1
|
Fan Y, Sun N, Lv S, Jiang H, Zhang Z, Wang J, Xie Y, Yue X, Hu B, Ju B, Yu P. Prediction of developmental toxic effects of fine particulate matter (PM 2.5) water-soluble components via machine learning through observation of PM 2.5 from diverse urban areas. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174027. [PMID: 38906297 DOI: 10.1016/j.scitotenv.2024.174027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/09/2024] [Accepted: 06/13/2024] [Indexed: 06/23/2024]
Abstract
The global health implications of fine particulate matter (PM2.5) underscore the imperative need for research into its toxicity and chemical composition. In this study, zebrafish embryos exposed to the water-soluble components of PM2.5 from two cities (Harbin and Hangzhou) with differences in air quality, underwent microscopic examination to identify primary target organs. The Harbin PM2.5 induced dose-dependent organ malformation in zebrafish, indicating a higher level of toxicity than that of the Hangzhou sample. Harbin PM2.5 led to severe deformities such as pericardial edema and a high mortality rate, while the Hangzhou sample exhibited hepatotoxicity, causing delayed yolk sac absorption. The experimental determination of PM2.5 constituents was followed by the application of four algorithms for predictive toxicological assessment. The random forest algorithm correctly predicted each of the effect classes and showed the best performance, suggesting that zebrafish malformation rates were strongly correlated with water-soluble components of PM2.5. Feature selection identified the water-soluble ions F- and Cl- and metallic elements Al, K, Mn, and Be as potential key components affecting zebrafish development. This study provides new insights into the developmental toxicity of PM2.5 and offers a new approach for predicting and exploring the health effects of PM2.5.
Collapse
Affiliation(s)
- Yang Fan
- Department of Medical Oncology of the Second Affiliated Hospital, Department of Toxicology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Nannan Sun
- Hangzhou SanOmics AI Co., Ltd, Hangzhou 311103, China
| | - Shenchong Lv
- Department of Medical Oncology of the Second Affiliated Hospital, Department of Toxicology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Hui Jiang
- Department of Medical Oncology of the Second Affiliated Hospital, Department of Toxicology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Ziqing Zhang
- Department of Medical Oncology of the Second Affiliated Hospital, Department of Toxicology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Junjie Wang
- Department of Medical Oncology of the Second Affiliated Hospital, Department of Toxicology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yiyi Xie
- Department of Medical Oncology of the Second Affiliated Hospital, Department of Toxicology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xiaomin Yue
- Department of Biophysics, Zhejiang University School of Medicine, Hangzhou 310058, China; Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Baolan Hu
- College of Environmental Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Bin Ju
- Hangzhou SanOmics AI Co., Ltd, Hangzhou 311103, China.
| | - Peilin Yu
- Department of Medical Oncology of the Second Affiliated Hospital, Department of Toxicology, Zhejiang University School of Medicine, Hangzhou 310058, China.
| |
Collapse
|
2
|
Kadelbach P, Weinmayr G, Chen J, Jaensch A, Rodopoulou S, Strak M, de Hoogh K, Andersen ZJ, Bellander T, Brandt J, Cesaroni G, Fecht D, Forastiere F, Gulliver J, Hertel O, Hoffmann B, Hvidtfeldt UA, Katsouyanni K, Ketzel M, Leander K, Ljungman P, Magnusson PKE, Pershagen G, Rizzuto D, Samoli E, Severi G, Stafoggia M, Tjønneland A, Vermeulen R, Peters A, Wolf K, Raaschou-Nielsen O, Brunekreef B, Hoek G, Zitt E, Nagel G. Long-term exposure to air pollution and chronic kidney disease-associated mortality-Results from the pooled cohort of the European multicentre ELAPSE-study. ENVIRONMENTAL RESEARCH 2024; 252:118942. [PMID: 38649012 DOI: 10.1016/j.envres.2024.118942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/12/2024] [Accepted: 04/13/2024] [Indexed: 04/25/2024]
Abstract
Despite the known link between air pollution and cause-specific mortality, its relation to chronic kidney disease (CKD)-associated mortality is understudied. Therefore, we investigated the association between long-term exposure to air pollution and CKD-related mortality in a large multicentre population-based European cohort. Cohort data were linked to local mortality registry data. CKD-death was defined as ICD10 codes N18-N19 or corresponding ICD9 codes. Mean annual exposure at participant's home address was determined with fine spatial resolution exposure models for nitrogen dioxide (NO2), black carbon (BC), ozone (O3), particulate matter ≤2.5 μm (PM2.5) and several elemental constituents of PM2.5. Cox regression models were adjusted for age, sex, cohort, calendar year of recruitment, smoking status, marital status, employment status and neighbourhood mean income. Over a mean follow-up time of 20.4 years, 313 of 289,564 persons died from CKD. Associations were positive for PM2.5 (hazard ratio (HR) with 95% confidence interval (CI) of 1.31 (1.03-1.66) per 5 μg/m3, BC (1.26 (1.03-1.53) per 0.5 × 10- 5/m), NO2 (1.13 (0.93-1.38) per 10 μg/m3) and inverse for O3 (0.71 (0.54-0.93) per 10 μg/m3). Results were robust to further covariate adjustment. Exclusion of the largest sub-cohort contributing 226 cases, led to null associations. Among the elemental constituents, Cu, Fe, K, Ni, S and Zn, representing different sources including traffic, biomass and oil burning and secondary pollutants, were associated with CKD-related mortality. In conclusion, our results suggest an association between air pollution from different sources and CKD-related mortality.
Collapse
Affiliation(s)
- Pauline Kadelbach
- Institute of Epidemiology and Medical Biometry, Ulm University, Ulm, Germany.
| | - Gudrun Weinmayr
- Institute of Epidemiology and Medical Biometry, Ulm University, Ulm, Germany.
| | - Jie Chen
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Andrea Jaensch
- Institute of Epidemiology and Medical Biometry, Ulm University, Ulm, Germany
| | - Sophia Rodopoulou
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Maciej Strak
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands; National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Kees de Hoogh
- Swiss Tropical and Public Health Institute, Basel, Switzerland; University of Basel, Basel, Switzerland
| | - Zorana J Andersen
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Tom Bellander
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, SE-171 77, Sweden
| | - Jørgen Brandt
- Department of Environmental Science, Aarhus University, Roskilde, Denmark; iClimate-interdisciplinary Centre for Climate Change, Aarhus University, Roskilde, Denmark
| | - Giulia Cesaroni
- Department of Epidemiology, Lazio Region Health Service/ASL Roma 1, Rome, Italy
| | - Daniela Fecht
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, United Kingdom
| | - Francesco Forastiere
- Department of Epidemiology, Lazio Region Health Service/ASL Roma 1, Rome, Italy; Environmental Research Group, School of Public Health, Faculty of Medicine, Imperial College, London, United Kingdom
| | - John Gulliver
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, United Kingdom; Centre for Environmental Health and Sustainability & School of Geography, Geology and the Environment, University of Leicester, Leicester, United Kingdom
| | - Ole Hertel
- Faculty of Technical Sciences, Aarhus University, Roskilde, Denmark
| | - Barbara Hoffmann
- Institute for Occupational, Social and Environmental Medicine, Centre for Health and Society, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | | | - Klea Katsouyanni
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece; MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, United Kingdom
| | - Matthias Ketzel
- Department of Environmental Science, Aarhus University, Roskilde, Denmark; Global Centre for Clean Air Research (GCARE), University of Surrey, Guildford, GU2 7XH, United Kingdom
| | - Karin Leander
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, SE-171 77, Sweden
| | - Petter Ljungman
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, SE-171 77, Sweden; Department of Cardiology, Danderyd University Hospital, 182 88, Stockholm, Sweden
| | - Patrik K E Magnusson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Göran Pershagen
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, SE-171 77, Sweden
| | - Debora Rizzuto
- Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet and Stockholm University, Stockholm, Sweden; Stockholm Gerontology Research Center, Stockholm, Sweden
| | - Evangelia Samoli
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Gianluca Severi
- University Paris-Saclay, UVSQ, Inserm, Gustave Roussy, "Exposome and Heredity" team, CESP UMR1018, 94805, Villejuif, France
| | - Massimo Stafoggia
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, SE-171 77, Sweden; Department of Epidemiology, Lazio Region Health Service/ASL Roma 1, Rome, Italy
| | - Anne Tjønneland
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark; The Danish Cancer Institute, Copenhagen, Denmark
| | - Roel Vermeulen
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Kathrin Wolf
- Institute of Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Ole Raaschou-Nielsen
- Department of Environmental Science, Aarhus University, Roskilde, Denmark; The Danish Cancer Institute, Copenhagen, Denmark
| | - Bert Brunekreef
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Gerard Hoek
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Emanuel Zitt
- Agency for Preventive and Social Medicine (aks), Bregenz, Austria; Department of Internal Medicine 3, LKH Feldkirch, Feldkirch, Austria; Vorarlberg Institute for Vascular Investigation and Treatment (VIVIT), Feldkirch, Austria
| | - Gabriele Nagel
- Institute of Epidemiology and Medical Biometry, Ulm University, Ulm, Germany; Agency for Preventive and Social Medicine (aks), Bregenz, Austria
| |
Collapse
|
3
|
Adegbola PI, Adetutu A. Genetic and epigenetic modulations in toxicity: The two-sided roles of heavy metals and polycyclic aromatic hydrocarbons from the environment. Toxicol Rep 2024; 12:502-519. [PMID: 38774476 PMCID: PMC11106787 DOI: 10.1016/j.toxrep.2024.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/27/2024] [Accepted: 04/27/2024] [Indexed: 05/24/2024] Open
Abstract
This study emphasizes the importance of considering the metabolic and toxicity mechanisms of environmental concern chemicals in real-life exposure scenarios. Furthermore, environmental chemicals may require metabolic activation to become toxic, and competition for binding sites on receptors can affect the severity of toxicity. The multicomplex process of chemical toxicity is reflected in the activation of multiple pathways during toxicity of which AhR activation is major. Real-life exposure to a mixture of concern chemicals is common, and the composition of these chemicals determines the severity of toxicity. Nutritional essential elements can mitigate the toxicity of toxic heavy metals, while the types and ratio of composition of PAH can either increase or decrease toxicity. The epigenetic mechanisms of heavy metals and PAH toxicity involves either down-regulation or up-regulation of some non-coding RNAs (ncRNAs) whereas specific small RNAs (sRNAs) may have dual role depending on the tissue and circumstance of expression. Similarly, decrease DNA methylation and histone modification are major players in heavy metals and PAH mediated toxicity and FLT1 hypermethylation is a major process in PAH induced carcinogenesis. Overall, this review provides the understanding of the metabolism of environmental concern chemicals, emphasizing the importance of considering mixed compositions and real-life exposure scenarios in assessing their potential effects on human health and diseases development as well as the dual mechanism of toxicity via genetic or epigenetic axis.
Collapse
Affiliation(s)
- Peter Ifeoluwa Adegbola
- Department of Biochemistry and Forensic Science, First Technical University, Ibadan, Nigeria
| | - Adewale Adetutu
- Department of Biochemistry, Faculty of Basic Medical Sciences, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| |
Collapse
|
4
|
Abolhasanzadeh N, Sarabandi S, Dehghan B, Karamad V, Avci CB, Shademan B, Nourazarian A. Exploring the intricate relationship between miRNA dysregulation and breast cancer development: insights into the impact of environmental chemicals. Front Immunol 2024; 15:1333563. [PMID: 38807590 PMCID: PMC11130376 DOI: 10.3389/fimmu.2024.1333563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 04/03/2024] [Indexed: 05/30/2024] Open
Abstract
Breast cancer stands as the most prevalent form of cancer among women globally, influenced by a combination of genetic and environmental factors. Recent studies have investigated changes in microRNAs (miRNAs) during breast cancer progression and the potential impact of environmental chemicals on miRNA expression. This review aims to provide an updated overview of miRNA alterations in breast cancer and to explore their potential association with environmental chemicals. We will discuss the current knowledge on dysregulated miRNAs in breast cancer, including both upregulated and downregulated miRNAs. Additionally, we will review the influence of environmental chemicals, such as endocrine-disrupting compounds, heavy metals, and air pollutants, on miRNA expression and their potential contribution to breast cancer development. This review aims to advance our understanding of the complex molecular mechanisms underlying miRNA dysregulation in breast cancer by comprehensively examining miRNA alterations and their association with environmental chemicals. This knowledge is crucial for the development of targeted therapies and preventive measures. Furthermore, identifying specific miRNAs affected by environmental chemicals may allow the prediction of individual susceptibility to breast cancer and the design of personalized intervention strategies.
Collapse
Affiliation(s)
- Narges Abolhasanzadeh
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Sajed Sarabandi
- Department of Computer Science Leiden University, Leiden, Netherlands
| | - Bahar Dehghan
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Vahidreza Karamad
- Department of Medical Biology, Ege University Medical School, Izmir, Türkiye
| | - Cigir Biray Avci
- Department of Medical Biology, Ege University Medical School, Izmir, Türkiye
| | - Behrouz Shademan
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Nourazarian
- Department of Basic Medical Sciences, Khoy University of Medical Sciences, Khoy, Iran
| |
Collapse
|
5
|
Zhang J, Chen Z, Shan D, Wu Y, Zhao Y, Li C, Shu Y, Linghu X, Wang B. Adverse effects of exposure to fine particles and ultrafine particles in the environment on different organs of organisms. J Environ Sci (China) 2024; 135:449-473. [PMID: 37778818 DOI: 10.1016/j.jes.2022.08.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 08/04/2022] [Accepted: 08/08/2022] [Indexed: 10/03/2023]
Abstract
Particulate pollution is a global risk factor that seriously threatens human health. Fine particles (FPs) and ultrafine particles (UFPs) have small particle diameters and large specific surface areas, which can easily adsorb metals, microorganisms and other pollutants. FPs and UFPs can enter the human body in multiple ways and can be easily and quickly absorbed by the cells, tissues and organs. In the body, the particles can induce oxidative stress, inflammatory response and apoptosis, furthermore causing great adverse effects. Epidemiological studies mainly take the population as the research object to study the distribution of diseases and health conditions in a specific population and to focus on the identification of influencing factors. However, the mechanism by which a substance harms the health of organisms is mainly demonstrated through toxicological studies. Combining epidemiological studies with toxicological studies will provide a more systematic and comprehensive understanding of the impact of PM on the health of organisms. In this review, the sources, compositions, and morphologies of FPs and UFPs are briefly introduced in the first part. The effects and action mechanisms of exposure to FPs and UFPs on the heart, lungs, brain, liver, spleen, kidneys, pancreas, gastrointestinal tract, joints and reproductive system are systematically summarized. In addition, challenges are further pointed out at the end of the paper. This work provides useful theoretical guidance and a strong experimental foundation for investigating and preventing the adverse effects of FPs and UFPs on human health.
Collapse
Affiliation(s)
- Jianwei Zhang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Zhao Chen
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Dan Shan
- Department of Medical, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin 300041, China
| | - Yang Wu
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Yue Zhao
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Chen Li
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin 300070, China; National Demonstration Center for Experimental Preventive Medicine Education (Tianjin Medical University), Tianjin 300070, China
| | - Yue Shu
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Xiaoyu Linghu
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Baiqi Wang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin 300070, China; National Demonstration Center for Experimental Preventive Medicine Education (Tianjin Medical University), Tianjin 300070, China.
| |
Collapse
|
6
|
Holzhausen EA, Kupsco A, Chalifour BN, Patterson WB, Schmidt KA, Mokhtari P, Lurmann F, Baccarelli AA, Goran MI, Alderete TL. Human milk EV-miRNAs: a novel biomarker for air pollution exposure during pregnancy. ENVIRONMENTAL RESEARCH, HEALTH : ERH 2023; 1:035002. [PMID: 37692372 PMCID: PMC10486183 DOI: 10.1088/2752-5309/ace075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/23/2023] [Accepted: 06/21/2023] [Indexed: 09/12/2023]
Abstract
Exposure to ambient and near-roadway air pollution during pregnancy has been linked with several adverse health outcomes for pregnant women and their babies. Emerging research indicates that microRNA (miRNA) expression can be altered by exposure to air pollutants in a variety of tissues. Additionally, miRNAs from breast tissue and circulating miRNAs have previously been proposed as a biomarker for breast cancer diagnosis and prognosis. Therefore, this study sought to evaluate the associations between pregnancy exposures to ambient (PM10, PM2.5, NO2, O3) and near-roadway air pollution (total NOx, freeway NOx, non-freeway NOx) with breast milk extracellular vesicle miRNA (EV-miRNA), measured at 1-month postpartum, in a cohort of 108 Latina women living in Southern California. We found that PM10 exposure during pregnancy was positively associated with hsa-miR-200c-3p, hsa-miR-200b-3p, and hsa-let-7c-5p, and was negatively associated with hsa-miR-378d. We also found that pregnancy PM2.5 exposure was positively associated with hsa-miR-200c-3p and hsa-miR-200b-3p. First and second trimester exposure to PM10 and PM2.5 was associated with several EV-miRNAs with putative messenger RNA targets related to cancer. This study provides preliminary evidence that air pollution exposure during pregnancy is associated with human milk EV-miRNA expression.
Collapse
Affiliation(s)
- Elizabeth A Holzhausen
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO,
United States of America
| | - Allison Kupsco
- Department of Environmental Health Sciences, Columbia University Mailman School of Public
Health, New York, NY, United States of America
| | - Bridget N Chalifour
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO,
United States of America
| | - William B Patterson
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO,
United States of America
| | - Kelsey A Schmidt
- Department of Pediatrics, Children’s Hospital Los Angeles, Los Angeles, CA, United
States of America
| | - Pari Mokhtari
- Department of Pediatrics, Children’s Hospital Los Angeles, Los Angeles, CA, United
States of America
| | | | - Andrea A Baccarelli
- Department of Environmental Health Sciences, Columbia University Mailman School of Public
Health, New York, NY, United States of America
| | - Michael I Goran
- Department of Pediatrics, Children’s Hospital Los Angeles, Los Angeles, CA, United
States of America
| | - Tanya L Alderete
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO,
United States of America
| |
Collapse
|
7
|
Chen H, Masood S, Rappold AG, Diaz-Sanchez D, Samet JM, Tong H. Effects of Controlled Ozone Exposure on Circulating microRNAs and Vascular and Coagulation Biomarkers: A Mediation Analysis. Noncoding RNA 2023; 9:43. [PMID: 37624035 PMCID: PMC10459325 DOI: 10.3390/ncrna9040043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 07/06/2023] [Accepted: 07/28/2023] [Indexed: 08/26/2023] Open
Abstract
Exposure to ozone (O3) is associated with adverse respiratory and cardiovascular outcomes. Alterations in circulating microRNAs (miRNAs) may contribute to the adverse vascular effects of O3 exposure through inter-cellular communication resulting in post-transcriptional regulation of messenger RNAs by miRNAs. In this study, we investigated whether O3 exposure induces alterations in circulating miRNAs that can mediate effects on downstream vascular and coagulation biomarkers. Twenty-three healthy male adults were exposed on successive days to filtered air and 300 ppb O3 for 2 h. Circulating miRNA and protein biomarkers were quantified after each exposure session. The data were subjected to mixed-effects model and mediation analyses for the statistical analyses. The results showed that the expression level of multiple circulating miRNAs (e.g., miR-19a-3p, miR-34a-5p) was significantly associated with O3 exposure. Pathway analysis showed that these miRNAs were predictive of changing levels of downstream biomarkers [e.g., D-dimer, C-reactive protein, tumor necrosis factor α (TNFα)]. Mediation analysis showed that miR-19a-3p may be a significant mediator of O3-exposure-induced changes in blood TNFα levels [0.08 (0.01, 0.15), p = 0.02]. In conclusion, this preliminary study showed that O3 exposure of healthy male adults resulted in changes in circulating miRNAs, some of which may mediate vascular effects of O3 exposure.
Collapse
Affiliation(s)
- Hao Chen
- Oak Ridge Institute for Science and Education, Oak Ridge, TN 37830, USA;
| | - Syed Masood
- Curriculum in Toxicology and Environmental Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
| | - Ana G. Rappold
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, 104 Mason Farm Rd, Chapel Hill, NC 27514, USA; (A.G.R.); (D.D.-S.); (J.M.S.)
| | - David Diaz-Sanchez
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, 104 Mason Farm Rd, Chapel Hill, NC 27514, USA; (A.G.R.); (D.D.-S.); (J.M.S.)
| | - James M. Samet
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, 104 Mason Farm Rd, Chapel Hill, NC 27514, USA; (A.G.R.); (D.D.-S.); (J.M.S.)
| | - Haiyan Tong
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, 104 Mason Farm Rd, Chapel Hill, NC 27514, USA; (A.G.R.); (D.D.-S.); (J.M.S.)
| |
Collapse
|
8
|
Danesh Yazdi M, Nassan FL, Kosheleva A, Wang C, Xu Z, Di Q, Requia WJ, Comfort NT, Wu H, Laurent LC, DeHoff P, Vokonas P, Baccarelli AA, Schwartz JD. Intermediate and long-term exposure to air pollution and temperature and the extracellular microRNA profile of participants in the normative aging study (NAS). ENVIRONMENTAL RESEARCH 2023; 229:115949. [PMID: 37084943 PMCID: PMC10335853 DOI: 10.1016/j.envres.2023.115949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/27/2023] [Accepted: 04/18/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND The molecular effects of intermediate and long-term exposure to air pollution and temperature, such as those on extracellular microRNA (ex-miRNA) are not well understood but may have clinical consequences. OBJECTIVES To assess the association between exposure to ambient air pollution and temperature and ex-miRNA profiles. METHODS Our study population consisted of 734 participants in the Normative Aging Study (NAS) between 1999 and 2015. We used high-resolution models to estimate four-week, eight-week, twelve-week, six-month, and one-year moving averages of PM2.5, O3, NO2, and ambient temperature based on geo-coded residential addresses. The outcome of interest was the extracellular microRNA (ex-miRNA) profile of each participant over time. We used a longitudinal quantile regression approach to estimate the association between the exposures and each ex-miRNA. Results were corrected for multiple comparisons and ex-miRNAs that were still significantly associated with the exposures were further analyzed using KEGG pathway analysis and Ingenuity Pathway Analysis. RESULTS We found 151 significant associations between levels of PM2.5, O3, NO2, and ambient temperature and 82 unique ex-miRNAs across multiple quantiles. Most of the significant results were associations with intermediate-term exposure to O3, long-term exposure to PM2.5, and both intermediate and long-term exposure to ambient temperature. The exposures were most often associated with the 75th and 90th percentile of the outcomes. Pathway analyses of significant ex-miRNAs revealed their involvement in biological pathways involving cell function and communication as well as clinical diseases such as cardiovascular disease, respiratory disease, and neurological disease. CONCLUSION Our results show that intermediate and long-term exposure to all our exposures of interest were associated with changes in the ex-miRNA profile of study participants. Further studies on environmental risk factors and ex-miRNAs are warranted.
Collapse
Affiliation(s)
- Mahdieh Danesh Yazdi
- Program in Public Health, Department of Family, Population, and Preventive Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA; Department of Environmental Health, Harvard TH Chan School of Public Health, Boston, MA, USA.
| | - Feiby L Nassan
- Department of Environmental Health, Harvard TH Chan School of Public Health, Boston, MA, USA; Biogen Inc, Cambridge, MA, USA
| | - Anna Kosheleva
- Department of Environmental Health, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Cuicui Wang
- Department of Environmental Health, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Zongli Xu
- Laboratory of Molecular Carcinogenesis and Biostatistics Branch, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - Qian Di
- Vanke School of Public Health, Tsinghua University, Beijing, China
| | - Weeberb J Requia
- School of Public Policy and Government, Fundação Getúlio Vargas, Brasília, Distrito Federal, Brazil
| | - Nicole T Comfort
- Department of Environmental Health Sciences, Columbia Mailman School of Public Health, New York, NY, USA
| | - Haotian Wu
- Department of Environmental Health Sciences, Columbia Mailman School of Public Health, New York, NY, USA
| | - Louise C Laurent
- Department of Obstetrics, Gynecology, & Reproductive Sciences, University of California San Diego, La Jolla, CA, USA
| | - Peter DeHoff
- Department of Obstetrics, Gynecology, & Reproductive Sciences, University of California San Diego, La Jolla, CA, USA
| | - Pantel Vokonas
- Department of Veterans Affairs, Boston, MA, USA; Department of Medicine, Boston University Chobanian and Avidisian School of Medicine, Boston, MA, USA
| | - Andrea A Baccarelli
- Department of Environmental Health Sciences, Columbia Mailman School of Public Health, New York, NY, USA
| | - Joel D Schwartz
- Department of Environmental Health, Harvard TH Chan School of Public Health, Boston, MA, USA; Department of Epidemiology, Harvard TH Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
9
|
Xu L, Li Y, Ma W, Sun X, Fan R, Jin Y, Chen N, Zhu X, Guo H, Zhao K, Luo J, Li C, Zheng Y, Yu D. Diesel exhaust particles exposure induces liver dysfunction: Exploring predictive potential of human circulating microRNAs signature relevant to liver injury risk. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:132060. [PMID: 37454487 DOI: 10.1016/j.jhazmat.2023.132060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/30/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
Diesel exhaust particles (DEP) pollution should be taken seriously because it is an extensive environmental and occupational health concern. Exploring early effect biomarkers is crucial for monitoring and managing DEP-associated health risk assessment. Here, we found that serum levels of 67 miRNAs were dysregulated in DEP exposure group. Notably, 20 miRNAs were identified as each having a significant dose-response relationship with the internal exposure level of DEP. Further, we revealed that the DEP exposure could affect the liver function of subjects and that 7 miRNAs (including the well-known liver injury indicator, miR-122-5p) could serve as the novel epigenetic-biomarkers (epi-biomarkers) to reflect the liver-specific response to the DEP exposure. Importantly, an unprecedented prediction model using these 7 miRNAs was established for the assessment of DEP-induced liver injury risk. Finally, bioinformatic analysis indicated that the unique set of miRNA panel in serum might also contribute to the molecular mechanism of DEP exposure-induced liver damage. These results broaden our understanding of the adverse health outcomes of DEP exposure. Noteworthy, we believe this study could shed light on roles and functions of epigenetic biomarkers from environmental exposure to health outcomes by revealing the full chain of exposure-miRNAs-molecular pathways-disease evidence.
Collapse
Affiliation(s)
- Lin Xu
- School of Public Health, Qingdao University, Qingdao, China
| | - Yanting Li
- School of Public Health, Qingdao University, Qingdao, China
| | - Wanli Ma
- School of Public Health, Qingdao University, Qingdao, China
| | - Xueying Sun
- School of Public Health, Qingdao University, Qingdao, China
| | - Rongrong Fan
- School of Public Health, Qingdao University, Qingdao, China
| | - Yuan Jin
- School of Public Health, Qingdao University, Qingdao, China
| | - Ningning Chen
- School of Public Health, Qingdao University, Qingdao, China
| | - Xiaoxiao Zhu
- School of Public Health, Qingdao University, Qingdao, China
| | - Huan Guo
- School of Public Health, Huazhong University of Science and Technology, Wuhan, China
| | - Kunming Zhao
- School of Public Health, Qingdao University, Qingdao, China
| | - Jiao Luo
- School of Public Health, Qingdao University, Qingdao, China
| | - Chuanhai Li
- School of Public Health, Qingdao University, Qingdao, China
| | - Yuxin Zheng
- School of Public Health, Qingdao University, Qingdao, China
| | - Dianke Yu
- School of Public Health, Qingdao University, Qingdao, China.
| |
Collapse
|
10
|
Song J, Cheng M, Wang B, Zhou M, Ye Z, Fan L, Yu L, Wang X, Ma J, Chen W. The potential role of plasma miR-4301 in PM 2.5 exposure-associated lung function reduction. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 327:121506. [PMID: 36997143 DOI: 10.1016/j.envpol.2023.121506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/18/2023] [Accepted: 03/22/2023] [Indexed: 06/19/2023]
Abstract
The effect of PM2.5 exposure on lung function reduction has been well-documented, but the underlying mechanism remains unclear. MiR-4301 may be involved in regulating pathways related to lung injury/repairment, and this study aimed to explore the potential role of miR-4301 in PM2.5 exposure-associated lung function reduction. A total of 167 Wuhan community nonsmokers were included in this study. Lung function was measured and personal PM2.5 exposure moving averages were evaluated for each participant. Plasma miRNA was determined by real-time polymerase chain reaction. A generalized linear model was conducted to assess the relationships among personal PM2.5 moving average concentrations, lung function, and plasma miRNA. The mediation effect of miRNA on the association of personal PM2.5 exposure with lung function reduction was estimated. Finally, we performed pathway enrichment analysis to predict the underlying pathways of miRNA in lung function reduction from PM2.5 exposure. We found that each 10 μg/m3 increase in the 7-day personal PM2.5 moving average concentration (Lag0-7) was related to a 46.71 mL, 1.15%, 157.06 mL/s, and 188.13 mL/s reductions in FEV1, FEV1/FVC, PEF, and MMF, respectively. PM2.5 exposure was negatively associated with plasma miR-4301 expression levels in a dose‒response manner. Additionally, each 1% increase in miR-4301 expression level was significantly associated with a 0.36 mL, 0.01%, 1.14 mL/s, and 1.28 mL/s increases in FEV1, FEV1/FVC, MMF, and PEF, respectively. Mediation analysis further revealed that decreased miR-4301 mediated 15.6% and 16.8% of PM2.5 exposure-associated reductions in FEV1/FVC and MMF, respectively. Pathway enrichment analyses suggested that the wingless related-integration site (Wnt) signaling pathway might be one of the pathways regulated by miR-4301 in the reduction of lung function from PM2.5 exposure. In brief, personal PM2.5 exposure was negatively associated with plasma miR-4301 or lung function in a dose‒response manner. Moreover, miR-4301 partially mediated the lung function reduction associated with PM2.5 exposure.
Collapse
Affiliation(s)
- Jiahao Song
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Man Cheng
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Bin Wang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Min Zhou
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Zi Ye
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Lieyang Fan
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Linling Yu
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Xing Wang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Jixuan Ma
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Weihong Chen
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| |
Collapse
|
11
|
Xuan S, Zhang J, Guo Q, Zhao L, Yao X. A Diagnostic Classifier Based on Circulating miRNA Pairs for COPD Using a Machine Learning Approach. Diagnostics (Basel) 2023; 13:diagnostics13081440. [PMID: 37189541 DOI: 10.3390/diagnostics13081440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/29/2023] [Accepted: 04/14/2023] [Indexed: 05/17/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is highly underdiagnosed, and early detection is urgent to prevent advanced progression. Circulating microRNAs (miRNAs) have been diagnostic candidates for multiple diseases. However, their diagnostic value has not yet been fully established in COPD. The purpose of this study was to develop an effective model for the diagnosis of COPD based on circulating miRNAs. We included circulating miRNA expression profiles of two independent cohorts consisting of 63 COPD and 110 normal samples, and then we constructed a miRNA pair-based matrix. Diagnostic models were developed using several machine learning algorithms. The predictive performance of the optimal model was validated in our external cohort. In this study, the diagnostic values of miRNAs based on the expression levels were unsatisfactory. We identified five key miRNA pairs and further developed seven machine learning models. The classifier based on LightGBM was selected as the final model with the area under the curve (AUC) values of 0.883 and 0.794 in test and validation datasets, respectively. We also built a web tool to assist diagnosis for clinicians. Enriched signaling pathways indicated the potential biological functions of the model. Collectively, we developed a robust machine learning model based on circulating miRNAs for COPD screening.
Collapse
Affiliation(s)
- Shurui Xuan
- Department of Respiratory & Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, China
| | - Jiayue Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, China
| | - Qinxing Guo
- Department of Respiratory & Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, China
| | - Liang Zhao
- Department of Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, 264 Guangzhou Road, Nanjing 210029, China
| | - Xin Yao
- Department of Respiratory & Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, China
| |
Collapse
|
12
|
Hubert A, Achour D, Grare C, Zarcone G, Muntaner M, Hamroun A, Gauthier V, Amouyel P, Matran R, Zerimech F, Lo-Guidice JM, Dauchet L. The relationship between residential exposure to atmospheric pollution and circulating miRNA in adults living in an urban area in northern France. ENVIRONMENT INTERNATIONAL 2023; 174:107913. [PMID: 37037173 DOI: 10.1016/j.envint.2023.107913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/04/2023] [Accepted: 03/29/2023] [Indexed: 06/19/2023]
Abstract
INTRODUCTION MicroRNAs are epigenetic regulatory factors capable of silencing the expression of target genes and might mediate the effects of air pollution on health. The objective of the present population-based study was to investigate the association between microRNA expression and long-term, residential exposure to atmospheric PM10 and NO2. METHOD We included 998 non-smoking adult participants from the cross-sectional ELISABET survey (2010-2014) in the Lille urban area of France. The mean residential annual pollution levels were estimated with an atmospheric dispersion modelling system. Ten microRNAs were selected on the basis of the literature data, together with two housekeeping microRNAs (miR-93-5p and miR-191-5p) and were quantified with RT-qPCRs. Multivariate linear regression models were used to study the association between microRNAs and air pollution. The threshold for statistical significance (after correction for the FDR) was set to p < 0.1. RESULTS The mean annual exposure between 2011 and the year of inclusion was 26.4 ± 2.0 µg/m3 for PM10 and 24.7 ± 5.1 µg/m3 for NO2. Each 2 µg/m3 increment in PM10 exposure was associated with an 8.6% increment (95%CI [3.1; 14.3]; pFDR = 0.019) in miR-451a expression. A 5 µg/m3 increment in NO2 exposure was associated with a 5.3% increment ([0.7; 10]; pFDR = 0.056) in miR451a expression, a 3.6% decrement (95%CI [-6.1; -1.1]; pFDR = 0.052) in miR-223-3p expression, a 3.8% decrement (95%CI[-6.8; -0.7]; pFDR = 0.079) in miR-28-3p expression, a 4.3% decrement (95%CI [-7.7; -0.8]; pFDR = 0.055) in miR-146a-5p expression, and a 4.0% decrement (95% CI[-7.4; -0.4]; pFDR = 0.059) in miR-23a-5p expression. The difference between the two housekeeping microRNAs miR-93-5p and miR-191-5p was also associated with PM10 and NO2 exposure. CONCLUSION Our results suggest that circulating miRNAs are potentially valuable biomarkers of the effects of air pollution.
Collapse
Affiliation(s)
- Audrey Hubert
- Univ. Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, F-59000 Lille, France.
| | - Djamal Achour
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, ULR 4483 - IMPECS - IMPact de l'Environnement Chimique sur la Santé, F-59000 Lille, France.
| | - Céline Grare
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, ULR 4483 - IMPECS - IMPact de l'Environnement Chimique sur la Santé, F-59000 Lille, France.
| | - Gianni Zarcone
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, ULR 4483 - IMPECS - IMPact de l'Environnement Chimique sur la Santé, F-59000 Lille, France.
| | - Manon Muntaner
- Univ. Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, F-59000 Lille, France.
| | - Aghiles Hamroun
- Univ. Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, F-59000 Lille, France.
| | - Victoria Gauthier
- Univ. Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, F-59000 Lille, France.
| | - Philippe Amouyel
- Univ. Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, F-59000 Lille, France.
| | - Régis Matran
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, ULR 4483 - IMPECS - IMPact de l'Environnement Chimique sur la Santé, F-59000 Lille, France.
| | - Farid Zerimech
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, ULR 4483 - IMPECS - IMPact de l'Environnement Chimique sur la Santé, F-59000 Lille, France.
| | - Jean-Marc Lo-Guidice
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, ULR 4483 - IMPECS - IMPact de l'Environnement Chimique sur la Santé, F-59000 Lille, France.
| | - Luc Dauchet
- Univ. Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, F-59000 Lille, France.
| |
Collapse
|
13
|
Hu W, Wong JYY, Dai Y, Ren D, Blechter B, Duan H, Niu Y, Xu J, Fu W, Meliefste K, Zhou B, Yang J, Ye M, Jia X, Meng T, Bin P, Rahman ML, Dean Hosgood H, Vermeulen RC, Silverman DT, Zheng Y, Lan Q, Rothman N. Occupational exposure to diesel engine exhaust and serum levels of microRNAs in a cross-sectional molecular epidemiology study in China. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2023; 64:159-166. [PMID: 36762959 DOI: 10.1002/em.22533] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/29/2023] [Accepted: 02/08/2023] [Indexed: 05/03/2023]
Abstract
Diesel engine exhaust (DEE) is an established lung carcinogen, but the biological mechanisms of diesel-induced lung carcinogenesis are not well understood. MicroRNAs (miRNAs) are small noncoding RNAs that play a potentially important role in regulating gene expression related to lung cancer. We conducted a cross-sectional molecular epidemiology study to evaluate whether serum levels of miRNAs are altered in healthy workers occupationally exposed to DEE compared to unexposed controls. We conducted a two-stage study, first measuring 405 miRNAs in a pilot study of six DEE-exposed workers exposed and six controls. In the second stage, 44 selected miRNAs were measured using the Fireplex circulating miRNA assay that profiles miRNAs directly from biofluids of 45 workers exposed to a range of DEE (Elemental Carbon (EC), median, range: 47.7, 6.1-79.7 μg/m3 ) and 46 controls. The relationship between exposure to DEE and EC with miRNA levels was analyzed using linear regression adjusted for potential confounders. Serum levels of four miRNAs were significantly lower (miR-191-5p, miR-93-5p, miR-423-3p, miR-122-5p) and one miRNA was significantly higher (miR-92a-3p) in DEE exposed workers compared to controls. Of these miRNAs, miR-191-5p (ptrend = .001, FDR = 0.04) and miR-93-5p (ptrend = .009, FDR = 0.18) showed evidence of an inverse exposure-response with increasing EC levels. Our findings suggest that occupational exposure to DEE may affect circulating miRNAs implicated in biological processes related to carcinogenesis, including immune function.
Collapse
Affiliation(s)
- Wei Hu
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Jason Y Y Wong
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Yufei Dai
- Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Dianzhi Ren
- Chaoyang Center for Disease Control and Prevention, Chaoyang, China
| | - Batel Blechter
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Huawei Duan
- Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yong Niu
- Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jun Xu
- School of Public Health, The University of Hong Kong, Hong Kong, China
| | - Wei Fu
- Chaoyang Center for Disease Control and Prevention, Chaoyang, China
| | - Kees Meliefste
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | | | - Jufang Yang
- Chaoyang Center for Disease Control and Prevention, Chaoyang, China
| | - Meng Ye
- Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiaowei Jia
- Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Tao Meng
- Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Ping Bin
- Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Mohammad L Rahman
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - H Dean Hosgood
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
- Division of Epidemiology, Albert Einstein College of Medicine, The Bronx, New York, USA
| | - Roel C Vermeulen
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - Debra T Silverman
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Yuxin Zheng
- Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
- School of Public Health, Qingdao University, Qingdao, China
| | - Qing Lan
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Nathaniel Rothman
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| |
Collapse
|
14
|
Danesh Yazdi M, Nassan FL, Kosheleva A, Wang C, Xu Z, Di Q, Requia WJ, Comfort NT, Wu H, Laurent LC, DeHoff P, Vokonas P, Baccarelli AA, Schwartz JD. Short-term air pollution and temperature exposure and changes in the extracellular microRNA profile of Normative Aging Study (NAS) participants. ENVIRONMENT INTERNATIONAL 2023; 171:107735. [PMID: 36640488 PMCID: PMC10159015 DOI: 10.1016/j.envint.2023.107735] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 01/02/2023] [Accepted: 01/04/2023] [Indexed: 05/06/2023]
Abstract
BACKGROUND While the health effects of air pollution and temperature are widely studied, the molecular effects are poorly understood. Extracellular microRNAs (ex-miRNAs) have the potential to serve as diagnostic or prognostic biomarkers and/or to act as intercellular signaling molecules that mediate the effects of environmental exposures on health outcomes. METHODS We examined the relationship between short-term exposure to air pollution and ambient temperature and the ex-miRNA profiles of participants in the Normative Aging Study (NAS) from 1999 to 2015. Our exposures were defined as same-day, two-day, three-day, one-week, two-week, and three-week moving averages of PM2.5, NO2, O3, and temperature which were derived from high-resolution spatio-temporal models. The ex-miRNA profiles of the subjects were obtained during follow-up visits. We analyzed the data using a longitudinal quantile regression model adjusted for individual covariates, batch effects, and time trends. We adjusted for multiple comparisons using a false discovery rate (FDR) correction. Ex-miRNAs that were significantly associated with exposures were further investigated using pathway analyses. RESULTS We found that all the examined exposures were associated with changes in ex-miRNA profiles in our study, particularly PM2.5 which was responsible for most of the statistically significant results. We found 110 statistically significant exposure-outcome relationships that revealed associations with the levels of 52 unique ex-miRNAs. Pathway analyses showed these ex-miRNAs have been linked to target mRNAs, genes, and biological mechanisms that could affect virtually every organ system, and as such may be linked to multiple clinical disease presentations such as cardiovascular disease, respiratory disease, and neurological disease. CONCLUSIONS Air pollution and temperature exposures were significantly associated with alterations in the ex-miRNA profiles of NAS subjects with possible biological consequences.
Collapse
Affiliation(s)
- Mahdieh Danesh Yazdi
- Program in Public Health, Department of Family, Population, and Preventive Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA; Department of Environmental Health, Harvard TH Chan School of Public Health, Boston, MA, USA.
| | - Feiby L Nassan
- Department of Environmental Health, Harvard TH Chan School of Public Health, Boston, MA, USA; Biogen Inc, Cambridge, MA, USA
| | - Anna Kosheleva
- Department of Environmental Health, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Cuicui Wang
- Department of Environmental Health, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Zongli Xu
- Laboratory of Molecular Carcinogenesis and Biostatistics Branch, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - Qian Di
- Vanke School of Public Health, Tsinghua University, Beijing, China
| | - Weeberb J Requia
- School of Public Policy and Government, Fundação Getúlio Vargas, Brasília, Distrito Federal, Brazil
| | - Nicole T Comfort
- Department of Environmental Health Sciences, Columbia Mailman School of Public Health, New York, NY, USA
| | - Haotian Wu
- Department of Environmental Health Sciences, Columbia Mailman School of Public Health, New York, NY, USA
| | - Louise C Laurent
- Department of Obstetrics, Gynecology, & Reproductive Sciences, University of California San Diego, La Jolla, CA, USA
| | - Peter DeHoff
- Department of Obstetrics, Gynecology, & Reproductive Sciences, University of California San Diego, La Jolla, CA, USA
| | - Pantel Vokonas
- Department of Veterans Affairs, Boston, MA, USA; Department of Medicine, Boston University Chobanian and Avidisian School of Medicine, Boston, MA, USA
| | - Andrea A Baccarelli
- Department of Environmental Health Sciences, Columbia Mailman School of Public Health, New York, NY, USA
| | - Joel D Schwartz
- Department of Environmental Health, Harvard TH Chan School of Public Health, Boston, MA, USA; Department of Epidemiology, Harvard TH Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
15
|
Du X, Zhang Q, Jiang Y, Zhu X, Zhang Y, Liu C, Niu Y, Cai J, Chen R, Kan H. Characterization of plasma-derived exosomal miRNA changes following traffic-related air pollution exposure: A randomized, crossover trial based on small RNA sequencing. ENVIRONMENT INTERNATIONAL 2022; 167:107430. [PMID: 35917698 DOI: 10.1016/j.envint.2022.107430] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND The underlying mechanisms for health effects of traffic-related air pollution (TRAP) are still unclear. Small RNA sequencing (RNA-seq) in exosomes represents as a powerful approach to elucidate biological pathways in response to environmental exposure. We therefore aimed to explore impact of TRAP exposure on exosomal miRNAs. METHODS We performed a randomized, crossover study among 35 healthy college students in Shanghai, China. Participants were randomly assigned to 4-hour exposure in a traffic-polluted Road and in a traffic-free Park, respectively, intermitted by a washout period (at least 2 weeks). RNA-seq was conducted to identify plasma-derived exosomal miRNAs and the differential miRNAs were explored using linear mixed-effect models. Pathway enrichment was conducted using ingenuity pathway analysis. Further, we validated several selected miRNAs by droplet digital PCR (ddPCR). RESULTS The average concentrations of air pollutants including ultrafine particles, black carbon, nitrogen dioxide, and carbon dioxide were 2-3 times higher in the Road compared to those in the Park. We identified 271 exosomal miRNAs (212 up-regulated and 59 down-regulated) that were significantly associated with TRAP. We found 5 miRNAs with 242 experimentally validated mRNA targets that were involved in cardiovascular pathway, cytokine signaling, and immune response. The ddPCR analysis suggested that miR-3612, miR-21-5p, and miR-195-5p were significantly changed following TRAP exposure. CONCLUSIONS For the first time this trial characterized the genome-wide changes of exosomal miRNA associated with TRAP exposure. The molecular profiling of exosomal miRNAs and "novel" associations of some miRNAs were useful for understanding on biological mechanisms for the adverse effects of TRAP.
Collapse
Affiliation(s)
- Xihao Du
- School of Public Health, Shanghai Institute of Infectious Disease and Biosecurity, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Qingli Zhang
- School of Public Health, Shanghai Institute of Infectious Disease and Biosecurity, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Yixuan Jiang
- School of Public Health, Shanghai Institute of Infectious Disease and Biosecurity, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Xinlei Zhu
- School of Public Health, Shanghai Institute of Infectious Disease and Biosecurity, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Yang Zhang
- Department of Systems Biology for Medicine, and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Cong Liu
- School of Public Health, Shanghai Institute of Infectious Disease and Biosecurity, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Yue Niu
- School of Public Health, Shanghai Institute of Infectious Disease and Biosecurity, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Jing Cai
- School of Public Health, Shanghai Institute of Infectious Disease and Biosecurity, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Renjie Chen
- School of Public Health, Shanghai Institute of Infectious Disease and Biosecurity, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China.
| | - Haidong Kan
- School of Public Health, Shanghai Institute of Infectious Disease and Biosecurity, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China; Children's Hospital of Fudan University, National Center for Children's Health, Shanghai, China.
| |
Collapse
|
16
|
Microbiota aggravates the pathogenesis of Drosophila acutely exposed to vehicle exhaust. Heliyon 2022; 8:e10382. [PMID: 36060467 PMCID: PMC9437797 DOI: 10.1016/j.heliyon.2022.e10382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/20/2022] [Accepted: 08/15/2022] [Indexed: 11/26/2022] Open
Abstract
Vehicle exhaust (VE) is the primary cause of urban air pollution, which adversely affects the respiratory system, exacerbates lung diseases, and results in high mortality rates. However, the underlying mechanism of the pathogenesis is largely unclear. Here, we developed a Drosophila model to systematically investigate the effects of VE on their health and physiology. We found that VE significantly impaired life span and locomotion in Drosophila. Interestingly, there was an increase in bacterial load in the guts upon VE exposure, suggesting VE is able to induce dysbiosis in the guts. Microbiota depletion can ameliorate the impairment of life span and locomotion. VE causes permeability of intestinal epithelial cells and increases proliferation of intestinal cells, suggesting VE disrupts intestinal homeostasis. We elucidate the underlying mechanism by which VE triggers Imd and DUOX gene expression. Taken together, this Drosophila model provides insight into the pathogenesis of Drosophila exposure to VE, enabling us to better understand the specific role of microbiota.
Collapse
|
17
|
Chen H, Zhang S, Yu B, Xu Y, Rappold AG, Diaz-Sanchez D, Samet JM, Tong H. Circulating microRNAs as putative mediators in the association between short-term exposure to ambient air pollution and cardiovascular biomarkers. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 239:113604. [PMID: 35576800 PMCID: PMC9167781 DOI: 10.1016/j.ecoenv.2022.113604] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/01/2022] [Accepted: 05/02/2022] [Indexed: 05/12/2023]
Abstract
BACKGROUND Exposure to ambient air pollution is associated with increased cardiovascular morbidity and mortality. Circulating microRNAs (miRNAs) may mediate cardiovascular effects of exposure to air pollution. This study aims to investigate whether circulating miRNAs mediate the associations between short-term human exposure to ambient air pollution and cardiovascular biomarkers. METHODS Twenty-four healthy adults residing in the Research Triangle area of North Carolina, USA were enrolled between December 2016 and July 2019. Circulating miRNAs, protein, and lipid biomarkers were assessed repeatedly for 3 sessions separated by at least 7 days. Linear mixed-effects models were used to assess the associations between air pollutant concentrations obtained from nearby air quality monitoring stations and miRNAs controlling for covariates including omega-3 index, relative humidity, and temperature. miRNAs that were significantly altered were then matched with protein or blood lipid biomarkers using either Ingenuity Pathway Analysis or a literature search. A mediation analysis was performed to test the statistical significance of miRNA's mediating effects between exposure to air pollution and cardiovascular biomarkers. RESULTS Short-term exposure to ambient fine particulate matter (PM2.5), ozone (O3), and nitrogen dioxide (NO2) was associated with changes in 11, 9, and 24 circulating miRNAs, respectively. Pathway analysis showed that several miRNAs including miR-125b-5p, miR-144-5p, miR-26a-5p, and miR-34a-5p may mediate the effects of air pollutant exposure on the changes of downstream protein / lipid biomarkers including serum amyloid A (SAA), C-reactive protein (CRP), soluble vascular adhesive molecules 1 (sICAM1), total cholesterol, and high-density lipoproteins (HDL). Mediation analysis showed that only miR-26a-5p significantly mediated air pollutant (PM2.5 and NO2)-induced effects on blood CRP and total cholesterol levels. For example, 34.1% of PM2.5-associated changes in CRP were significantly mediated by miR-26a-5p at lag4 [indirect effects, 0.06 (0.02, 0.10), P = 0.005]. Similarly, the proportions of indirect effects of miR-26a-5p on the association between NO2 exposure and CRP were 46.8% at lag2 [0.06 (0.02, 0.11), P = 0.003], 61.2% at lag3 [0.05 (0.00, 0.09), P = 0.04], and 30.8% at 5-day moving average [0.06 (0.02, 0.10), P = 0.01]. In addition, omega-3 index may be a significant modifying factor of the mediated effects of miRNAs. CONCLUSIONS This study demonstrates that short-term exposure to ambient PM2.5, O3, and NO2 was associated with specific circulating miRNAs, and some of which may mediate their effects on the downstream inflammation and blood lipid markers.
Collapse
Affiliation(s)
- Hao Chen
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA
| | - Siqi Zhang
- Institute of Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Bin Yu
- Department of Surgery, School of Medicine, Duke University, Durham, NC, USA
| | - Yunan Xu
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA
| | - Ana G Rappold
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, Office of Research and Development, US Environmental Protection Agency, Chapel Hill, NC, USA
| | - David Diaz-Sanchez
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, Office of Research and Development, US Environmental Protection Agency, Chapel Hill, NC, USA
| | - James M Samet
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, Office of Research and Development, US Environmental Protection Agency, Chapel Hill, NC, USA
| | - Haiyan Tong
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, Office of Research and Development, US Environmental Protection Agency, Chapel Hill, NC, USA.
| |
Collapse
|
18
|
Mookherjee N, Ryu MH, Hemshekhar M, Orach J, Spicer V, Carlsten C. Defining the effects of traffic-related air pollution on the human plasma proteome using an aptamer proteomic array: A dose-dependent increase in atherosclerosis-related proteins. ENVIRONMENTAL RESEARCH 2022; 209:112803. [PMID: 35120890 DOI: 10.1016/j.envres.2022.112803] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 01/21/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Traffic-related air pollution (TRAP) is a critical risk factor and major contributor to respiratory and cardiovascular disease (CVD). The effects of TRAP beyond the lungs can be related to changes in circulatory proteins. However, such TRAP-mediated changes have not been defined in an unbiased manner using a controlled human model. OBJECTIVE To detail global protein changes (the proteome) in plasma following exposure to inhaled diesel exhaust (DE), a paradigm of TRAP, using controlled human exposures. METHODS In one protocol, ex-smokers and never-smokers were exposed to filtered air (FA) and DE (300 μg PM2.5/m3), on order-randomized days, for 2 h. In a second protocol, independent never-smoking participants were exposed to lower concentrations of DE (20, 50 or 150 μg PM2.5/m3) and FA, for 4 h, on order-randomized days. Each exposure was separated by 4 weeks of washout. Plasma samples obtained 24 h post-exposure from ex-smokers (n = 6) were first probed using Slow off-rate modified aptamer proteomic array. Plasma from never-smokers (n = 11) was used for independent assessment of proteins selected from the proteomics study by immunoblotting. RESULTS Proteomics analyses revealed that DE significantly altered 342 proteins in plasma of ex-smokers (n = 6). The top 20 proteins therein were primarily associated with inflammation and CVD. Plasma from never-smokers (n = 11) was used for independent assessment of 6 proteins, amongst the top 10 proteins increased by DE in the proteomics study, for immunoblotting. The abundance of all six proteins (fractalkine, apolipoproteins (APOB and APOM), IL18R1, MIP-3 and MMP-12) was significantly increased by DE in plasma of these never-smokers. DE-mediated increase was shown to be concentration-dependent for fractalkine, APOB and MMP-12, all biomarkers of atherosclerosis, which correlated with plasma levels of IL-6, a subclinical marker of CVD, in independent participants. CONCLUSION This investigation details changes in the human plasma proteome due to TRAP. We identify specific atherosclerosis-related proteins that increase concentration-dependently across a range of TRAP levels applicable worldwide.
Collapse
Affiliation(s)
- Neeloffer Mookherjee
- Manitoba Center for Proteomics and Systems Biology, Department of Internal Medicine, University of Manitoba, Winnipeg, MB, Canada; Department of Immunology, University of Manitoba, Winnipeg, MB, Canada; The Canadian Respiratory Research Network, Ottawa, ON, Canada
| | - Min Hyung Ryu
- Air Pollution Exposure Laboratory, Division of Respiratory Medicine, Department of Medicine, University of British Columbia, Vancouver, BC, Canada; The Canadian Respiratory Research Network, Ottawa, ON, Canada
| | - Mahadevappa Hemshekhar
- Manitoba Center for Proteomics and Systems Biology, Department of Internal Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Juma Orach
- Air Pollution Exposure Laboratory, Division of Respiratory Medicine, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Victor Spicer
- Manitoba Center for Proteomics and Systems Biology, Department of Internal Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Christopher Carlsten
- Air Pollution Exposure Laboratory, Division of Respiratory Medicine, Department of Medicine, University of British Columbia, Vancouver, BC, Canada; The Canadian Respiratory Research Network, Ottawa, ON, Canada.
| |
Collapse
|
19
|
Hermanova B, Riedlova P, Dalecka A, Jirik V, Janout V, Sram RJ. Air pollution and molecular changes in age-related diseases. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2022; 32:772-790. [PMID: 32723182 DOI: 10.1080/09603123.2020.1797643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 07/15/2020] [Indexed: 06/11/2023]
Abstract
Assessment of the impact that air contaminants have on health is difficult as this is a complex mixture of substances that varies depending on the time and place. There are many studies on the association between air pollution and increased morbidity and mortality. Before the effect of polluted air is manifested at the level of the organs, an impact can be observed at the molecular level. These include some new biomarkers, like a shortening of the mean telomere length in DNA, dysregulation of gene expression caused by microRNA levels or a variation in the copy number of mitochondrial DNA. These changes may predispose individuals to premature development of age-related diseases and consequently to shortening of life. The common attribute, shared by changes at the molecular level and the development of diseases, is the presence of oxidative stress.
Collapse
Affiliation(s)
- B Hermanova
- Centre for Epidemiological Research, University of Ostrava, Ostrava, Czech Republic
- Department of Epidemiology and Public Health, University of Ostrava, Ostrava, Czech Republic
| | - P Riedlova
- Centre for Epidemiological Research, University of Ostrava, Ostrava, Czech Republic
- Department of Epidemiology and Public Health, University of Ostrava, Ostrava, Czech Republic
| | - A Dalecka
- Centre for Epidemiological Research, University of Ostrava, Ostrava, Czech Republic
- Department of Epidemiology and Public Health, University of Ostrava, Ostrava, Czech Republic
| | - V Jirik
- Centre for Epidemiological Research, University of Ostrava, Ostrava, Czech Republic
- Department of Epidemiology and Public Health, University of Ostrava, Ostrava, Czech Republic
| | - V Janout
- Centre for Epidemiological Research, University of Ostrava, Ostrava, Czech Republic
| | - R J Sram
- Centre for Epidemiological Research, University of Ostrava, Ostrava, Czech Republic
| |
Collapse
|
20
|
Nicholson S, Baccarelli A, Prada D. Role of brain extracellular vesicles in air pollution-related cognitive impairment and neurodegeneration. ENVIRONMENTAL RESEARCH 2022; 204:112316. [PMID: 34728237 PMCID: PMC8671239 DOI: 10.1016/j.envres.2021.112316] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 09/15/2021] [Accepted: 10/28/2021] [Indexed: 05/07/2023]
Abstract
A relationship between environmental exposure to air pollution and cognitive impairment and neurological disorders has been described. Previous literature has focused on the direct effects of the air pollution components on neuronal and glial cells, as well as on involvement of oxidative stress and neuroinflammation on microglia and astrocyte reactivity. However, other mechanisms involved in the air pollution effects on central nervous system (CNS) toxicity can be playing critical roles. Increasingly, extracellular vesicle's (EVs) mediated intercellular communication is being recognized as impacting the development of cognitive impairment and neurological disorders like Alzheimer's disease and others. Here we describe the available evidence about toxic air pollutants and its components on brain, an involvement of brain cells specific and EVs types (based in the origin or in the size of EVs) in the initiation, exacerbation, and propagation of the neurotoxic effects (inflammation, neurodegeneration, and accumulation of neurotoxic proteins) induced by air pollution in the CNS. Additionally, we discuss the identification and isolation of neural-derived EVs from human plasma, the most common markers for neural-derived EVs, and their potential for use as diagnostic or therapeutic molecules for air pollution-related cognitive impairment and neurodegeneration.
Collapse
Affiliation(s)
- Stacia Nicholson
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, 10032, USA
| | - Andrea Baccarelli
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, 10032, USA
| | - Diddier Prada
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, 10032, USA; Instituto Nacional de Cancerología, Mexico City, 14080, Mexico.
| |
Collapse
|
21
|
Tumolo MR, Panico A, De Donno A, Mincarone P, Leo CG, Guarino R, Bagordo F, Serio F, Idolo A, Grassi T, Sabina S. The expression of microRNAs and exposure to environmental contaminants related to human health: a review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2022; 32:332-354. [PMID: 32393046 DOI: 10.1080/09603123.2020.1757043] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 04/14/2020] [Indexed: 06/11/2023]
Abstract
Environmental contaminants exposure may lead to detrimental changes to the microRNAs (miRNAs) expression resulting in several health effects. miRNAs, small non-coding RNAs that regulate gene expression, have multiple transcript targets and thereby regulate several signalling molecules. Even a minor alteration in the abundance of one miRNA can have deep effects on global gene expression. Altered patterns of miRNAs can be responsible for changes linked to various health outcomes, suggesting that specific miRNAs are activated in pathophysiological processes. In this review, we provide an overview of studies investigating the impact of air pollution, organic chemicals, and heavy metals on miRNA expression and the potential biologic effects on humans.Abbreviations: AHRR, aryl-hydrocarbon receptor repressor; AHR, aryl-hydrocarbon receptor; As, arsenic; BCL2, B-cell lymphoma 2; BCL2L11, B-cell lymphoma 2 like 11; BCL6, B-cell lymphoma 6; BPA, bisphenol A; CVD, cardiovascular diseases; CD40, cluster of differentiation 40; CCND1, Cyclin D1; CDKN1A, cyclin-dependent kinase inhibitor 1A; Cr, chromium; CTBP1, C-terminal binding protein 1; CXCL12, C-X-C motif chemokine ligand 12; DAZAP1, deleted in azoospermia associated protein 1; DEP, diesel exhaust particles; EGFR, epidermal growth factor receptor; eNOS, endothelial nitric oxide synthase; EVs, extracellular vesicles; FAK, focal adhesion kinase; FAS, fas cell surface death receptor; FOXO, forkhead box O; HbA1c, glycated hemoglobin; Hg, mercury; HLA-A, human leukocyte antigen A; HMGB, high-mobility group protein B; IFNAR2, interferon alpha receptor subunit 2; IL-6, interleukin-6; IRAK1, interleukin 1 receptor associated kinase 1; JAK/STAT, janus kinase/signal transducers and activators of transcription; MAPK, mitogen-activated protein kinase; miRNAs, microRNAs; MVs, microvesicles; NCDs, noncommunicable diseases; NFAT, nuclear factor of activated T cells; NFkB, nuclear factor kappa B; NRF2, nuclear factor, erythroid-derived 2; NRG3, neuregulin 3; O3, ozone; OP, organophosphorus pesticides; PAHs, polycyclic aromatic hydrocarbons; Pb, lead; PCBs, polychlorinated biphenyls; PDCD4, programmed cell death 4; PDGFB, platelet derived growth factor subunit beta; PDGFR, platelet-derived growth factor receptor; PI3K/Akt, phosphoinositide-3-kinase/protein kinase B; PKA, protein kinase A; PM, particulate matter; PRKCQ, protein kinase C theta; PTEN, phosphatase and tensin homolog; SORT1, sortilin 1; TGFβ, transforming growth factor-β; TLR, toll-like receptor; TNF, tumor necrosis factors; TRAF1, tumor necrosis factors-receptor associated factors 1; TRAP, traffic-related air pollution; TREM1, triggering receptor expressed on myeloid cells 1; TRIAP1, TP53 regulated inhibitor of apoptosis 1; VCAM-1, vascular cell adhesion molecule 1; VEGFA, vascular endothelial growth factor A; XRCC2, X-ray repair cross complementing 2; YBX2, Y-box-binding protein 2; ZEB1, zinc finger E-box-binding homeobox 1; ZEB2, zinc finger E-box-binding homeobox 2; 8-OH-dG, 8-hydroxy-guanine.
Collapse
Affiliation(s)
- Maria Rosaria Tumolo
- National Research Council, Institute for Research on Population and Social Policies, Research Unit of Brindisi, Brindisi, Italy
| | - Alessandra Panico
- Department of Biological and Environmental Sciences and Technology, University of Salento, Lecce, Italy
| | - Antonella De Donno
- Department of Biological and Environmental Sciences and Technology, University of Salento, Lecce, Italy
| | - Pierpaolo Mincarone
- National Research Council, Institute for Research on Population and Social Policies, Research Unit of Brindisi, Brindisi, Italy
| | - Carlo Giacomo Leo
- National Research Council, Institute of Clinical Physiology, Branch of Lecce, Lecce, Italy
| | - Roberto Guarino
- National Research Council, Institute of Clinical Physiology, Branch of Lecce, Lecce, Italy
| | - Francesco Bagordo
- Department of Biological and Environmental Sciences and Technology, University of Salento, Lecce, Italy
| | - Francesca Serio
- Department of Biological and Environmental Sciences and Technology, University of Salento, Lecce, Italy
| | - Adele Idolo
- Department of Biological and Environmental Sciences and Technology, University of Salento, Lecce, Italy
| | - Tiziana Grassi
- Department of Biological and Environmental Sciences and Technology, University of Salento, Lecce, Italy
| | - Saverio Sabina
- National Research Council, Institute of Clinical Physiology, Branch of Lecce, Lecce, Italy
| |
Collapse
|
22
|
PM10 Alters Trophoblast Cell Function and Modulates miR-125b-5p Expression. BIOMED RESEARCH INTERNATIONAL 2022; 2022:3697944. [PMID: 35036432 PMCID: PMC8759905 DOI: 10.1155/2022/3697944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 11/05/2021] [Accepted: 11/10/2021] [Indexed: 12/16/2022]
Abstract
Air pollution is one of the largest global environmental health hazards that threaten premature mortality or morbidity. Particulate matter 10 (PM10) has been demonstrated to contribute to several human diseases via dysregulated miRNA expression. Trophoblast cells play a key role in implantation and placentation for a successful pregnancy. Nonetheless, the PM10 associated trophoblast cell functions during pregnancy and miRNA expression are still unknown. Our study showed that PM10 affected HTR-8/SVneo cell viability and also decreased cell proliferation, migration, and invasion. A high concentration of PM10 caused an increase in HTR-8/SVneo cell apoptosis. Treatment with PM10 induced inflammation through the upregulated IL-1β, IL-6, and TNF-α expression in trophoblast cells. In PM10-treated HTR-8/SVneo cells, miR-125b-5p expression was considerably increased and TXNRD1 was found to be negatively related to miR-125b-5p. Collectively, our findings revealed that PM10 could alter miR-125b-5p expression by targeting TXNRD1 and suppressing trophoblast cell functions. Additional investigations relating to the function of miR-125b-5p and its target on particulate pollution exposure in trophoblast are warranted for future biomarker or effective therapeutic approaches.
Collapse
|
23
|
Guo C, Lv S, Liu Y, Li Y. Biomarkers for the adverse effects on respiratory system health associated with atmospheric particulate matter exposure. JOURNAL OF HAZARDOUS MATERIALS 2022; 421:126760. [PMID: 34396970 DOI: 10.1016/j.jhazmat.2021.126760] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/17/2021] [Accepted: 07/25/2021] [Indexed: 06/13/2023]
Abstract
Large amounts of epidemiological evidence have confirmed the atmospheric particulate matter (PM2.5) exposure was positively correlated with the morbidity and mortality of respiratory diseases. Nevertheless, its pathogenesis remains incompletely understood, probably resulting from the activation of oxidative stress, inflammation, altered genetic and epigenetic modifications in the lung upon PM2.5 exposure. Currently, biomarker investigations have been widely used in epidemiological and toxicological studies, which may help in understanding the biologic mechanisms underlying PM2.5-elicited adverse health outcomes. Here, the emerging biomarkers to indicate PM2.5-respiratory system interactions were summarized, primarily related to oxidative stress (ROS, MDA, GSH, etc.), inflammation (Interleukins, FENO, CC16, etc.), DNA damage (8-OHdG, γH2AX, OGG1) and also epigenetic modulation (DNA methylation, histone modification, microRNAs). The identified biomarkers shed light on PM2.5-elicited inflammation, fibrogenesis and carcinogenesis, thus may favor more precise interventions in public health. It is worth noting that some inconsistent findings may possibly relate to the inter-study differentials in the airborne PM2.5 sample, exposure mode and targeted subjects, as well as methodological issues. Further research, particularly by -omics technique to identify novel, specific biomarkers, is warranted to illuminate the causal relationship between PM2.5 pollution and deleterious lung outcomes.
Collapse
Affiliation(s)
- Caixia Guo
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Songqing Lv
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Yufan Liu
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Yanbo Li
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
24
|
Zhou X, Dai H, Jiang H, Rui H, Liu W, Dong Z, Zhang N, Zhao Q, Feng Z, Hu Y, Hou F, Zheng Y, Liu B. MicroRNAs: Potential mediators between particulate matter 2.5 and Th17/Treg immune disorder in primary membranous nephropathy. Front Pharmacol 2022; 13:968256. [PMID: 36210816 PMCID: PMC9532747 DOI: 10.3389/fphar.2022.968256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/29/2022] [Indexed: 11/19/2022] Open
Abstract
Primary membranous nephropathy (PMN), is an autoimmune glomerular disease and the main reason of nephrotic syndrome in adults. Studies have confirmed that the incidence of PMN increases yearly and is related to fine air pollutants particulate matter 2.5 (PM2.5) exposure. These imply that PM2.5 may be associated with exposure to PMN-specific autoantigens, such as the M-type receptor for secretory phospholipase A2 (PLA2R1). Emerging evidence indicates that Th17/Treg turns to imbalance under PM2.5 exposure, but the molecular mechanism of this process in PMN has not been elucidated. As an important indicator of immune activity in multiple diseases, Th17/Treg immune balance is sensitive to antigens and cellular microenvironment changes. These immune pathways play an essential role in the disease progression of PMN. Also, microRNAs (miRNAs) are susceptible to external environmental stimulation and play link role between the environment and immunity. The contribution of PM2.5 to PMN may induce Th17/Treg imbalance through miRNAs and then produce epigenetic affection. We summarize the pathways by which PM2.5 interferes with Th17/Treg immune balance and attempt to explore the intermediary roles of miRNAs, with a particular focus on the changes in PMN. Meanwhile, the mechanism of PM2.5 promoting PLA2R1 exposure is discussed. This review aims to clarify the potential mechanism of PM2.5 on the pathogenesis and progression of PMN and provide new insights for the prevention and treatment of the disease.
Collapse
Affiliation(s)
- Xiaoshan Zhou
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Haoran Dai
- Shunyi Branch, Beijing Hospital of Traditional Chinese Medicine, Beijing, China
| | - Hanxue Jiang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Hongliang Rui
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,Beijing Institute of Chinese Medicine, Beijing, China
| | - Wenbin Liu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Zhaocheng Dong
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Na Zhang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Qihan Zhao
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Zhendong Feng
- Pinggu Hospital, Beijing Hospital of Traditional Chinese Medicine, Beijing, China
| | - Yuehong Hu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Fanyu Hou
- School of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Yang Zheng
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Baoli Liu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,Shunyi Branch, Beijing Hospital of Traditional Chinese Medicine, Beijing, China
| |
Collapse
|
25
|
Cong X, Zhang J, Sun R, Pu Y. Short-term ambient particulate air pollution exposure, microRNAs, blood pressure and lung function. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 292:118387. [PMID: 34673158 DOI: 10.1016/j.envpol.2021.118387] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 10/15/2021] [Accepted: 10/17/2021] [Indexed: 06/13/2023]
Abstract
Ambient particulate air pollution is a risk factor for cardiovascular and respiratory disease, yet the biological mechanisms underlying this association are not well understood. The current study aimed to investigate the mediation role of microRNAs on the association between personal PM2.5 exposure and blood pressure and lung function. One hundred and twenty adults (60 truck drivers and 60 office workers) aged 18-46 years were assessed on the June 15, 2008 and at follow-up (1- to 2-weeks later). MicroRNAs were extracted from the peripheral blood samples. Compared to truck drivers, there is a significant increase in FEF25-75, FEV1, and FEV1/FVC and a decrease in PM2.5 in office workers (all p < 0.05). According to the Bonferroni corrected threshold p-value < 6.81 × 10-5 (0.05/734) used, personal PM2.5 data showed a significant positive association with miR-644 after the adjustment for age, BMI, smoking status, and habitual alcohol use. The mediation effect of miR-644 on the association between personal PM2.5 exposure and FEF25-75 [B (95%CI) = -1.342 (-2.810, -0.113)], PEF [B (95%CI) = -1.793 (-3.926, -0.195)], and FEV1/FVC [B (95%CI) = -0.119‰ (-0.224‰, -0.026‰)] was significant only for truck drivers after the adjustment for covariates. There were no similar associations with blood pressure. These results demonstrate microRNAs to potentially mediate association of PM2.5 with lung function. Subsequent studies are needed to further elucidate the potential mechanisms of action by which the mediation effect of microRNAs is achieved with this process.
Collapse
Affiliation(s)
- Xiaowei Cong
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Juan Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China.
| | - Rongli Sun
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Yuepu Pu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China
| |
Collapse
|
26
|
Müller-Deile J, Sopel N, Ohs A, Rose V, Gröner M, Wrede C, Hegermann J, Daniel C, Amann K, Zahner G, Schiffer M. Glomerular Endothelial Cell-Derived microRNA-192 Regulates Nephronectin Expression in Idiopathic Membranous Glomerulonephritis. J Am Soc Nephrol 2021; 32:2777-2794. [PMID: 34716242 PMCID: PMC8806098 DOI: 10.1681/asn.2020121699] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 07/09/2021] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Autoantibodies binding to podocyte antigens cause idiopathic membranous glomerulonephritis (iMGN). However, it remains elusive how autoantibodies reach the subepithelial space because the glomerular filtration barrier (GFB) is size selective and almost impermeable for antibodies. METHODS Kidney biopsies from patients with iMGN, cell culture, zebrafish, and mouse models were used to investigate the role of nephronectin (NPNT) regulating microRNAs (miRs) for the GFB. RESULTS Glomerular endothelial cell (GEC)-derived miR-192-5p and podocyte-derived miR-378a-3p are upregulated in urine and glomeruli of patients with iMGN, whereas glomerular NPNT is reduced. Overexpression of miR-192-5p and morpholino-mediated npnt knockdown induced edema, proteinuria, and podocyte effacement similar to podocyte-derived miR-378a-3p in zebrafish. Structural changes of the glomerular basement membrane (GBM) with increased lucidity, splitting, and lamellation, especially of the lamina rara interna, similar to ultrastructural findings seen in advanced stages of iMGN, were found. IgG-size nanoparticles accumulated in lucidity areas of the lamina rara interna and lamina densa of the GBM in npnt-knockdown zebrafish models. Loss of slit diaphragm proteins and severe structural impairment of the GBM were further confirmed in podocyte-specific Npnt knockout mice. GECs downregulate podocyte NPNT by transfer of miR-192-5p-containing exosomes in a paracrine manner. CONCLUSIONS Podocyte NPNT is important for proper glomerular filter function and GBM structure and is regulated by GEC-derived miR-192-5p and podocyte-derived miR-378a-3p. We hypothesize that loss of NPNT in the GBM is an important part of the initial pathophysiology of iMGN and enables autoantigenicity of podocyte antigens and subepithelial immune complex deposition in iMGN.
Collapse
Affiliation(s)
- Janina Müller-Deile
- Department of Nephrology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Nina Sopel
- Department of Nephrology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Alexandra Ohs
- Department of Nephrology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Victoria Rose
- Department of Nephrology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Marwin Gröner
- Research Center On Rare Kidney Diseases (RECORD), University Hospital Erlangen, Erlangen, Germany
| | - Christoph Wrede
- Institute of Functional and Applied Anatomy, Medizinische Hochschule Hannover, Hannover, Germany
| | - Jan Hegermann
- Institute of Functional and Applied Anatomy, Medizinische Hochschule Hannover, Hannover, Germany
| | - Christoph Daniel
- Department of Nephropathology, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Kerstin Amann
- Department of Nephropathology, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Gunther Zahner
- Department of Medicine, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Mario Schiffer
- Department of Nephrology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
27
|
Sun Q, Ren X, Sun Z, Duan J. The critical role of epigenetic mechanism in PM 2.5-induced cardiovascular diseases. Genes Environ 2021; 43:47. [PMID: 34654488 PMCID: PMC8518296 DOI: 10.1186/s41021-021-00219-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 09/27/2021] [Indexed: 12/18/2022] Open
Abstract
Cardiovascular disease (CVD) has become the leading cause of death worldwide, which seriously threatens human life and health. Epidemiological studies have confirmed the occurrence and development of CVD are closely related to air pollution. In particular, fine particulate matter (PM2.5) is recognized as an important environmental factor contributing to increased morbidity, mortality and hospitalization rates among adults and children. However, the underlying mechanism by which PM2.5 promotes CVD development remains unclear. With the development of epigenetics, recent studies have shown that PM2.5 exposure may induce or aggravate CVD through epigenetic changes. In order to better understand the potential mechanisms, this paper reviews the epigenetic changes of CVD caused by PM2.5. We summarized the epigenetic mechanisms of PM2.5 causing cardiovascular pathological damage and functional changes, mainly involving DNA methylation, non-coding RNA, histone modification and chromosome remodeling. It will provide important clues for exploring the biological mechanisms affecting cardiovascular health.
Collapse
Affiliation(s)
- Qinglin Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, 100069, Beijing, P.R. China.,Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, 100069, Beijing, P.R. China
| | - Xiaoke Ren
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, 100069, Beijing, P.R. China.,Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, 100069, Beijing, P.R. China
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, 100069, Beijing, P.R. China.,Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, 100069, Beijing, P.R. China
| | - Junchao Duan
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, 100069, Beijing, P.R. China. .,Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, 100069, Beijing, P.R. China. .,School of Public Health, Capital Medical University, 100069, Beijing, P.R. China.
| |
Collapse
|
28
|
Xueyuan H, Qianru C, Zhaoyi L, Dayong T, Yu W, Yimei C, Shu L. Transcriptome analysis reveals that hydrogen sulfide exposure suppresses cell proliferation and induces apoptosis through ciR-PTPN23/miR-15a/E2F3 signaling in broiler thymus. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 284:117466. [PMID: 34062439 DOI: 10.1016/j.envpol.2021.117466] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 05/23/2021] [Accepted: 05/24/2021] [Indexed: 06/12/2023]
Abstract
The immune organs, like thymus, are one of the targets of hydrogen sulfide (H2S). Previously we reported that H2S induced the differential expression of mRNAs that implicating apoptosis in thymus, however, the roles of noncoding RNAs (ncRNAs) in H2S-induced thymus injury are still unknown. Pollution gases could alter the expression of ncRNAs, which have been shown to play important roles in many physiological and pathophysiological processes, including immune activity. This study revealed that H2S exposure induced 9 differentially expressed circRNAs and 15 differentially expressed miRNAs in chicken thymus. Furthermore, the circRNA - miRNA - mRNA network was constructed. We discovered that circR-PTPN23 - miR-15a - E2F3 was involved in the cell cycle and apoptosis. Further, an in vitro H2S exposure model was established using HD11 cell line and demonstrated that H2S suppressed cell proliferation and induced apoptosis. Moreover, ciR-PTPN23 and E2F3 were downregulated, but miR-15a was upregulated in both the thymus and HD11 cell line after H2S exposure. Bioinformatics analysis revealed that ciR-PTPN23 directly bound to miR-15a and that E2F3 was the target gene of miR-15a. Knocking down ciR-PTPN23 suppressed HD11 proliferation and caused G1 arrest and apoptosis, however, this phenomenon could be partially reversed by ciR-PTPN23 overexpression or miR-15a silencing. In summary, the ciR-PTPN23 - miR-15a - E2F3 axis was involved in H2S-induced cell proliferation suppression and apoptosis.
Collapse
Affiliation(s)
- Hu Xueyuan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China; College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Chi Qianru
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Liu Zhaoyi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Tao Dayong
- College of Animal Science, Tarim University, Alar, 843300, China
| | - Wang Yu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Cong Yimei
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Li Shu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
29
|
Liu F, Wang Z, Wei Y, Liu R, Jiang C, Gong C, Liu Y, Yan B. The leading role of adsorbed lead in PM 2.5-induced hippocampal neuronal apoptosis and synaptic damage. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125867. [PMID: 34492814 DOI: 10.1016/j.jhazmat.2021.125867] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/22/2021] [Accepted: 04/08/2021] [Indexed: 06/13/2023]
Abstract
Neurodegenerative diseases may be caused by air pollution, such as PM2.5. However, particles still need to be elucidated the mechanism of synergistic neurotoxicity induced by pollutant-loading PM2.5. In this study, we used a reductionist approach to study leading role of lead (Pb) in PM2.5-induced hippocampal neuronal apoptosis and synaptic damage both in vivo and in vitro. Pb in PM2.5 caused neurotoxicity: 1) by increasing ROS levels and thus causing apoptosis in neuronal cells and 2) by decreasing the expression of PSD95 via interfering with the calcium signaling pathway through cAMP/CREB/pCREB/BDNF/PSD95 pathway and reducing the synapse length by 50%. This study clarifies a key factor in PM2.5-induced neurotoxicity and provides the experimental basis for reducing PM2.5-induced neurotoxicity.
Collapse
Affiliation(s)
- Fang Liu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Zengjin Wang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Yongyi Wei
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Rongrong Liu
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Cuijuan Jiang
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Chen Gong
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Yin Liu
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 330106, China.
| | - Bing Yan
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China; School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China.
| |
Collapse
|
30
|
Li Z, Liang D, Ye D, Chang HH, Ziegler TR, Jones DP, Ebelt ST. Application of high-resolution metabolomics to identify biological pathways perturbed by traffic-related air pollution. ENVIRONMENTAL RESEARCH 2021; 193:110506. [PMID: 33245887 PMCID: PMC7855798 DOI: 10.1016/j.envres.2020.110506] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 11/09/2020] [Accepted: 11/17/2020] [Indexed: 05/02/2023]
Abstract
BACKGROUND Substantial research has investigated the adverse effects of traffic-related air pollutants (TRAP) on human health. Convincing associations between TRAP and respiratory and cardiovascular diseases are known, but the underlying biological mechanisms are not well established. High-resolution metabolomics (HRM) is a promising platform for untargeted characterization of molecular mechanisms between TRAP and health indexes. OBJECTIVES We examined metabolic perturbations associated with short-term exposures to TRAP, including carbon monoxide (CO), nitrogen dioxide (NO2), ozone (O3), fine particulate matter (PM2.5), organic carbon (OC), and elemental carbon (EC) among 180 participants of the Center for Health Discovery and Well-Being (CHDWB), a cohort of Emory University-affiliated employees. METHODS A cross-sectional study was conducted on baseline visits of 180 CHDWB participants enrolled during 2008-2012, in whom HRM profiling was determined in plasma samples using liquid chromatography-high-resolution mass spectrometry with positive and negative electrospray ionization (ESI) modes. Ambient pollution concentrations were measured at an ambient monitor near downtown Atlanta. Metabolic perturbations associated with TRAP exposures were assessed following an untargeted metabolome-wide association study (MWAS) framework using feature-specific Tobit regression models, followed by enriched pathway analysis and chemical annotation. RESULTS Subjects were predominantly white (76.1%) and non-smokers (95.6%), and all had at least a high school education. In total, 7821 and 4123 metabolic features were extracted from the plasma samples by the negative and positive ESI runs, respectively. There are 3421 features significantly associated with at least one air pollutant by negative ion mode, and 1691 features by positive ion mode. Biological pathways enriched by features associated with the pollutants are primarily involved in nucleic acids damage/repair (e.g., pyrimidine metabolism), nutrient metabolism (e.g., fatty acid metabolism), and acute inflammation (e.g., histidine metabolism and tyrosine metabolism). NO2 and EC were associated most consistently with these pathways. We confirmed the chemical identity of 8 metabolic features in negative ESI and 2 features in positive ESI, including metabolites closely linked to oxidative stress and inflammation, such as histamine, tyrosine, tryptophan, and proline. CONCLUSIONS We identified a range of ambient pollutants, including components of TRAP, associated with differences in the metabolic phenotype among the cohort of 180 subjects. We found Tobit models to be a robust approach to handle missing data among the metabolic features. The results were encouraging of further use of HRM and MWAS approaches for characterizing molecular mechanisms underlying exposure to TRAP.
Collapse
Affiliation(s)
- Zhenjiang Li
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, USA
| | - Donghai Liang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, USA
| | - Dongni Ye
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, USA
| | - Howard H Chang
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, USA
| | - Thomas R Ziegler
- Division of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Dean P Jones
- Division of Pulmonary, Allergy, and Critical Care Medicine, School of Medicine, Emory University, Atlanta, United States
| | - Stefanie T Ebelt
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, USA.
| |
Collapse
|
31
|
Alqosaibi AI, Abdel-Ghany S, Sabit H. Temozolomide modulates the expression of miRNAs in colorectal cancer. Cancer Treat Res Commun 2021; 27:100308. [PMID: 33465562 DOI: 10.1016/j.ctarc.2021.100308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/25/2020] [Accepted: 01/07/2021] [Indexed: 01/07/2023]
Abstract
Cancer is the second leading cause of death globally, where nearly 1 in 6 deaths is due to cancer, with 70% of all deaths from cancer occur in low- and middle-income countries. The overall lifetime risk of developing colorectal cancer is 1 in 22 in men and 1 in 24 in women. In this work, we aimed to evaluate the role of temozolomide (TMZ) in controlling colon cancer cells (CRC) via regulating the miRnome. For this purpose, CRC cells (CaCo-2) were treated with 50 µM of TMZ for 48 h. Cell count using trypan test and cytotoxicity using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) were carried out, and the obtained results indicated a significant decrease in cell count (p = 0.029), and in the cell viability (p = 0.0019). Cell cycle analysis was performed using flow cytometer, and results showed that TMZ arrested CRC cells at G2/M phase. A total of 84 miRNAs were profiled using real time PCR, and the results indicated that TMZ treatment upregulated 15 of 84 miRNAs panel profiled and downregulated the rest. The TMZ-upregulated/downregulated miRNAs were predicted to interact with many epigenetic-related proteins i.e., DNMTs, EZH2, and SUV31H1. This study shed some light on the role of TMZ in regulating the miRnome of CRC and hence in different types of cancers.
Collapse
Affiliation(s)
- Amany I Alqosaibi
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, P. O. Box 1982, Dammam, 31441 Saudi Arabia
| | - Shaimaa Abdel-Ghany
- Department of Environmental Biotechnology, College of Biotechnology, Misr University for Science and Technology, P. O. Box 77, Giza, Egypt
| | - Hussein Sabit
- Department of Genetics, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, P. O. Box 1982, Dammam, 31441 Saudi Arabia.
| |
Collapse
|
32
|
Sima M, Rossnerova A, Simova Z, Rossner P. The Impact of Air Pollution Exposure on the MicroRNA Machinery and Lung Cancer Development. J Pers Med 2021; 11:60. [PMID: 33477935 PMCID: PMC7833364 DOI: 10.3390/jpm11010060] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 12/14/2022] Open
Abstract
Small non-coding RNA molecules (miRNAs) play an important role in the epigenetic regulation of gene expression. As these molecules have been repeatedly implicated in human cancers, they have been suggested as biomarkers of the disease. Additionally, miRNA levels have been shown to be affected by environmental pollutants, including airborne contaminants. In this review, we searched the current literature for miRNAs involved in lung cancer, as well as miRNAs deregulated as a result of exposure to air pollutants. We then performed a synthesis of the data and identified those molecules commonly deregulated under both conditions. We detected a total of 25 miRNAs meeting the criteria, among them, miR-222, miR-21, miR-126-3p, miR-155 and miR-425 being the most prominent. We propose these miRNAs as biomarkers of choice for the identification of human populations exposed to air pollution with a significant risk of developing lung cancer.
Collapse
Affiliation(s)
- Michal Sima
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine CAS, Videnska 1083, 142 20 Prague, Czech Republic; (M.S.); (Z.S.)
| | - Andrea Rossnerova
- Department of Genetic Toxicology and Epigenetics, Institute of Experimental Medicine CAS, Videnska 1083, 142 20 Prague, Czech Republic;
| | - Zuzana Simova
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine CAS, Videnska 1083, 142 20 Prague, Czech Republic; (M.S.); (Z.S.)
| | - Pavel Rossner
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine CAS, Videnska 1083, 142 20 Prague, Czech Republic; (M.S.); (Z.S.)
| |
Collapse
|
33
|
Chen C, Liu S, Dong W, Song Y, Chu M, Xu J, Guo X, Zhao B, Deng F. Increasing cardiopulmonary effects of ultrafine particles at relatively low fine particle concentrations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 751:141726. [PMID: 32889464 DOI: 10.1016/j.scitotenv.2020.141726] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 08/10/2020] [Accepted: 08/14/2020] [Indexed: 06/11/2023]
Abstract
Ultrafine particles (UFPs) are of concern because of their high pulmonary deposition efficiency. However, present control measures are generally targeted at fine particles (PM2.5), with little effect on UFPs. The health effects of UFPs at different PM2.5 concentrations may provide a basic for controlling UFPs but remain unclear in polluted areas. School children spend the majority of their time in the classrooms. This study investigated the different short-term effects of indoor UFPs on school children in Beijing, China when indoor PM2.5 concentrations exceeded or satisfied the recently published Chinese standard for indoor PM2.5. Cardiopulmonary functions of 48 school children, of whom 46 completed, were measured three times. Indoor PM2.5 and UFPs were monitored in classrooms on weekdays. Measurements were separated into two groups according to the abovementioned standard. Mixed-effect models were used to explore the health effects of the air pollutants. Generally, UFP-associated effects on children's cardiopulmonary function persisted even at relatively low PM2.5 concentrations, especially on heart rate variability indices. The risks associated with high PM2.5 concentrations are well-known, but the effects of UFPs on children's cardiopulmonary function deserve more attention even when PM2.5 has been controlled. UFP control and standard setting should therefore be considered.
Collapse
Affiliation(s)
- Chen Chen
- Department of Building Science, School of Architecture, Tsinghua University, Beijing 100084, China
| | - Shan Liu
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
| | - Wei Dong
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
| | - Yi Song
- Institute of Child and Adolescent Health, School of Public Health, Peking University, Beijing 100191, China
| | - Mengtian Chu
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
| | - Junhui Xu
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
| | - Xinbiao Guo
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
| | - Bin Zhao
- Department of Building Science, School of Architecture, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Tsinghua University, Beijing 100084, China.
| | - Furong Deng
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China.
| |
Collapse
|
34
|
Zhang Y, Liu D, Liu Z. Fine Particulate Matter (PM 2.5) and Chronic Kidney Disease. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 254:183-215. [PMID: 34529145 DOI: 10.1007/398_2020_62] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The impact of ambient particulate matter (PM) on public health has become a great global concern, which is especially prominent in developing countries. For health purposes, PM is typically defined by size, with the smaller particles having more health impacts. Particles with a diameter <2.5 μm are called PM2.5. Initial research studies have focused on the impact of PM2.5 on respiratory and cardiovascular diseases; nevertheless, an increasing number of data suggested that PM2.5 may affect every organ system in the human body, and the kidney is of no exception. The kidney is vulnerable to particulate matter because most environmental toxins are concentrated by the kidney during filtration. According to the high morbidity and mortality related to chronic kidney disease, it is necessary to determine the effect of PM2.5 on kidney disease and its mechanism that needs to be identified. To understand the current status of PM2.5 in the atmosphere and their potential harmful kidney effects in different regions of the world this review article was prepared based on peer-reviewed scientific papers, scientific reports, and database from government organizations published after the year 1998. In this review, we focus on the worldwide epidemiological evidence linking PM2.5 with chronic kidney disease and the effect of PM2.5 on the chronic kidney disease (CKD) progression. At the same time, we also discuss the possible mechanisms of PM2.5 exposure leading to kidney damage, in order to emphasize the contribution of PM2.5 to kidney damage. A global database on PM2.5 and kidney disease should be developed to provide new ideas for the prevention and treatment of kidney disease.
Collapse
Affiliation(s)
- Yilin Zhang
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P. R. China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, P. R. China
- Research Center for Kidney Disease, Zhengzhou, Henan Province, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, P. R. China
- Core Unit of National Clinical Medical Research Center of Kidney Disease, Zhengzhou, P. R. China
| | - Dongwei Liu
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P. R. China.
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, P. R. China.
- Research Center for Kidney Disease, Zhengzhou, Henan Province, P. R. China.
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, P. R. China.
- Core Unit of National Clinical Medical Research Center of Kidney Disease, Zhengzhou, P. R. China.
| | - Zhangsuo Liu
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P. R. China.
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, P. R. China.
- Research Center for Kidney Disease, Zhengzhou, Henan Province, P. R. China.
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, P. R. China.
- Core Unit of National Clinical Medical Research Center of Kidney Disease, Zhengzhou, P. R. China.
| |
Collapse
|
35
|
Ferragut Cardoso AP, Udoh KT, States JC. Arsenic-induced changes in miRNA expression in cancer and other diseases. Toxicol Appl Pharmacol 2020; 409:115306. [PMID: 33127375 PMCID: PMC7772821 DOI: 10.1016/j.taap.2020.115306] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/20/2020] [Accepted: 10/26/2020] [Indexed: 02/06/2023]
Abstract
miRNAs (miRNA) are essential players regulating gene expression affecting cellular processes contributing to disease development. Dysregulated miRNA expression has been observed in numerous diseases including hepatitis, cardiovascular diseases and cancers. In cardiovascular diseases, several miRNAs function as mediators of pathogenic stress-related signaling pathways that may lead to an excessive extracellular matrix production and collagen deposition causing cardiac stress resulting in fibrosis. In cancers, many miRNAs function as oncogenes or tumor suppressors facilitating tumor growth, invasion and angiogenesis. Furthermore, the association between distinct miRNA profile and tumor development, progression and treatment response has identified miRNAs as potential biomarkers for disease diagnosis and prognosis. Growing evidence demonstrates changes in miRNA expression levels in experimental settings or observational studies associated with environmental chemical exposures such as arsenic. Arsenic is one of the most well-known human carcinogens. Long-term exposure through drinking water increases risk of developing skin, lung and urinary bladder cancers, as well as cardiovascular disease. The mechanism(s) by which arsenic causes disease remains elusive. Proposed mechanisms include miRNA dysregulation. Epidemiological studies identified differential miRNA expression between arsenic-exposed and non-exposed individuals from India, Bangladesh, China and Mexico. In vivo and in vitro studies have shown that miRNAs are critically involved in arsenic-induced malignant transformation. Few studies analyzed miRNAs in other diseases associated with arsenic exposure. Importantly, there is no consensus on a consistent miRNA profile for arsenic-induced cancers because most studies analyze only particular miRNAs. Identifying miRNA expression changes common among humans, rodents and cell lines might guide future miRNA investigations.
Collapse
Affiliation(s)
- Ana P Ferragut Cardoso
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA
| | - Karen T Udoh
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA
| | - J Christopher States
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA.
| |
Collapse
|
36
|
Finicelli M, Squillaro T, Galderisi U, Peluso G. Micro-RNAs: Crossroads between the Exposure to Environmental Particulate Pollution and the Obstructive Pulmonary Disease. Int J Mol Sci 2020; 21:E7221. [PMID: 33007849 PMCID: PMC7582315 DOI: 10.3390/ijms21197221] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/28/2020] [Accepted: 09/29/2020] [Indexed: 12/18/2022] Open
Abstract
Environmental pollution has reached a global echo and represents a serious problem for human health. Air pollution encompasses a set of hazardous substances, such as particulate matter and heavy metals (e.g., cadmium, lead, and arsenic), and has a strong impact on the environment by affecting groundwater, soil, and air. An adaptive response to environmental cues is essential for human survival, which is associated with the induction of adaptive phenotypes. The epigenetic mechanisms regulating the expression patterns of several genes are promising candidates to provide mechanistic and prognostic insights into this. Micro-RNAs (miRNAs) fulfil these features given their ability to respond to environmental factors and their critical role in determining phenotypes. These molecules are present in extracellular fluids, and their expression patterns are organ-, tissue-, or cell-specific. Moreover, the experimental settings for their quantitative and qualitative analysis are robust, standardized, and inexpensive. In this review, we provide an update on the role of miRNAs as suitable tools for understanding the mechanisms behind the physiopathological response to toxicants and the prognostic value of their expression pattern associable with specific exposures. We look at the mechanistic evidence associable to the role of miRNAs in the processes leading to environmental-induced pulmonary disease (i.e., chronic obstructive pulmonary disease).
Collapse
Affiliation(s)
- Mauro Finicelli
- Research Institute on Terrestrial Ecosystems (IRET), National Research Council of Italy (CNR), via Pietro Castellino 111, 80131 Naples, Italy
| | - Tiziana Squillaro
- Department of Experimental Medicine, Division of Molecular Biology, Biotechnology and Histology, University of Campania “Luigi Vanvitelli”, via Santa Maria di Costantinopoli 16, 80138 Naples, Italy; (T.S.); (U.G.)
| | - Umberto Galderisi
- Department of Experimental Medicine, Division of Molecular Biology, Biotechnology and Histology, University of Campania “Luigi Vanvitelli”, via Santa Maria di Costantinopoli 16, 80138 Naples, Italy; (T.S.); (U.G.)
| | - Gianfranco Peluso
- Research Institute on Terrestrial Ecosystems (IRET), National Research Council of Italy (CNR), via Pietro Castellino 111, 80131 Naples, Italy
| |
Collapse
|
37
|
Paital B, Agrawal PK. Air pollution by NO 2 and PM 2.5 explains COVID-19 infection severity by overexpression of angiotensin-converting enzyme 2 in respiratory cells: a review. ENVIRONMENTAL CHEMISTRY LETTERS 2020; 19:25-42. [PMID: 32982622 PMCID: PMC7499935 DOI: 10.1007/s10311-020-01091-w] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 09/05/2020] [Indexed: 05/08/2023]
Abstract
Many major cities that witnessed heavy air pollution by nitrogen dioxide (NO2) and particulate matter (PM) have experienced a high rate of infection and severity of the coronavirus disease pandemic (COVID-19). This phenomenon could be explained by the overexpression of the angiotensin converting enzyme 2 (ACE-2) on epithelial cell surfaces of the respiratory tract. Indeed, ACE-2 is a receptor for coronaviruses including the severe acute respiratory syndrome coronavirus 1 and 2 (SARS-CoV), and ACE-2 is overexpressed under chronic exposure to air pollution such as NO2 and PM2.5. In this review, we explain that ACE-2 acts as the sole receptor for the attachment of the SARS-CoV-2 via its spike protein. The fact that respiratory and vascular epithelial cells express ACE-2 has been previously observed during the 2003 epidemic of the SARS-CoV-1 in China, and during the 2012 Middle East respiratory syndrome in Saudi Arabia. High ACE-2 expression in respiratory epithelial cells under air pollution explains the positive correlation between the severity in COVID-19 patients and elevated air pollution, notably high NO2 and PM2.5 levels. Specific areas in India, China, Italy, Russia, Chile and Qatar that experience heavy air pollution also show high rates of COVID-19 infection and severity. Overall, we demonstrate a link between NO2 emissions, PM2.5 levels, ACE-2 expression and COVID-19 infection severity. Therefore, air pollution should be reduced in places where confirmed cases of COVID-19 are unexpectedly high.
Collapse
Affiliation(s)
- Biswaranjan Paital
- Redox Regulation Laboratory, Department of Zoology, Odisha University of Agriculture and Technology, College of Basic Science and Humanities, Bhubaneswar, 751003 India
| | - Pawan Kumar Agrawal
- Main Building, Odisha University of Agriculture and Technology, Bhubaneswar, 751003 India
| |
Collapse
|
38
|
Kunovac A, Hathaway QA, Pinti MV, Taylor AD, Hollander JM. Cardiovascular adaptations to particle inhalation exposure: molecular mechanisms of the toxicology. Am J Physiol Heart Circ Physiol 2020; 319:H282-H305. [PMID: 32559138 PMCID: PMC7473925 DOI: 10.1152/ajpheart.00026.2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 06/12/2020] [Accepted: 06/12/2020] [Indexed: 12/13/2022]
Abstract
Ambient air, occupational settings, and the use and distribution of consumer products all serve as conduits for toxicant exposure through inhalation. While the pulmonary system remains a primary target following inhalation exposure, cardiovascular implications are exceptionally culpable for increased morbidity and mortality. The epidemiological evidence for cardiovascular dysfunction resulting from acute or chronic inhalation exposure to particulate matter has been well documented, but the mechanisms driving the resulting disturbances remain elusive. In the current review, we aim to summarize the cellular and molecular mechanisms that are directly linked to cardiovascular health following exposure to a variety of inhaled toxicants. The purpose of this review is to provide a comprehensive overview of the biochemical changes in the cardiovascular system following particle inhalation exposure and to highlight potential biomarkers that exist across multiple exposure paradigms. We attempt to integrate these molecular signatures in an effort to provide direction for future investigations. This review also characterizes how molecular responses are modified in at-risk populations, specifically the impact of environmental exposure during critical windows of development. Maternal exposure to particulate matter during gestation can lead to fetal epigenetic reprogramming, resulting in long-term deficits to the cardiovascular system. In both direct and indirect (gestational) exposures, connecting the biochemical mechanisms with functional deficits outlines pathways that can be targeted for future therapeutic intervention. Ultimately, future investigations integrating "omics"-based approaches will better elucidate the mechanisms that are altered by xenobiotic inhalation exposure, identify biomarkers, and guide in clinical decision making.
Collapse
Affiliation(s)
- Amina Kunovac
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, West Virginia
- Center for Inhalation Toxicology, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Quincy A Hathaway
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, West Virginia
- Center for Inhalation Toxicology, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Mark V Pinti
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, West Virginia
- West Virginia University School of Pharmacy, Morgantown, West Virginia
| | - Andrew D Taylor
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, West Virginia
| | - John M Hollander
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, West Virginia
- Center for Inhalation Toxicology, West Virginia University School of Medicine, Morgantown, West Virginia
| |
Collapse
|
39
|
Anyanwu BO, Orisakwe OE. Current mechanistic perspectives on male reproductive toxicity induced by heavy metals. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, TOXICOLOGY AND CARCINOGENESIS 2020; 38:204-244. [PMID: 32648503 DOI: 10.1080/26896583.2020.1782116] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Environmental and occupational exposures to heavy metals have led to various deleterious damages to the biological system of which infertility is one of them. Infertility is a global public health concern, affecting 15% of all couples of reproductive age. Out of the 100% cases of reported infertility among couples, 40% of the cases are related to male factors; including decreased semen quality. This review focuses on the recent mechanistic perspectives of heavy metal-induced male reproductive toxicity. The associated toxic metal-mediated mechanisms of male reproductive toxicity include ion mimicry, disruption of cell signaling pathways, oxidative stress, altered gene expression, epigenetic regulation of gene expression, apoptosis, disruption of testis/blood barrier, inflammation and endocrine disruption. The current literature suggests that non-coding RNAs (ncRNAs) mediate paternal intergenerational epigenetic inheritance and thus has a direct functional importance, as well as possess novel biomarker potential, for male reproductive toxicity. To identify the specific ncRNAs with the most profound impacts on heavy metal-induced male reproductive toxicity should be thrust of further research.
Collapse
Affiliation(s)
- Brilliance Onyinyechi Anyanwu
- World Bank Africa Centre of Excellence in Oilfield Chemicals Research (CEFOR), University of Port Harcourt, Port Harcourt, Rivers State, Nigeria
| | - Orish Ebere Orisakwe
- Department of Experimental Pharmacology & Toxicology, Faculty of Pharmacy, University of Port Harcourt, Port Harcourt, Rivers State, Nigeria
- World Bank Africa Centre of Excellence in Public Health and Toxicological Research (PUTOR), University of Port Harcourt, Port Harcourt, Rivers State, Nigeria
| |
Collapse
|
40
|
Sanchez B, Zhou X, Gardiner AS, Herbert G, Lucas S, Morishita M, Wagner JG, Lewandowski R, Harkema JR, Shuey C, Campen MJ, Zychowski KE. Serum-borne factors alter cerebrovascular endothelial microRNA expression following particulate matter exposure near an abandoned uranium mine on the Navajo Nation. Part Fibre Toxicol 2020; 17:29. [PMID: 32611356 PMCID: PMC7329534 DOI: 10.1186/s12989-020-00361-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 06/22/2020] [Indexed: 12/19/2022] Open
Abstract
Background Commercial uranium mining on the Navajo Nation has subjected communities on tribal lands in the Southwestern United States to exposures from residual environmental contamination. Vascular health effects from these ongoing exposures are an active area of study. There is an association between residential mine-site proximity and circulating biomarkers in residents, however, the contribution of mine-site derived wind-blown dusts on vascular and other health outcomes is unknown. To assess neurovascular effects of mine-site derived dusts, we exposed mice using a novel exposure paradigm, the AirCARE1 mobile inhalation laboratory, located 2 km from an abandoned uranium mine, Claim 28 in Blue Gap Tachee, AZ. Mice were exposed to filtered air (FA) (n = 6) or concentrated ambient particulate matter (CAPs) (n = 5) for 2 wks for 4 h per day. Results To assess miRNA differential expression in cultured mouse cerebrovascular cells following particulate matter (PM) exposure (average: 96.6 ± 60.4 μg/m3 for all 4 h exposures), the serum cumulative inflammatory potential (SCIP) assay was employed. MiRNA sequencing was then performed in cultured mouse cerebrovascular endothelial cells (mCECs) to evaluate transcriptional changes. Results indicated 27 highly differentially expressed (p < 0.01) murine miRNAs, as measured in the SCIP assay. Gene ontology (GO) pathway analysis revealed notable alterations in GO enrichment related to the cytoplasm, protein binding and the cytosol, while significant KEGG pathways involved pathways in cancer, axon guidance and Wnt signaling. Expression of these 27 identified, differentially expressed murine miRNAs were then evaluated in the serum. Nine of these miRNAs (~ 30%) were significantly altered in the serum and 8 of those miRNAs demonstrated the same directional change (either upregulation or downregulation) as cellular miRNAs, as measured in the SCIP assay. Significantly upregulated miRNAs in the CAPs exposure group included miRNAs in the let-7a family. Overexpression of mmu-let-7a via transfection experiments, suggested that this miRNA may mediate mCEC barrier integrity following dust exposure. Conclusions Our data suggest that mCEC miRNAs as measured in the SCIP assay show similarity to serum-borne miRNAs, as approximately 30% of highly differentially expressed cellular miRNAs in the SCIP assay were also found in the serum. While translocation of miRNAs via exosomes or an alternative mechanism is certainly possible, other yet-to-be-identified factors in the serum may be responsible for significant miRNA differential expression in endothelium following inhaled exposures. Additionally, the most highly upregulated murine miRNAs in the CAPs exposure group were in the let-7a family. These miRNAs play a prominent role in cell growth and differentiation and based on our transfection experiments, mmu-let-7a may contribute to cerebrovascular mCEC alterations following inhaled dust exposure.
Collapse
Affiliation(s)
- Bethany Sanchez
- Department of Pharmaceutical Sciences, University of New Mexico-Health Sciences Center, Albuquerque, NM, 87131, USA
| | - Xixi Zhou
- Department of Pharmaceutical Sciences, University of New Mexico-Health Sciences Center, Albuquerque, NM, 87131, USA
| | - Amy S Gardiner
- Department of Cell Biology and Physiology, University of New Mexico-Health Sciences Center, Albuquerque, NM, 87131, USA
| | - Guy Herbert
- Department of Pharmaceutical Sciences, University of New Mexico-Health Sciences Center, Albuquerque, NM, 87131, USA
| | - Selita Lucas
- Department of Pharmaceutical Sciences, University of New Mexico-Health Sciences Center, Albuquerque, NM, 87131, USA
| | - Masako Morishita
- Department of Family Medicine, College of Human Medicine, Michigan State University, East Lansing, MI, USA
| | - James G Wagner
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA
| | - Ryan Lewandowski
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA
| | - Jack R Harkema
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA
| | - Chris Shuey
- Southwest Research and Information Center, Albuquerque, NM, USA
| | - Matthew J Campen
- Department of Pharmaceutical Sciences, University of New Mexico-Health Sciences Center, Albuquerque, NM, 87131, USA
| | - Katherine E Zychowski
- College of Nursing, MSC09 53601 University of New Mexico-Health Sciences Center, Albuquerque, NM, 87131, USA.
| |
Collapse
|
41
|
Cheng M, Wang B, Yang M, Ma J, Ye Z, Xie L, Zhou M, Chen W. microRNAs expression in relation to particulate matter exposure: A systematic review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 260:113961. [PMID: 32006883 DOI: 10.1016/j.envpol.2020.113961] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 12/27/2019] [Accepted: 01/09/2020] [Indexed: 06/10/2023]
Abstract
MicroRNAs (miRNAs) are a class of small, non-coding RNAs with a post-transcriptional regulatory function on gene expression and cell processes, including proliferation, apoptosis and differentiation. In recent decades, miRNAs have attracted increasing interest to explore the role of epigenetics in response to air pollution. Air pollution, which always contains kinds of particulate matters, are able to reach respiratory tract and blood circulation and then causing epigenetics changes. In addition, extensive studies have illustrated that miRNAs serve as a bridge between particulate matter exposure and health-related effects, like inflammatory cytokines, blood pressure, vascular condition and lung function. The purpose of this review is to summarize the present knowledge about the expression of miRNAs in response to particulate matter exposure. Epidemiological and experimental studies were reviewed in two parts according to the size and source of particles. In this review, we also discussed various functions of the altered miRNAs and predicted potential biological mechanism participated in particulate matter-induced health effects. More rigorous studies are worth conducting to understand contribution of particulate matter on miRNAs alteration and the etiology between environmental exposure and disease development.
Collapse
Affiliation(s)
- Man Cheng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Bin Wang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Meng Yang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jixuan Ma
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zi Ye
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Li Xie
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Min Zhou
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Weihong Chen
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
42
|
Fifteen Years of Airborne Particulates in Vitro Toxicology in Milano: Lessons and Perspectives Learned. Int J Mol Sci 2020; 21:ijms21072489. [PMID: 32260164 PMCID: PMC7177378 DOI: 10.3390/ijms21072489] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/10/2020] [Accepted: 04/01/2020] [Indexed: 12/13/2022] Open
Abstract
Air pollution is one of the world’s leading environmental causes of death. The epidemiological relationship between outdoor air pollution and the onset of health diseases associated with death is now well established. Relevant toxicological proofs are now dissecting the molecular processes that cause inflammation, reactive species generation, and DNA damage. In addition, new data are pointing out the role of airborne particulates in the modulation of genes and microRNAs potentially involved in the onset of human diseases. In the present review we collect the relevant findings on airborne particulates of one of the biggest hot spots of air pollution in Europe (i.e., the Po Valley), in the largest urban area of this region, Milan. The different aerodynamic fractions are discussed separately with a specific focus on fine and ultrafine particles that are now the main focus of several studies. Results are compared with more recent international findings. Possible future perspectives of research are proposed to create a new discussion among scientists working on the toxicological effects of airborne particles.
Collapse
|
43
|
Fuso A, Raia T, Orticello M, Lucarelli M. The complex interplay between DNA methylation and miRNAs in gene expression regulation. Biochimie 2020; 173:12-16. [PMID: 32061806 DOI: 10.1016/j.biochi.2020.02.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 02/11/2020] [Indexed: 12/12/2022]
Abstract
The short, non-coding RNAs, also called microRNAs (miRNAs) can bind complementary sequences on cellular mRNAs. The consequence of this binding is generally the degradation of mRNA and the inhibition of its translation. For this reason, miRNAs are included among the epigenetic factors acting as a modulator of gene expression. How miRNAs expression is, in turn, regulated is still the object of active investigation, but DNA methylation, another epigenetic modification, seems to play a central role in this sense. The "one-carbon" metabolism is responsible for the metabolic regulation of trans-methylation reactions and, therefore, DNA methylation. For this reason, to investigate the possible correlations between alterations of the one-carbon metabolism and differential DNA methylation sounds interesting. Moreover, recent evidence indicates that, vice-versa, miRNAs are associated with DNA methylation modulation, in a mutual cross-talk. The present review will discuss the interplay between miRNAs and DNA methylation and its fall-out on gene expression regulation.
Collapse
Affiliation(s)
- Andrea Fuso
- Dept. of Experimental Medicine, Sapienza University of Rome, Rome, Italy.
| | - Tiziana Raia
- Dept. of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Michela Orticello
- Dept. of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Marco Lucarelli
- Dept. of Experimental Medicine, Sapienza University of Rome, Rome, Italy; Pasteur Institute Cenci Bolognetti Foundation, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
44
|
Perera BP, Faulk C, Svoboda LK, Goodrich JM, Dolinoy DC. The role of environmental exposures and the epigenome in health and disease. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2020; 61:176-192. [PMID: 31177562 PMCID: PMC7252203 DOI: 10.1002/em.22311] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/29/2019] [Accepted: 06/03/2019] [Indexed: 05/02/2023]
Abstract
The genetic material of every organism exists within the context of regulatory networks that govern gene expression, collectively called the epigenome. Epigenetics has taken center stage in the study of diseases such as cancer and diabetes, but its integration into the field of environmental health is still emerging. As the Environmental Mutagenesis and Genomics Society (EMGS) celebrates its 50th Anniversary this year, we have come together to review and summarize the seminal advances in the field of environmental epigenomics. Specifically, we focus on the role epigenetics may play in multigenerational and transgenerational transmission of environmentally induced health effects. We also summarize state of the art techniques for evaluating the epigenome, environmental epigenetic analysis, and the emerging field of epigenome editing. Finally, we evaluate transposon epigenetics as they relate to environmental exposures and explore the role of noncoding RNA as biomarkers of environmental exposures. Although the field has advanced over the past several decades, including being recognized by EMGS with its own Special Interest Group, recently renamed Epigenomics, we are excited about the opportunities for environmental epigenetic science in the next 50 years. Environ. Mol. Mutagen. 61:176-192, 2020. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Bambarendage P.U. Perera
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan
| | - Christopher Faulk
- Department of Animal Sciences, University of Minnesota, St. Paul, Minnesota
| | - Laurie K. Svoboda
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan
| | - Jaclyn M. Goodrich
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan
| | - Dana C. Dolinoy
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan
- Correspondence to: Dana C. Dolinoy, Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan.
| |
Collapse
|
45
|
Preston GW, Dagnino S, Ponzi E, Sozeri O, van Veldhoven K, Barratt B, Liu S, Grigoryan H, Lu SS, Rappaport SM, Chung KF, Cullinan P, Sinharay R, Kelly FJ, Chadeau-Hyam M, Vineis P, Phillips DH. Relationships between airborne pollutants, serum albumin adducts and short-term health outcomes in an experimental crossover study. CHEMOSPHERE 2020; 239:124667. [PMID: 31499299 DOI: 10.1016/j.chemosphere.2019.124667] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 08/21/2019] [Accepted: 08/24/2019] [Indexed: 06/10/2023]
Abstract
Exposure to air pollution can have both short-term and long-term effects on health. However, the relationships between specific pollutants and their effects can be obscured by characteristics of both the pollution and the exposed population. One way of elucidating the relationships is to link exposures and internal changes at the level of the individual. To this end, we combined personal exposure monitoring (59 individuals, Oxford Street II crossover study) with mass-spectrometry-based analyses of putative serum albumin adducts (fixed-step selected reaction monitoring). We attempted to infer adducts' identities using data from another, higher-resolution mass spectrometry method, and were able to detect a semi-synthetic standard with both methods. A generalised least squares regression method was used to test for associations between amounts of adducts and pollution measures (ambient concentrations of nitrogen dioxide and particulate matter), and between amounts of adducts and short-term health outcomes (measures of lung health and arterial stiffness). Amounts of some putative adducts (e.g., one with a positive mass shift of ∼143 Da) were associated with exposure to pollution (11 associations), and amounts of other adducts were associated with health outcomes (eight associations). Adducts did not appear to provide a link between exposures and short-term health outcomes.
Collapse
Affiliation(s)
- George W Preston
- MRC-PHE Centre for Environment & Health, Department of Analytical, Environmental & Forensic Sciences, School of Population Health & Environmental Sciences, Faculty of Life Sciences & Medicine, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, UK
| | - Sonia Dagnino
- MRC-PHE Centre for Environment & Health, Department of Epidemiology and Biostatistics, School of Public Health, Faculty of Medicine, Imperial College London, Norfolk Place, London, W2 1PG, UK
| | - Erica Ponzi
- MRC-PHE Centre for Environment & Health, Department of Epidemiology and Biostatistics, School of Public Health, Faculty of Medicine, Imperial College London, Norfolk Place, London, W2 1PG, UK; Epidemiology, Biostatistics and Prevention Institute, University of Zurich, Hirschengraben 84, 8001, Zurich, Switzerland
| | - Osman Sozeri
- MRC-PHE Centre for Environment & Health, Department of Analytical, Environmental & Forensic Sciences, School of Population Health & Environmental Sciences, Faculty of Life Sciences & Medicine, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, UK
| | - Karin van Veldhoven
- MRC-PHE Centre for Environment & Health, Department of Epidemiology and Biostatistics, School of Public Health, Faculty of Medicine, Imperial College London, Norfolk Place, London, W2 1PG, UK
| | - Benjamin Barratt
- MRC-PHE Centre for Environment & Health, Department of Analytical, Environmental & Forensic Sciences, School of Population Health & Environmental Sciences, Faculty of Life Sciences & Medicine, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, UK
| | - Sa Liu
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, 94720, USA
| | - Hasmik Grigoryan
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, 94720, USA
| | - Sixin S Lu
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, 94720, USA
| | - Stephen M Rappaport
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, 94720, USA
| | - Kian Fan Chung
- National Heart & Lung Institute, Faculty of Medicine, Imperial College London, Royal Brompton Campus, London, SW3 6LY, UK; NIHR Biomedical Research Unit, Royal Brompton & Harefield NHS Trust, London, SW3 6NP, UK
| | - Paul Cullinan
- National Heart & Lung Institute, Faculty of Medicine, Imperial College London, Royal Brompton Campus, London, SW3 6LY, UK; NIHR Biomedical Research Unit, Royal Brompton & Harefield NHS Trust, London, SW3 6NP, UK
| | - Rudy Sinharay
- Pulmonary, Adult Critical Care and Sleep Directorate, Guy's and St Thomas' NHS Foundation Trust, London, SE1 7EH, UK
| | - Frank J Kelly
- MRC-PHE Centre for Environment & Health, Department of Analytical, Environmental & Forensic Sciences, School of Population Health & Environmental Sciences, Faculty of Life Sciences & Medicine, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, UK
| | - Marc Chadeau-Hyam
- MRC-PHE Centre for Environment & Health, Department of Epidemiology and Biostatistics, School of Public Health, Faculty of Medicine, Imperial College London, Norfolk Place, London, W2 1PG, UK
| | - Paolo Vineis
- MRC-PHE Centre for Environment & Health, Department of Epidemiology and Biostatistics, School of Public Health, Faculty of Medicine, Imperial College London, Norfolk Place, London, W2 1PG, UK
| | - David H Phillips
- MRC-PHE Centre for Environment & Health, Department of Analytical, Environmental & Forensic Sciences, School of Population Health & Environmental Sciences, Faculty of Life Sciences & Medicine, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, UK.
| |
Collapse
|
46
|
Ning J, Li P, Zhang B, Han B, Su X, Wang Q, Wang X, Li B, Kang H, Zhou L, Chu C, Zhang N, Pang Y, Niu Y, Zhang R. miRNAs deregulation in serum of mice is associated with lung cancer related pathway deregulation induced by PM2.5. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 254:112875. [PMID: 31377334 DOI: 10.1016/j.envpol.2019.07.043] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 06/23/2019] [Accepted: 07/09/2019] [Indexed: 05/28/2023]
Abstract
Ambient fine particulate matter (PM2.5) as an environmental pollution has been associated with the lung cancer. However, the mechanism of epigenetics such as miRNAs deregulation between PM2.5-exposure and lung cancer has not been elucidated clearly. Twenty C57BL/6 mice were divided randomly into 2 groups and exposed to the filtered air (FA) and the concentrated air (CA), respectively. The FA mice were exposed to filtered air in chambers with a high-efficient particulate air filter (HEPA-filter), and the CA mice were exposed to concentration ambient PM2.5. The total duration of exposure was performed 6 h per day from December 1st, 2017 to January 27th, 2018. The mice exposed 900.21 μg/m3 PM2.5 for 6 h per day in CA chamber, which was nearly equaled to 225.05 μg/m3 for 24-h calculatingly. After exposure, the serum miRNAs levels were detected by microarray. Genetic and pathological alterations in lung of mice with/without PM2.5 exposure were detected. 38 differential miRNAs in serum of mice were found after PM2.5 exposure for 8 weeks. Among of them, 13 miRNAs related with lung cancer were consistent in serum and lung of mice. The target genes of 13 deregulated miRNAs including CRK, NR2F2, VIM, RASSF1, CCND2, PRKCA, SIRT1, CDK6, MAP3K7, HIF1A, UBE2V2, ATG10, BAX, E2F1, RASSF5 and CTNNB1, could involve in the pathway of lung cancer developing. Compared with the FA group, the significantly increases of histopathological changes, ROS and DNA damage were observed in lung of mice in CA group. Our study suggested that miRNAs in serum could be identified as candidate biomarkers to predict the lung cancer development during early PM2.5 exposure.
Collapse
Affiliation(s)
- Jie Ning
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Peiyuan Li
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Boyuan Zhang
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Bin Han
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Xuan Su
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Qian Wang
- Experimental Center, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Xiurong Wang
- Department of Immunology, School of Basic Medicine, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Binghua Li
- Department of Occupation Health and Environmental Health, School of Public Health, Hebei Medical University, Shijiazhuang, 050051, PR China
| | - Hui Kang
- Department of Occupation Health and Environmental Health, School of Public Health, Hebei Medical University, Shijiazhuang, 050051, PR China
| | - Lixiao Zhou
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Chen Chu
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Ning Zhang
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Yaxian Pang
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Yujie Niu
- Department of Occupation Health and Environmental Health, School of Public Health, Hebei Medical University, Shijiazhuang, 050051, PR China; Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, PR China
| | - Rong Zhang
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, PR China; Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, PR China.
| |
Collapse
|
47
|
Kotsyfakis M, Patelarou E. MicroRNAs as biomarkers of harmful environmental and occupational exposures: a systematic review. Biomarkers 2019; 24:623-630. [PMID: 31373233 DOI: 10.1080/1354750x.2019.1652348] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Environmental exposure is a growing public health burden associated with several negative health effects. An estimated 4.2 million deaths occur each year from ambient air pollution alone. Biomarkers that reflect specific exposures have the potential to measure the real integrated internal dose from all routes of complex environmental exposure. MicroRNAs (miRNAs), small non-coding RNAs that regulate gene expression, have been studied as biomarkers in various diseases and have also shown potential as environmental exposure biomarkers. Here, we review the available human epidemiological and experimental evidence of miRNA expression changes in response to specific environmental exposures including airborne particulate matter. In doing so, we establish that miRNA exposure biomarker development remains in its infancy and future studies will need to carefully consider biological and analytical 'design rules' in order to facilitate clinical translation.
Collapse
Affiliation(s)
- Michail Kotsyfakis
- Biology Center of the Czech Academy of Sciences , Ceske Budejovice , Czechia.,Nursing Department, Hellenic Mediterranean University , Heraklion , Greece
| | - Evridiki Patelarou
- Nursing Department, Hellenic Mediterranean University , Heraklion , Greece
| |
Collapse
|
48
|
Krauskopf J, van Veldhoven K, Chadeau-Hyam M, Vermeulen R, Carrasco-Turigas G, Nieuwenhuijsen M, Vineis P, de Kok TM, Kleinjans JC. Short-term exposure to traffic-related air pollution reveals a compound-specific circulating miRNA profile indicating multiple disease risks. ENVIRONMENT INTERNATIONAL 2019; 128:193-200. [PMID: 31059914 DOI: 10.1016/j.envint.2019.04.063] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 04/04/2019] [Accepted: 04/25/2019] [Indexed: 06/09/2023]
Abstract
Traffic-related air pollution (TRAP) is a complex mixture of compounds that contributes to the pathogenesis of many diseases including several types of cancer, pulmonary, cardiovascular and neurodegenerative diseases, and more recently also diabetes mellitus. In search of an early diagnostic biomarker for improved environmental health risk assessment, recent human studies have shown that certain extracellular miRNAs are altered upon exposure to TRAP. Here, we present a global circulating miRNA analysis in a human population exposed to different levels of TRAP. The cross-over study, with sampling taking place during resting and physical activity in two different exposure scenarios, included for each subject personal exposure measurements of PM10,PM2.5, NO, NO2, CO, CO2, BC and UFP. Next-generation sequencing technology was used to identify global circulating miRNA levels across all subjects. We identified 8 miRNAs to be associated with the mixture of TRAP and 27 miRNAs that were associated with the individual pollutants NO, NO2, CO, CO2, BC and UFP. We did not find significant associations between miRNA levels and PM10 or PM2.5. Integrated network analysis revealed that these circulating miRNAs are potentially involved in processes that are implicated in the development of air pollution-induced diseases. Altogether, this study demonstrates that signatures consisting of circulating miRNAs present a potential novel biomarker to be used in health risk assessment.
Collapse
Affiliation(s)
- Julian Krauskopf
- Department of Toxicogenomics, GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, the Netherlands.
| | - Karin van Veldhoven
- MRC-PHE Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Imperial College, London, UK; Department of Non-Communicable Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, UK
| | - Marc Chadeau-Hyam
- MRC-PHE Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Imperial College, London, UK
| | - Roel Vermeulen
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Glòria Carrasco-Turigas
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
| | - Mark Nieuwenhuijsen
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
| | - Paolo Vineis
- MRC-PHE Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Imperial College, London, UK
| | - Theo M de Kok
- Department of Toxicogenomics, GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, the Netherlands
| | - Jos C Kleinjans
- Department of Toxicogenomics, GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
49
|
Perera BPU, Svoboda L, Dolinoy DC. Genomic Tools for Environmental Epigenetics and Implications for Public Health. CURRENT OPINION IN TOXICOLOGY 2019; 18:27-33. [PMID: 31763499 DOI: 10.1016/j.cotox.2019.02.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Epigenetics refers to the study of mitotically heritable and potentially reversible changes in gene expression unrelated to the DNA sequence itself, influenced by epigenetic marks including chromatin modifications, non-coding RNA and alterations to DNA itself via methylation and hydroxymethylation. Epigenetics has taken center stage in the study of diseases such as cancer, diabetes, and neurodegeneration; however, its integration into the field of environmental health sciences and toxicology (e.g. Toxicoepigenetics) is in its infancy. This review highlights the need to evaluate surrogate and target tissues in the field of toxicoepigenetics as the National Institute of Environmental Health Sciences (NIEHS) multi-phased Toxicant Exposure and Response by Genomic and Epigenomic Regulators of Transcription (TaRGET) consortia make headway, and the emergence of non-coding RNA biomarkers. The review also discusses lead (Pb) as a potential toxicoepigenetic exposure, where pre- and post-natal Pb exposure is associated with reprogramming of DNA methylation, histone modifications, and microRNA expression, representing potential biomarkers or predictors for Pb-induced health outcomes. Finally, new advances in epigenome editing, highlighting the potential of small ncRNA, will be explored for environmental health sciences research.
Collapse
Affiliation(s)
- Bambarendage P U Perera
- University of Michigan School of Public Health, Department of Environmental Health Sciences, Ann Arbor, MI
| | - Laurie Svoboda
- University of Michigan School of Public Health, Department of Environmental Health Sciences, Ann Arbor, MI
| | - Dana C Dolinoy
- University of Michigan School of Public Health, Department of Environmental Health Sciences, Ann Arbor, MI
- University of Michigan School of Public Health, Department of Nutritional Sciences, Ann Arbor, MI
| |
Collapse
|
50
|
Li M, Huo X, Davuljigari CB, Dai Q, Xu X. MicroRNAs and their role in environmental chemical carcinogenesis. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2019; 41:225-247. [PMID: 30171477 DOI: 10.1007/s10653-018-0179-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Accepted: 08/23/2018] [Indexed: 02/05/2023]
Abstract
MicroRNAs (miRNAs) are a class of small, noncoding RNA species that play crucial roles across many biological processes and in the pathogenesis of major diseases, including cancer. Recent studies suggest that the expression of miRNA is altered by certain environmental chemicals, including metals, organic pollutants, cigarette smoke, pesticides and carcinogenic drugs. In addition, extensive studies have indicated the existence and importance of miRNA in different cancers, suggesting that cancer-related miRNAs could serve as potential markers for chemically induced cancers. The altered expression of miRNA was considered to be a vital pathogenic role in xenobiotic-induced cancer development. However, the significance of miRNA in the etiology of cancer and the exact mechanisms by which environmental factors alter miRNA expression remain relatively unexplored. Hence, understanding the interaction of miRNAs with environmental chemicals will provide important information on mechanisms underlying the pathogenesis of chemically induced cancers, and effectively diagnose and treat human cancers resulting from chronic or acute carcinogen exposure. This study presents the current evidence that the miRNA deregulation induced by various chemical carcinogens, different cancers caused by environmental carcinogens and the potentially related genes in the onset or progression of cancer. For each carcinogen, the specifically expressed miRNA may be considered as the early biomarkers of the cancer process. In this review, we also summarize various target genes of the altered miRNA, oncogenes or anti-oncogenes, and the existing evidence regarding the gene regulation mechanisms of cancer caused by environmentally induced miRNA alteration. The future perspective of miRNA may become attractive targets for the diagnosis and treatment of carcinogen-induced cancer.
Collapse
Affiliation(s)
- Minghui Li
- Laboratory of Environmental Medicine and Developmental Toxicology, and Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Xia Huo
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511486, Guangdong, China
| | - Chand Basha Davuljigari
- Laboratory of Environmental Medicine and Developmental Toxicology, and Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Qingyuan Dai
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511486, Guangdong, China
| | - Xijin Xu
- Laboratory of Environmental Medicine and Developmental Toxicology, and Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, 515041, Guangdong, China.
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, 515041, Guangdong, China.
| |
Collapse
|