1
|
Jang H, Calder L, Choi JW, Kwon BR, Pearce EN, Shin HM. Associations between exposure to sodium/iodide symporter inhibitors and markers of thyroid function: A systematic review and meta-analysis. CHEMOSPHERE 2025; 372:144098. [PMID: 39798720 DOI: 10.1016/j.chemosphere.2025.144098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 12/21/2024] [Accepted: 01/08/2025] [Indexed: 01/15/2025]
Abstract
BACKGROUND Perchlorate, nitrate, and thiocyanate are well-known sodium/iodide symporter (NIS) inhibitors that disturb iodide uptake at the thyroid, affecting thyroid function. However, the associations between NIS inhibitor exposure and thyroid function are not well summarized in humans. OBJECTIVE We aimed to summarize associations between NIS inhibitor exposure and thyroid function markers and to identify key information gaps for future studies. METHODS From four databases (Embase, Web of Science, PubMed, CINAHL plus) up to May 31, 2024, we systematically searched studies that examined associations between levels of the three NIS inhibitors and thyroid hormones, including free thyroxine (FT4), total thyroxine (TT4), free triiodothyronine (FT3), and total triiodothyronine (TT3) as well as thyroid-stimulating hormone (TSH). We also conducted a random-effects meta-analysis to estimate the pooled effect size of the associations between NIS inhibitor levels and thyroid function marker levels. RESULTS Of 2,588 identified studies, we selected 9 studies for full-text review and 4 studies for a meta-analysis. The association between perchlorate and TSH was primarily studied and only three studies considered iodine concentrations. As a result of a meta-analysis, TSH levels were positively associated with levels of combined NIS inhibitors [β: 0.105; 95% confidence interval (CI): 0.046, 0.160] and perchlorate [β = 0.133; 95% CI: 0.056, 0.211]. We found negative trends between NIS inhibitors and FT3 and TT4 and positive but nonsignificant trends between FT3 and perchlorate and between TT4 and thiocyanate. CONCLUSIONS Our study provided comprehensive evidence on the association between exposure to NIS inhibitors and thyroid function markers in humans, aligning with the mechanisms observed in in vivo studies.
Collapse
Affiliation(s)
- Hyuna Jang
- Department of Environmental Science, Baylor University, Waco, TX, USA
| | - Luke Calder
- Department of Environmental Science, Baylor University, Waco, TX, USA
| | - Jeong Weon Choi
- Department of Environmental Science, Baylor University, Waco, TX, USA
| | - Ba Reum Kwon
- Department of Environmental Science, Baylor University, Waco, TX, USA
| | - Elizabeth N Pearce
- Section of Endocrinology, Diabetes, and Nutrition, Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Hyeong-Moo Shin
- Department of Environmental Science, Baylor University, Waco, TX, USA.
| |
Collapse
|
2
|
Wang C, Xu X, Yuan J, An R, Taxitiemuer A, Zhang Y, Luo T, Zhou J, Wang C, Zhang L, Wu S. Analysis of thyroid function and structure and serum metabolomics in pregnant rats exposed to airborne contaminants: Combined perchlorate, thiocyanate, and nitrate exposure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 289:117667. [PMID: 39788029 DOI: 10.1016/j.ecoenv.2025.117667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/15/2024] [Accepted: 01/01/2025] [Indexed: 01/12/2025]
Abstract
OBJECTIVES Perchlorates, nitrates, and thiocyanates constitute environmental endocrine disruptors; however, health damage caused by absorption through the respiratory tract remains poorly studied. We investigated the effects of inhalation of these pollutants on thyroid function and structure and serum metabolomics in pregnant rats. METHODS We established a Sprague-Dawley pregnant rat model exposed to perchlorate, nitrate, and thiocyanate at different gestational stages and compared maternal serum thyroid function levels, foetal development, thyroid morphology, and pathological changes between exposed and non-exposed groups at different concentrations. We used liquid chromatography-tandem mass spectrometry metabolomics methods to investigate corresponding changes in serum metabolites and metabolic biomarkers and identify metabolism-related pathways. RESULTS Free triiodothyronine levels in the medium-and high-concentration groups and free thyroxine levels in the low-, medium-, and high-concentration groups were significantly lower than those in the control group. Weight gain was significantly lower in the high-dose group than in the control group. Thyroid weight and organ coefficients were significantly higher in the medium-and high-dose groups at 15 and 19 days of pregnancy than in the control group. Thyroid epithelial cells demonstrated diffuse proliferation and lamination with increased atomisation concentrations, and thyroid cells tended to undergo apoptosis in the group with high thyroid epithelial cell concentration. Eight and 18 metabolic pathways were significantly affected in the GD15 and GD19 groups(GD15: The demise occurring 15 days into gestation,GD19: The demise occurring 15 days into gestation.), respectively, post-exposure. The involved pathways included lipid, glucose, bile acid, choline, and gamma-aminobutyric acid metabolism and peroxisome proliferation-activated receptors. CONCLUSIONS Mixed thiocyanate, nitrate, and perchlorate exposure can result in subchronic toxicity in rats, affecting thyroid function and structure.
Collapse
Affiliation(s)
- Chenchen Wang
- School of Public Health, Xinjiang Medical University, Urumqi, China
| | - Xiaohui Xu
- Xinjiang Uygur Autonomous Region Center for Disease Control and Prevention, Urumqi, China
| | - Jiangling Yuan
- Xinjiang Uygur Autonomous Region Center for Disease Control and Prevention, Urumqi, China
| | - Ran An
- Xinjiang Uygur Autonomous Region Center for Disease Control and Prevention, Urumqi, China
| | - Aierken Taxitiemuer
- Xinjiang Uygur Autonomous Region Center for Disease Control and Prevention, Urumqi, China
| | - Yan Zhang
- Xinjiang Uygur Autonomous Region Center for Disease Control and Prevention, Urumqi, China
| | - Tao Luo
- Xinjiang Uygur Autonomous Region Center for Disease Control and Prevention, Urumqi, China
| | - Jing Zhou
- School of Public Health, Xinjiang Medical University, Urumqi, China
| | - Chang Wang
- School of Public Health, Xinjiang Medical University, Urumqi, China
| | - Ling Zhang
- Xinjiang Uygur Autonomous Region Center for Disease Control and Prevention, Urumqi, China.
| | - Shunhua Wu
- School of Public Health, Xinjiang Medical University, Urumqi, China.
| |
Collapse
|
3
|
Chen Y, Zhang H, Lu S, Ge Y, Ji J, Chen T. Serum levels of perchlorate and chlorate in pregnant women from south China and the related health risk with thyroid function. Food Chem Toxicol 2024; 193:114982. [PMID: 39236867 DOI: 10.1016/j.fct.2024.114982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/26/2024] [Accepted: 09/02/2024] [Indexed: 09/07/2024]
Abstract
Perchlorate and chlorate are recognized as ubiquitously inorganic pollutants inenvrionment owing to their high solubility in water and resistance to degradation. Previous studies have confirmed the potential adverse effects of perchlorate and chlorate on human thyroid function, along with implications for fetal growth and development. The fetus grows and develops pregnant women's womb and absorbs nutrients from her body. However, there is still limited information on prenatal exposure to perchlorate and chlorate and the related health risks, especially in China. In this study, a total of 430 serum specimens obtained from pregnant females residing in Southern China were analyzed to ascertain the levels of perchlorate and chlorate, and explore the relationship between perchlorate and chlorate and thyroid function by linear regression, WQS, and QGC. The measured serum levels of perchlorate and chlorate were comparatively elevated, demonstrating median values of 0.693 μg/L and 1.36 μg/L, respectively. The estimated exposure dose of perchlorate in 19.7% of pregnant women exceeded the USEPA reference dose, indicating potential health risks. Although no significant association was found between serum perchlorate and thyroid hormone levels, the exposure to perchlorate for pregnant women in Southern China is cause for concern given their sensitivity to chemicals during pregnancy and the relatively high internal exposure levels.
Collapse
Affiliation(s)
- Yining Chen
- China Waterborne Transport Research Institute, Beijing 100088, China; School of Public Health (Shenzhen), Shenzhen Campus of SunYat-sen University, Shenzhen, 518107, China
| | - Han Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Shaoyou Lu
- School of Public Health (Shenzhen), Shenzhen Campus of SunYat-sen University, Shenzhen, 518107, China
| | - Yiming Ge
- School of Public Health (Shenzhen), Shenzhen Campus of SunYat-sen University, Shenzhen, 518107, China
| | - Jiajia Ji
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China.
| | - Tao Chen
- Chaozhou People's Hospital, Chaozhou 515600, China.
| |
Collapse
|
4
|
Li J, Du B, Wang Y, Qiu J, Shi M, Wei M, Li L. Environmental perchlorate, thiocyanate, and nitrate exposures and bone mineral density: a national cross-sectional study in the US adults. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:34459-34472. [PMID: 38703319 DOI: 10.1007/s11356-024-33563-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 04/30/2024] [Indexed: 05/06/2024]
Abstract
Associations of perchlorate, thiocyanate, and nitrate exposures with bone mineral density (BMD) in adults have not previously been studied. This study aimed to estimate the associations of individual and concurrent exposure of the three chemicals with adult BMD. Based on National Health and Nutrition Examination Survey (NHANES, 2011-2018), 1618 non-pregnant adults (age ≥ 20 years and 47.0% female) were included in this study. Survey-weighted linear regression models were used to estimate individual urinary perchlorate, thiocyanate, and nitrate concentrations with lumbar spine BMD and total BMD in adults. Then, weighted quantile sum (WQS) regression and Bayesian kernel machine regression (BKMR) models were conducted to evaluate associations of co-occurrence of the three chemicals with adult BMD. In all participants, nitrate exposure was inversely associated with lumbar spine BMD (β = - 0.054, 95%CI: - 0.097, - 0.010). In stratification analyses, significant inverse associations were observed in female and participants older than 40 years old. In WQS regressions, significant negative associations of the weighted sum of the three chemicals with total and lumbar spine BMD (β = - 0.014, 95%CI: - 0.021, - 0.007; β = - 0.011, 95%CI: - 0.019, - 0.004, respectively) were found, and the dominant contributor was nitrate. In the BKMR models, non-linear dose-response associations of nitrate exposure with lumbar spine and total BMD were observed. These findings suggested that environmental perchlorate, thiocyanate, and nitrate exposure may reduce adult BMD and nitrate is the main contributor.
Collapse
Affiliation(s)
- Juxiao Li
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, Guangdong Province, People's Republic of China
| | - Bohai Du
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, Guangdong Province, People's Republic of China
| | - Yuhan Wang
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, Guangdong Province, People's Republic of China
| | - Jiahuang Qiu
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, Guangdong Province, People's Republic of China
| | - Ming Shi
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, Guangdong Province, People's Republic of China
| | - Muhong Wei
- Department of Epidemiology and Statistics, School of Public Health, Bengbu Medical College, Bengbu, Anhui, People's Republic of China
| | - Li Li
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, Guangdong Province, People's Republic of China.
| |
Collapse
|
5
|
He J, Xu J, Zheng M, Pan K, Yang L, Ma L, Wang C, Yu J. Thyroid dysfunction caused by exposure to environmental endocrine disruptors and the underlying mechanism: A review. Chem Biol Interact 2024; 391:110909. [PMID: 38340975 DOI: 10.1016/j.cbi.2024.110909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 01/22/2024] [Accepted: 02/07/2024] [Indexed: 02/12/2024]
Abstract
Thyroid disease has been rapidly increasing, but its causes remain unclear. At present, many studies have focused on the relationship between environmental endocrine disruptors (EEDs) and the pathogenesis of thyroid disease. Herein, we summarize such studies exploring the effects of exposure to common EEDs on thyrotoxicosis, finding that EEDs appear to contribute to the pathogenesis of thyroid-related diseases such as thyroid cancer, goiter, thyroiditis, hyperthyroidism, and hypothyroidism. To explore this causative effect in detail, we have analyzed the following three aspects of how EEDs are believed to exert their impacts on the occurrence and development of thyroid disease: (1) damage to the thyroid tissue structure, including disrupted mitochondria and the stratification of thyroid follicular epithelial cells; (2) disruption of thyroid hormone signaling, including thyroid hormone synthesis and secretion disorders, destruction of normal function of the hypothalamus-pituitary-thyroid axis, disturbed estrogen signaling in the body, alterations to the level of thyroid-stimulating hormone, inhibition of the release of thyroglobulin from thyroid cells, and reductions in the levels of sodium iodide co-transporters, thyroid peroxidase, deiodinase, and transthyretin; and (3) molecular mechanisms underlying the disruption of thyroid function, including competitive binding to T3 and T4 receptors, disturbance of the hypothalamic-pituitary-thyroid axis, activation of the ERK and Akt pathways, oxidative stress, regulation of the expression of the proto-oncogene k-Ras, tumor suppressor gene PTEN, and thyroid TSHR gene, and induction of autophagy in thyroid cells. Overall, this article reviews how EEDs can affect the occurrence and development of thyroid disease via multiple routes, thus providing new ideas to intervene for the prevention, diagnosis, treatment, and prognosis of thyroid disease.
Collapse
Affiliation(s)
- Jie He
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou, 563000, PR China
| | - Jie Xu
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou, 563000, PR China
| | - Mucong Zheng
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou, 563000, PR China
| | - Kai Pan
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou, 563000, PR China
| | - Lilin Yang
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou, 563000, PR China
| | - Lina Ma
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou, 563000, PR China
| | - Chuyang Wang
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou, 563000, PR China
| | - Jie Yu
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou, 563000, PR China.
| |
Collapse
|
6
|
Li J, Tu F, Wan Y, Qian X, Mahai G, Wang A, Ma J, Yang Z, Xia W, Xu S, Zheng T, Li Y. Associations of Trimester-Specific Exposure to Perchlorate, Thiocyanate, and Nitrate with Childhood Neurodevelopment: A Birth Cohort Study in China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:20480-20493. [PMID: 38015815 DOI: 10.1021/acs.est.3c06013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Studies about the impacts of maternal exposure to perchlorate, thiocyanate, and nitrate on offspring neurodevelopment are scarce. Based on a birth cohort in China, 1,028 mothers provided urine samples at three trimesters for determination of the three target analytes, and their offspring neurodevelopment was evaluated at 2 years old. Associations of maternal exposure to the three chemicals with offspring neurodevelopment were estimated using three statistical methods. Trimester-specific analyses using generalized estimating equation models showed that double increment of thiocyanate and nitrate during the first trimester was associated with 1.56 (95% CI: -2.82, -0.30) and 1.22 (-2.40, -0.03) point decreases in the offspring mental development index (MDI), respectively. Weighted quantile sum (WQS) regression analyses showed that the mixture exposure at the first and second trimesters was negatively associated with the offspring MDI (β = -2.39, 95% CI: -3.85, -0.93; β = -1.75, 95% CI: -3.04, -0.47, respectively) and thiocyanate contributed the most to the association (65.0 and 91.6%, respectively). Bayesian kernel machine regression analyses suggested an inverted U-shape relationship of maternal urinary thiocyanate with the offspring MDI. These findings suggested that prenatal exposure to the three chemicals (at current levels), especially thiocyanate and nitrate, may impair neurodevelopment. Early pregnancy seems to be the sensitive window.
Collapse
Affiliation(s)
- Juxiao Li
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Fengqin Tu
- Wuhan Institute for Food and Cosmetic Control, Key Laboratory of Edible Oil Quality and Safety for State Market Regulation, Wuhan 430040, China
| | - Yanjian Wan
- Center for Public Health Laboratory Service, Institute of Environmental Health, Wuhan Centers for Disease Control & Prevention, Wuhan, Hubei 430024, PR China
| | - Xi Qian
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Gaga Mahai
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Aizhen Wang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Jiaolong Ma
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | | | - Wei Xia
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Shunqing Xu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Tongzhang Zheng
- Department of Epidemiology, School of Public Health, Brown University, Providence, Rhode Island 02912, United States
| | - Yuanyuan Li
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| |
Collapse
|
7
|
Guan J, Wan Y, Li J, Zheng T, Xia W, Xu S, Li Y. Urinary perchlorate, thiocyanate, and nitrate and their associated risk factors among Chinese pregnant women. CHEMOSPHERE 2023; 345:140467. [PMID: 37852377 DOI: 10.1016/j.chemosphere.2023.140467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 09/28/2023] [Accepted: 10/14/2023] [Indexed: 10/20/2023]
Abstract
Perchlorate, nitrate, and thiocyanate are well-known inhibitors of iodide uptake and thyroid-disrupting chemicals. Widespread human exposure to them has been identified, whereas studies on their internal exposure levels among Chinese pregnant women are scarce and factors associated with them are not well recognized. The objective of this study is to determine their levels and identify the associated factors among pregnant women (n = 1120), based on a prospective birth cohort in Wuhan, central China, using repeated urine samples of three trimesters. Urinary perchlorate, thiocyanate, and nitrate were 100% detected in the samples, and specific gravity-adjusted median concentrations of them in all the samples were 12.6 ng/mL, 367 ng/mL, and 63.7 μg/mL, respectively. Their concentrations were weakly-to-moderately correlated with each other, with Spearman correlation coefficients ranging from 0.27 to 0.54. Poor reproducibility were observed for the three analytes over the three trimesters, with intraclass correlation coefficient of 0.07, 0.19, 0.04 for perchlorate, thiocyanate, and nitrate, respectively. The women who were overweight or used tap water as drinking water had significantly higher perchlorate concentrations, while those with excessive gestational weight gain had significantly higher thiocyanate concentrations (p < 0.05). The women with a college degree or above had lower nitrate concentrations (p < 0.05). Meanwhile, the median concentration of perchlorate in urine samples collected in spring, thiocyanate in those collected in winter, and nitrate in those collected in autumn, was significantly higher compared to their median concentrations in the samples collected in other three seasons (p < 0.05), respectively. Urinary perchlorate and nitrate concentrations of pregnant women in this study were higher than the concentrations of pregnant women in other countries, while thiocyanate concentrations were lower than that of most other countries. This study suggested potential covariates for future epidemiological analyses.
Collapse
Affiliation(s)
- Jing Guan
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Yanjian Wan
- Center for Public Health Laboratory Service, Institute of Environmental Health, Wuhan Centers for Disease Control & Prevention, Wuhan, Hubei, 430024, PR China.
| | - Juxiao Li
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Tongzhang Zheng
- School of Public Health, Brown University, Providence, RI, 02903, USA
| | - Wei Xia
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Shunqing Xu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Yuanyuan Li
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China.
| |
Collapse
|
8
|
Muñoz-Arango D, Torres-Rojas F, Tapia N, Vega M, Alvear C, Pizarro G, Pastén P, Cortés S, Vega AS, Calderón R, Nerenberg R, Vargas IT. Perchlorate and chlorate assessment in drinking water in northern Chilean cities. ENVIRONMENTAL RESEARCH 2023; 233:116450. [PMID: 37343761 DOI: 10.1016/j.envres.2023.116450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/14/2023] [Accepted: 06/16/2023] [Indexed: 06/23/2023]
Abstract
Perchlorate and chlorate are endocrine disruptors considered emerging contaminants (ECs). Both oxyanions are commonly associated with anthropogenic contamination from fertilizers, pesticides, explosives, and disinfection byproducts. However, the soils of the Atacama Desert are the most extensive natural reservoirs of perchlorate in the world, compromising drinking water sources in northern Chile. Field campaigns were carried (2014-2018) to assess the presence of these ECs in the water supply networks of twelve Chilean cities. Additionally, the occurrence of perchlorate, chlorate and other anions typically observed in drinking water matrices of the Atacama Desert (i.e., nitrate, chloride, sulfate) was evaluated using a Spearman correlation analysis to determine predictors for perchlorate and chlorate. High concentrations of perchlorate (up to 114.48 μg L-1) and chlorate (up to 9650 μg L-1) were found in three northern cities. Spatial heterogeneities were observed in the physicochemical properties and anion concentrations of the water supply network. Spearman correlation analysis indicated that nitrate, chloride, and sulfate were not useful predictors for the presence of perchlorate and chlorate in drinking water in Chile. Hence, this study highlights the need to establish systematic monitoring, regulation, and treatment for these EC of drinking water sources in northern Chilean cities for public health protection.
Collapse
Affiliation(s)
- Diana Muñoz-Arango
- Departamento de Ingeniería Hidráulica y Ambiental, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Macul, Santiago, Chile; Centro de Desarrollo Urbano Sustentable (CEDEUS), Av. Vicuña Mackenna 4860, Macul, Santiago, Chile
| | - Felipe Torres-Rojas
- Departamento de Ingeniería Hidráulica y Ambiental, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Macul, Santiago, Chile
| | - Natalia Tapia
- Departamento de Ingeniería Hidráulica y Ambiental, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Macul, Santiago, Chile; Centro de Desarrollo Urbano Sustentable (CEDEUS), Av. Vicuña Mackenna 4860, Macul, Santiago, Chile
| | - Marcela Vega
- Departamento de Ingeniería Hidráulica y Ambiental, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Macul, Santiago, Chile; Centro de Desarrollo Urbano Sustentable (CEDEUS), Av. Vicuña Mackenna 4860, Macul, Santiago, Chile
| | - Cristobal Alvear
- Departamento de Ingeniería Hidráulica y Ambiental, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Macul, Santiago, Chile
| | - Gonzalo Pizarro
- Departamento de Ingeniería Hidráulica y Ambiental, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Macul, Santiago, Chile
| | - Pablo Pastén
- Departamento de Ingeniería Hidráulica y Ambiental, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Macul, Santiago, Chile; Centro de Desarrollo Urbano Sustentable (CEDEUS), Av. Vicuña Mackenna 4860, Macul, Santiago, Chile
| | - Sandra Cortés
- Centro de Desarrollo Urbano Sustentable (CEDEUS), Av. Vicuña Mackenna 4860, Macul, Santiago, Chile; Escuela de Medicina, Advanced Center for Chronic Diseases (ACCDIS). Pontificia Universidad Católica de Chile, Lira 40, Santiago, Chile
| | - Alejandra S Vega
- Departamento de Ingeniería Hidráulica y Ambiental, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Macul, Santiago, Chile; Centro de Desarrollo Urbano Sustentable (CEDEUS), Av. Vicuña Mackenna 4860, Macul, Santiago, Chile
| | - Raúl Calderón
- Centro de Investigación en Recursos Naturales y Sustentabilidad, Universidad Bernardo O'Higgins, Fabrica 1990, Segundo Piso, Santiago, Chile
| | - Robert Nerenberg
- Department of Civil & Environmental Engineering & Earth Science. University of Notre Dame, Notre Dame, IN, USA
| | - Ignacio T Vargas
- Departamento de Ingeniería Hidráulica y Ambiental, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Macul, Santiago, Chile; Centro de Desarrollo Urbano Sustentable (CEDEUS), Av. Vicuña Mackenna 4860, Macul, Santiago, Chile.
| |
Collapse
|
9
|
Stoker TE, Wang J, Murr AS, Bailey JR, Buckalew AR. High-Throughput Screening of ToxCast PFAS Chemical Library for Potential Inhibitors of the Human Sodium Iodide Symporter. Chem Res Toxicol 2023; 36:380-389. [PMID: 36821091 DOI: 10.1021/acs.chemrestox.2c00339] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Over the past decade, there has been increased concern for environmental chemicals that can target various sites within the hypothalamic-pituitary-thyroid axis to potentially disrupt thyroid synthesis, transport, metabolism, and/or function. One well-known thyroid target in both humans and wildlife is the sodium iodide symporter (NIS) that regulates iodide uptake into the thyroid gland, the first step of thyroid hormone synthesis. Our laboratory previously developed and validated a radioactive iodide uptake (RAIU) high-throughput assay in a stably transduced human NIS cell line (hNIS-HEK293T-EPA) to identify chemicals with potential for NIS inhibition. So far, we have tested over 2000 chemicals (US EPA's ToxCast chemical libraries PI_v2, PII, and e1K) and discovered a subset of chemicals that significantly inhibit iodide uptake in the hNIS assay. Here, we utilized this screening assay to test a set of 149 unique per- and polyfluoroalkyl substances (PFAS) (ToxCast PFAS library) for potential NIS inhibition. For this evaluation, the 149 blinded samples were screened in a tiered approach, first in an initial single-concentration (≤100 μM) RAIU assay and subsequent evaluation of the chemicals that produced ≥20% inhibition using multiconcentration (MC) response (0.001-100 μM) testing in parallel RAIU and cell viability assays. Of this set, 38 of the PFAS chemicals inhibited iodide uptake ≥20% in the MC testing with 25 displaying inhibition ≥50%. To prioritize the most potent PFAS NIS inhibitors in this set, chemicals were ranked based on outcomes of both iodide uptake and cytotoxicity and normalized to perchlorate, a known positive control. Consistent with previous findings, PFOS and PFHxS were again found to be potent NIS inhibitors, yet significant inhibition was also observed for several other screened PFAS chemicals. Although further studies are clearly warranted, this initial screening effort identifies NIS as a molecular target for potential thyroid disruption by this persistent and structurally diverse class of chemicals.
Collapse
Affiliation(s)
- Tammy E Stoker
- Neurotoxicology and Endocrine Toxicology Branch, Public Health and Integrated Toxicology Division, Center of Public Health and Environmental Assessments, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, United States
| | - Jun Wang
- Neurotoxicology and Endocrine Toxicology Branch, Public Health and Integrated Toxicology Division, Center of Public Health and Environmental Assessments, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, United States
- Oak Ridge Institute for Science and Education, US Department of Energy, Oak Ridge, Tennessee 37831, United States
| | - Ashley S Murr
- Neurotoxicology and Endocrine Toxicology Branch, Public Health and Integrated Toxicology Division, Center of Public Health and Environmental Assessments, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, United States
| | - Jarod R Bailey
- Neurotoxicology and Endocrine Toxicology Branch, Public Health and Integrated Toxicology Division, Center of Public Health and Environmental Assessments, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, United States
- Oak Ridge Institute for Science and Education, US Department of Energy, Oak Ridge, Tennessee 37831, United States
| | - Angela R Buckalew
- Neurotoxicology and Endocrine Toxicology Branch, Public Health and Integrated Toxicology Division, Center of Public Health and Environmental Assessments, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, United States
| |
Collapse
|
10
|
Yue B, Ning S, Miao H, Fang C, Li J, Zhang L, Bao Y, Fan S, Zhao Y, Wu Y. Human exposure to a mixture of endocrine disruptors and serum levels of thyroid hormones: A cross-sectional study. J Environ Sci (China) 2023; 125:641-649. [PMID: 36375946 DOI: 10.1016/j.jes.2022.01.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 01/13/2022] [Accepted: 01/14/2022] [Indexed: 06/16/2023]
Abstract
Exposure to endocrine disruptors (EDCs) could disrupt thyroid hormone homeostasis. However, human epidemiological studies reported inconsistent observations, and scarce information on the effect of a mixture of chemicals. The aim of the present study was to examine the associations of multiple chemicals with thyroid hormones among adults from China. We measured serum levels of thyroid hormones and urinary levels of 11 EDCs, including six phthalate metabolites, bisphenol A (BPA), bisphenol F (BPF), bisphenol S (BPS), perchlorate, and thiocyanate among 177 healthy adults without occupational exposure. Associations of multiple urinary analytes with serum thyroid hormones were examined by performing general linear regression analysis and bayesian kernal machine regression analysis. These EDCs were detected in almost all samples. After adjusting for various covariates, we observed only BPF significantly associated with total thyroxin (TT4) (β=-0.27, 95% confidence interval (CI) [-0.41, -0.14]), total triiodothyronine (TT3) (β=-0.02 95% CI [-0.03, -0.01]), free T4 (fT4) (β=-0.02, 95% CI [-0.03, -0.01]), and free T3 (fT3) (β=-0.04, 95% CI [-0.07, -0.01]), and mono-(2-ethyl-5-oxohexyl) phthalate (MEOHP) and monoethyl phthalate (MEP) positively associated with TT4 (β=0.24, 95% CI [0.01, 0.48]) and fT4 (β=0.02, 95% CI [0.01, 0.04]), respectively. Moreover, we observed significant dose-response relationships between TT4 and the mixture of 11 EDCs, and BPF was the main contributor to the mixture effect, suggesting the priority of potential effect of BPF on disrupting thyroid function under a real scenario of human exposure to multiple EDCs. Our findings supported the hypothesis that human exposure to low levels of EDCs could alter thyroid hormones homeostasis among non-occupational healthy adults.
Collapse
Affiliation(s)
- Bing Yue
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit (No. 2019RU014), China National Center for Food Safety Risk Assessment, Beijing 100022, China
| | - Shangyong Ning
- Hematology Department, Beijing Hospital, National Center of Gerontology, Beijing 100730, China
| | - Hongjian Miao
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit (No. 2019RU014), China National Center for Food Safety Risk Assessment, Beijing 100022, China
| | - Congrong Fang
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit (No. 2019RU014), China National Center for Food Safety Risk Assessment, Beijing 100022, China
| | - Jingguang Li
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit (No. 2019RU014), China National Center for Food Safety Risk Assessment, Beijing 100022, China
| | - Lei Zhang
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit (No. 2019RU014), China National Center for Food Safety Risk Assessment, Beijing 100022, China.
| | - Yan Bao
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit (No. 2019RU014), China National Center for Food Safety Risk Assessment, Beijing 100022, China
| | - Sai Fan
- Beijing Center for Disease Prevention and Control, Beijing Research Center for Preventive Medicine, Beijing 100013, China.
| | - Yunfeng Zhao
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit (No. 2019RU014), China National Center for Food Safety Risk Assessment, Beijing 100022, China
| | - Yongning Wu
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit (No. 2019RU014), China National Center for Food Safety Risk Assessment, Beijing 100022, China
| |
Collapse
|
11
|
Han Y, Li D, Zou C, Li Y, Zhao F. Effects of perchlorate, nitrate, and thiocyanate exposures on serum total testosterone in children and adolescents. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 861:160566. [PMID: 36574544 DOI: 10.1016/j.scitotenv.2022.160566] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Perchlorate, nitrate, and thiocyanate are common thyroid disruptors in daily life and alter testosterone levels in animals. However, little is known about the effects of perchlorate, nitrate, and thiocyanate on serum total testosterone (TT) in the general population. The study was designed to assess the associations between urinary levels of perchlorate, nitrate, and thiocyanate and serum total testosterone (TT) in the general population. The present study utilized data from the 2011-2016 National Health and Nutritional Examination Survey (NHANES). A total of 6201 participants aged 6-79 with information on urinary perchlorate, nitrate, thiocyanate, and serum total testosterone were included. We conducted multiple linear regression models and Bayesian Kernel Machine Regression (BKMR) models to estimate the associations by sex-age groups. Children (ages 6-11) have higher levels of perchlorate and nitrate than the rest. After adjusting for covariates, urinary perchlorate was significantly negatively associated with serum TT in male adolescents (β = -0.1, 95 % confidence interval: -0.2, -0.01) and female children [-0.13, (-0.21, -0.05)]. Urinary nitrate was significantly negatively associated with serum TT in female children, while urinary thiocyanate was significantly positively associated with serum TT in female adults aged 20 to 49 [0.05 (0.02, 0.08)]. BKMR analysis indicated that no other interactions were found between urinary perchlorate, nitrate, and thiocyanate. Our findings suggested that urinary perchlorate, nitrate, and thiocyanate levels may relate to serum total testosterone levels in specific sex-age groups. We identified male adolescents and female children as are most sensitive subgroups where testosterone is susceptible to interference.
Collapse
Affiliation(s)
- Yingying Han
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Dandan Li
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Chenxi Zou
- Department of Respiratory and Critical Medicine, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Yonggang Li
- Hubei Provincial Key Laboratory for Applied Toxicology, Hubei Provincial Centre for Disease Control and Prevention, Wuhan, China; National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China.
| | - Feng Zhao
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China.
| |
Collapse
|
12
|
King L, Wang Q, Xia L, Wang P, Jiang G, Li W, Huang Y, Liang X, Peng X, Li Y, Chen L, Liu L. Environmental exposure to perchlorate, nitrate and thiocyanate, and thyroid function in Chinese adults: A community-based cross-sectional study. ENVIRONMENT INTERNATIONAL 2023; 171:107713. [PMID: 36565572 DOI: 10.1016/j.envint.2022.107713] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/27/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Evidence on environmental exposure to perchlorate, nitrate, and thiocyanate, three thyroidal sodium iodine symporter (NIS) inhibitors, and thyroid function in the Chinese population remains limited. OBJECTIVE To investigate the associations of environmental exposure to perchlorate, nitrate, and thiocyanate with markers of thyroid function in Chinese adults. METHODS A total of 2441 non-pregnant adults (mean age 50.4 years and 39.1% male) with a median urinary iodine of 180.1 μg/L from four communities in Shenzhen were included in this cross-sectional study. Urinary perchlorate, nitrate, thiocyanate, and thyroid profiles, including serum free thyroxine (FT4), total thyroxine (TT4), free triiodothyronine (FT3), total triiodothyronine (TT3), and thyroid stimulating hormone (TSH), were measured. Generalized linear model was applied to investigate the single-analyte associations. Weighted quantile sum (WQS) regression and Bayesian kernel machine regression (BKMR) models were used to examine the association between the co-occurrence of three anions and thyroid profile. RESULTS The median levels of urinary perchlorate, nitrate, and thiocyanate were 5.8 μg/g, 76.4 mg/g, and 274.1 μg/g, respectively. After adjusting for confounders, higher urinary perchlorate was associated with lower serum FT4, TT4, and TT3, and higher serum FT3 and TSH (all P < 0.05). Comparing extreme tertiles, subjects in the highest nitrate tertile had marginally elevated TT3 (β: 0.02, 95% CI: 0.00-0.04). Each 1-unit increase in log-transformed urinary thiocyanate was associated with a 0.04 (95% CI: 0.02-0.06) pmol/L decrease in serum FT3. The WQS indices were inversely associated with serum FT4, TT4, and FT3 (all P < 0.05). In the BKMR model, the mixture of three anions was inversely associated with serum FT4, TT4, and FT3. CONCLUSIONS Our study provides evidence that individual and combined environmental exposure to perchlorate, nitrate, and thiocyanate are associated with significant changes in thyroid function markers in the Chinese population with adequate iodine intake.
Collapse
Affiliation(s)
- Lei King
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiang Wang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lili Xia
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pei Wang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guanhua Jiang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wanyi Li
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yue Huang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoling Liang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaolin Peng
- Department of Non-communicable Disease Prevention and Control, Shenzhen Nanshan Center for Chronic Disease Control, Shenzhen, China
| | - Yonggang Li
- Hubei Provincial Key Laboratory for Applied Toxicology, Hubei Provincial Center for Disease Control and Prevention, Wuhan, China
| | - Liangkai Chen
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Liegang Liu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
13
|
Serrano-Nascimento C, Nunes MT. Perchlorate, nitrate, and thiocyanate: Environmental relevant NIS-inhibitors pollutants and their impact on thyroid function and human health. Front Endocrinol (Lausanne) 2022; 13:995503. [PMID: 36339434 PMCID: PMC9633673 DOI: 10.3389/fendo.2022.995503] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 10/05/2022] [Indexed: 11/13/2022] Open
Abstract
Thyroid disruptors are found in food, atmosphere, soil, and water. These contaminants interfere with the thyroid function through the impairment of thyroid hormone synthesis, plasma transport, peripheral metabolism, transport into the target cells, and thyroid hormone action. It is well known that iodide uptake mediated by the sodium-iodide symporter (NIS) is the first limiting step involved in thyroid hormones production. Therefore, it has been described that several thyroid disruptors interfere with the thyroid function through the regulation of NIS expression and/or activity. Perchlorate, nitrate, and thiocyanate competitively inhibit the NIS-mediated iodide uptake. These contaminants are mainly found in food, water and in the smoke of cigarettes. Although the impact of the human exposure to these anions is highly controversial, some studies indicated their deleterious effects in the thyroid function, especially in individuals living in iodine deficient areas. Considering the critical role of thyroid function and the production of thyroid hormones for growth, metabolism, and development, this review summarizes the impact of the exposure to these NIS-inhibitors on thyroid function and their consequences for human health.
Collapse
Affiliation(s)
- Caroline Serrano-Nascimento
- Instituto de Ciências Ambientais, Químicas e Farmacêuticas (ICAQF), Universidade Federal de São Paulo (UNIFESP), Sao Paulo, Brazil
- Laboratório de Endocrinologia Molecular e Translacional (LEMT), Universidade Federal de São Paulo, Sao Paulo, Brazil
| | - Maria Tereza Nunes
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
14
|
Chen Y, Zhu Z, Wu X, Zhang D, Tong J, Lin Y, Yin L, Li X, Zheng Q, Lu S. A nationwide investigation of perchlorate levels in staple foods from China: Implications for human exposure and risk assessment. JOURNAL OF HAZARDOUS MATERIALS 2022; 439:129629. [PMID: 36104921 DOI: 10.1016/j.jhazmat.2022.129629] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
Perchlorate is an emerging pollutant and thyroid toxicant frequently occurred in air, water, soil and various foodstuffs. Rice and wheat flour are the most common staple foods, which could accumulate perchlorate from contaminated soils and irrigation water. However, human exposure to perchlorate via rice and wheat flour consumption has only been investigated to a limited extent. Therefore, we collected 207 rice samples and 189 wheat flour samples from 19 provinces in China to assess the level of perchlorate. The levels of perchlorate in rice and wheat flour ranged from not detected (N.D.) to 28.7 ng/g and less than limits of quantification (<LOQ) to 147 ng/g, respectively, with detection rates in both rice and wheat flour samples exceeding 60 %. The estimated daily intake (EDI) and hazard quotient (HQ) were calculated to evaluate human exposure and potential health risk of perchlorate exposure via the consumption of rice and wheat flour. The HQ values for both rice and wheat flour were less than 1, which suggested that the consumption of these staple foods may not cause potential health risks. To our knowledge, this is the first nationwide monitoring, human exposure and risk assessment of perchlorate in both rice and wheat flour in China.
Collapse
Affiliation(s)
- Yining Chen
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Zhou Zhu
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Xiaoling Wu
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Duo Zhang
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Jianyu Tong
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Yuli Lin
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Liuyi Yin
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Xiangyu Li
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Quanzhi Zheng
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Shaoyou Lu
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China.
| |
Collapse
|
15
|
Calderón R, Jara C, Albornoz F, Palma P, Arancibia-Miranda N, Karthikraj R, Manquian-Cerda K, Mejias P. Exploring the destiny and distribution of thiocyanate in the water-soil-plant system and the potential impacts on human health. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 835:155502. [PMID: 35490807 DOI: 10.1016/j.scitotenv.2022.155502] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 06/14/2023]
Abstract
Endocrine disruptors like thiocyanate are some of the principal causes of chronic disorders worldwide. Prenatal and postnatal exposure to thiocyanate can interfere with normal neurological development in both fetuses and newborns. Currently, little information regarding thiocyanate levels and potential sources of exposure is available. In this study, we evaluated thiocyanate uptake and accumulation in chard and spinach grown under greenhouse conditions. Both chard and spinach are commonly used to produce baby foods. Three thiocyanate concentrations were compared: Control, T1 (30 ng mL-1), and T2 (70 ng mL-1). Thiocyanate accumulation depended on the concentration and exposure time. Chard was found to accumulate more thiocyanate than spinach, with leaf accumulation > stem accumulation (p < 0.0194) and maximum concentrations of 76 ng g-1 (control), 112 ng g-1, (T1), and 134 ng g-1 (T2). The estimated daily intake (EDI) of thiocyanate for chard and spinach (fresh) exceeded the subchronic reference dose of 200 ng-1 kg-1 day-1 and the chronic reference dose of 600 ng-1 kg-1 day-1. In addition, the EDI of thiocyanate for spinach in baby food exceeded twice the chronic reference dose in the vulnerable newborn-1 year age group. However, all EDIs were lower than the lowest observed adverse effect level (LOAEL) of 1.9 × 105 ng kg-1 day-1. Further studies are needed that increase our knowledge of thiocyanate levels and potential environmental sources to reduce opportunities for exposure, especially in vulnerable groups.
Collapse
Affiliation(s)
- R Calderón
- Center for Research in Natural Resources and Sustainability, Universidad Bernardo O'Higgins, Fabrica 1990, Segundo Piso, Santiago, Chile.
| | - C Jara
- Department of Chemistry, Faculty of Sciences, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago de Chile, Chile
| | - F Albornoz
- Department of Plant Sciences, Faculty of Agronomy and Forest Engineering, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Macul, Santiago, Chile
| | - P Palma
- Public, Environmental and Labor Health Laboratory, Regional Ministerial Service, Ministry of Health, Metropolitan Region, Santiago, Chile
| | - N Arancibia-Miranda
- Faculty of Chemistry and Biology, Universidad de Santiago de Chile, USACH, Casilla 40, C.P. 33, Santiago 9170022, Chile; Center for the Development of Nanoscience and Nanotechnology, CEDENNA, Santiago 16 9170124, Chile
| | - R Karthikraj
- Wadsworth Center, New York State Department of Health, Albany, NY 12201-0509, United States
| | - K Manquian-Cerda
- Faculty of Chemistry and Biology, Universidad de Santiago de Chile, USACH, Casilla 40, C.P. 33, Santiago 9170022, Chile; Center for the Development of Nanoscience and Nanotechnology, CEDENNA, Santiago 16 9170124, Chile
| | - P Mejias
- Department of Biological and Chemical Sciences, Faculty of Natural Resources, Universidad Católica de Temuco, Temuco, Chile
| |
Collapse
|
16
|
King L, Huang Y, Li T, Wang Q, Li W, Shan Z, Yin J, Chen L, Wang P, Dun C, Zhuang L, Peng X, Liu L. Associations of urinary perchlorate, nitrate and thiocyanate with central sensitivity to thyroid hormones: A US population-based cross-sectional study. ENVIRONMENT INTERNATIONAL 2022; 164:107249. [PMID: 35468408 DOI: 10.1016/j.envint.2022.107249] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 03/10/2022] [Accepted: 04/13/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Perchlorate, nitrate, and thiocyanate are three well-known sodium iodine symporter inhibitors, however, associations of their individual and concurrent exposure with central thyroid hormones sensitivity remain unclear. OBJECTIVES To investigate the associations of urinary perchlorate, nitrate, thiocyanate, and their co-occurrence with central thyroid hormones sensitivity among US general adults. METHODS A total of 7598 non-pregnant adults (weighted mean age 45.9 years and 52.9% men) from National Health and Nutritional Examination Survey 2007-2012 were included in this cross-sectional study. Central sensitivity to thyroid hormones was estimated with the Parametric Thyroid Feedback Quantile-based Index (PTFQI). Ordinary least-squares regression, weighted quantile sum (WQS) regression, and Bayesian kernel machine regression (BKMR) models were performed to examine the associations of three anions and their co-occurrence with PTFQI. RESULTS The weighted mean values of urinary perchlorate, nitrate, thiocyanate, and perchlorate equivalent concentration (PEC) were 5.48 μg/L, 57.59 mg/L, 2.65 mg/L, and 539.8 μg/L, respectively. Compared with the lowest quartile, the least-square means difference (LSMD) of PTFQI was -0.0516 (LSMD ± SE: -0.0516 ± 0.0185, P < 0.01) in the highest perchlorate quartile. On average, PTFQI decreased by 0.0793 (LSMD ± SE: -0.0793 ± 0.0205, P < 0.001) between the highest and lowest thiocyanate quartile. Compared with those in the lowest quartile, participants in the highest PEC quartile had significantly decreased PTFQI levels (LSMD ± SE: -0.0862 ± 0.0188, P < 0.001). The WQS of three goitrogens, was inversely associated with PTFQI (β: -0.051, 95% CI: -0.068, -0.034). In BKMR model, PTFQI significantly decreased when the levels of three anions were at or above their 60th percentiles compared to the median values. CONCLUSIONS Higher levels of urinary perchlorate, thiocyanate, and co-occurrence of three goitrogens were associated with increased central thyroid hormones sensitivity among US general adults. Further studies are warranted to replicate our results and elucidate the underlying causative mechanistic links.
Collapse
Affiliation(s)
- Lei King
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yue Huang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Li
- Institute of Statistics and Big Data, Renmin University of China, Beijing, China
| | - Qiang Wang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wanyi Li
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhilei Shan
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiawei Yin
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liangkai Chen
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pei Wang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Changchang Dun
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Litao Zhuang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaolin Peng
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Non-communicable Disease Prevention and Control, Shenzhen Nanshan Center for Chronic Disease Control, Shenzhen, China.
| | - Liegang Liu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
17
|
García Torres E, Pérez Morales R, González Zamora A, Ríos Sánchez E, Olivas Calderón EH, Alba Romero JDJ, Calleros Rincón EY. Consumption of water contaminated by nitrate and its deleterious effects on the human thyroid gland: a review and update. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2022; 32:984-1001. [PMID: 32866080 DOI: 10.1080/09603123.2020.1815664] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 08/22/2020] [Indexed: 06/11/2023]
Abstract
Nowadays, the nitrates have been established as carcinogenic components due to the endogenous formation of N-nitroso compounds, however, the consumption of water contaminated with nitrates has only been strongly related to the presence of methemoglobinemia in infants, as an acute effect, leaving out other side effects that demand attention. The thyroid gland takes relevance because it can be altered by many pollutants known as endocrine disruptors, which are agents capable of interfering with the synthesis of hormones, thus far, it is known that nitrates may disrupt the amount of iodine uptake causing most of the time hypothyroidism and affecting the metabolic functions of the organism in all development stages, resulting in an important health burden for the exposed population. Here, this review and update highlighted the impact of consumption of water contaminated with nitrates and effects on the thyroid gland in humans, concluding that nitrates could act as true endocrine disruptor.
Collapse
Affiliation(s)
- Edgar García Torres
- Doctorado en Ciencias Biomédicas. Facultad de Ciencias Químicas, Universidad Juárez del Estado de Durango, Gómez Palacio, Durango, México
| | - Rebeca Pérez Morales
- Facultad de Ciencias Químicas, Universidad Juárez del Estado de Durango, Gómez Palacio, Durango, México
| | - Alberto González Zamora
- Laboratorio de Biología Evolutiva, Facultad de Ciencias Biológicas, Universidad Juárez del Estado de Durango, Gómez Palacio, Durango, México
| | - Efraín Ríos Sánchez
- Doctorado en Ciencias Biomédicas. Facultad de Ciencias Químicas, Universidad Juárez del Estado de Durango, Gómez Palacio, Durango, México
| | | | - José de Jesús Alba Romero
- Facultad de Ciencias Químicas, Universidad Juárez del Estado de Durango, Gómez Palacio, Durango, México
| | | |
Collapse
|
18
|
Lyden GR, Vock DM, Barrett ES, Sathyanarayana S, Swan SH, Nguyen RH. A permutation-based approach to inference for weighted sum regression with correlated chemical mixtures. Stat Methods Med Res 2022; 31:579-593. [PMID: 35128995 PMCID: PMC9883011 DOI: 10.1177/09622802211013578] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
There is a growing demand for methods to determine the effects that chemical mixtures have on human health. One statistical challenge is identifying true "bad actors" from a mixture of highly correlated predictors, a setting in which standard approaches such as linear regression become highly variable. Weighted Quantile Sum regression has been proposed to address this problem, through a two-step process where mixture component weights are estimated using bootstrap aggregation in a training dataset and inference on the overall mixture effect occurs in a held-out test set. Weighted Quantile Sum regression is popular in applied papers, but the reliance on data splitting is suboptimal, and analysts who use the same data for both steps risk inflating the Type I error rate. We therefore propose a modification of Weighted Quantile Sum regression that uses a permutation test for inference, which allows for weight estimation using the entire dataset and preserves Type I error. To minimize computational burden, we propose replacing the bootstrap with L1 or L2 penalization and describe how to choose the appropriate penalty given expert knowledge about a mixture of interest. We apply our method to a national pregnancy cohort study of prenatal phthalate exposure and child health outcomes.
Collapse
Affiliation(s)
- Grace R. Lyden
- Division of Biostatistics, University of Minnesota School of Public Health
| | - David M. Vock
- Division of Biostatistics, University of Minnesota School of Public Health
| | | | - Sheela Sathyanarayana
- Department of Environmental and Occupational Health Sciences, University of Washington School of Public Health
| | - Shanna H. Swan
- Division of Preventive Medicine and Community Health, Icahn School of Medicine at Mount Sinai
| | - Ruby H.N. Nguyen
- Division of Epidemiology and Community Health, University of Minnesota School of Public Health
| |
Collapse
|
19
|
Subclinical Hypothyroidism in Families Due to Chronic Consumption of Nitrate-Contaminated Water in Rural Areas with Intensive Livestock and Agricultural Practices in Durango, Mexico. WATER 2022. [DOI: 10.3390/w14030282] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Nitrate is a widely disseminated water pollutant and has been linked to health disorders, including hypothyroidism. Here, we evaluated the relationship between thyroid function and chronic exposure to nitrates in rural zone families, in addition to the genetic and autoimmune factors. Exposure and effect biomarkers, thyroid hormones, and autoantibodies of tiroperoxidase were measured, as well the presence of two FOXE1 polymorphisms (rs965513, rs1867277). Pearson’s correlation, principal component analysis, Kruskal–Wallis, and chi-squared tests were used for statistical analysis. A total of 102 individuals were analyzed; 45% presented subclinical hypothyroidism, a negative correlation was observed between methemoglobin and the total T3 (r = −0.43, p = 0.001) and free T3 levels (r = −0.34, p = 0.001), as well as between TSH and the free T4 (r = −0.41, p = 0.0001) and total T4 (r = −0.36, p = 0.0001). A total of 15.7% had positive antithyroid ab-TPO, while the polymorphic genotype (AA) represented only 3% (rs965513) and 4% (rs1867277) among subjects with subclinical hypothyroidism. The high frequency of subclinical hypothyroidism in the population under study could be related, mainly, to chronic exposure through the consumption of nitrate-contaminated water.
Collapse
|
20
|
Wang H, Jiang Y, Song J, Liang H, Liu Y, Huang J, Yin P, Wu D, Zhang H, Liu X, Zhou D, Wei W, Lei L, Peng J, Zhang J. The risk of perchlorate and iodine on the incidence of thyroid tumors and nodular goiter: a case-control study in southeastern China. Environ Health 2022; 21:4. [PMID: 34980104 PMCID: PMC8725411 DOI: 10.1186/s12940-021-00818-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND The incidence rates of thyroid tumors and nodular goiter show an upward trend worldwide. There are limited reports on the risk of perchlorate and iodine on thyroid tumors, but evidence from population studies is scarce, and their impact on thyroid function is still uncertain. Therefore, the objective of this study was to investigate the association of perchlorate and iodine with the risk of nodular goiter (NG), papillary thyroid microcarcinoma (PTMC), and papillary thyroid carcinoma (PTC) and to assess the correlation between perchlorate and iodine with thyroid function indicators. METHODS A case-control population consisting of 184 pairs of thyroid tumors and nodular goiter matched by gender and age (±2 years) was recruited in this study. Serum and urine samples were collected from each participant. Thyroid function indicators in serum were tested by automatic chemical immunofluorescence, and perchlorate and iodine levels in urine were determined by ultra-high performance liquid chromatography tandem-mass spectrometry and inductively coupled plasma-mass spectrometry, respectively. Conditional logistic regressions and multiple linear regressions were used to analyze the associations. RESULTS Urinary perchlorate concentration was significantly higher in total cases, NG and PTC than in the corresponding controls (P < 0.05). Perchlorate was positively associated with PTC (OR = 1.058, 95% CI: 1.009, 1.110) in a non-linear dose-response relationship, but there was no association between perchlorate and NG or PTMC. Iodine was not associated with the risk of thyroid tumors and NG and did not correlate with the thyroid function indicators. Furthermore, perchlorate showed a positive correlation with thyroid stimulating hormone (TSH) at iodine adequate levels (P < 0.05), and a negative correlation with free triiodothyronine (FT3) and a positive correlation with thyroglobulin antibody (TgAb) at iodine more than adequate or excess levels (P < 0.05). CONCLUSIONS Perchlorate can increase the risk of PTC in a non-linear dose-response relationship and disturb the thyroid hormone homeostasis and thyroid autoantibody levels.
Collapse
Affiliation(s)
- Huirong Wang
- Shenzhen Center for Disease Control and Prevention, No.8 Longyuan Road, Nanshan District, Shenzhen, 518055 China
- School of Public Health, Southern Medical University, No.1023 Shatai Road, Baiyun District, Guangzhou, 510515 China
| | - Yousheng Jiang
- Shenzhen Center for Disease Control and Prevention, No.8 Longyuan Road, Nanshan District, Shenzhen, 518055 China
| | - Jiayi Song
- Shenzhen Center for Disease Control and Prevention, No.8 Longyuan Road, Nanshan District, Shenzhen, 518055 China
| | - Huiwen Liang
- Shenzhen Center for Disease Control and Prevention, No.8 Longyuan Road, Nanshan District, Shenzhen, 518055 China
| | - Yuan Liu
- Shenzhen Center for Disease Control and Prevention, No.8 Longyuan Road, Nanshan District, Shenzhen, 518055 China
| | - Jiewu Huang
- Shenzhen Center for Disease Control and Prevention, No.8 Longyuan Road, Nanshan District, Shenzhen, 518055 China
| | - Pengliang Yin
- Shenzhen Center for Disease Control and Prevention, No.8 Longyuan Road, Nanshan District, Shenzhen, 518055 China
| | - Dongting Wu
- Shenzhen Center for Disease Control and Prevention, No.8 Longyuan Road, Nanshan District, Shenzhen, 518055 China
- Shenzhen Eye Hospital, Shenzhen Key Ophthalmic Laboratory, the Second Affiliated Hospital of Jinan University, No.18 Zetian Road, Futian District, Shenzhen, 518040 China
| | - Hang Zhang
- Shenzhen Center for Disease Control and Prevention, No.8 Longyuan Road, Nanshan District, Shenzhen, 518055 China
| | - Xinjie Liu
- Shenzhen People’s Hospital, No.1017 Dongmen North Road, Luohu District, Shenzhen, 518020 China
| | - Dongxian Zhou
- Shenzhen People’s Hospital, No.1017 Dongmen North Road, Luohu District, Shenzhen, 518020 China
| | - Wei Wei
- Peking University Shenzhen Hospital, No.1120 Lianhua Road, Futian District, Shenzhen, 518036 China
| | - Lin Lei
- Shenzhen Center for Chronic Disease Control, No.2021 Buxin Road, Luohu District, Shenzhen, 518020 China
| | - Ji Peng
- Shenzhen Center for Chronic Disease Control, No.2021 Buxin Road, Luohu District, Shenzhen, 518020 China
| | - Jianqing Zhang
- Shenzhen Center for Disease Control and Prevention, No.8 Longyuan Road, Nanshan District, Shenzhen, 518055 China
| |
Collapse
|
21
|
Mukherjee R, Pandya P, Baxi D, Ramachandran AV. Endocrine Disruptors-'Food' for Thought. PROCEEDINGS OF THE ZOOLOGICAL SOCIETY 2021; 74:432-442. [PMID: 34866764 PMCID: PMC8632730 DOI: 10.1007/s12595-021-00414-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 11/09/2021] [Accepted: 11/12/2021] [Indexed: 11/15/2022]
Abstract
Green vegetables, fruits, cereals, and pulses are all rich sources of antioxidants. Retinoic acid, ascorbate, proanthocyanidins, tannins, saponins, melatonin, curcumin, allicin, and alpha-lipoic acid stand documented in plants as bioactive compounds. The international dietary committee advocates a specific quantum of these natural antioxidants through diet. Interestingly, environmental pollution has indeed affected most of these farm products. The use of chemical fertilizers, pesticides and heavy metals in soil has a cumulative effect on human health. Enough evidence is available for the presence of phytoestrogen, xenoestrogen, and a host of other endocrine disruptors in the food. These plant-based nutrients can mimic or enhance the natural hormone's health effects. While endocrine disruptors are found in many everyday products, this review aims to address endocrine disruptors from food in the Asian subcontinent. 'Food for thought' justifies the paradigm shift towards good endocrine health by swaying away from the conventional daily dietary recommendations.
Collapse
Affiliation(s)
- Raktim Mukherjee
- Shree P.M. Patel Institute of PG Studies and Research in Science, Affiliated to Sardar Patel University, Anand, Gujarat India
| | - Parth Pandya
- Department of Biomedical and Life Sciences, School of Science, Navrachana University, Vadodara, 391410 Gujarat India
| | - Darshee Baxi
- Department of Biomedical and Life Sciences, School of Science, Navrachana University, Vadodara, 391410 Gujarat India
| | - A. V. Ramachandran
- School of Science, Navrachana University, Vadodara, 391410 Gujarat India
| |
Collapse
|
22
|
Balalian AA, Liu X, Herbstman JB, Daniel S, Whyatt R, Rauh V, Calafat AM, Wapner R, Factor-Litvak P. Prenatal exposure to organophosphate and pyrethroid insecticides and the herbicide 2,4-dichlorophenoxyacetic acid and size at birth in urban pregnant women. ENVIRONMENTAL RESEARCH 2021; 201:111539. [PMID: 34174256 PMCID: PMC8478820 DOI: 10.1016/j.envres.2021.111539] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 06/10/2021] [Accepted: 06/13/2021] [Indexed: 05/26/2023]
Abstract
BACKGROUND Organophosphate insecticides and the herbicide, 2,4-dichlorophenoxyacetic acid (2,4-D) are used to protect crops or control weeds. Pyrethroids are used to manage pests both in agriculture and in residences, and to reduce the transmission of insect-borne diseases. Several studies have reported inverse associations between exposure to organophosphates (as a larger class) and birth outcomes but these associations have not been conclusive for pyrethroids or 2,4-D, specifically. We aimed to investigate the association between birth outcomes and urinary biomarkers of pyrethroids, organophosphates and 2,4-D among healthy pregnant women living in New York City. METHODS We quantified urinary biomarkers of 2,4-D and of organophosphate and pyrethroid insecticides from 269 women from two cohorts: a) Thyroid Disruption And Infant Development (TDID) and b) Sibling/Hermanos cohort (S/H). We used weighted quantile sum regression and multivariable linear regression models to evaluate the associations between a mixture of urinary creatinine-adjusted biomarker concentrations and birth outcomes of length, birthweight and head circumference, controlling for covariates. We also used linear regression models and further classified biomarkers concentrations into three categories (i: non-detectable; ii: between the limit of detection and median; and iii: above the median) to investigate single pesticides' association with these birth outcomes. Covariates considered were delivery mode, ethnicity, marital status, education, income, employment status, gestational age, maternal age and pre-pregnancy BMI. Analyses were conducted separately for each cohort and stratified by child sex within each cohort. RESULTS In TDID cohort, we found a significant inverse association between weighted quantile sum of mixture of pesticides and head circumference among boys. We found that the urinary biomarkers of organophosphate chlorpyrifos, TCPy, and 2,4-D had the largest contribution to the overall mixture effect in the TDID cohort among boys (b = -0.57, 95%CI: -0.92, -0.22) (weights = 0.81 and 0.16 respectively) but not among girls. In the multivariable linear regression models, we found that among boys, for each log unit increase in 3,5,6-trichloro-2-pyridinol (TCPy, metabolite of organophosphate chlorpyrifos) in maternal urine, there was a -0.56 cm decrease in head circumference (95%CI: -0.92, -0.19). Among boys in the TDID cohort, 2,4-D was associated with smaller head circumference in the second (b = -1.57; 95%CI: -2.74, -0.39) and third (b = -1.74, 95%CI: -2.98, -0.49) concentration categories compared to the first. No associations between pyrethroid and organophosphate biomarkers and birth outcomes were observed in girls analyzed in WQS regression or individually in linear regression models in TDID cohort. In the S/H cohort, head circumference increased with higher concentrations of 3-phenoxybenzoic acid (3-PBA, a biomarker of several pyrethroids) (b = 0.53, 95%CI: 0.03, 1.04) among boys and head circumference was lower among girls in the high compared to low category of 2,4-D (b = -2.27, 95%CI: - 3.98, -0.56). Birth length was also positively associated with the highest concentration of 2,4-D compared to the lowest among boys (b = 4.01, 95%CI: 0.02,8.00). CONCLUSIONS Weighted quantile sum of pesticides was negatively associated with head circumference among boys in one cohort. Nonetheless, due to directional homogeneity assumption in WQS no positive associations were detected. In linear regression models with individual pesticides, concentrations of TCPy were inversely associated with head circumference in boys and higher concentrations of 2,4-D was inversely associated with head circumference among girls; 2,4-D concentrations were also associated with higher birth length among boys. Concentrations of 3-PBA was positively associated with head circumference among boys.
Collapse
Affiliation(s)
- Arin A Balalian
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Xinhua Liu
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Julie B Herbstman
- Columbia Center for Children's Environmental Health, Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Sharon Daniel
- Department of Public Health, Israel; Department of Pediatrics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel; Soroka University Medical Center, Beer-Sheva, Israel; Clalit Health Services, Southern District, Beer-Sheva, Israel
| | - Robin Whyatt
- Columbia Center for Children's Environmental Health, Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Virginia Rauh
- Columbia Center for Children's Environmental Health, Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA; Heilbrunn Department of Population and Family Health, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Antonia M Calafat
- Division of Laboratory Sciences, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Ronald Wapner
- Department of Obstetrics and Gynecology, Columbia University, New York, NY, USA
| | - Pam Factor-Litvak
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA.
| |
Collapse
|
23
|
Gilbert ME, O'Shaughnessy KL, Thomas SE, Riutta C, Wood CR, Smith A, Oshiro WO, Ford RL, Hotchkiss MG, Hassan I, Ford JL. Thyroid Disruptors: Extrathyroidal Sites of Chemical Action and Neurodevelopmental Outcome-An Examination Using Triclosan and Perfluorohexane Sulfonate. Toxicol Sci 2021; 183:195-213. [PMID: 34460931 PMCID: PMC9038230 DOI: 10.1093/toxsci/kfab080] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Many xenobiotics are identified as potential thyroid disruptors due to their action to reduce circulating levels of thyroid hormone, most notably thyroxine (T4). Developmental neurotoxicity is a primary concern for thyroid disrupting chemicals yet correlating the impact of chemically induced changes in serum T4 to perturbed brain development remains elusive. A number of thyroid-specific neurodevelopmental assays have been proposed, based largely on the model thyroid hormone synthesis inhibitor propylthiouracil (PTU). This study examined whether thyroid disrupting chemicals acting distinct from synthesis inhibition would result in the same alterations in brain as expected with PTU. The perfluoroalkyl substance perfluorohexane sulfonate (50 mg/kg/day) and the antimicrobial Triclosan (300 mg/kg/day) were administered to pregnant rats from gestational day 6 to postnatal day (PN) 21, and a number of PTU-defined assays for neurotoxicity evaluated. Both chemicals reduced serum T4 but did not increase thyroid stimulating hormone. Both chemicals increased expression of hepatic metabolism genes, while thyroid hormone-responsive genes in the liver, thyroid gland, and brain were largely unchanged. Brain tissue T4 was reduced in newborns, but despite persistent T4 reductions in serum, had recovered in the PN6 pup brain. Neither treatment resulted in a low dose PTU-like phenotype in either brain morphology or neurobehavior, raising questions for the interpretation of serum biomarkers in regulatory toxicology. They further suggest that reliance on serum hormones as prescriptive of specific neurodevelopmental outcomes may be too simplistic and to understand thyroid-mediated neurotoxicity we must expand our thinking beyond that which follows thyroid hormone synthesis inhibition.
Collapse
Affiliation(s)
- Mary E Gilbert
- Center for Public Health and Environmental Assessment, Public Health Integrated Toxicology Division, US Environmental Protection Agency, Research Triangle Park, North Carolina 27709, USA
| | - Katherine L O'Shaughnessy
- Center for Public Health and Environmental Assessment, Public Health Integrated Toxicology Division, US Environmental Protection Agency, Research Triangle Park, North Carolina 27709, USA
| | - Susan E Thomas
- Oak Ridge Institute for Science Education, Oak Ridge, Tennesse 37830, USA
| | - Cal Riutta
- Oak Ridge Institute for Science Education, Oak Ridge, Tennesse 37830, USA
| | - Carmen R Wood
- Center for Public Health and Environmental Assessment, Public Health Integrated Toxicology Division, US Environmental Protection Agency, Research Triangle Park, North Carolina 27709, USA
| | - Alicia Smith
- Oak Ridge Institute for Science Education, Oak Ridge, Tennesse 37830, USA
| | - Wendy O Oshiro
- Center for Public Health and Environmental Assessment, Public Health Integrated Toxicology Division, US Environmental Protection Agency, Research Triangle Park, North Carolina 27709, USA
| | - Richard L Ford
- Oak Ridge Institute for Science Education, Oak Ridge, Tennesse 37830, USA
| | - Michelle Gatien Hotchkiss
- Center for Public Health and Environmental Assessment, Public Health Integrated Toxicology Division, US Environmental Protection Agency, Research Triangle Park, North Carolina 27709, USA
| | - Iman Hassan
- Center for Public Health and Environmental Assessment, Public Health Integrated Toxicology Division, US Environmental Protection Agency, Research Triangle Park, North Carolina 27709, USA
| | - Jermaine L Ford
- Center for Computational Toxicology and Exposure, Chemical Characterization and Exposure Division, US Environmental Protection Agency, Research Triangle Park, North Carolina 27709, USA
| |
Collapse
|
24
|
Niziński P, Błażewicz A, Kończyk J, Michalski R. Perchlorate - properties, toxicity and human health effects: an updated review. REVIEWS ON ENVIRONMENTAL HEALTH 2021; 36:199-222. [PMID: 32887207 DOI: 10.1515/reveh-2020-0006] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 07/28/2020] [Indexed: 06/11/2023]
Abstract
Interest in perchlorate as environmental pollutant has increased since 1997, when high concentrations have been found in the waters of the Colorado River, USA. Perchlorate is very persistent in nature and it is slowly degraded. Although harmful effects of large doses of perchlorate on thyroid function have been proven, the environmental effects are still unclear. The primary objective of the present review is to collect prevailing data of perchlorate exposure and to discuss its impact on human health. The results show that more than 50% of reviewed works found significant associations of perchlorate exposure and human health. This review consists of the following sections: general information of perchlorate sources, its properties and determination methods, role and sources in human body including food and water intake, overview of the scientific literature on the research on the effect of perchlorate on human health from 2010 to 2020. Finally, conclusions and recommendations on future perchlorate studies concerning human exposure are presented.
Collapse
Affiliation(s)
- Przemysław Niziński
- Chair of Chemistry, Department of Analytical Chemistry, Medical University of Lublin, Lublin, Poland
| | - Anna Błażewicz
- Chair of Chemistry, Department of Analytical Chemistry, Medical University of Lublin, Lublin, Poland
| | - Joanna Kończyk
- Institute of Chemistry, Health and Food Sciences, Faculty of Mathematics and Natural Sciences, Jan Dlugosz University in Czestochowa, Czestochowa, Poland
| | - Rajmund Michalski
- Institute of Chemistry, Health and Food Sciences, Faculty of Mathematics and Natural Sciences, Jan Dlugosz University in Czestochowa, Czestochowa, Poland
- Institute of Environmental Engineering, Polish Academy of Sciences, Zabrze, Poland
| |
Collapse
|
25
|
Loftus CT, Bush NR, Day DB, Ni Y, Tylavsky FA, Karr CJ, Kannan K, Barrett ES, Szpiro AA, Sathyanarayana S, LeWinn KZ. Exposure to prenatal phthalate mixtures and neurodevelopment in the Conditions Affecting Neurocognitive Development and Learning in Early childhood (CANDLE) study. ENVIRONMENT INTERNATIONAL 2021; 150:106409. [PMID: 33556913 PMCID: PMC8162924 DOI: 10.1016/j.envint.2021.106409] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 01/15/2021] [Accepted: 01/17/2021] [Indexed: 05/22/2023]
Abstract
BACKGROUND Findings from epidemiological studies of prenatal phthalate exposure and child cognitive development are inconsistent. Methods for evaluating mixtures of phthalates, such as weighted quantile sum (WQS) regression, have rarely been applied. We developed a new extension of the WQS method to improve specificity of full-sample analyses and applied it to estimate associations between prenatal phthalate mixtures and cognitive and language outcomes in a diverse pregnancy cohort. METHODS We measured 22 phthalate metabolites in third trimester urine from mother-child dyads who completed early childhood visits in the Conditions Affecting Neurodevelopment and Learning in Early childhood (CANDLE) study. Language and cognitive ability were assessed using the Bayley Scales of Infant Development (age 3) and the Stanford Binet-5 (age 4-6), respectively. We used multivariable WQS regression to identify phthalate mixtures that were negatively and positively associated with language score and full-scale IQ, in separate models, adjusted for maternal IQ, race, marital status, smoking, BMI, socioeconomic status (SES), child age, sex, and breastfeeding. We evaluated effect modification by sex and SES. If full sample 95% WQS confidence intervals (which are known to be anti-conservative) excluded the null, we calculated a p-value using a permutation test (ppermutation). The performance of this new approach to WQS regression was evaluated in simulated data. We compared the power and type I error rate of WQS regression conducted within datasets split into training and validation samples (WQSSplit) and in the full sample (WQSNosplit) to WQS regression with a permutation test (WQSpermutation). Individual metabolite associations were explored in secondary analyses. RESULTS The analytic sample (N = 1015) was 62.1% Black/31.5% White, and the majority of mothers had a high school education or less (56.7%) at enrollment. Associations between phthalate mixtures and primary outcomes (language score and full-scale IQ) in the full sample were null. Individual metabolites were not associated with IQ, and only one metabolite (mono-benzyl phthalate, MBzP) was associated with Bayley language score (β = -0.68, 95% CI: -1.37, 0.00). In analyses stratified by sex or SES, mixtures were positively and negatively associated with outcomes, but the precision of full-sample WQS regression results were not supported by permutation tests, with one exception. In the lowest SES category, a phthalate mixture dominated by mono-methyl phthalate (MMP) and mono-carboxy-isooctyl phthalate (MCOP) was associated with higher language scores (βlow SES = 2.41, full-sample 95%CI: 0.58, 4.24; ppermutation = 0.04). Performance testing in simulated data showed that WQSpermutation had improved power over WQSSplit (90% versus 56%) and a lower type I error rate than WQSNosplit (7% versus 47%). CONCLUSIONS In the largest study of these relationships to date, we observed predominantly null associations between mixtures of prenatal phthalates and both language and IQ. Our novel extension of WQS regression improved sensitivity to detect true associations by obviating the need to split the data into training and test sets and should be considered for future analyses of exposure mixtures.
Collapse
Affiliation(s)
- Christine T Loftus
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, United States.
| | - Nicole R Bush
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California, San Francisco, United States; Department of Pediatrics, School of Medicine, University of California, San Francisco, United States
| | - Drew B Day
- Center for Child Health, Behavior, and Development, Seattle Children's Research Institute, United States
| | - Yu Ni
- Department of Epidemiology, School of Public Health, University of Washington, United States
| | | | - Catherine J Karr
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, United States; Department of Epidemiology, School of Public Health, University of Washington, United States; Department of Pediatrics, School of Medicine, University of Washington, United States
| | - Kurunthachalam Kannan
- Department of Pediatrics and Department of Environmental Medicine, New York University School of Medicine, United States
| | - Emily S Barrett
- Department of Biostatistics and Epidemiology, Environmental and Occupational Health Sciences Institute (EOHSI), Rutgers University, United States
| | - Adam A Szpiro
- Department of Biostatistics, School of Public Health, University of Washington, United States
| | - Sheela Sathyanarayana
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, United States; Center for Child Health, Behavior, and Development, Seattle Children's Research Institute, United States; Department of Pediatrics, School of Medicine, University of Washington, United States
| | - Kaja Z LeWinn
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California, San Francisco, United States
| |
Collapse
|
26
|
dos Santos Pinheiro V, Volino-Souza M, Vieira de Oliveira G, Adam Conte-Junior C, Silveira Alvares T. Effect of high-nitrate beetroot juice consumption on thyroid gland hormones and iodine levels in adults. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2020.100869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
27
|
Chang WH, Chen HL, Lee CC. Dietary exposure assessment to perchlorate in the Taiwanese population: A risk assessment based on the probabilistic approach. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 267:115486. [PMID: 32911335 DOI: 10.1016/j.envpol.2020.115486] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 08/07/2020] [Accepted: 08/18/2020] [Indexed: 06/11/2023]
Abstract
Perchlorate is an endocrine-disrupting chemical (EDC) that contaminate various foodstuffs. Exposure to perchlorate may cause severe health problems, mainly thyroid dysfunction. However, information on perchlorate contamination of consumer foods in Taiwan is limited. This study investigated perchlorate levels in 310 food samples belonging to 12 food groups collected from Taiwanese markets. A probabilistic risk assessment was conducted to assess the related exposure to Taiwanese people. Perchlorate was detected in 65% of the samples and high levels were identified in certain plant-origin, fruit, and processed food samples. A probabilistic approach was used to estimate daily dietary dose (Monte Carlo-estimated 95th percentile dietary exposure [MCS 95]) by using the Taiwan National Food Consumption database for 14 sex/age groups. The highest and lowest average daily doses (ADDs) were in the age groups of >65 years (MCS 95 = 3.60/3.90 [male/female] μg/kg bw/day) and 16-18 years (MCS 95 = 1.70/1.47 [M/F] μg/kg bw/day), respectively. The 95th percentile of the hazard index of exposure to perchlorate of all sex/age groups far exceeded the tolerable daily intake (0.3 μg/kg bw/day) and reference dose (0.7 μg/kg bw/day) set by the European Food Safety Authority and US EPA, respectively, but it was lower than the provisional maximum tolerable daily intake (10 μg/kg bw/day) suggested by the Joint FAO/WHO Expert Committee on Food Additives. The intake quantity and concentrations of perchlorate from vegetables, fruits, and whole grains are the critical contributors for the ADDs and integrated risk of dietary exposure to perchlorate. Long-term exposure through diets should be considered, instead of focusing on individual EDC during dietary risk assessment in specific populations. Furthermore, cumulative risks for exposure to multiple contaminants, particularly those causing thyroid adverse effects, may be higher than that from perchlorate exposure alone.
Collapse
Affiliation(s)
- Wei-Hsiang Chang
- Department of Food Safety/ Hygiene and Risk Management, Medical College, National Cheng Kung University, Tainan, 704, Taiwan; Research Center of Environmental Trace Toxic Substances, National Cheng Kung University, Tainan, 701, Taiwan
| | - Hsiu-Ling Chen
- Department of Food Safety/ Hygiene and Risk Management, Medical College, National Cheng Kung University, Tainan, 704, Taiwan; Research Center of Environmental Trace Toxic Substances, National Cheng Kung University, Tainan, 701, Taiwan
| | - Ching-Chang Lee
- Research Center of Environmental Trace Toxic Substances, National Cheng Kung University, Tainan, 701, Taiwan; Department of Environmental and Occupational Health, Medical College, National Cheng Kung University, Tainan, 704, Taiwan.
| |
Collapse
|
28
|
O'Shaughnessy KL, Gilbert ME. Thyroid disrupting chemicals and developmental neurotoxicity - New tools and approaches to evaluate hormone action. Mol Cell Endocrinol 2020; 518:110663. [PMID: 31760043 PMCID: PMC8270644 DOI: 10.1016/j.mce.2019.110663] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 11/20/2019] [Accepted: 11/20/2019] [Indexed: 12/25/2022]
Abstract
It is well documented that thyroid hormone (TH) action is critical for normal brain development and is mediated by both nuclear and extranuclear pathways. Given this dependence, the impact of environmental endocrine disrupting chemicals that interfere with thyroid signaling is a major concern with direct implications for children's health. However, identifying thyroid disrupting chemicals in vivo is primarily reliant on serum thyroxine (T4) measurements within greater developmental and reproductive toxicity assessments. These studies do not examine known TH-dependent phenotypes in parallel, which complicates chemical evaluation. Additionally, there exist no recommendations regarding what degree of serum T4 dysfunction is adverse, and little consideration is given to quantifying TH action within the developing brain. This review summarizes current testing strategies in rodent models and discusses new approaches for evaluating the developmental neurotoxicity of thyroid disrupting chemicals. This includes assays to identify adverse cellular effects of the brain by both immunohistochemistry and gene expression, which would compliment serum T4 measures. While additional experiments are needed to test the full utility of these approaches, incorporation of these cellular and molecular assays could enhance chemical evaluation in the regulatory arena.
Collapse
Affiliation(s)
- Katherine L O'Shaughnessy
- United States Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Toxicity Assessment Division, Endocrine Toxicology Branch, Research Triangle Park, NC, 27711, USA.
| | - Mary E Gilbert
- United States Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Toxicity Assessment Division, Endocrine Toxicology Branch, Research Triangle Park, NC, 27711, USA.
| |
Collapse
|
29
|
Zhao M, Xu J, Li A, Mei Y, Ge X, Liu X, Wei L, Xu Q. Multiple exposure pathways and urinary chromium in residents exposed to chromium. ENVIRONMENT INTERNATIONAL 2020; 141:105753. [PMID: 32417613 DOI: 10.1016/j.envint.2020.105753] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 04/15/2020] [Accepted: 04/18/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Environmental hexavalent chromium contamination in northeast China has been ongoing for over 60 years and health outcomes related with chromium (Cr) pollution were observed in polluted arears, but exposure pathways remains unclear. This study aims to evaluate the association between Cr exposure dose through multiple exposure pathways and Cr concentration in urine, and identify the most contributed pathway. METHODS We used risk assessment tools with individual exposure parameters to estimate eight individual Cr exposure doses (CD) for three exposure routes (inhalation, ingestion, and dermal contact) with four environmental media (underground water, soil, household dust, and PM10 in ambient air) in 134 residents living in three chromium polluted villages. We used the covariate-adjusted standardized urinary Cr concentration (casUCr) as the internal Cr exposure biomarker. Ridge Regression, Weighted Quantile Sum Regression (WQS) and Bayesian Kernel Machine Regression (BKMR) models were used to assess the effect of overall eight CDs on urine Cr concentration and compare the contribution of each CD. RESULTS In the ridge regression analysis, Cr exposure through ingestion of dust (βstd = 0.418, p-value = 0.009), inhalation of dust (βstd = 0.384, p = 0.031) and dermal contact with soil (βstd = 0.264, p = 0.192) had the highest impact on casUCr. In the WQS model, the overall CDs demonstrated a non-significant positive association with casUCr. CDs of dust ingestion, air inhalation and dust inhalation had the largest contribution on casUCr when fitted in the WQS model. In the BKMR model, the hierarchical variable selection showed that casUCr was mainly affected by CDs of household dust and dermal contact with soil. CD of dermal contact with soil exhibited a negative association with casUCr, while CDs of dust showed positive or non-linear trend. CONCLUSIONS This research proposed a new method to calculate individual Cr exposure dose of multi-pathway and applied different statistical methods to identify predominant pathway. For this study, Cr exposure through dust has the strongest effect on Cr concentration in urine. The results could help conduct target interventions to reduce Cr intake, such as blocking dust exposure to reduce Cr uptake for villagers living in these contaminated areas.
Collapse
Affiliation(s)
- Meiduo Zhao
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College. Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China.
| | - Jing Xu
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College. Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China.
| | - Ang Li
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College. Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China.
| | - Yayuan Mei
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College. Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China.
| | - Xiaoyu Ge
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College. Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China.
| | - Xiaolin Liu
- Department of Epidemiology and Biostatistics, Jinzhou Medical University, Jinzhou 121001, Liaoning, China.
| | - Lanping Wei
- Jinzhou Central Hospital, Jinzhou 121001, Liaoning, China.
| | - Qun Xu
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College. Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China.
| |
Collapse
|
30
|
Hargarten PM, Wheeler DC. Accounting for the uncertainty due to chemicals below the detection limit in mixture analysis. ENVIRONMENTAL RESEARCH 2020; 186:109466. [PMID: 32344207 DOI: 10.1016/j.envres.2020.109466] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 03/10/2020] [Accepted: 03/30/2020] [Indexed: 05/24/2023]
Abstract
Simultaneous exposure to a mixture of chemicals over a lifetime may increase an individual's risk of disease to a greater extent than individual exposures. Researchers have used weighted quantile sum (WQS) regression to estimate the effect of multiple exposures in a manner that identifies the important (etiologically relevant) components in the mixture. However, complications arise when an experimental apparatus detects concentrations for each chemical with a different detection limit. Current strategies to account for values below the detection limit (BDL) in WQS include single imputation or placing the BDL values into the first quantile of the weighted index (BDLQ1), which do not fully capture the uncertainty in the data when estimating mixture effects. In response, we integrated WQS regression into the multiple imputation framework (MI-WQS). In a simulation study, we compared the BDLQ1 approach to MI-WQS when using either a Bayesian imputation or bootstrapping imputation approach over a range of BDL values. We examined the ability of each method to estimate the mixture's overall effect and to identify important chemicals. The results showed that as the number of BDL values increased, the accuracy, precision, model fit, and power declined for all imputation approaches. When chemical values were missing at 10%, 33%, or 50%, the MI approaches generally performed better than single imputation and BDLQ1. In the extreme case of 80% of all the chemical values were missing, the BDLQ1 approach was superior in some examined metrics.
Collapse
Affiliation(s)
- Paul M Hargarten
- Department of Biostatistics, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA.
| | - David C Wheeler
- Department of Biostatistics, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
31
|
Lisco G, De Tullio A, Giagulli VA, De Pergola G, Triggiani V. Interference on Iodine Uptake and Human Thyroid Function by Perchlorate-Contaminated Water and Food. Nutrients 2020; 12:E1669. [PMID: 32512711 PMCID: PMC7352877 DOI: 10.3390/nu12061669] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 05/31/2020] [Accepted: 06/01/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Perchlorate-induced natrium-iodide symporter (NIS) interference is a well-recognized thyroid disrupting mechanism. It is unclear, however, whether a chronic low-dose exposure to perchlorate delivered by food and drinks may cause thyroid dysfunction in the long term. Thus, the aim of this review was to overview and summarize literature results in order to clarify this issue. METHODS Authors searched PubMed/MEDLINE, Scopus, Web of Science, institutional websites and Google until April 2020 for relevant information about the fundamental mechanism of the thyroid NIS interference induced by orally consumed perchlorate compounds and its clinical consequences. RESULTS Food and drinking water should be considered relevant sources of perchlorate. Despite some controversies, cross-sectional studies demonstrated that perchlorate exposure affects thyroid hormone synthesis in infants, adolescents and adults, particularly in the case of underlying thyroid diseases and iodine insufficiency. An exaggerated exposure to perchlorate during pregnancy leads to a worse neurocognitive and behavioral development outcome in infants, regardless of maternal thyroid hormone levels. DISCUSSION AND CONCLUSION The effects of a chronic low-dose perchlorate exposure on thyroid homeostasis remain still unclear, leading to concerns especially for highly sensitive patients. Specific studies are needed to clarify this issue, aiming to better define strategies of detection and prevention.
Collapse
Affiliation(s)
- Giuseppe Lisco
- ASL Brindisi, Unit of Endocrinology, Metabolism & Clinical Nutrition, Hospital “A. Perrino”, Strada per Mesagne 7, 72100 Brindisi, Puglia, Italy;
| | - Anna De Tullio
- Interdisciplinary Department of Medicine—Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases, University of Bari “Aldo Moro”, School of Medicine, Policlinico, Piazza Giulio Cesare 11, 70124 Bari, Puglia, Italy; (A.D.T.); (V.A.G.)
| | - Vito Angelo Giagulli
- Interdisciplinary Department of Medicine—Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases, University of Bari “Aldo Moro”, School of Medicine, Policlinico, Piazza Giulio Cesare 11, 70124 Bari, Puglia, Italy; (A.D.T.); (V.A.G.)
- Clinic of Endocrinology and Metabolic Disease, Conversano Hospital, Via Edmondo de Amicis 36, 70014 Conversano, Bari, Puglia, Italy
| | - Giovanni De Pergola
- Department of Biomedical Sciences and Human Oncology, Section of Internal Medicine and Clinical Oncology, University of Bari Aldo Moro, Piazza Giulio Cesare 11, 70124 Bari, Puglia, Italy;
| | - Vincenzo Triggiani
- Interdisciplinary Department of Medicine—Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases, University of Bari “Aldo Moro”, School of Medicine, Policlinico, Piazza Giulio Cesare 11, 70124 Bari, Puglia, Italy; (A.D.T.); (V.A.G.)
| |
Collapse
|
32
|
Urbanowicz M, Sadowska K, Pijanowska DG, Pomećko R, Bocheńska M. Potentiometric Solid-Contact Ion-Selective Electrode for Determination of Thiocyanate in Human Saliva. SENSORS (BASEL, SWITZERLAND) 2020; 20:E2817. [PMID: 32429165 PMCID: PMC7288078 DOI: 10.3390/s20102817] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/06/2020] [Accepted: 05/12/2020] [Indexed: 12/13/2022]
Abstract
A new solid-contact potentiometric ion-selective electrode for the determination of SCN- (SCN-ISE) has been described. Synthesized phosphonium derivative of calix[4]arene was used as a charged ionophore. The research included selection of the ion-selective membrane composition, determination of the ISEs metrological parameters and SCN-ISE application for thiocyanate determination in human saliva. Preparation of the ISEs included selection of a plasticizer for the ion-selective membrane composition and type of the electrode material. The study was carried out using ISE with liquid internal electrolyte (LE-ISE) and solid-contact electrodes made of glassy carbon (GC-ISE) and gold rods (Au-ISE). The best parameters were found for GC sensors for which the ion-selective membrane contained chloroparaffin as a plasticizer (S = 59.9 mV/dec, LOD = 1.6 ´ 10-6 M). The study of potentiometric selectivity coefficients has shown that the thiocyanate-selective sensor could be applied in biomedical research for determination of SCN- concentration in human saliva. The accuracy of the SCN- determination was verified by testing 59 samples of volunteers' saliva by potentiometric sensors and UV-Vis spectrophotometry as a reference technique. Moreover, SCN- concentrations in the smokers' and non-smokers' saliva were compared. In order to investigate the influence of various factors (sex, health status, taken medications) on the thiocyanate level in the saliva, more extensive studies on a group of 100 volunteers were carried out. Additionally, for a group of 18 volunteers, individual profiles of SCN- concentration in saliva measured on a daily basis for over a month were collected.
Collapse
Affiliation(s)
- Marcin Urbanowicz
- Nalecz Institute of Biocybernetics and Biomedical Engineering Polish Academy of Sciences, Ks. Trojdena 4, 02-109 Warsaw, Poland; (K.S.); (D.G.P.)
| | - Kamila Sadowska
- Nalecz Institute of Biocybernetics and Biomedical Engineering Polish Academy of Sciences, Ks. Trojdena 4, 02-109 Warsaw, Poland; (K.S.); (D.G.P.)
| | - Dorota G. Pijanowska
- Nalecz Institute of Biocybernetics and Biomedical Engineering Polish Academy of Sciences, Ks. Trojdena 4, 02-109 Warsaw, Poland; (K.S.); (D.G.P.)
| | - Radosław Pomećko
- Department of Chemistry and Technology of Functional Materials, Chemical Faculty, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland; (R.P.); (M.B.)
| | - Maria Bocheńska
- Department of Chemistry and Technology of Functional Materials, Chemical Faculty, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland; (R.P.); (M.B.)
| |
Collapse
|
33
|
La Merrill MA, Vandenberg LN, Smith MT, Goodson W, Browne P, Patisaul HB, Guyton KZ, Kortenkamp A, Cogliano VJ, Woodruff TJ, Rieswijk L, Sone H, Korach KS, Gore AC, Zeise L, Zoeller RT. Consensus on the key characteristics of endocrine-disrupting chemicals as a basis for hazard identification. Nat Rev Endocrinol 2020; 16:45-57. [PMID: 31719706 PMCID: PMC6902641 DOI: 10.1038/s41574-019-0273-8] [Citation(s) in RCA: 466] [Impact Index Per Article: 93.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/02/2019] [Indexed: 12/11/2022]
Abstract
Endocrine-disrupting chemicals (EDCs) are exogenous chemicals that interfere with hormone action, thereby increasing the risk of adverse health outcomes, including cancer, reproductive impairment, cognitive deficits and obesity. A complex literature of mechanistic studies provides evidence on the hazards of EDC exposure, yet there is no widely accepted systematic method to integrate these data to help identify EDC hazards. Inspired by work to improve hazard identification of carcinogens using key characteristics (KCs), we have developed ten KCs of EDCs based on our knowledge of hormone actions and EDC effects. In this Expert Consensus Statement, we describe the logic by which these KCs are identified and the assays that could be used to assess several of these KCs. We reflect on how these ten KCs can be used to identify, organize and utilize mechanistic data when evaluating chemicals as EDCs, and we use diethylstilbestrol, bisphenol A and perchlorate as examples to illustrate this approach.
Collapse
Affiliation(s)
- Michele A La Merrill
- Department of Environmental Toxicology, University of California, Davis, CA, USA.
| | - Laura N Vandenberg
- Department of Environmental Health Science, School of Public Health and Health Sciences, University of Masschusetts, Amherst, MA, USA
| | - Martyn T Smith
- School of Public Health, University of California, Berkeley, CA, USA
| | - William Goodson
- California Pacific Medical Center Research Institute, Sutter Hospital, San Francisco, CA, USA
| | - Patience Browne
- Environmental Directorate, Organisation for Economic Co-operation and Development, Paris, France
| | - Heather B Patisaul
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Kathryn Z Guyton
- International Agency for Research on Cancer, World Health Organization, Lyon, France
| | | | - Vincent J Cogliano
- Office of the Science Advisor, United States Environmental Protection Agency, Washington, DC, USA
| | - Tracey J Woodruff
- Program on Reproductive Health and the Environment, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Linda Rieswijk
- School of Public Health, University of California, Berkeley, CA, USA
- Institute of Data Science, Maastricht University, Maastricht, Netherlands
| | - Hideko Sone
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, Ibaraki, Japan
| | - Kenneth S Korach
- Receptor Biology, Section Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Science, Durham, NC, USA
| | - Andrea C Gore
- Division of Pharmacology and Toxicology, University of Texas at Austin, Austin, TX, USA
| | - Lauren Zeise
- Office of the Director, Office of Environmental Health Hazard Assessment of the California Environmental Protection Agency, Sacramento, CA, USA
| | - R Thomas Zoeller
- Biology Department, University of Masschusetts, Amherst, MA, USA
| |
Collapse
|
34
|
Zilversmit Pao L, Harville EW, Wickliffe JK, Shankar A, Buekens P. The Cumulative Risk of Chemical and Nonchemical Exposures on Birth Outcomes in Healthy Women: The Fetal Growth Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:E3700. [PMID: 31581440 PMCID: PMC6801557 DOI: 10.3390/ijerph16193700] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 09/23/2019] [Accepted: 09/26/2019] [Indexed: 02/06/2023]
Abstract
Metals, stress, and sociodemographics are commonly studied separately for their effects on birth outcomes, yet often jointly contribute to adverse outcomes. This study analyzes two methods for measuring cumulative risk to understand how maternal chemical and nonchemical stressors may contribute to small for gestational age (SGA). SGA was calculated using sex-specific fetal growth curves for infants of pregnant mothers (n = 2562) enrolled in the National Institute of Child Health and Human Development (NICHD) Fetal Growth Study. The exposures (maternal lead, mercury, cadmium, Cohen's perceived stress, Edinburgh depression scores, race/ethnicity, income, and education) were grouped into three domains: metals, psychosocial stress, and sociodemographics. In Method 1 we created cumulative risk scores using tertiles. Method 2 employed weighted quantile sum (WQS) regression. For each method, logistic models were built with three exposure domains individually and race/ethnicity, adjusting for age, parity, pregnancy weight gain, and marital status. The adjusted effect of overall cumulative risk with three domains, was also modeled using each method. Sociodemographics was the only exposure associated with SGA in unadjusted models ((odds ratio) OR: 1.35, 95% (confidence interval) CI: 1.08, 1.68). The three cumulative variables in adjusted models were not significant individually, but the overall index was associated with SGA (OR: 1.17, 95% CI: 1.02, 1.35). In the WQS model, only the sociodemographics domain was significantly associated with SGA. Sociodemographics tended to be the strongest risk factor for SGA in both risk score and WQS models.
Collapse
Affiliation(s)
- Leah Zilversmit Pao
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70112, USA.
| | - Emily W Harville
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70112, USA.
| | - Jeffrey K Wickliffe
- Department of Global Environmental Health Sciences, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70112, USA.
| | - Arti Shankar
- Global Biostatistics and Data Science, Department of Global Environmental Health Sciences, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70112, USA.
| | - Pierre Buekens
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70112, USA.
| |
Collapse
|
35
|
Temkin A, Evans S, Manidis T, Campbell C, Naidenko OV. Exposure-based assessment and economic valuation of adverse birth outcomes and cancer risk due to nitrate in United States drinking water. ENVIRONMENTAL RESEARCH 2019; 176:108442. [PMID: 31196558 DOI: 10.1016/j.envres.2019.04.009] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 04/09/2019] [Accepted: 04/10/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Nitrate ingestion from drinking water has been associated with an increased risk of adverse birth outcomes as well as elevated risk of colorectal cancer and several other cancers. Yet, to date, no studies have attempted to quantify the health and economic impacts due to nitrate in drinking water in the United States. METHODS This study presents a first-of-its-kind comprehensive assessment of nitrate exposure from drinking water for the entire United States population. This exposure assessment serves as the basis for our analysis of the annual nitrate-attributable disease cases in the United States and the associated economic losses due to medical costs and lost productivity. Additionally, through a meta-analysis of studies on drinking water nitrate and colorectal cancer, we examine the exposure-response relationship for nitrate and cancer risk. RESULTS On the basis of national nitrate occurrence data and relative risk ratios reported in the epidemiology literature, we calculated that annually, 2939 cases of very low birth weight, 1725 cases of very preterm birth, and 41 cases of neural tube defects could be related to nitrate exposure from drinking water. For cancer risk, combining nitrate-specific risk estimates for colorectal, ovarian, thyroid, kidney, and bladder cancers results in a range of 2300 to 12,594 annual nitrate-attributable cancer cases (mean: 6537 estimated cases). For medical expenditures alone, this burden of cancer corresponds to an annual economic cost of 250 million to 1.5 billion U.S. dollars, together with a potential 1.3 to 6.5 billion dollar impact due to lost productivity. With the meta-analysis of eight studies of drinking water nitrate and colorectal cancer, we observed a statistically significant positive association for nitrate exposure and colorectal cancer risk and calculated a one-in-one million cancer risk level of 0.14 mg/L nitrate in drinking water. CONCLUSION Health and economic analyses presented here suggest that lowering exposure to nitrate in drinking water could bring economic benefits by alleviating the impacts of nitrate-associated diseases.
Collapse
Affiliation(s)
- Alexis Temkin
- Environmental Working Group, 1436 U Street NW Suite 100, Washington, DC, 20009, USA.
| | - Sydney Evans
- Environmental Working Group, 1436 U Street NW Suite 100, Washington, DC, 20009, USA
| | - Tatiana Manidis
- Duke University, Nicholas School of the Environment, 9 Circuit Dr, Durham, NC, 27710, USA
| | - Chris Campbell
- Environmental Working Group, 1436 U Street NW Suite 100, Washington, DC, 20009, USA
| | - Olga V Naidenko
- Environmental Working Group, 1436 U Street NW Suite 100, Washington, DC, 20009, USA
| |
Collapse
|
36
|
Butler L, Gennings C, Peli M, Borgese L, Placidi D, Zimmerman N, Hsu HHL, Coull BA, Wright RO, Smith DR, Lucchini RG, Claus Henn B. Assessing the contributions of metals in environmental media to exposure biomarkers in a region of ferroalloy industry. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2019; 29:674-687. [PMID: 30337680 PMCID: PMC6472994 DOI: 10.1038/s41370-018-0081-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 09/10/2018] [Accepted: 09/18/2018] [Indexed: 05/04/2023]
Abstract
Residential proximity to ferroalloy production has been associated with increased manganese exposure, which can adversely affect health, particularly among children. Little is known, however, about which environmental samples contribute most to internal levels of manganese and other ferroalloy metals. We aimed to characterize sources of exposure to metals and evaluate the ability of internal biomarkers to reflect exposures from environmental media. In 717 Italian adolescents residing near ferromanganese industry, we examined associations between manganese, lead, chromium, and copper in environmental samples (airborne particles, surface soil, indoor/outdoor house dust) and biological samples (blood, hair, nails, saliva, urine). In multivariable regression analyses adjusted for child age and sex, a 10% increase in soil Mn was associated with increases of 3.0% (95% CI: 1.1%, 4.9%) in nail Mn and 1.6% (95% CI: -0.2%, 3.4%) in saliva Mn. Weighted-quantile-sum (WQS) regression estimated that higher soil and outdoor dust Mn accounted for most of the effect on nail Mn (WQS weights: 0.61 and 0.22, respectively, out of a total of 1.0). Higher air and soil Mn accounted for most of the effect on saliva Mn (WQS weights: 0.65 and 0.29, respectively). These findings can help inform biomarker selection in future epidemiologic studies and guide intervention strategies in exposed populations.
Collapse
Affiliation(s)
- Lindsey Butler
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA
| | - Chris Gennings
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Marco Peli
- Department of Civil, Environmental, Architectural Engineering and Mathematics, University of Brescia, Brescia, Italy
| | - Laura Borgese
- Department of Mechanical and Industrial Engineering, University of Brescia, Brescia, Italy
| | - Donatella Placidi
- Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, Brescia, Italy
| | - Neil Zimmerman
- School of Health Sciences, Purdue University, West Lafayette, IN, USA
| | - Hsiao-Hsien L Hsu
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Brent A Coull
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Robert O Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Donald R Smith
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, CA, USA
| | - Roberto G Lucchini
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, Brescia, Italy
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, CA, USA
| | - Birgit Claus Henn
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA.
| |
Collapse
|
37
|
Dong H, Atlas E, Wade MG. Development of a non-radioactive screening assay to detect chemicals disrupting the human sodium iodide symporter activity. Toxicol In Vitro 2019; 57:39-47. [DOI: 10.1016/j.tiv.2019.01.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 01/11/2019] [Accepted: 01/28/2019] [Indexed: 11/28/2022]
|
38
|
Wang J, Hallinger DR, Murr AS, Buckalew AR, Lougee RR, Richard AM, Laws SC, Stoker TE. High-throughput screening and chemotype-enrichment analysis of ToxCast phase II chemicals evaluated for human sodium-iodide symporter (NIS) inhibition. ENVIRONMENT INTERNATIONAL 2019; 126:377-386. [PMID: 30826616 PMCID: PMC9082575 DOI: 10.1016/j.envint.2019.02.024] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 01/14/2019] [Accepted: 02/07/2019] [Indexed: 05/26/2023]
Abstract
In support of the Endocrine Disruptor Screening Program (EDSP), the U.S.EPA's Office of Research and Development (ORD) is developing high-throughput screening (HTS) approaches to identify chemicals that alter target sites in the thyroid hormone (TH) pathway. The sodium iodide symporter (NIS) is a transmembrane glycoprotein that mediates iodide uptake into the thyroid as the initial step of TH biosynthesis. Previously, we screened 293 ToxCast chemicals (ph1v2) using a HEK293T cell line expressing human NIS in parallel radioactive iodide uptake (RAIU) and cell viability assays to identify potential environmental NIS inhibitors. Here, we expanded NIS inhibitor screening for a set of 768 ToxCast Phase II (ph2) chemicals, and applied a novel computational toxicology approach based on the ToxPrint chemotype to identify chemical substructures associated with NIS inhibition. Following single-concentration screening (at 1 × 10-4 M with a 20% inhibition cutoff), 235 samples (228 chemicals) were further tested in multiple-concentration (1 × 10-9 - 1 × 10-4 M) format in both RAIU and cell viability assays. The 167 chemicals that exhibited significant RAIU inhibition were then prioritized using combined RAIU and cell viability responses that were normalized relative to the known NIS inhibitor sodium perchlorate. Some of the highest ranked chemicals, such as PFOS, tributyltin chloride, and triclocarban, have been previously reported to be thyroid disruptors. In addition, several novel chemicals were identified as potent NIS inhibitors. The present results were combined with the previous ph1v2 screening results to produce two sets of binary hit-calls for 1028 unique chemicals, consisting of 273 positives exhibiting significant RAIU inhibition, and 63 positives following application of a cell viability filter. A ToxPrint chemotype-enrichment analysis identified >20 distinct chemical substructural features, represented in >60% of the active chemicals, as significantly enriched in each NIS inhibition hit-call space. A shared set of 9 chemotypes enriched in both hit-call sets indicates stable chemotype signals (insensitive to cytotoxicity filters) that can help guide structure-activity relationship (SAR) investigations and inform future research.
Collapse
Affiliation(s)
- Jun Wang
- Endocrine Toxicology Branch, Toxicity Assessment Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, USA; Oak Ridge Institute for Science and Education, U.S. Department of Energy, Oak Ridge, TN 37831, USA
| | - Daniel R Hallinger
- Endocrine Toxicology Branch, Toxicity Assessment Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, USA
| | - Ashley S Murr
- Endocrine Toxicology Branch, Toxicity Assessment Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, USA
| | - Angela R Buckalew
- Endocrine Toxicology Branch, Toxicity Assessment Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, USA
| | - Ryan R Lougee
- Oak Ridge Institute for Science and Education, U.S. Department of Energy, Oak Ridge, TN 37831, USA; National Center for Computational Toxicology, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, USA
| | - Ann M Richard
- National Center for Computational Toxicology, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, USA
| | - Susan C Laws
- Endocrine Toxicology Branch, Toxicity Assessment Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, USA.
| | - Tammy E Stoker
- Endocrine Toxicology Branch, Toxicity Assessment Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, USA.
| |
Collapse
|
39
|
Pleus RC, Corey LM. Environmental exposure to perchlorate: A review of toxicology and human health. Toxicol Appl Pharmacol 2018; 358:102-109. [PMID: 30184474 DOI: 10.1016/j.taap.2018.09.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 08/31/2018] [Accepted: 09/01/2018] [Indexed: 11/19/2022]
Abstract
Perchlorate pharmacology and toxicology studies date back at least 65 years in the peer-reviewed literature. Repeated studies in animals and humans have demonstrated perchlorate's mechanism of action, dose-response, and adverse effects over a range of doses. The first measurable effect of perchlorate is inhibition of iodine uptake to the thyroid gland. Adequate levels of thyroid hormones are critical for the development of the fetal nervous system. With sufficient dose and exposure duration, perchlorate can reduce thyroid hormones in the pregnant or non-pregnant woman via this mechanism. The developing fetus is the most sensitive life stage for chemical agents that affect iodide uptake to the thyroid. Perchlorate has a half-life of eight hours, is not metabolized, does not bioaccumulate, is not a mutagen or carcinogen, and is not reprotoxic or immunotoxic. More recently, epidemiological and biomonitoring studies have been published in the peer-reviewed literature characterizing the thyroidal effects of perchlorate and other goitrogens. While the results from most populations report no consistent association, a few studies report thyroidal effects at environmentally relevant levels of perchlorate. We reviewed the literature on health effects of perchlorate at environmental exposure levels, with a focus on exposures during pregnancy and neurodevelopmental effects. Based on the studies we reviewed, health effects are expected to only occur at doses substantially higher than environmental levels.
Collapse
Affiliation(s)
- Richard C Pleus
- Intertox, Inc., 600 Stewart Street, Suite 1101 Seattle, WA 98101, United States.
| | - Lisa M Corey
- Intertox, Inc., 600 Stewart Street, Suite 1101 Seattle, WA 98101, United States
| |
Collapse
|
40
|
Knight BA, Shields BM, He X, Pearce EN, Braverman LE, Sturley R, Vaidya B. Effect of perchlorate and thiocyanate exposure on thyroid function of pregnant women from South-West England: a cohort study. Thyroid Res 2018; 11:9. [PMID: 30002731 PMCID: PMC6035476 DOI: 10.1186/s13044-018-0053-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 05/27/2018] [Indexed: 01/17/2023] Open
Abstract
Background Iodine is important for thyroid hormone synthesis, and iodine deficiency in pregnancy may impair fetal neurological development. As perchlorate and thiocyanate inhibit sodium-iodide symporter reducing the transport of iodine from circulation into the thyroid follicular cells, environmental exposure to these substances in pregnancy may impair maternal thyroid hormone synthesis. We aimed to explore the impact of perchlorate and thiocyanate exposure on thyroid status in a cohort of pregnant mothers from South West England. Methods Urine samples were obtained from 308 women participating in a study of breech presentation in late pregnancy. They had no known thyroid disease and a singleton pregnancy at 36–38 weeks gestation. Samples were analysed for urinary concentrations of iodine (UIC), perchlorate (UPC) and thiocyanate (UTC). Blood samples were taken for free T4 (FT4), thyrotropin (TSH) and thyroid peroxidase antibodies (TPO-Ab). Baseline data included age, parity, smoking status, ethnicity and BMI at booking. Following delivery, data on offspring’s sex, gestational age at birth and birthweight were collected. Results Participants had a mean (SD) age 31 (5) years, median (IQR) BMI 24.4 (22.0, 28.3) kg/m2, 42% were primiparous, 10% were smokers, and 96% were Caucasian. Median UIC was 88 μg/l, and 174/308 (57%) women had UIC < 100 μg/l. Log transformed UPC negatively correlated with FT4, but not with TSH, in the whole cohort (r = − 0.12, p = 0.03) and in the subgroup of women with UIC < 100 μg/l (r = − 0.15, p = 0.04). Regression analysis with the potential confounders (TPO-Ab status, UIC and UTC) identified UPC to be negatively associated with FT4 (p = 0.01). There was no correlation between UTC and FT4 or TSH. Maternal UPC or UTC was not associated with offspring birthweight. Conclusion Environmental perchlorate exposure is negatively associated with circulating FT4 levels in third trimester pregnant women. This may have an adverse impact on neurocognitive development of the fetus.
Collapse
Affiliation(s)
- Bridget A Knight
- 1NIHR Exeter Clinical Research Facility, Royal Devon & Exeter Hospital, University of Exeter Medical School, University of Exeter, Exeter, EX2 5DW UK.,2Research & Development Department, Royal Devon and Exeter Hospital NHS Foundation Trust, Exeter, UK
| | - Beverley M Shields
- 1NIHR Exeter Clinical Research Facility, Royal Devon & Exeter Hospital, University of Exeter Medical School, University of Exeter, Exeter, EX2 5DW UK
| | - Xuemei He
- 3Section of Endocrinology, Diabetes & Nutrition, Boston University School of Medicine, Boston, USA
| | - Elizabeth N Pearce
- 3Section of Endocrinology, Diabetes & Nutrition, Boston University School of Medicine, Boston, USA
| | - Lewis E Braverman
- 3Section of Endocrinology, Diabetes & Nutrition, Boston University School of Medicine, Boston, USA
| | - Rachel Sturley
- Centre for Women's Health, Royal Devon and Exeter Hospital NHS Foundation Trust, Exeter, UK
| | - Bijay Vaidya
- 5Department of Endocrinology, Royal Devon and Exeter Hospital NHS Foundation Trust, Exeter, UK.,6University of Exeter Medical School, Exeter, UK
| |
Collapse
|
41
|
Vega M, Nerenberg R, Vargas IT. Perchlorate contamination in Chile: Legacy, challenges, and potential solutions. ENVIRONMENTAL RESEARCH 2018; 164:316-326. [PMID: 29554623 DOI: 10.1016/j.envres.2018.02.034] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 02/21/2018] [Accepted: 02/23/2018] [Indexed: 06/08/2023]
Abstract
This paper reviews the unique situation of perchlorate contamination in Chile, including its sources, presence in environmental media and in the human population, and possible steps to mitigate its health impacts. Perchlorate is a ubiquitous water contaminant that inhibits thyroid function. Standards for drinking water range from 2 to 18 µg L-1 in United States and Europe. A major natural source of perchlorate contamination is Chile saltpeter, found in the Atacama Desert. High concentrations of perchlorate have presumably existed in this region, in soils, sediments, surface waters and groundwaters, for millions of years. As a result of this presence, and the use of Chile saltpeter as a nitrogen fertilizer, perchlorate in Chile has been found at concentrations as high as 1480 µg L-1 in drinking water, 140 µg/kg-1 in fruits, and 30 µg L-1 in wine. Health studies in Chile have shown concentrations of 100 µg L-1 in breast milk and 20 µg L-1 in neonatal serum. It is important to acknowledge perchlorate as a potential health concern in Chile, and assess mitigation strategies. A more thorough survey of perchlorate in Chilean soils, sediments, surface waters, groundwaters, and food products can help better assess the risks and potentially develop standards. Also, perchlorate treatment technologies should be more closely assessed for relevance to Chile. The Atacama Desert is a unique biogeochemical environment, with millions of years of perchlorate exposure, which can be mined for novel perchlorate-reducing microorganisms, potentially leading to new biological treatment processes for perchlorate-containing waters, brines, and fertilizers.
Collapse
Affiliation(s)
- Marcela Vega
- Departamento de Ingeniería Hidráulica y Ambiental, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Macul, Santiago, Chile; Department of Civil & Environmental Engineering & Earth Science, University of Notre Dame, 156 Fitzpatrick Hall of Engineering, South Bend, IN 46556, United States; Centro de Desarrollo Urbano Sustentable (CEDEUS), Av. Vicuña Mackenna 4860, Macul, Santiago, Chile
| | - Robert Nerenberg
- Department of Civil & Environmental Engineering & Earth Science, University of Notre Dame, 156 Fitzpatrick Hall of Engineering, South Bend, IN 46556, United States
| | - Ignacio T Vargas
- Departamento de Ingeniería Hidráulica y Ambiental, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Macul, Santiago, Chile; Centro de Desarrollo Urbano Sustentable (CEDEUS), Av. Vicuña Mackenna 4860, Macul, Santiago, Chile.
| |
Collapse
|
42
|
Kirman CR, Belknap AM, Webster AF, Hays SM. Biomonitoring Equivalents for cyanide. Regul Toxicol Pharmacol 2018; 97:71-81. [PMID: 29885879 DOI: 10.1016/j.yrtph.2018.06.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 05/16/2018] [Accepted: 06/05/2018] [Indexed: 12/31/2022]
Abstract
Exposure to cyanide is widespread in human populations due to a variety of natural and anthropogenic sources. The potential health risks of excess cyanide exposure are dose-dependent and include effects on the thyroid, the male reproductive system, developmental effects, neuropathies and death. Many organizations have derived exposure guideline values for cyanide, which represent maximum recommended exposure levels for inhalation and oral routes of exposure. Biomonitoring Equivalents (BEs) are estimates of the average biomarker concentrations that correspond to these reference doses. Here, we determine BE values for cyanide. The literature on the pharmacokinetics of cyanide was reviewed to identify a biomarker of exposure. Despite issues with biomarker specificity, thiocyanate (SCN-) in the urine or plasma was identified as the most practical biomarker. BE values were produced that correspond to previously published critical effect levels. These BE values range from 0.0008 to 0.8 mg/L and 0.0005-2.5 mg/L for SCN- in urine and plasma, respectively. Confidence in these BE values varies, depending on route of exposure, biomarker, and health endpoint of interest. We anticipate that these BE values will be useful for lower tier (screening level) chemical risk assessment; however due to issues with biomarker specificity and uncertainty in background levels of SCN-, this approach requires refinement to be useful at higher tiers.
Collapse
Affiliation(s)
- C R Kirman
- Summit Toxicology, LLP, Bozeman, MT, USA.
| | - A M Belknap
- Existing Substances Risk Assessment Bureau, Health Canada, Ottawa, Ontario, Canada
| | - A F Webster
- Existing Substances Risk Assessment Bureau, Health Canada, Ottawa, Ontario, Canada
| | - S M Hays
- Summit Toxicology, LLP, Bozeman, MT, USA
| |
Collapse
|
43
|
Veltri F, Poppe K. Variables Contributing to Thyroid (Dys)Function in Pregnant Women: More than Thyroid Antibodies? Eur Thyroid J 2018; 7:120-128. [PMID: 30023343 PMCID: PMC6047490 DOI: 10.1159/000488279] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 03/06/2018] [Indexed: 01/03/2023] Open
Abstract
Variability in thyroid function in pregnant women is the result of 2 main determinants, each accounting for approximately half of it. The first is the genetically determined part of which the knowledge increases fast, but most remains to be discovered. The second determinant is caused by an ensemble of variables of which thyroid autoimmunity is the best known, but also by others such as parity, smoking, age, and BMI. More recently, new candidate variables have been proposed, such as iron, endocrine disruptors, and the ethnicity of the pregnant women. In the future, the diagnosis and treatment of thyroid (dys)function may be optimized by the use of each individual's pituitary-thyroid set point, corrected with a factor taking into account the impact of nongenetically determined variables.
Collapse
Affiliation(s)
| | - Kris Poppe
- *K. Poppe, MD, PhD, CHU Saint-Pierre, Université Libre de Bruxelles (ULB), Rue Haute 322, BE-1000 Brussels (Belgium), E-Mail
| |
Collapse
|
44
|
Wang J, Hallinger DR, Murr AS, Buckalew AR, Simmons SO, Laws SC, Stoker TE. High-Throughput Screening and Quantitative Chemical Ranking for Sodium-Iodide Symporter Inhibitors in ToxCast Phase I Chemical Library. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:5417-5426. [PMID: 29611697 PMCID: PMC6697091 DOI: 10.1021/acs.est.7b06145] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Thyroid uptake of iodide via the sodium-iodide symporter (NIS) is the first step in the biosynthesis of thyroid hormones that are critical for health and development in humans and wildlife. Despite having long been a known target of endocrine disrupting chemicals such as perchlorate, information regarding NIS inhibition activity is still unavailable for the vast majority of environmental chemicals. This study applied a previously validated high-throughput approach to screen for NIS inhibitors in the ToxCast phase I library, representing 293 important environmental chemicals. Here 310 blinded samples were screened in a tiered-approach using an initial single-concentration (100 μM) radioactive-iodide uptake (RAIU) assay, followed by 169 samples further evaluated in multi-concentration (0.001 μM-100 μM) testing in parallel RAIU and cell viability assays. A novel chemical ranking system that incorporates multi-concentration RAIU and cytotoxicity responses was also developed as a standardized method for chemical prioritization in current and future screenings. Representative chemical responses and thyroid effects of high-ranking chemicals are further discussed. This study significantly expands current knowledge of NIS inhibition potential in environmental chemicals and provides critical support to U.S. EPA's Endocrine Disruptor Screening Program (EDSP) initiative to expand coverage of thyroid molecular targets, as well as the development of thyroid adverse outcome pathways (AOPs).
Collapse
Affiliation(s)
- Jun Wang
- Oak Ridge Institute for Science and Education, U.S. Department of Energy, Oak Ridge, TN 37831, USA
- Endocrine Toxicology Branch, Toxicity Assessment Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, USA
| | - Daniel R. Hallinger
- Endocrine Toxicology Branch, Toxicity Assessment Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, USA
| | - Ashley S. Murr
- Endocrine Toxicology Branch, Toxicity Assessment Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, USA
| | - Angela R. Buckalew
- Endocrine Toxicology Branch, Toxicity Assessment Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, USA
| | - Steven O. Simmons
- National Center for Computational Toxicology, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, USA
| | - Susan C. Laws
- Endocrine Toxicology Branch, Toxicity Assessment Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, USA
- Corresponding authors: (Phone: 919-541-0173 Fax: 919-541-5138) and (Phone: 919-541-2783 Fax: 919-541-5138)
| | - Tammy E. Stoker
- Endocrine Toxicology Branch, Toxicity Assessment Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, USA
- Corresponding authors: (Phone: 919-541-0173 Fax: 919-541-5138) and (Phone: 919-541-2783 Fax: 919-541-5138)
| |
Collapse
|
45
|
la Peña Sol D, Isela SR, Zendy OV, Mónica NM, Irene XR, Omar AH. Changes in trophoblasts gene expression in response to perchlorate exposition. Toxicol In Vitro 2018; 50:328-335. [PMID: 29673971 DOI: 10.1016/j.tiv.2018.04.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 03/19/2018] [Accepted: 04/12/2018] [Indexed: 10/17/2022]
Abstract
Contaminated water with chlorates is a public health problem associated with iodine deficiency. Epidemiological evidence shows that iodine deficiency is a risk factor for preeclampsia (PE). In this study we use human BeWo trophoblast cells exposed to perchlorate (KClO4) and changes in gene expression were analyzed by microarrays, quantitative RT-PCR (qRT-PCR) and immunoblot. The microarray analysis identified 48 transcripts up-regulated and 112 down-regulated in comparison with non-exposed trophoblast. The qRT-PCR analysis confirmed changes in GAS7, PKP2, Emilin, Dynatic 3, protocadherins 11, 15, gamma A12, EGFR, SAFB1, ACE2, ANXA2, Apoliprotein E, SREBF1, and C/EBP-β. KClO4 exposition decreased the mRNA and protein of C/EBP-β and GPX4. Also, we observed a nuclear translocation of HIF1α protein, and increase in both Snail and ACE2 protein by immunoblot. These effects were accompanied by an increases in ROS and nitric oxide. In conclusion, our results show that exposure to KClO4 alters genes involved in migration, adhesion, differentiation, and correlate with the increase of oxidative stress and nitric oxide production in trophoblast cells. It is possible that iodine deficiency is associated with these processes. However, further studies are required to corroborate the role of iodine in trophoblast cells.
Collapse
Affiliation(s)
- De la Peña Sol
- Laboratorio de Investigación Clínica, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas S/N Ciudad Universitaria Sur, col. La Haciendita, Chilpancingo, Guerrero ZC 39087, Mexico
| | - Santiago-Roque Isela
- Facultad de Bioanálisis, Universidad Veracruzana. Odontólogos W/N, U.H. del Bosque, Xalapa, Veracruz, Mexico
| | - Olivo-Vidal Zendy
- Ecology and Health Laboratory, Public Health Institute, Universidad Veracruzana, Av. Luís Castelazo Ayala W/N, Col. Industrial Animas, Xalapa, Veracruz ZC 41190, Mexico
| | - Navarro-Meza Mónica
- Centro Universitario del Sur., Av. Enrique Arreola Silva no. 883, Col. Centro, Ciudad Guzmán, Jalisco ZC 49000, Mexico
| | - Xochihua-Rosas Irene
- Facultad de Idiomas, Universidad Veracruzana, Francisco Moreno esq. E. Alatriste S/N, col. Ferrer Guardia, Xalapa, Veracruz ZC91020, Mexico
| | - Arroyo-Helguera Omar
- Ecology and Health Laboratory, Public Health Institute, Universidad Veracruzana, Av. Luís Castelazo Ayala W/N, Col. Industrial Animas, Xalapa, Veracruz ZC 41190, Mexico.
| |
Collapse
|
46
|
Bahadoran Z, Mirmiran P, Azizi F, Ghasemi A. Nitrate-rich dietary supplementation during pregnancy: The pros and cons. Pregnancy Hypertens 2018. [PMID: 29523272 DOI: 10.1016/j.preghy.2017.12.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Inorganic nitrate (NO3) due to its potential endogenous conversion to nitric oxide (NO), is suggested as a compensatory fuel for disrupted NO pathways in the case of pathological stats during pregnancy. Dietary NO3-rich supplement in the NO-deficient pregnant women is now suggested as a more appealing choice with fewer off-target effects which can attenuate hypertension and preeclampsia, improve placental blood flow and subsequently enhance maternal and neonatal health. There is also an increasing public interest and common health claims regarding beneficial effects of NO3-rich dietary supplements like beetroot byproducts in pregnant women. Conversely, NO3-rich dietary supplementation during pregnancy may be accompanied with a wide range of unexpected maternal and fatal adverse outcomes such as methemoglobinemia, alteration in embryonic cells and malignant transformation, as well as thyroid disorders. In conclusion, use of dietary inorganic NO3 as a common supplement during pregnancy is currently on a long way from bench to bedside.
Collapse
Affiliation(s)
- Zahra Bahadoran
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Parvin Mirmiran
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Fereidoun Azizi
- Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Asghar Ghasemi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
47
|
Ucal Y, Sahin ON, Serdar M, Blount B, Kumru P, Muhcu M, Eroglu M, Akin-Levi C, Keles ZZY, Turam C, Valentin-Blasini L, Morel-Espinosa M, Serteser M, Unsal I, Ozpinar A. Exposure to Perchlorate in Lactating Women and Its Associations With Newborn Thyroid Stimulating Hormone. Front Endocrinol (Lausanne) 2018; 9:348. [PMID: 30018593 PMCID: PMC6037697 DOI: 10.3389/fendo.2018.00348] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Accepted: 06/11/2018] [Indexed: 12/29/2022] Open
Abstract
Background: Perchlorate, thiocyanate, and nitrate can block iodide transport at the sodium iodide symporter (NIS) and this can subsequently lead to decreased thyroid hormone production and hypothyroidism. NIS inhibitor exposure has been shown to reduce iodide uptake and thyroid hormone levels; therefore we hypothesized that maternal NIS inhibitor exposure will influence both maternal and newborn thyroid function. Methods: Spot urine samples were collected from 185 lactating mothers and evaluated for perchlorate, thiocyanate, and nitrate concentrations. Blood and colostrum samples were collected from the same participants in the first 48 h after delivery. Thyroid hormones and thyroid-related antibodies (TSH, fT3, fT4, anti-TPO, anti-Tg) were analyzed in maternal blood and perchlorate was analyzed in colostrum. Also, spot blood samples were collected from newborns (n = 185) between 48 and 72 postpartum hours for TSH measurement. Correlation analysis was performed to assess the effect of NIS inhibitors on thyroid hormone levels of lactating mothers and their newborns in their first 48 postpartum hours. Results: The medians of maternal urinary perchlorate (4.00 μg/g creatinine), maternal urinary thiocyanate (403 μg/g creatinine), and maternal urinary nitrate (49,117 μg/g creatinine) were determined. Higher concentrations of all three urinary NIS inhibitors (μg/g creatinine) at their 75th percentile levels were significantly correlated with newborn TSH (r = 0.21, p < 0.001). Median colostrum perchlorate level concentration of all 185 participants was 2.30 μg/L. Colostrum perchlorate was not significantly correlated with newborn TSH (p > 0.05); however, there was a significant correlation between colostrum perchlorate level and maternal TSH (r = 0.21, p < 0.01). Similarly, there was a significant positive association between colostrum perchlorate and maternal urinary creatinine adjusted perchlorate (r = 0.32, p < 0.001). Conclusion: NIS inhibitors are ubiquitous in lactating women in Turkey and are associated with increased TSH levels in newborns, thus signifying for the first time that co-exposure to maternal NIS inhibitors can have a negative effect on the newborn thyroid function.
Collapse
Affiliation(s)
- Yasemin Ucal
- Department of Medical Biochemistry, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Ozlem N. Sahin
- Department of Pediatrics, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Muhittin Serdar
- Department of Medical Biochemistry, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Ben Blount
- Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Pinar Kumru
- Department of Obstetrics and Gynecology, Zeynep Kamil Research and Training Hospital, Istanbul, Turkey
| | - Murat Muhcu
- Department of Obstetrics and Gynecology, Haydarpasa Hospital of Gülhane Military Practice School and Hospital, Istanbul, Turkey
| | - Mustafa Eroglu
- Department of Obstetrics and Gynecology, Haydarpasa Numune Training and Research Hospital, Istanbul, Turkey
| | - Cansu Akin-Levi
- Department of Medical Biochemistry, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Z. Zeynep Yildirim Keles
- Department of Medical Biochemistry, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Cem Turam
- Department of Medical Biochemistry, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | | | | | - Mustafa Serteser
- Department of Medical Biochemistry, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | | | - Aysel Ozpinar
- Department of Medical Biochemistry, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
- *Correspondence: Aysel Ozpinar
| |
Collapse
|
48
|
Bell SM, Chang X, Wambaugh JF, Allen DG, Bartels M, Brouwer KLR, Casey WM, Choksi N, Ferguson SS, Fraczkiewicz G, Jarabek AM, Ke A, Lumen A, Lynn SG, Paini A, Price PS, Ring C, Simon TW, Sipes NS, Sprankle CS, Strickland J, Troutman J, Wetmore BA, Kleinstreuer NC. In vitro to in vivo extrapolation for high throughput prioritization and decision making. Toxicol In Vitro 2017; 47:213-227. [PMID: 29203341 DOI: 10.1016/j.tiv.2017.11.016] [Citation(s) in RCA: 163] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 11/28/2017] [Accepted: 11/30/2017] [Indexed: 01/10/2023]
Abstract
In vitro chemical safety testing methods offer the potential for efficient and economical tools to provide relevant assessments of human health risk. To realize this potential, methods are needed to relate in vitro effects to in vivo responses, i.e., in vitro to in vivo extrapolation (IVIVE). Currently available IVIVE approaches need to be refined before they can be utilized for regulatory decision-making. To explore the capabilities and limitations of IVIVE within this context, the U.S. Environmental Protection Agency Office of Research and Development and the National Toxicology Program Interagency Center for the Evaluation of Alternative Toxicological Methods co-organized a workshop and webinar series. Here, we integrate content from the webinars and workshop to discuss activities and resources that would promote inclusion of IVIVE in regulatory decision-making. We discuss properties of models that successfully generate predictions of in vivo doses from effective in vitro concentration, including the experimental systems that provide input parameters for these models, areas of success, and areas for improvement to reduce model uncertainty. Finally, we provide case studies on the uses of IVIVE in safety assessments, which highlight the respective differences, information requirements, and outcomes across various approaches when applied for decision-making.
Collapse
Affiliation(s)
- Shannon M Bell
- Integrated Laboratory Systems, Inc., P.O. Box 13501, Research Triangle Park, NC 27709, USA.
| | - Xiaoqing Chang
- Integrated Laboratory Systems, Inc., P.O. Box 13501, Research Triangle Park, NC 27709, USA.
| | - John F Wambaugh
- U.S. Environmental Protection Agency, 109 T.W. Alexander Dr., Research Triangle Park, NC 27709, USA.
| | - David G Allen
- Integrated Laboratory Systems, Inc., P.O. Box 13501, Research Triangle Park, NC 27709, USA.
| | | | - Kim L R Brouwer
- UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Campus Box 7569, Chapel Hill, NC 27599, USA.
| | - Warren M Casey
- National Toxicology Program Interagency Center for the Evaluation of Alternative Toxicological Methods, National Institute of Environmental Health Sciences, P.O. Box 12233, Research Triangle Park, NC 27709, USA.
| | - Neepa Choksi
- Integrated Laboratory Systems, Inc., P.O. Box 13501, Research Triangle Park, NC 27709, USA.
| | - Stephen S Ferguson
- National Toxicology Program, National Institute of Environmental Health Sciences, P.O. Box 12233, Research Triangle Park, NC 27709, USA.
| | | | - Annie M Jarabek
- U.S. Environmental Protection Agency, 109 T.W. Alexander Dr., Research Triangle Park, NC 27709, USA.
| | - Alice Ke
- Simcyp Limited (a Certara company), John Street, Sheffield, S2 4SU, United Kingdom.
| | - Annie Lumen
- National Center for Toxicological Research, U.S. Food and Drug Administration, 3900 NCTR Road, Jefferson, AR 72079, USA.
| | - Scott G Lynn
- U.S. Environmental Protection Agency, William Jefferson Clinton Building, 1200 Pennsylvania Ave. NW, Washington, DC 20460, USA.
| | - Alicia Paini
- European Commission, Joint Research Centre, Directorate Health, Consumers and Reference Materials, Chemical Safety and Alternative Methods Unit incorporating EURL ECVAM, Via E. Fermi 2749, Ispra, Varese 20127, Italy.
| | - Paul S Price
- U.S. Environmental Protection Agency, 109 T.W. Alexander Dr., Research Triangle Park, NC 27709, USA.
| | - Caroline Ring
- Oak Ridge Institute for Science and Education, P.O. Box 2008, Oak Ridge, TN 37831, USA.
| | - Ted W Simon
- Ted Simon LLC, 4184 Johnston Road, Winston, GA 30187, USA.
| | - Nisha S Sipes
- National Toxicology Program, National Institute of Environmental Health Sciences, P.O. Box 12233, Research Triangle Park, NC 27709, USA.
| | - Catherine S Sprankle
- Integrated Laboratory Systems, Inc., P.O. Box 13501, Research Triangle Park, NC 27709, USA.
| | - Judy Strickland
- Integrated Laboratory Systems, Inc., P.O. Box 13501, Research Triangle Park, NC 27709, USA.
| | - John Troutman
- Central Product Safety, The Procter & Gamble Company, Cincinnati, OH 45202, USA.
| | - Barbara A Wetmore
- ScitoVation LLC, 6 Davis Drive, Research Triangle Park, NC 27709, USA.
| | - Nicole C Kleinstreuer
- National Toxicology Program Interagency Center for the Evaluation of Alternative Toxicological Methods, National Institute of Environmental Health Sciences, P.O. Box 12233, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
49
|
McMullen J, Ghassabian A, Kohn B, Trasande L. Identifying Subpopulations Vulnerable to the Thyroid-Blocking Effects of Perchlorate and Thiocyanate. J Clin Endocrinol Metab 2017; 102:2637-2645. [PMID: 28430972 DOI: 10.1210/jc.2017-00046] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 04/06/2017] [Indexed: 12/17/2022]
Abstract
CONTEXT Common environmental contaminants can disrupt normal thyroid function, which plays essential but varying roles at different ages. OBJECTIVE To evaluate the relationship of perchlorate, thiocyanate, and nitrate, three sodium-iodide symporter (NIS) inhibitors, and thyroid function in different age-sex-stratified populations. DESIGN, SETTING, PARTICIPANTS, AND INTERVENTION This was a cross-sectional analysis of data from the 2009 to 2012 National Health and Nutrition Examination Survey evaluating the exposure to perchlorate, thiocyanate, and nitrate in 3151 participants aged 12 to 80. MAIN OUTCOME MEASURE Blood serum free thyroxine (FT4) as both a continuous and categorical variable. We also assessed blood serum thyroid stimulating hormone. RESULTS Controlling for serum cotinine, body mass index, total daily energy consumption, race/ethnicity, and poverty-to-income ratio, for each log unit increase in perchlorate, FT4 decreased by 0.03 ng/dL in both the general population (P = 0.004) and in all women (P = 0.005), and by 0.06 ng/dL in adolescent girls (P = 0.029), corresponding to 4% and 8% decreases relative to median FT4, respectively. For each log unit increase thiocyanate, FT4 decreased by 0.07 ng/dL in adolescent boys (P = 0.003), corresponding to a 9% decrease relative to median FT4, respectively. CONCLUSIONS Our results indicate that adolescent boys and girls represent vulnerable subpopulations to the thyroid-blocking effects of NIS symporter inhibitors. These results suggest a valuable screening and intervention opportunity.
Collapse
Affiliation(s)
- Jenica McMullen
- School of Medicine, New York University, New York, New York 10003
| | - Akhgar Ghassabian
- School of Medicine, New York University, New York, New York 10003
- Department of Pediatrics, School of Medicine, New York University, New York, New York 10003
| | - Brenda Kohn
- School of Medicine, New York University, New York, New York 10003
- Department of Pediatrics, School of Medicine, New York University, New York, New York 10003
| | - Leonardo Trasande
- School of Medicine, New York University, New York, New York 10003
- Department of Pediatrics, School of Medicine, New York University, New York, New York 10003
- Wagner School of Public Service, New York University, New York, New York 10003
- College of Global Public Health, New York University, New York, New York 10003
| |
Collapse
|
50
|
Bivolarska AV, Maneva AI, Gatseva PD, Katsarova MN. Effect of Nitrates, Thiocyanates and Selenium on the Iron and Iodine Status of Postpartum Women. Folia Med (Plovdiv) 2017; 58:188-194. [PMID: 27760010 DOI: 10.1515/folmed-2016-0024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 05/31/2016] [Indexed: 11/15/2022] Open
Abstract
AIM To find correlations between high thiocyanate and nitrate levels and low selenium levels and the indicators of the iodine and iron status of postpartum women. MATERIALS AND METHODS The study included 41 mothers aged 26.4±5.9 yrs from Asenovgrad and nearby villages. Urinary iodine was determined by the Sandell-Kolthoff reaction and thiocyanate - by the interaction of these ions with acidic solution of KMnO4; for serum nitrates we used the colorimetric method; serum selenium was assessed by electro-thermal atomic-absorption spectrophotometry; thyroxin (FT4), the thyroid stimulating hormone (TSH), serum ferritin (SF), and serum transferrin receptor (sTfR) were determined using ELISA; Hb levels were determined by hematology analyzer. RESULTS Assessing the iodine status, we found a negative correlation between the levels of iodine and thiocyanates in urine (R=-0.717, р<0.0001), a positive correlation between nitrates and TSH (R=0.487, р=0.003) and a negative correlation between nitrates and FT4 (R=-0.312, р=0.06). For the iron status, we found a negative correlation between nitrates and SF (R=-0.429, р=0.009) and between nitrates and Hb (R=-0.383, р=0.021). The Mann-Whitney U-test showed that in women with nitrate levels higher than the mean value there was low FT4 level (р=0.06), high TSH level (р=0.013), low Hb concentration (р=0.061) and low SF concentration (р=0.005). The combined effects of environmental factors (elevated nitrate levels and low selenium level) on the iodine and iron status are manifested by low concentrations of FT4 (р=0.033), Hb (р=0.06) and SF (р=0.05) and high level of TSH (р=0.05). In conclusion, we found that environmental factors, especially when combined, have a negative impact on the iron and iodine status of females.
Collapse
Affiliation(s)
- Anelia V Bivolarska
- Department of Chemistry and Biochemistry, Faculty of Pharmacy, Medical University of Plovdiv, Plovdiv, Bulgaria
| | - Ana I Maneva
- Department of Chemistry and Biochemistry, Faculty of Pharmacy, Medical University of Plovdiv, Plovdiv, Bulgaria
| | - Penka D Gatseva
- Department of Hygiene and Eco-medicine, Faculty of Public Health, Medical University of Plovdiv, Plovdiv, Bulgaria
| | - Mariana N Katsarova
- Department of Chemistry and Biochemistry, Faculty of Pharmacy, Medical University of Plovdiv, Plovdiv, Bulgaria
| |
Collapse
|