg/kg) administration. Insulin sensitivity, fasting glycaemia, blood pressure, catecholamines, and fat depots were assessed. Expression of A1, A2A, A2B adenosine receptors and protein involved in insulin signaling pathways were evaluated in the liver, skeletal muscle, and visceral adipose tissue. UCP1 expression was measured in adipose tissue. Paradoxically, SCH58261 and MRS1754 decreased insulin sensitivity in control animals, whereas they both improved insulin response in HSu diet animals. DPCPX did not alter significantly insulin sensitivity in control or HSu animals, but reversed the increase in total and visceral fat induced by the HSu diet. In skeletal muscle, A1, A2A, and A2B adenosine receptor expression were increased in HSu group, an effect that was restored by SCH58261 and MRS1754. In the liver, A1, A2A expression was increased in HSu group, while A2B expression was decreased, being this last effect reversed by administration of MRS1754. In adipose tissue, A1 and A2A block upregulated the expression of these receptors. A2 adenosine antagonists restored impaired insulin signaling in the skeletal muscle of HSu rats, but did not affect liver or adipose insulin signaling. Our results show that adenosine receptors exert opposite effects on insulin sensitivity, in control and insulin resistant states and strongly suggest that A2 adenosine receptors in the skeletal muscle are the majors responsible for whole-body insulin sensitivity.
Collapse
Affiliation(s)
- Joana F. Sacramento
- CEDOC, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Fátima O. Martins
- CEDOC, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Tiago Rodrigues
- Faculty of Medicine, Institute of Physiology and Institute of Clinical and Biomedical Investigation of Coimbra (iCBR), University of Coimbra, Coimbra, Portugal
| | - Paulo Matafome
- Faculty of Medicine, Institute of Physiology and Institute of Clinical and Biomedical Investigation of Coimbra (iCBR), University of Coimbra, Coimbra, Portugal
- Escola Superior de Tecnologia da Saúde, Departmento de Ciências Complementares, Instituto Politécnico de Coimbra, Coimbra, Portugal
| | - Maria J. Ribeiro
- CEDOC, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Elena Olea
- Departamento de Bioquímica y Biología Molecular y Fisiología, Facultad de Medicina, CSIC, Ciber de Enfermedades Respiratorias, CIBERES, Instituto de Biología y Genética Molecular, Instituto de Salud Carlos III, Universidad de Valladolid, Valladolid, Spain
| | - Silvia V. Conde
- CEDOC, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
- *Correspondence: Silvia V. Conde
| |
Collapse
|
40
|
Sutton NR, Bouïs D, Mann KM, Rashid IM, McCubbrey AL, Hyman MC, Goldstein DR, Mei A, Pinsky DJ. CD73 Promotes Age-Dependent Accretion of Atherosclerosis. Arterioscler Thromb Vasc Biol 2020; 40:61-71. [PMID: 31619062 PMCID: PMC7956240 DOI: 10.1161/atvbaha.119.313002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
OBJECTIVE CD73 is an ectonucleotidase which catalyzes the conversion of AMP (adenosine monophosphate) to adenosine. Adenosine has been shown to be anti-inflammatory and vasorelaxant. The impact of ectonucleotidases on age-dependent atherosclerosis remains unclear. Our aim was to investigate the role of CD73 in age-dependent accumulation of atherosclerosis. Approach and results: Mice doubly deficient in CD73 and ApoE (apolipoprotein E; (cd73-/-/apoE-/-) were generated, and the extent of aortic atherosclerotic plaque was compared with apoE-/- controls at 12, 20, 32, and 52 weeks. By 12 weeks of age, cd73-/-/apoE-/- mice exhibited a significant increase in plaque (1.4±0.5% of the total vessel surface versus 0.4±0.1% in apoE-/- controls, P<0.005). By 20 weeks of age, this difference disappeared (2.9±0.4% versus 3.3±0.7%). A significant reversal in phenotype emerged at 32 weeks (9.8±1.2% versus 18.3±1.4%; P<0.0001) and persisted at the 52 week timepoint (22.4±2.1% versus 37.0±2.1%; P<0.0001). The inflammatory response to aging was found to be comparable between cd73-/-/apoE-/- mice and apoE-/- controls. A reduction in lipolysis in CD73 competent mice was observed, even with similar plasma lipid levels (cd73-/-/apoE-/- versus apoE-/- at 12 weeks [16.2±0.7 versus 9.5±1.4 nmol glycerol/well], 32 weeks [24.1±1.5 versus 7.4±0.4 nmol/well], and 52 weeks [13.8±0.62 versus 12.7±2.0 nmol/well], P<0.001). CONCLUSIONS At early time points, CD73 exerts a subtle antiatherosclerotic influence, but with age, the pattern reverses, and the presence of CD73 promoted suppression of lipid catabolism.
Collapse
Affiliation(s)
- Nadia R. Sutton
- From the Department of Internal Medicine, Division of Cardiovascular Medicine (N.R.S., D.B., K.M.M., A.M., I.M.R., D.R.G., D.J.P.), University of Michigan Medical Center, Ann Arbor
| | - Diane Bouïs
- From the Department of Internal Medicine, Division of Cardiovascular Medicine (N.R.S., D.B., K.M.M., A.M., I.M.R., D.R.G., D.J.P.), University of Michigan Medical Center, Ann Arbor
| | - Kris M. Mann
- From the Department of Internal Medicine, Division of Cardiovascular Medicine (N.R.S., D.B., K.M.M., A.M., I.M.R., D.R.G., D.J.P.), University of Michigan Medical Center, Ann Arbor
| | - Imran M. Rashid
- From the Department of Internal Medicine, Division of Cardiovascular Medicine (N.R.S., D.B., K.M.M., A.M., I.M.R., D.R.G., D.J.P.), University of Michigan Medical Center, Ann Arbor
| | - Alexandra L. McCubbrey
- Division of Pulmonary and Critical Care (A.L.M.), University of Michigan Medical Center, Ann Arbor
| | - Matt C. Hyman
- the Department of Molecular and Integrative Physiology (M.C.H., D.J.P.), University of Michigan Medical Center, Ann Arbor
| | - Daniel R. Goldstein
- From the Department of Internal Medicine, Division of Cardiovascular Medicine (N.R.S., D.B., K.M.M., A.M., I.M.R., D.R.G., D.J.P.), University of Michigan Medical Center, Ann Arbor
| | - Annie Mei
- From the Department of Internal Medicine, Division of Cardiovascular Medicine (N.R.S., D.B., K.M.M., A.M., I.M.R., D.R.G., D.J.P.), University of Michigan Medical Center, Ann Arbor
| | - David J. Pinsky
- From the Department of Internal Medicine, Division of Cardiovascular Medicine (N.R.S., D.B., K.M.M., A.M., I.M.R., D.R.G., D.J.P.), University of Michigan Medical Center, Ann Arbor
- the Department of Molecular and Integrative Physiology (M.C.H., D.J.P.), University of Michigan Medical Center, Ann Arbor
| |
Collapse
|
41
|
Eberhardt N, Sanmarco LM, Bergero G, Theumer MG, García MC, Ponce NE, Cano RC, Aoki MP. Deficiency of CD73 activity promotes protective cardiac immunity against Trypanosoma cruzi infection but permissive environment in visceral adipose tissue. Biochim Biophys Acta Mol Basis Dis 2019; 1866:165592. [PMID: 31678157 DOI: 10.1016/j.bbadis.2019.165592] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 09/16/2019] [Accepted: 09/25/2019] [Indexed: 12/11/2022]
Abstract
Damaged cells release the pro-inflammatory signal ATP, which is degraded by the ectonucleotidases CD39 and CD73 to the anti-inflammatory mediator adenosine (ADO). The balance between ATP/ADO is known to determine the outcome of inflammation/infection. However, modulation of the local immune response in different tissues due to changes in the balance of purinergic metabolites has yet to be investigated. Here, we explored the contribution of CD73-derived ADO on the acute immune response against Trypanosoma cruzi parasite, which invades and proliferates within different target tissues. Deficiency of CD73 activity led to an enhanced cardiac microbicidal immune response with an augmented frequency of macrophages with inflammatory phenotype and increased CD8+ T cell effector functions. The increment of local inducible nitric oxide (NO) synthase (iNOS)+ macrophages and the consequent rise of myocardial NO production in association with reduced ADO levels induced protection against T. cruzi infection as observed by the diminished cardiac parasite burden compared to their wild-type (WT) counterpart. Unexpectedly, parasitemia was substantially raised in CD73KO mice in comparison with WT mice, suggesting the existence of tissue reservoir/s outside myocardium. Indeed, CD73KO liver and visceral adipose tissue (VAT) showed increased parasite burden associated with a reduced ATP/ADO ratio and the lack of substantial microbicidal immune response. These data reveal that the purinergic system has a tissue-dependent impact on the host immune response against T. cruzi infection.
Collapse
Affiliation(s)
- Natalia Eberhardt
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Córdoba, Argentina; Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.
| | - Liliana Maria Sanmarco
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Córdoba, Argentina; Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.
| | - Gastón Bergero
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Córdoba, Argentina; Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.
| | - Martín Gustavo Theumer
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Córdoba, Argentina; Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.
| | - Mónica Cristina García
- Unidad de Tecnología Farmacéutica (UNITEFA), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.
| | - Nicolas Eric Ponce
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Córdoba, Argentina.
| | - Roxana Carolina Cano
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina; Unidad Asociada Área Ciencias Agrarias, Ingeniería, Ciencias Biológicas y de la Salud, Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Facultad de Ciencias Químicas, Universidad Católica de Córdoba, Córdoba, Argentina.
| | - Maria Pilar Aoki
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Córdoba, Argentina; Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.
| |
Collapse
|
42
|
Catarzi D, Varano F, Varani K, Vincenzi F, Pasquini S, Dal Ben D, Volpini R, Colotta V. Amino-3,5-Dicyanopyridines Targeting the Adenosine Receptors Ranging from Pan Ligands to Combined A 1/A 2B Partial Agonists. Pharmaceuticals (Basel) 2019; 12:ph12040159. [PMID: 31652622 PMCID: PMC6958422 DOI: 10.3390/ph12040159] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 10/17/2019] [Accepted: 10/18/2019] [Indexed: 12/17/2022] Open
Abstract
The amino-3,5-dicyanopyridine derivatives belong to an intriguing series of adenosine receptor (AR) ligands that has been developed by both academic researchers and industry. Indeed, the studies carried out to date underline the versatility of the dicyanopyridine scaffold to obtain AR ligands with not only a wide range of affinities but also with diverse degrees of efficacies at the different ARs. These observations prompted us to investigate on the structure-activity relationships (SARs) of this series leading to important previously reported results. The present SAR study has helped to confirm the 1H-imidazol-2-yl group at R2 position as an important feature for producing potent AR agonists. Moreover, the nature of the R1 substituent highly affects not only affinity/activity at the hA1 and hA2B ARs but also selectivity versus the other subtypes. Potent hA1 and hA2B AR ligands were developed, and among them, the 2-amino-6-[(1H-imidazol-2-ylmethyl)sulfanyl]-4-[4-(prop-2-en-1-yloxy)phenyl]pyridine-3,5-dicarbonitrile (3) is active in the low nanomolar range at these subtypes and shows a good trend of selectivity versus both the hA2A and hA3 ARs. This combined hA1/hA2B partial agonist activity leads to a synergistic effect on glucose homeostasis and could potentially be beneficial in treating diabetes and related complications.
Collapse
Affiliation(s)
- Daniela Catarzi
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino, Sezione di Farmaceutica e Nutraceutica, Università degli Studi di Firenze, Via Ugo Schiff, 6, 50019 Sesto Fiorentino, Italy.
| | - Flavia Varano
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino, Sezione di Farmaceutica e Nutraceutica, Università degli Studi di Firenze, Via Ugo Schiff, 6, 50019 Sesto Fiorentino, Italy.
| | - Katia Varani
- Dipartimento di Scienze Mediche, Sezione di Farmacologia, Università degli Studi di Ferrara, Via Fossato di Mortara 17-19, 44121 Ferrara, Italy.
| | - Fabrizio Vincenzi
- Dipartimento di Scienze Mediche, Sezione di Farmacologia, Università degli Studi di Ferrara, Via Fossato di Mortara 17-19, 44121 Ferrara, Italy.
| | - Silvia Pasquini
- Dipartimento di Scienze Mediche, Sezione di Farmacologia, Università degli Studi di Ferrara, Via Fossato di Mortara 17-19, 44121 Ferrara, Italy.
| | - Diego Dal Ben
- Scuola di Scienze del Farmaco e dei Prodotti della Salute, Università degli Studi di Camerino, via S.Agostino 1, 62032 Camerino (MC); Italy.
| | - Rosaria Volpini
- Scuola di Scienze del Farmaco e dei Prodotti della Salute, Università degli Studi di Camerino, via S.Agostino 1, 62032 Camerino (MC); Italy.
| | - Vittoria Colotta
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino, Sezione di Farmaceutica e Nutraceutica, Università degli Studi di Firenze, Via Ugo Schiff, 6, 50019 Sesto Fiorentino, Italy.
| |
Collapse
|
43
|
Reiss AB, Grossfeld D, Kasselman LJ, Renna HA, Vernice NA, Drewes W, Konig J, Carsons SE, DeLeon J. Adenosine and the Cardiovascular System. Am J Cardiovasc Drugs 2019; 19:449-464. [PMID: 30972618 PMCID: PMC6773474 DOI: 10.1007/s40256-019-00345-5] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Adenosine is an endogenous nucleoside with a short half-life that regulates many physiological functions involving the heart and cardiovascular system. Among the cardioprotective properties of adenosine are its ability to improve cholesterol homeostasis, impact platelet aggregation and inhibit the inflammatory response. Through modulation of forward and reverse cholesterol transport pathways, adenosine can improve cholesterol balance and thereby protect macrophages from lipid overload and foam cell transformation. The function of adenosine is controlled through four G-protein coupled receptors: A1, A2A, A2B and A3. Of these four, it is the A2A receptor that is in a large part responsible for the anti-inflammatory effects of adenosine as well as defense against excess cholesterol accumulation. A2A receptor agonists are the focus of efforts by the pharmaceutical industry to develop new cardiovascular therapies, and pharmacological actions of the atheroprotective and anti-inflammatory drug methotrexate are mediated via release of adenosine and activation of the A2A receptor. Also relevant are anti-platelet agents that decrease platelet activation and adhesion and reduce thrombotic occlusion of atherosclerotic arteries by antagonizing adenosine diphosphate-mediated effects on the P2Y12 receptor. The purpose of this review is to discuss the effects of adenosine on cell types found in the arterial wall that are involved in atherosclerosis, to describe use of adenosine and its receptor ligands to limit excess cholesterol accumulation and to explore clinically applied anti-platelet effects. Its impact on electrophysiology and use as a clinical treatment for myocardial preservation during infarct will also be covered. Results of cell culture studies, animal experiments and human clinical trials are presented. Finally, we highlight future directions of research in the application of adenosine as an approach to improving outcomes in persons with cardiovascular disease.
Collapse
|
44
|
Rutin and curcumin reduce inflammation, triglyceride levels and ADA activity in serum and immune cells in a model of hyperlipidemia. Blood Cells Mol Dis 2019; 76:13-21. [DOI: 10.1016/j.bcmd.2018.12.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 12/25/2018] [Indexed: 12/11/2022]
|
45
|
Tadaishi M, Toriba Y, Shimizu M, Kobayashi-Hattori K. Adenosine stimulates hepatic glycogenolysis via adrenal glands-liver crosstalk in mice. PLoS One 2018; 13:e0209647. [PMID: 30576384 PMCID: PMC6303095 DOI: 10.1371/journal.pone.0209647] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 12/10/2018] [Indexed: 11/21/2022] Open
Abstract
Adenosine signaling is involved in glucose metabolism in hepatocytes and myocytes in vitro. However, no information is available regarding the effect of adenosine on glucose metabolism in vivo. Thus, we examined how extracellular adenosine acts on glucose metabolism using mice. Subcutaneous injections of adenosine (10, 25, and 50 mg/kg bodyweight) dose-dependently increased blood glucose levels, with the peak occurring at 30 min post injection. At 30 min after adenosine injection (25 mg/kg bodyweight), glycogen content in the liver, but not the skeletal muscle, was significantly decreased. Hepatic glycogen depletion by fasting for 12 h suppressed the increase of blood glucose levels at 30 min after adenosine injection. These results suggest that adenosine increases blood glucose levels by stimulating hepatic glycogenolysis. To investigate the effect of adenosine on the adrenal gland, we studied the glycogenolysis signal in adrenalectomized (ADX) mice. Adenosine significantly increased the blood glucose levels in sham mice but not in the ADX mice. The decrease in hepatic glycogen content induced by adenosine in the sham mice was partially suppressed in the ADX mice. The level of plasma corticosterone, the main glucocorticoid in mice, was significantly increased in the sham mice by adenosine but its levels were low in ADX mice injected with either PBS or adenosine. These results suggest that adenosine promotes secretion of corticosterone from the adrenal glands, which causes hepatic glycogenolysis and subsequently the elevation of blood glucose levels. Our findings are useful for clarifying the physiological functions of adenosine in glucose metabolism in vivo.
Collapse
Affiliation(s)
- Miki Tadaishi
- Department of Nutritional Science, Faculty of Applied Bioscience, Tokyo University of Agriculture, Tokyo, Japan
- * E-mail:
| | - Yutaro Toriba
- Department of Nutritional Science, Faculty of Applied Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Makoto Shimizu
- Department of Nutritional Science, Faculty of Applied Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Kazuo Kobayashi-Hattori
- Department of Nutritional Science, Faculty of Applied Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| |
Collapse
|
46
|
Burnstock G, Gentile D. The involvement of purinergic signalling in obesity. Purinergic Signal 2018; 14:97-108. [PMID: 29619754 PMCID: PMC5940632 DOI: 10.1007/s11302-018-9605-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 03/16/2018] [Indexed: 12/18/2022] Open
Abstract
Obesity is a growing worldwide health problem, with an alarming increasing prevalence in developed countries, caused by a dysregulation of energy balance. Currently, no wholly successful pharmacological treatments are available for obesity and related adverse consequences. In recent years, hints obtained from several experimental animal models support the notion that purinergic signalling, acting through ATP-gated ion channels (P2X), G protein-coupled receptors (P2Y) and adenosine receptors (P1), is involved in obesity, both at peripheral and central levels. This review has drawn together, for the first time, the evidence for a promising, much needed novel therapeutic purinergic signalling approach for the treatment of obesity with a 'proof of concept' that hopefully could lead to further investigations and clinical trials for the management of obesity.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Department of Pharmacology and Therapeutics, The University of Melbourne, Parkville, Melbourne, Victoria, 3010, Australia.
- The Florey Institute of Neuroscience and Mental Health, Parkville, Melbourne, Australia.
- Autonomic Neuroscience Centre, University College Medical School, Rowland Hill Street, London, NW3 2PF, UK.
| | - Daniela Gentile
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 55, 56126, Pisa, Italy
| |
Collapse
|
47
|
Masuda Y, Kurikawa N, Nishizawa T. Overexpressing human GPR109A leads to pronounced reduction in plasma triglyceride levels in BAC transgenic rats. Atherosclerosis 2018; 272:182-192. [DOI: 10.1016/j.atherosclerosis.2018.03.041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 02/21/2018] [Accepted: 03/22/2018] [Indexed: 11/26/2022]
|
48
|
Braun K, Oeckl J, Westermeier J, Li Y, Klingenspor M. Non-adrenergic control of lipolysis and thermogenesis in adipose tissues. ACTA ACUST UNITED AC 2018. [PMID: 29514884 DOI: 10.1242/jeb.165381] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The enormous plasticity of adipose tissues, to rapidly adapt to altered physiological states of energy demand, is under neuronal and endocrine control. In energy balance, lipolysis of triacylglycerols and re-esterification of free fatty acids are opposing processes operating in parallel at identical rates, thus allowing a more dynamic transition from anabolism to catabolism, and vice versa. In response to alterations in the state of energy balance, one of the two processes predominates, enabling the efficient mobilization or storage of energy in a negative or positive energy balance, respectively. The release of noradrenaline from the sympathetic nervous system activates lipolysis in a depot-specific manner by initiating the canonical adrenergic receptor-Gs-protein-adenylyl cyclase-cyclic adenosine monophosphate-protein kinase A pathway, targeting proteins of the lipolytic machinery associated with the interface of the lipid droplets. In brown and brite adipocytes, lipolysis stimulated by this signaling pathway is a prerequisite for the activation of non-shivering thermogenesis. Free fatty acids released by lipolysis are direct activators of uncoupling protein 1-mediated leak respiration. Thus, pro- and anti-lipolytic mediators are bona fide modulators of thermogenesis in brown and brite adipocytes. In this Review, we discuss adrenergic and non-adrenergic mechanisms controlling lipolysis and thermogenesis and provide a comprehensive overview of pro- and anti-lipolytic mediators.
Collapse
Affiliation(s)
- Katharina Braun
- Chair of Molecular Nutritional Medicine, Technical University of Munich, TUM School of Life Sciences Weihenstephan, Gregor-Mendel-Str. 2, D-85354 Freising, Germany.,EKFZ - Else Kröner-Fresenius Center for Nutritional Medicine, Technical University of Munich, Gregor-Mendel-Str. 2, D-85354 Freising, Germany.,ZIEL - Institute for Food & Health, Technical University of Munich, Gregor-Mendel-Str. 2, D-85354 Freising, Germany
| | - Josef Oeckl
- Chair of Molecular Nutritional Medicine, Technical University of Munich, TUM School of Life Sciences Weihenstephan, Gregor-Mendel-Str. 2, D-85354 Freising, Germany.,EKFZ - Else Kröner-Fresenius Center for Nutritional Medicine, Technical University of Munich, Gregor-Mendel-Str. 2, D-85354 Freising, Germany.,ZIEL - Institute for Food & Health, Technical University of Munich, Gregor-Mendel-Str. 2, D-85354 Freising, Germany
| | - Julia Westermeier
- Chair of Molecular Nutritional Medicine, Technical University of Munich, TUM School of Life Sciences Weihenstephan, Gregor-Mendel-Str. 2, D-85354 Freising, Germany.,EKFZ - Else Kröner-Fresenius Center for Nutritional Medicine, Technical University of Munich, Gregor-Mendel-Str. 2, D-85354 Freising, Germany
| | - Yongguo Li
- Chair of Molecular Nutritional Medicine, Technical University of Munich, TUM School of Life Sciences Weihenstephan, Gregor-Mendel-Str. 2, D-85354 Freising, Germany.,EKFZ - Else Kröner-Fresenius Center for Nutritional Medicine, Technical University of Munich, Gregor-Mendel-Str. 2, D-85354 Freising, Germany
| | - Martin Klingenspor
- Chair of Molecular Nutritional Medicine, Technical University of Munich, TUM School of Life Sciences Weihenstephan, Gregor-Mendel-Str. 2, D-85354 Freising, Germany .,EKFZ - Else Kröner-Fresenius Center for Nutritional Medicine, Technical University of Munich, Gregor-Mendel-Str. 2, D-85354 Freising, Germany.,ZIEL - Institute for Food & Health, Technical University of Munich, Gregor-Mendel-Str. 2, D-85354 Freising, Germany
| |
Collapse
|
49
|
Kutryb-Zajac B, Mateuszuk L, Zukowska P, Jasztal A, Zabielska MA, Toczek M, Jablonska P, Zakrzewska A, Sitek B, Rogowski J, Lango R, Slominska EM, Chlopicki S, Smolenski RT. Increased activity of vascular adenosine deaminase in atherosclerosis and therapeutic potential of its inhibition. Cardiovasc Res 2018; 112:590-605. [PMID: 28513806 DOI: 10.1093/cvr/cvw203] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 08/24/2016] [Indexed: 01/07/2023] Open
Abstract
Aims Extracellular nucleotides and adenosine that are formed or degraded by membrane-bound ecto-enzymes could affect atherosclerosis by regulating the inflammation and thrombosis. This study aimed to evaluate a relation between ecto-enzymes that convert extracellular adenosine triphosphate to adenine dinucleotide phosphate, adenosine monophosphate, adenosine, and inosine on the surface of the vessel wall with the severity or progression of experimental and clinical atherosclerosis. Furthermore, we tested whether the inhibition of adenosine deaminase will block the development of experimental atherosclerosis. Methods and results Vascular activities of ecto-nucleoside triphosphate diphosphohydrolase 1, ecto-5'-nucleotidase, and ecto-adenosine deaminase (eADA) were measured in aortas of apolipoprotein E-/- low density lipoprotein receptor (ApoE-/-LDLR-/-) and wild-type mice as well as in human aortas. Plaques were analysed in the entire aorta, aortic root, and brachiocephalic artery by Oil-Red O and Orcein Martius Scarlet Blue staining and vascular accumulation of macrophages. The cellular location of ecto-enzymes was analysed by immunofluorescence. The effect of eADA inhibition on atherosclerosis progression was studied by a 2-month deoxycoformycin treatment of ApoE-/-LDLR-/- mice. The vascular eADA activity prominently increased in ApoE-/-LDLR-/- mice when compared with wild type already at the age of 1 month and progressed along atherosclerosis development, reaching a 10-fold difference at 10 months. The activity of eADA correlated with atherosclerotic changes in human aortas. High abundance of eADA in atherosclerotic vessels originated from activated endothelial cells and macrophages. There were no changes in ecto-nucleoside triphosphate diphosphohydrolase 1 activity, whereas ecto-5'-nucleotidase was moderately decreased in ApoE-/-LDLR-/- mice. Deoxycoformycin treatment attenuated plaque development in aortic root and brachiocephalic artery of ApoE-/-LDLR-/- mice, suppressed vascular inflammation and improved endothelial function. Conclusions This study highlights the importance of extracellular nucleotides and adenosine metabolism in the atherosclerotic vessel in both experimental and clinical setting. The increased eADA activity marks an early stage of atherosclerosis, contributes to its progression and could represent a novel target for therapy.
Collapse
Affiliation(s)
- Barbara Kutryb-Zajac
- Department of Biochemistry, Medical University of Gdansk, 1 Debinki St., 80-211 Gdansk, Poland
| | - Lukasz Mateuszuk
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego St., 30-348 Krakow, Poland
| | - Paulina Zukowska
- Department of Biochemistry, Medical University of Gdansk, 1 Debinki St., 80-211 Gdansk, Poland
| | - Agnieszka Jasztal
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego St., 30-348 Krakow, Poland
| | - Magdalena A Zabielska
- Department of Biochemistry, Medical University of Gdansk, 1 Debinki St., 80-211 Gdansk, Poland
| | - Marta Toczek
- Department of Biochemistry, Medical University of Gdansk, 1 Debinki St., 80-211 Gdansk, Poland
| | - Patrycja Jablonska
- Department of Biochemistry, Medical University of Gdansk, 1 Debinki St., 80-211 Gdansk, Poland
| | - Agnieszka Zakrzewska
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego St., 30-348 Krakow, Poland
| | - Barbara Sitek
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego St., 30-348 Krakow, Poland
| | - Jan Rogowski
- Department of Cardiac and Vascular Surgery, Medical University of Gdansk, 7 Debinki St., 80-211 Gdansk, Poland
| | - Romuald Lango
- Department of Cardiac Anaesthesiology, Chair of Anaesthesiology and Intensive Care, Medical University of Gdansk, 7 Debinki St., 80-211 Gdansk, Poland
| | - Ewa M Slominska
- Department of Biochemistry, Medical University of Gdansk, 1 Debinki St., 80-211 Gdansk, Poland
| | - Stefan Chlopicki
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego St., 30-348 Krakow, Poland
| | - Ryszard T Smolenski
- Department of Biochemistry, Medical University of Gdansk, 1 Debinki St., 80-211 Gdansk, Poland
| |
Collapse
|
50
|
Tozzi M, Novak I. Purinergic Receptors in Adipose Tissue As Potential Targets in Metabolic Disorders. Front Pharmacol 2017; 8:878. [PMID: 29249968 PMCID: PMC5715378 DOI: 10.3389/fphar.2017.00878] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 11/13/2017] [Indexed: 01/04/2023] Open
Abstract
Extracellular nucleosides and nucleotides, such as adenosine and adenosine triphosphate (ATP), are involved in many physiological and pathological processes in adipose tissue (AT). It is becoming accepted that, in addition to the well-established sympathetic and hormonal system, purinergic receptors contribute significantly to regulation of adipocyte functions. Several receptor subtypes for both adenosine (P1) and ATP (P2X and P2Y) have been characterized in white adipocytes (WA) and brown adipocytes (BA). The effects mediated by adenosine and ATP on adipocytes are multiple and often differing, depending on specific receptors activated. Using a variety of agonists, antagonists and transgenic animals it has been demonstrated that adenosine and P2 receptors are involved in lipolysis, lipogenesis, adipokines secretion, glucose uptake, adipogenesis, cell proliferation, inflammation, and other processes. Given their central role in regulating many AT functions, purinergic receptors are considered potential therapeutic targets in different pathological conditions, such as obesity and type-2 diabetes. To achieve this goal, specific and potent P1 and P2 receptors activators and inhibitors are being developed and show promising results. However, more insight is needed into the function of P2 receptors in brown and beige adipocytes and their potential role in thermogenesis. This review aims at summarizing current knowledge on the patho-/physiological role of P1, P2X, and P2Y receptors in WA and BA and their potential exploitation for pharmacological intervention. Furthermore, we analyze impact of purinergic signaling in AT - in health and metabolic diseases.
Collapse
Affiliation(s)
- Marco Tozzi
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Ivana Novak
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|