1
|
Yu H, Wang Y, Huang J, Yue X, Chu J, Sun G, Gao H, Yang M, Zhang H. Effect of forest cover on lung cancer incidence: a case study in Southwest China. Front Public Health 2024; 12:1466462. [PMID: 39430708 PMCID: PMC11486646 DOI: 10.3389/fpubh.2024.1466462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 09/23/2024] [Indexed: 10/22/2024] Open
Abstract
Introduction Forests are closely linked to human health, particularly about lung cancer incidence. However, there is currently limited research on how forest coverage and different types of forests influence lung cancer rates. This study aims to address this gap by examining how the coverage of various forest types impacts lung cancer incidence in Southwest China, thereby providing theoretical support for health-oriented forest structure planning. Methods We focused on 438 counties in Southwest China, employing spatial autocorrelation analysis (Moran's I) and spatial regression models [including Spatial Lag Model (SLM), Spatial Error Model (SEM), and Spatial Durbin Model (SDM)] to explore the effects of forest coverage and internal forest structure on lung cancer incidence. We used ArcGIS to visualize lung cancer incidence and forest coverage rates across the study area. Results The study found a significant negative correlation between forest coverage and lung cancer incidence. Specifically, for every 1% increase in forest coverage, lung cancer incidence decreased by 0.017 levels. Evergreen forests and mixed forests showed a significant negative impact on lung cancer rates, with evergreen forests having a particularly strong effect; a 1% increase in evergreen forest coverage was associated with a 0.027 level decrease in lung cancer incidence. In contrast, deciduous forests had no significant impact. Additionally, the study revealed a marked spatial heterogeneity in lung cancer incidence and forest coverage across Southwest China: higher lung cancer rates were observed in the eastern regions, while forest coverage was predominantly concentrated in the western and southern regions. Discussion This study demonstrates that increasing forest coverage, particularly of evergreen and mixed forests, can help reduce lung cancer incidence. This effect may be related to the ability of forests to absorb harmful gasses and particulate matter from the air. Furthermore, the spatial heterogeneity in lung cancer incidence suggests that regional economic development levels and urbanization processes may also play significant roles in the spatial distribution of lung cancer rates. The findings provide empirical support for the development of targeted forest conservation and development policies aimed at optimizing regional forest structures to reduce the risk of lung cancer.
Collapse
Affiliation(s)
- Haishi Yu
- Yunnan Normal University Hospital, Yunnan Normal University, Kunming, China
| | - Yang Wang
- Faculty of Geography, Yunnan Normal University, Kunming, China
| | - Jinyu Huang
- Faculty of Geography, Yunnan Normal University, Kunming, China
| | - Xiaoli Yue
- Faculty of Geography, Yunnan Normal University, Kunming, China
| | - Jun Chu
- Department of Geography and Resource Management, The Chinese University of Hong Kong, Hong Kong, China
| | - Guiquan Sun
- Faculty of Geography, Yunnan Normal University, Kunming, China
| | - Han Gao
- Faculty of Geography, Yunnan Normal University, Kunming, China
| | - Min Yang
- Faculty of Geography, Yunnan Normal University, Kunming, China
| | - Hong’ou Zhang
- Guangzhou Institute of Geography, Guangdong Academy of Sciences, Guangzhou, China
| |
Collapse
|
2
|
Ning Z, He S, Liao X, Ma C, Wu J. Cold waves and fine particulate matter in high-altitude Chinese cities: assessing their interactive impact on outpatient visits for respiratory disease. BMC Public Health 2024; 24:1377. [PMID: 38778299 PMCID: PMC11110372 DOI: 10.1186/s12889-024-18896-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND Extreme weather events like heatwaves and fine particulate matter (PM2.5) have a synergistic effect on mortality, but research on the synergistic effect of cold waves and PM2.5 on outpatient visits for respiratory disease, especially at high altitudes in climate change-sensitive areas, is lacking. METHODS we collected time-series data on meteorological, air pollution, and outpatient visits for respiratory disease in Xining. We examined the associations between cold waves, PM2.5, and outpatient visits for respiratory disease using a time-stratified case-crossover approach and distributional lag nonlinear modeling. Our analysis also calculated the relative excess odds due to interaction (REOI), proportion attributable to interaction (AP), and synergy index (S). We additionally analyzed cold waves over time to verify climate change. RESULTS Under different definitions of cold waves, the odds ratio for the correlation between cold waves and outpatient visits for respiratory disease ranged from 0.95 (95% CI: 0.86, 1.05) to 1.58 (1.47, 1.70). Exposure to PM2.5 was significantly associated with an increase in outpatient visits for respiratory disease. We found that cold waves can synergize with PM2.5 to increase outpatient visits for respiratory disease (REOI > 0, AP > 0, S > 1), decreasing with stricter definitions of cold waves and longer durations. Cold waves' independent effect decreased over time, but their interaction effect persisted. From 8.1 to 21.8% of outpatient visits were due to cold waves and high-level PM2.5. People aged 0-14 and ≥ 65 were more susceptible to cold waves and PM2.5, with a significant interaction for those aged 15-64 and ≥ 65. CONCLUSION Our study fills the gap on how extreme weather and PM2.5 synergistically affect respiratory disease outpatient visits in high-altitude regions. The synergy of cold waves and PM2.5 increases outpatient visits for respiratory disease, especially in the elderly. Cold wave warnings and PM2.5 reduction have major public health benefits.
Collapse
Affiliation(s)
- Zhenxu Ning
- Department of Public Health, Faculty of Medicine, Qinghai University, Xining, China
| | - Shuzhen He
- Xining Centre for Disease Control and Prevention, Xining, China.
| | - Xinghao Liao
- Department of Public Health, Faculty of Medicine, Qinghai University, Xining, China
| | - Chunguang Ma
- Xining Centre for Disease Control and Prevention, Xining, China
| | - Jing Wu
- Xining Centre for Disease Control and Prevention, Xining, China
| |
Collapse
|
3
|
Ning Z, He S, Liu Q, Ma H, Ma C, Wu J, Ma Y, Zhang Y. Effects of the interaction between cold spells and fine particulate matter on mortality risk in Xining: a case-crossover study at high altitude. Front Public Health 2024; 12:1414945. [PMID: 38813422 PMCID: PMC11133570 DOI: 10.3389/fpubh.2024.1414945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 05/02/2024] [Indexed: 05/31/2024] Open
Abstract
Background With global climate change, the health impacts of cold spells and air pollution caused by PM2.5 are increasingly aggravated, especially in high-altitude areas, which are particularly sensitive. Exploring their interactions is crucial for public health. Methods We collected time-series data on meteorology, air pollution, and various causes of death in Xining. This study employed a time-stratified case-crossover design and conditional logistic regression models to explore the association between cold spells, PM2.5 exposure, and various causes of death, and to assess their interaction. We quantitatively analyzed the interaction using the relative excess odds due to interaction (REOI), attributable proportion due to interaction (AP), and synergy index (S). Moreover, we conducted stratified analyses by average altitude, sex, age, and educational level to identify potential vulnerable groups. Results We found significant associations between cold spells, PM2.5, and various causes of death, with noticeable effects on respiratory disease mortality and COPD mortality. We identified significant synergistic effects (REOI>0, AP > 0, S > 1) between cold spells and PM2.5 on various causes of death, which generally weakened with a stricter definition of cold spells and longer duration. It was estimated that up to 9.56% of non-accidental deaths could be attributed to concurrent exposure to cold spells and high-level PM2.5. High-altitude areas, males, the older adults, and individuals with lower educational levels were more sensitive. The interaction mainly varied among age groups, indicating significant impacts and a synergistic action that increased mortality risk. Conclusion Our study found that in high-altitude areas, exposure to cold spells and PM2.5 significantly increased the mortality risk from specific diseases among the older adults, males, and those with lower educational levels, and there was an interaction between cold spells and PM2.5. The results underscore the importance of reducing these exposures to protect public health.
Collapse
Affiliation(s)
- Zhenxu Ning
- Department of Public Health, Faculty of Medicine, Qinghai University, Xining, China
| | - Shuzhen He
- Xining Centre for Disease Control and Prevention, Xining, China
| | - Qiansheng Liu
- Department of Public Health, Faculty of Medicine, Qinghai University, Xining, China
| | - Haibin Ma
- Xining Centre for Disease Control and Prevention, Xining, China
| | - Chunguang Ma
- Xining Centre for Disease Control and Prevention, Xining, China
| | - Jing Wu
- Xining Centre for Disease Control and Prevention, Xining, China
| | - Yanjun Ma
- Qinghai Institute of Health Sciences, Xining, China
| | - Youxia Zhang
- Qinghai Province Cardio Cerebrovascular Disease Specialist Hospital, Xining, China
| |
Collapse
|
4
|
Singh S, Sharma P, Pal N, Sarma DK, Tiwari R, Kumar M. Holistic One Health Surveillance Framework: Synergizing Environmental, Animal, and Human Determinants for Enhanced Infectious Disease Management. ACS Infect Dis 2024; 10:808-826. [PMID: 38415654 DOI: 10.1021/acsinfecdis.3c00625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Recent pandemics, including the COVID-19 outbreak, have brought up growing concerns about transmission of zoonotic diseases from animals to humans. This highlights the requirement for a novel approach to discern and address the escalating health threats. The One Health paradigm has been developed as a responsive strategy to confront forthcoming outbreaks through early warning, highlighting the interconnectedness of humans, animals, and their environment. The system employs several innovative methods such as the use of advanced technology, global collaboration, and data-driven decision-making to come up with an extraordinary solution for improving worldwide disease responses. This Review deliberates environmental, animal, and human factors that influence disease risk, analyzes the challenges and advantages inherent in using the One Health surveillance system, and demonstrates how these can be empowered by Big Data and Artificial Intelligence. The Holistic One Health Surveillance Framework presented herein holds the potential to revolutionize our capacity to monitor, understand, and mitigate the impact of infectious diseases on global populations.
Collapse
Affiliation(s)
- Samradhi Singh
- ICMR - National Institute for Research in Environmental Health, Bhopal Bypass Road, Bhouri, Bhopal-462030, Madhya Pradesh, India
| | - Poonam Sharma
- ICMR - National Institute for Research in Environmental Health, Bhopal Bypass Road, Bhouri, Bhopal-462030, Madhya Pradesh, India
| | - Namrata Pal
- ICMR - National Institute for Research in Environmental Health, Bhopal Bypass Road, Bhouri, Bhopal-462030, Madhya Pradesh, India
| | - Devojit Kumar Sarma
- ICMR - National Institute for Research in Environmental Health, Bhopal Bypass Road, Bhouri, Bhopal-462030, Madhya Pradesh, India
| | - Rajnarayan Tiwari
- ICMR - National Institute for Research in Environmental Health, Bhopal Bypass Road, Bhouri, Bhopal-462030, Madhya Pradesh, India
| | - Manoj Kumar
- ICMR - National Institute for Research in Environmental Health, Bhopal Bypass Road, Bhouri, Bhopal-462030, Madhya Pradesh, India
| |
Collapse
|
5
|
Zhao J, Uhde E, Salthammer T, Antretter F, Shaw D, Carslaw N, Schieweck A. Long-term prediction of the effects of climate change on indoor climate and air quality. ENVIRONMENTAL RESEARCH 2024; 243:117804. [PMID: 38042519 DOI: 10.1016/j.envres.2023.117804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/15/2023] [Accepted: 11/26/2023] [Indexed: 12/04/2023]
Abstract
Limiting the negative impact of climate change on nature and humans is one of the most pressing issues of the 21st century. Meanwhile, people in modern society spend most of the day indoors. It is therefore surprising that comparatively little attention has been paid to indoor human exposure in relation to climate change. Heat action plans have now been designed in many regions to protect people from thermal stress in their private homes and in public buildings. However, in order to be able to plan effectively for the future, reliable information is required about the long-term effects of climate change on indoor air quality and climate. The Indoor Air Quality Climate Change (IAQCC) model is an expediant tool for estimating the influence of climate change on indoor air quality. The model follows a holistic approach in which building physics, emissions, chemical reactions, mold growth and exposure are combined with the fundamental parameters of temperature and humidity. The features of the model have already been presented in an earlier publication, and it is now used for the expected climatic conditions in Central Europe, taking into account various shared socioeconomic pathway (SSP) scenarios up to the year 2100. For the test house examined in this study, the concentrations of pollutants in the indoor air will continue to rise. At the same time, the risk of mold growth also increases (the mold index rose from 0 to 4 in the worst case for very sensitive material). The biggest problem, however, is protection against heat and humidity. Massive structural improvements are needed here, including insulation, ventilation, and direct sun protection. Otherwise, the occupants will be exposed to increasing thermal discomfort, which can also lead to severe heat stress indoors.
Collapse
Affiliation(s)
- Jiangyue Zhao
- Fraunhofer WKI, Department of Material Analysis and Indoor Chemistry, Riedenkamp 3, 38108, Braunschweig, Germany
| | - Erik Uhde
- Fraunhofer WKI, Department of Material Analysis and Indoor Chemistry, Riedenkamp 3, 38108, Braunschweig, Germany
| | - Tunga Salthammer
- Fraunhofer WKI, Department of Material Analysis and Indoor Chemistry, Riedenkamp 3, 38108, Braunschweig, Germany
| | - Florian Antretter
- C3RROlutions GmbH, Steinbrucker Str. 11, 83064, Raubling, Germany; Fraunhofer IBP, Fraunhoferstraße 10, 83626, Valley, Germany
| | - David Shaw
- University of York, Department of Environment and Geography, Heslington, York, YO10 5NG, UK
| | - Nicola Carslaw
- University of York, Department of Environment and Geography, Heslington, York, YO10 5NG, UK
| | - Alexandra Schieweck
- Fraunhofer WKI, Department of Material Analysis and Indoor Chemistry, Riedenkamp 3, 38108, Braunschweig, Germany.
| |
Collapse
|
6
|
Hampo CC, Schinasi LH, Hoque S. Surviving indoor heat stress in United States: A comprehensive review exploring the impact of overheating on the thermal comfort, health, and social economic factors of occupants. Heliyon 2024; 10:e25801. [PMID: 38371979 PMCID: PMC10873744 DOI: 10.1016/j.heliyon.2024.e25801] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 01/23/2024] [Accepted: 02/02/2024] [Indexed: 02/20/2024] Open
Abstract
In the face of escalating global climate change and the increasing frequency of extreme heat events, the mitigation of building overheating has become an urgent priority. This comprehensive review converges insights from building science and public health domains to offer a thorough understanding of the multifaceted impacts of indoor overheating on occupants. The paper addresses a significant research gap by offering a holistic exploration of indoor overheating of residential buildings and its consequences, with a specific focus on the United States, an economically diverse nation that has been underrepresented in the literature. The review illuminates the effects of overheating on thermal comfort, health, and socio-economic aspects within the built environment. It emphasizes associated repercussions, including heightened cooling energy consumption, increased peak electricity demand, and elevated vulnerability, leading to exacerbated heat-related mortality and morbidity rates, especially among disadvantaged groups. The study concludes that vulnerabilities to these impacts are intricately tied to regional climatic conditions, highlighting the inadequacy of a one-size-fits-all approach. Tailored interventions for each climate zone are deemed necessary, considering the consistent occurrence of indoor temperatures surpassing outdoor levels, known as superheating, which poses distinct challenges. The research underscores the urgency of addressing indoor overheating as a critical facet of public health, acknowledging direct socioeconomic repercussions. It advocates for further research to inform comprehensive policies that safeguard public health across diverse indoor environments.
Collapse
Affiliation(s)
- Chima Cyril Hampo
- Department of Civil, Architectural, and Environmental Engineering, Drexel University, USA
| | - Leah H. Schinasi
- Department of Environmental and Occupational Health, Drexel Dornsife School of Public Health, Philadelphia, USA
| | - Simi Hoque
- Department of Civil, Architectural, and Environmental Engineering, Drexel University, USA
| |
Collapse
|
7
|
Gherasim A, Lee AG, Bernstein JA. Impact of Climate Change on Indoor Air Quality. Immunol Allergy Clin North Am 2024; 44:55-73. [PMID: 37973260 DOI: 10.1016/j.iac.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Climate change may affect the quality of the indoor environment through heat and mass transfer between indoors and outdoors: first by a direct response to global warming itself and related extreme weather phenomena and second by indirect actions taken to reduce greenhouse gas emissions that can lead to increased concentrations of indoor air contaminants. Therefore, both indoor and outdoor air pollution contribute to poor indoor air quality in this context. Exposures to high concentrations of these pollutants contribute to inflammatory respiratory diseases. Climate change adaptation and mitigation measures could minimize these risks and bring associated health benefits.
Collapse
Affiliation(s)
- Alina Gherasim
- ALYATEC Environmental Exposure Chamber, 1 Place de l'Hôpital, Strasbourg, France
| | - Alison G Lee
- Division of Pulmonary, Critical Care and Sleep Medicine, Icahn School of Medicine at Mount Sinai, 1 Gustave L Levy Place, New York, NY 10029, USA
| | - Jonathan A Bernstein
- Division of Rheumatology, Allergy and Immunology, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH 45267, USA.
| |
Collapse
|
8
|
Barros N, Sobral P, Moreira RS, Vargas J, Fonseca A, Abreu I, Guerreiro MS. SchoolAIR: A Citizen Science IoT Framework Using Low-Cost Sensing for Indoor Air Quality Management. SENSORS (BASEL, SWITZERLAND) 2023; 24:148. [PMID: 38203010 PMCID: PMC10781081 DOI: 10.3390/s24010148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024]
Abstract
Indoor air quality (IAQ) problems in school environments are very common and have significant impacts on students' performance, development and health. Indoor air conditions depend on the adopted ventilation practices, which in Mediterranean countries are essentially based on natural ventilation controlled through manual window opening. Citizen science projects directed to school communities are effective strategies to promote awareness and knowledge acquirement on IAQ and adequate ventilation management. Our multidisciplinary research team has developed a framework-SchoolAIR-based on low-cost sensors and a scalable IoT system architecture to support the improvement of IAQ in schools. The SchoolAIR framework is based on do-it-yourself sensors that continuously monitor air temperature, relative humidity, concentrations of carbon dioxide and particulate matter in school environments. The framework was tested in the classrooms of University Fernando Pessoa, and its deployment and proof of concept took place in a high school in the north of Portugal. The results obtained reveal that CO2 concentrations frequently exceed reference values during classes, and that higher concentrations of particulate matter in the outdoor air affect IAQ. These results highlight the importance of real-time monitoring of IAQ and outdoor air pollution levels to support decision-making in ventilation management and assure adequate IAQ. The proposed approach encourages the transfer of scientific knowledge from universities to society in a dynamic and active process of social responsibility based on a citizen science approach, promoting scientific literacy of the younger generation and enhancing healthier, resilient and sustainable indoor environments.
Collapse
Affiliation(s)
- Nelson Barros
- FP-I3ID—Fernando Pessoa Institute for Research, Innovation and Development, 4249-004 Porto, Portugal; (A.F.); (I.A.); (M.S.G.)
- CINTESIS.UFP—Center for Health Technology and Services Research, 4200-450 Porto, Portugal
| | - Pedro Sobral
- LIACC—Artificial Intelligence and Computer Science Laboratory, University of Porto, 4200-465 Porto, Portugal; (P.S.); (R.S.M.)
- Faculty of Science and Technology, University Fernando Pessoa, 4249-004 Porto, Portugal;
| | - Rui S. Moreira
- LIACC—Artificial Intelligence and Computer Science Laboratory, University of Porto, 4200-465 Porto, Portugal; (P.S.); (R.S.M.)
- Faculty of Science and Technology, University Fernando Pessoa, 4249-004 Porto, Portugal;
| | - João Vargas
- Faculty of Science and Technology, University Fernando Pessoa, 4249-004 Porto, Portugal;
| | - Ana Fonseca
- FP-I3ID—Fernando Pessoa Institute for Research, Innovation and Development, 4249-004 Porto, Portugal; (A.F.); (I.A.); (M.S.G.)
- CINTESIS.UFP—Center for Health Technology and Services Research, 4200-450 Porto, Portugal
| | - Isabel Abreu
- FP-I3ID—Fernando Pessoa Institute for Research, Innovation and Development, 4249-004 Porto, Portugal; (A.F.); (I.A.); (M.S.G.)
- CINTESIS.UFP—Center for Health Technology and Services Research, 4200-450 Porto, Portugal
| | - Maria Simas Guerreiro
- FP-I3ID—Fernando Pessoa Institute for Research, Innovation and Development, 4249-004 Porto, Portugal; (A.F.); (I.A.); (M.S.G.)
- CINTESIS.UFP—Center for Health Technology and Services Research, 4200-450 Porto, Portugal
| |
Collapse
|
9
|
Karakas F, Grassie D, Schwartz Y, Dong J, Chalabi Z, Mumovic D, Mavrogianni A, Milner J. School building energy efficiency and NO 2 related risk of childhood asthma in England and Wales: Modelling study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:166109. [PMID: 37558063 DOI: 10.1016/j.scitotenv.2023.166109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 08/04/2023] [Accepted: 08/05/2023] [Indexed: 08/11/2023]
Abstract
BACKGROUND Climate change legislation will require dramatic increases in the energy efficiency of school buildings across the UK by 2050, which has the potential to affect air quality in schools. We assessed how different strategies for improving the energy efficiency of school buildings in England and Wales may affect asthma incidence and associated healthcare utilization costs in the future. METHODS Indoor concentrations of traffic-related NO2 were modelled inside school buildings representing 13 climate regions in England and Wales using a building physics school stock model. We used a health impact assessment model to quantify the resulting burden of childhood asthma incidence by combining regional health and population data with exposure-response functions from a recent high-quality systematic review/meta-analysis. We compared the effects of four energy efficiency interventions consisting of combinations of retrofit and operational strategies aiming to improve indoor air quality and thermal comfort on asthma incidence and associated hospitalization costs. RESULTS The highest childhood asthma incidence was found in the Thames Valley region (including London), in particular in older school buildings, while the lowest concentrations and health burdens were in the newest schools in Wales. Interventions consisting of only operational improvements or combinations of retrofit and operational strategies resulted in reductions in childhood asthma incidence (547 and 676 per annum regional average, respectively) and hospital utilization costs (£52,050 and £64,310 per annum regional average, respectively. Interventions that improved energy efficiency without operational measures resulted in higher childhood asthma incidence and hospital costs. CONCLUSION The effect of school energy efficiency retrofit on NO2 exposure and asthma incidence in schoolchildren depends critically on the use of appropriate building operation strategies. The findings from this study make several contributions to fill the knowledge gap about the impact of retrofitting schools on exposure to air pollutants and their effects on children's health.
Collapse
Affiliation(s)
- Filiz Karakas
- London School of Hygiene & Tropical Medicine, London, United Kingdom.
| | | | | | - Jie Dong
- University College London, London, United Kingdom
| | - Zaid Chalabi
- University College London, London, United Kingdom
| | | | | | - James Milner
- London School of Hygiene & Tropical Medicine, London, United Kingdom
| |
Collapse
|
10
|
Chen M, Zhang K, Zhang X, Gao J, Zhang R, Wei X, Cao W. Association between living habits, indoor humidity, ventilation and asthma among residents in the tropical regions of China. Front Public Health 2023; 11:1294115. [PMID: 38035300 PMCID: PMC10684788 DOI: 10.3389/fpubh.2023.1294115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 10/24/2023] [Indexed: 12/02/2023] Open
Abstract
Objective Asthma is a major public health problem that affects both children and adults, and its prevalence varies among people with different climatic characteristics and living habits. However, few studies have investigated the prevalence and risk factors for asthma among tropical residents in China. Therefore, this study aims to investigate the correlation between individuals' living environment and daily habits in Hainan Province, and the occurrence of asthma. Methods This cross-sectional study collected data from 1021 participants in three regions of the Hainan Province. A questionnaire derived from the European Community Respiratory Health Survey was used to collect data on demographics, living habits, self-reported asthma, and respiratory system-related symptoms. Logistic regression was used for univariate and multivariate analyses to screen for relative risk factors associated with asthma. Results Among the 1,021 subjects investigated, the prevalence rate of self-reported asthma was 18.6%. Significant risk factors for asthma include hair dyeing, longer living time in Hainan, higher BMI, and living in a damp and musty room. Protective factors included fruit intake, years of higher education, and indoor timing of natural ventilation. Conclusion Higher frequency of hair dyeing, higher body mass index (BMI), longer living in Hainan, lower frequency of fruit intake, fewer years of education, a damp and musty room, and no indoor timing natural ventilation were associated with an increased risk of asthma.
Collapse
Affiliation(s)
- Mingming Chen
- Department of Epidemiology, International School of Public Health and One Health, Hainan Medical University, Haikou, China
| | - Kun Zhang
- Department of Geriatric Center, Hainan General Hospital, Haikou, China
| | - Xin Zhang
- Department of Epidemiology, International School of Public Health and One Health, Hainan Medical University, Haikou, China
| | - Jun Gao
- Department of Epidemiology, International School of Public Health and One Health, Hainan Medical University, Haikou, China
| | - Rongguang Zhang
- Department of Epidemiology, International School of Public Health and One Health, Hainan Medical University, Haikou, China
| | - Xiaoli Wei
- School of Basic Medicine and Life Science, Hainan Medical University, Haikou, China
| | - Wenting Cao
- Department of Epidemiology, International School of Public Health and One Health, Hainan Medical University, Haikou, China
| |
Collapse
|
11
|
Dimitroulopoulou S, Dudzińska MR, Gunnarsen L, Hägerhed L, Maula H, Singh R, Toyinbo O, Haverinen-Shaughnessy U. Indoor air quality guidelines from across the world: An appraisal considering energy saving, health, productivity, and comfort. ENVIRONMENT INTERNATIONAL 2023; 178:108127. [PMID: 37544267 DOI: 10.1016/j.envint.2023.108127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/27/2023] [Accepted: 07/31/2023] [Indexed: 08/08/2023]
Abstract
Buildings are constructed and operated to satisfy human needs and improve quality of life. Good indoor air quality (IAQ) and thermal comfort are prerequisites for human health and well-being. For their provision, buildings often rely on heating, ventilation, and air conditioning (HVAC) systems, which may lead to higher energy consumption. This directly impacts energy efficiency goals and the linked climate change considerations. The balance between energy use, optimum IAQ and thermal comfort calls for scientifically solid and well-established limit values for exposures experienced by building occupants in indoor spaces, including homes, schools, and offices. The present paper aims to appraise limit values for selected indoor pollutants reported in the scientific literature, and to present how they are handled in international and national guidelines and standards. The pollutants include carbon dioxide (CO2), formaldehyde (CH2O), particulate matter (PM), nitrogen dioxide (NO2), carbon monoxide (CO), and radon (Rn). Furthermore, acknowledging the particularly strong impact on energy use from HVAC, ventilation, indoor temperature (T), and relative humidity (RH) are also included, as they relate to both thermal comfort and the possibilities to avoid moisture related problems, such as mould growth and proliferation of house dust mites. Examples of national regulations for these parameters are presented, both in relation to human requirements in buildings and considering aspects related to energy saving. The work is based on the Indoor Environmental Quality (IEQ) guidelines database, which spans across countries and institutions, and aids in taking steps in the direction towards a more uniform guidance for values of indoor parameters. The database is coordinated by the Scientific and Technical Committee (STC) 34, as part of ISIAQ, the International Society of Indoor Air Quality and Climate.
Collapse
Affiliation(s)
| | | | - Lars Gunnarsen
- Department of the Built Environment, Aalborg University, Denmark
| | - Linda Hägerhed
- Department of Resource Recovery and Building Technology, The University of Borås, Sweden
| | - Henna Maula
- Engineering and Business, Construction Industry, Built Environment Research Group, Turku University of Applied Sciences, Finland
| | - Raja Singh
- Department of Architecture, School of Planning and Architecture, New Delhi, India, ISAC CBEP, New Delhi & Tathatara Foundation, India
| | - Oluyemi Toyinbo
- Civil Engineering Research Unit, The University of Oulu, Finland
| | - Ulla Haverinen-Shaughnessy
- Civil Engineering Research Unit, The University of Oulu, Finland; Indoor Air Program, The University of Tulsa, USA.
| |
Collapse
|
12
|
Beel G, Langford B, Carslaw N, Shaw D, Cowan N. Temperature driven variations in VOC emissions from plastic products and their fate indoors: A chamber experiment and modelling study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 881:163497. [PMID: 37062317 DOI: 10.1016/j.scitotenv.2023.163497] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/03/2023] [Accepted: 04/10/2023] [Indexed: 06/01/2023]
Abstract
Plastic products are ubiquitous in our homes, but we know very little about emissions from these products and their subsequent impact on indoor air quality. This is the first study to systematically determine temperature-dependent emissions of volatile organic compounds from commonly used plastic consumer products found in the home. The plastic types included high-density polyethylene (HDPE), polypropylene (PP), polyethylene terephthalate (PET), polystyrene (PS) and polyester rubber. Plastic samples were exposed to increasing temperatures (between 18 and 28 °C) in controlled environmental chambers, connected to a proton-transfer-reaction time-of-flight mass-spectrometer (PTR-ToF-MS), where real-time emissions were detected. Average emission rates were determined and used to initialise an indoor air chemistry model (INCHEM-Py) at the highest and lowest experimental temperatures, to explore the impact these product emissions have on the indoor air chemistry. The PS tubing plastic proved to be the highest emitting polymer per surface area. Almost all selected VOC emissions were found to have a linear relationship with temperature. Upon observing the impacts of primary VOC emissions from plastics in modelled simulations, the hydroxyl radical concentration decreased by an average of 1.6 and 10 % relative to the baseline (with no plastics included) at 18 °C and 28 °C respectively. On the other hand, formaldehyde concentrations increased by 29 and 31.6 % relative to the baseline conditions at 18 °C and 28 °C respectively. The presence of plastic products indoors, therefore, has the potential to impact the indoor air quality.
Collapse
Affiliation(s)
- Georgia Beel
- UK Centre for Ecology and Hydrology, Bush Estate, Penicuik, Edinburgh EH26 0QB, United Kingdom; Department of Geography and Environment, University of York, Heslington, York YO10 5DD, United Kingdom.
| | - Ben Langford
- UK Centre for Ecology and Hydrology, Bush Estate, Penicuik, Edinburgh EH26 0QB, United Kingdom
| | - Nicola Carslaw
- Department of Geography and Environment, University of York, Heslington, York YO10 5DD, United Kingdom
| | - David Shaw
- Department of Geography and Environment, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Nicholas Cowan
- UK Centre for Ecology and Hydrology, Bush Estate, Penicuik, Edinburgh EH26 0QB, United Kingdom
| |
Collapse
|
13
|
Valentine C. Architectural Allostatic Overloading: Exploring a Connection between Architectural Form and Allostatic Overloading. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:ijerph20095637. [PMID: 37174157 PMCID: PMC10178048 DOI: 10.3390/ijerph20095637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/06/2023] [Accepted: 04/23/2023] [Indexed: 05/15/2023]
Abstract
This paper examines, conceptually, the relationship between stress-inducing architectural features and allostatic overload by drawing on literature from neuroimmunology and neuroarchitecture. The studies reviewed from the field of neuroimmunology indicate that chronic or repeated exposure to stress-inducing events may overwhelm the body's regulatory system, resulting in a process termed allostatic overload. While there is evidence from the field of neuroarchitecture that short-term exposure to particular architectural features produce acute stress responses, there is yet to be a study on the relationship between stress-inducing architectural features and allostatic load. This paper considers how to design such a study by reviewing the two primary methods used to measure allostatic overload: biomarkers and clinimetrics. Of particular interest is the observation that the clinical biomarkers used to measure stress in neuroarchitectural studies differ substantially from those used to measure allostatic load. Therefore, the paper concludes that while the observed stress responses to particular architectural forms may indicate allostatic activity, further research is needed to determine whether these stress responses are leading to allostatic overload. Consequently, a discrete longitudinal public health study is advised, one which engages the clinical biomarkers indicative of allostatic activity and incorporates contextual data using a clinimetric approach.
Collapse
Affiliation(s)
- Cleo Valentine
- Department of Architecture, University of Cambridge, Cambridge CB2 1PX, UK
| |
Collapse
|
14
|
Jurgilevich A, Käyhkö J, Räsänen A, Pörsti S, Lagström H, Käyhkö J, Juhola S. Factors influencing vulnerability to climate change-related health impacts in cities - A conceptual framework. ENVIRONMENT INTERNATIONAL 2023; 173:107837. [PMID: 36921561 DOI: 10.1016/j.envint.2023.107837] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/27/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
Climate change will have adverse impacts on human health, which are amplified in cities. For these impacts, there are direct, indirect, and deferred pathways. The first category is well-studied, while indirect and deferred impacts are not well-understood. Moreover, the factors moderating the impacts have received little attention, although understanding these factors is critical for adaptation. We developed a conceptual framework that shows the pathways of climate impacts on human health, focusing specifically on the factors of urban environment moderating the emergence and severity of these health impacts. Based on the framework and literature review, we illustrate the mechanisms of direct, indirect, and deferred health impact occurrence and the factors that exacerbate or alleviate the severity of these impacts, thus presenting valuable insights for anticipatory adaptation. We conclude that an integrated systemic approach to preventing health risks from climate change can provide co-benefits for adaptation and address multiple health risks. Such an approach should be mainstreamed horizontally to all sectors of urban planning and should account for the spatiotemporal aspects of policy and planning decisions and city complexity.
Collapse
Affiliation(s)
| | - Janina Käyhkö
- University of Helsinki, Environment and Ecosystems Research Programme, Finland
| | | | | | - Hanna Lagström
- University of Turku, Centre for Population Health Research and Turku University Hospital, Finland
| | - Jukka Käyhkö
- University of Turku, Department of Geography and Geology, Finland
| | - Sirkku Juhola
- University of Helsinki, Environment and Ecosystems Research Programme, Finland
| |
Collapse
|
15
|
Zhou X, Zhou X, Wang C, Zhou H. Environmental and human health impacts of volatile organic compounds: A perspective review. CHEMOSPHERE 2023; 313:137489. [PMID: 36513206 DOI: 10.1016/j.chemosphere.2022.137489] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/28/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
Volatile organic compounds (VOCs) are synthetic chemicals that are broadly used in the production of numerous day-to-day products for residential and commercial-based applications. VOCs are naturally occurring in the environment; however, average annual emissions of man-made volatile organic compounds may have increased dramatically in recent decades. Although many factors were attributed to influencing volatile compounds' emission, only mankind's activities are mainly proclaimed. Since vehicle and industrial pollution are mounting for years and years, urban areas are highly prone to the impacts of VOCs. Generally, volatile compounds are highly spontaneous and readily react with the particles of ambiance and produce a polluted atmosphere through several physical and chemical reactions. Though the volatile compounds play an indispensable role in the manufacture and maintaining the stability of many products, the health impacts associated with their prolonged exposure are gaining attention as recent research reports underline the influence of a wide range of diseases and disorders. Likewise, since the modern way of life applies a lot of day-to-day chemicals, it is imperative to spread a wide knowledge and safety aspects about these chemicals so that people of a wide category can implement preventive measures according to their exposure and living style. In this context, the review article attempts to shed light on past and current updates concerning the relationship between VOCs exposure and environmental and human health impacts.
Collapse
Affiliation(s)
- Xihe Zhou
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Xiang Zhou
- Sinomaple Furnishing (Jiangsu) Co., Ltd., 99 Fen an Dong Lu, Wujiang District, Suzhou, Jiangsu, 215200, China
| | - Chengming Wang
- Holtrop & Jansma (Qingdao) Environmental Protection Equipment Co., Ltd., 8 Tongshun Road, High-tech District, Qingdao, Shandong, 266114, China
| | - Handong Zhou
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China.
| |
Collapse
|
16
|
Johnes C, Sharpe RA, Menneer T, Taylor T, Nestel P. Using Sensor Data to Identify Factors Affecting Internal Air Quality within 279 Lower Income Households in Cornwall, South West of England. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:1075. [PMID: 36673833 PMCID: PMC9858683 DOI: 10.3390/ijerph20021075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/18/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
(1) Background: Poor air quality affects health and causes premature death and disease. Outdoor air quality has received significant attention, but there has been less focus on indoor air quality and what drives levels of diverse pollutants in the home, such as particulate matter, and the impact this has on health; (2) Methods: This study conducts analysis of cross-sectional data from the Smartline project. Analyses of data from 279 social housing properties with indoor sensor data were used to assess multiple factors that could impact levels of particulate matter. T-Tests and Anova tests were used to explore associations between elevated PM2.5 and building, household and smoking and vaping characteristics. Binary logistic regression was used to test the association between elevated particulate matter and self-reported health; (3) Results: Of the multiple potential drivers of the particulate matter investigated, smoking and vaping were significantly associated with mean PM2.5. Following multivariate analysis, only smoking remained significantly associated with higher mean concentrations. Properties in which <15 cigarettes/day were smoked were predicted to have PM2.5 concentrations 9.06 µg/m3 higher (95% CI 6.4, 12.82, p ≤ 0.001) than those in which residents were non-smokers and 11.82 µg/m3 higher (95% CI 7.67, 18.19, p ≤ 0.001) where >15 cigarettes were smoked; (4) Conclusions: A total of 25% of social housing properties in this study experienced levels of indoor PM greater than WHO guideline levels for ambient air pollution. Although there are many factors that impact air quality, in this study the main driver was smoking. This highlights the importance of targeting smoking in indoor environments in future smoking cessation and control policy and practice and of understanding how pollutants interact in the home environment. There is also a need for further research into the impact on indoor air quality of vaping, particularly due to the rise in use and uncertainty of its long-term impact.
Collapse
Affiliation(s)
- Christopher Johnes
- Faculty of Medicine, University of Southampton, University Road, Southampton SO17 1BJ, UK
| | - Richard A. Sharpe
- Wellbeing and Public Health Service, Cornwall Council, Truro TR1 3AY, UK
- European Centre for Environment and Human Health, College of Medicine and Health, University of Exeter, Truro TR1 3HD, UK
| | - Tamaryn Menneer
- European Centre for Environment and Human Health, College of Medicine and Health, University of Exeter, Truro TR1 3HD, UK
- Environment and Sustainability Institute, Penryn Campus, University of Exeter, Penryn TR10 9FE, UK
| | - Timothy Taylor
- European Centre for Environment and Human Health, College of Medicine and Health, University of Exeter, Truro TR1 3HD, UK
| | - Penelope Nestel
- Faculty of Medicine, University of Southampton, University Road, Southampton SO17 1BJ, UK
| |
Collapse
|
17
|
Mansouri A, Wei W, Alessandrini JM, Mandin C, Blondeau P. Impact of Climate Change on Indoor Air Quality: A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph192315616. [PMID: 36497689 PMCID: PMC9740977 DOI: 10.3390/ijerph192315616] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/18/2022] [Accepted: 11/20/2022] [Indexed: 05/28/2023]
Abstract
Climate change can affect the indoor environment due to heat and mass transfers between indoor and outdoor environments. To mitigate climate change impacts and adapt buildings to the changing environment, changes in building characteristics and occupants' behavior may occur. To characterize the effects of climate change on indoor air quality (IAQ), the present review focused on four aspects: (1) experimental and modeling studies that relate IAQ to future environmental conditions, (2) evolution of indoor and outdoor air concentrations in the coming years with regard to temperature rise, (3) climate change mitigation and adaptation actions in the building sector, and (4) evolution of human behavior in the context of climate change. In the indoor environment, experimental and modeling studies on indoor air pollutants highlighted a combined effect of temperature and relative humidity on pollutant emissions from indoor sources. Five IAQ models developed for future climate data were identified in the literature. In the outdoor environment, the increasing ambient temperature may lead directly or indirectly to changes in ozone, particle, nitrogen oxides, and volatile organic compound concentrations in some regions of the world depending on the assumptions made about temperature evolution, anthropogenic emissions, and regional regulation. Infiltration into buildings of outdoor air pollutants is governed by many factors, including temperature difference between indoors and outdoors, and might increase in the years to come during summer and decrease during other seasons. On the other hand, building codes in some countries require a higher airtightness for new and retrofitted buildings. The building adaptation actions include the reinforcement of insulation, implementation of new materials and smart building technologies, and a more systematic and possibly longer use of air conditioning systems in summer compared to nowadays. Moreover, warmer winters, springs, and autumns may induce an increasing duration of open windows in these seasons, while the use of air conditioning in summer may reduce the duration of open windows.
Collapse
Affiliation(s)
- Aya Mansouri
- Scientific and Technical Centre for Building (CSTB), Health and Comfort Department, 84 Avenue Jean Jaurès, 77447 Marne-la-Vallée, France
- Laboratoire des Sciences de l’Ingénieur pour l’Environnement (LaSIE), UMR CNRS 7356, La Rochelle University, 17042 La Rochelle, France
| | - Wenjuan Wei
- Scientific and Technical Centre for Building (CSTB), Health and Comfort Department, 84 Avenue Jean Jaurès, 77447 Marne-la-Vallée, France
| | - Jean-Marie Alessandrini
- Scientific and Technical Centre for Building (CSTB), Health and Comfort Department, 84 Avenue Jean Jaurès, 77447 Marne-la-Vallée, France
| | - Corinne Mandin
- Scientific and Technical Centre for Building (CSTB), Health and Comfort Department, 84 Avenue Jean Jaurès, 77447 Marne-la-Vallée, France
| | - Patrice Blondeau
- Laboratoire des Sciences de l’Ingénieur pour l’Environnement (LaSIE), UMR CNRS 7356, La Rochelle University, 17042 La Rochelle, France
| |
Collapse
|
18
|
Lorentzen JC, Johanson G, Björk F, Stensson S. Overcrowding and Hazardous Dwelling Condition Characteristics: A Systematic Search and Scoping Review of Relevance for Health. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:15542. [PMID: 36497612 PMCID: PMC9736286 DOI: 10.3390/ijerph192315542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/10/2022] [Accepted: 11/15/2022] [Indexed: 06/17/2023]
Abstract
Crowding in dwellings is an important public health issue. We hypothesize that overcrowding may cause indirect health effects by adversely affecting the dwelling itself, for example, by increasing dampness leading to mold. We therefore performed a systematic search and a scoping review on overcrowding leading to dwelling condition characteristics of relevance for health. A literature search was performed using the PubMed and Scopus databases up to 5 March 2021. The search yielded 100 records with relevant information. We found that overcrowding is defined in numerous ways and often address "socially deprived" populations. Six studies report associations of overcrowding with at least one dwelling condition characteristic, namely lead, cadmium, microorganism distribution, dust mite and cockroach allergens in dust, cockroach infestation, peeling paint, and mold. One of the studies reports associations between several characteristics, e.g., association of mold with cleanliness and rodent infestation, and points out the common use of pesticides. Additional characteristics were extracted from the remaining 94 records, without data on statistical associations with overcrowding. Our review suggests that multiple potentially hazardous dwelling condition characteristics often coincide in overcrowded dwellings. The epidemiological attribution of health effects to any characteristic is therefore difficult. Causal relationships are even more difficult to establish, as overcrowding is also associated with a range of social and other circumstances that may affect health. The complexity should be considered by scientists and practitioners dealing with overcrowding in dwellings.
Collapse
Affiliation(s)
- Johnny C. Lorentzen
- Institute of Environmental Medicine, Integrative Toxicology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
- Center for Occupational and Environmental Medicine, Region Stockholm, SE-113 65 Stockholm, Sweden
| | - Gunnar Johanson
- Institute of Environmental Medicine, Integrative Toxicology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Folke Björk
- KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Sofia Stensson
- RISE Research Institutes of Sweden, SE-501 15 Borås, Sweden
| |
Collapse
|
19
|
Ratwatte P, Wehling H, Kovats S, Landeg O, Weston D. Factors associated with older adults' perception of health risks of hot and cold weather event exposure: A scoping review. Front Public Health 2022; 10:939859. [PMID: 36438241 PMCID: PMC9686383 DOI: 10.3389/fpubh.2022.939859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 10/20/2022] [Indexed: 11/11/2022] Open
Abstract
Introduction Hot and cold weather events are increasingly becoming a global burden resulting in premature and preventable morbidity and mortality, particularly in vulnerable groups such as older people and people with chronic health conditions. However, risk perception regarding weather is generally poor among vulnerable groups which often acts as a barrier to the uptake of critical health-protective behaviours. A more cohesive understanding of determinants of risk perception is needed to inform public health risk communication and behaviour change interventions that promote protective health behaviours. This scoping literature review aimed to understand factors influencing perception of personal health risks in vulnerable groups as a result of exposure to hot and cold weather events. Methods A five-stage scoping review framework was followed. Searches were run across Medline, PsychInfo, Web of Science and EMBASE. Papers were included if they provided rationale for risk perceptions in vulnerable groups in indoor/domestic environments and focussed on samples from OECD countries. Results In total, 13 out of 15,554 papers met the full inclusion criteria. The majority of papers focused on hot weather events: one study exclusively examined cold weather events and one study addressed both cold and hot weather events. Included papers focused on older adults aged 65+ years. The papers identified eight factors that were associated with older adults' personal health risk perception of hot and cold weather events: (1) Knowledge of the relationship between hot/cold weather and health risks, (2) presence of comorbidities, (3) age and self-identity, (4) perceived weather severity, (5) Beliefs associated with regional climate, (6) past experience with weather, (7) misconceptions of effectiveness of protective behaviours, and (8) external locus of control. Conclusions Future research should explore risk communication methods by implementing the identified risk perception determinants from this review into health protection interventions targeting older adults. Further understanding is needed regarding risk perceptions in non-elderly vulnerable groups, for examples individuals with chronic diseases or disabilities.
Collapse
Affiliation(s)
- Priyanjali Ratwatte
- Behavioural Science and Insights Unit (BSIU), UK Health Security Agency (UKHSA), Porton Down, United Kingdom
- Climate Change and Health Unit, UK Health Security Agency (UKHSA), Porton Down, United Kingdom
- Behavioural Science and Evaluation, Health Protection Research Unit (BSE HPRU), London, United Kingdom
| | - Helena Wehling
- Behavioural Science and Insights Unit (BSIU), UK Health Security Agency (UKHSA), Porton Down, United Kingdom
- Behavioural Science and Evaluation, Health Protection Research Unit (BSE HPRU), London, United Kingdom
| | - Sari Kovats
- Environmental Change and Health, Health Protection Research Unit (ECH HPRU), Chilton, United Kingdom
- Department of Public Health, Environments and Society, London School of Hygiene and Tropical Medicine (LSHTM), London, United Kingdom
| | - Owen Landeg
- Behavioural Science and Evaluation, Health Protection Research Unit (BSE HPRU), London, United Kingdom
- Extreme Events and Health Protection, UK Health Security Agency (UKHSA), Porton Down, United Kingdom
| | - Dale Weston
- Behavioural Science and Insights Unit (BSIU), UK Health Security Agency (UKHSA), Porton Down, United Kingdom
- Behavioural Science and Evaluation, Health Protection Research Unit (BSE HPRU), London, United Kingdom
| |
Collapse
|
20
|
Abdelzaher H, Tawfik SM, Nour A, Abdelkader S, Elbalkiny ST, Abdelkader M, Abbas WA, Abdelnaser A. Climate change, human health, and the exposome: Utilizing OMIC technologies to navigate an era of uncertainty. Front Public Health 2022; 10:973000. [PMID: 36211706 PMCID: PMC9533016 DOI: 10.3389/fpubh.2022.973000] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/17/2022] [Indexed: 01/25/2023] Open
Abstract
Climate change is an anthropogenic phenomenon that is alarming scientists and non-scientists alike. The emission of greenhouse gases is causing the temperature of the earth to rise and this increase is accompanied by a multitude of climate change-induced environmental exposures with potential health impacts. Tracking human exposure has been a major research interest of scientists worldwide. This has led to the development of exposome studies that examine internal and external individual exposures over their lifetime and correlate them to health. The monitoring of health has also benefited from significant technological advances in the field of "omics" technologies that analyze physiological changes on the nucleic acid, protein, and metabolism levels, among others. In this review, we discuss various climate change-induced environmental exposures and their potential health implications. We also highlight the potential integration of the technological advancements in the fields of exposome tracking, climate monitoring, and omics technologies shedding light on important questions that need to be answered.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Anwar Abdelnaser
- Institute of Global Health and Human Ecology, The American University in Cairo, New Cairo, Egypt
| |
Collapse
|
21
|
Landaverde E, Généreux M, Maltais D, Gachon P. Respiratory and Otolaryngology Symptoms Following the 2019 Spring Floods in Quebec. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:11738. [PMID: 36142009 PMCID: PMC9517661 DOI: 10.3390/ijerph191811738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/10/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Although floods may have important respiratory health impacts, few studies have examined this issue. This study aims to document the long-term impacts of the spring floods of 2019 in Quebec by (1) describing the population affected by the floods; (2) assessing the impacts on the respiratory system according to levels of exposure; and (3) determining the association between stressors and respiratory health. METHODS A population health survey was carried out across the six most affected regions 8-10 months post-floods. Data were collected on self-reported otolaryngology (ENT) and respiratory symptoms, along with primary and secondary stressors. Three levels of exposure were examined: flooded, disrupted and unaffected. RESULTS One in ten respondents declared being flooded and 31.4% being disrupted by the floods. Flooded and disrupted participants reported significantly more ENT symptoms (adjusted odds ratio (aOR): 3.18; 95% CI: 2.45-4.14; aOR: 1.76; 95% CI: 1.45-2.14) and respiratory symptoms (aOR: 3.41; 95% CI: 2.45-4.75; aOR: 1.45; 95% CI: 1.10-1.91) than the unaffected participants. All primary stressors and certain secondary stressors assessed were significantly associated with both ENT and respiratory symptoms, but no "dose-response" gradient could be observed. CONCLUSION This study highlights the long-term adverse effects of flood exposure on respiratory health.
Collapse
Affiliation(s)
- Elsa Landaverde
- Département des Sciences de la Santé Communautaire, Université de Sherbrooke, 3001, 12e Avenue Nord, Sherbrooke, QC J1H 5N4, Canada
| | - Mélissa Généreux
- Département des Sciences de la Santé Communautaire, Université de Sherbrooke, 3001, 12e Avenue Nord, Sherbrooke, QC J1H 5N4, Canada
| | - Danielle Maltais
- Département des Sciences Humaines et Sociales, Université du Québec à Chicoutimi, 555 Boulevard de l’Université, Ville de Saguenay, QC G7H21, Canada
| | - Philippe Gachon
- Département de Geographie et Centre ESCER (Étude et Simulation du Climat à l’Échelle Régionale), Université du Québec à Montréal, 201, Avenue du Président-Kennedy, Montréal, QC H2X 3Y7, Canada
| |
Collapse
|
22
|
Nie Y, Lu Y, Wang C, Yang Z, Sun Y, Zhang Y, Tian M, Rifhat R, Zhang L. Effects and Interaction of Meteorological Factors on Pulmonary Tuberculosis in Urumqi, China, 2013–2019. Front Public Health 2022; 10:951578. [PMID: 35910866 PMCID: PMC9330012 DOI: 10.3389/fpubh.2022.951578] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 06/24/2022] [Indexed: 11/23/2022] Open
Abstract
Background Most existing studies have only investigated the delayed effect of meteorological factors on pulmonary tuberculosis (PTB). However, the effect of extreme climate and the interaction between meteorological factors on PTB has been rarely investigated. Methods Newly diagonsed PTB cases and meteorological factors in Urumqi in each week between 2013 and 2019 were collected. The lag-exposure-response relationship between meteorological factors and PTB was analyzed using the distributed lag non-linear model (DLNM). The generalized additive model (GAM) was used to visualize the interaction between meteorological factors. Stratified analysis was used to explore the impact of meteorological factors on PTB in different stratification and RERI, AP and SI were used to quantitatively evaluate the interaction between meteorological factors. Results A total of 16,793 newly diagnosed PTB cases were documented in Urumqi, China from 2013 to 2019. The median (interquartile range) temperature, relative humidity, wind speed, and PTB cases were measured as 11.3°C (−5.0–20.5), 57.7% (50.7–64.2), 4.1m/s (3.4–4.7), and 47 (37–56), respectively. The effects of temperature, relative humidity and wind speed on PTB were non-linear, which were found with the “N”-shaped, “L”-shaped, “N”-shaped distribution, respectively. With the median meteorological factor as a reference, extreme low temperature was found to have a protective effect on PTB. However, extreme high temperature, extreme high relative humidity, and extreme high wind speed were found to increase the risk of PTB and peaked at 31.8°C, 83.2%, and 7.6 m/s respectively. According to the existing monitoring data, no obvious interaction between meteorological factors was found, but low temperature and low humidity (RR = 1.149, 95%CI: 1.003–1.315), low temperature and low wind speed (RR = 1.273, 95%CI: 1.146–1.415) were more likely to cause the high incidence of PTB. Conclusion Temperature, relative humidity and wind speed were found to play vital roles in PTB incidence with delayed and non-linear effects. Extreme high temperature, extreme high relative humidity, and extreme high wind speed could increase the risk of PTB. Moreover, low temperature and low humidity, low temperature and low wind speed may increase the incidence of PTB.
Collapse
Affiliation(s)
- Yanwu Nie
- School of Public Health, Xinjiang Medical University, Urumqi, China
| | - Yaoqin Lu
- Urumqi Center for Disease Control and Prevention, Urumqi, China
| | - Chenchen Wang
- Center for Disease Control and Prevention of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Zhen Yang
- School of Public Health, Xinjiang Medical University, Urumqi, China
| | - Yahong Sun
- School of Public Health, Xinjiang Medical University, Urumqi, China
| | - Yuxia Zhang
- Department of Clinical Nutrition, Urumqi Maternal and Child Health Institute, Urumqi, China
| | - Maozai Tian
- College of Medical Engineering and Technology, Xinjiang Medical University, Urumqi, China
| | - Ramziya Rifhat
- College of Medical Engineering and Technology, Xinjiang Medical University, Urumqi, China
| | - Liping Zhang
- College of Medical Engineering and Technology, Xinjiang Medical University, Urumqi, China
- *Correspondence: Liping Zhang
| |
Collapse
|
23
|
Teyton A, Tremblay M, Tardif I, Lemieux MA, Nour K, Benmarhnia T. A Longitudinal Study on the Impact of Indoor Temperature on Heat-Related Symptoms in Older Adults Living in Non-Air-Conditioned Households. ENVIRONMENTAL HEALTH PERSPECTIVES 2022; 130:77003. [PMID: 35857398 PMCID: PMC9282277 DOI: 10.1289/ehp10291] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 05/08/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Both chronic and acute heat result in a substantial health burden globally, causing particular concern for at-risk populations, such as older adults. Outdoor temperatures are often assessed as the exposure and are used for heat warning systems despite individuals spending most of their time indoors. Many studies use ecological designs, with death or hospitalizations rates. Individual-level outcomes that are directly related to heat-symptoms should also be considered to refine prevention efforts. OBJECTIVES In this longitudinal study, we assessed the association between indoor temperature and proximal symptoms in individuals ≥60 years of age living in non-air-conditioned households in Montérégie, Quebec, during the 2017-2018 summer months. METHODS We gathered continuously measured indoor temperature and humidity from HOBO sensors and repeated health-related questionnaires about health-related symptoms administered across three periods of increasing outdoor temperatures, where the reference measurement (T1) occurred during a cool period with a target temperature of 18-22°C and two measurements (T2 and T3) occurred during warmer periods with target temperatures of 28-30°C and 30-33°C, respectively. We used generalized estimating equations with Poisson regression models and estimated risk ratios (RRs) between temperature, humidity, and each heat-related symptom. RESULTS Participants (n=277) had an average age (mean±standard deviation) of 72.8±7.02y. Higher indoor temperatures were associated with increased risk of dry mouth (T3 RR=2.5; 95% CI: 1.8, 3.5), fatigue (RR=2.3; 95% CI: 1.8, 3.0), thirst (RR=3.4; 95% CI: 2.5, 4.5), less frequent urination (RR=3.7; 95% CI: 1.8, 7.3), and trouble sleeping (RR=2.2; 95% CI: 1.6, 3.2) compared with T1. We identified a nonlinear relationship with indoor temperatures across most symptoms of interest. DISCUSSION This study identified that increasing indoor temperatures were associated with various health symptoms. By considering the prevalence of these early stage outcomes and indoor temperature exposures, adaptation strategies may be improved to minimize the burden of heat among vulnerable communities. https://doi.org/10.1289/EHP10291.
Collapse
Affiliation(s)
- Anaïs Teyton
- Herbert Wertheim School of Public Health, University of California, San Diego, La Jolla, California, USA
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California, USA
- School of Public Health, San Diego State University, San Diego, CA, USA
| | - Mathieu Tremblay
- Public Health Department, Centre intégré de santé et de services sociaux de la Montérégie-Centre, Longueuil, Québec, Canada
| | - Isabelle Tardif
- Public Health Department, Centre intégré de santé et de services sociaux de la Montérégie-Centre, Longueuil, Québec, Canada
| | - Marc-André Lemieux
- Public Health Department, Centre intégré de santé et de services sociaux de la Montérégie-Centre, Longueuil, Québec, Canada
| | - Kareen Nour
- Public Health Department, Centre intégré de santé et de services sociaux de la Montérégie-Centre, Longueuil, Québec, Canada
| | - Tarik Benmarhnia
- Herbert Wertheim School of Public Health, University of California, San Diego, La Jolla, California, USA
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
24
|
Connolly CL, Milando CW, Tieskens KF, Ashmore J, Carvalho L, Levy JI, Fabian MP. Impact of meteorology on indoor air quality, energy use, and health in a typical mid-rise multi-family home in the eastern United States. INDOOR AIR 2022; 32:e13065. [PMID: 35762242 DOI: 10.1111/ina.13065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 05/11/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
Heating and cooling requirement differences across climates not only have carbon emissions and energy efficiency implications but also impact indoor air quality (IAQ) and health. Energy and IAQ building simulation models help understand tradeoffs or co-benefits, but these have not been applied to evaluate climate zone or multi-family home differences. We modeled a four-story multi-family home in six U.S. climate zones and quantified energy, IAQ, and health outcomes with EnergyPlus, CONTAM, and a pediatric asthma systems science model. Pollutant sources included cooking and ambient. Outputs were daily PM2.5 and NO2 indoor concentrations, infiltration, energy for heating and cooling, and asthma exacerbations, which were compared across climate zones, apartment units, and resident behaviors. Daily ambient-sourced PM2.5 decreased and cooking-sourced PM2.5 increased with higher ambient temperatures. Infiltration air changes per hour were higher on the first versus the fourth floor and in colder climates. Window opening during cooking led to decreases in total pollutant concentrations (11%-18% for PM2.5 and 9%-15% for NO2 ), 3%-4% decreases in asthma exacerbations within climate zones, and minimal impacts on cooling, but led to increased heating demand (4%-8%). Our results demonstrate the influence of meteorology, multi-family building characteristics, and resident behavior on IAQ, energy, and health, focused on multi-zone methodology.
Collapse
Affiliation(s)
- Catherine L Connolly
- Department of Environmental Health, Boston University, Boston, Massachusetts, USA
| | - Chad W Milando
- Department of Environmental Health, Boston University, Boston, Massachusetts, USA
| | - Koen F Tieskens
- Department of Environmental Health, Boston University, Boston, Massachusetts, USA
| | | | - Luis Carvalho
- Department of Mathematics and Statistics, Boston University, Boston, Massachusetts, USA
| | - Jonathan I Levy
- Department of Environmental Health, Boston University, Boston, Massachusetts, USA
| | - M Patricia Fabian
- Department of Environmental Health, Boston University, Boston, Massachusetts, USA
| |
Collapse
|
25
|
Comparative Analysis of Overheating Risk for Typical Dwellings and Passivhaus in the UK. ENERGIES 2022. [DOI: 10.3390/en15103829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
There is growing concern that airtight and well-insulated buildings designed to limit heat loss in temperate and cold climates could unintentionally elevate the risk of overheating in summers. Existing literature primarily uses dynamic simulation to investigate this problem due to the difficulty of obtaining large-scale in-performance data. To address this gap, we undertake a meta-analysis of large-scale indoor air temperature data for 195 UK dwellings, as a study of performance in a temperate climate. Of these, 113 are baseline (i.e., typical existing dwellings) and the rest designed to the high-performance Passivhaus standard. Using both Passivhaus and the well-known CIBSE TM59 overheating standards, this study found that there were few overheated cases for any building type. However, the average summer nighttime temperature of Passivhaus bedrooms was 1.6 °C higher than baseline, with 20 out of 31 measured bedrooms exceeding the overheating criterion, and the average overheating hours constituting approximately 19% of the total summertime observation period. These findings suggest that bedrooms in highly insulated dwellings may pose an overheating risk although whole-dwelling overheating risk is low.
Collapse
|
26
|
Petrou G, Hutchinson E, Mavrogianni A, Milner J, Macintyre H, Phalkey R, Hsu SC, Symonds P, Davies M, Wilkinson P. Home energy efficiency under net zero: time to monitor UK indoor air. BMJ 2022; 377:e069435. [PMID: 35534024 PMCID: PMC7615525 DOI: 10.1136/bmj-2021-069435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
| | | | | | - James Milner
- London School of Hygiene and Tropical Medicine, London, UK
| | - Helen Macintyre
- UK Health Security Agency, London, UK
- University of Birmingham, Birmingham, UK
| | - Revati Phalkey
- UK Health Security Agency, London, UK
- University of Nottingham, Nottingham, UK
- University of Heidelberg, Heidelberg, Germany
| | | | | | | | - Paul Wilkinson
- London School of Hygiene and Tropical Medicine, London, UK
| |
Collapse
|
27
|
Salthammer T, Morrison GC. Temperature and indoor environments. INDOOR AIR 2022; 32:e13022. [PMID: 35622714 DOI: 10.1111/ina.13022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/20/2022] [Accepted: 03/13/2022] [Indexed: 06/15/2023]
Abstract
From the thermodynamic perspective, the term temperature is clearly defined for ideal physical systems: A unique temperature can be assigned to each black body via its radiation spectrum, and the temperature of an ideal gas is given by the velocity distribution of the molecules. While the indoor environment is not an ideal system, fundamental physical and chemical processes, such as diffusion, partitioning equilibria, and chemical reactions, are predictably temperature-dependent. For example, the logarithm of reaction rate and equilibria constants are proportional to the reciprocal of the absolute temperature. It is therefore possible to have non-linear, very steep changes in chemical phenomena over a relatively small temperature range. On the contrary, transport processes are more influenced by spatial temperature, momentum, and pressure gradients as well as by the density, porosity, and composition of indoor materials. Consequently, emergent phenomena, such as emission rates or dynamic air concentrations, can be the result of complex temperature-dependent relationships that require a more empirical approach. Indoor environmental conditions are further influenced by the thermal comfort needs of occupants. Not only do occupants have to create thermal conditions that serve to maintain their core body temperature, which is usually accomplished by wearing appropriate clothing, but also the surroundings must be adapted so that they feel comfortable. This includes the interaction of the living space with the ambient environment, which can vary greatly by region and season. Design of houses, apartments, commercial buildings, and schools is generally utility and comfort driven, requiring an appropriate energy balance, sometimes considering ventilation but rarely including the impact of temperature on indoor contaminant levels. In our article, we start with a review of fundamental thermodynamic variables and discuss their influence on typical indoor processes. Then, we describe the heat balance of people in their thermal environment. An extensive literature study is devoted to the thermal conditions in buildings, the temperature-dependent release of indoor pollutants from materials and their distribution in the various interior compartments as well as aspects of indoor chemistry. Finally, we assess the need to consider temperature holistically with regard to the changes to be expected as a result of global emergencies such as climate change.
Collapse
Affiliation(s)
- Tunga Salthammer
- Department of Material Analysis and Indoor Chemistry, Fraunhofer WKI, Braunschweig, Germany
| | - Glenn C Morrison
- Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
28
|
Toyinbo O, Hägerhed L, Dimitroulopoulou S, Dudzinska M, Emmerich S, Hemming D, Park JH, Haverinen-Shaughnessy U. Open database for international and national indoor environmental quality guidelines. INDOOR AIR 2022; 32:e13028. [PMID: 35481936 PMCID: PMC11099937 DOI: 10.1111/ina.13028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/11/2022] [Accepted: 03/29/2022] [Indexed: 06/14/2023]
Affiliation(s)
- Oluyemi Toyinbo
- World Bank Africa Centre of Excellence for Public Health and Toxicological Research, University of Port Harcourt, Choba, Nigeria
| | - Linda Hägerhed
- Department of Resource Recovery and Building Technology, University of Borås, Borås, Sweden
| | - Sani Dimitroulopoulou
- Air Quality and Public Health, Radiation Chemicals and Environment, UK Health Security Agency, Chilton, UK
| | - Marzenna Dudzinska
- Department of Indoor and Outdoor Air Quality, Faculty of Environmental Engineering, Lublin University of Technology, Lublin, Poland
| | - Steven Emmerich
- National Institute of Standards and Technology, Gaithersburg, Maryland, USA
| | | | - Ju-Hyeong Park
- Respiratory Health Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, West Virginia, USA
| | - Ulla Haverinen-Shaughnessy
- Indoor Air Program, The University of Tulsa, Tulsa, Oklahoma, USA
- Faculty of Technology, Civil Engineering Research Unit, The University of Oulu, Oulu, Finland
| |
Collapse
|
29
|
Coulburn L, Miller W. Prevalence, Risk Factors and Impacts Related to Mould-Affected Housing: An Australian Integrative Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:1854. [PMID: 35162876 PMCID: PMC8835129 DOI: 10.3390/ijerph19031854] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/31/2022] [Accepted: 02/02/2022] [Indexed: 11/25/2022]
Abstract
In response to an Australian governmental inquiry into biotoxin-related illness, the purpose of this integrative review is to bring together the current state of evidence on the prevalence, risk factors and impacts related to mould-affected housing in an Australian context, in order to inform building, housing and health research, practice and policy. The robust integrative review methodology simultaneously sought quantitative and qualitative studies and grey literature from multiple disciplines, identifying only 45 studies directly relating to Australian housing and indoor mould. Twenty-one studies highlight negative health impacts relating to indoor residential mould, with asthma, respiratory, allergy conditions and emerging health concerns for chronic multiple-symptom presentation. The majority of studies reported risk factors for indoor mould including poor housing conditions, poor-quality rental accommodation, socioeconomic circumstance, age-related housing issues and concerns for surface/interstitial condensation and building defects in newer housing. Risks for indoor mould in both older and newer housing raise concerns for the extent of the problem of indoor mould in Australia. Understanding the national prevalence of housing risks and "root cause" associated with indoor mould is not conclusive from the limited existing evidence. Synthesis of this evidence reveals a lack of coverage on: (1) national and geographical representation, (2) climatical coverage, (3) housing typologies, (4) housing defects, (5) maintenance, (6) impact from urbanisation, and (7) occupant's behaviour. This integrative review was key in identifying emerging housing and health concerns, highlighting gaps in data and implications to be addressed by researchers, practice and policy and acts as a comprehensive holistic review process that can be applied to other countries.
Collapse
Affiliation(s)
- Lisa Coulburn
- School of Architecture and Built Environment, Faculty of Engineering, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Wendy Miller
- School of Architecture and Built Environment, Faculty of Engineering, Queensland University of Technology, Brisbane, QLD 4000, Australia
| |
Collapse
|
30
|
Effects of Future Climate Change and Adaptation Measures on Summer Comfort of Modern Homes across the Regions of the UK. ENERGIES 2022. [DOI: 10.3390/en15020512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The global climate is warming rapidly, with increasing frequency of severe events including heatwaves. Building insulation standards are improving to reduce emissions, but this can also lead to more overheating. Historically, UK house designers have not included adaptation measures to limit this. Most studies of the problem have had limited geographical or future climate scope. This study considers the comfort performance of a small modern house, in detached, semi-detached, and terrace (row) forms, but otherwise identical. Overheating is evaluated according to established criteria, including night-time bedroom hours over 26 °C. Simulations are carried out using median future weather years for current, 2030s, 2050s, and 2080s climates under medium- and high-emission scenarios for 14 regions of the UK. The results show a very large increase in overheating by the 2080s in all regions. With solar shading and natural ventilation, overheating is reduced considerably, maintaining comfort in most northern regions in the 2050s and a few northern regions in the 2080s. Differences between medium and high emissions are generally less than between different decades. Terraced (row) houses consistently overheat slightly more than semi-detached, with detached showing the least overheating.
Collapse
|
31
|
Assessment of Indoor Air Quality in Residential Buildings of New England through Actual Data. SUSTAINABILITY 2022. [DOI: 10.3390/su14020739] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Several studies on indoor air quality (IAQ) and sick building syndromes have been completed over the last decade, especially in cold countries. Efforts to make homes airtight to improve energy efficiency have created buildings with low ventilation rates, resulting in the build-up of indoor pollutants to harmful levels that would be otherwise unacceptable outdoors. This paper analyzed the infiltration rates, indoor temperatures, and variations in CO2, 2.5 μm particulate matter (PM2.5), and total volatile organic compound (TVOC) concentrations over the fall of 2021 in several homes in New England, USA. A relationship between outdoor and indoor conditions and ventilation strategies has been set using the results from blower door tests and actual indoor air quality data. Although all case studies lacked mechanical ventilation devices, such as those required by ASHRAE Standard 62.2, natural ventilation and air leakage have been enough to keep VOCs and PM2.5 concentration levels at acceptable values most of the studied time. However, results revealed that 25% of a specific timeframe, the occupants have been exposed to concentration levels of CO2 above 1000 parts per million (ppm), which are considered potentially hazardous conditions.
Collapse
|
32
|
The Impact of Climate Change on Primary Air Treatment Processes and Energy Demand in Air Conditioning Systems—A Case Study from Warsaw, Poland. ENERGIES 2022. [DOI: 10.3390/en15010355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
This article presents the impact of climate change on air treatment processes and energy demand in a selected air-conditioning system. The analysis was performed for a system supplying rooms with pre-treated primary air. Further treatment occurred directly in the rooms with individual devices such as fan coils or chilled beams. The analysis of the second stage of air treatment was not part of this study. The calculations were made for the city of Warsaw, where, according to the climate analysis for the period 1961–2020, an increase in outside temperature by 0.4 °C per decade and an increase in air humidity by 0.2 g/kg per decade were observed. The system analysis was divided into two stages. The first, including calculations made for monthly average climate data for the entire period of 1961–2020, shows changes in the energy demand of the system, resulting from progressive climate change. This analysis confirmed the general tendency of increasing demand for cooling energy and decreasing demand for heating energy, which is also observed in many other regions of the world. The second stage, based on calculations for hourly climate data in selected years, is an analysis of the operation of all elements of the system equipment. Research has identified areas that will have an increasing impact on the energy efficiency of the whole air condition system during further climate change.
Collapse
|
33
|
Aldridge RW, Pineo H, Fragaszy E, Eyre MT, Kovar J, Nguyen V, Beale S, Byrne T, Aryee A, Smith C, Devakumar D, Taylor J, Katikireddi SV, Fong WLE, Geismar C, Patel P, Shrotri M, Braithwaite I, Patni N, Navaratnam AM, Johnson AM, Hayward A. Household overcrowding and risk of SARS-CoV-2: analysis of the Virus Watch prospective community cohort study in England and Wales. Wellcome Open Res 2021; 6:347. [PMID: 38807847 PMCID: PMC11130583 DOI: 10.12688/wellcomeopenres.17308.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/24/2021] [Indexed: 05/30/2024] Open
Abstract
Background: Household overcrowding is associated with increased risk of infectious diseases across contexts and countries. Limited data exist linking household overcrowding and risk of COVID-19. We used data collected from the Virus Watch cohort to examine the association between overcrowded households and SARS-CoV-2. Methods: The Virus Watch study is a household community cohort of acute respiratory infections in England and Wales. We calculated overcrowding using the measure of persons per room for each household. We considered two primary outcomes: PCR-confirmed positive SARS-CoV-2 antigen tests and laboratory-confirmed SARS-CoV-2 antibodies. We used mixed-effects logistic regression models that accounted for household structure to estimate the association between household overcrowding and SARS-CoV-2 infection. Results:26,367 participants were included in our analyses. The proportion of participants with a positive SARS-CoV-2 PCR result was highest in the overcrowded group (9.0%; 99/1,100) and lowest in the under-occupied group (4.2%; 980/23,196). In a mixed-effects logistic regression model, we found strong evidence of an increased odds of a positive PCR SARS-CoV-2 antigen result (odds ratio 2.45; 95% CI:1.43-4.19; p-value=0.001) and increased odds of a positive SARS-CoV-2 antibody result in individuals living in overcrowded houses (3.32; 95% CI:1.54-7.15; p-value<0.001) compared with people living in under-occupied houses. Conclusion:Public health interventions to prevent and stop the spread of SARS-CoV-2 should consider the risk of infection for people living in overcrowded households and pay greater attention to reducing household transmission.
Collapse
Affiliation(s)
- Robert W Aldridge
- Centre for Public Health Data Science, Institute of Health Informatics, University College London, London, NW1 2DA, UK
| | - Helen Pineo
- Institute for Environmental Design and Engineering, Bartlett School of Environment, Energy and Resources, University College London, London, WC1H 0NN, UK
| | - Ellen Fragaszy
- Centre for Public Health Data Science, Institute of Health Informatics, University College London, London, NW1 2DA, UK
- Institute of Epidemiology and Health Care, University College London, London, UK
- Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, UK
| | - Max T Eyre
- Centre of Health Informatics, Computing and Statistics, Lancaster Medical School, Lancaster University, Lancaster, UK
- Liverpool School of Tropical Medicine, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Jana Kovar
- Institute of Epidemiology and Health Care, University College London, London, UK
| | - Vincent Nguyen
- Centre for Public Health Data Science, Institute of Health Informatics, University College London, London, NW1 2DA, UK
| | - Sarah Beale
- Centre for Public Health Data Science, Institute of Health Informatics, University College London, London, NW1 2DA, UK
- Institute of Epidemiology and Health Care, University College London, London, UK
| | - Thomas Byrne
- Centre for Public Health Data Science, Institute of Health Informatics, University College London, London, NW1 2DA, UK
| | - Anna Aryee
- Centre for Public Health Data Science, Institute of Health Informatics, University College London, London, NW1 2DA, UK
| | - Colette Smith
- Institute for Global Health, University College London, London, UK
| | - Delan Devakumar
- Institute for Global Health, University College London, London, UK
| | - Jonathon Taylor
- Department of Civil Engineering, Tampere University, Tampere, Finland
| | - Srinivasa Vittal Katikireddi
- MRC/CSO Social and Public Health Sciences Unit, University of Glasgow Institute of Health and Wellbeing,, University of Glasgow, Glasgow, UK
| | - Wing Lam Erica Fong
- Centre for Public Health Data Science, Institute of Health Informatics, University College London, London, NW1 2DA, UK
| | - Cyril Geismar
- Centre for Public Health Data Science, Institute of Health Informatics, University College London, London, NW1 2DA, UK
- Institute of Epidemiology and Health Care, University College London, London, UK
| | - Parth Patel
- Centre for Public Health Data Science, Institute of Health Informatics, University College London, London, NW1 2DA, UK
| | - Madhumita Shrotri
- Centre for Public Health Data Science, Institute of Health Informatics, University College London, London, NW1 2DA, UK
| | - Isobel Braithwaite
- Centre for Public Health Data Science, Institute of Health Informatics, University College London, London, NW1 2DA, UK
| | - Nicholas Patni
- University of Oxford Medical School, Medical Sciences Divisional Office, University of Oxford, Oxford, UK
| | - Annalan M.D. Navaratnam
- Centre for Public Health Data Science, Institute of Health Informatics, University College London, London, NW1 2DA, UK
| | - Anne M. Johnson
- Institute for Global Health, University College London, London, UK
| | - Andrew Hayward
- Institute of Epidemiology and Health Care, University College London, London, UK
| |
Collapse
|
34
|
Indoor Environmental Quality Evaluation Strategy as an Upgrade (Renovation) Measure in a Historic Building Located in the Mediterranean Zone (Athens, Greece). APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app112110133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The assessment of indoor environmental quality in historic buildings converted to museums is a significant tool in deep energy renovation processes, as it provides insights for the microclimatic conditions in the interiors of the building where vast numbers of visitors walk every year and where artifacts that are vulnerable to pollution are exhibited. In this work, aiming to contribute to the development of an energy retrofitting protocol applied in the Mediterranean region (HAPPEN MedZeb protocol) for museums hosted in historic buildings by providing useful data, an experimental campaign to evaluate the indoor environmental quality of a museum housed in a historic building located in Athens took place from February 2019 to April 2021 and was divided into two periods. The findings revealed high concentrations of volatile organic compounds as well as poor thermal comfort levels since the sensors recorded low acceptable percentages of T values within the limits from 7 to 33% for the entire experimental period. Based on the findings, recommendations for retrofitting interventions are made.
Collapse
|
35
|
Tischer C, Karvonen AM, Kirjavainen PV, Flexeder C, Roponen M, Hyvärinen A, Renz H, Frey UP, Fuchs O, Pekkanen J. Early age exposure to moisture and mould is related to FeNO at the age of 6 years. Pediatr Allergy Immunol 2021; 32:1226-1237. [PMID: 33894090 DOI: 10.1111/pai.13526] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 04/16/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND Exposure to indoor moisture damage and visible mold has been found to be associated with asthma and respiratory symptoms in several questionnaire-based studies by self-report. We aimed to define the prospective association between the early life exposure to residential moisture damage or mold and fractional exhaled nitric oxide (FeNO) and lung function parameters as objective markers for airway inflammation and asthma in 6-year-old children. METHODS Home inspections were performed in children's homes when infants were on average 5 months old. At age 6 years, data on FeNO (n = 322) as well as lung function (n = 216) measurements were collected. Logistic regression and generalized additive models were used for statistical analyses. RESULTS Early age major moisture damage and moisture damage or mold in the child's main living areas were significantly associated with increased FeNO levels (>75th percentile) at the age of 6 years (adjusted odds ratios, 95% confidence intervals, aOR (95% CI): 3.10 (1.35-7.07) and 3.16 (1.43-6.98), respectively. Effects were more pronounced in those who did not change residential address throughout the study period. For lung function, major structural damage within the whole home was associated with reduced FEV1 and FVC, but not with FEV1/FVC. No association with lung function was observed with early moisture damage or mold in the child's main living areas. CONCLUSION These results underline the importance of prevention and remediation efforts of moisture and mold-damaged buildings in order to avoid harmful effects within the vulnerable phase of the infants and children's immunologic development.
Collapse
Affiliation(s)
- Christina Tischer
- Institute for Health Resort Medicine and Health Promotion, State Institute of Health, Bavarian Health and Food Safety Authority, Bad Kissingen, Germany.,Institute of Social Medicine and Health Systems Research (ISMHSR), Medical faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Anne M Karvonen
- Department of Health Security, Finnish Institute for Health and Welfare, Kuopio, Finland
| | - Pirkka V Kirjavainen
- Department of Health Security, Finnish Institute for Health and Welfare, Kuopio, Finland.,Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Claudia Flexeder
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Marjut Roponen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Anne Hyvärinen
- Department of Health Security, Finnish Institute for Health and Welfare, Kuopio, Finland
| | - Harald Renz
- Institute of Laboratory Medicine, Philipps University of Marburg, Marburg, Germany.,German Center for Lung Research (DZL), Marburg, Germany
| | - Urs Peter Frey
- Department of Pediatrics, Division of Pediatric Pulmonology and Allergology, University Children's Hospital, University of Bern, Bern, Switzerland
| | - Oliver Fuchs
- Department of Pediatrics, Division of Pediatric Pulmonology and Allergology, University Children's Hospital, University of Bern, Bern, Switzerland.,University Children's Hospital (UKBB), University of Basel, Basel, Switzerland.,Department for Biomedical Research, University of Bern, Bern, Switzerland.,Department of Pediatric Pulmonology & Allergology, University Childrens's Hospital Schleswig-Holstein Campus Lübeck, Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Lübeck, Germany
| | - Juha Pekkanen
- Department of Health Security, Finnish Institute for Health and Welfare, Kuopio, Finland.,Department of Public Health, University of Helsinki, Helsinki, Finland
| |
Collapse
|
36
|
Kelepertzis E, Chrastný V, Botsou F, Sigala E, Kypritidou Z, Komárek M, Skordas K, Argyraki A. Tracing the sources of bioaccessible metal(loid)s in urban environments: A multidisciplinary approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 771:144827. [PMID: 33529817 DOI: 10.1016/j.scitotenv.2020.144827] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/21/2020] [Accepted: 12/21/2020] [Indexed: 06/12/2023]
Abstract
Understanding the links between sources of magnetic particles and bioaccessibility of metal(loids) in environmental sampling media is crucial for better evaluating human health risks, although relevant information in the scientific literature is scarce. Here, soil, road and house dust samples from a heavy industrial area in Greece were characterized in a multidisciplinary study combining magnetic measurements, SEM/EDS analyses, bioaccessibility measurements and Pb isotopic analyses of bioaccessible Pb. The oral and inhalable bioaccessible fractions of As, Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn were assessed by applying simulated gastric and lung solutions. SEM/EDS analysis revealed the abundant presence of anthropogenic Fe-containing spherules of industrial origin in all sampling media, often containing minor contents of Cr, Cu, Mn, Pb and Zn. The inhalation bioaccessibility (%) in all environmental compartments was higher than the oral one for most elements analyzed in the present study. Clear associations between magnetic susceptibility and bioaccessible amounts of most of analyzed elements were encountered for the soil and road dust. The isotopic analyses of bioaccessible Pb showed that there are significant differences in the isotopic ratios between total and bioaccessible Pb. We conclude that Pb solubilized by the simulated gastric and lung extractions is principally anthropogenic, representing a mixture of industrial Pb and Pb related to the past usage of leaded petrol. Low values of 206Pb/207Pb were accompanied by high bioaccessible contents of Cd, Pb and Zn indicating that anthropogenic (mostly industrial) sources exert influence on the bioaccessible forms of these metals. Coupling magnetic and bioaccessibility measurements with stable isotopic technique of bioaccessible Pb is more reliable for determining Pb and other metal sources with high oral and inhalation bioaccessibility.
Collapse
Affiliation(s)
- Efstratios Kelepertzis
- Department of Geology and Geoenvironment, National and Kapodistrian University of Athens, Panepistimiopolis, Zographou, 15784 Athens, Greece.
| | - Vladislav Chrastný
- Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague-Suchdol, Czech Republic
| | - Fotini Botsou
- Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Zographou, 157 84 Athens, Greece
| | - Evangelia Sigala
- Department of Geology and Geoenvironment, National and Kapodistrian University of Athens, Panepistimiopolis, Zographou, 15784 Athens, Greece
| | - Zacharenia Kypritidou
- Department of Geology and Geoenvironment, National and Kapodistrian University of Athens, Panepistimiopolis, Zographou, 15784 Athens, Greece
| | - Michael Komárek
- Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague-Suchdol, Czech Republic
| | - Konstantinos Skordas
- Department of Ichthyology and Aquatic Environment, School of Agricultural Sciences, University of Thessaly, Volos, Greece
| | - Ariadne Argyraki
- Department of Geology and Geoenvironment, National and Kapodistrian University of Athens, Panepistimiopolis, Zographou, 15784 Athens, Greece
| |
Collapse
|
37
|
Health and Housing Energy Expenditures: A Two-Part Model Approach. Processes (Basel) 2021. [DOI: 10.3390/pr9060943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Interest in the interaction between energy and health within the built environment has been increasing in recent years, in the context of sustainable development. However, in order to promote health and wellbeing across all ages it is necessary to have a better understanding of the association between health and energy at household level. This study contributes to this debate by addressing the case of Portugal using data from the Household Budget Survey (HBS) microdata database. A two-part model is applied to estimate health expenditures based on energy-related expenditures, as well as socioeconomic variables. Additional statistical methods are used to enhance the perception of relevant predictors for health expenditures. Our findings suggest that given the high significance and coefficient value, energy expenditure is a relevant explanatory variable for health expenditures. This result is further validated by a dominance analysis ranking. Moreover, the results show that health gains and medical cost reductions can be a key factor to consider on the assessment of the economic viability of energy efficiency projects in buildings. This is particularly relevant for the older and low-income segments of the population.
Collapse
|
38
|
Fazli T, Dong X, Fu JS, Stephens B. Predicting U.S. Residential Building Energy Use and Indoor Pollutant Exposures in the Mid-21st Century. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:3219-3228. [PMID: 33591182 DOI: 10.1021/acs.est.0c06308] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The extent to which climate change and other factors will influence building energy use and population exposures to indoor pollutants is not well understood. Here, we develop and apply nationally representative residential energy and indoor pollutant model sets to estimate energy use, indoor pollutant concentrations, and associated chronic health outcomes across the U.S. residential building stock in the mid-21st century. The models incorporate expected changes in meteorological and ambient air quality conditions associated with IPCC RCP 8.5 and assumptions for changes in housing characteristics and population movements while keeping other less predictable factors constant. Site and source energy consumption for residential space-conditioning are predicted to decrease by ∼37-43 and ∼20-31%, respectively, in the 2050s compared to those in a 2010s reference scenario. Population-average indoor concentrations of pollutants of ambient origin are expected to decrease, except for O3. Holding indoor emission factors constant, indoor concentrations of pollutants with intermittent indoor sources are expected to decrease by <5% (PM2.5) to >30% (NO2); indoor concentrations of pollutants with persistent indoor sources (e.g., volatile organic compounds (VOCs)) are predicted to increase by ∼15-45%. We estimate negligible changes in disability-adjusted life-years (DALYs) lost associated with residential indoor pollutant exposures, well within uncertainty, although the attribution among pollutants is predicted to vary.
Collapse
Affiliation(s)
- Torkan Fazli
- Department of Civil, Architectural, and Environmental Engineering, Illinois Institute of Technology, Chicago, Illinois 60616, United States
| | - Xinyi Dong
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, Knoxville, Tennessee 37996, United States
| | - Joshua S Fu
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, Knoxville, Tennessee 37996, United States
- Computational Earth Sciences Group, Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Brent Stephens
- Department of Civil, Architectural, and Environmental Engineering, Illinois Institute of Technology, Chicago, Illinois 60616, United States
| |
Collapse
|
39
|
Huy LN, Oanh NTK, Phuc NH, Nhung CP. Survey-based inventory for atmospheric emissions from residential combustion in Vietnam. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:10678-10695. [PMID: 33099731 DOI: 10.1007/s11356-020-11067-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 09/30/2020] [Indexed: 06/11/2023]
Abstract
Local questionnaire surveys were conducted to collect representative activity data for calculation of annual emissions from residential combustion in Red River Delta (RRD), Vietnam, for 2010-2015. Multistage statistical sampling was implemented in the surveys for Hanoi Metropolitan Region (HMR) and deep rural area of Ninh Binh province (Con Thoi, Ninh Binh (CTNB)). Emission factors were scrutinized to select relevant ranges and central values for typical cookstoves in RRD. Large differences in the activity data (cooking activities, fuel-stove types, and fuel consumption) were found between three HMR strata (urban, suburban, and rural populations) and CTNB, respectively, which resulted in distinctly different annual emissions per capita. Annual 2010 emissions from residential combustion in RRD were estimated for toxic pollutants, in Gg/year, of 217 for CO, 1.5 NOx, 7.4 SO2, 33 NMVOC, 3.7 NH3, 16.9 PM2.5, 1.4 BC, and 7.1 OC, along with 171 t/year of total PAHs with 0.7 t/year of BaP, and greenhouse gases of 5395 CO2, 17.2 CH4, and 0.7 N2O Gg/year. Emissions increased by 1.5-7.8%, varying with species, over the 6-year period. Prevalent use of crop residue in CTNB induced its dominant shares in the residential combustion emissions not only in this deep rural area but also in the entire RRD domain. Spatial emission distribution exhibited high intensities over districts having high rural population density. Global warming potential results indicated the dominant role of black carbon, especially over the 20-year horizon. Switching from solid fuels to liquefied petroleum gas would reduce the emissions from this sector and bring in multiple benefits.
Collapse
Affiliation(s)
- Lai Nguyen Huy
- Air Pollution Research Group, Ton Duc Thang University, Ho Chi Minh City, Vietnam
- Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Vietnam
- Environmental Engineering and Management, Asian Institute of Technology, Pathumthani, Thailand
| | - Nguyen Thi Kim Oanh
- Air Pollution Research Group, Ton Duc Thang University, Ho Chi Minh City, Vietnam.
- Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Vietnam.
| | - Nguyen Hong Phuc
- Air Pollution Research Group, Ton Duc Thang University, Ho Chi Minh City, Vietnam
- Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Vietnam
- Environmental Engineering and Management, Asian Institute of Technology, Pathumthani, Thailand
| | - Chu Phuong Nhung
- Environmental Engineering and Management, Asian Institute of Technology, Pathumthani, Thailand
- Faculty of Civil Engineering, University of Transport Technology, Hanoi, Vietnam
| |
Collapse
|
40
|
Du C, Li B, Yu W, Cai J, Wang L, Li X, Yao Y, Li B. Evaluating the effect of building construction periods on household dampness/mold and childhood diseases corresponding to different energy efficiency design requirements. INDOOR AIR 2021; 31:541-556. [PMID: 32731305 DOI: 10.1111/ina.12723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/31/2020] [Accepted: 07/19/2020] [Indexed: 06/11/2023]
Abstract
Despite concerns about building dampness and children' health, few studies have examined the effects of building energy efficiency standards. This study explored the connections between self-reported household dampness and children' adverse health outcomes across buildings corresponding to construction periods (pre-2001, 2001-2010, post-2010). Significant differences of dampness-related indicators were found between buildings; the prevalence was remarkable in pre-2001 buildings. The prevalence of lifetime-ever doctor-diagnosed diseases for children was significantly associated with building dampness (adjust odd ratios > 1), but was not affected by construction periods. The hygrothermal performance for a typical residence was simulated, varying in U-values of envelopes and air change rates. The simulated performance improvement increased indoor temperatures in 2001-2010 and post-2010 buildings. The frequency with higher indoor relative humidity was higher in pre-2001 buildings, leading to the highest values for maximum mold index (Mmax ) on wall surface, especially in winter. Compared to buildings in 2001-2010, increased insulation and lower air change rate led to a relatively higher relative humidity in post-2010 buildings, adversely increasing the Mmax values. The findings addressed the positive and negative role of building standard development, which help suggesting appropriate environmental and design solutions to trade-off energy savings and dampness/mold risk in residences.
Collapse
Affiliation(s)
- Chenqiu Du
- Joint International Research Laboratory of Green Buildings and Built Environments, Ministry of Education, Chongqing University, Chongqing, China
- National Centre for International Research of Low-carbon and Green Buildings, Ministry of Science and Technology, Chongqing University, Chongqing, China
| | - Baizhan Li
- Joint International Research Laboratory of Green Buildings and Built Environments, Ministry of Education, Chongqing University, Chongqing, China
- National Centre for International Research of Low-carbon and Green Buildings, Ministry of Science and Technology, Chongqing University, Chongqing, China
| | - Wei Yu
- Joint International Research Laboratory of Green Buildings and Built Environments, Ministry of Education, Chongqing University, Chongqing, China
- National Centre for International Research of Low-carbon and Green Buildings, Ministry of Science and Technology, Chongqing University, Chongqing, China
| | - Jiao Cai
- Joint International Research Laboratory of Green Buildings and Built Environments, Ministry of Education, Chongqing University, Chongqing, China
- National Centre for International Research of Low-carbon and Green Buildings, Ministry of Science and Technology, Chongqing University, Chongqing, China
| | - Lexiang Wang
- Joint International Research Laboratory of Green Buildings and Built Environments, Ministry of Education, Chongqing University, Chongqing, China
- National Centre for International Research of Low-carbon and Green Buildings, Ministry of Science and Technology, Chongqing University, Chongqing, China
| | - Xinyi Li
- Department of Civil and Structural Engineering, Sheffield University, Sheffield, UK
| | - Yinghui Yao
- Joint International Research Laboratory of Green Buildings and Built Environments, Ministry of Education, Chongqing University, Chongqing, China
- National Centre for International Research of Low-carbon and Green Buildings, Ministry of Science and Technology, Chongqing University, Chongqing, China
| | - Bicheng Li
- Joint International Research Laboratory of Green Buildings and Built Environments, Ministry of Education, Chongqing University, Chongqing, China
- National Centre for International Research of Low-carbon and Green Buildings, Ministry of Science and Technology, Chongqing University, Chongqing, China
| |
Collapse
|
41
|
Indoor Exposure to Selected Air Pollutants in the Home Environment: A Systematic Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17238972. [PMID: 33276576 PMCID: PMC7729884 DOI: 10.3390/ijerph17238972] [Citation(s) in RCA: 129] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/22/2020] [Accepted: 11/27/2020] [Indexed: 11/17/2022]
Abstract
(1) Background: There is increasing awareness that the quality of the indoor environment affects our health and well-being. Indoor air quality (IAQ) in particular has an impact on multiple health outcomes, including respiratory and cardiovascular illness, allergic symptoms, cancers, and premature mortality. (2) Methods: We carried out a global systematic literature review on indoor exposure to selected air pollutants associated with adverse health effects, and related household characteristics, seasonal influences and occupancy patterns. We screened records from six bibliographic databases: ABI/INFORM, Environment Abstracts, Pollution Abstracts, PubMed, ProQuest Biological and Health Professional, and Scopus. (3) Results: Information on indoor exposure levels and determinants, emission sources, and associated health effects was extracted from 141 studies from 29 countries. The most-studied pollutants were particulate matter (PM2.5 and PM10); nitrogen dioxide (NO2); volatile organic compounds (VOCs) including benzene, toluene, xylenes and formaldehyde; and polycyclic aromatic hydrocarbons (PAHs) including naphthalene. Identified indoor PM2.5 sources include smoking, cooking, heating, use of incense, candles, and insecticides, while cleaning, housework, presence of pets and movement of people were the main sources of coarse particles. Outdoor air is a major PM2.5 source in rooms with natural ventilation in roadside households. Major sources of NO2 indoors are unvented gas heaters and cookers. Predictors of indoor NO2 are ventilation, season, and outdoor NO2 levels. VOCs are emitted from a wide range of indoor and outdoor sources, including smoking, solvent use, renovations, and household products. Formaldehyde levels are higher in newer houses and in the presence of new furniture, while PAH levels are higher in smoking households. High indoor particulate matter, NO2 and VOC levels were typically associated with respiratory symptoms, particularly asthma symptoms in children. (4) Conclusions: Household characteristics and occupant activities play a large role in indoor exposure, particularly cigarette smoking for PM2.5, gas appliances for NO2, and household products for VOCs and PAHs. Home location near high-traffic-density roads, redecoration, and small house size contribute to high indoor air pollution. In most studies, air exchange rates are negatively associated with indoor air pollution. These findings can inform interventions aiming to improve IAQ in residential properties in a variety of settings.
Collapse
|
42
|
Lee J, Yun S, Oh I, Kim MH, Kim Y. Impact of Environmental Factors on the Prevalence Changes of Allergic Diseases in Elementary School Students in Ulsan, Korea: A Longitudinal Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E8831. [PMID: 33261111 PMCID: PMC7731005 DOI: 10.3390/ijerph17238831] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 11/21/2020] [Accepted: 11/25/2020] [Indexed: 12/12/2022]
Abstract
We examined the effect of long-term changes in environmental factors on the prevalence of allergic diseases in elementary school students in Ulsan, Korea. This longitudinal study was conducted among 390 students who were enrolled from three elementary schools in Ulsan in both the first (2009-2010) and second survey (2013-2014). The International Study of Asthma and Allergies in Childhood questionnaire was used to determine the prevalence of allergic diseases and hazardous environmental factors. Generalized estimating equations (GEE) were used to investigate the impact of environmental factors on the change in the prevalence of allergic diseases. The survey revealed that an increased risk of allergic rhinitis was associated with exposure to secondhand smoke, the remodeling of a room, the replacement of wallpaper or flooring, the use of a humidifier, and irritation symptoms of air pollution. Atopic dermatitis was associated with the relocation to or repairs of a new house, and allergic conjunctivitis was associated with low levels of weekly physical activity, the use of insecticides, and irritation symptoms of air pollution. The results indicate that (1) allergic rhinitis and atopic dermatitis are associated with indoor pollution, (2) allergic conjunctivitis is associated with exposure to indoor chemical compounds and low levels of weekly physical activity. This study suggested that the proper evaluation and decrease in the number of environmental risk factors could effectively manage allergic diseases.
Collapse
Affiliation(s)
- Jiho Lee
- Department of Occupational and Environmental Medicine, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan 44033, Korea;
- Environmental Health Center, University of Ulsan College of Medicine, Ulsan 44033, Korea;
| | - Seokhyun Yun
- Department of Occupational and Environmental Medicine, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan 44033, Korea;
| | - Inbo Oh
- Environmental Health Center, University of Ulsan College of Medicine, Ulsan 44033, Korea;
| | - Min-ho Kim
- Department of Informatics, Ewha Womans University Seoul Hospital, Seoul 07804, Korea;
| | - Yangho Kim
- Department of Occupational and Environmental Medicine, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan 44033, Korea;
- Environmental Health Center, University of Ulsan College of Medicine, Ulsan 44033, Korea;
| |
Collapse
|
43
|
Brait VH. Climate change is a fundamental factor in the relationship between buildings and health. J Public Health (Oxf) 2020; 42:e578-e579. [PMID: 31832670 DOI: 10.1093/pubmed/fdz150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 08/23/2019] [Accepted: 09/17/2019] [Indexed: 11/13/2022] Open
Affiliation(s)
- Vanessa Helena Brait
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
44
|
Climate Change Effects on Belgian Households: A Case Study of a Nearly Zero Energy Building. ENERGIES 2020. [DOI: 10.3390/en13205357] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Overheating in residential building is a challenging problem that causes thermal discomfort, productivity reduction, and health problems. This paper aims to assess the climate change impact on thermal comfort in a Belgian reference case. The case study represents a nearly zero energy building that operates without active cooling during summer. The study quantifies the impact of climate change on overheating risks using three representative concentration pathway (RCP) trajectories for greenhouse gas concentration adopted by the Intergovernmental Panel on Climate Change (IPCC). Building performance analysis is carried out using a multizone dynamic simulation program EnergyPlus. The results show that bioclimatic and thermal adaptation strategies, including adaptive thermal comfort models, cannot suppress the effect of global warming. By 2050, zero energy buildings will be vulnerable to overheating.
Collapse
|
45
|
Dwelling Characteristics Influence Indoor Temperature and May Pose Health Threats in LMICs. Ann Glob Health 2020; 86:91. [PMID: 32832385 PMCID: PMC7413138 DOI: 10.5334/aogh.2938] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Background: Shelter and safe housing is a basic human need that brings about a sense of ownership, self-sufficiency, and citizenship. Millions of people around the world live in inadequate dwellings in unhealthy areas, such as urban slums. These dwellings may experience indoor temperatures that impact inhabitants’ health. Indoor dwelling temperatures vary depending on many factors including geographic location, such as inland versus coastal. In an era of climate change, understanding how dwelling characteristics influence indoor temperature is important, especially in low- and middle-income countries, to protect health. Objective: To assess indoor temperature in low-cost dwellings located in a coastal setting in relation to dwelling characteristics. Methods: Indoor temperature and relative humidity loggers were installed from 1 June 2017 to 15 May 2018 in 50 dwellings in two settlements in a coastal town on the east coast of South Africa. Ambient outdoor temperature data were obtained from the national weather service, indoor temperature data were converted into apparent temperature, and heat index calculations were made to consider possible heat-health risks. A household questionnaire and dwelling observation assessment were administered. A mixed-effects linear regression model was constructed to consider the impact of dwelling characteristics on indoor apparent temperature. Findings: Among 17 dwellings with all data sets, indoor temperatures were consistently higher than, and well correlated (r = 0.92) with outdoor temperatures. Average differences in indoor and outdoor temperatures were about 4°C, with statistically significant differences in percentage difference of indoor/outdoor between seasons (p < 0.001). Heat indices for indoor temperatures were exceeded mostly in summer, thereby posing possible health risks. Dwellings with cement floors were statistically significantly cooler than any other floor type across all seasons. Conclusions: Low-cost dwellings experienced temperatures indoors higher than outdoor temperatures in part due to floor type. These results help inform interventions that consider housing and human health (n = 289).
Collapse
|
46
|
Energy Saving: Views and Attitudes among Primary School Students and Their Parents. SUSTAINABILITY 2020. [DOI: 10.3390/su12156206] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The ongoing economic development and prosperity have led not only to the exhaustion of the planet’s natural resources but also to numerous environmental problems. To address these problems, it is necessary that more individuals adopt energy saving practices while promoting alternative energy sources. In other words, future generations ought to adopt behaviors that will involve the sustainable management of energy. To that end, sustainable education can create citizens who not only have knowledge and awareness about the environment and the severe environmental issues but are also willing to take action to address these issues. Hence, the aim of the present study is to investigate the environmental attitudes and behaviors among primary school students and their parents in the municipality of Orestiada, in Greece. To achieve this objective, a structured questionnaire with closed-ended questions was used. Results showed that both students and parents had adequate levels of environmental awareness while their beliefs were translated into actual behaviors as they had adopted, to a significant extent, energy saving habits and practices.
Collapse
|
47
|
A Review of the Relation between Household Indoor Temperature and Health Outcomes. ENERGIES 2020. [DOI: 10.3390/en13112881] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This paper provides a review of research that addresses the relationship between indoor temperatures and health outcomes, taking into consideration studies that focus heat or cold exposure within the household context. It aims to extend previous research by considering both indoor temperatures from existing housing, and empirical studies that focus on energy efficiency measures and subsequent health impacts. To achieve this aim, a literature review was undertaken, combining engineering and health databases. The review established that, overall, inadequate indoor temperatures are associated with poor health status, whereas energy efficiency measures have been associated to improved indoor temperatures and occupant’s health namely regarding cardiovascular, respiratory and mental health disorders. These health conditions are among the most prevalent non-communicable diseases (NCD). The review also highlighted the need for more empirical studies with an extended timeframe to deal with climate change challenges. It underlined the potential advantages of the convergence between health and energy efficiency studies, for better modelling and planning.
Collapse
|
48
|
McKinnon G, Pineo H, Chang M, Taylor-Green L, Strategy AJ, Toms R. Strengthening the links between planning and health in England. BMJ 2020; 369:m795. [PMID: 32299809 PMCID: PMC7190367 DOI: 10.1136/bmj.m795] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Gemma McKinnon and colleagues argue that multidisciplinary action in planning and health will contribute to more equitable communities and improved health and wellbeing
Collapse
Affiliation(s)
- Gemma McKinnon
- Warwickshire County Council, Warwick, UK
- Health and Wellbeing in Planning Network, London, UK
| | | | - Michael Chang
- Health and Wellbeing in Planning Network, London, UK
- World Health Organization Collaborating Centre for Healthy Urban Environments, Bristol, UK
- Public Health England, London UK
| | | | | | | |
Collapse
|
49
|
Abstract
As the climate changes globally and locally, the built environment will be subject to different climatic exposure than in the past. Adaptation measures are required to ensure the long-term integrity and successful operation of the built environment. This study examines literature on climate adaptation measures for buildings through a scoping literature review. It is centered around the main journals in the field of climate adaptation of the built environment, then expanded to map the extent of scientific publications about climate adaptation in general. Studies that regard future climate scenarios have been of particular interest. The majority of the identified literature concerns climate change impacts on buildings in warm climates, with overheating being seen as the greatest challenge. Additionally, few empirical studies are found; most identified research is based on computer simulations or literature reviews. The volume of research on the consequences of climate change on buildings in cold regions is surprisingly small, considering the pecuniary stakes involved. The predictions of climate scenarios suggest regulatory/policy measures on climate adaptation should be taken as quickly as possible to avoid greater costs in the future. However, further research into future scenarios is also essential.
Collapse
|
50
|
Lademann J, Richter H, Patzelt A, Meinke MC, Gross I, Grether-Beck S, Krutmann J, Frazier L, Darvin ME. Laser scanning microscopy for control of skin decontamination efficacy from airborne particulates using highly absorbent textile nanofiber material in combination with PEG-12 dimethicone. Skin Res Technol 2020; 26:558-563. [PMID: 31919922 DOI: 10.1111/srt.12830] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 12/18/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND The decontamination of the skin is indispensable if airborne particulate contaminants deposit on the skin surface. Skin washing can have adverse effects as by skin rubbing the particles can be transferred deeply into the hair follicles, where they can be entrapped for a period of more than 10 days. Thus, alternative skin decontamination strategies are necessary. MATERIALS AND METHODS For imaging the contaminants in the skin, sodium fluorescein-labeled soot particles of submicron size (≈600 nm) were visualized using laser scanning microscopy. RESULTS In the present ex vivo pilot study on porcine ear skin, it was shown that sodium fluorescein-labeled soot particles of submicron size (≈600 nm) could be efficiently removed from the skin with highly absorbent textile nanofiber material, whose efficacy could be further increased by spraying the contaminated skin area with the viscous fluid PEG-12 dimethicone before textile application. CONCLUSION In case of skin contamination with particulates, the contact washing should be avoided due to rubbing particles deeply into the hair follicles, where they can accumulate for a long time and induce negative consequences. Efficient skin decontamination could include pretreatment of skin surface with the viscous fluid PEG-12 dimethicone and subsequent application of highly absorbent textile nanofiber material.
Collapse
Affiliation(s)
- Juergen Lademann
- Department of Dermatology, Venereology and Allergology, Center of Experimental and Applied Cutaneous Physiology (CCP), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Heike Richter
- Department of Dermatology, Venereology and Allergology, Center of Experimental and Applied Cutaneous Physiology (CCP), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Alexa Patzelt
- Department of Dermatology, Venereology and Allergology, Center of Experimental and Applied Cutaneous Physiology (CCP), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Martina C Meinke
- Department of Dermatology, Venereology and Allergology, Center of Experimental and Applied Cutaneous Physiology (CCP), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | | | | | - Jean Krutmann
- IUF-Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | | | - Maxim E Darvin
- Department of Dermatology, Venereology and Allergology, Center of Experimental and Applied Cutaneous Physiology (CCP), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|