1
|
Gregório BJR, Ramos II, Marques SS, Barreiros L, Magalhães LM, Schneider RJ, Segundo MA. Microcarrier-based fluorescent yeast estrogen screen assay for fast determination of endocrine disrupting compounds. Talanta 2024; 271:125665. [PMID: 38271840 DOI: 10.1016/j.talanta.2024.125665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/28/2023] [Accepted: 01/12/2024] [Indexed: 01/27/2024]
Abstract
The presence of endocrine-disrupting compounds (EDCs) in water poses a significant threat to human and animal health, as recognized by regulatory agencies throughout the world. The Yeast Estrogen Screen (YES) assay is an excellent method to evaluate the presence of these compounds in water due to its simplicity and capacity to assess the bioaccessible forms/fractions of these compounds. In the presence of a compound with estrogenic activity, Saccharomyces cerevisiae cells, containing a lacZ reporter gene encoding the enzyme β-galactosidase, are induced, the enzyme is synthesised, and released to the extracellular medium. In this work, a YES-based approach encompassing the use of a lacZ reporter gene modified strain of S. cerevisiae, microcarriers as solid support, and a fluorescent substrate, fluorescein di-β-d-galactopyranoside, is proposed, allowing for the assessment of EDCs' presence after only 2 h of incubation. The proposed method provided an EC50 of 0.17 ± 0.03 nM and an LLOQ of 0.03 nM, expressed as 17β-estradiol. The assessment of different EDCs provided EC50 values between 0.16 and 1.2 × 103 nM. After application to wastewaters, similar results were obtained for EDCs screening, much faster, compared to the conventional 45 h spectrophotometric procedure using a commercial kit, showing potential for onsite high-throughput screening of environmental contamination.
Collapse
Affiliation(s)
- Bruno J R Gregório
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - Inês I Ramos
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - Sara S Marques
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - Luísa Barreiros
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal; Escola Superior de Saúde, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 400, 4200-072, Porto, Portugal
| | - Luís M Magalhães
- Present affiliation: Research & Development, BIAL- Portela & C(a), S.A., Coronado (S. Mamede e S. Romão), Portugal
| | - Rudolf J Schneider
- Department of Analytical Chemistry, Reference Materials, BAM Federal Institute for Materials Research and Testing, Richard-Willstätter-Strasse 11, D-12489, Berlin, Germany
| | - Marcela A Segundo
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal.
| |
Collapse
|
2
|
Šauer P, Vrana B, Escher BI, Grabic R, Toušová Z, Krauss M, von der Ohe PC, König M, Grabicová K, Mikušová P, Prokeš R, Sobotka J, Fialová P, Novák J, Brack W, Hilscherová K. Bioanalytical and chemical characterization of organic micropollutant mixtures in long-term exposed passive samplers from the Joint Danube Survey 4: Setting a baseline for water quality monitoring. ENVIRONMENT INTERNATIONAL 2023; 178:107957. [PMID: 37406370 PMCID: PMC10445204 DOI: 10.1016/j.envint.2023.107957] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 04/28/2023] [Accepted: 04/28/2023] [Indexed: 07/07/2023]
Abstract
Monitoring methodologies reflecting the long-term quality and contamination of surface waters are needed to obtain a representative picture of pollution and identify risk drivers. This study sets a baseline for characterizing chemical pollution in the Danube River using an innovative approach, combining continuous three-months use of passive sampling technology with comprehensive chemical (747 chemicals) and bioanalytical (seven in vitro bioassays) assessment during the Joint Danube Survey (JDS4). This is one of the world's largest investigative surface-water monitoring efforts in the longest river in the European Union, which water after riverbank filtration is broadly used for drinking water production. Two types of passive samplers, silicone rubber (SR) sheets for hydrophobic compounds and AttractSPETM HLB disks for hydrophilic compounds, were deployed at nine sites for approximately 100 days. The Danube River pollution was dominated by industrial compounds in SR samplers and by industrial compounds together with pharmaceuticals and personal care products in HLB samplers. Comparison of the Estimated Environmental Concentrations with Predicted No-Effect Concentrations revealed that at the studied sites, at least one (SR) and 4-7 (HLB) compound(s) exceeded the risk quotient of 1. We also detected AhR-mediated activity, oxidative stress response, peroxisome proliferator-activated receptor gamma-mediated activity, estrogenic, androgenic, and anti-androgenic activities using in vitro bioassays. A significant portion of the AhR-mediated and estrogenic activities could be explained by detected analytes at several sites, while for the other bioassays and other sites, much of the activity remained unexplained. The effect-based trigger values for estrogenic and anti-androgenic activities were exceeded at some sites. The identified drivers of mixture in vitro effects deserve further attention in ecotoxicological and environmental pollution research. This novel approach using long-term passive sampling provides a representative benchmark of pollution and effect potentials of chemical mixtures for future water quality monitoring of the Danube River and other large water bodies.
Collapse
Affiliation(s)
- Pavel Šauer
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, Research Institute of Fish Culture and Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| | - Branislav Vrana
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, 61137 Brno, Czech Republic
| | - Beate I Escher
- UFZ - Helmholtz Centre for Environmental Research, Department of Cell Toxicology, 04318 Leipzig, Germany; Environmental Toxicology, Department of Geosciences, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Roman Grabic
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, Research Institute of Fish Culture and Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| | - Zuzana Toušová
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, 61137 Brno, Czech Republic
| | - Martin Krauss
- UFZ - Helmholtz Centre for Environmental Research, Department of Effect-Directed Analysis, 04318 Leipzig, Germany
| | - Peter C von der Ohe
- UBA - German Environment Agency (Umweltbundesamt), Wörlitzer Platz 1, D-06844 Dessau-Roßlau, Germany
| | - Maria König
- UFZ - Helmholtz Centre for Environmental Research, Department of Cell Toxicology, 04318 Leipzig, Germany
| | - Kateřina Grabicová
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, Research Institute of Fish Culture and Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| | - Petra Mikušová
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, 61137 Brno, Czech Republic
| | - Roman Prokeš
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, 61137 Brno, Czech Republic; Global Change Research Institute of the Czech Academy of Sciences, Belidla 986/4a, 60300 Brno, Czech Republic
| | - Jaromír Sobotka
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, 61137 Brno, Czech Republic
| | - Pavla Fialová
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, 61137 Brno, Czech Republic
| | - Jiří Novák
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, 61137 Brno, Czech Republic
| | - Werner Brack
- UFZ - Helmholtz Centre for Environmental Research, Department of Effect-Directed Analysis, 04318 Leipzig, Germany; Goethe University Frankfurt, Department of Evolutionary Ecology and Environmental Toxicology, Max-von-Laue-Straße 13, 60438 Frankfurt/Main, Germany
| | - Klára Hilscherová
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, 61137 Brno, Czech Republic.
| |
Collapse
|
3
|
Löffler P, Escher BI, Baduel C, Virta MP, Lai FY. Antimicrobial Transformation Products in the Aquatic Environment: Global Occurrence, Ecotoxicological Risks, and Potential of Antibiotic Resistance. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023. [PMID: 37335844 DOI: 10.1021/acs.est.2c09854] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
The global spread of antimicrobial resistance (AMR) is concerning for the health of humans, animals, and the environment in a One Health perspective. Assessments of AMR and associated environmental hazards mostly focus on antimicrobial parent compounds, while largely overlooking their transformation products (TPs). This review lists antimicrobial TPs identified in surface water environments and examines their potential for AMR promotion, ecological risk, as well as human health and environmental hazards using in silico models. Our review also summarizes the key transformation compartments of TPs, related pathways for TPs reaching surface waters and methodologies for studying the fate of TPs. The 56 antimicrobial TPs covered by the review were prioritized via scoring and ranking of various risk and hazard parameters. Most data on occurrences to date have been reported in Europe, while little is known about antibiotic TPs in Africa, Central and South America, Asia, and Oceania. Occurrence data on antiviral TPs and other antibacterial TPs are even scarcer. We propose evaluation of structural similarity between parent compounds and TPs for TP risk assessment. We predicted a risk of AMR for 13 TPs, especially TPs of tetracyclines and macrolides. We estimated the ecotoxicological effect concentrations of TPs from the experimental effect data of the parent chemical for bacteria, algae and water fleas, scaled by potency differences predicted by quantitative structure-activity relationships (QSARs) for baseline toxicity and a scaling factor for structural similarity. Inclusion of TPs in mixtures with their parent increased the ecological risk quotient over the threshold of one for 7 of the 24 antimicrobials included in this analysis, while only one parent had a risk quotient above one. Thirteen TPs, from which 6 were macrolide TPs, posed a risk to at least one of the three tested species. There were 12/21 TPs identified that are likely to exhibit a similar or higher level of mutagenicity/carcinogenicity, respectively, than their parent compound, with tetracycline TPs often showing increased mutagenicity. Most TPs with increased carcinogenicity belonged to sulfonamides. Most of the TPs were predicted to be mobile but not bioaccumulative, and 14 were predicted to be persistent. The six highest-priority TPs originated from the tetracycline antibiotic family and antivirals. This review, and in particular our ranking of antimicrobial TPs of concern, can support authorities in planning related intervention strategies and source mitigation of antimicrobials toward a sustainable future.
Collapse
Affiliation(s)
- Paul Löffler
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), Uppsala SE-75007, Sweden
| | - Beate I Escher
- Department of Cell Toxicology, Helmholtz Centre for Environmental Research, UZ, 04318 Leipzig, Germany
- Eberhard Karls University Tübingen, Environmental Toxicology, Department of Geosciences, 72076 Tübingen, Germany
| | - Christine Baduel
- Université Grenoble Alpes, IRD, CNRS, Grenoble INP, IGE, 38 050 Grenoble, France
| | - Marko P Virta
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, 00014 Helsinki, Finland
- Multidisciplinary Center of Excellence in Antimicrobial Resistance Research, Helsinki 00100, Finland
| | - Foon Yin Lai
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), Uppsala SE-75007, Sweden
| |
Collapse
|
4
|
Kocour Kroupová H, Grimaldi M, Šauer P, Bořík A, Zálohová K, Balaguer P. Environmental water extracts differentially activate zebrafish and human nuclear progesterone receptors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160232. [PMID: 36402315 DOI: 10.1016/j.scitotenv.2022.160232] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/17/2022] [Accepted: 11/13/2022] [Indexed: 06/16/2023]
Abstract
Many reports on anti-progestogenic activities in aquatic environments have been published in the past decade. These are monitored mainly by in vitro reporter gene bioassays based upon the human progesterone receptor (PR). However, results obtained by some human in vitro bioassays may not be relevant for aquatic animals, especially fish. The present work aimed to detect fish (anti-)PR activity in waste- and receiving surface waters. In parallel, human (anti-)PR activity was analysed to determine if there was any connection between human and fish (anti-)PR activities. Finally, (anti-)PR activities were linked to the occurrence of progestins in water samples. Human PR agonistic activity was detected in all wastewater and most receiving surface water samples. Nevertheless, zebrafish PR (zfPR) agonistic activity was found in only two influent wastewater samples (max. 117 ng/L 17α,20β-dihydroxy-4-pregnen-3-one [DHP] equivalents). Analysed synthetic progestins and progesterone accounted for 14 % to 161 % of detected human PR (hPR) agonistic activity in water samples. Progesterone also contributed significantly to zfPR agonistic activity (up to 10 %) in raw wastewater. The anti-hPR activity was detected also in most wastewater and some surface water samples, but synthetic progestins did not trigger anti-zfPR activity in excess of LOQ values. In addition, altrenogest, dienogest, and ulipristal acetate were tested for their potency to zfPR for the first time. The activity analyses of both pure substances and environmental samples showed that human and zebrafish progesterone receptors are differentially activated. Therefore, results based on human PR in vitro bioassays could not predict fish PR activities in the environment.
Collapse
Affiliation(s)
- Hana Kocour Kroupová
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25 Vodňany, Czech Republic.
| | - Marina Grimaldi
- Institut de Recherche en Cancérologie de Montpellier, Inserm U1194 - Université Montpellier - Institut régional du Cancer Montpellier, F-34298 Montpellier Cedex 5, France
| | - Pavel Šauer
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25 Vodňany, Czech Republic
| | - Adam Bořík
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25 Vodňany, Czech Republic
| | - Klára Zálohová
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25 Vodňany, Czech Republic
| | - Patrick Balaguer
- Institut de Recherche en Cancérologie de Montpellier, Inserm U1194 - Université Montpellier - Institut régional du Cancer Montpellier, F-34298 Montpellier Cedex 5, France
| |
Collapse
|
5
|
Zhou S, Schulze T, Brack W, Seiler TB, Hollert H. Spatial and temporal variations in anti-androgenic activity and environmental risk in a small river. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 853:158622. [PMID: 36084781 DOI: 10.1016/j.scitotenv.2022.158622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 08/24/2022] [Accepted: 09/05/2022] [Indexed: 06/15/2023]
Abstract
The biological effects of multiple compounds have been widely investigated in aquatic environments. However, investigations of spatial and temporal variations in biological effects are rarely performed because they are time-consuming and labor-intensive. In this study, the variability of the anti-androgen, receptor-mediated activity of surface water samples was observed over 3 years using in vitro bioassays. Large-volume water samples were collected at one site upstream (Wer site) and two sites downstream (Sil and Nien sites) of a wastewater treatment plant (WWTP) outfall in the Holtemme River. Anti-AR activity was persistently present in all surface water samples over the three years. Large spatial variations in anti-androgenic activity were observed, with the lowest activity at the Wer site (mean concentration of 9.5 ± 7.2 μg flutamide equivalents/L) and the highest activity at the Sil site (mean concentration of 31.1 ± 12.0 μg flutamide equivalents/L) directly influenced by WWTP effluents. On the temporal scale, no distinct trend for anti-AR activity was observed among the seasons in all three years. The anti-androgenic activity at the upstream Wer site showed a decreasing trend from 2014 to 2016, indicating improved water quality. A novel bioanalytical-equivalent-based risk assessment method considering the frequency of risk occurrence was developed and then utilized to assess the environmental risk of anti-androgenic activity in the Holtemme River. The results revealed that the highest risk was present at the Sil site, while the risk was considerably reduced at the Nien site. The risk at the upstream Wer site was the lowest.
Collapse
Affiliation(s)
- Shangbo Zhou
- RWTH Aachen University, Institute for Environmental Research (Biology V), Department of Ecosystem Analysis, Worringerweg 1, D-52074 Aachen, Germany; College of Environment and Ecology, Chongqing University, Chongqing 400044, China.
| | - Tobias Schulze
- UFZ Helmholtz Centre for Environmental Research, Department of Effect-Directed Analysis, Permoserstraße 15, D-04318 Leipzig, Germany
| | - Werner Brack
- UFZ Helmholtz Centre for Environmental Research, Department of Effect-Directed Analysis, Permoserstraße 15, D-04318 Leipzig, Germany; Goethe University Frankfurt, Faculty Biological Sciences, Department Evolutionary Ecology and Environmental Toxicology, Max-von-Laue-Str. 13, 60438 Frankfurt am Main, Germany
| | - Thomas-Benjamin Seiler
- RWTH Aachen University, Institute for Environmental Research (Biology V), Department of Ecosystem Analysis, Worringerweg 1, D-52074 Aachen, Germany; Hygiene-Institut des Ruhrgebiets, Rotthauser Str. 21, 45879 Gelsenkirchen, Germany
| | - Henner Hollert
- RWTH Aachen University, Institute for Environmental Research (Biology V), Department of Ecosystem Analysis, Worringerweg 1, D-52074 Aachen, Germany; College of Environment and Ecology, Chongqing University, Chongqing 400044, China; Goethe University Frankfurt, Faculty Biological Sciences, Department Evolutionary Ecology and Environmental Toxicology, Max-von-Laue-Str. 13, 60438 Frankfurt am Main, Germany.
| |
Collapse
|
6
|
Synthetic metabolic transducers in Saccharomyces cerevisiae as sensors for aromatic permeant acids and bioreporters of hydrocarbon metabolism. Biosens Bioelectron 2022; 220:114897. [DOI: 10.1016/j.bios.2022.114897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 10/18/2022] [Accepted: 11/06/2022] [Indexed: 11/15/2022]
|
7
|
Sanseverino I, Gómez L, Navarro A, Cappelli F, Niegowska M, Lahm A, Barbiere M, Porcel-Rodríguez E, Valsecchi S, Pedraccini R, Crosta S, Lettieri T. Holistic approach to chemical and microbiological quality of aquatic ecosystems impacted by wastewater effluent discharges. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 835:155388. [PMID: 35489490 DOI: 10.1016/j.scitotenv.2022.155388] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/14/2022] [Accepted: 04/15/2022] [Indexed: 06/14/2023]
Abstract
Wastewater treatment plants (WWTPs) collect wastewater from various sources and use different treatment processes to reduce the load of pollutants in the environment. Since the removal of many chemical pollutants and bacteria by WWTPs is incomplete, they constitute a potential source of contaminants. The continuous release of contaminants through WWTP effluents can compromise the health of the aquatic ecosystems, even if they occur at very low concentrations. The main objective of this work was to characterize, over a period of four months, the treatment steps starting from income to the effluent and 5 km downstream to the receiving river. In this context, the efficiency removal of chemical pollutants (e.g. hormones and pharmaceuticals, including antibiotics) and bacteria was assessed in a WWTP case study by using a holistic approach. It embraces different chemical and biological-based methods, such as pharmaceutical analysis by HPLC-MSMS, growth rate inhibition in algae, ligand binding estrogen receptor assay, microbial community study by 16S and shotgun sequencing along with relative quantification of resistance genes by quantitative polymerase chain reaction. Although both, chemical and biological-based methods showed a significant reduction of the pollutant burden in effluent and surface waters compared to the influent of the WWTP, no complete removal of pollutants, pathogens and antibiotic resistance genes was observed.
Collapse
Affiliation(s)
| | - Livia Gómez
- European Commission, Joint Research Centre (JRC), I-21027 Ispra, VA, Italy
| | - Anna Navarro
- European Commission, Joint Research Centre (JRC), I-21027 Ispra, VA, Italy
| | - Francesca Cappelli
- Water Research Institute IRSA-CNR, Via del Mulino 19, Brugherio 20861, MB, Italy; University of Insubria, Department of Science and High Technology, Via Valleggio 11, 22100 Como, Italy
| | | | - Armin Lahm
- Bioinformatics Project Support, P.zza S.M. Liberatrice 18, 00153 Roma, Italy
| | - Maurizio Barbiere
- European Commission, Joint Research Centre (JRC), I-21027 Ispra, VA, Italy
| | | | - Sara Valsecchi
- Water Research Institute IRSA-CNR, Via del Mulino 19, Brugherio 20861, MB, Italy
| | | | | | - Teresa Lettieri
- European Commission, Joint Research Centre (JRC), I-21027 Ispra, VA, Italy.
| |
Collapse
|
8
|
Yu H, Du X, Zhao Q, Yin C, Song W. Weighted gene Co-expression network analysis (WGCNA) reveals a set of hub genes related to chlorophyll metabolism process in chlorella (Chlorella vulgaris) response androstenedione. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 306:119360. [PMID: 35489534 DOI: 10.1016/j.envpol.2022.119360] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/22/2022] [Accepted: 04/22/2022] [Indexed: 06/14/2023]
Abstract
Androstenedione (ADSD) was the main androgen detected in wastewaters. Chlorella was the most widely used plant in biological wastewater treatment process. In order to understand the toxicological response of chlorella to ADSD contamination, we used the weighted gene co-expression network analysis (WGCNA) method to systematically analyze the gene regulatory networks of chlorella after ADSD treatments. Total of 25 modules was identified from gene co-expression networks, and the turquoise module were selected for GO and KEGG enrichment analysis. Results showed that most hub genes were associated with chloroplast organizations or photosystems processes. Among them, the expressions profiles of hcar, nol, pao and sgr genes were highly correlated to the content fluctuations of chlorophylls after different ADSD treatments. All these results demonstrated that chlorophylls play a key role in preventing cell damage of chlorella caused by ADSD contamination. Besides, we proposed a possible chlorophyll metabolism pathway in chlorella response to ADSD contamination.
Collapse
Affiliation(s)
- Haiyang Yu
- School of Life Science and Bioengineering, Jining University, Jining 273155, China
| | - Xinxin Du
- School of Life Science and Bioengineering, Jining University, Jining 273155, China
| | - Qiang Zhao
- School of Life Science and Bioengineering, Jining University, Jining 273155, China
| | - Chunguang Yin
- School of Life Science and Bioengineering, Jining University, Jining 273155, China
| | - Wenlu Song
- School of Engineering, Jining University, Jining 273155, China.
| |
Collapse
|
9
|
Emerging Pollutants in Wastewater, Advanced Oxidation Processes as an Alternative Treatment and Perspectives. Processes (Basel) 2022. [DOI: 10.3390/pr10051041] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Emerging pollutants are present in wastewaters treated by conventional processes. Due to water cycle interactions, these contaminants have been reported in groundwater, surface water, and drinking waters. Since conventional processes cannot guarantee their removal or biotransformation, it is necessary to study processes that comply with complete elimination. The current literature review was conducted to describe and provide an overview of the available information about the most significant groups of emerging pollutants that could potentially be found in the wastewater and the environment. In addition, it describes the main entry and distribution pathways of emerging contaminants into the environment through the water and wastewater cycle, as well as some of the potential effects they may cause to flora, fauna, and humans. Relevant information on the SARS-CoV-2 virus and its potential spread through wastewater is included. Furthermore, it also outlines some of the Advanced Oxidation Processes (AOPs) used for the total or partial emerging pollutants removal, emphasizing the reaction mechanisms and process parameters that need to be considered. As well, some biological processes that, although slow, are effective for the biotransformation of some emerging contaminants and can be used in combination with advanced oxidation processes.
Collapse
|
10
|
Dehkordi SK, Paknejad H, Blaha L, Svecova H, Grabic R, Simek Z, Otoupalikova A, Bittner M. Instrumental and bioanalytical assessment of pharmaceuticals and hormone-like compounds in a major drinking water source-wastewater receiving Zayandeh Rood river, Iran. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:9023-9037. [PMID: 34498192 DOI: 10.1007/s11356-021-15943-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 08/09/2021] [Indexed: 06/13/2023]
Abstract
Zayandeh Rood river is the most important river in central Iran supplying water for a variety of uses including drinking water for approximately three million inhabitants. The study aimed to investigate the quality of water concerning the presence of pharmaceutical active compounds (PhACs) and hormonelike compounds, which have been only poorly studied in this region. Sampling was performed at seven sites along the river (from headwater sites to downstream drinking water source, corresponding drinking water, and treated wastewater) affected by wastewater effluents, specific drought conditions, and high river-water demand. The targeted and nontargeted chemical analyses and in vitro bioassays were used to evaluate the presence of PhACs and hormonelike compounds in river water. In the samples, 57 PhACs and estrogens were detected with LC-MS/MS with the most common and abundant compounds valsartan, carbamazepine, and caffeine present in the highest concentrations in the treated wastewater in the concentrations of 8.4, 19, and 140 μg/L, respectively. A battery of in vitro bioassays detected high estrogenicity, androgenicity, and AhR-mediated activity (viz., in treated wastewater) in the concentrations 24.2 ng/L, 62.2 ng/L, and 0.98 ng/L of 17β-estradiol, dihydrotestosterone and 2,3,7,8-TCDD equivalents, respectively. In surface water samples, estrogenicity was detected in the range of <0.42 (LOD) to 1.92 ng/L of 17β-estradiol equivalents, and the drinking water source contained 0.74 ng/L of 17β-estradiol equivalents. About 19% of the estrogenicity could be explained by target chemical analyses, and the remaining estrogenicity can be at least partially attributed to the potentiation effect of detected surfactant residues. Drinking water contained several PhACs and estrogens, but the overall assessment suggested minor human health risk according to the relevant effect-based trigger values. To our knowledge, this study provides some of the first comprehensive information on the levels of PhACs and hormones in Iranian waters.
Collapse
Affiliation(s)
- Shima Kouhi Dehkordi
- Gorgan University of Agricultural Sciences and Natural Resources, Faculty of Fisheries and Environmental Sciences, Department of Fisheries, Gorgan, Iran
| | - Hamed Paknejad
- Gorgan University of Agricultural Sciences and Natural Resources, Faculty of Fisheries and Environmental Sciences, Department of Fisheries, Gorgan, Iran
| | - Ludek Blaha
- Masaryk University, Faculty of Science, RECETOX Centre, Kamenice 753/5, Brno, 625 00, Czechia
| | - Helena Svecova
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, Vodňany, 389 25, Czechia
| | - Roman Grabic
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, Vodňany, 389 25, Czechia
| | - Zdenek Simek
- Masaryk University, Faculty of Science, RECETOX Centre, Kamenice 753/5, Brno, 625 00, Czechia
| | - Alena Otoupalikova
- Masaryk University, Faculty of Science, RECETOX Centre, Kamenice 753/5, Brno, 625 00, Czechia
| | - Michal Bittner
- Masaryk University, Faculty of Science, RECETOX Centre, Kamenice 753/5, Brno, 625 00, Czechia.
| |
Collapse
|
11
|
Elkayar K, Park JA, Pineda M, Westlund P, Yargeau V. Passive sampling and in vitro assays to monitor antiandrogens in a river affected by wastewater discharge. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 804:150067. [PMID: 34509830 DOI: 10.1016/j.scitotenv.2021.150067] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 08/27/2021] [Accepted: 08/28/2021] [Indexed: 06/13/2023]
Abstract
Pharmaceuticals and personal care products, antibiotics, estrogens, and antiandrogens are found widely in aquatic environments. Monitoring studies by sampling surface water and effluents of wastewater treatment plants (WWTPs) have been conducted recently to monitor antiandrogens, which, along with estrogens, cause endocrine disruption. However, few studies have investigated antiandrogenic activity (AA) combined with a chemical analyses of emerging antiandrogens. Therefore, we analyzed the presence and persistence of 12 types of antiandrogens, atrazine, and carbamazepine using grab sampling and polar organic chemical integrative sampler (POCIS) along a river affected by WWTP discharges. Water and sediment samples were collected from the WWTP effluent (WW), as well as upstream (US) and downstream (DS) of the WWTP. We detected only tebuconazole, triclosan, propiconazole, and fluconazole during the two sampling campaigns in 2016 and 2017. Grab sampling of the site WW detected tebuconazole (7-77 ng/L), propiconazole (5-47 ng/L), and fluconazole (6-45 ng/L). However, the concentrations in the river water were below the detection limits. Nevertheless, fluconazole and triclosan were detected by POCIS in the site WW (45.7 and 26.8 ng/L, respectively) and all river samples ranges of 0.3-9.3 and 2.4-3.7, respectively. This detection was attributed to the limit of quantification of POCIS being lower than that of grab sampling. Nilutamide and triclosan were detected in the river sediment, suggesting that their concentrations in the water column were at least partly attenuated through sediment sorption. We also observed AA by analyzing POCIS extracts with the yeast androgen screen assay. The highest AA was found in the site WW and it was still observable several kilometers downstream of the point of discharge despite decreasing. Therefore, the WWTP effluent was most likely contributor to the persistent AA in the river.
Collapse
Affiliation(s)
- Karem Elkayar
- Department of Chemical Engineering, McGill University, 3610 University, Montréal H3A 0C5, Québec, Canada
| | - Jeong-Ann Park
- Department of Environmental Engineering, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Marco Pineda
- Department of Chemical Engineering, McGill University, 3610 University, Montréal H3A 0C5, Québec, Canada
| | - Paul Westlund
- Department of Chemical Engineering, McGill University, 3610 University, Montréal H3A 0C5, Québec, Canada
| | - Viviane Yargeau
- Department of Chemical Engineering, McGill University, 3610 University, Montréal H3A 0C5, Québec, Canada.
| |
Collapse
|
12
|
Yusuf A, O'Flynn D, White B, Holland L, Parle-McDermott A, Lawler J, McCloughlin T, Harold D, Huerta B, Regan F. Monitoring of emerging contaminants of concern in the aquatic environment: a review of studies showing the application of effect-based measures. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:5120-5143. [PMID: 34726207 DOI: 10.1039/d1ay01184g] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Water scarcity is increasingly a global cause of concern mainly due to widespread changes in climate conditions and increased consumptive water use driven by the exponential increase in population growth. In addition, increased pollution of fresh water sources due to rising production and consumption of pharmaceuticals and organic chemicals will further exacerbate this concern. Although surface water contamination by individual chemicals is often at very low concentration, pharmaceuticals for instance are designed to be efficacious at low concentrations, creating genuine concern for their presence in freshwater sources. Furthermore, the additive impact of multiple compounds may result in toxic or other biological effects that otherwise will not be induced by individual chemicals. Globally, different legislative frameworks have led to pre-emptive efforts which aim to ensure good water ecological status. Reports detailing the use and types of effect-based measures covering specific bioassay batteries that can identify specific mode of actions of chemical pollutants in the aquatic ecosystem to evaluate the real threat of pollutants to aquatic lives and ultimately human lives have recently emerged from monitoring networks such as the NORMAN network. In this review, we critically evaluate some studies within the last decade that have implemented effect-based monitoring of pharmaceuticals and organic chemicals in aquatic fauna, evaluating the occurrence of different chemical pollutants and the impact of these pollutants on aquatic fauna with special focus on pollutants that are contaminants of emerging concern (CEC) in urban wastewater. A critical discussion on studies that have used effect-based measures to assess biological impact of pharmaceutical/organic compound in the aquatic ecosystem and the endpoints measurements employed is presented. The application of effect-based monitoring of chemicals other than assessment of water quality status is also discussed.
Collapse
Affiliation(s)
- Azeez Yusuf
- School of Biotechnology, Dublin City University Glasnevin, Dublin 9, Dublin, Ireland.
- Water Institute, Dublin City University, Dublin, Ireland
| | - Dylan O'Flynn
- School of Chemical Sciences, Dublin City University Glasnevin, Dublin 9, Dublin, Ireland
- Water Institute, Dublin City University, Dublin, Ireland
| | - Blanaid White
- School of Chemical Sciences, Dublin City University Glasnevin, Dublin 9, Dublin, Ireland
- Water Institute, Dublin City University, Dublin, Ireland
| | - Linda Holland
- School of Biotechnology, Dublin City University Glasnevin, Dublin 9, Dublin, Ireland.
- Water Institute, Dublin City University, Dublin, Ireland
| | - Anne Parle-McDermott
- School of Biotechnology, Dublin City University Glasnevin, Dublin 9, Dublin, Ireland.
- Water Institute, Dublin City University, Dublin, Ireland
| | - Jenny Lawler
- School of Biotechnology, Dublin City University Glasnevin, Dublin 9, Dublin, Ireland.
- Water Institute, Dublin City University, Dublin, Ireland
- Qatar Environment and Energy Research Institute (QEERI), Hamad Bin Khalifa University, Doha, Qatar
| | - Thomas McCloughlin
- School of Biotechnology, Dublin City University Glasnevin, Dublin 9, Dublin, Ireland.
- Water Institute, Dublin City University, Dublin, Ireland
| | - Denise Harold
- School of Biotechnology, Dublin City University Glasnevin, Dublin 9, Dublin, Ireland.
| | - Belinda Huerta
- School of Chemical Sciences, Dublin City University Glasnevin, Dublin 9, Dublin, Ireland
- Water Institute, Dublin City University, Dublin, Ireland
| | - Fiona Regan
- School of Chemical Sciences, Dublin City University Glasnevin, Dublin 9, Dublin, Ireland
- Water Institute, Dublin City University, Dublin, Ireland
| |
Collapse
|
13
|
Ferreira MF, Lo Nostro FL, Fernández DA, Genovese G. Endocrine disruption in the sub Antarctic fish Patagonotothen tessellata (Perciformes, Notothenidae) from Beagle Channel associated to anthropogenic impact. MARINE ENVIRONMENTAL RESEARCH 2021; 171:105478. [PMID: 34562790 DOI: 10.1016/j.marenvres.2021.105478] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 06/13/2023]
Abstract
Situated in the sub-Antarctic region, Beagle Channel represents a unique marine ecosystem due to the connection between the Pacific and the Atlantic Oceans, and its proximity to the Antarctic Peninsula. Ushuaia city, the biggest settlement on the channel, exerts an increasing anthropogenic pressure by discharges of urban and industrial effluents. In the present work, we use Patagonotothen tessellata, one of the most abundant and widespread species in the channel, as a bioindicator species in order to evidence anthropic impact from Ushuaia Bay and surrounding areas. We first analyzed and characterized real time gene expression of androgen receptor, estrogen receptor and different forms of vitellogenin (VTG), under laboratory conditions. This was achieved by induction with estradiol of P. tessellata males. Then, the selected genes were used as biomarkers for an environmental biomonitoring study. Morphometric indices and circulating sex steroids (estradiol and testosterone) were also quantified in male fish collected from different sites. The qPCR analysis showed that vtgAb form is more inducible than vtgAa or vtgC forms after estrogen induction. The field survey revealed the up-regulation of vtgAb and the androgen receptor in fish from sites with higher anthropogenic influence. Sex steroids followed seasonal variations according to their reproductive cycle, with higher levels of estradiol and testosterone in winter and summer seasons. The use of biomarkers such as gene expression of VTG demonstrates that fish from Ushuaia Bay are likely to be exposed to endocrine disrupting compounds. To our knowledge, this research is the first attempt to assess the endocrine disruption associated to anthropic impact in a widespread fish of the Beagle Channel and contributes to a better understanding of the reproductive physiology of sub Antarctic ichthyofauna.
Collapse
Affiliation(s)
- Maria Florencia Ferreira
- CONICET-Universidad de Buenos Aires. Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA, CONICET-UBA), Laboratorio de Ecotoxicología Acuática, Buenos Aires, Argentina
| | - Fabiana L Lo Nostro
- CONICET-Universidad de Buenos Aires. Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA, CONICET-UBA), Laboratorio de Ecotoxicología Acuática, Buenos Aires, Argentina; Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Biodiversidad y Biología Experimental, Laboratorio de Ecotoxicología Acuática, Buenos Aires, Argentina.
| | - Daniel A Fernández
- Universidad Nacional de Tierra Del Fuego, Instituto de Ciencias Polares, Ambiente y Recursos Naturales (ICPA-UNTDF), Ushuaia, Argentina; Centro Austral de Investigaciones Científicas (CADIC-CONICET), Laboratorio de Ecología, Fisiología y Evolución de Organismos Acuáticos (LEFyE), Ushuaia, Argentina
| | - Griselda Genovese
- CONICET-Universidad de Buenos Aires. Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA, CONICET-UBA), Laboratorio de Ecotoxicología Acuática, Buenos Aires, Argentina; Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Biodiversidad y Biología Experimental, Laboratorio de Ecotoxicología Acuática, Buenos Aires, Argentina
| |
Collapse
|
14
|
Nguyen MT, De Baat ML, Van Der Oost R, Van Den Berg W, De Voogt P. Comparative field study on bioassay responses and micropollutant uptake of POCIS, Speedisk and SorbiCell polar passive samplers. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 82:103549. [PMID: 33246138 DOI: 10.1016/j.etap.2020.103549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 11/06/2020] [Accepted: 11/09/2020] [Indexed: 06/11/2023]
Abstract
Routine water quality monitoring is generally performed with chemical analyses of grab samples, which has major limitations. First, snapshot samples will not give a good representation of the water quality. Second, it is not sufficient to analyze only a limited number of (priority) pollutants. These limitations can be circumvented by an alternative environmental risk assessment that combines time-integrated passive sampling (PS) with effect-based methods. This study aimed to select which of three polar PS devices was best suited for effect-based monitoring strategies. In the first part of this study, Speedisk, SorbiCell and POCIS polar PS devices were compared by simultaneous deployment at five sites. Chemical analyses of 108 moderately polar compounds (-1.82 < log D < 6.28) revealed that highest number of compounds, with the widest range of log KOW, log D and pKa, were detected in extracts of POCIS, followed by Speedisk. SorbiCell samplers accumulated the lowest numbers and concentrations of compounds, so they were not further investigated. In a follow-up study, bioassay responses were compared in extracts of POCIS and Speedisk devices deployed at eight sites. The passive sampler extracts were subjected to bioassays for non-specific toxicity, endocrine disruption, and antibiotics activities. More frequent and higher responses were induced by POCIS extracts, leading to more exceedances of effect-based trigger values for environmental risks. As POCIS outperformed Speedisk, it is better suited as PS device targeting polar compounds for semi-quantitative effect-based water quality monitoring.
Collapse
Affiliation(s)
- M Thao Nguyen
- Waterproef Laboratory, Department of Research & Validation, Edam, the Netherlands.
| | - Milo L De Baat
- Institute for Biodiversity and Ecosystem Dynamics, Department of Freshwater and Marine Ecology, University of Amsterdam, the Netherlands
| | - Ron Van Der Oost
- Waternet Institute for the Urban Water Cycle, Department of Technology, Research and Engineering, Amsterdam, the Netherlands
| | - Willie Van Den Berg
- Waterproef Laboratory, Department of Research & Validation, Edam, the Netherlands
| | - Pim De Voogt
- Institute for Biodiversity and Ecosystem Dynamics, Department of Freshwater and Marine Ecology, University of Amsterdam, the Netherlands; KWR Water Research Institute, Nieuwegein, the Netherlands
| |
Collapse
|
15
|
Neale PA, O’Brien JW, Glauch L, König M, Krauss M, Mueller JF, Tscharke B, Escher BI. Wastewater treatment efficacy evaluated with in vitro bioassays. WATER RESEARCH X 2020; 9:100072. [PMID: 33089130 PMCID: PMC7559864 DOI: 10.1016/j.wroa.2020.100072] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 09/19/2020] [Accepted: 09/30/2020] [Indexed: 05/05/2023]
Abstract
Bioassays show promise as a complementary approach to chemical analysis to assess the efficacy of wastewater treatment processes as they can detect the mixture effects of all bioactive chemicals in a sample. We investigated the treatment efficacy of ten Australian wastewater treatment plants (WWTPs) covering 42% of the national population over seven consecutive days. Solid-phase extracts of influent and effluent were subjected to an in vitro test battery with six bioassays covering nine endpoints that captured the major modes of action detected in receiving surface waters. WWTP influents and effluents were compared on the basis of population- and flow-normalised effect loads, which provided insights into the biological effects exhibited by the mixture of chemicals before and after treatment. Effect removal efficacy varied between effect endpoints and depended on the treatment process. An ozonation treatment step had the best treatment efficacy, while WWTPs with only primary treatment resulted in poor removal of effects. Effect removal was generally better for estrogenic effects and the peroxisome proliferator-activated receptor than for inhibition of photosynthesis, which is consistent with the persistence of herbicides causing this effect. Cytotoxicity and oxidative stress response provided a sum parameter of all bioactive chemicals including transformation products and removal was poorer than for specific endpoints except for photosynthesis inhibition. Although more than 500 chemicals were analysed, the detected chemicals explained typically less than 10% of the measured biological effect, apart from algal toxicity, where the majority of the effect could be explained by one dominant herbicide, diuron. Overall, the current study demonstrated the utility of applying bioassays alongside chemical analysis to evaluate loads of chemical pollution reaching WWTPs and treatment efficacy.
Collapse
Affiliation(s)
- Peta A. Neale
- Australian Rivers Institute, School of Environment and Science, Griffith University, Southport, QLD, 4222, Australia
- QAEHS – Queensland Alliance for Environmental Health Sciences, The University of Queensland, Brisbane, Queensland, 4102, Australia
- Corresponding author. Australian Rivers Institute, School of Environment and Science, Griffith University, Southport, QLD, 4222, Australia.
| | - Jake W. O’Brien
- QAEHS – Queensland Alliance for Environmental Health Sciences, The University of Queensland, Brisbane, Queensland, 4102, Australia
| | - Lisa Glauch
- UFZ – Helmholtz Centre for Environmental Research, 04318, Leipzig, Germany
| | - Maria König
- UFZ – Helmholtz Centre for Environmental Research, 04318, Leipzig, Germany
| | - Martin Krauss
- UFZ – Helmholtz Centre for Environmental Research, 04318, Leipzig, Germany
| | - Jochen F. Mueller
- QAEHS – Queensland Alliance for Environmental Health Sciences, The University of Queensland, Brisbane, Queensland, 4102, Australia
| | - Ben Tscharke
- QAEHS – Queensland Alliance for Environmental Health Sciences, The University of Queensland, Brisbane, Queensland, 4102, Australia
| | - Beate I. Escher
- Australian Rivers Institute, School of Environment and Science, Griffith University, Southport, QLD, 4222, Australia
- QAEHS – Queensland Alliance for Environmental Health Sciences, The University of Queensland, Brisbane, Queensland, 4102, Australia
- UFZ – Helmholtz Centre for Environmental Research, 04318, Leipzig, Germany
- Eberhard Karls University Tübingen, Environmental Toxicology, Centre for Applied Geoscience, 72076, Tübingen, Germany
| |
Collapse
|
16
|
Gikas GD, Sylaios GK, Tsihrintzis VA, Konstantinou IK, Albanis T, Boskidis I. Comparative evaluation of river chemical status based on WFD methodology and CCME water quality index. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 745:140849. [PMID: 32731066 DOI: 10.1016/j.scitotenv.2020.140849] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/13/2020] [Accepted: 07/08/2020] [Indexed: 06/11/2023]
Abstract
The Water Framework Directive (WFD) methodology, proposed by the Ministry of Environment and Energy of Greece (WFD-MEEG), and the Canadian Council of Ministers of Environment Water Quality Index (CCME-WQI) are comparatively applied to evaluate the chemical status of a major transboundary river. Water quality parameters were monitored at 11 sites along the main stream of the river and its main tributaries, and at five sites in the reservoirs, on a monthly frequency, in the period from May 2008 to May 2009. Water temperature (T), dissolved oxygen (DO), pH, and electrical conductivity (EC) were measured in-situ, while water samples were collected for the determination of total suspended solids (TSS), biochemical oxygen demand (BOD), chemical oxygen demand (COD), nitrite-, nitrate- and ammonium-nitrogen, total Kjeldahl nitrogen (TKN), ortho-phosphates (OP), total phosphorus (TP), and chlorophyll-a (Chl-a). The water samples were also analyzed for the determination of seven heavy metals (i.e., Cd, Pb, Hg, Ni, Cr, Cu, Zn) and 33 priority substances, as listed in Annex II of EU Directive 2008/105/EC. The results showed that the physicochemical parameters (i.e., T, DO, pH, EC, inorganic nitrogen, TKN, OP, TP, TSS, and Chl-a) were within the natural range. The mean concentration of the measured heavy metals did not exceed the limits set by WHO (2003, 2017) for drinking water. Regarding the priority substances, some of them (i.e., anthracene, fluoranthene, and polyaromatic hydrocarbons) were measured in various stations at higher concentrations than the Annual Average Environmental Quality Standards (AA-EQS). Based on the WFD-MEEG methodology, the river water was in the 'good' quality class, while according to CCME-WQI the river quality ranged from 'marginal' to 'good' category. It seems that CCME-WQI is stricter than WFD-MEEG but could be a WQI appropriate for use.
Collapse
Affiliation(s)
- G D Gikas
- Laboratory of Ecological Engineering and Technology, Department of Environmental Engineering, School of Engineering, Democritus University of Thrace, 67100 Xanthi, Greece.
| | - G K Sylaios
- Laboratory of Ecological Engineering and Technology, Department of Environmental Engineering, School of Engineering, Democritus University of Thrace, 67100 Xanthi, Greece.
| | - V A Tsihrintzis
- Centre for the Assessment of Natural Hazards and Proactive Planning & Laboratory of Reclamation Works and Water Resources Management, Department of Infrastructure and Rural Development, School of Rural and Surveying Engineering, National Technical University of Athens, Zografou, 15780 Athens, Greece.
| | - I K Konstantinou
- Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece.
| | - T Albanis
- Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece.
| | - I Boskidis
- Laboratory of Ecological Engineering and Technology, Department of Environmental Engineering, School of Engineering, Democritus University of Thrace, 67100 Xanthi, Greece
| |
Collapse
|
17
|
Lopreside A, Calabretta MM, Montali L, Zangheri M, Guardigli M, Mirasoli M, Michelini E. Bioluminescence goes portable: recent advances in whole-cell and cell-free bioluminescence biosensors. LUMINESCENCE 2020; 36:278-293. [PMID: 32945075 DOI: 10.1002/bio.3948] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/03/2020] [Accepted: 09/07/2020] [Indexed: 12/24/2022]
Abstract
Recent advancements in synthetic biology, organic chemistry, and computational models have allowed the application of bioluminescence in several fields, ranging from well established methods for detecting microbial contamination to in vivo imaging to track cancer and stem cells, from cell-based assays to optogenetics. Moreover, thanks to recent technological progress in miniaturized and sensitive light detectors, such as photodiodes and imaging sensors, it is possible to implement laboratory-based assays, such as cell-based and enzymatic assays, into portable analytical devices for point-of-care and on-site applications. This review highlights some recent advances in the development of whole-cell and cell-free bioluminescence biosensors with a glance on current challenges and different strategies that have been used to turn bioassays into biosensors with the required analytical performance. Critical issues and unsolved technical problems are also highlighted, to give the reader a taste of this fascinating and challenging field.
Collapse
Affiliation(s)
- Antonia Lopreside
- Department of Chemistry 'Giacomo Ciamician', University of Bologna, Via Selmi 2, Bologna, Italy
| | | | - Laura Montali
- Department of Chemistry 'Giacomo Ciamician', University of Bologna, Via Selmi 2, Bologna, Italy
| | - Martina Zangheri
- Department of Chemistry 'Giacomo Ciamician', University of Bologna, Via Selmi 2, Bologna, Italy
| | - Massimo Guardigli
- Department of Chemistry 'Giacomo Ciamician', University of Bologna, Via Selmi 2, Bologna, Italy.,Interdepartmental Centre for Renewable Sources, Environment, Sea and Energy (CIRI FRAME), Alma Mater Studiorum - University of Bologna, Via Sant'Alberto 163, Ravenna, Italy
| | - Mara Mirasoli
- Department of Chemistry 'Giacomo Ciamician', University of Bologna, Via Selmi 2, Bologna, Italy.,Interdepartmental Centre for Renewable Sources, Environment, Sea and Energy (CIRI FRAME), Alma Mater Studiorum - University of Bologna, Via Sant'Alberto 163, Ravenna, Italy.,INBB, Istituto Nazionale di Biostrutture e Biosistemi, Via Medaglie d'Oro, Rome, Italy
| | - Elisa Michelini
- Department of Chemistry 'Giacomo Ciamician', University of Bologna, Via Selmi 2, Bologna, Italy.,Interdepartmental Centre for Renewable Sources, Environment, Sea and Energy (CIRI FRAME), Alma Mater Studiorum - University of Bologna, Via Sant'Alberto 163, Ravenna, Italy.,Health Sciences and Technologies-Interdepartmental Centre for Industrial Research (HST-ICIR), University of Bologna, via Tolara di Sopra 41/E 40064, Ozzano dell'Emilia, Bologna, Italy
| |
Collapse
|
18
|
Xia J, Sun H, Ma X, Huang K, Ye L. Ozone pretreatment of wastewater containing aromatics reduces antibiotic resistance genes in bioreactors: The example of p-aminophenol. ENVIRONMENT INTERNATIONAL 2020; 142:105864. [PMID: 32563772 DOI: 10.1016/j.envint.2020.105864] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 05/30/2020] [Accepted: 05/30/2020] [Indexed: 06/11/2023]
Abstract
Aromatic matters are widely present in wastewater, especially industrial wastewater, and may lead to a high abundance of antibiotic resistance genes (ARGs) in wastewater treatment bioreactors and stimulate horizontal transfers of ARGs. Here, we investigated a practical approach that applying ozone pretreatment to mitigate ARGs in bioreactors treating wastewater containing a typical aromatic pollutant, p-aminophenol (PAP). The results showed that ozone pretreatment could effectively reduce the aromaticity of wastewater, and the relative abundance of ARGs in the bioreactor fed with ozone treated wastewater decreased by over 70% compared to the control reactor. Multidrug, quinolone, mupirocin, polymyxin, aminoglycoside, glycopeptide, beta-lactam, and trimethoprim resistance genes were all reduced in the bioreactors receiving wastewater pretreated by ozone. Metagenomic analysis suggested that the reduction of ARGs could be attributed to the co-occurrence of ARGs and aromatic degradation genes in bacteria. Furthermore, we expanded our analysis to investigate 71 metagenomes from different environments, and the results indicated that the impact of aromatics on ARG abundance widely occurs in various ecosystems and confirmed that high levels of aromatics could lead to high abundance of ARGs. Taken together, our work confirmed that the aromatics played critical roles in selecting ARGs and proposed a feasible approach to reduce ARGs in wastewater treatment bioreactors.
Collapse
Affiliation(s)
- Juntao Xia
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Haohao Sun
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Xueyan Ma
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Kailong Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China; Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Lin Ye
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China.
| |
Collapse
|
19
|
Taylor AC, Fones GR, Vrana B, Mills GA. Applications for Passive Sampling of Hydrophobic Organic Contaminants in Water—A Review. Crit Rev Anal Chem 2019; 51:20-54. [DOI: 10.1080/10408347.2019.1675043] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Adam C. Taylor
- School of Earth and Environmental Sciences, University of Portsmouth, Portsmouth, UK
| | - Gary R. Fones
- School of Earth and Environmental Sciences, University of Portsmouth, Portsmouth, UK
| | - Branislav Vrana
- Faculty of Science, Research Centre for Toxic Compounds in the Environment (RECETOX), Masaryk University, Brno, Czech Republic
| | - Graham A. Mills
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| |
Collapse
|
20
|
Völker J, Stapf M, Miehe U, Wagner M. Systematic Review of Toxicity Removal by Advanced Wastewater Treatment Technologies via Ozonation and Activated Carbon. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:7215-7233. [PMID: 31120742 DOI: 10.1021/acs.est.9b00570] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Upgrading wastewater treatment plants (WWTPs) with advanced technologies is one key strategy to reduce micropollutant emissions. Given the complex chemical composition of wastewater, toxicity removal is an integral parameter to assess the performance of WWTPs. Thus, the goal of this systematic review is to evaluate how effectively ozonation and activated carbon remove in vitro and in vivo toxicity. Out of 2464 publications, we extracted 46 relevant studies conducted at 22 pilot or full-scale WWTPs. We performed a quantitative and qualitative evaluation of in vitro (100 assays) and in vivo data (20 species), respectively. Data is more abundant on ozonation (573 data points) than on an activated carbon treatment (162 data points), and certain in vitro end points (especially estrogenicity) and in vivo models (e.g., daphnids) dominate. The literature shows that while a conventional treatment effectively reduces toxicity, residual effects in the effluents may represent a risk to the receiving ecosystem on the basis of effect-based trigger values. In general, an upgrade to ozonation or activated carbon treatment will significantly increase toxicity removal with similar performance. Nevertheless, ozonation generates toxic transformation products that can be removed by a post-treatment. By assessing the growing body of effect-based studies, we identify sensitive and underrepresented end points and species and provide guidance for future research.
Collapse
Affiliation(s)
- Johannes Völker
- Department of Biology , Norwegian University of Science and Technology (NTNU) , Trondheim 7491 , Norway
| | - Michael Stapf
- Berlin Centre of Competence for Water (KWB) , Berlin 10709 , Germany
| | - Ulf Miehe
- Berlin Centre of Competence for Water (KWB) , Berlin 10709 , Germany
| | - Martin Wagner
- Department of Biology , Norwegian University of Science and Technology (NTNU) , Trondheim 7491 , Norway
| |
Collapse
|
21
|
Godlewska K, Stepnowski P, Paszkiewicz M. Application of the Polar Organic Chemical Integrative Sampler for Isolation of Environmental Micropollutants – A Review. Crit Rev Anal Chem 2019; 50:1-28. [DOI: 10.1080/10408347.2019.1565983] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Klaudia Godlewska
- Department of Environmental Analytics, Faculty of Chemistry, University of Gdansk, Gdansk, Poland
| | - Piotr Stepnowski
- Department of Environmental Analytics, Faculty of Chemistry, University of Gdansk, Gdansk, Poland
| | - Monika Paszkiewicz
- Department of Environmental Analytics, Faculty of Chemistry, University of Gdansk, Gdansk, Poland
| |
Collapse
|
22
|
Abbas A, Schneider I, Bollmann A, Funke J, Oehlmann J, Prasse C, Schulte-Oehlmann U, Seitz W, Ternes T, Weber M, Wesely H, Wagner M. What you extract is what you see: Optimising the preparation of water and wastewater samples for in vitro bioassays. WATER RESEARCH 2019; 152:47-60. [PMID: 30660097 DOI: 10.1016/j.watres.2018.12.049] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 12/19/2018] [Accepted: 12/21/2018] [Indexed: 05/25/2023]
Abstract
The assessment of water quality is crucial for safeguarding drinking water resources and ecosystem integrity. To this end, sample preparation and extraction is critically important, especially when investigating emerging contaminants and the toxicity of water samples. As extraction methods are rarely optimised for bioassays but rather adopted from chemical analysis, this may result in a misrepresentation of the actual toxicity. In this study, surface water, groundwater, hospital and municipal wastewater were used to characterise the impacts of common sample preparation techniques (acidification, filtration and solid phase extraction (SPE)) on the outcomes of eleven in vitro bioassays. The latter covered endocrine activity (reporter gene assays for estrogen, androgen, aryl-hydrocarbon, retinoic acid, retinoid X, vitamin D, thyroid receptor), mutagenicity (Ames fluctuation test), genotoxicity (umu test) and cytotoxicity. Water samples extracted using different SPE sorbents (Oasis HLB, Supelco ENVI-Carb+, Telos C18/ENV) at acidic and neutral pH were compared for their performance in recovering biological effects. Acidification, commonly used for stabilisation, significantly altered the endocrine activity and toxicity of most (waste)water samples. Sample filtration did not affect the majority of endpoints but in certain cases affected the (anti-)estrogenic and dioxin-like activities. SPE extracts (10.4 × final concentration), including WWTP effluents, induced significant endocrine effects that were not detected in aqueous samples (0.63 × final concentration), such as estrogenic, (anti-)androgenic and dioxin-like activities. When ranking the SPE methods using multivariate Pareto optimisation an extraction with Telos C18/ENV at pH 7 was most effective in recovering toxicity. At the same time, these extracts were highly cytotoxic masking the endpoint under investigation. Compared to that, extraction at pH 2.5 enriched less cytotoxicity. In summary, our study demonstrates that sample preparation and extraction critically affect the outcome of bioassays when assessing the toxicity of water samples. Depending on the water matrix and the bioassay, these methods need to be optimised to accurately assess water quality.
Collapse
Affiliation(s)
- Aennes Abbas
- Department Aquatic Ecotoxicology, Goethe University Frankfurt am Main, Max-von-Laue-Str. 13, D-60438, Frankfurt, Germany.
| | - Ilona Schneider
- Department Aquatic Ecotoxicology, Goethe University Frankfurt am Main, Max-von-Laue-Str. 13, D-60438, Frankfurt, Germany.
| | - Anna Bollmann
- Zweckverband Landeswasserversorgung, Am Spitzigen Berg 1, D-89129, Langenau, Germany
| | - Jan Funke
- IWW Rheinisch-Westfälisches Institut für Wasser Beratungs- und Entwicklungsgesellschaft mbH, Moritzstraße 26, D-45476, Muelheim an der Ruhr, Germany
| | - Jörg Oehlmann
- Department Aquatic Ecotoxicology, Goethe University Frankfurt am Main, Max-von-Laue-Str. 13, D-60438, Frankfurt, Germany
| | - Carsten Prasse
- Department of Environmental Health and Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Ulrike Schulte-Oehlmann
- Department Aquatic Ecotoxicology, Goethe University Frankfurt am Main, Max-von-Laue-Str. 13, D-60438, Frankfurt, Germany
| | - Wolfram Seitz
- Zweckverband Landeswasserversorgung, Am Spitzigen Berg 1, D-89129, Langenau, Germany
| | - Thomas Ternes
- Federal Institute of Hydrology (BfG), Am Mainzer Tor 1, D-56068, Koblenz, Germany
| | - Marcus Weber
- Department of Numerical Analysis and Modelling, Konrad-Zuse-Zentrum für Informationstechnik Berlin (ZIB), Takustraße 7, D-14195, Berlin, Germany
| | - Henning Wesely
- Federal Institute of Hydrology (BfG), Am Mainzer Tor 1, D-56068, Koblenz, Germany
| | - Martin Wagner
- Department Aquatic Ecotoxicology, Goethe University Frankfurt am Main, Max-von-Laue-Str. 13, D-60438, Frankfurt, Germany; Department of Biology, Norwegian University of Science and Technology, NO-7491, Trondheim, Norway
| |
Collapse
|
23
|
Toušová Z, Vrana B, Smutná M, Novák J, Klučárová V, Grabic R, Slobodník J, Giesy JP, Hilscherová K. Analytical and bioanalytical assessments of organic micropollutants in the Bosna River using a combination of passive sampling, bioassays and multi-residue analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 650:1599-1612. [PMID: 30308846 DOI: 10.1016/j.scitotenv.2018.08.336] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 08/24/2018] [Accepted: 08/24/2018] [Indexed: 06/08/2023]
Abstract
Complex mixtures of contaminants from multiple sources, including agriculture, industry or wastewater enter aquatic environments and might pose hazards or risks to humans or wildlife. Targeted analyses of a few priority substances provide limited information about water quality. In this study, a combined chemical and effect screening of water quality in the River Bosna, in Bosnia and Herzegovina was carried out, with focus on occurrence and effects of contaminants of emerging concern. Chemicals in water were sampled at 10 sites along the Bosna River by use of passive sampling. The combination of semipermeable membrane devices (SPMDs) and polar organic chemical integrative samplers (POCIS) enabled sampling of a broad range of contaminants from hydrophobic (PAHs, PCBs, OCPs) to hydrophilic compounds (pesticides, pharmaceuticals and hormones), which were determined by use of GC-MS and LC-MS (MS). In vitro, cell-based bioassays were applied to assess (anti)androgenic, estrogenic and dioxin-like potencies of extracts of the samplers. Of a total of 168 targeted compounds, 107 were detected at least once. Cumulative pollutant concentrations decreased downstream from the city of Sarajevo, which was identified as the major source of organic pollutants in the area. Responses in all bioassays were observed for samples from all sites. In general, estrogenicity could be well explained by analysis of target estrogens, while the drivers of the other observed effects remained largely unknown. Profiling of hazard quotients identified two sites downstream of Sarajevo as hotspots of biological potency. Risk assessment of detected compounds revealed, that 7 compounds (diazinon, diclofenac, 17β-estradiol, estrone, benzo[k]fluoranthene, fluoranthene and benzo[k]fluoranthene) might pose risks to aquatic biota in the Bosna River. The study brings unique results of a complex water quality assessment in a region with an insufficient water treatment infrastructure.
Collapse
Affiliation(s)
- Zuzana Toušová
- Masaryk University, Faculty of Science, RECETOX, Kamenice 753/5, 625 00 Brno, Czech Republic; Environmental Institute (EI), Okružná 784/42, 972 41 Koš, Slovakia
| | - Branislav Vrana
- Masaryk University, Faculty of Science, RECETOX, Kamenice 753/5, 625 00 Brno, Czech Republic; Water Research Institute, Nabr. Arm. Gen. L. Svobodu 5, 812 49 Bratislava, Slovakia
| | - Marie Smutná
- Masaryk University, Faculty of Science, RECETOX, Kamenice 753/5, 625 00 Brno, Czech Republic
| | - Jiří Novák
- Masaryk University, Faculty of Science, RECETOX, Kamenice 753/5, 625 00 Brno, Czech Republic
| | - Veronika Klučárová
- Slovak University of Technology, Faculty of Chemical and Food Technology, Radlinskeho 9, 812 37 Bratislava, Slovakia
| | - Roman Grabic
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/II, CZ-389 25 Vodnany, Czech Republic
| | | | - John Paul Giesy
- Dept. Biomedical Veterinary Sciences and Toxicology Centre, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK S7N 5B4, Saskatchewan, Canada; School of Biological Sciences, University of Hong Kong, Hong Kong, SAR, People's Republic of China; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, People's Republic of China
| | - Klára Hilscherová
- Masaryk University, Faculty of Science, RECETOX, Kamenice 753/5, 625 00 Brno, Czech Republic.
| |
Collapse
|
24
|
Zhao D, Zhang P, Ge L, Zheng GJ, Wang X, Liu W, Yao Z. The legacy of organochlorinated pesticides (OCPs), polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) in Chinese coastal seawater monitored by semi-permeable membrane devices (SPMDs). MARINE POLLUTION BULLETIN 2018; 137:222-230. [PMID: 30503428 DOI: 10.1016/j.marpolbul.2018.10.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 09/18/2018] [Accepted: 10/02/2018] [Indexed: 06/09/2023]
Abstract
Semi-permeable membrane devices (SPMDs) were applied to sample some Organochlorinated Pesticides (OCPs), Polycyclic Aromatic Hydrocarbons (PAHs) and Polychlorinated Biphenyls (PCBs) from the seawater of 14 Chinese coastal areas. The total concentrations of OCPs (∑16OCPs), PAHs (∑15PAHs) and PCBs (∑35PCBs) were in the ranges of 489.2-2174, 589.4-53,160, and 133.2-3658 ng/g lipid, respectively. The ∑15PAHs varied significantly with the sampling locations, which were far higher in north Chinese coastal areas than in south areas, whereas ∑16OCPs and ∑35PCBs only slightly fluctuated along the entire coast line. Comparing SPMD to grab sampler, it was found that the distribution patterns of the PCBs and OCPs in seawater were generally similar. However, the compositional profiles of the PAHs, PCBs, DDTs and HCHs in SPMDs were slightly different to grab samplers and organisms. The SPMDs accumulated less lipotropic compounds, which are inclined to dissolve in water rather than in organisms.
Collapse
Affiliation(s)
- Dongmei Zhao
- Key Laboratory for Ecological Environment in Coastal Area (SOA), National Marine Environmental Monitoring Center, China, Dalian 116023, PR China.
| | - Peng Zhang
- Key Laboratory for Ecological Environment in Coastal Area (SOA), National Marine Environmental Monitoring Center, China, Dalian 116023, PR China; Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, United Kingdom.
| | - Linke Ge
- Key Laboratory for Ecological Environment in Coastal Area (SOA), National Marine Environmental Monitoring Center, China, Dalian 116023, PR China
| | - Gene J Zheng
- Department of Biology and Chemistry, City University of Hong Kong, Hong Kong, China
| | - Xinhong Wang
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361005, PR China
| | - Wenhua Liu
- Marine Biology Institute, Shantou University, Shantou, Guangdong 515063, PR China
| | - Ziwei Yao
- Key Laboratory for Ecological Environment in Coastal Area (SOA), National Marine Environmental Monitoring Center, China, Dalian 116023, PR China.
| |
Collapse
|
25
|
Rosenmai AK, Lundqvist J, Gago-Ferrero P, Mandava G, Ahrens L, Wiberg K, Oskarsson A. Effect-based assessment of recipient waters impacted by on-site, small scale, and large scale waste water treatment facilities - combining passive sampling with in vitro bioassays and chemical analysis. Sci Rep 2018; 8:17200. [PMID: 30464315 PMCID: PMC6249289 DOI: 10.1038/s41598-018-35533-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 11/07/2018] [Indexed: 12/21/2022] Open
Abstract
Waste water treatment facilities are a major sources of organic micropollutants (MPs) in surface water. In this study, surface water samples were collected from seven sites along a river system in Uppsala, Sweden, during four seasons and evaluated based on the occurrence of MPs in the samples and bioactivity using in vitro bioassays. The sampling sites were differentially impacted by on-site sewage treatment facilities (OSSFs), small scale, and large scale waste water treatment plants (WWTPs). The bioassays used included activation of aryl hydrocarbon receptor (AhR), estrogen receptor (ER), nuclear factor kappa-light-chain-enhancer of activated B cells (NFkB), nuclear factor erythroid 2-related factor 2 (Nrf2), and androgen receptor (AR). Occurrence of 80 MPs, were analyzed using liquid chromatography coupled to tandem mass spectrometry. Most water samples induced AhR activity, and all sampling sites showed a similar profile regarding this activity. With the exception of one water sample, we did not detect any NFkB, Nrf2 or AR activity of the water samples. The exception was a sample impacted by OSSFs, which showed an activity in multiple bioassays, but the activity could not be explained by the occurrence of target MPs. The occurrence of MPs showed a spatial trend, with the highest number and amount of MPs detected in the samples collected downstream of the WWTPs, where up to 47 MPs were detected in one single sample. A seasonal variation was observed with highest levels of MPs and highest AhR activities in samples collected in June and September 2015. However, neither the seasonal activity nor the on-site activity could be explained by the measured MPs, suggesting unknown contributory agents in the water.
Collapse
Affiliation(s)
- Anna Kjerstine Rosenmai
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Box 7028, SE-750 07, Uppsala, Sweden
| | - Johan Lundqvist
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Box 7028, SE-750 07, Uppsala, Sweden.
| | - Pablo Gago-Ferrero
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Box 7050, SE-750 07, Uppsala, Sweden
| | - Geeta Mandava
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Box 7028, SE-750 07, Uppsala, Sweden
| | - Lutz Ahrens
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Box 7050, SE-750 07, Uppsala, Sweden
| | - Karin Wiberg
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Box 7050, SE-750 07, Uppsala, Sweden
| | - Agneta Oskarsson
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Box 7028, SE-750 07, Uppsala, Sweden
| |
Collapse
|
26
|
Gao X, Huang C, Rao K, Xu Y, Huang Q, Wang F, Ma M, Wang Z. Occurrences, sources, and transport of hydrophobic organic contaminants in the waters of Fildes Peninsula, Antarctica. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 241:950-958. [PMID: 30029329 DOI: 10.1016/j.envpol.2018.06.025] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 06/07/2018] [Accepted: 06/08/2018] [Indexed: 06/08/2023]
Abstract
As a pristine continent, Antarctica provides a good opportunity to study the spatial transport and temporal accumulation of environmental contaminants and the impacts of anthropogenic activities, both of which have given rise to ongoing public concern. In this research, an approach of coupling aquatic time-integrated passive sampling with chemical analysis and bioassays was used to assess pollution by hydrophobic organic contaminants in Antarctic waters. Passive samplers were deployed in waters of Fildes Peninsula, Antarctica, and their extracts were used for chemical analyses of sixty-six hydrophobic organic contaminants belonging to five groups [organophosphorus flame retardants (PFRs), phthalic acid esters (PAEs), polycyclic aromatic hydrocarbons (PAHs), organochlorine pesticides (OCPs), and polychlorinated biphenyls (PCBs)] and in vitro bioassays for endocrine disruption and genotoxicity. In total, twenty pollutants (six PFRs, one PAE, two PAHs, six OCPs, and five PCBs) were quantified, and six PFRs had concentrations that ranged from ND (not detected) to 44.37 ng L-1 in Antarctic waters. The concentrations detected in the waters were generally low and insufficient to have significant in vitro endocrine disruption potential or genotoxicity. The source and transport pathways of PFRs and PAE in Fildes Peninsula were studied, and multiple local sources (wastewater, air traffic, research stations, and animal feces) for different PFRs were proposed. A spatial and temporal analysis showed slight changes in the exposure of OCPs and PCBs in Antarctic waters. Furthermore, a comparison among a variety of Antarctic water sampling cases revealed that passive sampling can be a tool for aquatic time-integrated investigations in polar regions.
Collapse
Affiliation(s)
- Xiaozhong Gao
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chao Huang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kaifeng Rao
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yiping Xu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Qinghui Huang
- Key Laboratory of Yangtze River Water Environment of the Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Feng Wang
- Key Laboratory of Yangtze River Water Environment of the Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Mei Ma
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zijian Wang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
27
|
Osorio V, Schriks M, Vughs D, de Voogt P, Kolkman A. A novel sample preparation procedure for effect-directed analysis of micro-contaminants of emerging concern in surface waters. Talanta 2018; 186:527-537. [DOI: 10.1016/j.talanta.2018.04.058] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 04/13/2018] [Accepted: 04/19/2018] [Indexed: 10/17/2022]
|
28
|
Rimayi C, Odusanya D, Weiss JM, de Boer J, Chimuka L. Contaminants of emerging concern in the Hartbeespoort Dam catchment and the uMngeni River estuary 2016 pollution incident, South Africa. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 627:1008-1017. [PMID: 29426120 DOI: 10.1016/j.scitotenv.2018.01.263] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 01/24/2018] [Accepted: 01/25/2018] [Indexed: 05/13/2023]
Abstract
A quantitative assessment of pollutants of emerging concern in the Hartbeespoort Dam catchment area was conducted using liquid chromatography-tandem mass spectrometry (LC-MS/MS) to establish the occurrence, source and distribution of 15 environmental pollutants, including 10 pharmaceuticals, 1 pesticide and 4 steroid hormones. Seasonal sampling was conducted in the Hartbeespoort Lake using sub-surface grab sampling to determine the lake's ecological status and obtain data for establishment of progressive operational monitoring. The Jukskei River, which lies upstream of the Hartbeespoort Dam, was sampled in the winter season. Five year old carp (Cyprinus carpio) and catfish (Clarias gariepinus) were also sampled from the Hartbeespoort Dam to study bioaccumulation in biota as well as to estimate risk associated with fish consumption. In the Jukskei River, the main source of 11 emerging pollutants (EPs) was identified as raw sewage overflow, with the highest ∑11 EP concentration of 593ngL-1 being recorded at the Midrand point and the lowest ∑11 EP concentration of 164ngL-1 at the N14 site located 1km downstream of a large wastewater treatment plant. The Jukskei River was found to be the largest contributor of the emerging contaminants detected in the Hartbeespoort Dam. In the Hartbeespoort Dam EP concentrations were generally in the order efavirenz>nevirapine>carbamazepine>methocarbamol>bromacil>venlafaxine. Water and sediment were sampled from the uMngeni River estuary within 24h after large volumes of an assortment of pharmaceutical waste had been discovered to be washed into the river estuary after flash rainfall on 18 May 2016. Analytical results revealed high levels of some emerging pollutants in sediment samples, up to 81ngg-1 for nevirapine and 4ngg-1 for etilefrine HCL. This study shows that efavirenz, nevirapine, carbamazepine, methocarbamol, bromacil and venlafaxine are contaminants that require operational monitoring in South African urban waters.
Collapse
Affiliation(s)
- Cornelius Rimayi
- Department of Water and Sanitation, Resource Quality Information Services (RQIS), Roodeplaat, P. Bag X313, 0001 Pretoria, South Africa; Vrije Universiteit Amsterdam, Environment and Health, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands; University of the Witwatersrand, School of Chemistry, P. Bag 3, Wits, 2050 Johannesburg, South Africa.
| | - David Odusanya
- Department of Water and Sanitation, Resource Quality Information Services (RQIS), Roodeplaat, P. Bag X313, 0001 Pretoria, South Africa
| | - Jana M Weiss
- Department of Environmental Science and Analytical Chemistry, Stockholm University, Arrhenius Laboratory, 10691 Stockholm, Sweden; Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Box 7050, 750 07 Uppsala, Sweden
| | - Jacob de Boer
- Vrije Universiteit Amsterdam, Environment and Health, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Luke Chimuka
- University of the Witwatersrand, School of Chemistry, P. Bag 3, Wits, 2050 Johannesburg, South Africa
| |
Collapse
|
29
|
Wangmo C, Jarque S, Hilscherová K, Bláha L, Bittner M. In vitro assessment of sex steroids and related compounds in water and sediments - a critical review. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2018; 20:270-287. [PMID: 29251308 DOI: 10.1039/c7em00458c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Detection of endocrine disrupting compounds in water and sediment samples has gained much importance since the evidence of their effects was reported in aquatic ecosystems in the 1990s. The aim of this review is to highlight the advances made in the field of in vitro analysis for the detection of hormonally active compounds with estrogenic, androgenic and progestogenic effects in water and sediment samples. In vitro assays have been developed from yeast, mammalian and in a few cases from fish cells. These assays are based either on the hormone-mediated proliferation of sensitive cell lines or on the hormone-mediated expression of reporter genes. In vitro assays in combination with various sample enrichment methods have been used with limits of detection as low as 0.0027 ng L-1 in water, and 0.0026 ng g-1 in sediments for estrogenicity, 0.1 ng L-1 in water, and 0.5 ng g-1 in sediments for androgenicity, and 5 ng L-1 in water for progestogenicity expressed as equivalent concentrations of standard reference compounds of 17β-estradiol, dihydrotestosterone and progesterone, respectively. The experimental results and limits of quantification, however, are influenced by the methods of sample collection, preparation, and individual laboratory practices.
Collapse
Affiliation(s)
- Chimi Wangmo
- Masaryk University, Research Centre for Toxic Compounds in the Environment - RECETOX, Kamenice 5, 625 00, Brno, Czech Republic.
| | | | | | | | | |
Collapse
|
30
|
Sousa JCG, Ribeiro AR, Barbosa MO, Pereira MFR, Silva AMT. A review on environmental monitoring of water organic pollutants identified by EU guidelines. JOURNAL OF HAZARDOUS MATERIALS 2018; 344:146-162. [PMID: 29674092 DOI: 10.1016/j.jhazmat.2017.09.058] [Citation(s) in RCA: 385] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 09/15/2017] [Accepted: 09/30/2017] [Indexed: 05/12/2023]
Abstract
The contamination of fresh water is a global concern. The huge impact of natural and anthropogenic organic substances that are constantly released into the environment, demands a better knowledge of the chemical status of Earth's surface water. Water quality monitoring studies have been performed targeting different substances and/or classes of substances, in different regions of the world, using different types of sampling strategies and campaigns. This review article aims to gather the available dispersed information regarding the occurrence of priority substances (PSs) and contaminants of emerging concern (CECs) that must be monitored in Europe in surface water, according to the European Union Directive 2013/39/EU and the Watch List of Decision 2015/495/EU, respectively. Other specific organic pollutants not considered in these EU documents as substances of high concern, but with reported elevated frequency of detection at high concentrations, are also discussed. The search comprised worldwide publications from 2012, considering at least one of the following criteria: 4 sampling campaigns per year, wet and dry seasons, temporal and/or spatial monitoring of surface (river, estuarine, lake and/or coastal waters) and ground waters. The highest concentrations were found for: (i) the PSs atrazine, alachlor, trifluralin, heptachlor, hexachlorocyclohexane, polycyclic aromatic hydrocarbons and di(2-ethylhexyl)phthalate; (ii) the CECs azithromycin, clarithromycin, erythromycin, diclofenac, 17α-ethinylestradiol, imidacloprid and 2-ethylhexyl 4-methoxycinnamate; and (iii) other unregulated organic compounds (caffeine, naproxen, metolachlor, estriol, dimethoate, terbuthylazine, acetaminophen, ibuprofen, trimethoprim, ciprofloxacin, ketoprofen, atenolol, Bisphenol A, metoprolol, carbofuran, malathion, sulfamethoxazole, carbamazepine and ofloxacin). Most frequent substances as well as those found at highest concentrations in different seasons and regions, together with available risk assessment data, may be useful to identify possible future PS candidates.
Collapse
Affiliation(s)
- João C G Sousa
- Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal
| | - Ana R Ribeiro
- Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal.
| | - Marta O Barbosa
- Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal
| | - M Fernando R Pereira
- Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal
| | - Adrián M T Silva
- Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal
| |
Collapse
|
31
|
Tousova Z, Oswald P, Slobodnik J, Blaha L, Muz M, Hu M, Brack W, Krauss M, Di Paolo C, Tarcai Z, Seiler TB, Hollert H, Koprivica S, Ahel M, Schollée JE, Hollender J, Suter MJF, Hidasi AO, Schirmer K, Sonavane M, Ait-Aissa S, Creusot N, Brion F, Froment J, Almeida AC, Thomas K, Tollefsen KE, Tufi S, Ouyang X, Leonards P, Lamoree M, Torrens VO, Kolkman A, Schriks M, Spirhanzlova P, Tindall A, Schulze T. European demonstration program on the effect-based and chemical identification and monitoring of organic pollutants in European surface waters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017. [PMID: 28629112 DOI: 10.1016/j.scitotenv.2017.06.032] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Growing concern about the adverse environmental and human health effects of a wide range of micropollutants requires the development of novel tools and approaches to enable holistic monitoring of their occurrence, fate and effects in the aquatic environment. A European-wide demonstration program (EDP) for effect-based monitoring of micropollutants in surface waters was carried out within the Marie Curie Initial Training Network EDA-EMERGE. The main objectives of the EDP were to apply a simplified protocol for effect-directed analysis, to link biological effects to target compounds and to estimate their risk to aquatic biota. Onsite large volume solid phase extraction of 50 L of surface water was performed at 18 sampling sites in four European river basins. Extracts were subjected to effect-based analysis (toxicity to algae, fish embryo toxicity, neurotoxicity, (anti-)estrogenicity, (anti-)androgenicity, glucocorticoid activity and thyroid activity), to target analysis (151 organic micropollutants) and to nontarget screening. The most pronounced effects were estrogenicity, toxicity to algae and fish embryo toxicity. In most bioassays, major portions of the observed effects could not be explained by target compounds, especially in case of androgenicity, glucocorticoid activity and fish embryo toxicity. Estrone and nonylphenoxyacetic acid were identified as the strongest contributors to estrogenicity, while herbicides, with a minor contribution from other micropollutants, were linked to the observed toxicity to algae. Fipronil and nonylphenol were partially responsible for the fish embryo toxicity. Within the EDP, 21 target compounds were prioritized on the basis of their frequency and extent of exceedance of predicted no effect concentrations. The EDP priority list included 6 compounds, which are already addressed by European legislation, and 15 micropollutants that may be important for future monitoring of surface waters. The study presents a novel simplified protocol for effect-based monitoring and draws a comprehensive picture of the surface water status across Europe.
Collapse
Affiliation(s)
- Zuzana Tousova
- Environmental Institute (EI), Okruzna 784/42, 972 41 Kos, Slovak Republic; Masaryk University, Faculty of Science, RECETOX, Kamenice 753/5, 625 00 Brno, Czech Republic
| | - Peter Oswald
- Environmental Institute (EI), Okruzna 784/42, 972 41 Kos, Slovak Republic
| | - Jaroslav Slobodnik
- Environmental Institute (EI), Okruzna 784/42, 972 41 Kos, Slovak Republic
| | - Ludek Blaha
- Masaryk University, Faculty of Science, RECETOX, Kamenice 753/5, 625 00 Brno, Czech Republic
| | - Melis Muz
- UFZ Helmholtz Centre for Environmental Research GmbH, Permoserstrasse 15, 04318 Leipzig, Germany; RWTH Aachen University, Institute for Environmental Research (Biology V), Department of Ecosystem Analysis, Worringerweg 1, 52074 Aachen, Germany
| | - Meng Hu
- UFZ Helmholtz Centre for Environmental Research GmbH, Permoserstrasse 15, 04318 Leipzig, Germany; RWTH Aachen University, Institute for Environmental Research (Biology V), Department of Ecosystem Analysis, Worringerweg 1, 52074 Aachen, Germany
| | - Werner Brack
- UFZ Helmholtz Centre for Environmental Research GmbH, Permoserstrasse 15, 04318 Leipzig, Germany; RWTH Aachen University, Institute for Environmental Research (Biology V), Department of Ecosystem Analysis, Worringerweg 1, 52074 Aachen, Germany
| | - Martin Krauss
- UFZ Helmholtz Centre for Environmental Research GmbH, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Carolina Di Paolo
- RWTH Aachen University, Institute for Environmental Research (Biology V), Department of Ecosystem Analysis, Worringerweg 1, 52074 Aachen, Germany
| | - Zsolt Tarcai
- RWTH Aachen University, Institute for Environmental Research (Biology V), Department of Ecosystem Analysis, Worringerweg 1, 52074 Aachen, Germany
| | - Thomas-Benjamin Seiler
- RWTH Aachen University, Institute for Environmental Research (Biology V), Department of Ecosystem Analysis, Worringerweg 1, 52074 Aachen, Germany
| | - Henner Hollert
- RWTH Aachen University, Institute for Environmental Research (Biology V), Department of Ecosystem Analysis, Worringerweg 1, 52074 Aachen, Germany
| | - Sanja Koprivica
- Rudjer Boskovic Institute, Bijenicka cesta 54, 10000 Zagreb, Croatia
| | - Marijan Ahel
- Rudjer Boskovic Institute, Bijenicka cesta 54, 10000 Zagreb, Croatia
| | - Jennifer E Schollée
- Eawag, Überlandstrasse 133, 8600 Dübendorf, Switzerland; Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, 8092 Zürich, Switzerland
| | - Juliane Hollender
- Eawag, Überlandstrasse 133, 8600 Dübendorf, Switzerland; Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, 8092 Zürich, Switzerland
| | - Marc J-F Suter
- Eawag, Überlandstrasse 133, 8600 Dübendorf, Switzerland; Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, 8092 Zürich, Switzerland
| | - Anita O Hidasi
- Eawag, Überlandstrasse 133, 8600 Dübendorf, Switzerland; EPF Lausanne, School of Architecture, Civil and Environmental Engineering, 1015 Lausanne, Switzerland
| | - Kristin Schirmer
- Eawag, Überlandstrasse 133, 8600 Dübendorf, Switzerland; Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, 8092 Zürich, Switzerland; EPF Lausanne, School of Architecture, Civil and Environmental Engineering, 1015 Lausanne, Switzerland
| | - Manoj Sonavane
- Institut National de l'Environnement Industriel et des Risques (INERIS), Unité ECOT, Parc ALATA - BP2, 60550 Verneuil-en-Halatte, France
| | - Selim Ait-Aissa
- Institut National de l'Environnement Industriel et des Risques (INERIS), Unité ECOT, Parc ALATA - BP2, 60550 Verneuil-en-Halatte, France
| | - Nicolas Creusot
- Institut National de l'Environnement Industriel et des Risques (INERIS), Unité ECOT, Parc ALATA - BP2, 60550 Verneuil-en-Halatte, France
| | - Francois Brion
- Institut National de l'Environnement Industriel et des Risques (INERIS), Unité ECOT, Parc ALATA - BP2, 60550 Verneuil-en-Halatte, France
| | - Jean Froment
- UFZ Helmholtz Centre for Environmental Research GmbH, Permoserstrasse 15, 04318 Leipzig, Germany; Norwegian Institute for Water Research (NIVA), Ecotoxicology and Risk Assessment, Gaustadallèen 21, NO-0349 Oslo, Norway
| | - Ana Catarina Almeida
- Norwegian Institute for Water Research (NIVA), Ecotoxicology and Risk Assessment, Gaustadallèen 21, NO-0349 Oslo, Norway
| | - Kevin Thomas
- Norwegian Institute for Water Research (NIVA), Ecotoxicology and Risk Assessment, Gaustadallèen 21, NO-0349 Oslo, Norway; Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 39 Keesels Road, Coopers Plains 4108, Australia
| | - Knut Erik Tollefsen
- Norwegian Institute for Water Research (NIVA), Ecotoxicology and Risk Assessment, Gaustadallèen 21, NO-0349 Oslo, Norway; Norwegian University of Life Sciences (NMBU), Faculty of Environmental Science & Technology, Dept. for Environmental Sciences, Post Box 5003, N-1432 Ås, Norway
| | - Sara Tufi
- Vrije Universiteit Amsterdam, Department Environment & Health, De Boelelaan 1087, 1081 HV Amsterdam, The Netherlands
| | - Xiyu Ouyang
- Vrije Universiteit Amsterdam, Department Environment & Health, De Boelelaan 1087, 1081 HV Amsterdam, The Netherlands
| | - Pim Leonards
- Vrije Universiteit Amsterdam, Department Environment & Health, De Boelelaan 1087, 1081 HV Amsterdam, The Netherlands
| | - Marja Lamoree
- Vrije Universiteit Amsterdam, Department Environment & Health, De Boelelaan 1087, 1081 HV Amsterdam, The Netherlands
| | - Victoria Osorio Torrens
- KWR, Watercycle Research Institute, Department of Chemical Water, Quality and Health, P.O. Box 1072, 3430 BB Nieuwegein, The Netherlands
| | - Annemieke Kolkman
- KWR, Watercycle Research Institute, Department of Chemical Water, Quality and Health, P.O. Box 1072, 3430 BB Nieuwegein, The Netherlands
| | - Merijn Schriks
- KWR, Watercycle Research Institute, Department of Chemical Water, Quality and Health, P.O. Box 1072, 3430 BB Nieuwegein, The Netherlands; Vitens drinking water company, P.O Box 1205, 8001 BE Zwolle, The Netherlands
| | | | - Andrew Tindall
- WatchFrog S. A., 1 rue Pierre Fontaine, 91000 Evry, France
| | - Tobias Schulze
- UFZ Helmholtz Centre for Environmental Research GmbH, Permoserstrasse 15, 04318 Leipzig, Germany.
| |
Collapse
|
32
|
Neale PA, Altenburger R, Aït-Aïssa S, Brion F, Busch W, de Aragão Umbuzeiro G, Denison MS, Du Pasquier D, Hilscherová K, Hollert H, Morales DA, Novák J, Schlichting R, Seiler TB, Serra H, Shao Y, Tindall AJ, Tollefsen KE, Williams TD, Escher BI. Development of a bioanalytical test battery for water quality monitoring: Fingerprinting identified micropollutants and their contribution to effects in surface water. WATER RESEARCH 2017; 123:734-750. [PMID: 28728110 DOI: 10.1016/j.watres.2017.07.016] [Citation(s) in RCA: 157] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 06/04/2017] [Accepted: 07/07/2017] [Indexed: 05/18/2023]
Abstract
Surface waters can contain a diverse range of organic pollutants, including pesticides, pharmaceuticals and industrial compounds. While bioassays have been used for water quality monitoring, there is limited knowledge regarding the effects of individual micropollutants and their relationship to the overall mixture effect in water samples. In this study, a battery of in vitro bioassays based on human and fish cell lines and whole organism assays using bacteria, algae, daphnids and fish embryos was assembled for use in water quality monitoring. The selection of bioassays was guided by the principles of adverse outcome pathways in order to cover relevant steps in toxicity pathways known to be triggered by environmental water samples. The effects of 34 water pollutants, which were selected based on hazard quotients, available environmental quality standards and mode of action information, were fingerprinted in the bioassay test battery. There was a relatively good agreement between the experimental results and available literature effect data. The majority of the chemicals were active in the assays indicative of apical effects, while fewer chemicals had a response in the specific reporter gene assays, but these effects were typically triggered at lower concentrations. The single chemical effect data were used to improve published mixture toxicity modeling of water samples from the Danube River. While there was a slight increase in the fraction of the bioanalytical equivalents explained for the Danube River samples, for some endpoints less than 1% of the observed effect could be explained by the studied chemicals. The new mixture models essentially confirmed previous findings from many studies monitoring water quality using both chemical analysis and bioanalytical tools. In short, our results indicate that many more chemicals contribute to the biological effect than those that are typically quantified by chemical monitoring programs or those regulated by environmental quality standards. This study not only demonstrates the utility of fingerprinting single chemicals for an improved understanding of the biological effect of pollutants, but also highlights the need to apply bioassays for water quality monitoring in order to prevent underestimation of the overall biological effect.
Collapse
Affiliation(s)
- Peta A Neale
- Australian Rivers Institute, Griffith School of Environment, Griffith University, Southport, QLD, 4222, Australia; The University of Queensland, National Research Centre for Environmental Toxicology (Entox), Brisbane, QLD, 4108, Australia
| | - Rolf Altenburger
- UFZ - Helmholtz Centre for Environmental Research, 04318 Leipzig, Germany
| | - Selim Aït-Aïssa
- Institut National de l'Environnement Industriel et des Risques INERIS, Unité d'Ecotoxicologie, 60550, Verneuil-en-Halatte, France
| | - François Brion
- Institut National de l'Environnement Industriel et des Risques INERIS, Unité d'Ecotoxicologie, 60550, Verneuil-en-Halatte, France
| | - Wibke Busch
- UFZ - Helmholtz Centre for Environmental Research, 04318 Leipzig, Germany
| | | | - Michael S Denison
- Department of Environmental Toxicology, University of California, Davis, CA, 95616, United States
| | - David Du Pasquier
- WatchFrog, Bâtiment Genavenir 3, 1 rue Pierre Fontaine, 91000 Evry, France
| | - Klára Hilscherová
- Masaryk University, Research Centre for Toxic Compounds in the Environment (RECETOX), Kamenice 753/5, 62500 Brno, Czech Republic
| | - Henner Hollert
- Department of Ecosystem Analysis, Institute for Environmental Research, RWTH Aachen University, 52074 Aachen, Germany
| | - Daniel A Morales
- School of Technology, University of Campinas, Limeira, SP, 13484-332, Brazil
| | - Jiří Novák
- Masaryk University, Research Centre for Toxic Compounds in the Environment (RECETOX), Kamenice 753/5, 62500 Brno, Czech Republic
| | - Rita Schlichting
- UFZ - Helmholtz Centre for Environmental Research, 04318 Leipzig, Germany
| | - Thomas-Benjamin Seiler
- Department of Ecosystem Analysis, Institute for Environmental Research, RWTH Aachen University, 52074 Aachen, Germany
| | - Helene Serra
- Institut National de l'Environnement Industriel et des Risques INERIS, Unité d'Ecotoxicologie, 60550, Verneuil-en-Halatte, France
| | - Ying Shao
- Department of Ecosystem Analysis, Institute for Environmental Research, RWTH Aachen University, 52074 Aachen, Germany
| | - Andrew J Tindall
- WatchFrog, Bâtiment Genavenir 3, 1 rue Pierre Fontaine, 91000 Evry, France
| | - Knut Erik Tollefsen
- Norwegian Institute for Water Research NIVA, Gaustadalléen 21, 0349 Oslo, Norway
| | - Timothy D Williams
- School of Biosciences, The University of Birmingham, Birmingham, B15 2TT, UK
| | - Beate I Escher
- The University of Queensland, National Research Centre for Environmental Toxicology (Entox), Brisbane, QLD, 4108, Australia; UFZ - Helmholtz Centre for Environmental Research, 04318 Leipzig, Germany; Eberhard Karls University Tübingen, Environmental Toxicology, Center for Applied Geosciences, 72074 Tübingen, Germany.
| |
Collapse
|
33
|
Neale PA, Munz NA, Aїt-Aїssa S, Altenburger R, Brion F, Busch W, Escher BI, Hilscherová K, Kienle C, Novák J, Seiler TB, Shao Y, Stamm C, Hollender J. Integrating chemical analysis and bioanalysis to evaluate the contribution of wastewater effluent on the micropollutant burden in small streams. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 576:785-795. [PMID: 27810763 DOI: 10.1016/j.scitotenv.2016.10.141] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Revised: 10/03/2016] [Accepted: 10/19/2016] [Indexed: 05/18/2023]
Abstract
Surface waters can contain a range of micropollutants from point sources, such as wastewater effluent, and diffuse sources, such as agriculture. Characterizing the source of micropollutants is important for reducing their burden and thus mitigating adverse effects on aquatic ecosystems. In this study, chemical analysis and bioanalysis were applied to assess the micropollutant burden during low flow conditions upstream and downstream of three wastewater treatment plants (WWTPs) discharging into small streams in the Swiss Plateau. The upstream sites had no input of wastewater effluent, allowing a direct comparison of the observed effects with and without the contribution of wastewater. Four hundred and five chemicals were analyzed, while the applied bioassays included activation of the aryl hydrocarbon receptor, activation of the androgen receptor, activation of the estrogen receptor, photosystem II inhibition, acetylcholinesterase inhibition and adaptive stress responses for oxidative stress, genotoxicity and inflammation, as well as assays indicative of estrogenic activity and developmental toxicity in zebrafish embryos. Chemical analysis and bioanalysis showed higher chemical concentrations and effects for the effluent samples, with the lowest chemical concentrations and effects in most assays for the upstream sites. Mixture toxicity modeling was applied to assess the contribution of detected chemicals to the observed effect. For most bioassays, very little of the observed effects could be explained by the detected chemicals, with the exception of photosystem II inhibition, where herbicides explained the majority of the effect. This emphasizes the importance of combining bioanalysis with chemical analysis to provide a more complete picture of the micropollutant burden. While the wastewater effluents had a significant contribution to micropollutant burden downstream, both chemical analysis and bioanalysis showed a relevant contribution of diffuse sources from upstream during low flow conditions, suggesting that upgrading WWTPs will not completely reduce the micropollutant burden, but further source control measures will be required.
Collapse
Affiliation(s)
- Peta A Neale
- Australian Rivers Institute, Griffith School of Environment, Griffith University, Southport, QLD 4222, Australia; The University of Queensland, National Research Centre for Environmental Toxicology (Entox), Brisbane, QLD 4108, Australia
| | - Nicole A Munz
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, CH-8600 Dübendorf, Switzerland; Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, 8092 Zürich, Switzerland
| | - Selim Aїt-Aїssa
- Institut National de l'Environnement Industriel et des Risques INERIS, Unité d'Ecotoxicologie, 60550 Verneuil-en-Halatte, France
| | - Rolf Altenburger
- UFZ - Helmholtz Centre for Environmental Research, 04318 Leipzig, Germany
| | - François Brion
- Institut National de l'Environnement Industriel et des Risques INERIS, Unité d'Ecotoxicologie, 60550 Verneuil-en-Halatte, France
| | - Wibke Busch
- UFZ - Helmholtz Centre for Environmental Research, 04318 Leipzig, Germany
| | - Beate I Escher
- Australian Rivers Institute, Griffith School of Environment, Griffith University, Southport, QLD 4222, Australia; The University of Queensland, National Research Centre for Environmental Toxicology (Entox), Brisbane, QLD 4108, Australia; UFZ - Helmholtz Centre for Environmental Research, 04318 Leipzig, Germany; Eberhard Karls University Tübingen, Environmental Toxicology, Center for Applied Geosciences, 72074 Tübingen, Germany.
| | - Klára Hilscherová
- Masaryk University, Research Centre for Toxic Compounds in the Environment (RECETOX), Kamenice 753/5, 62500 Brno, Czech Republic
| | - Cornelia Kienle
- Swiss Centre for Applied Ecotoxicology Eawag-EPFL, Überlandstrasse 133, CH-8600 Dübendorf, Switzerland
| | - Jiří Novák
- Masaryk University, Research Centre for Toxic Compounds in the Environment (RECETOX), Kamenice 753/5, 62500 Brno, Czech Republic
| | - Thomas-Benjamin Seiler
- Department of Ecosystem Analysis, Institute for Environmental Research, RWTH Aachen University, 52074 Aachen, Germany
| | - Ying Shao
- Department of Ecosystem Analysis, Institute for Environmental Research, RWTH Aachen University, 52074 Aachen, Germany
| | - Christian Stamm
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, CH-8600 Dübendorf, Switzerland
| | - Juliane Hollender
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, CH-8600 Dübendorf, Switzerland; Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, 8092 Zürich, Switzerland
| |
Collapse
|
34
|
Kong D, Wang Y, Wang J, Teng Y, Li N, Li J. Evaluation and characterization of thyroid-disrupting activities in soil samples along the Second Songhua River, China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2016; 133:475-480. [PMID: 27526021 DOI: 10.1016/j.ecoenv.2016.08.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 08/05/2016] [Accepted: 08/08/2016] [Indexed: 06/06/2023]
Abstract
In this study, a recombinant thyroid receptor (TR) gene yeast assay combined with Monte Carlo simulation were used to evaluate and characterize soil samples collected from Jilin (China) along the Second Songhua River, for their ant/agonist effect on TR. No TR agonistic activity was found in soils, but many soil samples exhibited TR antagonistic activities, and the bioassay-derived amiodarone hydrochloride equivalents, which was calculated based on Monte Carlo simulation, ranged from not detected (N.D.) to 35.5μg/g. Hydrophilic substance fractions were determined to be the contributors to TR antagonistic activity in these soil samples. Our results indicate that the novel calculation method is effective for the quantification and characterization of TR antagonists in soil samples, and these data could provide useful information for future management and remediation efforts for contaminated soils.
Collapse
Affiliation(s)
- Dongdong Kong
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Yafei Wang
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Jinsheng Wang
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Yanguo Teng
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Na Li
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China
| | - Jian Li
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
35
|
Völker J, Castronovo S, Wick A, Ternes TA, Joss A, Oehlmann J, Wagner M. Advancing Biological Wastewater Treatment: Extended Anaerobic Conditions Enhance the Removal of Endocrine and Dioxin-like Activities. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:10606-10615. [PMID: 26848848 DOI: 10.1021/acs.est.5b05732] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Conventional activated sludge treatment of wastewater does not completely remove micropollutants. Here, extending anaerobic conditions may enhance biodegradation. To explore this, we combined iron-reducing or substrate-limiting and aerobic pilot-scale reactors directly at a wastewater treatment plant. To assess the removal of endocrine disrupting chemicals (EDCs) as group of micropollutants that adversely affects wildlife, we applied a bioanalytical approach. We used in vitro bioassays covering seven receptor-mediated mechanisms of action, including (anti)androgenicity, (anti)estrogenicity, retinoid-like, and dioxin-like activity. Untreated wastewater induced antiandrogenic, estrogenic, antiestrogenic, and retinoid-like activity. Full-scale as well as reactor-scale activated sludge treatment effectively removes the observed effects. Nevertheless, high antiandrogenic and minor dioxin-like and estrogenic effects persisted in the treated effluent that may still be environmentally relevant. The anaerobic post-treatment under substrate-limiting conditions resulted in an additional removal of endocrine activities by 17-40%. The anaerobic pre-treatment under iron-reducing conditions significantly enhanced the removal of the residual effects by 40-75%. In conclusion, this study demonstrates that a further optimization of biological wastewater treatment is possible. Here, implementing iron-reducing anaerobic conditions preceding aerobic treatment appears promising to improve the removal of receptor-mediated toxicity.
Collapse
Affiliation(s)
- Johannes Völker
- Goethe University Frankfurt am Main , Department Aquatic Ecotoxicology, Max-von-Laue-Str. 13, 60438 Frankfurt, Germany
| | - Sandro Castronovo
- Federal Institute of Hydrology , Am Mainzer Tor 1, D-56068 Koblenz, Germany
| | - Arne Wick
- Federal Institute of Hydrology , Am Mainzer Tor 1, D-56068 Koblenz, Germany
| | - Thomas A Ternes
- Federal Institute of Hydrology , Am Mainzer Tor 1, D-56068 Koblenz, Germany
| | - Adriano Joss
- Eawag: Swiss Federal Institute of Aquatic Science and Technology , Überlandstrasse 133, 8600 Dübendorf, Switzerland
| | - Jörg Oehlmann
- Goethe University Frankfurt am Main , Department Aquatic Ecotoxicology, Max-von-Laue-Str. 13, 60438 Frankfurt, Germany
| | - Martin Wagner
- Goethe University Frankfurt am Main , Department Aquatic Ecotoxicology, Max-von-Laue-Str. 13, 60438 Frankfurt, Germany
| |
Collapse
|
36
|
Maier D, Benisek M, Blaha L, Dondero F, Giesy JP, Köhler HR, Richter D, Scheurer M, Triebskorn R. Reduction of dioxin-like toxicity in effluents by additional wastewater treatment and related effects in fish. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2016; 132:47-58. [PMID: 27262214 DOI: 10.1016/j.ecoenv.2016.04.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 04/25/2016] [Accepted: 04/26/2016] [Indexed: 06/05/2023]
Abstract
Efficiency of advanced wastewater treatment technologies to reduce micropollutants which mediate dioxin-like toxicity was investigated. Technologies compared included ozonation, powdered activated carbon and granular activated carbon. In addition to chemical analyses in samples of effluents, surface waters, sediments, and fish, (1) dioxin-like potentials were measured in paired samples of effluents, surface waters, and sediments by use of an in vitro biotest (reporter gene assay) and (2) dioxin-like effects were investigated in exposed fish by use of in vivo activity of the mixed-function, monooxygenase enzyme, ethoxyresorufin O-deethylase (EROD) in liver. All advanced technologies studied, based on degradation or adsorption, significantly reduced dioxin-like potentials in samples and resulted in lesser EROD activity in livers of fish. Results of in vitro and in vivo biological responses were not clearly related to quantification of targeted analytes by use of instrumental analyses.
Collapse
Affiliation(s)
- Diana Maier
- Animal Physiological Ecology, University of Tübingen, Auf der Morgenstelle 5, D-72076 Tübingen, Germany.
| | - Martin Benisek
- Masaryk University, Faculty of Science, RECETOX, Kamenice 5, 62500 Brno, Czech Republic.
| | - Ludek Blaha
- Masaryk University, Faculty of Science, RECETOX, Kamenice 5, 62500 Brno, Czech Republic.
| | - Francesco Dondero
- Department of Science and Technological Innovation (DISIT), Università del Piemonte Orientale "Amedeo Avogadro" -Alessandria, Novara, Vercelli, Via Michel 11, 15121 Alessandria, Italy.
| | - John P Giesy
- Department of Biomedical Veterinary Sciences and Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada; School of Biological Sciences, University of Hong Kong, Hong Kong, SAR, China; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, China.
| | - Heinz-R Köhler
- Animal Physiological Ecology, University of Tübingen, Auf der Morgenstelle 5, D-72076 Tübingen, Germany.
| | - Doreen Richter
- DVGW Water Technology Center, Karlsruher Straße 84, D-76139 Karlsruhe, Germany.
| | - Marco Scheurer
- DVGW Water Technology Center, Karlsruher Straße 84, D-76139 Karlsruhe, Germany.
| | - Rita Triebskorn
- Animal Physiological Ecology, University of Tübingen, Auf der Morgenstelle 5, D-72076 Tübingen, Germany; Steinbeis Transfer-Center for Ecotoxicology and Ecophysiology, Blumenstraße 13, D-72108 Rottenburg, Germany.
| |
Collapse
|
37
|
Kim Tiam S, Fauvelle V, Morin S, Mazzella N. Improving Toxicity Assessment of Pesticide Mixtures: The Use of Polar Passive Sampling Devices Extracts in Microalgae Toxicity Tests. Front Microbiol 2016; 7:1388. [PMID: 27667986 PMCID: PMC5016515 DOI: 10.3389/fmicb.2016.01388] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 08/23/2016] [Indexed: 11/13/2022] Open
Abstract
Complexity of contaminants exposure needs to be taking in account for an appropriate evaluation of risks related to mixtures of pesticides released in the ecosystems. Toxicity assessment of such mixtures can be made through a variety of toxicity tests reflecting different level of biological complexity. This paper reviews the recent developments of passive sampling techniques for polar compounds, especially Polar Organic Chemical Integrative Samplers (POCIS) and Chemcatcher® and the principal assessment techniques using microalgae in laboratory experiments. The progresses permitted by the coupled use of such passive samplers and ecotoxicology testing as well as their limitations are presented. Case studies combining passive sampling devices (PSD) extracts and toxicity assessment toward microorganisms at different biological scales from single organisms to communities level are presented. These case studies, respectively, aimed (i) at characterizing the "toxic potential" of waters using dose-response curves, and (ii) at performing microcosm experiments with increased environmental realism in the toxicant exposure in term of cocktail composition and concentration. Finally perspectives and limitations of such approaches for future applications in the area of environmental risk assessment are discussed.
Collapse
Affiliation(s)
- Sandra Kim Tiam
- Institut National de Recherche en Sciences et Technologies pour l'Environnement et l'Agriculture UR EABX, Cestas, France
| | - Vincent Fauvelle
- Institut National de Recherche en Sciences et Technologies pour l'Environnement et l'Agriculture UR EABX, Cestas, France
| | - Soizic Morin
- Institut National de Recherche en Sciences et Technologies pour l'Environnement et l'Agriculture UR EABX, Cestas, France
| | - Nicolas Mazzella
- Institut National de Recherche en Sciences et Technologies pour l'Environnement et l'Agriculture UR EABX, Cestas, France
| |
Collapse
|
38
|
Jahnke A, Witt G, Schäfer S, Haase N, Escher BI. Combining Passive Sampling with Toxicological Characterization of Complex Mixtures of Pollutants from the Aquatic Environment. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2016; 157:225-261. [DOI: 10.1007/10_2015_5014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
39
|
Yeast Biosensors for Detection of Environmental Pollutants: Current State and Limitations. Trends Biotechnol 2016; 34:408-419. [DOI: 10.1016/j.tibtech.2016.01.007] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 01/19/2016] [Accepted: 01/20/2016] [Indexed: 01/17/2023]
|
40
|
Hrubik J, Glisic B, Tubic A, Ivancev-Tumbas I, Kovacevic R, Samardzija D, Andric N, Kaisarevic S. Toxicological and chemical investigation of untreated municipal wastewater: Fraction- and species-specific toxicity. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2016; 127:153-162. [PMID: 26829069 DOI: 10.1016/j.ecoenv.2016.01.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 01/15/2016] [Accepted: 01/21/2016] [Indexed: 06/05/2023]
Abstract
Absence of a municipal wastewater (WW) treatment plant results in the untreated WW discharge into the recipient. The present study investigated toxic effects and chemical composition of water extracts and fractions from untreated WW and recipient Danube River (DR). Samples were prepared by solid-phase extraction and silica gel fractionation and screened for EROD activity and cytotoxicity using aquatic models, comprising of fish liver cells (PLHC-1) and a model of the early development of zebrafish embryos, while rat (H4IIE) and human (HepG2) hepatoma cells served as mammalian models. Polar fraction caused cytotoxicity and increased the EROD activity in PLHC-1 cells, and increased mortality and developmental abnormalities in developing zebrafish embryos. In H4IIE, polar fraction induced inhibition of cell growth and increased EROD activity, whereas HepG2 exerted low or no response to the exposure. Non-polar and medium-polar fractions were ineffective. Tentative identification by GC/MS showed that WW is characterized by the hydrocarbons, alkylphenols, plasticizers, and a certain number of benzene derivatives and organic acids. In DR, smaller number of organic compounds was identified and toxicity was less pronounced than in WW treatments. The present study revealed the potent toxic effect of polar fraction of untreated WW, with biological responses varying in sensitivity across organisms. Obtained results confirmed that fraction- and species-specific toxicity should be considered when assessing health risk of environmental pollution.
Collapse
Affiliation(s)
- Jelena Hrubik
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Laboratory for Ecotoxicology, Novi Sad, Serbia
| | - Branka Glisic
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Laboratory for Ecotoxicology, Novi Sad, Serbia
| | - Aleksandra Tubic
- University of Novi Sad, Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Novi Sad, Serbia
| | - Ivana Ivancev-Tumbas
- University of Novi Sad, Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Novi Sad, Serbia
| | - Radmila Kovacevic
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Laboratory for Ecotoxicology, Novi Sad, Serbia
| | - Dragana Samardzija
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Laboratory for Ecotoxicology, Novi Sad, Serbia
| | - Nebojsa Andric
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Laboratory for Ecotoxicology, Novi Sad, Serbia
| | - Sonja Kaisarevic
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Laboratory for Ecotoxicology, Novi Sad, Serbia.
| |
Collapse
|
41
|
Terzopoulou E, Voutsa D. Active and passive sampling for the assessment of hydrophilic organic contaminants in a river basin-ecotoxicological risk assessment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:5577-5591. [PMID: 26573318 DOI: 10.1007/s11356-015-5760-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 11/03/2015] [Indexed: 06/05/2023]
Abstract
This study presents a complementary approach for the evaluation of water quality in a river basin by employing active and passive sampling. Thirty-eight hydrophilic organic compounds (HpOCs) (organohalogen herbicides, organophosphorous pesticides, carbamate, triazine, urea, pharmaceuticals, phenols, and industrial chemicals) were studied in grab water samples and in passive samplers POCIS collected along Strymonas River, Northern Greece, at three sampling campaigns during the year 2013. Almost all the target compounds were detected at the periods of high rainfall intensity and/or low flow rate. The most frequently detected compounds were aminocarb, carbaryl, chlorfenviphos, chloropropham, 2,4-D, diflubenzuron, diuron, isoproturon, metolachlor, and salicylic acid. Bisphenol A and nonylphenol were also occasionally detected. The use of POCIS allowed the detection of more micropollutants than active sampling. Low discrepancy between the concentrations obtained from both samplings was observed, at least for compounds with >50 % detection frequency; thus, POCIS could be a valuable tool for the selection and monitoring of the most relevant HpOCs in the river basin. Results showed relatively low risk from the presence of HpOCs; however, the potential risk associated with micropollutants such as carbaryl, dinoseb, diuron, fenthion, isoproturon, metolachlor, nonylphenol, and salicylic acid should not be neglected.
Collapse
Affiliation(s)
- Evangelia Terzopoulou
- Laboratory of Environmental Pollution Control, Department of Chemistry, Aristotle University, Thessaloniki, 54124, Greece
- Interbalkan Environment Center (i-BEC), Loutrwn, 572 00, Lagkadas, Greece
| | - Dimitra Voutsa
- Laboratory of Environmental Pollution Control, Department of Chemistry, Aristotle University, Thessaloniki, 54124, Greece.
| |
Collapse
|
42
|
Brack W, Ait-Aissa S, Burgess RM, Busch W, Creusot N, Di Paolo C, Escher BI, Mark Hewitt L, Hilscherova K, Hollender J, Hollert H, Jonker W, Kool J, Lamoree M, Muschket M, Neumann S, Rostkowski P, Ruttkies C, Schollee J, Schymanski EL, Schulze T, Seiler TB, Tindall AJ, De Aragão Umbuzeiro G, Vrana B, Krauss M. Effect-directed analysis supporting monitoring of aquatic environments--An in-depth overview. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 544:1073-118. [PMID: 26779957 DOI: 10.1016/j.scitotenv.2015.11.102] [Citation(s) in RCA: 250] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 11/20/2015] [Accepted: 11/20/2015] [Indexed: 05/18/2023]
Abstract
Aquatic environments are often contaminated with complex mixtures of chemicals that may pose a risk to ecosystems and human health. This contamination cannot be addressed with target analysis alone but tools are required to reduce this complexity and identify those chemicals that might cause adverse effects. Effect-directed analysis (EDA) is designed to meet this challenge and faces increasing interest in water and sediment quality monitoring. Thus, the present paper summarizes current experience with the EDA approach and the tools required, and provides practical advice on their application. The paper highlights the need for proper problem formulation and gives general advice for study design. As the EDA approach is directed by toxicity, basic principles for the selection of bioassays are given as well as a comprehensive compilation of appropriate assays, including their strengths and weaknesses. A specific focus is given to strategies for sampling, extraction and bioassay dosing since they strongly impact prioritization of toxicants in EDA. Reduction of sample complexity mainly relies on fractionation procedures, which are discussed in this paper, including quality assurance and quality control. Automated combinations of fractionation, biotesting and chemical analysis using so-called hyphenated tools can enhance the throughput and might reduce the risk of artifacts in laboratory work. The key to determining the chemical structures causing effects is analytical toxicant identification. The latest approaches, tools, software and databases for target-, suspect and non-target screening as well as unknown identification are discussed together with analytical and toxicological confirmation approaches. A better understanding of optimal use and combination of EDA tools will help to design efficient and successful toxicant identification studies in the context of quality monitoring in multiply stressed environments.
Collapse
Affiliation(s)
- Werner Brack
- UFZ Helmholtz Centre for Environmental Research, Permoserstraße 15, 04318 Leipzig, Germany; RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Selim Ait-Aissa
- Institut National de l'Environnement Industriel et des Risques INERIS, BP2, 60550 Verneuil-en-Halatte, France
| | - Robert M Burgess
- US Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Atlantic Ecology Division, Narragansett, RI, USA
| | - Wibke Busch
- UFZ Helmholtz Centre for Environmental Research, Permoserstraße 15, 04318 Leipzig, Germany
| | - Nicolas Creusot
- Institut National de l'Environnement Industriel et des Risques INERIS, BP2, 60550 Verneuil-en-Halatte, France
| | | | - Beate I Escher
- UFZ Helmholtz Centre for Environmental Research, Permoserstraße 15, 04318 Leipzig, Germany; Eberhard Karls University Tübingen, 72074 Tübingen, Germany
| | - L Mark Hewitt
- Water Science and Technology Directorate, Environment Canada, 867 Lakeshore Road, Burlington, Ontario L7S 1A1, Canada
| | - Klara Hilscherova
- Masaryk University, Research Centre for Toxic Compounds in the Environment (RECETOX), Kamenice 753/5, 625 00 Brno, Czech Republic
| | - Juliane Hollender
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
| | - Henner Hollert
- RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Willem Jonker
- VU University, BioMolecular Analysis Group, Amsterdam, The Netherlands
| | - Jeroen Kool
- VU University, BioMolecular Analysis Group, Amsterdam, The Netherlands
| | - Marja Lamoree
- VU Amsterdam, Institute for Environmental Studies, Amsterdam, The Netherlands
| | - Matthias Muschket
- UFZ Helmholtz Centre for Environmental Research, Permoserstraße 15, 04318 Leipzig, Germany
| | - Steffen Neumann
- Leibniz Institute of Plant Biochemistry, Halle (Saale), Germany
| | - Pawel Rostkowski
- NILU - Norwegian Institute for Air Research, Instituttveien 18, 2007 Kjeller, Norway
| | | | - Jennifer Schollee
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
| | - Emma L Schymanski
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
| | - Tobias Schulze
- UFZ Helmholtz Centre for Environmental Research, Permoserstraße 15, 04318 Leipzig, Germany
| | | | - Andrew J Tindall
- WatchFrag, Bâtiment Genavenir 3, 1 Rue Pierre Fontaine, 91000 Evry, France
| | | | - Branislav Vrana
- Masaryk University, Research Centre for Toxic Compounds in the Environment (RECETOX), Kamenice 753/5, 625 00 Brno, Czech Republic
| | - Martin Krauss
- UFZ Helmholtz Centre for Environmental Research, Permoserstraße 15, 04318 Leipzig, Germany
| |
Collapse
|
43
|
Krauss M. High-Resolution Mass Spectrometry in the Effect-Directed Analysis of Water Resources. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/bs.coac.2016.01.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
44
|
Neale PA, Ait-Aissa S, Brack W, Creusot N, Denison MS, Deutschmann B, Hilscherová K, Hollert H, Krauss M, Novák J, Schulze T, Seiler TB, Serra H, Shao Y, Escher BI. Linking in Vitro Effects and Detected Organic Micropollutants in Surface Water Using Mixture-Toxicity Modeling. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:14614-24. [PMID: 26516785 DOI: 10.1021/acs.est.5b04083] [Citation(s) in RCA: 142] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Surface water can contain countless organic micropollutants, and targeted chemical analysis alone may only detect a small fraction of the chemicals present. Consequently, bioanalytical tools can be applied complementary to chemical analysis to detect the effects of complex chemical mixtures. In this study, bioassays indicative of activation of the aryl hydrocarbon receptor (AhR), activation of the pregnane X receptor (PXR), activation of the estrogen receptor (ER), adaptive stress responses to oxidative stress (Nrf2), genotoxicity (p53) and inflammation (NF-κB) and the fish embryo toxicity test were applied along with chemical analysis to water extracts from the Danube River. Mixture-toxicity modeling was applied to determine the contribution of detected chemicals to the biological effect. Effect concentrations for between 0 to 13 detected chemicals could be found in the literature for the different bioassays. Detected chemicals explained less than 0.2% of the biological effect in the PXR activation, adaptive stress response, and fish embryo toxicity assays, while five chemicals explained up to 80% of ER activation, and three chemicals explained up to 71% of AhR activation. This study highlights the importance of fingerprinting the effects of detected chemicals.
Collapse
Affiliation(s)
- Peta A Neale
- Smart Water Research Centre, School of Environment, Griffith University , Southport QLD 4222, Australia
- National Research Centre for Environmental Toxicology (Entox), The University of Queensland , Brisbane QLD 4108, Australia
| | - Selim Ait-Aissa
- Institut National de l'Environnement Industriel et des Risques INERIS, Unité d'Ecotoxicologie , 60550 Verneuil-en-Halatte, France
| | - Werner Brack
- UFZ - Helmholtz Centre for Environmental Research , 04318 Leipzig, Germany
- Department of Ecosystem Analysis, Institute for Environmental Research, RWTH Aachen University , 52074 Aachen, Germany
| | - Nicolas Creusot
- Institut National de l'Environnement Industriel et des Risques INERIS, Unité d'Ecotoxicologie , 60550 Verneuil-en-Halatte, France
| | - Michael S Denison
- Department of Environmental Toxicology, University of California , Davis, California 95616, United States
| | - Björn Deutschmann
- Department of Ecosystem Analysis, Institute for Environmental Research, RWTH Aachen University , 52074 Aachen, Germany
| | - Klára Hilscherová
- Research Centre for Toxic Compounds in the Environment (RECETOX), Masaryk University , Kamenice 753/5, 62500 Brno, Czech Republic
| | - Henner Hollert
- Department of Ecosystem Analysis, Institute for Environmental Research, RWTH Aachen University , 52074 Aachen, Germany
| | - Martin Krauss
- UFZ - Helmholtz Centre for Environmental Research , 04318 Leipzig, Germany
| | - Jiří Novák
- Research Centre for Toxic Compounds in the Environment (RECETOX), Masaryk University , Kamenice 753/5, 62500 Brno, Czech Republic
| | - Tobias Schulze
- UFZ - Helmholtz Centre for Environmental Research , 04318 Leipzig, Germany
| | - Thomas-Benjamin Seiler
- Department of Ecosystem Analysis, Institute for Environmental Research, RWTH Aachen University , 52074 Aachen, Germany
| | - Helene Serra
- Institut National de l'Environnement Industriel et des Risques INERIS, Unité d'Ecotoxicologie , 60550 Verneuil-en-Halatte, France
| | - Ying Shao
- Department of Ecosystem Analysis, Institute for Environmental Research, RWTH Aachen University , 52074 Aachen, Germany
| | - Beate I Escher
- National Research Centre for Environmental Toxicology (Entox), The University of Queensland , Brisbane QLD 4108, Australia
- UFZ - Helmholtz Centre for Environmental Research , 04318 Leipzig, Germany
- Environmental Toxicology, Center for Applied Geosciences, Eberhard Karls University Tübingen , 72074 Tübingen, Germany
| |
Collapse
|
45
|
Allinson G, Shiraishi F, Kamata R, Allinson M. Combining Passive Sampling with Recombinant Receptor-Reporter Gene Bioassays to Assess the Receptor Activity of Victorian Rivers. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2015; 95:758-763. [PMID: 26071881 DOI: 10.1007/s00128-015-1577-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Accepted: 06/04/2015] [Indexed: 06/04/2023]
Abstract
This pilot study was initiated to provide new information on the 'hormonal' activity of Victorian rivers. Chemcatcher™ passive sampler systems containing Empore™ C18FF disks were deployed at eight riverine sites near Melbourne. Little estrogenic activity [<0.4-1.8 ng estradiol equivalents (EQ)/disk] and no retinoic acid activity (RAR, all samples <0.8 ng trans-retinoic acid EQ/disk) was observed. Almost all sample extracts showed aryl hydrocarbon receptor activity (from <4 to 29 ng β-naphthoflavone EQ/disk). Overall, the disk extracts were eminently compatible with the bioassay screening technology, enabling the relative levels of 'hormonal activity' to be observed in the surface waters in and around Melbourne. From a practical perspective, the in situ sampling and pre-concentration provided by passive sampling reduces the manual handling risks associated with sample transport, and the number of laboratory operations required to obtain assay-ready solutions for analysis.
Collapse
Affiliation(s)
- Graeme Allinson
- School of Applied Sciences, RMIT University, Melbourne, VIC, 3001, Australia.
- Future Farming Systems Research, Department of Primary Industries, DPI Queenscliff Centre, Queenscliff, VIC, 3225, Australia.
| | - Fujio Shiraishi
- Center for Environmental Risk Research, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki, 305-8506, Japan
| | - Ryo Kamata
- Laboratory of Toxicology, School of Veterinary Medicine, Kitasato University, 35-1 Higashi 23-bancho, Towada-Shi, Aomori, 034-8628, Japan
| | - Mayumi Allinson
- Future Farming Systems Research, Department of Primary Industries, DPI Queenscliff Centre, Queenscliff, VIC, 3225, Australia
- Centre for Aquatic Pollution Identification and Management (CAPIM), School of Chemistry, The University of Melbourne, Parkville, VIC, 3010, Australia
| |
Collapse
|
46
|
Li J, Wang Y, Kong D, Wang J, Teng Y, Li N. Evaluation and characterization of anti-estrogenic and anti-androgenic activities in soil samples along the Second Songhua River, China. ENVIRONMENTAL MONITORING AND ASSESSMENT 2015; 187:724. [PMID: 26519078 DOI: 10.1007/s10661-015-4933-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 10/20/2015] [Indexed: 06/05/2023]
Abstract
In the present study, re-combined estrogen receptor (ER) and androgen receptor (AR) gene yeast assays combined with a novel approach based on Monte Carlo simulation were used for evaluation and characterization of soil samples collected from Jilin along the Second Songhua River to assess their antagonist/agonist properties for ER and AR. The results showed that estrogenic activity only occurred in the soil samples collected in the agriculture area, but most soil samples showed anti-estrogenic activities, and the bioassay-derived 4-hydroxytamoxifen equivalents ranged from N.D. to 23.51 μg/g. Hydrophilic substance fractions were determined as potential contributors associated with anti-estrogenic activity in these soil samples. Moreover, none of the soil samples exhibited AR agonistic potency, whereas 54% of the soil samples exhibited AR antagonistic potency. The flutamide equivalents varied between N.D. and 178.05 μg/g. Based on Monte Carlo simulation-related mass balance analysis, the AR antagonistic activities were significantly correlated with the media polar and polar fractions. All of these results support that this novel calculation method can be adopted effectively to quantify and characterize the ER/AR agonists and antagonists of the soil samples, and these data could help provide useful information for future management and remediation efforts.
Collapse
Affiliation(s)
- Jian Li
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing, 100875, China.
| | - Yafei Wang
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Dongdong Kong
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Jinsheng Wang
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Yanguo Teng
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Na Li
- Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, Key Laboratory of Nuclear Analytical Techniques, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
47
|
Guruge KS, Yamanaka N, Sonobe M, Fujizono W, Yoshioka M, Akiba M, Yamamoto T, Joshua DI, Balakrishna K, Yamashita N, Kannan K, Tsutsui T. Source-Related Effects of Wastewater on Transcription Factor (AhR, CAR and PXR)-Mediated Induction of Gene Expression in Cultured Rat Hepatocytes and Their Association with the Prevalence of Antimicrobial-Resistant Escherichia coli. PLoS One 2015; 10:e0138391. [PMID: 26381891 PMCID: PMC4575039 DOI: 10.1371/journal.pone.0138391] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 08/28/2015] [Indexed: 12/16/2022] Open
Abstract
Extracts of wastewater collected from 4 sewage treatment plants (STPs) receiving effluents from different sources in South India were investigated for their levels of transcription factor-mediated gene induction in primary cultured rat hepatocytes. In addition, the relation between gene induction levels and the prevalence of antimicrobial-resistant Escherichia coli (E. coli) in wastewater was examined. STP-3, which treats only hospital wastewater, exhibited significantly greater induction potency of all 6 drug metabolizing cytochrome P450 (CYP) genes examined, CYP1A1, 1A2, 1B1, 2B15, 3A1, and 3A2, whereas the wastewater at STP-1, which exclusively receives domestic sewage, showed significantly diminished levels of induction of 3 CYP genes when compared to the levels of CYP induction at STP-2, which receives mixed wastewater. Samples collected during the monsoon season showed a significantly altered gene induction capacity compared to that of samples from the pre-monsoon period. The data suggest that the toxicity of wastewater in STPs was not significantly diminished during the treatment process. The chemical-gene interaction data predicted that a vast number of chemicals present in the wastewater would stimulate the genes studied in the rat hepatocytes. The multivariable logistic regression analysis demonstrated that the prevalence of isolates resistant to cefotaxime, imipenem and streptomycin was significantly correlated with the levels of induction of at least three CYP-isozymes in STP wastewater. In addition, the resistance of isolates in treatment plants was not altered by the treatment steps, whereas the sampling season did have an impact on the resistance to specific antimicrobials. The identification of receptor-mediated gene regulation capacities offers important data not limited to the (synergistic) physiological role of chemicals in biological systems but may provide new insight into the link between the effects of known/unknown drugs and prevalence of antimicrobial-resistant bacteria in wastewater.
Collapse
Affiliation(s)
- Keerthi S. Guruge
- Pathology and Pathophysiology Research Division, National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
- * E-mail:
| | - Noriko Yamanaka
- Pathology and Pathophysiology Research Division, National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| | - Miyuki Sonobe
- Pathology and Pathophysiology Research Division, National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
- Central Livestock Hygiene Service Center, Wakakusu, Saga, Japan
| | - Wataru Fujizono
- Pathology and Pathophysiology Research Division, National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
- Central Livestock Hygiene Service Center, Jonan, Minami-Ku, Kumamoto, Japan
| | - Miyako Yoshioka
- Pathology and Pathophysiology Research Division, National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| | - Masato Akiba
- Bacterial and Parasitic Disease Research Division, National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| | - Takehisa Yamamoto
- Viral Diseases and Epidemiology Research Division, National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| | - Derrick I. Joshua
- Department of Civil Engineering, Manipal Institute of Technology, Manipal University, Manipal, Karnataka, India
| | - Keshava Balakrishna
- Department of Civil Engineering, Manipal Institute of Technology, Manipal University, Manipal, Karnataka, India
| | - Nobuyoshi Yamashita
- National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan
| | - Kurunthachalam Kannan
- Wadsworth Center, New York State Department of Health and Department of Environmental Health Sciences, State University of New York at Albany, Albany, New York, United States of America
| | - Toshiyuki Tsutsui
- Viral Diseases and Epidemiology Research Division, National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| |
Collapse
|
48
|
Chang WT, Lee CL, Brimblecombe P, Fang MD, Chang KT, Liu JT. The effects of flow rate and temperature on SPMD measurements of bioavailable PAHs in seawater. MARINE POLLUTION BULLETIN 2015; 97:217-223. [PMID: 26073797 DOI: 10.1016/j.marpolbul.2015.06.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Revised: 06/03/2015] [Accepted: 06/04/2015] [Indexed: 06/04/2023]
Abstract
This work investigates the dependence of the sampling rate (Rs) of semi-permeable membrane devices (SPMDs) on flow rate and temperature. The in situ Rs values were obtained using performance reference compounds (PRCs) with weighted polynomial regression and used to estimate the bioavailable polycyclic aromatic hydrocarbon (PAH) concentrations in seawater. The in situ Rs values did not vary with flow rate and temperature. The empirical equation of the Rs value from the SPMDs was established. This infers that PRCs could be avoided by using an established empirical equation under similar field conditions. The sum of the bioavailable PAHs ranged from 0.281 to 0.611ngL(-1) on the eastern side of the Taiwan Strait and from 0.438 to 1.10ngL(-1) on the western side. Distinct sources and toxicity of these bioavailable PAHs were observed and mainly resulted from different types of energy consumption.
Collapse
Affiliation(s)
- Wan-Ting Chang
- Department of Marine Environment and Engineering, National Sun Yat-sen University, 80424 Kaohsiung, Taiwan, Republic of China
| | - Chon-Lin Lee
- Department of Marine Environment and Engineering, National Sun Yat-sen University, 80424 Kaohsiung, Taiwan, Republic of China; Department of Public Health, College of Health Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan, Republic of China; Kuroshio Research Group, Asia-Pacific Ocean Research Center, National Sun Yat-sen University, 80424 Kaohsiung, Taiwan, Republic of China; Research Center of Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan, Republic of China.
| | - Peter Brimblecombe
- School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong
| | - Meng-Der Fang
- Green Energy and Environment Research Laboratories, Industrial Technology Research Institute, Hsinchu 30011, Taiwan, Republic of China
| | - Kuo-Tung Chang
- Department of Marine Environmental Engineering, National Kaohsiung Marine University, Kaohsiung, Taiwan, Republic of China
| | - James T Liu
- Department of Oceanography, National Sun Yat-sen University, Kaohsiung 80424, Taiwan, Republic of China
| |
Collapse
|
49
|
Faludi T, Balogh C, Serfőző Z, Molnár-Perl I. Analysis of phenolic compounds in the dissolved and suspended phases of Lake Balaton water by gas chromatography-tandem mass spectrometry. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:11966-11974. [PMID: 26006075 DOI: 10.1007/s11356-015-4734-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 05/14/2015] [Indexed: 06/04/2023]
Abstract
As a novel approach to characterize the phenolic pollutants of Lake Balaton (Central Europe, western Hungary), 26 endocrine disrupting phenols (chlorophenols, nitrophenols, alkylphenols, triclosan, bisphenol-A) were quantified in dissolved and suspended particulate matter (SPM) phases, alike. Sample collection was performed in the western and eastern basins, at 20 sites in April and October 2014. Solid-phase and ultrasound-assisted extractions to withdraw target phenols from dissolved and suspended phases were employed. Compounds were derivatized with hexamethyldisilazane and trifluoroacetic acid for their quantification as trimethylsilyl derivatives by gas chromatography-tandem mass spectrometry. In Lake Balaton's dissolved phase, 2-chlorophenol (103-164 ng/L), 4-chlorophenol (407-888 ng/L), 2,4-dichlorophenol (20.2-72.0 ng/L), 2,4,6-trichlorophenol (10.4-38.1 ng/L), 2-nitrophenol (31.0-66.5 ng/L), 4-nitrophenol (31.5-94.1 ng/L), and bisphenol-A (20.6-112 ng/L), while in its SPM, 4-chlorophenol (<LOQ-1274 μg/kg, dry matter), 4-nitrophenol (423-714 μg/kg), 4-nonylphenol isomers (1500-2910 μg/kg), and bisphenol-A (250-587 μg/kg) were determined. Since phenolics appear partially or exclusively in the SPM, the analysis of both phases proved to be of primary importance. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- T Faludi
- Institute of Chemistry, Department of Analytical Chemistry, L. Eötvös University, 1518, Budapest 112, P.O. Box 32, Hungary
| | | | | | | |
Collapse
|
50
|
Bittner M, Jarque S, Hilscherová K. Polymer-immobilized ready-to-use recombinant yeast assays for the detection of endocrine disruptive compounds. CHEMOSPHERE 2015; 132:56-62. [PMID: 25797899 DOI: 10.1016/j.chemosphere.2015.02.063] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Revised: 02/17/2015] [Accepted: 02/26/2015] [Indexed: 06/04/2023]
Abstract
Recombinant yeast assays (RYAs) constitute a suitable tool for the environmental monitoring of compounds with endocrine disrupting activities, notably estrogenicity and androgenicity. Conventional procedures require yeast reconstitution from frozen stock, which usually takes several days and demands additional equipment. With the aim of applying such assays to field studies and making them more accessible to less well-equipped laboratories, we have optimized RYA by the immobilization of Saccharomyces cerevisiae cells in three different polymer matrices - gelatin, Bacto agar, and Yeast Extract Peptone Dextrose agar - to obtain a ready-to-use version for the fast assessment of estrogenic and androgenic potencies of compounds and environmental samples. Among the three matrices, gelatin showed the best results for both testosterone (androgen receptor yeast strain; AR-RYA) and 17β-estradiol (estrogen receptor yeast strain; ER-RYA). AR-RYA was characterized by a lowest observed effect concentration (LOEC), EC50 and induction factor (IF) of 1nM, 2.2nM and 51, respectively. The values characterizing ER-RYA were 0.4nM, 1.8nM, and 63, respectively. Gelatin immobilization retained yeast viability and sensitivity for more than 90d of storage at 4°C. The use of the immobilized yeast reduced the assay duration to only 3h without necessity of sterile conditions. Because immobilized RYA can be performed either in multiwell microplates or glass tubes, it allows multiple samples to be tested at once, and easy adaptation to existing portable devices for direct in-field applications.
Collapse
Affiliation(s)
- Michal Bittner
- Masaryk University, Faculty of Science, RECETOX, Kamenice 5, CZ-62500 Brno, Czech Republic
| | - Sergio Jarque
- Masaryk University, Faculty of Science, RECETOX, Kamenice 5, CZ-62500 Brno, Czech Republic
| | - Klára Hilscherová
- Masaryk University, Faculty of Science, RECETOX, Kamenice 5, CZ-62500 Brno, Czech Republic.
| |
Collapse
|