1
|
Tarábek P, Leonova N, Konovalova O, Kirchner M. Identification of organic contaminants in water and related matrices using untargeted liquid chromatography high-resolution mass spectrometry screening with MS/MS libraries. CHEMOSPHERE 2024; 366:143489. [PMID: 39374668 DOI: 10.1016/j.chemosphere.2024.143489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/02/2024] [Accepted: 10/04/2024] [Indexed: 10/09/2024]
Abstract
Nontargeted and suspect screening with liquid chromatography-high resolution mass spectrometry (LC-HRMS) has become an indispensable tool for quality assessment in the aquatic environment - complementary to targeted analysis of organic (micro)contaminants. An LC-HRMS method is presented, suitable for the analysis of a wide variety of water related matrices: surface water, groundwater, wastewater, sediment and sludge, including extracts from passive samplers and on-site solid phase enrichment, while focusing on the data processing aspect of the method. A field study is included to demonstrate the practical application and versatility of the whole process. HRMS/MS data were recorded following LC separation in both (ESI) positive and negative ionization modes using data dependent as well as data independent acquisition. Two vendor (Agilent's Personal Compound Database and Library and from National Institute of Standards and Technology) and one open (MassBank/EU) tandem mass spectral libraries were utilized for the identification of compounds via mass spectral match. The development of a novel software tool for parsing, grouping and reduction of MS/MS features in data files converted to mascot generic format (MGF) helped to substantially decrease the amount of time and effort needed for MS library search. While applying the method, in the course of the entire field study, 18771 detections (from 870 individual compounds) in total were recorded in 275 samples, resulting in 68.3 identified compounds per sample, on average. Among the top ten most frequently detected contaminants across all samples and sample types were pharmaceutical compounds carbamazepine, 4-acetamidoantipyrine, 4-formylaminoantipyrine, tramadol, lamotrigine and phenazone and industrial contaminants toluene-2-sulfonamide, tolytriazole, tris(2-butoxyethyl) phosphate and benzotriazole. Exploratory data analysis methods and tools enabled us to discover organic pollutant occurrence patterns within the comprehensive sets of qualitative data collected from various projects between the years 2018-2023. The results may be used as valuable inputs for future water quality monitoring programs.
Collapse
Affiliation(s)
- Peter Tarábek
- Water Research Institute, Nábr. arm. gen. L. Svobodu 5, 81249, Bratislava, Slovakia.
| | - Nataliia Leonova
- Water Research Institute, Nábr. arm. gen. L. Svobodu 5, 81249, Bratislava, Slovakia
| | - Olga Konovalova
- Water Research Institute, Nábr. arm. gen. L. Svobodu 5, 81249, Bratislava, Slovakia
| | - Michal Kirchner
- Water Research Institute, Nábr. arm. gen. L. Svobodu 5, 81249, Bratislava, Slovakia
| |
Collapse
|
2
|
Disdier Z, Dagnelie RVH. "P AW" a smart analytical process assessing lipophilicity of solutes in mixtures. Anal Chim Acta 2024; 1316:342871. [PMID: 38969431 DOI: 10.1016/j.aca.2024.342871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 05/20/2024] [Accepted: 06/11/2024] [Indexed: 07/07/2024]
Abstract
BACKGROUND The analysis of mixtures of contaminants remains a challenging task in many fields, including water quality and waste management. For example, the degradation of industrial waste such as plastics, leads to complex mixtures with hundreds of organic contaminants and often non-referenced analytes. In such cases, non-targeted or effects-based analyses provide complementary information to classical targeted-analyses, regarding contaminants nature or properties (molecular mass, lability, toxicity). In this study, a novel analytical method is proposed to characterise mixtures of unknown organic contaminants, with a focus on the lipophilicity of solutes. RESULTS The proposed process, named "PAW" (Partition of Aqueous Waste), aims at the quantification of octanol-water partition coefficients (POW) of mixed organic analytes. The process is based on sequential liquid-liquid partition equilibria. The output result is a lipophilicity histogram of the solutes, screened according to the chosen detection method. The process quantifies the distribution of analytes as a function of their octanol-water partition coefficients, without requiring any identification or prior knowledge. The PAW process is applicable with various detectors (UV-Visible, total carbon, liquid scintillation, etc.) allowing to focus on specific families of contaminants (e.g. organic solutes, colloids, 14C-bearing, etc.). Experimental proofs of concept are proposed, illustrating process implementation and possible fields of application. The first example deals with purity analysis of synthetic radiolabeled compounds. The second example aims the monitoring of cellulose degradation and quantification of the lipophilicity of degradation products. SIGNIFICANCE The PAW analytical process seems especially useful for characterisation of mixtures containing both hydrophilic and lipophilic compounds, e.g. neutral and ionizable organic contaminants, hardly characterisable simultaneously by chromatographic methods. It could be complementary to more detailed targeted or screening analysis of samples and effluents. For example it may help assessing the composition and environmental fate of mixtures of unknown analytes, thus facilitating waste management or mitigation strategies.
Collapse
Affiliation(s)
- Z Disdier
- Université Paris-Saclay, CEA, Service de Physico-Chimie, 91191, Gif-sur-Yvette, France
| | - R V H Dagnelie
- Université Paris-Saclay, CEA, Service de Physico-Chimie, 91191, Gif-sur-Yvette, France.
| |
Collapse
|
3
|
Huang J, Ye L, Wang J, Deng Y, Du B, Liu W, Su G. A new approach to monitoring typical organophosphorus compounds (OPs) in environmental media: From database building to suspect screening. ENVIRONMENT INTERNATIONAL 2024; 189:108802. [PMID: 38875816 DOI: 10.1016/j.envint.2024.108802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/07/2024] [Accepted: 06/03/2024] [Indexed: 06/16/2024]
Abstract
Organophosphorus compounds (OPs) are widely used as flame retardants (FRs) and plasticizers, yet strategies for comprehensively screening of suspect OPs in environmental samples are still lacking. In this work, a neoteric, robust, and general suspect screening technique was developed to identify novel chemical exposures by use of ultra-high performance liquid chromatography-Q Exactive hybrid quadrupole-Orbitrap high resolution mass spectrometry (UHPLC-Q-Orbitrap HRMS). We firstly established a suspect chemical database which had 7,922 OPs with 4,686 molecular formulas, and then conducted suspect screening in n = 50 indoor dust samples, n = 76 sediment samples, and n = 111 water samples. By use of scoring criteria such as retention time prediction models, we successfully confirmed five compounds by comparison with their authentic standards, and prioritized three OPs candidates including a nitrogen/fluorine-containing compound, that is dimethyl {1H-indol-3-yl[3-(trifluoromethyl)anilino]methyl} phosphonate (DMITFMAMP). Given that the biodegradation half-life values in water (t1/2,w) of DMITFMAMP calculated by EPI Suite is 180 d, it is considered to be potentially persistent. This strategy shows promising potential in environmental pollution assessment, and can be expected to be widely used in future research.
Collapse
Affiliation(s)
- Jianan Huang
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Langjie Ye
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Jun Wang
- Guangdong Provincial Academy of Environmental Science, Guangdong Key Laboratory of Contaminated Sites Environmental Management and Remediation, Guangzhou 510045, China
| | - Yirong Deng
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; Guangdong Provincial Academy of Environmental Science, Guangdong Key Laboratory of Contaminated Sites Environmental Management and Remediation, Guangzhou 510045, China
| | - Bing Du
- State Environmental Protection Key Laboratory of Dioxin Pollution Control, National Research Center for Environmental Analysis and Measurement, No.1 Yuhuinanlu, Chaoyang District, Beijing 100029, China.
| | - Wei Liu
- State Key Laboratory for Environmental Protection of Water Ecological Health in the Middle and Lower Reaches of the Yangtze River, Jiangsu Provincial Academy of Environmental Science, Nanjing 210036, China
| | - Guanyong Su
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| |
Collapse
|
4
|
Musatadi M, Alvarez-Mora I, Baciero-Hernandez I, Prieto A, Anakabe E, Olivares M, Etxebarria N, Zuloaga O. Sample preparation for suspect screening of persistent, mobile and toxic substances and their phase II metabolites in human urine by mixed-mode liquid chromatography. Talanta 2024; 271:125698. [PMID: 38262128 DOI: 10.1016/j.talanta.2024.125698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/02/2024] [Accepted: 01/17/2024] [Indexed: 01/25/2024]
Abstract
Persistent, mobile and toxic substances have drawn attention nowadays due to their particular properties, but they are overlooked in human monitorization works, limiting the knowledge of the human exposome. In that sense, human urine is an interesting matrix since not only parent compounds are eliminated, but also their phase II metabolites that could act as biomarkers. In this work, 11 sample preparation procedures involving preconcentration were tested to ensure maximum analytical coverage in human urine using mixed-mode liquid chromatography coupled with high-resolution tandem mass spectrometry. The optimized procedure consisted of a combination of solid-phase extraction and salt-assisted liquid-liquid extraction and it was employed for suspect screening. Additionally, a non-discriminatory dilute-and-shoot approach was also evaluated. After evaluating the workflow in terms of limits of identification and type II errors (i.e., false negatives), a pooled urine sample was analysed. From a list of 1450 suspects and in-silico simulated 1568 phase II metabolites (i.e. sulphates, glucuronides, and glycines), 44 and 14 substances were annotated, respectively. Most of the screened suspects were diverse industrial chemicals, but biocides, natural products and pharmaceuticals were also detected. Lastly, the complementarity of the sample preparation procedures, columns, and analysis conditions was assessed. As a result, dilute-and-shoot and the Acclaim Trinity P1 column at pH = 3 (positive ionization) and pH = 7 (negative ionization) allowed the maximum coverage since almost 70 % of the total suspects could be screened using those conditions.
Collapse
Affiliation(s)
- Mikel Musatadi
- Department of Analytical Chemistry, University of the Basque Country (UPV/EHU), 48940, Leioa, Basque Country, Spain; Research Centre for Experimental Marine Biology and Biotechnology, University of the Basque Country (UPV/EHU), 48620, Plentzia, Basque Country, Spain.
| | - Iker Alvarez-Mora
- Department of Analytical Chemistry, University of the Basque Country (UPV/EHU), 48940, Leioa, Basque Country, Spain; Research Centre for Experimental Marine Biology and Biotechnology, University of the Basque Country (UPV/EHU), 48620, Plentzia, Basque Country, Spain
| | - Ines Baciero-Hernandez
- Department of Analytical Chemistry, University of the Basque Country (UPV/EHU), 48940, Leioa, Basque Country, Spain; Research Centre for Experimental Marine Biology and Biotechnology, University of the Basque Country (UPV/EHU), 48620, Plentzia, Basque Country, Spain
| | - Ailette Prieto
- Department of Analytical Chemistry, University of the Basque Country (UPV/EHU), 48940, Leioa, Basque Country, Spain; Research Centre for Experimental Marine Biology and Biotechnology, University of the Basque Country (UPV/EHU), 48620, Plentzia, Basque Country, Spain
| | - Eneritz Anakabe
- Department of Organic and Inorganic Chemistry, University of the Basque Country (UPV/EHU), 48940, Leioa, Basque Country, Spain
| | - Maitane Olivares
- Department of Analytical Chemistry, University of the Basque Country (UPV/EHU), 48940, Leioa, Basque Country, Spain; Research Centre for Experimental Marine Biology and Biotechnology, University of the Basque Country (UPV/EHU), 48620, Plentzia, Basque Country, Spain
| | - Nestor Etxebarria
- Department of Analytical Chemistry, University of the Basque Country (UPV/EHU), 48940, Leioa, Basque Country, Spain; Research Centre for Experimental Marine Biology and Biotechnology, University of the Basque Country (UPV/EHU), 48620, Plentzia, Basque Country, Spain
| | - Olatz Zuloaga
- Department of Analytical Chemistry, University of the Basque Country (UPV/EHU), 48940, Leioa, Basque Country, Spain; Research Centre for Experimental Marine Biology and Biotechnology, University of the Basque Country (UPV/EHU), 48620, Plentzia, Basque Country, Spain
| |
Collapse
|
5
|
Inostroza PA, Elgueta S, Krauss M, Brack W, Backhaus T. A multi-scenario risk assessment strategy applied to mixtures of chemicals of emerging concern in the River Aconcagua basin in Central Chile. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 921:171054. [PMID: 38378069 DOI: 10.1016/j.scitotenv.2024.171054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/06/2024] [Accepted: 02/15/2024] [Indexed: 02/22/2024]
Abstract
Environmental risk assessments strategies that account for the complexity of exposures are needed in order to evaluate the toxic pressure of emerging chemicals, which also provide suggestions for risk mitigation and management, if necessary. Currently, most studies on the co-occurrence and environmental impacts of chemicals of emerging concern (CECs) are conducted in countries of the Global North, leaving massive knowledge gaps in countries of the Global South. In this study, we implement a multi-scenario risk assessment strategy to improve the assessment of both the exposure and hazard components in the chemical risk assessment process. Our strategy incorporates a systematic consideration and weighting of CECs that were not detected, as well as an evaluation of the uncertainties associated with Quantitative Structure-Activity Relationships (QSARs) predictions for chronic ecotoxicity. Furthermore, we present a novel approach to identifying mixture risk drivers. To expand our knowledge beyond well-studied aquatic ecosystems, we applied this multi-scenario strategy to the River Aconcagua basin of Central Chile. The analysis revealed that the concentrations of CECs exceeded acceptable risk thresholds for selected organism groups and the most vulnerable taxonomic groups. Streams flowing through agricultural areas and sites near the river mouth exhibited the highest risks. Notably, the eight risk drivers among the 153 co-occurring chemicals accounted for 66-92 % of the observed risks in the river basin. Six of them are pesticides and pharmaceuticals, chemical classes known for their high biological activity in specific target organisms.
Collapse
Affiliation(s)
- Pedro A Inostroza
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden; Institute for Environmental Research, RWTH Aachen University, Aachen, Germany.
| | - Sebastian Elgueta
- Núcleo en Ciencias Ambientales y Alimentarias (NCAA), Universidad de las Américas, Santiago, Chile; Facultad de Medicina Veterinaria y Agronomía, Universidad de las Américas, Sede Providencia, Chile
| | - Martin Krauss
- Department of Effect-Directed Analysis, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Werner Brack
- Department of Effect-Directed Analysis, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany; Department of Evolutionary Ecology and Environmental Toxicology, Goethe University Frankfurt/Main, Frankfurt/Main, Germany
| | - Thomas Backhaus
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden; Institute for Environmental Research, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
6
|
Ma Y, Yang C, Yao Q, Li F, Mao L, Zhou X, Meng X, Chen L. Nontarget screening analysis of organic compounds in river sediments: a case study in the Taipu River of the Yangtze River Delta Region in China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:24547-24558. [PMID: 38446294 DOI: 10.1007/s11356-024-32761-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 02/29/2024] [Indexed: 03/07/2024]
Abstract
Sediments are the vital fate of organic compounds, and the recognition of organic compounds in sediments is constructive in providing comprehensive and long-term information. In this study, a three-step nontarget screening (NTS) analysis workflow using comprehensive two-dimensional gas chromatography coupled with time-of-flight mass spectrometry (GC × GC-TOFMS) revealed the extensive existence of organic compounds in the Taipu River sediment. Organic compounds (705) were detected and divided into four structure-related groups or eight use-related classes. In the Taipu River's mainstream, a significant difference was found in the composition profiles of the identified organic compounds among various sites, demonstrating the organic compounds were more abundant in the midstream and downstream than in the upstream. Meanwhile, the hydrodynamic force was recognized as a potential factor influencing organic compounds' occurrence. Based on multiple statistical analyses, the shipping and textile printing industries were considered the significant contributors to the identified organic compounds. Considering the principles of the priority substances and the current status of the substances, two traditional pollutants and ten emerging organic compounds were recognized as the priority organic compounds for the Taipu River. Conclusively, this study established a workflow for NTS analysis of sediment samples and demonstrated the necessity of NTS analysis to evaluate the impact of terrestrial emissions of organic compounds on the aquatic environment.
Collapse
Affiliation(s)
- Yu Ma
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Chao Yang
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China.
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, 200092, China.
| | - Qinglu Yao
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Feipeng Li
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Lingchen Mao
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Xuefei Zhou
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai, 200092, China
| | - Xiangzhou Meng
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, 200092, China
| | - Ling Chen
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, 200092, China
| |
Collapse
|
7
|
Mok S, Lee S, Choi Y, Jeon J, Kim YH, Moon HB. Target and non-target analyses of neutral per- and polyfluoroalkyl substances from fluorochemical industries using GC-MS/MS and GC-TOF: Insights on their environmental fate. ENVIRONMENT INTERNATIONAL 2023; 182:108311. [PMID: 37988936 DOI: 10.1016/j.envint.2023.108311] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/02/2023] [Accepted: 11/06/2023] [Indexed: 11/23/2023]
Abstract
Novel and emerging per- and polyfluoroalkyl substances (PFAS) are a key issue of concern in global environmental studies. In this study, air, sediment, and wastewater samples were collected from areas in and/or surrounded by fluorochemical-related industrial facilities to characterize the contamination profiles of neutral and novel PFAS (n-PFAS) using a gas chromatograph-based target and non-target analyses. Fluorotelomer alcohols were predominant in the samples, accounting for 80 % of the n-PFAS, followed by fluorotelomer acrylates. Air samples collected proximate to the durable water repellent (DWR) facility had the highest concentration of n-PFAS, which was approximately two orders of magnitude higher than those found in others. Non-target analysis identified fluorotelomer iodides and fluorotelomer methacrylate in multiple matrices near DWR facilities, indicating significant contamination of n-PFAS. Levels of both C6- and C8-based PFAS reflected a shift in usage patterns from C8- to C6-based fluorochemicals. Matrix-dependent profiles of n-PFAS revealed that shorter-chain (e.g., C6) and longer-chain (>C8) PFAS were predominant in air and sediment, respectively, implying that air and sediment are mobile and secondary sources of PFAS. Untreated and treated industrial wastewater also contained n-PFAS and their transformation products. The findings shed light on our understanding of the multi-matrix distribution and transport of PFAS.
Collapse
Affiliation(s)
- Sori Mok
- Department of Marine Science and Convergence Technology, College of Science and Convergence Technology, Hanyang University, Ansan 15588, Republic of Korea
| | - Sunggyu Lee
- Department of Marine Science and Convergence Technology, College of Science and Convergence Technology, Hanyang University, Ansan 15588, Republic of Korea
| | - Younghun Choi
- Graduate School of FEED of Eco-Friendly Offshore Structure, Changwon National University, Changwon 51140, Republic of Korea
| | - Junho Jeon
- Graduate School of FEED of Eco-Friendly Offshore Structure, Changwon National University, Changwon 51140, Republic of Korea; School of Civil, Environmental and Chemical Engineering, Changwon National University, Changwon 51140, Republic of Korea
| | - Young Hee Kim
- Chemical Research Division, National Institute of Environmental Research, Incheon 22689, Republic of Korea
| | - Hyo-Bang Moon
- Department of Marine Science and Convergence Technology, College of Science and Convergence Technology, Hanyang University, Ansan 15588, Republic of Korea.
| |
Collapse
|
8
|
Houthuijs KJ, Horn M, Vughs D, Martens J, Brunner AM, Oomens J, Berden G. Identification of organic micro-pollutants in surface water using MS-based infrared ion spectroscopy. CHEMOSPHERE 2023; 341:140046. [PMID: 37660788 DOI: 10.1016/j.chemosphere.2023.140046] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/29/2023] [Accepted: 08/31/2023] [Indexed: 09/05/2023]
Abstract
Comprehensive monitoring of organic micro-pollutants (OMPs) in drinking water sources relies on non-target screening (NTS) using liquid-chromatography and high-resolution mass spectrometry (LC-HRMS). Identification of OMPs is typically based on accurate mass and tandem mass spectrometry (MS/MS) data by matching against entries in compound databases and MS/MS spectral libraries. MS/MS spectra are, however, not always diagnostic for the full molecular structure and, moreover, emerging OMPs or OMP transformation products may not be present in libraries. Here we demonstrate how infrared ion spectroscopy (IRIS), an emerging MS-based method for structural elucidation, can aid in the identification of OMPs. IRIS measures the IR spectrum of an m/z-isolated ion in a mass spectrometer, providing an orthogonal diagnostic for molecular identification. Here, we demonstrate the workflow for identification of OMPs in river water and show how quantum-chemically predicted IR spectra can be used to screen potential candidates and suggest structural assignments. A crucial step herein is to define a set of candidate structures, presumably including the actual OMP, for which we present several strategies based on domain knowledge, the IR spectrum and MS/MS spectrum.
Collapse
Affiliation(s)
- Kas J Houthuijs
- Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7, 6525 ED, Nijmegen, the Netherlands
| | - Marijke Horn
- Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7, 6525 ED, Nijmegen, the Netherlands
| | - Dennis Vughs
- KWR Water Research Institute, Chemical Water Quality and Health, P.O. Box 1072, 3430 BB, Nieuwegein, the Netherlands
| | - Jonathan Martens
- Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7, 6525 ED, Nijmegen, the Netherlands
| | - Andrea M Brunner
- KWR Water Research Institute, Chemical Water Quality and Health, P.O. Box 1072, 3430 BB, Nieuwegein, the Netherlands; TNO, Environmental Modelling, Sensing and Analysis (EMSA), Princetonlaan 8, 3584 CB, Utrecht, the Netherlands
| | - Jos Oomens
- Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7, 6525 ED, Nijmegen, the Netherlands; van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| | - Giel Berden
- Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7, 6525 ED, Nijmegen, the Netherlands.
| |
Collapse
|
9
|
Reverbel S, Dévier MH, Dupraz V, Geneste E, Budzinski H. Assessment of the Presence of Transformation Products of Certain Pharmaceutical Products (Psychotropic Family) by Suspect and Non-Targeted HRMS Screening in Wastewater Treatment Plants. TOXICS 2023; 11:713. [PMID: 37624218 PMCID: PMC10457822 DOI: 10.3390/toxics11080713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/21/2023] [Accepted: 08/03/2023] [Indexed: 08/26/2023]
Abstract
Aquatic environments are the final receptors of human emissions and are therefore contaminated by molecules, such as pharmaceuticals. After use, these compounds and their metabolites are discharged to wastewater treatment plants (WWTPs). During wastewater treatment, compounds may be eliminated or degraded into transformation products (TPs) or may be persistent. The aim of this study was to develop an analytical method based on high resolution mass spectrometry (HRMS) for the identification of six psychotropic drugs that are widely consumed in France and present in WWTPs, as well as their potential associated metabolites and TPs. Four out of six psychotropic drugs and between twenty-five and thirty-seven potential TPs were detected in wastewater, although this was based on full scan data. TPs not reported in the literature and specific to the study sites and therefore to the wastewater treatment processes were tentatively identified. For the selected drugs, most known and present TPs were identified, such as desmethylvenlafaxine or norcitalopram. Moreover, the short fragmentation study led rather to the identification of several TPs of carbamazepine as ubiquitous persistent TPs.
Collapse
Affiliation(s)
- Solenne Reverbel
- CNRS, Bordeaux INP, University of Bordeaux, EPOC, UMR 5805, LPTC, F-33600 Pessac, France
| | - Marie-Hélène Dévier
- CNRS, Bordeaux INP, University of Bordeaux, EPOC, UMR 5805, LPTC, F-33600 Pessac, France
| | - Valentin Dupraz
- Régie de l’Eau Bordeaux Métropole, Direction de la Recherche, de l’Innovation et de la Transition Ecologique, F-33081 Bordeaux, France
| | - Emmanuel Geneste
- CNRS, Bordeaux INP, University of Bordeaux, EPOC, UMR 5805, LPTC, F-33600 Pessac, France
| | - Hélène Budzinski
- CNRS, Bordeaux INP, University of Bordeaux, EPOC, UMR 5805, LPTC, F-33600 Pessac, France
| |
Collapse
|
10
|
Zhang Q, Xu H, Song N, Liu S, Wang Y, Ye F, Ju Y, Jiao S, Shi L. New insight into fate and transport of organic compounds from pollution sources to aquatic environment using non-targeted screening: A wastewater treatment plant case study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 863:161031. [PMID: 36549534 DOI: 10.1016/j.scitotenv.2022.161031] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/08/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
A variety of chemicals discharged into the aquatic environment by the wastewater treatment plant (WWTP), which is a potential source of hazard to the ecological environment and human health. This study established a novel analytical method for all compounds using non-targeted screening to comprehensively explore the fate and transport of organic compounds from WWTP to aquatic environment. 3967 and 3636 features were detected in WWTP samples and river samples, respectively. Multi-level classification was applied to all identified compounds, and results showed that aliphatics were dominant in both abundance and response, accounting for an average of 35.49 % and 74.10 %, respectively. A total of 88 Emerging Contaminants (ECs), including 22 endocrine disrupting chemicals (EDCs), 12 pharmaceuticals and personal care products (PPCPs), 12 pesticides, 10 volatile organic compounds (VOCs), 5 persistent organic pollutants (POPs) and 27 chemicals with other uses, were identified from all compounds, and their traceability analysis was performed. Furthermore, the contribution rate of organic compounds from WWTP effluent to river was calculated to be 33.60 % by the analysis of source-sink relationship. An in-depth and comprehensive exploration of the fate and transport of all organic compounds will help to provide guidelines for the treatment technologies and achieve the traceability of pollutants.
Collapse
Affiliation(s)
- Qian Zhang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, PR China; College of Environment, Hohai University, Nanjing 210098, PR China
| | - Hang Xu
- College of Environment, Hohai University, Nanjing 210098, PR China
| | - Ninghui Song
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, PR China.
| | - Sitao Liu
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA 92521, USA
| | - Yixuan Wang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, PR China
| | - Fei Ye
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, PR China
| | - Yongming Ju
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, PR China
| | - Shaojun Jiao
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, PR China
| | - Lili Shi
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, PR China
| |
Collapse
|
11
|
Yang Y, Yang L, Zheng M, Cao D, Liu G. Data acquisition methods for non-targeted screening in environmental analysis. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.116966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
12
|
Ng K, Alygizakis N, Nika MC, Galani A, Oswald P, Oswaldova M, Čirka Ľ, Kunkel U, Macherius A, Sengl M, Mariani G, Tavazzi S, Skejo H, Gawlik BM, Thomaidis NS, Slobodnik J. Wide-scope target screening characterization of legacy and emerging contaminants in the Danube River Basin by liquid and gas chromatography coupled with high-resolution mass spectrometry. WATER RESEARCH 2023; 230:119539. [PMID: 36610182 DOI: 10.1016/j.watres.2022.119539] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/11/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
A state-of-the-art wide-scope target screening of 2,362 chemicals and their transformation products (TPs) was performed in samples collected within the Joint Danube Survey 4 (JDS4) performed in 2019. The analysed contaminants of emerging concern (CECs) included three major categories: plant protection products (PPPs), industrial chemicals and pharmaceuticals and personal care products (PPCPs). In total, 586 CECs were detected in the samples including 158 PPPs, 71 industrial chemicals, 348 PPCPs, and 9 other chemicals. A wide-variety of sample matrices were collected including influent and effluent wastewater, groundwater, river water, sediment and biota. Forty-five CECs (19 PPPs, 8 industrial chemicals, 18 PPCPs) were detected at levels above their ecotoxicological thresholds (lowest predicted no-effect concentration (PNEC) values) in one or more of the investigated environmental compartments, indicating potential adverse effects on the impacted ecosystems. Among them 12 are legacy substances; 33 are emerging and qualify as potential Danube River Basin Specific Pollutants (RBSPs). Moreover, the efficiency of the wastewater treatment plants (WWTPs) was evaluated using 20 selected performance indicator chemicals. WWTPs showed effective removal (removal rate ≥80%) and medium removal (removal rate 25-80%) for 6 and 8 of the indicator chemicals, respectively. However, numerous contaminants passed the WWTPs with a lower removal rate. Further investigation on performance of WWTPs is suggested at catchment level to improve their removal efficiency. WWTP effluents are proven to be one of the major sources of contaminants in the Danube River Basin (DRB). Other sources include sewage discharges, industrial and agricultural activities. Continuous monitoring of the detected CECs is suggested to ensure water quality of the studied area.
Collapse
Affiliation(s)
- Kelsey Ng
- EI - Environmental Institute, Okružná 784/42, Koš 97241, Slovak Republic; MU - RECETOX, Faculty of Science, Masaryk University, Kotlářská 2, Brno, Czech Republic
| | - Nikiforos Alygizakis
- EI - Environmental Institute, Okružná 784/42, Koš 97241, Slovak Republic; UoA - Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, Athens 15771, Greece.
| | - Maria-Christina Nika
- UoA - Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, Athens 15771, Greece
| | - Aikaterini Galani
- UoA - Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, Athens 15771, Greece
| | - Peter Oswald
- EI - Environmental Institute, Okružná 784/42, Koš 97241, Slovak Republic
| | - Martina Oswaldova
- EI - Environmental Institute, Okružná 784/42, Koš 97241, Slovak Republic
| | - Ľuboš Čirka
- EI - Environmental Institute, Okružná 784/42, Koš 97241, Slovak Republic; Faculty of Chemical and Food Technology, STU - Slovak University of Technology in Bratislava, Radlinského 9, Bratislava, Slovak Republic
| | - Uwe Kunkel
- LfU - Bavarian Environment Agency, Bürgermeister-Ulrich-Straße 160, Augsburg 86179, Germany
| | - André Macherius
- LfU - Bavarian Environment Agency, Bürgermeister-Ulrich-Straße 160, Augsburg 86179, Germany
| | - Manfred Sengl
- LfU - Bavarian Environment Agency, Bürgermeister-Ulrich-Straße 160, Augsburg 86179, Germany
| | - Giulio Mariani
- European Commission, Joint Research Centre, Via Enrico Fermi 2749, Ispra I-21027, Italy
| | - Simona Tavazzi
- European Commission, Joint Research Centre, Via Enrico Fermi 2749, Ispra I-21027, Italy
| | - Helle Skejo
- European Commission, Joint Research Centre, Via Enrico Fermi 2749, Ispra I-21027, Italy
| | - Bernd M Gawlik
- European Commission, Joint Research Centre, Via Enrico Fermi 2749, Ispra I-21027, Italy
| | - Nikolaos S Thomaidis
- UoA - Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, Athens 15771, Greece
| | - Jaroslav Slobodnik
- EI - Environmental Institute, Okružná 784/42, Koš 97241, Slovak Republic
| |
Collapse
|
13
|
Köppe T, Jewell KS, Ehlig B, Wick A, Koschorreck J, Ternes TA. Identification and trend analysis of organic cationic contaminants via non-target screening in suspended particulate matter of the German rivers Rhine and Saar. WATER RESEARCH 2023; 229:119304. [PMID: 36459896 DOI: 10.1016/j.watres.2022.119304] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/14/2022] [Accepted: 10/26/2022] [Indexed: 06/17/2023]
Abstract
Non-target screening of suspended particulate matter (SPM), collected from the German rivers Rhine and Saar, was conducted with the goal of identifying organic, permanent cationic contaminants and of estimating their temporal trends over an extended period. Therefore, annual composite samples of SPM, provided by the German Environmental Specimen Bank, were extracted and analyzed with high resolution LC-QToF-MS/MS. To facilitate the identification of substances belonging to the class "permanent cations", prioritization methods were applied utilizing the physicochemical properties of these compounds. These methods include both interactions of the analyte molecules with cation exchange resins and analyzing mass deviations when changing from non-deuterated to deuterated mobile phase solvents during LC-MS analysis. By applying both methods in a combined approach, 123 of the initially detected 2695 features were prioritized, corresponding to a 95% data reduction. This led to the identification of 22 permanent cationic species. The organic dyes Basic Yellow 28 and Fluorescent Brightener 363 as well as two quaternary ammonium compounds (QACs) were detected in environmental samples for the first time to best of or knowledge. The other compounds include additional QACs, as well as quaternary tri-phenylphosphonium compounds (QPC/TPP). In addition to identification, we determined temporal trends of all compounds over a period of 13 years and assessed their ecotoxicological relevance based on estimated concentrations. The two QACs oleyltrimethylammonium and eicosyltrimethylammonium show significant increasing trends in the Rhine SPM and maximum concentrations in the Saar SPM of about 900 and 1400 µg/kg, respectively. In the case of the dyes, constant trends have been observed at the end of the studied period, but also maximum concentrations of 400 µg/kg for Basic Yellow 28 in 2006 and 1000 µg/kg for Fluorescent Brightener 363 in 2015, potentially indicating a strong ecotoxicological risk.
Collapse
Affiliation(s)
- Toni Köppe
- Federal Institute of Hydrology, Am Mainzer Tor 1, 56068 Koblenz, Germany
| | - Kevin S Jewell
- Federal Institute of Hydrology, Am Mainzer Tor 1, 56068 Koblenz, Germany
| | - Björn Ehlig
- Federal Institute of Hydrology, Am Mainzer Tor 1, 56068 Koblenz, Germany
| | - Arne Wick
- Federal Institute of Hydrology, Am Mainzer Tor 1, 56068 Koblenz, Germany
| | - Jan Koschorreck
- Federal Environment Agency (Umweltbundesamt), Colditzstraße 34, 14193, Berlin, Germany
| | - Thomas A Ternes
- Federal Institute of Hydrology, Am Mainzer Tor 1, 56068 Koblenz, Germany.
| |
Collapse
|
14
|
Suspect Screening of Chemicals in Hospital Wastewaters Using Effect-Directed Analysis Approach as Prioritization Strategy. Molecules 2023; 28:molecules28031212. [PMID: 36770879 PMCID: PMC9921743 DOI: 10.3390/molecules28031212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/28/2023] Open
Abstract
The increasing number of contaminants in the environment has pushed water monitoring programs to find out the most hazardous known and unknown chemicals in the environment. Sample treatment-simplification methods and non-target screening approaches can help researchers to not overlook potential chemicals present in complex aqueous samples. In this work, an effect-directed analysis (EDA) protocol using the sea urchin embryo test (SET) as a toxicological in vivo bioassay was used as simplified strategy to identify potential unknown chemicals present in a very complex aqueous matrix such as hospital effluent. The SET bioassay was used for the first time here to evaluate potential toxic fractions in hospital effluent, which were obtained after a two-step fractionation using C18 and aminopropyl chromatographic semi-preparative columns. The unknown compounds present in the toxic fractions were identified by means of liquid chromatography coupled to a Q Exactive Orbitrap high-resolution mass spectrometer (LC-HRMS) and using a suspect analysis approach. The results were complemented by gas chromatography-mass spectrometry analysis (GC-MS) in order to identify the widest range of chemical compounds present in the sample and the toxic fractions. Using EDA as sample treatment simplification method, the number of unknown chemicals (>446 features) detected in the raw sample was narrowed down to 94 potential toxic candidates identified in the significantly toxic fractions. Among them, the presence of 25 compounds was confirmed with available chemical standards including 14 pharmaceuticals, a personal care product, six pesticides and four industrial products. The observations found in this work emphasize the difficulties in identifying potential toxicity drivers in complex water samples, as in the case of hospital wastewater.
Collapse
|
15
|
Ateş H, Argun ME. Fate of phthalate esters in landfill leachate under subcritical and supercritical conditions and determination of transformation products. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 155:292-301. [PMID: 36410146 DOI: 10.1016/j.wasman.2022.11.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 10/16/2022] [Accepted: 11/10/2022] [Indexed: 06/16/2023]
Abstract
The hypothesis of this study is that the complex organic load of landfill leachate could be reduced by supercritical water oxidation (SCWO) in a single stage, but this operation could lead to the formation of some undesired by-products of phthalate esters (PAEs). In this context, the fate of selected PAEs, butyl benzyl phthalate (BBP), di-2-ethylhexyl phthalate (DEHP) and di-n-octyl phthalate (DNOP), was investigated during the oxidation of leachate under subcritical and supercritical conditions. Experiments were conducted at various temperatures (250-500 °C), pressures (10-35 MPa), residence times (2-18 min) and dimensionless oxidant doses (DOD: 0.2-2.3). The SCWO process decreased the leachate's chemical oxygen demand (COD) from 34,400 mg/L to 1,120 mg/L (97%). Removal efficiencies of DEHP and DNOP with longer chains were higher than BBP. The DEHP, DNOP and BBP compounds were removed in the range of -35 to 100%, -18 to 92%, and 28 to 36%, respectively, by the SCWO process. Many non-target PAEs were qualitatively detected in the raw leachate apart from the selected PAEs. Besides, 97% of total PAEs including both target and non-target PAEs was mineralized at 15 MPa, 300 °C and 5 min. Although PAEs were highly mineralized during SCWO of the leachate, aldehyde, ester, amide and amine-based phthalic substances were frequently detected as by-products. These by-products have transformed into higher molecular weight by-products with binding reactions as a result of complex SCWO process chemistry. It has also been determined that some non-target PAEs such as 1,2-benzenedicarboxylic acid bis(2-methylpropyl)ester and bis(2-ethylhexyl) isophthalate can transform to the DEHP. Therefore, the suggested pathway in this study for PAEs degradation during the SCWO of the leachate includes substitution and binding reactions as well as an oxidation reaction.
Collapse
Affiliation(s)
- Havva Ateş
- Konya Technical University, Faculty of Engineering and Natural Science, Department of Environmental Engineering, Türkiye.
| | - Mehmet Emin Argun
- Konya Technical University, Faculty of Engineering and Natural Science, Department of Environmental Engineering, Türkiye.
| |
Collapse
|
16
|
Zhou Q, Shen Y, Chou L, Guo J, Zhang X, Shi W. Identification of Glucocorticoid Receptor Antagonistic Activities and Responsible Compounds in House Dust: Bioaccessibility Should Not Be Ignored. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:16768-16779. [PMID: 36345731 DOI: 10.1021/acs.est.2c04183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
More and more contaminants in dust have been found to be glucocorticoid receptor (GR) disrupting chemicals. However, little is known about the related potency and responsible toxicants, especially for the main bioaccessible ones in dust. An effect-directed analysis (EDA)-based workflow was developed, including solvent-based exhaustive extraction/tenax-assisted bioaccessible extraction (TBE), high-throughput bioassays, suspect and non-target analysis, as well as in silico candidate selection, for a more realistic identification of responsible contaminants in dust. None of the 39 dust samples from 23 cities in China exhibited GR agonistic activity, while GR antagonistic potencies were detected in 34.8% of samples, being significantly different from the high detection frequency of GR agonistic activities in other environmental media. The GR antagonistic potencies of the dust samples were all reduced after bioaccessible extraction. The mean bioaccessibility of GR antagonistic potency compared with the related exhaustive extracts was 36.8%, and the lowest value was 9%. By using in silico candidate selection, greater than 99% candidate chemical structures which were found by a non-target screening strategy were removed. Di-n-butyl phthalate (DnBP), diisobutyl phthalate (DiBP), and nicotine (NIC) were responsible for the activities of the exhaustive extracts of dust, contributing up to 91% potencies. DiBP and DnBP were also responsible for the bioaccessible activities, contributing up to 79% potencies. However, the contribution from NIC decreased significantly and can be ignored because of its low bioaccessibility. This study suggests that the improved workflow combining extraction, reporter gene bioassays, suspect and non-target analysis, as well as in silico candidate selection is useful for EDA analysis in dust samples. In addition, exhaustive extraction may overestimate the risk of contaminants, while bioaccessibility evaluation based on bioaccessible extraction is essential in both effect evaluation and toxicant identification.
Collapse
Affiliation(s)
- Qing Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing210023, China
| | - Yanhong Shen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing210023, China
- Environmental Monitoring Station of Suzhou Industrial Park, Suzhou215027, China
| | - Liben Chou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing210023, China
| | - Jing Guo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing210023, China
| | - Xiaowei Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing210023, China
| | - Wei Shi
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing210023, China
- Jiangsu Province Ecology and Environment Protection Key Laboratory of Chemical Safety and Health Risk, Nanjing210023, China
| |
Collapse
|
17
|
Lopez-Herguedas N, González-Gaya B, Cano A, Alvarez-Mora I, Mijangos L, Etxebarria N, Zuloaga O, Olivares M, Prieto A. Effect-directed analysis of a hospital effluent sample using A-YES for the identification of endocrine disrupting compounds. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 850:157985. [PMID: 35985602 DOI: 10.1016/j.scitotenv.2022.157985] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 07/29/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
An effect-directed analysis (EDA) approach was used to identify the compounds responsible for endocrine disruption in a hospital effluent (Basque Country). In order to facilitate the identification of the potentially toxic substances, a sample was collected using an automated onsite large volume solid phase extraction (LV-SPE) system. Then, it was fractionated with a two-step orthogonal chromatographic separation and tested for estrogenic effects with a recombinant yeast (A-YES) in-vitro bioassay. The fractionation method was optimized and validated for 184 compounds, and its application to the hospital effluent sample allowed reducing the number of unknowns from 292 in the raw sample to 35 after suspect analysis of the bioactive fractions. Among those, 7 of them were confirmed with chemical standards. In addition, target analysis of the raw sample confirmed the presence of mestranol, estrone and dodemorph in the fractions showing estrogenic activity. Predictive estrogenic activity modelling using quantitative structure-activity relationships indicated that the hormones mestranol (5840 ng/L) and estrone (128 ng/L), the plasticiser bisphenol A (9219 ng/L) and the preservative butylparaben (1224 ng/L) were the main contributors of the potential toxicity. Derived bioanalytical equivalents (BEQs) pointed mestranol and estrone as the main contributors (56 % and 43 %, respectively) of the 50 % of the sample's explained total estrogenic activity.
Collapse
Affiliation(s)
- Naroa Lopez-Herguedas
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Basque Country, Spain; Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), Plentzia, Basque Country, Spain.
| | - Belén González-Gaya
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Basque Country, Spain; Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), Plentzia, Basque Country, Spain.
| | - Alicia Cano
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Basque Country, Spain
| | - Iker Alvarez-Mora
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Basque Country, Spain; Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), Plentzia, Basque Country, Spain.
| | - Leire Mijangos
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Basque Country, Spain; Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), Plentzia, Basque Country, Spain.
| | - Nestor Etxebarria
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Basque Country, Spain; Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), Plentzia, Basque Country, Spain.
| | - Olatz Zuloaga
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Basque Country, Spain; Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), Plentzia, Basque Country, Spain.
| | - Maitane Olivares
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Basque Country, Spain; Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), Plentzia, Basque Country, Spain.
| | - Ailette Prieto
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Basque Country, Spain; Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), Plentzia, Basque Country, Spain.
| |
Collapse
|
18
|
Huang J, Gao Z, Hu G, Su G. Non-target screening and risk assessment of organophosphate esters (OPEs) in drinking water resource water, surface water, groundwater, and seawater. ENVIRONMENT INTERNATIONAL 2022; 168:107443. [PMID: 35961270 DOI: 10.1016/j.envint.2022.107443] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/13/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
By use of an integrated target, suspect, and non-target screening strategy, we investigated occurrence and spatial distribution of organophosphate esters (OPEs) in four types of water (drinking water resource water, surface water, groundwater, and seawater) collected from Jiangsu Province (China) in 2021 (n = 111). Eighteen out of 23 target OPEs were detectable at least once in these analyzed samples, and the total concentrations (Σ18OPEs) of OPEs in various water samples exhibited a descending order following as: groundwater (67026 ng/L) > surface water (35803 ng/L) > drinking water resource water (21055 ng/L) > seawater (17820 ng/L). The highest concentration detected in groundwater may be ascribed to pollution from surrounding factories. Among the target OPEs, triethyl phosphate (TEP), tris(chloroethyl) phosphate (TCEP), and tris (1-chloro-2-propyl) phosphate (TCIPP) were the most abundant congeners with the average concentrations of 407 ng/L, 143 ng/L, and 475 ng/L, respectively. Besides of 18 target OPEs, we further identified 17 suspect OPEs (3 of them were fully identified by authentic standards) on the basis of in-house suspect screening OPE database, and 2 non-target organophosphates (OPs) on the basis of feature fragments. One of these 2 non-target OPs was fully identified as bis(2-chloroethyl) 2-chloroethylphosphonate (B2CE2CEPP) by matching the retention time and MS/MS data with authentic standard, and the other one was preliminarily identified as 2,4,8,10-tetra-tert-butyl-6-methoxydibenzo[d,f][1,3,2]dioxaphosphepin-6-one (TTBMDBDOPPO). We also observed that B2CE2CEPP shared a similar structure with TCEP, suggesting that they may have similar toxicological characteristics and commercial sources. The ecological and human health risk assessments indicated that all OPEs posed a low or negligible ecological risk to aquatic organisms (algae, crustacean, and fish), and negligible risk to human health except for trimethyl phosphate (TMP) in drinking water resource water.
Collapse
Affiliation(s)
- Jianan Huang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Zhanqi Gao
- State Environmental Protection Key Laboratory of Monitoring and Analysis for Organic Pollutants in Surface Water, Jiangsu Environmental Monitoring Center, Nanjing 210019, PR China
| | - Guanjiu Hu
- State Environmental Protection Key Laboratory of Monitoring and Analysis for Organic Pollutants in Surface Water, Jiangsu Environmental Monitoring Center, Nanjing 210019, PR China
| | - Guanyong Su
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China.
| |
Collapse
|
19
|
Tisler S, Tüchsen PL, Christensen JH. Non-target screening of micropollutants and transformation products for assessing AOP-BAC treatment in groundwater. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 309:119758. [PMID: 35835278 DOI: 10.1016/j.envpol.2022.119758] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 06/29/2022] [Accepted: 07/08/2022] [Indexed: 06/15/2023]
Abstract
Standard monitoring programs give limited insight into groundwater status, especially transformation products (TPs) formed by natural processes or advanced oxidation processes (AOP), are normally underrepresented. In this study, using suspect and non-target screening, we performed a comprehensive analysis of groundwater before and after AOP by UV/H2O2 and consecutively installed biological activated carbon filters (BAC). By non-target screening, up to 413 compounds were detected in the groundwater, with an average 70% removal by AOP. However, a similar number of compounds were formed during the process, shown in groundwater from three waterworks. The most polar compounds were typically the most stable during the AOP. A subsequent BAC filter showed removal of 95% of the TPs, but only 46% removal of the AOP remaining precursors. The BAC removal for polar compounds was highly dependent on the acidic and basic functional groups of the molecules. 49 compounds of a wide polarity range could be identified by supercritical fluid chromatography (SFC) and liquid chromatography (LC) with high resolution mass spectrometry (HRMS); of these, 29 compounds were already present in the groundwater. To the best of our knowledge, five compounds have never been reported before in groundwater (4-chlorobenzenesulfonic acid, dibutylamine, N-phenlybenzenesulfonamide, 2-(methylthio)benzothiazole and benzothiazole-2-sulfonate). A further five rarely reported compounds are reported for the first time in Danish groundwater (2,4,6-trichlorophenol, 2,5-dichlorobenzenesulfonic acid, trifluormethansulfonic acid, pyrimidinol and benzymethylamine). Twenty of the identified compounds were formed by AOP, of which 10 have never been reported before in groundwater. All detected compounds could be related to agricultural and industrial products as well as artificial sweeteners. Whereas dechlorination was a common AOP degradation pathway for chlorophenols, the (ultra-) short chain PFAs showed no removal in our study. We prioritized 11 compounds as of concern, however, the toxicity for many compounds remains unknown, especially for the TPs.
Collapse
Affiliation(s)
- Selina Tisler
- Analytical Chemistry Group, Department of Plant and Environmental Science, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark.
| | | | - Jan H Christensen
- Analytical Chemistry Group, Department of Plant and Environmental Science, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| |
Collapse
|
20
|
Ljoncheva M, Stepišnik T, Kosjek T, Džeroski S. Machine learning for identification of silylated derivatives from mass spectra. J Cheminform 2022; 14:62. [PMID: 36109826 PMCID: PMC9476372 DOI: 10.1186/s13321-022-00636-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/31/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Motivation
Compound structure identification is using increasingly more sophisticated computational tools, among which machine learning tools are a recent addition that quickly gains in importance. These tools, of which the method titled Compound Structure Identification:Input Output Kernel Regression (CSI:IOKR) is an excellent example, have been used to elucidate compound structure from mass spectral (MS) data with significant accuracy, confidence and speed. They have, however, largely focused on data coming from liquid chromatography coupled to tandem mass spectrometry (LC–MS).
Gas chromatography coupled to mass spectrometry (GC–MS) is an alternative which offers several advantages as compared to LC–MS, including higher data reproducibility. Of special importance is the substantial compound coverage offered by GC–MS, further expanded by derivatization procedures, such as silylation, which can improve the volatility, thermal stability and chromatographic peak shape of semi-volatile analytes. Despite these advantages and the increasing size of compound databases and MS libraries, GC–MS data have not yet been used by machine learning approaches to compound structure identification.
Results
This study presents a successful application of the CSI:IOKR machine learning method for the identification of environmental contaminants from GC–MS spectra. We use CSI:IOKR as an alternative to exhaustive search of MS libraries, independent of instrumental platform and data processing software. We use a comprehensive dataset of GC–MS spectra of trimethylsilyl derivatives and their molecular structures, derived from a large commercially available MS library, to train a model that maps between spectra and molecular structures. We test the learned model on a different dataset of GC–MS spectra of trimethylsilyl derivatives of environmental contaminants, generated in-house and made publicly available. The results show that 37% (resp. 50%) of the tested compounds are correctly ranked among the top 10 (resp. 20) candidate compounds suggested by the model. Even though spectral comparisons with reference standards or de novo structural elucidations are neccessary to validate the predictions, machine learning provides efficient candidate prioritization and reduction of the time spent for compound annotation.
Collapse
|
21
|
Hashimoto S, Takazawa Y, Ieda T, Omagari R, Nakajima D, Nakamura S, Suzuki N. Application of rapid air sampling and non-targeted analysis using thermal desorption comprehensive two-dimensional gas chromatography/time-of-flight mass spectrometry to accidental fire. CHEMOSPHERE 2022; 303:135021. [PMID: 35598787 DOI: 10.1016/j.chemosphere.2022.135021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
To be able to gauge the health risks and biological effects of e-waste fires, it is of key importance to know what types and amounts of chemicals are released when they occur. In this case study, we pumped 6-24 L of air from an accidental fire at a recycling depot through a Tenax-TA tube and conducted comprehensive (non-targeted) analysis by thermal desorption/comprehensive two-dimensional gas chromatography/time-of-flight mass spectrometry (TD/GC × GC/ToFMS). A special focus was placed on the search for halogenated compounds. More than 5000 components were detected in the atmosphere around the fire; however, component separation was insufficient, even when using GC × GC. The number of organohalogen compounds retrieved was increased about 1.8-fold by the refinement process of the exact mass spectrum using mass defect filtering (MDF) software. After processed by MDF, 386 peaks were concluded to be halogenated compounds. The major retrieved substances included chlorinated (or chlorinated-brominated) dioxins, chlorinated (or brominated) phenols, benzene, and various other halogenated aromatic compounds. Direct comparison of mass spectra was carried out to investigate the potential for qualitative and quantitative comparison of detected peaks without specific identification. The approximate quantitative values are summarized for each compound in the estimated substance group. Their ratios were estimated to be halogenated phenols: 13%, benzenes: 9.6%, dibenzo-p-dioxins: 9.6%, dibenzofurans: 8.4%, biphenyls; 7.4% and toluenes: 6.4%.
Collapse
Affiliation(s)
| | | | - Teruyo Ieda
- National Institute for Environmental Studies, Japan
| | - Ryo Omagari
- National Institute for Environmental Studies, Japan
| | | | - Satoshi Nakamura
- Research Institute of Environment, Agriculture and Fisheries, Osaka Prefecture, Japan
| | | |
Collapse
|
22
|
Ding L, Wang L, Nian L, Tang M, Yuan R, Shi A, Shi M, Han Y, Liu M, Zhang Y, Xu Y. Non-targeted screening of volatile organic compounds in a museum in China Using GC-Orbitrap mass spectrometry. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 835:155277. [PMID: 35447177 DOI: 10.1016/j.scitotenv.2022.155277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/08/2022] [Accepted: 04/10/2022] [Indexed: 06/14/2023]
Abstract
Non-targeted analysis (NTA) was used in identifying volatile organic compounds (VOCs) in a museum in China with the gas chromatograph (GC)-Orbitrap-mass spectrometer (MS). Approximately 230 VOCs were detected, of which 117 were observed at 100% frequency across all sampling sites. Although some were common in indoor environments, most of the detected VOCs were rarely reported in previous studies on museum environments. Some of the detected VOCs were found to be associated with the materials used in furnishings and the chemicals applied in conservation treatment. Spearman's correlation analysis showed that several classes of VOCs were well correlated, suggesting their common sources. Compared with compounds in outdoor air, indoor VOCs had a lower level of unsaturation and more portions of chemically reduced compounds. Hierarchical cluster analysis (HCA) were performed. The results suggested that the sampling adsorbents chosen may have a large impact and that a single type of adsorbent may not be sufficient to cover a wide range of compounds in NTA studies. The MonoTrap adsorbent containing octadecylsilane (ODS) and activated carbon (AC) is suitable for aliphatic polar compounds that contain low levels of oxygen, whereas the MonoTrap ODS and silica gel are good at sampling aliphatic and aromatic hydrocarbons with limited polarity. Principle component analysis (PCA) showed that the indoor VOCs changed significantly at different times in the museum; this may have been caused by the removal of artifacts and refurbishment of the gallery between sampling events. A comparison with compounds identified by chamber emission tests showed that decorative materials may have been one of the main sources of indoor VOCs in the museum. The VOCs identified in the present study are likely to be present in other similar museums; therefore, further examination may be warranted of their potential impacts on cultural heritage artifacts, museum personnel, and visitors.
Collapse
Affiliation(s)
- Li Ding
- National Museum of China, Beijing, China
| | - Luyang Wang
- Department of Building Science, Tsinghua University, Beijing, China; Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Beijing, China
| | - Luying Nian
- Department of Building Science, Tsinghua University, Beijing, China; Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Beijing, China
| | - Ming Tang
- National Museum of China, Beijing, China
| | - Rui Yuan
- Department of Building Science, Tsinghua University, Beijing, China; Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Beijing, China
| | - Anmei Shi
- National Museum of China, Beijing, China
| | - Meng Shi
- Department of Building Science, Tsinghua University, Beijing, China; Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Beijing, China
| | - Ying Han
- National Museum of China, Beijing, China
| | - Min Liu
- National Museum of China, Beijing, China
| | - Yinping Zhang
- Department of Building Science, Tsinghua University, Beijing, China; Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Beijing, China
| | - Ying Xu
- Department of Building Science, Tsinghua University, Beijing, China; Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Beijing, China; Department of Civil, Architectural and Environmental Engineering, The University of Texas at Austin, TX, USA.
| |
Collapse
|
23
|
Ng K, Alygizakis N, Androulakakis A, Galani A, Aalizadeh R, Thomaidis NS, Slobodnik J. Target and suspect screening of 4777 per- and polyfluoroalkyl substances (PFAS) in river water, wastewater, groundwater and biota samples in the Danube River Basin. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129276. [PMID: 35739789 DOI: 10.1016/j.jhazmat.2022.129276] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/20/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are under regulatory scrutiny since some of them are persistent, bioaccumulative, and toxic. The occurrence of 4777 PFAS was investigated in the Danube River Basin (DRB; 11 countries) using target and suspect screening. Target screening involved investigation of PFAS with 56 commercially available reference standards. Suspect screening covered 4777 PFAS retrieved from the NORMAN Substance Database, including all individual PFAS lists submitted to the NORMAN Suspect List Exchange Database. Mass spectrometry fragmentation patterns and retention time index predictions of the studied PFAS were established for their screening by liquid chromatography - high resolution mass spectrometry using NORMAN Digital Sample Freezing Platform (DSFP). In total, 82 PFAS were detected in the studied 95 samples of river water, wastewater, groundwater, biota and sediments. Suspect screening detected 72 PFAS that were missed by target screening. Predicted no effect concentrations (PNECs) were derived for each PFAS via a quantitative structure-toxicity relationship (QSTR)-based approach and used for assessment of their environmental risk. Risk characterization revealed 18 PFAS of environmental concern in at least one matrix. The presence of PFAS in all studied environmental compartments across the DRB indicates a potentially large-scale migration of PFAS in Europe, which might require their further systematic regulatory monitoring.
Collapse
Affiliation(s)
- Kelsey Ng
- Environmental Institute, Okružná 784/42, 97241 Koš, Slovak Republic; RECETOX, Faculty of Science, Masaryk University, Kotlářská 2, Brno, Czech Republic
| | - Nikiforos Alygizakis
- Environmental Institute, Okružná 784/42, 97241 Koš, Slovak Republic; Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece.
| | - Andreas Androulakakis
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Aikaterini Galani
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Reza Aalizadeh
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Nikolaos S Thomaidis
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece.
| | | |
Collapse
|
24
|
Approaches for assessing performance of high-resolution mass spectrometry-based non-targeted analysis methods. Anal Bioanal Chem 2022; 414:6455-6471. [PMID: 35796784 PMCID: PMC9411239 DOI: 10.1007/s00216-022-04203-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/17/2022] [Accepted: 06/24/2022] [Indexed: 11/06/2022]
Abstract
Non-targeted analysis (NTA) using high-resolution mass spectrometry has enabled the detection and identification of unknown and unexpected compounds of interest in a wide range of sample matrices. Despite these benefits of NTA methods, standardized procedures do not yet exist for assessing performance, limiting stakeholders’ abilities to suitably interpret and utilize NTA results. Herein, we first summarize existing performance assessment metrics for targeted analyses to provide context and clarify terminology that may be shared between targeted and NTA methods (e.g., terms such as accuracy, precision, sensitivity, and selectivity). We then discuss promising approaches for assessing NTA method performance, listing strengths and key caveats for each approach, and highlighting areas in need of further development. To structure the discussion, we define three types of NTA study objectives: sample classification, chemical identification, and chemical quantitation. Qualitative study performance (i.e., focusing on sample classification and/or chemical identification) can be assessed using the traditional confusion matrix, with some challenges and limitations. Quantitative study performance can be assessed using estimation procedures developed for targeted methods with consideration for additional sources of uncontrolled experimental error. This article is intended to stimulate discussion and further efforts to develop and improve procedures for assessing NTA method performance. Ultimately, improved performance assessments will enable accurate communication and effective utilization of NTA results by stakeholders.
Collapse
|
25
|
Tisler S, Engler N, Jørgensen MB, Kilpinen K, Tomasi G, Christensen JH. From data to reliable conclusions: Identification and comparison of persistent micropollutants and transformation products in 37 wastewater samples by non-target screening prioritization. WATER RESEARCH 2022; 219:118599. [PMID: 35598471 DOI: 10.1016/j.watres.2022.118599] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 05/04/2022] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
In this study, micropollutants in wastewater effluents were prioritized by monitoring the composition of influent and effluent wastewater by liquid chromatography - high-resolution mass spectrometry (LCHRMS) non-target screening (NTS) analysis. The study shows how important data pre-processing and filtering of raw data is to produce reliable NTS data for comparison of compounds between many samples (37 wastewater samples) analyzed at different times. Triplicate injections were critical for reducing the number of false-positive detections. Intensity drift corrections within and between batches analyzed months apart made peak intensities comparable across samples. Adjustment of the feature detection threshold was shown to be important, due to large intensity variations for low abundance compounds across batches. When the threshold correction cut-offs, or the filtering of relevant compounds by the occurrence frequency, were too stringent, a high number of false positive transformation products (TPs) were reported. We also showed that matrix effect correction by internal standards can over- or under-correct the intensity for unknown compounds, thus the TIC matrix effect correction was shown as an additional tool for a retention time dependent matrix effect correction. After these preprocessing and filtering steps, we identified 78 prioritized compounds, of which 36 were persistent compounds, defined as compounds with a reduction in peak intensity between influent and effluent wastewater <50%, and 13 compounds were defined as TPs because they occurred solely in the effluent samples. Some examples of persistent compounds are 1,3-diphenylguanidine, amisulpride and the human metabolites from losartan, verapamil and methadone. To our knowledge, nine of the identified TPs have not been previously described in effluent wastewater. The TPs were derived from metoprolol, fexofenadine, DEET and losartan. The screening of all identified compounds in effluent samples from eight wastewater treatment plants (WWTPs) showed that potential drugs of abuse, anti-psychotic and anti-depressant drugs were predominant in the capital city region, whereas the anti-epileptic agents and agricultural pesticides were dominant in more rural areas.
Collapse
Affiliation(s)
- Selina Tisler
- Analytical Chemistry Group, Department of Plant and Environmental Science, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, 1871, Denmark.
| | - Nikolina Engler
- Analytical Chemistry Group, Department of Plant and Environmental Science, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, 1871, Denmark
| | | | - Kristoffer Kilpinen
- Analytical Chemistry Group, Department of Plant and Environmental Science, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, 1871, Denmark; Eurofins Miljø Denmark A/S, Ladelundvej 85, Vejen 6600, Denmark
| | - Giorgio Tomasi
- Analytical Chemistry Group, Department of Plant and Environmental Science, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, 1871, Denmark
| | - Jan H Christensen
- Analytical Chemistry Group, Department of Plant and Environmental Science, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, 1871, Denmark
| |
Collapse
|
26
|
Finckh S, Beckers LM, Busch W, Carmona E, Dulio V, Kramer L, Krauss M, Posthuma L, Schulze T, Slootweg J, Von der Ohe PC, Brack W. A risk based assessment approach for chemical mixtures from wastewater treatment plant effluents. ENVIRONMENT INTERNATIONAL 2022; 164:107234. [PMID: 35483182 DOI: 10.1016/j.envint.2022.107234] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/15/2022] [Accepted: 04/06/2022] [Indexed: 06/14/2023]
Abstract
In this study, 56 effluent samples from 52 European wastewater treatment plants (WWTPs) were investigated for the occurrence of 499 emerging chemicals (ECs) and their associated potential risks to the environment. The two main objectives were (i) to extend our knowledge on chemicals occurring in treated wastewater, and (ii) to identify and prioritize compounds of concern based on three different risk assessment approaches for the identification of consensus mixture risk drivers of concern. Approaches include (i) PNEC and EQS-based regulatory risk quotients (RQs), (ii) species sensitivity distribution (SSD)-based hazard units (HUs) and (iii) toxic units (TUs) for three biological quality elements (BQEs) algae, crustacean, and fish. For this purpose, solid-phase extracts were analysed with wide-scope chemical target screening via liquid chromatography high-resolution mass spectrometry (LC-HRMS), resulting in 366 detected compounds, with concentrations ranging from < 1 ng/L to > 100 µg/L. The detected chemicals were categorized with respect to critical information relevant for risk assessment and management prioritization including: (1) frequency of occurrence, (2) measured concentrations, (3) use groups, (4) persistence & bioaccumulation, and (5) modes of action. A comprehensive assessment using RQ, HU and TU indicated exceedance of risk thresholds for the majority of effluents with RQ being the most sensitive metric. In total, 299 out of the 366 compounds were identified as mixture risk contributors in one of the approaches, while 32 chemicals were established as consensus mixture risk contributors of high concern, including a high percentage (66%) of pesticides and biocides. For samples which have passed an advanced treatment using ozonation or activated carbon (AC), consistently much lower risks were estimated.
Collapse
Affiliation(s)
- Saskia Finckh
- Department of Effect-Directed Analysis, UFZ - Helmholtz Centre for Environmental Research, Leipzig, Germany; Institute of Ecology, Evolution and Diversity - Goethe University, Frankfurt am Main, Germany.
| | - Liza-Marie Beckers
- Department of Aquatic Chemistry, BfG - Federal Institute of Hydrology, Koblenz, Germany
| | - Wibke Busch
- Department of Bioanalytical Ecotoxicology, UFZ - Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Eric Carmona
- Department of Effect-Directed Analysis, UFZ - Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Valeria Dulio
- Institut National de l'Environnement Industriel et des Risques (INERIS), Verneuil-en-Halatte, France
| | - Lena Kramer
- Department of Bioanalytical Ecotoxicology, UFZ - Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Martin Krauss
- Department of Effect-Directed Analysis, UFZ - Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Leo Posthuma
- RIVM, National Institute for Public Health and the Environment, P.O. Box 1, 3720 BA Bilthoven, the Netherlands; Department of Environmental Science, Faculty of Science, Radboud University, Nijmegen, the Netherlands
| | - Tobias Schulze
- Department of Effect-Directed Analysis, UFZ - Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Jaap Slootweg
- RIVM, National Institute for Public Health and the Environment, P.O. Box 1, 3720 BA Bilthoven, the Netherlands
| | | | - Werner Brack
- Department of Effect-Directed Analysis, UFZ - Helmholtz Centre for Environmental Research, Leipzig, Germany; Institute of Ecology, Evolution and Diversity - Goethe University, Frankfurt am Main, Germany
| |
Collapse
|
27
|
Jayapal M, Jagadeesan H, Krishnasamy V, Shanmugam G, Muniyappan V, Chidambaram D, Krishnamurthy S. Demonstration of a plant-microbe integrated system for treatment of real-time textile industry wastewater. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 302:119009. [PMID: 35182656 DOI: 10.1016/j.envpol.2022.119009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 01/26/2022] [Accepted: 02/14/2022] [Indexed: 06/14/2023]
Abstract
The real-time textile dyes wastewater contains hazardous and recalcitrant chemicals that are difficult to degrade by conventional methods. Such pollutants, when released without proper treatment into the environment, impact water quality and usage. Hence, the textile dye effluent is considered a severe environmental pollutant. It contains mixed contaminants like dyes, sodium bicarbonate, acetic acid. The physico-chemical treatment of these wastewaters produces a large amount of sludge and costly. Acceptance of technology by the industry mandates that it should be efficient, cost-effective and the treated water is safe for reuse. A sequential anaerobic-aerobic plant-microbe system with acclimatized microorganisms and vetiver plants, was evaluated at a pilot-scale on-site. At the end of the sequential process, decolorization and total aromatic amine (TAA) removal were 78.8% and 69.2% respectively. Analysis of the treated water at various stages using Fourier Transform Infrared (FTIR), High Performance Liquid Chromatography (HPLC)) Gas Chromatography-Mass Spectrometry (GC-MS) Liquid Chromatography-Mass Spectrometry (LC-MS) indicated that the dyes were decolourized and the aromatic amine intermediates formed were degraded to give aliphatic compounds. Scanning Electron Microscope (SEM) and Atomic Force Microscopy (AFM) analysis showed interaction of microbe with the roots of vetiver plants. Toxicity analysis with zebrafish indicated the removal of toxins and teratogens.
Collapse
Affiliation(s)
| | - Hema Jagadeesan
- PSG College of Technology, Coimbatore, Tamil Nadu, 641 004, India.
| | | | | | | | - Dinesh Chidambaram
- M/s.Dinesh Process, (Soft Flow Unit, Dyers of Knitted Fabrics), College Road, Analpalayam, Sirupuluvapatti, Tirupur, TamilNadu, 641603, India
| | - Satheesh Krishnamurthy
- School of Engineering and Innovation, The Open University, Milton Keynes, MK7 6AA, United Kingdom
| |
Collapse
|
28
|
Paszkiewicz M, Godlewska K, Lis H, Caban M, Białk-Bielińska A, Stepnowski P. Advances in suspect screening and non-target analysis of polar emerging contaminants in the environmental monitoring. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
29
|
Zhao JH, Hu LX, Wang YQ, Han Y, Liu YS, Zhao JL, Ying GG. Screening of organic chemicals in surface water of the North River by high resolution mass spectrometry. CHEMOSPHERE 2022; 290:133174. [PMID: 34871619 DOI: 10.1016/j.chemosphere.2021.133174] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/30/2021] [Accepted: 12/02/2021] [Indexed: 06/13/2023]
Abstract
Wide use of various chemicals has resulted in water pollution, which has become a global environmental concern. So far limited information is available on what chemicals in our water. Here we investigated the occurrence and profiles of organic chemicals in the North River, South China by applying non-target screening analysis with high resolution mass spectrometry. A total of 402 organic chemicals belonging to eleven categories were identified in the North River, with notable presence of industrial chemicals, pharmaceuticals and pesticides. Among these detected chemicals, over half of the tentatively identified compounds were rarely reported in the surface water, with a few compounds, e.g., sisomicin, simeton, 2-methyl-4,6-dinitrophenol, xanthurenic acid and indole-3-carboxylic acid that have never been documented in the North River before, while the metabolites like 4-acetamidoantipyrine were also observed. The maximum concentration of the identified chemicals in the North River was above 300 ng/L (Sulfamonomethoxine). Principle component analysis results of the obtained dataset showed significant seasonal distribution, which could be linked to variations in wastewater discharge, river dilution and anthropogenic activities such as pesticide spray. Agricultural activities in the upper reaches led to detection of various pesticides in the river basin, especially in the wet season. The findings from this study demonstrated the widespread presence of chemicals in our waterway, and further retrospective analysis would reveal more information about chemicals of emerging concern.
Collapse
Affiliation(s)
- Jia-Hui Zhao
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China; School of Environment, South China Normal University, University Town, Guangzhou, 510006, China
| | - Li-Xin Hu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China; School of Environment, South China Normal University, University Town, Guangzhou, 510006, China
| | - Yu-Qing Wang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China; School of Environment, South China Normal University, University Town, Guangzhou, 510006, China
| | - Yu Han
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China; School of Environment, South China Normal University, University Town, Guangzhou, 510006, China
| | - You-Sheng Liu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China; School of Environment, South China Normal University, University Town, Guangzhou, 510006, China
| | - Jian-Liang Zhao
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China; School of Environment, South China Normal University, University Town, Guangzhou, 510006, China
| | - Guang-Guo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China; School of Environment, South China Normal University, University Town, Guangzhou, 510006, China.
| |
Collapse
|
30
|
Lopez-Herguedas N, González-Gaya B, Castelblanco-Boyacá N, Rico A, Etxebarria N, Olivares M, Prieto A, Zuloaga O. Characterization of the contamination fingerprint of wastewater treatment plant effluents in the Henares River Basin (central Spain) based on target and suspect screening analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:151262. [PMID: 34715212 DOI: 10.1016/j.scitotenv.2021.151262] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/03/2021] [Accepted: 10/22/2021] [Indexed: 06/13/2023]
Abstract
The interest in contaminants of emerging concern (CECs) has increased lately due to their continued emission and potential ecotoxicological hazards. Wastewater treatment plants (WWTPs) are generally not capable of eliminating them and are considered the main pathway for CECs to the aquatic environment. The number of CECs in WWTPs effluents is often so large that complementary approaches to the conventional target analysis need to be implemented. Within this context, multitarget quantitative analysis (162 compounds) and a suspect screening (>40,000 suspects) approaches were applied to characterize the CEC fingerprint in effluents of five WWTPs in the Henares River basin (central Spain) during two sampling campaigns (summer and autumn). The results indicated that 76% of the compounds quantified corresponded to pharmaceuticals, 21% to pesticides and 3% to industrial chemicals. Apart from the 82 compounds quantified, suspect screening increased the list to 297 annotated compounds. Significant differences in the CEC fingerprint were observed between summer and autumn campaigns and between the WWTPs, being those serving the city of Alcalá de Henares the ones with the largest number of compounds and concentrations. Finally, a risk prioritization approach was applied based on risk quotients (RQs) for algae, invertebrates, and fish. Azithromycin, diuron, chlortoluron, clarithromycin, sertraline and sulfamethoxazole were identified as having the largest risks to algae. As for invertebrates, the compounds having the largest RQs were carbendazim, fenoxycarb and eprosartan, and for fish acetaminophen, DEET, carbendazim, caffeine, fluconazole, and azithromycin. The two WWTPs showing higher calculated Risk Indexes had tertiary treatments, which points towards the need of increasing the removal efficiency in urban WWTPs. Furthermore, considering the complex mixtures emitted into the environment and the low dilution capacity of Mediterranean rivers, we recommend the development of detailed monitoring plans and stricter regulations to control the chemical burden created to freshwater ecosystems.
Collapse
Affiliation(s)
- N Lopez-Herguedas
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Basque Country, Spain; Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), Plentzia, Basque Country, Spain.
| | - B González-Gaya
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Basque Country, Spain; Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), Plentzia, Basque Country, Spain.
| | - N Castelblanco-Boyacá
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Basque Country, Spain
| | - A Rico
- IMDEA Water Institute, Science and Technology Campus of the University of Alcalá, Alcalá de Henares, Madrid, Spain; Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, Paterna, Valencia, Spain
| | - N Etxebarria
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Basque Country, Spain; Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), Plentzia, Basque Country, Spain
| | - M Olivares
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Basque Country, Spain; Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), Plentzia, Basque Country, Spain
| | - A Prieto
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Basque Country, Spain; Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), Plentzia, Basque Country, Spain
| | - O Zuloaga
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Basque Country, Spain; Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), Plentzia, Basque Country, Spain
| |
Collapse
|
31
|
Transformation Products of Emerging Pollutants Explored Using Non-Target Screening: Perspective in the Transformation Pathway and Toxicity Mechanism—A Review. TOXICS 2022; 10:toxics10020054. [PMID: 35202240 PMCID: PMC8874687 DOI: 10.3390/toxics10020054] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/15/2022] [Accepted: 01/17/2022] [Indexed: 11/23/2022]
Abstract
The scientific community has increasingly focused on forming transformation products (TPs) from environmental organic pollutants. However, there is still a lot of discussion over how these TPs are generated and how harmful they are to living terrestrial or aquatic organisms. Potential transformation pathways, TP toxicity, and their mechanisms require more investigation. Non-target screening (NTS) via high-resolution mass spectrometry (HRMS) in model organisms to identify TPs and the formation mechanism on various organisms is the focus of this review. Furthermore, uptake, accumulation process, and potential toxicity with their detrimental consequences are summarized in various organisms. Finally, challenges and future research initiatives, such as performing NTS in a model organism, characterizing and quantifying TPs, and evaluating future toxicity studies on TPs, are also included in this review.
Collapse
|
32
|
Scholz S, Nichols JW, Escher BI, Ankley GT, Altenburger R, Blackwell B, Brack W, Burkhard L, Collette TW, Doering JA, Ekman D, Fay K, Fischer F, Hackermüller J, Hoffman JC, Lai C, Leuthold D, Martinovic-Weigelt D, Reemtsma T, Pollesch N, Schroeder A, Schüürmann G, von Bergen M. The Eco-Exposome Concept: Supporting an Integrated Assessment of Mixtures of Environmental Chemicals. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:30-45. [PMID: 34714945 PMCID: PMC9104394 DOI: 10.1002/etc.5242] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 10/20/2021] [Accepted: 10/26/2021] [Indexed: 05/04/2023]
Abstract
Organisms are exposed to ever-changing complex mixtures of chemicals over the course of their lifetime. The need to more comprehensively describe this exposure and relate it to adverse health effects has led to formulation of the exposome concept in human toxicology. Whether this concept has utility in the context of environmental hazard and risk assessment has not been discussed in detail. In this Critical Perspective, we propose-by analogy to the human exposome-to define the eco-exposome as the totality of the internal exposure (anthropogenic and natural chemicals, their biotransformation products or adducts, and endogenous signaling molecules that may be sensitive to an anthropogenic chemical exposure) over the lifetime of an ecologically relevant organism. We describe how targeted and nontargeted chemical analyses and bioassays can be employed to characterize this exposure and discuss how the adverse outcome pathway concept could be used to link this exposure to adverse effects. Available methods, their limitations, and/or requirement for improvements for practical application of the eco-exposome concept are discussed. Even though analysis of the eco-exposome can be resource-intensive and challenging, new approaches and technologies make this assessment increasingly feasible. Furthermore, an improved understanding of mechanistic relationships between external chemical exposure(s), internal chemical exposure(s), and biological effects could result in the development of proxies, that is, relatively simple chemical and biological measurements that could be used to complement internal exposure assessment or infer the internal exposure when it is difficult to measure. Environ Toxicol Chem 2022;41:30-45. © 2021 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Stefan Scholz
- Helmholtz Centre for Environmental Research—UFZ, Leipzig, Germany
- Address correspondence to
| | - John W. Nichols
- Office of Research and Development, Great Lakes Ecology and Toxicology Division, US Environmental Protection Agency, Duluth, Minnesota
| | - Beate I. Escher
- Helmholtz Centre for Environmental Research—UFZ, Leipzig, Germany
- Environmental Toxicology, Center for Applied Geoscience, Eberhard Karls University Tubingen, Tubingen, Germany
| | - Gerald T. Ankley
- Office of Research and Development, Great Lakes Ecology and Toxicology Division, US Environmental Protection Agency, Duluth, Minnesota
| | - Rolf Altenburger
- Helmholtz Centre for Environmental Research—UFZ, Leipzig, Germany
- Institute for Environmental Research, Biologie V, RWTH Aachen University, Aachen, Germany
| | - Brett Blackwell
- Office of Research and Development, Great Lakes Ecology and Toxicology Division, US Environmental Protection Agency, Duluth, Minnesota
| | - Werner Brack
- Helmholtz Centre for Environmental Research—UFZ, Leipzig, Germany
- Department of Evolutionary Ecology and Environmental Toxicology, Faculty of Biological Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Lawrence Burkhard
- Office of Research and Development, Great Lakes Ecology and Toxicology Division, US Environmental Protection Agency, Duluth, Minnesota
| | - Timothy W. Collette
- Office of Research and Development, Ecosystem Processes Division, US Environmental Protection Agency, Athens, Georgia
| | - Jon A. Doering
- National Research Council, US Environmental Protection Agency, Duluth, Minnesota
| | - Drew Ekman
- Office of Research and Development, Ecosystem Processes Division, US Environmental Protection Agency, Athens, Georgia
| | - Kellie Fay
- Office of Pollution Prevention and Toxics, Risk Assessment Division, US Environmental Protection Agency, Washington, DC
| | - Fabian Fischer
- Helmholtz Centre for Environmental Research—UFZ, Leipzig, Germany
| | | | - Joel C. Hoffman
- Office of Research and Development, Great Lakes Ecology and Toxicology Division, US Environmental Protection Agency, Duluth, Minnesota
| | - Chih Lai
- College of Arts and Sciences, University of Saint Thomas, St. Paul, Minnesota, USA
| | - David Leuthold
- Helmholtz Centre for Environmental Research—UFZ, Leipzig, Germany
| | | | | | - Nathan Pollesch
- Office of Research and Development, Great Lakes Ecology and Toxicology Division, US Environmental Protection Agency, Duluth, Minnesota
| | | | - Gerrit Schüürmann
- Helmholtz Centre for Environmental Research—UFZ, Leipzig, Germany
- Institute of Organic Chemistry, Technische Universitat Bergakademie Freiberg, Freiberg, Germany
| | | |
Collapse
|
33
|
Hajeb P, Zhu L, Bossi R, Vorkamp K. Sample preparation techniques for suspect and non-target screening of emerging contaminants. CHEMOSPHERE 2022; 287:132306. [PMID: 34826946 DOI: 10.1016/j.chemosphere.2021.132306] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 09/15/2021] [Accepted: 09/18/2021] [Indexed: 06/13/2023]
Abstract
The progress in sensitivity and resolution in mass spectrometers in recent years provides the possibility to detect a broad range of organic compounds in a single procedure. For this reason, suspect and non-target screening techniques are gaining attention since they enable the detection of hundreds of known and unknown emerging contaminants in various matrices of environmental, food and human sources. Sample preparation is a critical step before analysis as it can significantly affect selectivity, sensitivity and reproducibility. The lack of generic sample preparation protocols is obvious in this fast-growing analytical field, and most studies use those of traditional targeted analysis methods. Among them, solvent extraction and solid phase extraction (SPE) are widely used to extract emerging contaminants from solid and liquid sample types, respectively. Sequential solvent extraction and a combination of different SPE sorbents can cover a broad range of chemicals in the samples. Gel permeation chromatography (GPC) and adsorption chromatography, including acidification, are typically used to remove matrix components such as lipids from complex matrices, but usually at the expense of compound losses. Ideally, the purification of samples intended for non-target analysis should be selective of matrix interferences. Recent studies have suggested quality assurance/quality control measures for suspect and non-target screening, based on expansion and extrapolation of target compound lists, but method validations remain challenging in the absence of analytical standards and harmonized sample preparation approaches.
Collapse
Affiliation(s)
- Parvaneh Hajeb
- Aarhus University, Department of Environmental Science, Roskilde, Denmark
| | - Linyan Zhu
- Aarhus University, Department of Environmental Science, Roskilde, Denmark
| | - Rossana Bossi
- Aarhus University, Department of Environmental Science, Roskilde, Denmark
| | - Katrin Vorkamp
- Aarhus University, Department of Environmental Science, Roskilde, Denmark.
| |
Collapse
|
34
|
Mladenov N, Dodder NG, Steinberg L, Richardot W, Johnson J, Martincigh BS, Buckley C, Lawrence T, Hoh E. Persistence and removal of trace organic compounds in centralized and decentralized wastewater treatment systems. CHEMOSPHERE 2022; 286:131621. [PMID: 34325254 DOI: 10.1016/j.chemosphere.2021.131621] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 07/03/2021] [Accepted: 07/19/2021] [Indexed: 06/13/2023]
Abstract
The persistence of trace organic chemicals in treated effluent derived from both centralized wastewater treatment plants (WWTPs) and decentralized wastewater treatment systems (DEWATS) is of concern due to their potential impacts on human and ecosystem health. Here, we utilize non-targeted analysis (NTA) with comprehensive two-dimensional gas chromatography coupled with time of flight mass spectrometry (GC × GC/TOF-MS) to conduct an evaluation of the common persistent and removed compounds found in two centralized WWTPs in the USA and South Africa and one DEWATS in South Africa. Overall, removal efficiencies of chemicals were similar between the treatment plants when they were compared according to the number of chemical features detected in the influents and effluents of each treatment plant. However, the DEWATS treatment train, which has longer solids retention and hydraulic residence times than both of the centralized WWTPs and utilizes primarily anaerobic treatment processes, was able to remove 13 additional compounds and showed a greater decrease in normalized peak areas compared to the centralized WWTPs. Of the 111 common compounds tentatively identified in all three influents, 11 compounds were persistent in all replicates, including 5 compounds not previously reported in effluents of WWTPs or water reuse systems. There were no significant differences among the physico-chemical properties of persistent and removed compounds, but significant differences were observed among some of the molecular descriptors. These results have important implications for the treatment of trace organic chemicals in centralized and decentralized WWTPs and the monitoring of new compounds in WWTP effluent.
Collapse
Affiliation(s)
- Natalie Mladenov
- Department of Civil, Construction, and Environmental Engineering, San Diego State University, San Diego, CA, 92182, USA.
| | - Nathan G Dodder
- School of Public Health, San Diego State University, San Diego, CA, 92182, USA; San Diego State University Research Foundation, San Diego, CA, 92182, USA
| | - Lauren Steinberg
- Department of Civil, Construction, and Environmental Engineering, San Diego State University, San Diego, CA, 92182, USA
| | - William Richardot
- San Diego State University Research Foundation, San Diego, CA, 92182, USA
| | - Jade Johnson
- School of Public Health, San Diego State University, San Diego, CA, 92182, USA
| | - Bice S Martincigh
- School of Chemistry and Physics, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban, 4000, South Africa
| | - Chris Buckley
- Water, Sanitation & Hygiene Research & Development Centre, School of Engineering, University of KwaZulu-Natal, Durban, 4041, South Africa
| | - Tolulope Lawrence
- School of Chemistry and Physics, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban, 4000, South Africa
| | - Eunha Hoh
- School of Public Health, San Diego State University, San Diego, CA, 92182, USA
| |
Collapse
|
35
|
Hu LX, Olaitan OJ, Li Z, Yang YY, Chimezie A, Adepoju-Bello AA, Ying GG, Chen CE. What is in Nigerian waters? Target and non-target screening analysis for organic chemicals. CHEMOSPHERE 2021; 284:131546. [PMID: 34323804 DOI: 10.1016/j.chemosphere.2021.131546] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/05/2021] [Accepted: 07/10/2021] [Indexed: 06/13/2023]
Abstract
Emerging organic contaminants (e.g., active pharmaceutical ingredients and personal care products ingredients) are ubiquitous in the environment and potentially harmful to ecosystems, have gained increasing public attention worldwide. Nevertheless, there is a scarcity of data on these contaminants in Africa. In this study, various types of water samples (wastewater, surface water and tap water) collected from Lagos, Nigeria were analyzed for these chemicals by both target and non-target analysis on an UHPLC-Orbitrap-MS/MS. In total, 109 compounds were identified by non-target screening using the online database mzCloud. Level 1 identification confidence was achieved for 13 compounds for which reference standards were available and level 2 was achieved for the rest. In the quantitative analysis, 18 of 38 target compounds were detected, including the parent compounds and their metabolites. Acetaminophen, sulfamethoxazole, acesulfame, and caffeine were detected in all samples with their highest concentrations at 8000, 5300, 16, and 7700 μg/L in wastewater, 140000, 3300, 7.7, and 12000 μg/L in surface water, and 66, 62, 0.17 and 1000 μg/L in tap water, respectively. The occurrence of psychoactive substances, anticancer treatments, antiretrovirals, antihypertensives, antidiabetics and their metabolites were reported in Nigeria for the first time. These results indicate poor wastewater treatment and management in Nigeria, and provide a preliminary profile of organic contaminants occurring in Nigerian waters. The findings from this study urge more future research on chemical pollution in the aquatic environments in Nigeria.
Collapse
Affiliation(s)
- Li-Xin Hu
- Environmental Research Institute / School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China
| | - Olatunde James Olaitan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Olabisi Onabanjo University, Ago Iwoye, Ogun State, Nigeria
| | - Zhe Li
- Department of Environmental Science, Stockholm University, 10691, Stockholm, Sweden
| | - Yuan-Yuan Yang
- Environmental Research Institute / School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China
| | - Anyakora Chimezie
- School of Science and Technology, Pan Atlantic University, Lagos, Nigeria
| | | | - Guang-Guo Ying
- Environmental Research Institute / School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China
| | - Chang-Er Chen
- Environmental Research Institute / School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China; Department of Environmental Science, Stockholm University, 10691, Stockholm, Sweden.
| |
Collapse
|
36
|
Beschnitt A, Schwikowski M, Hoffmann T. Towards comprehensive non-target screening using heart-cut two-dimensional liquid chromatography for the analysis of organic atmospheric tracers in ice cores. J Chromatogr A 2021; 1661:462706. [PMID: 34864235 DOI: 10.1016/j.chroma.2021.462706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 11/29/2022]
Abstract
Non-target screening of secondary organic aerosol compounds in ice cores is used to reconstruct atmospheric conditions and sources and is a valuable tool to elucidate the chemical profiles of samples with the aim to obtain as much information as possible from one mass spectrometric measurement. The coupling of mass spectrometry to chromatography limits the results of a non-target screening to signals of compounds within a certain polarity range based on the utilized stationary phases of the columns. Comprehensive two-dimensional liquid chromatography (LCxLC) introduces a second column of different functionality to enable the analysis of a broader range of analytes. Conventional LCxLC requires complex instrumental setups and is difficult to implement for most laboratories. In this work we demonstrate an approach to approximate a comprehensive non-target screening using a simple instrumental setup employing two columns of orthogonal functionalities (HILIC and reversed-phase), an additional pump, and an additional six-port valve. The void volume of the first dimension is transferred to the reversed-phase column to analyze low-polarity compounds during the re-equilibration of the HILIC. Method validation showed adequate repeatability and detection limits for two selected void volume markers and application to snow samples collected at the high-alpine research station Jungfraujoch yielded a total of 270 signals. Comparison to the one-dimensional HILIC approach revealed 175 signals exclusively detected in the two-dimensional method, of which 23 were detected in the second dimension. Detailed analysis of the chemical composition showed consistency with expected compounds in snow samples like lignin or cellulose combustion products from biomass burning or secondary organic aerosol constituents. The results confirmed that one-dimensional chromatography was not sufficient to cover the entire range of compounds and the developed two-dimensional approach will improve the information content from non-target screening while maintaining time of analysis and a simple instrumental setup.
Collapse
Affiliation(s)
- Anja Beschnitt
- Department of Chemistry, Johannes-Gutenberg University, Duesbergweg 10-14, Mainz 55128, Germany
| | - Margit Schwikowski
- Paul Scherrer Institute, Forschungsstrasse 111, Villigen PSI 5232, Switzerland
| | - Thorsten Hoffmann
- Department of Chemistry, Johannes-Gutenberg University, Duesbergweg 10-14, Mainz 55128, Germany.
| |
Collapse
|
37
|
Evaluation of Sample Preparation Methods for Non-Target Screening of Organic Micropollutants in Urban Waters Using High-Resolution Mass Spectrometry. Molecules 2021; 26:molecules26237064. [PMID: 34885646 PMCID: PMC8659043 DOI: 10.3390/molecules26237064] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 02/02/2023] Open
Abstract
Non-target screening (NTS) has gained interest in recent years for environmental monitoring purposes because it enables the analysis of a large number of pollutants without predefined lists of molecules. However, sample preparation methods are diverse, and few have been systematically compared in terms of the amount and relevance of the information obtained by subsequent NTS analysis. The goal of this work was to compare a large number of sample extraction methods for the unknown screening of urban waters. Various phases were tested for the solid-phase extraction of micropollutants from these waters. The evaluation of the different phases was assessed by statistical analysis based on the number of detected molecules, their range, and physicochemical properties (molecular weight, standard recoveries, polarity, and optical properties). Though each cartridge provided its own advantages, a multilayer cartridge combining several phases gathered more information in one single extraction by benefiting from the specificity of each one of its layers.
Collapse
|
38
|
Xiang X, Wu L, Zhu J, Li J, Liao X, Huang H, Fan J, Lv K. Photocatalytic degradation of sulfadiazine in suspensions of TiO2 nanosheets with exposed (001) facets. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.03.064] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
39
|
Jiang T, Wang M, Wang A, Abrahamsson D, Kuang W, Morello-Frosch R, Park JS, Woodruff TJ. Large-Scale Implementation and Flaw Investigation of Human Serum Suspect Screening Analysis for Industrial Chemicals. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:2425-2435. [PMID: 34409840 PMCID: PMC8565621 DOI: 10.1021/jasms.1c00135] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Non-targeted analysis (NTA), including both suspect screening analysis (SSA) and unknown compound analysis, has gained increasing popularity in various fields for its capability in identifying new compounds of interests. Current major challenges for NTA SSA are that (1) tremendous effort and resources are needed for large-scale identification and confirmation of suspect chemicals and (2) suspect chemicals generally show low matching rates during identification and confirmation processes. To narrow the gap between these challenges and smooth implementation of NTA SSA methodology in the biomonitoring field, we present a thorough SSA workflow for the large-scale screen, identification, and confirmation of industrial chemicals that may pose adverse health effects in pregnant women and newborns. The workflow was established in a study of 30 paired maternal and umbilical cord serum samples collected at delivery in the San Francisco Bay area. By analyzing LC-HRMS and MS/MS data, together with the assistance of a combination of resources including online MS/MS spectra libraries, online in silico fragmentation tools, and the EPA CompTox Chemicals Dashboard, we confirmed the identities of 17 chemicals, among which monoethylhexyl phthalate, 4-nitrophenol, tridecanedioic acid, and octadecanedioic acid are especially interesting due to possible toxicities and their high-volume use in industrial manufacturing. Similar to other previous studies in the SSA field, the suspect compounds show relatively low MS/MS identification (16%) and standard confirmation (8%) rates. Therefore, we also investigated origins of false positive features and unidentifiable suspected features, as well as technical obstacles encountered during the confirmation process, which would promote a better understanding of the flaw of low confirmation rate and encourage gaining more effective tools for tackling this issue in NTA SSA.
Collapse
Affiliation(s)
- Ting Jiang
- California Department of Toxic Substances Control, California Environmental Protection Agency, 700 Heinz Ave., Berkeley, CA 94710
- Public Health Institute, 555 12th Street, 10th floor, Oakland, CA 94607
| | - Miaomiao Wang
- California Department of Toxic Substances Control, California Environmental Protection Agency, 700 Heinz Ave., Berkeley, CA 94710
| | - Aolin Wang
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, CA, 94158
| | - Dimitri Abrahamsson
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, CA, 94158
| | - Weixin Kuang
- California Department of Toxic Substances Control, California Environmental Protection Agency, 700 Heinz Ave., Berkeley, CA 94710
- Public Health Institute, 555 12th Street, 10th floor, Oakland, CA 94607
| | - Rachel Morello-Frosch
- School of Public Health and Department of Environmental Science, Policy and Management, University of California, Berkeley, CA 94720-3114
| | - June-Soo Park
- California Department of Toxic Substances Control, California Environmental Protection Agency, 700 Heinz Ave., Berkeley, CA 94710
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, CA, 94158
| | - Tracey J. Woodruff
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, CA, 94158
| |
Collapse
|
40
|
Hedgespeth ML, McCord JP, Phillips KA, Strynar MJ, Shea D, Nichols EG. Suspect-screening analysis of a coastal watershed before and after Hurricane Florence using high-resolution mass spectrometry. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 782:146862. [PMID: 33839655 DOI: 10.1016/j.scitotenv.2021.146862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/22/2021] [Accepted: 03/26/2021] [Indexed: 06/12/2023]
Abstract
On September 14, 2018, Hurricane Florence delivered ~686 mm rainfall to a 106 km2 watershed in coastal North Carolina, USA. A forested land treatment site comprises one third of the watershed wherein municipal wastewater effluent is spray-irrigated onto 8.9 km2 of forest. This communication provides insight for land treatment function under excess water duress as well as changes in organic chemical composition in on- and off-site waters before (June 2018) and after (September & December 2018) Hurricane Florence's landfall. We compare the numbers and relative abundances of chemical features detected using suspect screening high resolution mass spectrometry in waste-, ground-, and surface water samples. Values for upstream and receiving waters in September were lower than for sampling events in June and December, indicating an expected dilution effect across the watershed. Chemical diversity was greatest for all surface water samples in December, but only upstream surface water showed a dramatic five-fold increase in relative chemical abundance. Chemical abundance in on-site water and downstream surface water was equal to or lower than the September storm dilution effect. These data suggest that the land treatment system is functionally and hydrologically robust to extreme storm events and contributed to dilution of upstream chemical reservoirs for downstream receiving waters for months after the storm. Similar systems may embody one water reuse strategy robust to the increasing occurrence of extreme precipitation events.
Collapse
Affiliation(s)
- Melanie L Hedgespeth
- Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27695, USA.
| | - James P McCord
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Environmental Measurement and Modeling, Research Triangle Park, NC 27709, USA.
| | - Katherine A Phillips
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Computational Toxicology and Exposure, Research Triangle Park, NC 27711, USA.
| | - Mark J Strynar
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Environmental Measurement and Modeling, Research Triangle Park, NC 27709, USA.
| | - Damian Shea
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA.
| | - Elizabeth Guthrie Nichols
- Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27695, USA.
| |
Collapse
|
41
|
Qian Y, Wang X, Wu G, Wang L, Geng J, Yu N, Wei S. Screening priority indicator pollutants in full-scale wastewater treatment plants by non-target analysis. JOURNAL OF HAZARDOUS MATERIALS 2021; 414:125490. [PMID: 33676247 DOI: 10.1016/j.jhazmat.2021.125490] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 02/05/2021] [Accepted: 02/21/2021] [Indexed: 06/12/2023]
Abstract
Wastewater treatment plants (WWTPs) are the main sources of emerging contaminants (ECs) in aquatic environment. However, the standards for limiting emerging pollutants in effluent are extremely lacking. We investigated the occurrence and removal of emerging pollutants in 16 WWTPs in China using non-target analysis. 568 substances screened out were divided into 9 kinds including 167 pharmaceuticals, 113 natural substances, 85 pesticides, 86 endogenous substances, 64 chemical raw materials, 14 personal care products, 17 food additives, 6 hormones and 16 others. And they were divided into 5 fates. Pesticides and pharmaceutical compounds seemed to be the most notable categories, the kinds detected in each sample is the largest compared with other compounds. Besides, the average removal rate of pesticides and pharmaceuticals in all WWTPs were the lowest, at 9.54% and 23.77%, respectively. Priority pollutants were screened by considering distribution of pollutants with different fates. Pollutants with the same fate especially "consistent" in different WWTPs had attracted attention. 4 potential priority pollutants including metoprolol, carbamazepine, 10, 11-dihydro-10, 11-dihydroxycarbamazepine and irbesartan were proposed. And it was found that the 4 compounds, "consistent suspects" and "consistent non-targets" had similar rankings of removal rate in 16 WWTPs, which can reflect the performance of different WWTPs.
Collapse
Affiliation(s)
- Yuli Qian
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 210023 Jiangsu, PR China.
| | - Xuebing Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 210023 Jiangsu, PR China.
| | - Gang Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 210023 Jiangsu, PR China.
| | - Liye Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 210023 Jiangsu, PR China.
| | - Jinju Geng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 210023 Jiangsu, PR China.
| | - Nanyang Yu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 210023 Jiangsu, PR China.
| | - Si Wei
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 210023 Jiangsu, PR China.
| |
Collapse
|
42
|
Smutna M, Vecerkova J, Priebojova J, Pipal M, Krauss M, Hilscherova K. Variability in retinoid-like activity of extracellular compound mixtures produced by wide spectra of phytoplankton species and contributing metabolites. JOURNAL OF HAZARDOUS MATERIALS 2021; 414:125412. [PMID: 34030396 DOI: 10.1016/j.jhazmat.2021.125412] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/22/2021] [Accepted: 02/10/2021] [Indexed: 06/12/2023]
Abstract
Some phytoplankton species were shown to produce teratogenic retinoids. This study assessed the variability in the extracellular production of compounds with retinoid-like activity for 50 independent cultivations of wide spectra of species including 12 cyanobacteria (15 strains) and 4 algae of different orders. Extracellular retinoid-like activity was detected for repeated cultivations of six cyanobacteria. The results were consistent for some species including Microcystis aeruginosa and Aphanizomenon gracile. The detected retinoid-like activities ranged from below the limit of quantification of 16 ng/L to over 6 µg all-trans retinoic acid (ATRA) equivalent/L. Nontargeted virtual fractionation together with suspect screening approach enabled to identify some retinoid-like compounds in exudates, including ATRA, 9/13-cis retinoic acid, all-trans 5,6-epoxy retinoic acid, 4keto-ATRA, 4keto-retinal, 4hydroxy-ATRA, and retinal. Most of them were for the first time repeatedly detected in exudates of all studied algae (at ng/L levels) and cyanobacteria. Their relative potencies ranged from 0.018 (retinal) to 1 compared to ATRA. They accounted for less than 0.1-50% of total detected retinoid-like activity. The high detected activities and concentrations of retinoids in some samples and their direct accessibility from exudates document potential risk of developmental toxicity for organisms in proximity of massive water blooms.
Collapse
Affiliation(s)
- Marie Smutna
- RECETOX, Masaryk University, Faculty of Science, Brno, Czech Republic
| | | | - Jana Priebojova
- RECETOX, Masaryk University, Faculty of Science, Brno, Czech Republic
| | - Marek Pipal
- RECETOX, Masaryk University, Faculty of Science, Brno, Czech Republic
| | - Martin Krauss
- UFZ Helmholtz Centre for Environmental Research, Permoserstraße 15, 04318 Leipzig, Germany
| | - Klara Hilscherova
- RECETOX, Masaryk University, Faculty of Science, Brno, Czech Republic.
| |
Collapse
|
43
|
Gosset A, Wiest L, Fildier A, Libert C, Giroud B, Hammada M, Hervé M, Sibeud E, Vulliet E, Polomé P, Perrodin Y. Ecotoxicological risk assessment of contaminants of emerging concern identified by "suspect screening" from urban wastewater treatment plant effluents at a territorial scale. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 778:146275. [PMID: 33714835 DOI: 10.1016/j.scitotenv.2021.146275] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 02/28/2021] [Accepted: 02/28/2021] [Indexed: 06/12/2023]
Abstract
Urban wastewater treatment plants (WWTP) are a major vector of highly ecotoxic contaminants of emerging concern (CECs) for urban and sub-urban streams. Ecotoxicological risk assessments (ERAs) provide essential information to public environmental authorities. Nevertheless, ERAs are mainly performed at very local scale (one or few WWTPs) and on pre-selected list of CECs. To cope with these limits, the present study aims to develop a territorial-scale ERA on CECs previously identified by a "suspect screening" analytical approach (LC-QToF-MS) and quantified in the effluents of 10 WWTPs of a highly urbanized territory during three periods of the year. Among CECs, this work focused on pharmaceutical residue and pesticides. ERA was conducted following two complementary methods: (1) a single substance approach, based on the calculation for each CEC of risk quotients (RQs) by the ratio of Predicted Environmental Concentration (PEC) and Predicted No Effect Concentration (PNEC), and (2) mixture risk assessment ("cocktail effect") based on a concentration addition model (CA), summing individual RQs. Chemical results led to an ERA for 41 CEC (37 pharmaceuticals and 4 pesticides) detected in treated effluents. Single substance ERA identified 19 CECs implicated in at least one significant risk for streams, with significant risks for DEET, diclofenac, lidocaine, atenolol, terbutryn, atorvastatin, methocarbamol, and venlafaxine (RQs reaching 39.84, 62.10, 125.58, 179.11, 348.24, 509.27, 1509.71 and 3097.37, respectively). Mixture ERA allowed the identification of a risk (RQmix > 1) for 9 of the 10 WWTPs studied. It was also remarked that CECs leading individually to a negligible risk could imply a significant risk in a mixture. Finally, the territorial ERA showed a diversity of risk situations, with the highest concerns for 3 WWTPs: the 2 biggest of the territory discharging into a large French river, the Rhône, and for the smallest WWTP that releases into a small intermittent stream.
Collapse
Affiliation(s)
- Antoine Gosset
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR5023 LEHNA, F-69518 Vaulx-en-Velin, France; Université de Lyon & Université Lyon 2, Lyon, F-69007, CNRS, UMR 5824 GATE Lyon Saint-Etienne, Ecully F-69130, France; Ecole Urbaine de Lyon, Institut Convergences, Commissariat général aux investissements d'avenir, Bât. Atrium, 43 Boulevard du 11 Novembre 1918, F-69616 Villeurbanne, France.
| | - Laure Wiest
- Univ Lyon, CNRS, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR 5280, 5 Rue de la Doua, F-69100 Villeurbanne, France
| | - Aurélie Fildier
- Univ Lyon, CNRS, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR 5280, 5 Rue de la Doua, F-69100 Villeurbanne, France
| | - Christine Libert
- Grand Lyon Urban Community, Water and Urban Planning Department, 69003 Lyon, 9, France
| | - Barbara Giroud
- Univ Lyon, CNRS, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR 5280, 5 Rue de la Doua, F-69100 Villeurbanne, France
| | - Myriam Hammada
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR5023 LEHNA, F-69518 Vaulx-en-Velin, France
| | - Matthieu Hervé
- Grand Lyon Urban Community, Water and Urban Planning Department, 69003 Lyon, 9, France
| | - Elisabeth Sibeud
- Grand Lyon Urban Community, Water and Urban Planning Department, 69003 Lyon, 9, France
| | - Emmanuelle Vulliet
- Univ Lyon, CNRS, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR 5280, 5 Rue de la Doua, F-69100 Villeurbanne, France
| | - Philippe Polomé
- Université de Lyon & Université Lyon 2, Lyon, F-69007, CNRS, UMR 5824 GATE Lyon Saint-Etienne, Ecully F-69130, France
| | - Yves Perrodin
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR5023 LEHNA, F-69518 Vaulx-en-Velin, France
| |
Collapse
|
44
|
Ateş H, Argun ME. Advanced oxidation of landfill leachate: Removal of micropollutants and identification of by-products. JOURNAL OF HAZARDOUS MATERIALS 2021; 413:125326. [PMID: 33611035 DOI: 10.1016/j.jhazmat.2021.125326] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 11/11/2020] [Accepted: 02/02/2021] [Indexed: 06/12/2023]
Abstract
Landfill leachate contains several macropollutants and micropollutants that cannot be removed efficiently by conventional treatment processes. Therefore, an advanced oxidation process is a promising step in post or pre-treatment of leachate. In this study, the effects of Fenton and ozone oxidation on the removal of 16 emerging micropollutants including polycyclic aromatic hydrocarbons (PAHs), phthalates, alkylphenols and pesticides were investigated. The Fenton and ozone oxidation of the leachate were performed with four (reaction time: 20-90 min, Fe(II) dose: 0.51-2.55 g/L, H2O2 dose: 5.1-25.5 g/L and pH: 3-5) and two (ozonation time: 10-130 min and pH: 4-10) independent variables, respectively. Among these operating conditions, reaction time played more significant role (p-value < 0.05) in eliminating di-(2-Ethylhexyl) phthalate, 4-nonylphenol and 4-tert-octylphenol for both processes. The results showed that Fenton and ozone oxidation processes had a high degradation potential for micropollutants except for the PAHs including four and more rings. Removal efficiencies of micropollutants by ozone and Fenton oxidation were determined in the range of 5-100%. Although the removal efficiencies of chemical oxygen demand (COD) and some micropollutants such as phthalates were found much higher in the Fenton process than ozonation, the degradation products occurred during the Fenton oxidation were a higher molecular weight. Moreover, the oxidation intermediates for the both processes were found as mainly benzaldehyde, pentanoic acid and hydro cinnamic acid as well as derivatives of naphthalenone and naphthalenediol. Also, acid ester with higher molecular weight, naphthalene-based and phenolic compounds were detected in the Fenton oxidation.
Collapse
Affiliation(s)
- Havva Ateş
- Konya Technical University, Faculty of Engineering and Natural Science, Department of Environmental Engineering, Turkey.
| | - Mehmet Emin Argun
- Konya Technical University, Faculty of Engineering and Natural Science, Department of Environmental Engineering, Turkey
| |
Collapse
|
45
|
González-Gaya B, Lopez-Herguedas N, Santamaria A, Mijangos F, Etxebarria N, Olivares M, Prieto A, Zuloaga O. Suspect screening workflow comparison for the analysis of organic xenobiotics in environmental water samples. CHEMOSPHERE 2021; 274:129964. [PMID: 33979938 DOI: 10.1016/j.chemosphere.2021.129964] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 02/03/2021] [Accepted: 02/08/2021] [Indexed: 05/18/2023]
Abstract
Suspect screening techniques are able to determine a broader range of compounds than traditional target analysis. However, the performance of the suspect techniques relies on the procedures implemented for peak annotation and for this, the list of potential candidates is clearly a limiting factor. In order to study this effect on the number of compounds annotated in environmental water samples, a method was validated in terms of absolute recoveries, limits of quantification and identification, as well as the peak picking capability of the software (Compound Discoverer 2.1) using a target list of 178 xenobiotics. Four suspect screening workflows using different suspect lists were compared: (i) the Stoffident list, (ii) all the NORMAN lists, (iii) suspects containing C, H, O, N, S, P, F or Cl in their molecular formula with more than 10 references in Chemspider and (iv) the mzCloud library. The results were compared in terms of the number of annotated compounds at each confidence level. The same 8 compounds (atenolol, caffeine, caprolactam, carbendazim, cotinine, diclofenac, propyphenazone and trimetoprim) were annotated at the highest confidence level using the four workflows. Remarkable differences were observed for lower confidence levels but only 4 features were annotated at different levels by the four workflows. While the third approach provided the highest number of annotated features, the workflow based on the mzCloud library rendered satisfactory results with a simpler approach. Finally, this latter approach was extended to the analysis of organic xenobiotics in different environmental water samples.
Collapse
Affiliation(s)
- B González-Gaya
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Basque Country, Spain; Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), Plentzia, Basque Country, Spain
| | - N Lopez-Herguedas
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Basque Country, Spain
| | - A Santamaria
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Basque Country, Spain
| | - F Mijangos
- Department of Chemical Engineering, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Basque Country, Spain
| | - N Etxebarria
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Basque Country, Spain; Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), Plentzia, Basque Country, Spain
| | - M Olivares
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Basque Country, Spain; Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), Plentzia, Basque Country, Spain
| | - A Prieto
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Basque Country, Spain; Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), Plentzia, Basque Country, Spain
| | - O Zuloaga
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Basque Country, Spain; Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), Plentzia, Basque Country, Spain.
| |
Collapse
|
46
|
Tröger R, Ren H, Yin D, Postigo C, Nguyen PD, Baduel C, Golovko O, Been F, Joerss H, Boleda MR, Polesello S, Roncoroni M, Taniyasu S, Menger F, Ahrens L, Yin Lai F, Wiberg K. What's in the water? - Target and suspect screening of contaminants of emerging concern in raw water and drinking water from Europe and Asia. WATER RESEARCH 2021; 198:117099. [PMID: 33930794 DOI: 10.1016/j.watres.2021.117099] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/15/2021] [Accepted: 03/28/2021] [Indexed: 06/12/2023]
Abstract
There is growing worry that drinking water can be affected by contaminants of emerging concern (CECs), potentially threatening human health. In this study, a wide range of CECs (n = 177), including pharmaceuticals, pesticides, perfluoroalkyl substances (PFASs) and other compounds, were analysed in raw water and in drinking water collected from drinking water treatment plants (DWTPs) in Europe and Asia (n = 13). The impact of human activities was reflected in large numbers of compounds detected (n = 115) and high variation in concentrations in the raw water (range 15-7995 ng L-1 for ∑177CECs). The variation was less pronounced in drinking water, with total concentration ranging from 35 to 919 ng L-1. Treatment efficiency was on average 65 ± 28%, with wide variation between different DWTPs. The DWTP with the highest ∑CEC concentrations in raw water had the most efficient treatment procedure (average treatment efficiency 89%), whereas the DWTP with the lowest ∑177CEC concentration in the raw water had the lowest average treatment efficiency (2.3%). Suspect screening was performed for 500 compounds ranked high as chemicals of concern for drinking water, using a prioritisation tool (SusTool). Overall, 208 features of interest were discovered and three were confirmed with reference standards. There was co-variation between removal efficiency in DWTPs for the target compounds and the suspected features detected using suspect screening, implying that removal of known contaminants can be used to predict overall removal of potential CECs for drinking water production. Our results can be of high value for DWTPs around the globe in their planning for future treatment strategies to meet the increasing concern about human exposure to unknown CECs present in their drinking water.
Collapse
Affiliation(s)
- Rikard Tröger
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), Box 7050, SE-750 07 Uppsala, Sweden.
| | - Hanwei Ren
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Daqiang Yin
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Cristina Postigo
- Water, Environmental, and Food Chemistry Unit (ENFOCHEM), Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Carrer Jordi Girona 18-26, Barcelona, 08034, Spain
| | - Phuoc Dan Nguyen
- Centre Asiatique de Recherche sur l'Eau, Ho Chi Minh City University of Technology, 268 Ly Thuong Kiet, District 10; Vietnam National University of Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Vietnam
| | - Christine Baduel
- Université Grenoble Alpes, IRD, CNRS, Grenoble INP, IGE, 38 050 Grenoble, France
| | - Oksana Golovko
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), Box 7050, SE-750 07 Uppsala, Sweden; University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/II, CZ-389 25, Vodnany, Czech Republic
| | - Frederic Been
- KWR Water Research Institute, 3430BB Nieuwegein, The Netherlands
| | - Hanna Joerss
- Helmholtz-Zentrum Geesthacht, Institute of Coastal Research, 21502 Geesthacht, Germany
| | - Maria Rosa Boleda
- Aigües de Barcelona - EMGCIA S.A, General Batet 1-7, 08028, Barcelona, Spain
| | - Stefano Polesello
- Water Research Institute (CNR-IRSA), via del Mulino 19, 20861 Brugherio (MB), Italy
| | | | - Sachi Taniyasu
- National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan
| | - Frank Menger
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), Box 7050, SE-750 07 Uppsala, Sweden
| | - Lutz Ahrens
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), Box 7050, SE-750 07 Uppsala, Sweden
| | - Foon Yin Lai
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), Box 7050, SE-750 07 Uppsala, Sweden
| | - Karin Wiberg
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), Box 7050, SE-750 07 Uppsala, Sweden
| |
Collapse
|
47
|
Black GP, He G, Denison MS, Young TM. Using Estrogenic Activity and Nontargeted Chemical Analysis to Identify Contaminants in Sewage Sludge. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:6729-6739. [PMID: 33909413 PMCID: PMC8378343 DOI: 10.1021/acs.est.0c07846] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Diverse organic compounds, many derived from consumer products, are found in sewage sludge worldwide. Understanding which of these poses the most significant environmental threat following land application can be investigated through a variety of predictive and cell-based toxicological techniques. Nontargeted analysis using high-resolution mass spectrometry with predictive estrogenic activity modeling was performed on sewage sludge samples from 12 wastewater treatment plants in California. Diisobutyl phthalate and dextrorphan were predicted to exhibit estrogenic activity and identified in >75% of sludge samples, signifying their universal presence and persistence. Additionally, the application of an estrogen-responsive cell bioassay revealed reductions in agonistic activity during mesophilic and thermophilic treatment but significant increases in antagonism during thermophilic treatment, which warrants further research. Ten nontarget features were identified (metoprolol, fenofibric acid, erythrohydrobupropion, oleic acid, mestranol, 4'-chlorobiphenyl-2,3-diol, medrysone, scillarenin, sudan I, and N,O-didesmethyltramadol) in treatment set samples and are considered to have influenced the in vitro estrogenic activity observed. The combination of predictive and in vitro estrogenicity with nontargeted analysis has led to confirmation of 12 estrogen-active contaminants in California sewage sludge and has highlighted the importance of evaluating both agonistic and antagonistic responses when evaluating the bioactivity of complex samples.
Collapse
Affiliation(s)
- Gabrielle P. Black
- Agricultural & Environmental Chemistry Graduate Group, University of California, Davis
| | - Guochun He
- Department of Environmental Toxicology, University of California, Davis
| | | | - Thomas M. Young
- Agricultural & Environmental Chemistry Graduate Group, University of California, Davis
- Department of Civil & Environmental Engineering, University of California, Davis
| |
Collapse
|
48
|
Kiefer K, Du L, Singer H, Hollender J. Identification of LC-HRMS nontarget signals in groundwater after source related prioritization. WATER RESEARCH 2021; 196:116994. [PMID: 33773453 DOI: 10.1016/j.watres.2021.116994] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 02/26/2021] [Accepted: 02/28/2021] [Indexed: 05/12/2023]
Abstract
Groundwater is a major drinking water resource but its quality with regard to organic micropollutants (MPs) is insufficiently assessed. Therefore, we aimed to investigate Swiss groundwater more comprehensively using liquid chromatography high-resolution tandem mass spectrometry (LC-HRMS/MS). First, samples from 60 sites were classified as having high or low urban or agricultural influence based on 498 target compounds associated with either urban or agricultural sources. Second, all LC-HRMS signals were related to their potential origin (urban, urban and agricultural, agricultural, or not classifiable) based on their occurrence and intensity in the classified samples. A considerable fraction of estimated concentrations associated with urban and/or agricultural sources could not be explained by the 139 detected targets. The most intense nontarget signals were automatically annotated with structure proposals using MetFrag and SIRIUS4/CSI:FingerID with a list of >988,000 compounds. Additionally, suspect screening was performed for 1162 compounds with predicted high groundwater mobility from primarily urban sources. Finally, 12 nontargets and 11 suspects were identified unequivocally (Level 1), while 17 further compounds were tentatively identified (Level 2a/3). amongst these were 13 pollutants thus far not reported in groundwater, such as: the industrial chemicals 2,5-dichlorobenzenesulfonic acid (19 detections, up to 100 ng L-1), phenylphosponic acid (10 detections, up to 50 ng L-1), triisopropanolamine borate (2 detections, up to 40 ng L-1), O-des[2-aminoethyl]-O-carboxymethyl dehydroamlodipine, a transformation product (TP) of the blood pressure regulator amlodipine (17 detections), and the TP SYN542490 of the herbicide metolachlor (Level 3, 33 detections, estimated concentrations up to 100-500 ng L-1). One monitoring site was far more contaminated than other sites based on estimated total concentrations of potential MPs, which was supported by the elucidation of site-specific nontarget signals such as the carcinogen chlorendic acid, and various naphthalenedisulfonic acids. Many compounds remained unknown, but overall, source related prioritisation proved an effective approach to support identification of compounds in groundwater.
Collapse
Affiliation(s)
- Karin Kiefer
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland; Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, 8092 Zurich, Switzerland
| | - Letian Du
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland; Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, 8092 Zurich, Switzerland
| | - Heinz Singer
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
| | - Juliane Hollender
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland; Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, 8092 Zurich, Switzerland.
| |
Collapse
|
49
|
González-Gaya B, Lopez-Herguedas N, Bilbao D, Mijangos L, Iker AM, Etxebarria N, Irazola M, Prieto A, Olivares M, Zuloaga O. Suspect and non-target screening: the last frontier in environmental analysis. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:1876-1904. [PMID: 33913946 DOI: 10.1039/d1ay00111f] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Suspect and non-target screening (SNTS) techniques are arising as new analytical strategies useful to disentangle the environmental occurrence of the thousands of exogenous chemicals present in our ecosystems. The unbiased discovery of the wide number of substances present over environmental analysis needs to find a consensus with powerful technical and computational requirements, as well as with the time-consuming unequivocal identification of discovered analytes. Within these boundaries, the potential applications of SNTS include the studies of environmental pollution in aquatic, atmospheric, solid and biological samples, the assessment of new compounds, transformation products and metabolites, contaminant prioritization, bioremediation or soil/water treatment evaluation, and retrospective data analysis, among many others. In this review, we evaluate the state of the art of SNTS techniques going over the normalized workflow from sampling and sample treatment to instrumental analysis, data processing and a brief review of the more recent applications of SNTS in environmental occurrence and exposure to xenobiotics. The main issues related to harmonization and knowledge gaps are critically evaluated and the challenges of their implementation are assessed in order to ensure a proper use of these promising techniques in the near future.
Collapse
Affiliation(s)
- B González-Gaya
- Department of Analytical Chemistry, University of the Basque Country (UPV/EHU), 48940 Leioa, Basque Country, Spain.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Target, suspect and non-target screening analysis from wastewater treatment plant effluents to drinking water using collision cross section values as additional identification criterion. Anal Bioanal Chem 2021; 414:425-438. [PMID: 33768366 PMCID: PMC8748347 DOI: 10.1007/s00216-021-03263-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 02/18/2021] [Accepted: 03/01/2021] [Indexed: 12/13/2022]
Abstract
The anthropogenic entry of organic micropollutants into the aquatic environment leads to a potential risk for drinking water resources and the drinking water itself. Therefore, sensitive screening analysis methods are needed to monitor the raw and drinking water quality continuously. Non-target screening analysis has been shown to allow for a more comprehensive investigation of drinking water processes compared to target analysis alone. However, non-target screening is challenging due to the many features that can be detected. Thus, data processing techniques to reduce the high number of features are necessary, and prioritization techniques are important to find the features of interest for identification, as identification of unknown substances is challenging as well. In this study, a drinking water production process, where drinking water is supplied by a water reservoir, was investigated. Since the water reservoir provides surface water, which is anthropogenically influenced by wastewater treatment plant (WWTP) effluents, substances originating from WWTP effluents and reaching the drinking water were investigated, because this indicates that they cannot be removed by the drinking water production process. For this purpose, ultra-performance liquid chromatography coupled with an ion-mobility high-resolution mass spectrometer (UPLC-IM-HRMS) was used in a combined approach including target, suspect and non-target screening analysis to identify known and unknown substances. Additionally, the role of ion-mobility-derived collision cross sections (CCS) in identification is discussed. To that end, six samples (two WWTP effluent samples, a surface water sample that received the effluents, a raw water sample from a downstream water reservoir, a process sample and the drinking water) were analyzed. Positive findings for a total of 60 substances in at least one sample were obtained through quantitative screening. Sixty-five percent (15 out of 23) of the identified substances in the drinking water sample were pharmaceuticals and transformation products of pharmaceuticals. Using suspect screening, further 33 substances were tentatively identified in one or more samples, where for 19 of these substances, CCS values could be compared with CCS values from the literature, which supported the tentative identification. Eight substances were identified by reference standards. In the non-target screening, a total of ten features detected in all six samples were prioritized, whereby metoprolol acid/atenolol acid (a transformation product of the two β-blockers metoprolol and atenolol) and 1,3-benzothiazol-2-sulfonic acid (a transformation product of the vulcanization accelerator 2-mercaptobenzothiazole) were identified with reference standards. Overall, this study demonstrates the added value of a comprehensive water monitoring approach based on UPLC-IM-HRMS analysis.
Collapse
|