1
|
Song D, Zhang J, Hu X, Liu X. Progress in the treatment of Alzheimer's disease based on nanosized traditional Chinese medicines. J Mater Chem B 2025; 13:1548-1572. [PMID: 39711283 DOI: 10.1039/d4tb02062f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Traditional Chinese medicine (TCM) has been employed for centuries in treating and managing Alzheimer's disease (AD). However, their effective delivery to target sites can be a major challenge. This is due to their poor water solubility, low bioavailability, and potential toxicity. Furthermore, the blood-brain barrier (BBB) is a major obstacle to effective TCM delivery, significantly reducing efficacy. Advancements in nanotechnology and its applications in TCM (nano-TCM) can deliver active ingredients or components of TCM across the BBB to the targeted brain area. This review summarizes the recent advances in nanocarrier-based delivery systems for different types of active constituents of TCM for AD, including terpenoids, polyphenols, alkaloids, flavonoids, and quinones. Besides, the main challenges and opportunities for the future development of these advanced TCM nanocarriers are emphasized. In conclusion, this review provides valuable insights and guidance for utilizing nanocarriers to shape future TCM drug delivery.
Collapse
Affiliation(s)
- Dan Song
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610044, China.
| | - Jieyu Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, 610044, China
| | - Xuefeng Hu
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610044, China.
| | - Xiaoyan Liu
- West China Hospital of Sichuan University, 610041, China
| |
Collapse
|
2
|
Liu Y, Fan X, Yu X, Liu T, Guo X, Zhang J. Enhancing curcumin stability and bioavailability through chickpea protein isolate-citrus pectin conjugate emulsions: Targeted delivery and gut microecology modulation. Int J Biol Macromol 2025; 300:140295. [PMID: 39863193 DOI: 10.1016/j.ijbiomac.2025.140295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 01/13/2025] [Accepted: 01/22/2025] [Indexed: 01/27/2025]
Abstract
The limited solubility, rapid metabolism, and poor bioavailability of curcumin restrict its application. In this study, we synthesized chickpea protein isolate (CPI)-citrus pectin (CP) conjugates to prepare an emulsion delivery system that enhances the stability and bioavailability of curcumin. The CPI-CP emulsion achieved a curcumin encapsulation efficiency of 86.15 %. Additionally, the stability of curcumin within CPI-CP emulsion was enhanced under conditions of thermal, UV irradiation, and oxidation. In vitro digestion demonstrated that the CPI-CP conjugates effectively preserved the interfacial film integrity during gastric digestion, facilitating targeted delivery of curcumin to the small intestine. This resulted in a substantial increase in curcumin bioavailability, from 50.60 % to 85.60 %. In vivo, the emulsion alleviated liver oxidative stress by improving antioxidant enzyme activity and promoted gut health through increased short-chain fatty acid production and modulation of gut microbiota. This research presents an effective strategy for enhancing the stability and bioavailability of curcumin and demonstrates the potential application of CPI-CP conjugates in delivery systems for bioactive substances.
Collapse
Affiliation(s)
- Yibo Liu
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China; Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shihezi University, Shihezi, Xinjiang 832000, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Xuemei Fan
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China; Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shihezi University, Shihezi, Xinjiang 832000, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Xiyu Yu
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China; Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shihezi University, Shihezi, Xinjiang 832000, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Ting Liu
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China; Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shihezi University, Shihezi, Xinjiang 832000, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Xiaobing Guo
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China; Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shihezi University, Shihezi, Xinjiang 832000, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, Shihezi University, Shihezi, Xinjiang 832000, China.
| | - Jian Zhang
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China; Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shihezi University, Shihezi, Xinjiang 832000, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, Shihezi University, Shihezi, Xinjiang 832000, China.
| |
Collapse
|
3
|
Moldoveanu CA, Tomoaia-Cotisel M, Sevastre-Berghian A, Tomoaia G, Mocanu A, Pal-Racz C, Toma VA, Roman I, Ujica MA, Pop LC. A Review on Current Aspects of Curcumin-Based Effects in Relation to Neurodegenerative, Neuroinflammatory and Cerebrovascular Diseases. Molecules 2024; 30:43. [PMID: 39795101 PMCID: PMC11722367 DOI: 10.3390/molecules30010043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/20/2024] [Accepted: 12/24/2024] [Indexed: 01/13/2025] Open
Abstract
Curcumin is among the most well-studied natural substances, known for its biological actions within the central nervous system, its antioxidant and anti-inflammatory properties, and human health benefits. However, challenges persist in effectively utilising curcumin, addressing its metabolism and passage through the blood-brain barrier (BBB) in therapies targeting cerebrovascular diseases. Current challenges in curcumin's applications revolve around its effects within neoplastic tissues alongside the development of intelligent formulations to enhance its bioavailability. Formulations have been discovered including curcumin's complexes with brain-derived phospholipids and proteins, or its liposomal encapsulation. These novel strategies aim to improve curcumin's bioavailability and stability, and its capability to cross the BBB, thereby potentially enhancing its efficacy in treating cerebrovascular diseases. In summary, this review provides a comprehensive overview of molecular pathways involved in interactions of curcumin and its metabolites, and brain vascular homeostasis. This review explores cellular and molecular current aspects, of curcumin-based effects with an emphasis on curcumin's metabolism and its impact on pathological conditions, such as neurodegenerative diseases, schizophrenia, and cerebral angiopathy. It also highlights the limitations posed by curcumin's poor bioavailability and discusses ongoing efforts to surpass these impediments to harness the full therapeutic potential of curcumin in neurological disorders.
Collapse
Affiliation(s)
- Claudia-Andreea Moldoveanu
- Department of Molecular Biology and Biotechnology, Babeș-Bolyai University, Clinicilor St., RO-400371 Cluj-Napoca, Romania;
- Department of Experimental Biology and Biochemistry, Institute of Biological Research from Cluj-Napoca, a Branch of NIRDBS Bucharest, 48 Republicii St., RO-400015 Cluj-Napoca, Romania;
| | - Maria Tomoaia-Cotisel
- Research Center of Excellence in Physical Chemistry, Faculty of Chemistry and Chemical Engineering, “Babes-Bolyai University”, 11 Arany Janos St., RO-400028 Cluj-Napoca, Romania or (M.T.-C.); (A.M.); (C.P.-R.); (M.-A.U.)
- Academy of Romanian Scientists, 3 Ilfov St., RO-050044 Bucharest, Romania;
| | - Alexandra Sevastre-Berghian
- Department of Physiology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 1 Clinicilor St., RO-400006 Cluj-Napoca, Romania;
| | - Gheorghe Tomoaia
- Academy of Romanian Scientists, 3 Ilfov St., RO-050044 Bucharest, Romania;
- Department of Orthopedics and Traumatology, “Iuliu Hațieganu” University of Medicine and Pharmacy, 47 Gen. Traian Moșoiu St., RO-400132 Cluj-Napoca, Romania
| | - Aurora Mocanu
- Research Center of Excellence in Physical Chemistry, Faculty of Chemistry and Chemical Engineering, “Babes-Bolyai University”, 11 Arany Janos St., RO-400028 Cluj-Napoca, Romania or (M.T.-C.); (A.M.); (C.P.-R.); (M.-A.U.)
| | - Csaba Pal-Racz
- Research Center of Excellence in Physical Chemistry, Faculty of Chemistry and Chemical Engineering, “Babes-Bolyai University”, 11 Arany Janos St., RO-400028 Cluj-Napoca, Romania or (M.T.-C.); (A.M.); (C.P.-R.); (M.-A.U.)
| | - Vlad-Alexandru Toma
- Department of Molecular Biology and Biotechnology, Babeș-Bolyai University, Clinicilor St., RO-400371 Cluj-Napoca, Romania;
- Department of Experimental Biology and Biochemistry, Institute of Biological Research from Cluj-Napoca, a Branch of NIRDBS Bucharest, 48 Republicii St., RO-400015 Cluj-Napoca, Romania;
- Academy of Romanian Scientists, 3 Ilfov St., RO-050044 Bucharest, Romania;
- Centre for Systems Biology, Biodiversity and Bioresources “3B”, Babeș-Bolyai University, 44 Republicii St., RO-400347 Cluj-Napoca, Romania
| | - Ioana Roman
- Department of Experimental Biology and Biochemistry, Institute of Biological Research from Cluj-Napoca, a Branch of NIRDBS Bucharest, 48 Republicii St., RO-400015 Cluj-Napoca, Romania;
| | - Madalina-Anca Ujica
- Research Center of Excellence in Physical Chemistry, Faculty of Chemistry and Chemical Engineering, “Babes-Bolyai University”, 11 Arany Janos St., RO-400028 Cluj-Napoca, Romania or (M.T.-C.); (A.M.); (C.P.-R.); (M.-A.U.)
| | - Lucian-Cristian Pop
- Research Center of Excellence in Physical Chemistry, Faculty of Chemistry and Chemical Engineering, “Babes-Bolyai University”, 11 Arany Janos St., RO-400028 Cluj-Napoca, Romania or (M.T.-C.); (A.M.); (C.P.-R.); (M.-A.U.)
| |
Collapse
|
4
|
Abdel-Moneim AME, Mesalam NM, Yang B, Elsadek MF. Dietary incorporation of biological curcumin nanoparticles improved growth performance, ileal architecture, antioxidative status, serum lipid profile, and humoral immune response of heat-stressed broiler chickens. Poult Sci 2024; 104:104740. [PMID: 39764875 PMCID: PMC11760303 DOI: 10.1016/j.psj.2024.104740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 12/21/2024] [Accepted: 12/25/2024] [Indexed: 01/29/2025] Open
Abstract
Heat stress greatly impairs poultry productivity, underscoring the urgent need for effective strategies to mitigate these adverse effects and improve overall poultry health. This study assessed the impact of dietary curcumin nanoparticles (CurNPs) on blood metabolites, immunity, redox status, ileal histomorphometry, and growth of broilers subjected to heat stress. A total of 400 one-day-old Ross-308 broiler chicks were randomly distributed into five groups, each consisting of eight replicates with ten birds per replicate. The chicks were fed a basal diet containing CurNPs at concentrations of 0, 100, 200, 300, or 400 mg/kg feed, designated as 0CurNPs, 100CurNPs, 200CurNPs, 300CurNPs, and 400CurNPs, respectively. Dietary CurNPs supplementation linearly (P > 0.001) improved weight gain, feed conversion ratio and European production efficiency index, while feed intake decreased linearly (P > 0.001) with increasing CurNPs supplementation. Carcass traits and serum renal and hepatic function biomarkers remained unaffected by the treatment. Serum cholesterol and LDL levels exhibited linear and quadratic (P > 0.05) reduction in all treated groups, although triglycerides and VLDL levels reduced linearly (P > 0.05) only in the 300CurNPs group. The inclusion of CurNPs resulted in a linear and quadratic increase (P > 0.05) in ileal villi height and a linear elevation (P > 0.05) in the villi height-to-crypt depth ratio. The redox status was improved with CurNPs supplementation, as serum MDA levels showed a linear decrease (P > 0.05) in the 300CurNPs and 400CurNPs groups, while SOD levels increased linearly and quadratically (P > 0.05) across all treated groups. Furthermore, dietary CurNPs exhibited linear (P > 0.001) increases in serum levels of IgM, IgG, and IgA, though antibody titres against NDV and AIV were unaffected. In conclusion, CurNPs proved to be an effective growth promoter, enhancing growth, intestinal architecture, redox status, and humoral immunity in heat-stressed broilers.
Collapse
Affiliation(s)
| | - Noura M Mesalam
- Biological Applications Department, Nuclear Research Center, Egyptian Atomic Energy Authority, 13759, Egypt
| | - Bing Yang
- College of Animal Science, Anhui Science and Technology University, Fengyang 233100, China
| | - Mohamed Farouk Elsadek
- Department of Biochemistry, College of Sciences, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
5
|
Hsu CY, Allela OQB, Hussein AM, Mustafa MA, Kaur M, Alaraj M, Al-Hussainy AF, Radi UK, Ubaid M, Idan AH, Alsaikhan F, Narmani A, Farhood B. Recent advances in polysaccharide-based drug delivery systems for cancer therapy: a comprehensive review. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2024; 52:564-586. [PMID: 39639430 DOI: 10.1080/21691401.2024.2436350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 11/13/2024] [Accepted: 11/25/2024] [Indexed: 12/07/2024]
Abstract
Cancer has a high rate of incidence and mortality throughout the world. Although several conventional approaches have been developed for the treatment of cancer, such as surgery, chemotherapy, radiotherapy and thermal therapy, they have remarkable disadvantages which result in inefficient treatment of cancer. For example, immunogenicity, prolonged treatment, non-specificity, metastasis and high cost of treatment, are considered as the major drawbacks of chemotherapy. Therefore, there is a fundamental requirement for the development of breakthrough technologies for cancer suppression. Polysaccharide-based drug delivery systems (DDSs) are the most reliable drug carriers for cancer therapy. Polysaccharides, as a kind of practical biomaterials, are divided into several types, including chitosan, alginates, dextran, hyaluronic acid, cyclodextrin, pectin, etc. Polysaccharides are extracted from different natural resources (like herbal, marine, microorganisms, etc.). The potential features of polysaccharides have made them reliable candidates for therapeutics delivery to cancer sites; the simple purification, ease of modification and functionalization, hydrophilicity, serum stability, appropriate drug loading capacity, biocompatibility, bioavailability, biodegradability and stimuli-responsive and sustained drug release manner are considerable aspects of these biopolymers. This review highlights the practical applications of polysaccharides-based DDSs in pharmaceutical science and cancer therapy.
Collapse
Affiliation(s)
- Chou-Yi Hsu
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan City, Taiwan
- Thunderbird School of Global Management, Arizona State University Tempe Campus, Phoenix, Arizona, USA
| | | | - Ali M Hussein
- Department of Biomedical Sciences, College of Applied Sciences, Cihan University-Erbil, Kurdistan Region, Iraq
| | | | - Mandeep Kaur
- Department of Chemistry, School of Sciences, Jain (Deemed-to-be) University, Bengaluru, India
- Department of Sciences, Vivekananda Global University, Jaipur, India
| | | | | | - Usama Kadem Radi
- Collage of Pharmacy, National University of Science and Technology, Dhi Qar, Iraq
| | - Mohammed Ubaid
- Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| | | | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
- School of Pharmacy, Ibn Sina National College for Medical Studies, Jeddah, Saudi Arabia
| | - Asghar Narmani
- Department of Life Science Engineering, University of Tehran, Tehran, Iran
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
6
|
Fernandez F, Griffiths LR, Sutherland HG, Cole MH, Fitton JH, Winberg P, Schweitzer D, Hopkins LN, Meyer BJ. Sirtuin Proteins and Memory: A Promising Target in Alzheimer's Disease Therapy? Nutrients 2024; 16:4088. [PMID: 39683482 DOI: 10.3390/nu16234088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 11/20/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
Sirtuins (SIRTs), nicotine adenine dinucleotide (+)-dependent histone deacetylases, have emerged as critical regulators in many signalling pathways involved in a wide range of biological processes. Currently, seven mammalian SIRTs have been characterized and are found across a number of cellular compartments. There has been considerable interest in the role of SIRTs in the brain due to their role in a plethora of metabolic- and age-related diseases, including their involvement in learning and memory function in physiological and pathophysiological conditions. Although cognitive function declines over the course of healthy ageing, neurological disorders including Alzheimer's disease (AD) can be associated with progressive cognitive impairments. This review aimed to report and integrate recent advances in the understanding of the role of SIRTs in cognitive function and dysfunction in the context of AD. We have also reviewed the use of selective and/or natural SIRT activators as potential therapeutic agents and/or adjuvants for AD.
Collapse
Affiliation(s)
- Francesca Fernandez
- School of Behavioural and Health Sciences, Faculty of Heath Sciences, Australian Catholic University, Banyo, QLD 4014, Australia
- Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology, 60 Musk Ave, Kelvin Grove, QLD 4059, Australia
- Healthy Brain and Mind Research Centre, Australian Catholic University, Fitzroy, VIC 3065, Australia
| | - Lyn R Griffiths
- Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology, 60 Musk Ave, Kelvin Grove, QLD 4059, Australia
| | - Heidi G Sutherland
- Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology, 60 Musk Ave, Kelvin Grove, QLD 4059, Australia
| | - Michael H Cole
- School of Behavioural and Health Sciences, Faculty of Heath Sciences, Australian Catholic University, Banyo, QLD 4014, Australia
- Healthy Brain and Mind Research Centre, Australian Catholic University, Fitzroy, VIC 3065, Australia
| | - J Helen Fitton
- Venus Shell Systems Pty Ltd., Huskisson, NSW 2540, Australia
| | - Pia Winberg
- Venus Shell Systems Pty Ltd., Huskisson, NSW 2540, Australia
- School of Medical, Indigenous and Health Science, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Daniel Schweitzer
- Mater Centre of Neuroscience, 53 Raymond Terrace, South Brisbane, QLD 4066, Australia
- Department of Neurology, Wesley Hospital, 451 Coronation Drive, Auchenflower, QLD 4066, Australia
| | - Lloyd N Hopkins
- Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology, 60 Musk Ave, Kelvin Grove, QLD 4059, Australia
| | - Barbara J Meyer
- School of Medical, Indigenous and Health Science, University of Wollongong, Wollongong, NSW 2522, Australia
- Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia
| |
Collapse
|
7
|
Özsan M, Saygili Düzova Ü, Dönmez N. Neuroprotective role of curcumin on the hippocampus against the oxidative stress and inflammation of streptozotocin-induced diabetes in rats. Metab Brain Dis 2024; 40:24. [PMID: 39565437 DOI: 10.1007/s11011-024-01438-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 10/21/2024] [Indexed: 11/21/2024]
Abstract
In recent years, it has gained importance to determine the effects of diabetes on central nervous system complications. This study aimed to assess the neuroprotective properties of curcumin against neuronal damage in the rat hippocampus caused by diabetes. In accordance with this purpose, we investigated the effects of curcumin on oxidative/antioxidative parameters and pro-inflammatory cytokines in the hippocampal tissue of diabetic Wistar rats. For this purpose, 32 adults, male and healthy Wistar Albino rats were used. Animals were randomly divided into four separate groups: control (C), curcumin(Cu), diabetes (D) and Diabetes + Curcumin (DCu)-treated groups. 60 mg/kg STZ i.p. A single dose was administered to D and DCu groups. Cu and DCu groups were given 50 mg/kg/day curcumin by gavage. After four weeks of treatment, the animals were decapitated under anesthesia and tissue samples were taken for analyses of the parameters (TNF-α, IL-6, IL-1, IL-10, MDA, SOD, catalase, and GSH activities) in the hippocampal tissue. TNF-α, IL-6, IL-1, and MDA levels were increased significantly (p < 0.05) in rats with diabetes compared to the other three groups. TNF-α, IL-6, IL-1, and MDA levels were lower in DCu group animals compared to the D group. It was determined that IL-10, SOD, Catalase, and GSH levels, which were significantly decreased in the D group, increased in the curcumin-supplemented diabetic group (DCu). The relevant sentence has been changed as follows. In conclusion, our findings from this study prove the protective effect of curcumin against diabetes-induced neuropathy in the hippocampus in rats with STZ-induced diabetes.
Collapse
Affiliation(s)
- Mehmet Özsan
- Faculty of Medicine, University of Niğde Ömer Halis Demir, Niğde, Turkey.
| | | | - Nurcan Dönmez
- Faculty of Veterinary, University of Selcuk, Konya, Turkey
| |
Collapse
|
8
|
Nagarajan K, Thamarai R, Kamaraj C, Al-Ghanim KA, Subramaniam K, Malafaia G. Green synthesis and evaluation of dual herb-extracted DHM-AgNPs: Antimicrobial efficacy and low ecotoxicity in agricultural and aquatic systems. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122849. [PMID: 39405879 DOI: 10.1016/j.jenvman.2024.122849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/21/2024] [Accepted: 10/06/2024] [Indexed: 11/17/2024]
Abstract
Uncontrolled applications of weedicide and fertilizer can harm the soil ecology, and most significantly, earthworms are hazardous soil engineers. Thus, we aimed at the toxicity and histopathological alterations in the earthworm Eudrilus euginae following exposure to glyphosate (weedicide), urea (fertilizer), and environmentally friendly dual herb-mixed silver nanoparticles (DHM-AgNPs). The DHM-AgNPs were synthesized using a blend of Alfinia officinarum and Curcuma longa aqueous leaf extracts with 1 mM silver nitrate. The color change from yellow to brown after an hour of incubation was a significant indicator of successful DHM-AgNP synthesis. Characterization of the DHM-AgNPs using UV-Vis spectra indicated a surface plasmon resonance (SPR) peak at 430 nm. In addition to FT-IR spectroscopy and XRD analysis, SEM, TEM, and SEM investigations were performed to identify the DHM-AgNPs. The XPS analysis revealed the oxidation state and surface chemical composition, and Ag NP's specific surface area and degree of porosity were measured using BET. Furthermore, different concentrations of urea and glyphosate were administered to Artemia nauplii and E. euginae to assess their toxicity. The mortality rate for E. euginae exposed to a higher urea concentration (10 g/kg of soil) was 100%. In contrast, a % mortality rate of 83% was noted at 0.5 g/kg of soil. The maximum mortality (90 ± 0.64%) was observed at a 10 mL/kg/L concentration for glyphosate. In contrast, low mortality was noted in E. euginae and A. nauplii exposed with gradient concentrations of DHM-AgNPs compared to glyphosate and urea. As aquaculture and foodborne diseases are widespread, DHM-AgNPs showed significant anti-Vibrio activity against pathogenic Vibrio-related bacteria, inhibiting 80% at 100,100 μg/L, which is of great concern. This study suggests the potential use of DHM-AgNPs in field aqua and crops culture for eco-friendly pest control and anti-Vibrio activity without causing soil and environmental pollution. Further research is warranted to determine the efficacy, safety, and cost-effectiveness of DHM-AgNPs in aqua and agricultural practices.
Collapse
Affiliation(s)
- Kalimuthu Nagarajan
- Department of Animal Science, Manonmaniam Sundaranar University, Tirunelveli, Tamil Nadu, 627012, India
| | - Rajkumar Thamarai
- Department of Animal Science, Manonmaniam Sundaranar University, Tirunelveli, Tamil Nadu, 627012, India.
| | - Chinnaperumal Kamaraj
- Interdisciplinary Institute of Indian System of Medicine (IIISM), SRM Institute Science and Technology, Kattankulathur, 603 203, Tamil Nadu, India.
| | - Khalid A Al-Ghanim
- Department of Zoology, College of Science, King Saud University, P.O. Box 11451, Riyadh, Saudi Arabia.
| | - Kalidass Subramaniam
- Department of Animal Science, Manonmaniam Sundaranar University, Tirunelveli, Tamil Nadu, 627012, India
| | - Guilherme Malafaia
- Post-Graduation Program in Biotechnology and Biodiversity, Federal University of Goiás, Goiânia, GO, Brazil; Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute - Urutaí Campus, Urutaí, GO, Brazil; Post-Graduation Program in Ecology, Conservation, And Biodiversity, Federal University of Uberl^andia, Uberlândia, MG, Brazil; Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Biology of the Parasite-Host Relationship (PPGBRPH), Institute of Tropical Pathology and Public Health, Federal University of Goiás, Brazil.
| |
Collapse
|
9
|
Bhol NK, Bhanjadeo MM, Singh AK, Dash UC, Ojha RR, Majhi S, Duttaroy AK, Jena AB. The interplay between cytokines, inflammation, and antioxidants: mechanistic insights and therapeutic potentials of various antioxidants and anti-cytokine compounds. Biomed Pharmacother 2024; 178:117177. [PMID: 39053423 DOI: 10.1016/j.biopha.2024.117177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/03/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024] Open
Abstract
Cytokines regulate immune responses essential for maintaining immune homeostasis, as deregulated cytokine signaling can lead to detrimental outcomes, including inflammatory disorders. The antioxidants emerge as promising therapeutic agents because they mitigate oxidative stress and modulate inflammatory pathways. Antioxidants can potentially ameliorate inflammation-related disorders by counteracting excessive cytokine-mediated inflammatory responses. A comprehensive understanding of cytokine-mediated inflammatory pathways and the interplay with antioxidants is paramount for developing natural therapeutic agents targeting inflammation-related disorders and helping to improve clinical outcomes and enhance the quality of life for patients. Among these antioxidants, curcumin, vitamin C, vitamin D, propolis, allicin, and cinnamaldehyde have garnered attention for their anti-inflammatory properties and potential therapeutic benefits. This review highlights the interrelationship between cytokines-mediated disorders in various diseases and therapeutic approaches involving antioxidants.
Collapse
Affiliation(s)
- Nitish Kumar Bhol
- Post Graduate Department of Biotechnology, Utkal University, Bhubaneswar, Odisha 751004, India
| | | | - Anup Kumar Singh
- National Centre for Cell Science, Savitribai Phule Pune University Campus, Ganeshkhind, Pune, India
| | - Umesh Chandra Dash
- Environmental Biotechnology Laboratory, KIIT School of Biotechnology, KIIT Deemed to be University, Bhubaneswar, Odisha, India
| | - Rakesh Ranjan Ojha
- Department of Bioinformatics, BJB (A) College, Bhubaneswar, Odisha-751014, India
| | - Sanatan Majhi
- Post Graduate Department of Biotechnology, Utkal University, Bhubaneswar, Odisha 751004, India
| | - Asim K Duttaroy
- Department of Nutrition, Institute of Medical Sciences, Faculty of Medicine, University of Oslo, Norway.
| | - Atala Bihari Jena
- National Centre for Cell Science, Savitribai Phule Pune University Campus, Ganeshkhind, Pune, India.
| |
Collapse
|
10
|
Tripathi S, Bhawana. Epigenetic Orchestration of Neurodegenerative Disorders: A Possible Target for Curcumin as a Therapeutic. Neurochem Res 2024; 49:2319-2335. [PMID: 38856890 DOI: 10.1007/s11064-024-04167-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/23/2024] [Accepted: 05/22/2024] [Indexed: 06/11/2024]
Abstract
Epigenetic modulations play a major role in gene expression and thus are responsible for various physiological changes including age-associated neurological disorders. Neurodegenerative diseases such as Alzheimer's (AD), Parkinson's (PD), Huntington's disease (HD), although symptomatically different, may share common underlying mechanisms. Most neurodegenerative diseases are associated with increased oxidative stress, aggregation of certain proteins, mitochondrial dysfunction, inactivation/dysregulation of protein degradation machinery, DNA damage and cell excitotoxicity. Epigenetic modulations has been reported to play a significant role in onset and progression of neurodegenerative diseases by regulating these processes. Previous studies have highlighted the marked antioxidant and neuroprotective abilities of polyphenols such as curcumin, by increased activity of detoxification systems like superoxide dismutase (SOD), catalase or glutathione peroxidase. The role of curcumin as an epigenetic modulator in neurological disorders and neuroinflammation apart from other chronic diseases have also been reported by a few groups. Nonetheless, the evidences for the role of curcumin mediated epigenetic modulation in its neuroprotective ability are still limited. This review summarizes the current knowledge of the role of mitochondrial dysfunction, epigenetic modulations and mitoepigenetics in age-associated neurological disorders such as PD, AD, HD, Amyotrophic Lateral Sclerosis (ALS), and Multiple Sclerosis (MS), and describes the neuroprotective effects of curcumin in the treatment and/or prevention of these neurodegenerative diseases by regulation of the epigenetic machinery.
Collapse
Affiliation(s)
- Shweta Tripathi
- Department of Paramedical Sciences, Faculty of Allied Health Sciences, SGT University, Gurugram, 122505, Haryana, India.
| | - Bhawana
- Department of Paramedical Sciences, Faculty of Allied Health Sciences, SGT University, Gurugram, 122505, Haryana, India
| |
Collapse
|
11
|
Banerjee T, Sarkar A, Ali SZ, Bhowmik R, Karmakar S, Halder AK, Ghosh N. Bioprotective Role of Phytocompounds Against the Pathogenesis of Non-alcoholic Fatty Liver Disease to Non-alcoholic Steatohepatitis: Unravelling Underlying Molecular Mechanisms. PLANTA MEDICA 2024; 90:675-707. [PMID: 38458248 DOI: 10.1055/a-2277-4805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD), with a global prevalence of 25%, continues to escalate, creating noteworthy concerns towards the global health burden. NAFLD causes triglycerides and free fatty acids to build up in the liver. The excessive fat build-up causes inflammation and damages the healthy hepatocytes, leading to non-alcoholic steatohepatitis (NASH). Dietary habits, obesity, insulin resistance, type 2 diabetes, and dyslipidemia influence NAFLD progression. The disease burden is complicated due to the paucity of therapeutic interventions. Obeticholic acid is the only approved therapeutic agent for NAFLD. With more scientific enterprise being directed towards the understanding of the underlying mechanisms of NAFLD, novel targets like lipid synthase, farnesoid X receptor signalling, peroxisome proliferator-activated receptors associated with inflammatory signalling, and hepatocellular injury have played a crucial role in the progression of NAFLD to NASH. Phytocompounds have shown promising results in modulating hepatic lipid metabolism and de novo lipogenesis, suggesting their possible role in managing NAFLD. This review discusses the ameliorative role of different classes of phytochemicals with molecular mechanisms in different cell lines and established animal models. These compounds may lead to the development of novel therapeutic strategies for NAFLD progression to NASH. This review also deliberates on phytomolecules undergoing clinical trials for effective management of NAFLD.
Collapse
Affiliation(s)
- Tanmoy Banerjee
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, India
| | - Arnab Sarkar
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, India
| | - Sk Zeeshan Ali
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, India
| | - Rudranil Bhowmik
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, India
| | - Sanmoy Karmakar
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, India
| | - Amit Kumar Halder
- Dr. B. C. Roy College of Pharmacy and Allied Health Sciences, Dr. Meghnad Saha Sarani, Bidhannagar, Durgapur, West Bengal, India
| | - Nilanjan Ghosh
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, India
| |
Collapse
|
12
|
Abdul-Rahman T, Awuah WA, Mikhailova T, Kalmanovich J, Mehta A, Ng JC, Coghlan MA, Zivcevska M, Tedeschi AJ, de Oliveira EC, Kumar A, Cantu-Herrera E, Lyndin M, Sikora K, Alexiou A, Bilgrami AL, Al-Ghamdi KM, Perveen A, Papadakis M, Ashraf GM. Antioxidant, anti-inflammatory and epigenetic potential of curcumin in Alzheimer's disease. Biofactors 2024; 50:693-708. [PMID: 38226733 DOI: 10.1002/biof.2039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 12/20/2023] [Indexed: 01/17/2024]
Abstract
Alzheimer's disease (AD) constitutes a multifactorial neurodegenerative pathology characterized by cognitive deterioration, personality alterations, and behavioral shifts. The ongoing brain impairment process poses significant challenges for therapeutic interventions due to activating multiple neurotoxic pathways. Current pharmacological interventions have shown limited efficacy and are associated with significant side effects. Approaches focusing on the early interference with disease pathways, before activation of broad neurotoxic processes, could be promising to slow down symptomatic progression of the disease. Curcumin-an integral component of traditional medicine in numerous cultures worldwide-has garnered interest as a promising AD treatment. Current research indicates that curcumin may exhibit therapeutic potential in neurodegenerative pathologies, attributed to its potent anti-inflammatory and antioxidant properties. Additionally, curcumin and its derivatives have demonstrated an ability to modulate cellular pathways via epigenetic mechanisms. This article aims to raise awareness of the neuroprotective properties of curcuminoids that could provide therapeutic benefits in AD. The paper provides a comprehensive overview of the neuroprotective efficacy of curcumin against signaling pathways that could be involved in AD and summarizes recent evidence of the biological efficiency of curcumins in vivo.
Collapse
Affiliation(s)
- Toufik Abdul-Rahman
- Sumy State University, Sumy, Ukraine
- Toufik's World Medical Association, Ukraine
| | - Wireko Andrew Awuah
- Sumy State University, Sumy, Ukraine
- Toufik's World Medical Association, Ukraine
| | | | - Jacob Kalmanovich
- Drexel University College of Medicine, Philadelphia, Pennsylvania, United States
| | - Aashna Mehta
- University of Debrecen-Faculty of Medicine, Debrecen, Hungary
| | - Jyi Cheng Ng
- Faculty of Medicine and Health Sciences, University of Putra Malaysia, Serdang, Malaysia
| | - Megan Ariel Coghlan
- University of Louisville School of Medicine, Louisville, Kentucky, United States
| | - Marija Zivcevska
- Liberty University College of Osteopathic Medicine, Lynchburg, Virginia, United States
| | | | | | - Akinchita Kumar
- Lincoln Memorial University-DeBusk College of Osteopathic Medicine Harrogate, Harrogate, Tennessee, United States
| | - Emiliano Cantu-Herrera
- Department of Clinical Sciences, Division of Health Sciences, University of Monterrey, San Pedro Garza García, Nuevo León, Mexico
| | - Mykola Lyndin
- Sumy State University, Sumy, Ukraine
- Medical Faculty, Institute of Anatomy, University of Duisburg-Essen, Essen, Germany
| | | | - Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, New South Wales, Australia
- University Centre for Research and Development, Chandigarh University, Mohali, Punjab, India
- AFNP Med, Wien, Austria
| | - Anwar L Bilgrami
- Deanship of Scientific Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | - Asma Perveen
- Glocal School of Life Sciences, Glocal University, Saharanpur, Uttar Pradesh, India
- Princess Dr. Najla Bint Saud Al-Saud Center for Excellence Research in Biotechnology, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, University of Witten-Herdecke, Wuppertal, Germany
| | - Ghulam Md Ashraf
- University of Sharjah, College of Health Sciences, and Research Institute for Medical and Health Sciences, Department of Medical Laboratory Sciences, Sharjah, United Arab Emirates
| |
Collapse
|
13
|
Pourhabibi-Zarandi F, Rafraf M, Zayeni H, Asghari-Jafarabadi M, Ebrahimi AA. The efficacy of curcumin supplementation on serum total antioxidant capacity, malondialdehyde, and disease activity in women with rheumatoid arthritis: A randomized, double-blind, placebo-controlled clinical trial. Phytother Res 2024; 38:3552-3563. [PMID: 38699839 DOI: 10.1002/ptr.8225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 03/22/2024] [Accepted: 04/19/2024] [Indexed: 05/05/2024]
Abstract
Oxidative stress plays a crucial role in the physiopathology of rheumatoid arthritis (RA), which is associated with impaired antioxidant defenses. This study aimed to investigate the effects of curcumin supplementation on serum levels of total antioxidant capacity (TAC), malondialdehyde (MDA), and disease activity in women with RA. In this clinical trial, 48 women with RA were treated with one capsule of curcumin (500 mg daily) or placebo for 8 weeks. Anthropometric measurements and fasting blood samples were collected at baseline and end of the study. Finally, we assessed the Disease Activity Score in 28 joints (DAS-28), dietary intake, and physical activity levels. While curcumin supplementation for 8 weeks significantly increased the serum levels of TAC (p < 0.05), it decreased tender joint counts, swollen joint counts, visual analog scale (VAS) for pain, and DAS-28 compared to the placebo at the end of the study (p < 0.001 for all). MDA levels significantly decreased in the curcumin group (p < 0.05). However, changes in MDA concentration were not significant between groups at the end of the trial (p = 0.145). Curcumin supplementation had a beneficial effect on increasing the serum levels of TAC and decreased DAS-28 in women with RA.
Collapse
Affiliation(s)
- Fatemeh Pourhabibi-Zarandi
- Student Research Committee, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
- Nutrition Research Center, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Rafraf
- Nutrition Research Center, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Habib Zayeni
- Guilan Rheumatology Research Center, Department of Rheumatology, Razi Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Mohammad Asghari-Jafarabadi
- Cabrini Research, Cabrini Health, Malvern, Victoria, Australia
- School of Public Health and Preventative Medicine, Monash University, Melbourne, Victoria, Australia
- Road Traffic Injury Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali-Asghar Ebrahimi
- Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Internal Medicine Department, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
14
|
Wang X, Zhang W, Zhou S. Multifaceted physiological and therapeutical impact of curcumin on hormone-related endocrine dysfunctions: A comprehensive review. Phytother Res 2024; 38:3307-3336. [PMID: 38622915 DOI: 10.1002/ptr.8208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/28/2024] [Accepted: 03/28/2024] [Indexed: 04/17/2024]
Abstract
Over the past five decades, Curcumin (Cur), derived from turmeric (Curcuma longa), has gained considerable attention for its potential therapeutic applications. Synthesizing insights from clinical trials conducted over the last 25 years, this review delves into diseases where Cur has demonstrated promise, offering a nuanced understanding of its pharmacokinetics, safety, and effectiveness. Focusing on specific examples, the impact of Cur on various human diseases is explored. Endocrine glands and associated signaling pathways are highlighted, elucidating how Cur influences cellular signaling. The article underscores molecular mechanisms such as hormone level alteration, receptor interaction, cytokine and adipokine expression inhibition, antioxidant enzyme activity, and modulation of transcription factors. Cur showcases diverse protective mechanisms against inflammation and oxidative damage by suppressing antiapoptotic genes and impeding tumor promotion. This comprehensive overview emphasizes the potential of Cur as a natural agent for countering aging and degenerative diseases, calling for further dedicated research in this realm.
Collapse
Affiliation(s)
- Xiuying Wang
- College of Chinese Medicine, Jilin Agricultural Science and Technology College, Jilin, China
| | - Wei Zhang
- College of Chinese Medicine, Jilin Agricultural Science and Technology College, Jilin, China
| | - Shengxue Zhou
- College of Chinese Medicine, Jilin Agricultural Science and Technology College, Jilin, China
| |
Collapse
|
15
|
Cheong KL, Liu K, Chen W, Zhong S, Tan K. Recent progress in Porphyra haitanensis polysaccharides: Extraction, purification, structural insights, and their impact on gastrointestinal health and oxidative stress management. Food Chem X 2024; 22:101414. [PMID: 38711774 PMCID: PMC11070828 DOI: 10.1016/j.fochx.2024.101414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/21/2024] [Accepted: 04/23/2024] [Indexed: 05/08/2024] Open
Abstract
Porphyra haitanensis, a red seaweed species, represents a bountiful and sustainable marine resource. P. haitanensis polysaccharide (PHP), has garnered considerable attention for its numerous health benefits. However, the comprehensive utilization of PHP on an industrial scale has been limited by the lack of comprehensive information. In this review, we endeavor to discuss and summarize recent advancements in PHP extraction, purification, and characterization. We emphasize the multifaceted mechanisms through which PHP promotes gastrointestinal health. Furthermore, we present a summary of compelling evidence supporting PHP's protective role against oxidative stress. This includes its demonstrated potent antioxidant properties, its ability to neutralize free radicals, and its capacity to enhance the activity of antioxidant enzymes. The information presented here also lays the theoretical groundwork for future research into the structural and functional aspects of PHP, as well as its potential applications in functional foods.
Collapse
Affiliation(s)
- Kit-Leong Cheong
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang 524088, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Keying Liu
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang 524088, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Wenting Chen
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang 524088, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Saiyi Zhong
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang 524088, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Karsoon Tan
- Guangxi Key Laboratory of Beibu Gulf Biodiversity Conservation, Beibu Gulf University, Qinzhou, Guangxi, China
| |
Collapse
|
16
|
Verdoliva V, Muzio G, Autelli R, Saviano M, Bedini E, De Luca S. Microwave-Assisted, Solid-State Procedure to Covalently Conjugate Hyaluronic Acid to Curcumin: Validation of a Green Synthetic Protocol. ACS POLYMERS AU 2024; 4:214-221. [PMID: 38882036 PMCID: PMC11177298 DOI: 10.1021/acspolymersau.3c00047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 06/18/2024]
Abstract
A microwave-assisted esterification reaction to prepare hyaluronan-curcumin derivatives by employing a solvent-free process was developed. In particular, a solid-state strategy to react two molecules characterized by totally different solubility profiles was developed. Hyaluronic acid, a highly hydrosoluble polysaccharide, was reacted with hydrophobic and even water-unstable curcumin. Microwave (MW) irradiation was employed to activate the reaction between the two solid compounds through the direct interaction with them and to preserve the integrity of the sensitive curcumin species. This new protocol can be considered efficient, fast, and also eco-friendly, avoiding the employment of toxic organic bases and solvents. A cytotoxicity test suggested that the developed hyaluronan-curcumin conjugate (HA-CUR) could be considered a candidate for its implementation as a new material. In addition, preliminary studies revealed promising anti-inflammatory activity and open future perspectives of further investigation.
Collapse
Affiliation(s)
- Valentina Verdoliva
- Institute of Biostructures and Bioimaging, National Research Council, 80131 Naples, Italy
| | - Giuliana Muzio
- Department of Clinical and Biological Sciences, University of Turin, 10125 Turin, Italy
| | - Riccardo Autelli
- Department of Clinical and Biological Sciences, University of Turin, 10125 Turin, Italy
| | - Michele Saviano
- Institute of Crystallography, National Research Council, 81100 Caserta, Italy
| | - Emiliano Bedini
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
| | - Stefania De Luca
- Institute of Biostructures and Bioimaging, National Research Council, 80131 Naples, Italy
| |
Collapse
|
17
|
Sun W, Mei X, Wang J, Mai Z, Xu D. Zn(II)-curcumin prevents cadmium-aggravated diabetic nephropathy by regulating gut microbiota and zinc homeostasis. Front Pharmacol 2024; 15:1411230. [PMID: 38903987 PMCID: PMC11188322 DOI: 10.3389/fphar.2024.1411230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/13/2024] [Indexed: 06/22/2024] Open
Abstract
Background: Diabetic nephropathy (DN) is known as the most common complication of diabetes, resulting from a complex inheritance-environment interaction without effective clinical treatments. Herein, we revealed the protective effects and mechanisms of Zn(II)-curcumin, a curcumin derivative, against streptozotocin-induced DN in rats in the presence or absence of cadmium exposure. Methods: The present study focused on investigating the therapy of Zn(II)-curcumin against cadmium-aggravated DN by regulating gut microbiota, metabolism, inflammation and zinc homeostasis based on pathological changes, TLR4/NF-κB signaling pathway, inductively coupled plasma-mass spectrometry (ICP-MS), 16S rRNA gene sequencing and gas chromatography-mass spectrometer (GC-MS). Results: We found Zn(II)-curcumin significantly mitigated the cadmium-aggravated phenotypes of diabetic nephropathy, as indicated by the remission of renal dysfunction, pathological changes, inflammation and zinc dyshomeostasis in streptozotocin-treated rats exposed to cadmium. Administration of Zn(II)-curcumin significantly alleviated the dysbiosis of gut microbiota and the changes of serum metabolite profiles in rats treated with streptozotocin in combination with cadmium. Notably, fecal microbial transplantation identified the ability of Zn(II)-curcumin to regulate renal function, inflammation and zinc homeostasis was partly dependent on the gut microbiota. Conclusion: These findings revealed that Zn(II)-curcumin alleviated cadmium-aggravated diabetic nephropathy by reshaping the gut microbiota and zinc homeostasis, which provided unique insights into the mechanisms of the treatment and prevention of diabetic nephropathy.
Collapse
Affiliation(s)
- Wenjia Sun
- Laboratory of Traditional Chinese Medicine and Marine Drugs, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xueting Mei
- Laboratory Animal Center, Sun Yat-sen University, Guangzhou, China
| | - Jiasheng Wang
- Laboratory of Traditional Chinese Medicine and Marine Drugs, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhicong Mai
- Laboratory of Traditional Chinese Medicine and Marine Drugs, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Donghui Xu
- Laboratory of Traditional Chinese Medicine and Marine Drugs, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
18
|
Liu Q, Wang C, Guo X, Du Q, Keshavarzi M. Curcumin and its nano-formulations combined with exercise: From molecular mechanisms to clinic. Cell Biochem Funct 2024; 42:e4061. [PMID: 38812287 DOI: 10.1002/cbf.4061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 04/15/2024] [Accepted: 05/12/2024] [Indexed: 05/31/2024]
Abstract
Curcumin is a strong substance derived from turmeric, a popular spice, renowned for its antioxidant and anti-inflammatory abilities. The study delved deeply into a thorough examination of various sources to evaluate the impact of both regular curcumin and nano-formulated curcumin on elements that impact physical performance, including muscular strain, discomfort, swelling, and oxidative tension. While engaging in exercise, the body experiences a rise in reactive oxygen species and inflammation. As a result, it is important to ensure a proper balance between internal and external sources of antioxidants to maintain stability in the skeletal muscle. Without this balance, there is a risk of muscle soreness, damage, and ultimately, a decline in exercise performance. Curcumin possesses the ability to enhance physical performance and reduce the symptoms of muscle fatigue and injury by virtue of its antioxidative and anti-inflammatory properties. Including curcumin supplements appears to have advantageous effects on various aspects of exercise, such as enhancing performance, assisting with recovery, lessening muscle damage and discomfort, and lowering levels of inflammation and oxidative stress. However, a thorough assessment is necessary to precisely gauge the healing advantages of curcumin in enhancing exercise ability and reducing recovery time.
Collapse
Affiliation(s)
- Qian Liu
- School of Physical Education, Hubei Normal University, Huangshi, 435002, China
| | - Chengyu Wang
- School of Physical Education, Hubei Normal University, Huangshi, 435002, China
| | - Xinyan Guo
- School of Physical Education, Hubei Normal University, Huangshi, 435002, China
| | - Qiankun Du
- School of Physical Education, Hubei Normal University, Huangshi, 435002, China
| | - Maryam Keshavarzi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
19
|
Raduly FM, Raditoiu V, Raditoiu A, Nicolae CA, Grapin M, Stan MS, Voinea IC, Vlasceanu RI, Nitu CD, Mihailescu DF, Avram S, Mernea M. Half-Curcuminoids Encapsulated in Alginate-Glucosamine Hydrogel Matrices as Bioactive Delivery Systems. Gels 2024; 10:376. [PMID: 38920923 PMCID: PMC11203298 DOI: 10.3390/gels10060376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/14/2024] [Accepted: 05/28/2024] [Indexed: 06/27/2024] Open
Abstract
The therapeutic effects of curcumin and its derivatives, based on research in recent years, are limited by their low bioavailability. To improve bioavailability and develop the medical field of application, different delivery systems have been developed that are adapted to certain environments or the proposed target type. This study presents some half-curcuminoids prepared by the condensation of acetylacetone with 4-hydroxybenzaldehyde (C1), 4-hydroxy-3-methoxybenzaldehyde (C2), 4-acetamidobenzaldehyde (C3), or 4-diethylaminobenzaldehyde (C4), at microwaves as a simple, solvent-free, and eco-friendly method. The four compounds obtained were characterized in terms of morphostructural and photophysical properties. Following the predictions of theoretical studies on the biological activities related to the molecular structure, in vitro tests were performed for compounds C1-C3 to evaluate the antitumor properties and for C4's possible applications in the treatment of neurological diseases. The four compounds were encapsulated in two types of hydrogel matrices. First, the alginate-glucosamine network was generated and then the curcumin analogs were loaded (G1, G3, G5-G7, and G9). The second type of hydrogels was obtained by loading the active compound together with the generation of the hydrogel carrier matrices, by simply dissolving (G4 and G10) or by chemically binding half-curcuminoid derivatives to glucosamine (G2 and G8). Thus, two types of curcumin analog delivery systems were obtained, which could be applied in various types of medical treatments.
Collapse
Affiliation(s)
- Florentina Monica Raduly
- National Research and Development Institute for Chemistry and Petrochemistry—ICECHIM, 202 Splaiul Independentei, 060021 Bucharest, Romania; (F.M.R.); (A.R.); (C.A.N.); (M.G.)
| | - Valentin Raditoiu
- National Research and Development Institute for Chemistry and Petrochemistry—ICECHIM, 202 Splaiul Independentei, 060021 Bucharest, Romania; (F.M.R.); (A.R.); (C.A.N.); (M.G.)
| | - Alina Raditoiu
- National Research and Development Institute for Chemistry and Petrochemistry—ICECHIM, 202 Splaiul Independentei, 060021 Bucharest, Romania; (F.M.R.); (A.R.); (C.A.N.); (M.G.)
| | - Cristian Andi Nicolae
- National Research and Development Institute for Chemistry and Petrochemistry—ICECHIM, 202 Splaiul Independentei, 060021 Bucharest, Romania; (F.M.R.); (A.R.); (C.A.N.); (M.G.)
| | - Maria Grapin
- National Research and Development Institute for Chemistry and Petrochemistry—ICECHIM, 202 Splaiul Independentei, 060021 Bucharest, Romania; (F.M.R.); (A.R.); (C.A.N.); (M.G.)
| | - Miruna Silvia Stan
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania; (I.C.V.); (R.-I.V.)
| | - Ionela Cristina Voinea
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania; (I.C.V.); (R.-I.V.)
| | - Raluca-Ioana Vlasceanu
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania; (I.C.V.); (R.-I.V.)
| | - Cristina Doina Nitu
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania; (C.D.N.); (D.F.M.); (S.A.); (M.M.)
- Institute of Oncology “Prof. dr. Al. Trestioreanu”, 252, Fundeni, 022328 Bucharest, Romania
| | - Dan F. Mihailescu
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania; (C.D.N.); (D.F.M.); (S.A.); (M.M.)
| | - Speranta Avram
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania; (C.D.N.); (D.F.M.); (S.A.); (M.M.)
| | - Maria Mernea
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania; (C.D.N.); (D.F.M.); (S.A.); (M.M.)
| |
Collapse
|
20
|
El Massry M, Msheik Z, El Masri T, Ntoutoume GMAN, Vignaud L, Richard L, Pinault E, Faye PA, Bregier F, Marquet P, Favreau F, Vallat JM, Billet F, Sol V, Sturtz F, Desmouliere A. Improvement of Charcot-Marie-Tooth Phenotype with a Nanocomplex Treatment in Two Transgenic Models of CMT1A. Biomater Res 2024; 28:0009. [PMID: 38560579 PMCID: PMC10981932 DOI: 10.34133/bmr.0009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 01/14/2024] [Indexed: 04/04/2024] Open
Abstract
Curcumin has been shown to exert beneficial effects in peripheral neuropathies. Despite its known biological activities, curcumin has unfavorable pharmacokinetics. Its instability has been linked to its failure in clinical trials of curcumin for the treatment of human pathologies. For this reason, we developed curcumin-loaded cyclodextrin/cellulose nanocrystals (NanoCur) to improve its pharmacokinetics. The present study aims to assess the potency of a low dose of NanoCur in 2 Charcot-Marie-Tooth disease type 1A (CMT1A) rodent models at different stages of the disease. The efficiency of NanoCur is also compared to that of Theracurmin (Thera), a commercially available curcumin formulation. The toxicity of a short-term and chronic exposure to the treatment is investigated both in vitro and in vivo, respectively. Furthermore, the entry route, the mechanism of action and the effect on the nerve phenotype are dissected in this study. Overall, the data support an improvement in sensorimotor functions, associated with amelioration in peripheral myelination in NanoCur-treated animals; an effect that was not evident in the Thera-treated group. That was combined with a high margin of safety both in vivo and in vitro. Furthermore, NanoCur appears to inhibit inflammatory pathways that normally include macrophage recruitment to the diseased nerve. This study shows that NanoCur shows therapeutic benefits with minimal systemic toxicity, suggesting that it is a potential therapeutic candidate for CMT1A and, possibly, for other neuropathies.
Collapse
Affiliation(s)
- Mohamed El Massry
- NeurIT UR20218, Faculty of Medicine and Pharmacy,
University of Limoges, Limoges, France
| | - Zeina Msheik
- NeurIT UR20218, Faculty of Medicine and Pharmacy,
University of Limoges, Limoges, France
| | - Tarek El Masri
- NeurIT UR20218, Faculty of Medicine and Pharmacy,
University of Limoges, Limoges, France
- Department of Anatomy, Cell Biology & Physiological Sciences, Faculty of Medicine,
American University of Beirut, Beirut, Lebanon
| | | | - Laetitia Vignaud
- NeurIT UR20218, Faculty of Medicine and Pharmacy,
University of Limoges, Limoges, France
| | - Laurence Richard
- NeurIT UR20218, Faculty of Medicine and Pharmacy,
University of Limoges, Limoges, France
- Reference Center for Rare Peripheral Neuropathies, Department of Neurology,
University Hospital of Limoges, Limoges, France
| | - Emilie Pinault
- BISCEm (Biologie Intégrative Santé Chimie Environnement) Platform, US 42 Inserm/UAR 2015 CNRS,
University of Limoges, Limoges, France
| | - Pierre-Antoine Faye
- NeurIT UR20218, Faculty of Medicine and Pharmacy,
University of Limoges, Limoges, France
- Department of Biochemistry,
University Hospital of Limoges, Limoges, France
| | | | - Pierre Marquet
- INSERM U1248 Pharmacology & Transplantation, CBRS, Faculty of Medicine and Pharmacy,
University of Limoges, Limoges, France
- Department of Pharmacology and Toxicology,
CHU Limoges, Limoges, France
| | - Frédéric Favreau
- NeurIT UR20218, Faculty of Medicine and Pharmacy,
University of Limoges, Limoges, France
- Department of Biochemistry,
University Hospital of Limoges, Limoges, France
| | - Jean-Michel Vallat
- Reference Center for Rare Peripheral Neuropathies, Department of Neurology,
University Hospital of Limoges, Limoges, France
| | - Fabrice Billet
- NeurIT UR20218, Faculty of Medicine and Pharmacy,
University of Limoges, Limoges, France
| | - Vincent Sol
- LABCiS UR22722,
University of Limoges, F-87000 Limoges, France
| | - Franck Sturtz
- NeurIT UR20218, Faculty of Medicine and Pharmacy,
University of Limoges, Limoges, France
- Department of Biochemistry,
University Hospital of Limoges, Limoges, France
| | - Alexis Desmouliere
- NeurIT UR20218, Faculty of Medicine and Pharmacy,
University of Limoges, Limoges, France
| |
Collapse
|
21
|
Zhu J, He L. The Modulatory Effects of Curcumin on the Gut Microbiota: A Potential Strategy for Disease Treatment and Health Promotion. Microorganisms 2024; 12:642. [PMID: 38674587 PMCID: PMC11052165 DOI: 10.3390/microorganisms12040642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/18/2024] [Accepted: 03/20/2024] [Indexed: 04/28/2024] Open
Abstract
Curcumin (CUR) is a lipophilic natural polyphenol that can be isolated from the rhizome of turmeric. Studies have proposed that CUR possesses a variety of biological activities. Due to its anti-inflammatory and antioxidant properties, CUR shows promise in the treatment of inflammatory bowel disease, while its anti-obesity effects make it a potential therapeutic agent in the management of obesity. In addition, curcumin's ability to prevent atherosclerosis and its cardiovascular benefits further expand its potential application in the treatment of cardiovascular disease. Nevertheless, owing to the limited bioavailability of CUR, it is difficult to validate its specific mechanism of action in the treatment of diseases. However, the restricted bioavailability of CUR makes it challenging to confirm its precise mode of action in disease treatment. Recent research indicates that the oral intake of curcumin may lead to elevated levels of residual curcumin in the gastrointestinal system, hinting at curcumin's potential to directly influence gut microbiota. Furthermore, the ecological dysregulation of the gut microbiota has been shown to be critical in the pathogenesis of human diseases. This review summarizes the impact of gut dysbiosis on host health and the various ways in which curcumin modulates dysbiosis and ameliorates various diseases caused by it through the administration of curcumin.
Collapse
Affiliation(s)
- Junwen Zhu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China;
| | | |
Collapse
|
22
|
Emami SF. Hearing and Diet (Narrative Review). Indian J Otolaryngol Head Neck Surg 2024; 76:1447-1453. [PMID: 38440452 PMCID: PMC10908656 DOI: 10.1007/s12070-023-04238-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 09/13/2023] [Indexed: 03/06/2024] Open
Abstract
It seems that food factors and the type of nutrition have an effect on the function of the auditory system. Hearing is one of the most important senses for social communication and high cognitive behaviors. Sensorineural hearing loss leaves adverse and permanent consequences in all aspects of personal and social life of affected patients. Hence, this narrative review study was designed to determine the relationship between sensorineural hearing loss and type of diet. Based on the inclusion criteria, the full text of 62 articles published between 2005 and 2023 were extracted from Scopus, Medline [PubMed], Web of Science, and Google Scholar websites and constituted the sources of this research. The results of the studies showed that by limiting the consumption of foods rich in cholesterol, sugar, carbohydrates, and protein, hearing is protected against the factors that cause sensorineural hearing loss. Also, increasing the consumption of vegetables, fruits, omega-3, antioxidants in the form of vitamins A, C, E reduce hearing susceptibility due to noise exposure, presbycusis, ototoxic agents, and etc. Healthy diet includes eating all the nutrients the body needs in a balanced way. Healthy lifestyle factors including continuous physical activity, good sleep quality, quitting smoking, stay away from stressful factors or relaxation, and avoiding exposure to environmental noise. By following healthy eating and lifestyle patterns, the conditions for hearing, physical and mental health are provided.
Collapse
Affiliation(s)
- Seyede Faranak Emami
- Department of Audiology, School of Rehabilitation Sciences, Hearing Disorder Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
23
|
Zhu J, Li Q, Wu Z, Xu Y, Jiang R. Curcumin for Treating Breast Cancer: A Review of Molecular Mechanisms, Combinations with Anticancer Drugs, and Nanosystems. Pharmaceutics 2024; 16:79. [PMID: 38258090 PMCID: PMC10819793 DOI: 10.3390/pharmaceutics16010079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/21/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
Breast cancer (BC) has become the fifth most prevalent cause of cancer-related morbidity, attracting significant attention from researchers due to its heightened malignancy and drug resistance. Conventional chemotherapy approaches have proven inadequate in addressing all BC subtypes, highlighting the urgent need for novel therapeutic approaches or drugs. Curcumin (CUR), a phytochemical derived from Curcuma longa (turmeric), has shown substantial potential in inhibiting BC cell migration, metastasis, and proliferation. However, the use of CUR in this context comes with challenges due to its dynamic and easily degradable nature, poor aqueous solubility, low bioavailability, rapid metabolism, and swift systemic elimination, collectively limiting its clinical applications. As such, we provide an overview of the properties, synthesis, and characterization of the hybridization of CUR and its analogue with chemo-drug building blocks. We reviewed research from the last five years on CUR's biogenesis with respect to the regulation of BC, revealing that CUR participates in arresting BC cells in the cell cycle and significantly induces apoptosis in BC cells. Information on the chemotherapeutic and antitumor mechanisms of CUR in BC, including regulation of the cell cycle, increased cell apoptosis, and inhibition of multidrug resistance (MDR), was compiled. Additionally, we provide an overview of CUR loaded into nanomaterials that are cotreated with other chemotherapeutic drugs, such as paclitaxel, thymoquinone, and tamoxifen. In this review, we discuss different types of nanoparticles that can be used for CUR delivery, such as polymeric nanoparticles, carbon nanotubes, and liposomes. By comparing the size, entrapment efficiency, drug-loading capacity, release time, biocompatibility, pharmaceutical scale, and reproducibility of various nanomaterials, we aimed to determine which formulations are better suited for loading CUR or its analogue. Ultimately, this review is expected to offer inspiring ideas, promising strategies, and potential pathways for developing advanced anti-BC strategy nanosystems in clinical practice.
Collapse
Affiliation(s)
- Jing Zhu
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (J.Z.); (Z.W.)
| | - Qian Li
- Medical Department, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China;
| | - Zhongping Wu
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (J.Z.); (Z.W.)
| | - Ying Xu
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (J.Z.); (Z.W.)
| | - Rilei Jiang
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (J.Z.); (Z.W.)
| |
Collapse
|
24
|
Sun YH, Zhao TJ, Li LH, Wang Z, Li HB. Emerging role of N6-methyladenosine in the homeostasis of glucose metabolism. Am J Physiol Endocrinol Metab 2024; 326:E1-E13. [PMID: 37938178 DOI: 10.1152/ajpendo.00225.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/21/2023] [Accepted: 11/02/2023] [Indexed: 11/09/2023]
Abstract
N6-methyladenosine (m6A) is the most prevalent post-transcriptional internal RNA modification, which is involved in the regulation of diverse physiological processes. Dynamic and reversible m6A modification has been shown to regulate glucose metabolism, and dysregulation of m6A modification contributes to glucose metabolic disorders in multiple organs and tissues including the pancreas, liver, adipose tissue, skeletal muscle, kidney, blood vessels, and so forth. In this review, the role and molecular mechanism of m6A modification in the regulation of glucose metabolism were summarized, the potential therapeutic strategies that improve glucose metabolism by targeting m6A modifiers were outlined, and feasible directions of future research in this field were discussed as well, providing clues for translational research on combating metabolic diseases based on m6A modification in the future.
Collapse
Affiliation(s)
- Yuan-Hai Sun
- Institute of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Teng-Jiao Zhao
- Institute of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Ling-Huan Li
- Institute of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, People's Republic of China
- College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, People's Republic of China
| | - Zhen Wang
- Center for Laboratory Medicine, Allergy Center, Department of Transfusion Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, People's Republic of China
| | - Han-Bing Li
- Institute of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, People's Republic of China
- Section of Endocrinology, School of Medicine, Yale University, New Haven, Connecticut, United States
| |
Collapse
|
25
|
Chandavarkar V, Mishra MN, Bhargava D, Rajashekaraiah PB, Singh S, Kanuru V. Efficacy of nutritional supplement (Haras) on carbon monoxide levels in smokers and non-smokers: An observational study. J Oral Maxillofac Pathol 2024; 28:23-28. [PMID: 38800428 PMCID: PMC11126257 DOI: 10.4103/jomfp.jomfp_420_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/12/2023] [Accepted: 12/20/2023] [Indexed: 05/29/2024] Open
Abstract
Context Carbon monoxide (CO) concentrations in exhaled air may impart a quick, non-invasive method to determine smoking status. Haras is a nutraceutical medication, which is slowly gaining recognition for its antioxidant and anti-inflammatory activities. Aims The effectiveness of the Haras therapy in smokers and non-smokers will be assessed by evaluating breath CO levels. Methods and Materials The study included 101 test subjects with 76 subjects of smokers and 25 subjects of non-smokers. Both the test groups were given 10 mL of Haras juice in divided doses per day for 30 days. The CO levels were evaluated using a breath analyser before drug trial and then on the 8th, 15th, 22nd and after the conclusion of the drug trial. Statistical Analysis Used The Wilcoxon signed-rank test was used to compare the CO and carboxyhemoglobin levels among smokers and non-smokers. Results Smokers had higher mean percent carboxyhemoglobin and mean parts per million CO values than non-smokers, and the difference between the two was shown to be statistically significant (P < 0.001). It was also found to be statistically significant from the first day to the eighth day, the first day to the 15th day, the first day to the 20th second day, first day to the 30th day (P < 0.001). Conclusions Haras can be used effectively as an alternative supportive treatment for the diminution of CO levels in smokers and non-smokers.
Collapse
Affiliation(s)
- Vidyadevi Chandavarkar
- Department of Oral and Maxillofacial Pathology and Oral Microbiology, School of Dental Sciences, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Mithilesh Narayan Mishra
- Department of Oral and Maxillofacial Pathology and Oral Microbiology, School of Dental Sciences, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Deepak Bhargava
- Department of Oral and Maxillofacial Pathology and Oral Microbiology, School of Dental Sciences, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Premalatha Bidadi Rajashekaraiah
- Department of Oral Pathology and Microbiology, JSS Dental College and Hospital, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - Shafali Singh
- Department of Oral and Maxillofacial Pathology and Oral Microbiology, School of Dental Sciences, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Vijay Kanuru
- Bio Nano Scientist, Nanoved Research Foundation, Mumbai, Maharashtra, India
| |
Collapse
|
26
|
Liang Y, Qiu S, Zou Y, Luo L. Targeting ferroptosis with natural products in liver injury: new insights from molecular mechanisms to targeted therapies. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 122:155134. [PMID: 37863001 DOI: 10.1016/j.phymed.2023.155134] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 09/26/2023] [Accepted: 10/03/2023] [Indexed: 10/22/2023]
Abstract
BACKGROUND Ferroptosis is a brand-new type of controlled cell death that is distinguished by its reliance on iron and the production of lipid peroxidation. The role of ferroptosis in damaging liver disorders has attracted a lot of attention in recent years. One effective strategy to reduce liver damage is to target ferroptosis. PURPOSE The purpose of this review is to clarify the connection between ferroptosis and liver damage and to look into the potential contribution of natural products to the clinical management of liver damage and the discovery of novel medications. METHODS To study the methods by which natural products operate on ferroptosis to cure liver damage and their main signaling pathways, we searched databases from the time of initial publication to August 2023 in PubMed, EMBASE, Web of Science, Ovid, ScienceDirect, and China National Knowledge Infrastructure. The liver illness that each natural product treats is categorized and summarized. It's interesting to note that several natural compounds, such Artemether, Fucoidan sulfate, Curcumin, etc., have the benefit of having many targets and multiple pathways of action. RESULTS We saw that in human samples or animal models of liver injury, ferroptosis indicators were activated, lipid peroxidation levels were elevated, and iron inhibitors had the ability to reduce liver damage. Liver damage can be treated with natural products by regulating ferroptosis. This is mostly accomplished through the modulation of Nrf2-related pathways (e.g., Conclusions and Astaxanthin), biological enzymes like GPX4 and the SIRT family (e.g., Chrysophanol and Decursin), and transcription factors like P53 (e.g., Artemether and Zeaxanthin). CONCLUSIONS This review proposes a promising path for the therapeutic therapy of liver damage by providing a theoretical foundation for the management of ferroptosis utilizing natural ingredients.
Collapse
Affiliation(s)
- Yongyi Liang
- The First Clinical College, Guangdong Medical University, Zhanjiang, 524023, Guangdong, China
| | - Shaojun Qiu
- The First Clinical College, Guangdong Medical University, Zhanjiang, 524023, Guangdong, China
| | - Youwen Zou
- The First Clinical College, Guangdong Medical University, Zhanjiang, 524023, Guangdong, China
| | - Lianxiang Luo
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, Guangdong, China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, 524023, Guangdong, China.
| |
Collapse
|
27
|
Dehzad MJ, Ghalandari H, Nouri M, Askarpour M. Effects of curcumin/turmeric supplementation on glycemic indices in adults: A grade-assessed systematic review and dose-response meta-analysis of randomized controlled trials. Diabetes Metab Syndr 2023; 17:102855. [PMID: 37748368 DOI: 10.1016/j.dsx.2023.102855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 09/07/2023] [Accepted: 09/10/2023] [Indexed: 09/27/2023]
Abstract
INTRODUCTION Glycemic control is of utmost importance both as a preventive measure in individuals at risk of diabetes and in the management of patients with disturbed glycemia. Turmeric/curcumin has been extensively studied in this field. In the present systematic review and meta-analysis, we aimed at investigating the impact of turmeric/curcumin supplementation on glycemic control. METHODS Major online databases (PubMed, Scopus, Web of Science, Cochrane Library and Google Scholar) were systematically searched from inception up to October 2022. Relevant randomized controlled trials (RCTs) meeting our eligible criteria were included. Weighted mean differences (WMDs) with confidence intervals (CIs) were expressed using a random-effect model. Subgroup analyses were conducted to find the sources of heterogeneities. To detect risk of bias in the included studies, we used the Cochrane risk-of-bias tool. The registration number was CRD42022374874. RESULTS Out of 4182 articles retrieved from the initial search, 59 RCTs were included. Our findings suggested that turmeric/curcumin supplementation was significantly effective in improving fasting blood sugar (WMD: 4.60 mg/dl; 95% CI: 5.55, -3.66), fasting insulin levels (WMD: 0.87 μIU/ml; 95% CI: 1.46, -0.27), hemoglobin A1c (HbA1c) (WMD: 0.32%; 95% CI: 0.45, -0.19), and homeostatic model assessment of insulin resistance (HOMA-IR) (WMD: 0.33; 95% CI: 0.43, -0.22). CONCLUSION Our results indicate that turmeric/curcumin supplementation can be considered as a complementary method in the management of disturbed glycemia.
Collapse
Affiliation(s)
- Mohammad Jafar Dehzad
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Shiraz University of Medical Sciences, Shiraz, Iran; Students' Research Committee, School of Nutrition and Food Science, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hamid Ghalandari
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Shiraz University of Medical Sciences, Shiraz, Iran; Students' Research Committee, School of Nutrition and Food Science, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehran Nouri
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Shiraz University of Medical Sciences, Shiraz, Iran; Students' Research Committee, School of Nutrition and Food Science, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Moein Askarpour
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Shiraz University of Medical Sciences, Shiraz, Iran; Students' Research Committee, School of Nutrition and Food Science, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
28
|
Omeroglu Ulu Z, Degirmenci NS, Bolat ZB, Sahin F. Synergistic anti-cancer effect of sodium pentaborate pentahydrate, curcumin and piperine on hepatocellular carcinoma cells. Sci Rep 2023; 13:14404. [PMID: 37658091 PMCID: PMC10474293 DOI: 10.1038/s41598-023-40809-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 08/16/2023] [Indexed: 09/03/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of cancer-related death in the world. Poor prognosis of HCC patients is a major issue, thus, better treatment options for patients are required. Curcumin (Cur), hydrophobic polyphenol of the plant turmeric, shows anti-proliferative, apoptotic, and anti-oxidative properties. Boron is a trace element which is essential part of human nutrition. Sodium pentaborate pentahydrate (NaB), a boron derivative, is an effective agent against cancer. In the current study, we performed in vitro experiments and transcriptome analysis to determine the response of NaB, Cur, piperine (Pip) and their combination in two different HCC cell lines, HepG2 and Hep3B. NaB and Cur induced cytotoxicity in a dose and time dependent manner in HepG2 and Hep3B, whereas Pip showed no significant toxic effect. Synergistic effect of combined treatment with NaB, Cur and Pip on HCC cells was observed on cytotoxicity, apoptosis and cell cycle assay. Following in vitro studies, we performed RNA-seq transcriptome analysis on NaB, Cur and Pip and their combination on HepG2 and Hep3B cells. Transcriptome analysis reveals combined treatment of NaB, Cur and Pip induces anti-cancer activity in both of HCC cells.
Collapse
Affiliation(s)
- Zehra Omeroglu Ulu
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Kayısdagi Cad., Atasehir, 34755, Istanbul, Turkey
| | - Nurdan Sena Degirmenci
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Kayısdagi Cad., Atasehir, 34755, Istanbul, Turkey
- Department of Molecular Biology and Genetics, Faculty of Natural Sciences, Istanbul University, 34134, Istanbul, Turkey
| | - Zeynep Busra Bolat
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Kayısdagi Cad., Atasehir, 34755, Istanbul, Turkey
- Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, Istanbul Sabahattin Zaim University, 34303, Istanbul, Turkey
- Molecular Biology and Genetics Department, Hamidiye Institute of Health Sciences, University of Health Sciences-Turkey, 34668, Istanbul, Turkey
- Experimental Medicine Research and Application Center, University of Health Sciences-Turkey, 34662, Istanbul, Turkey
| | - Fikrettin Sahin
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Kayısdagi Cad., Atasehir, 34755, Istanbul, Turkey.
| |
Collapse
|
29
|
Arenaza-Corona A, Obregón-Mendoza MA, Meza-Morales W, Ramírez-Apan MT, Nieto-Camacho A, Toscano RA, Pérez-González LL, Sánchez-Obregón R, Enríquez RG. The Homoleptic Curcumin-Copper Single Crystal (ML 2): A Long Awaited Breakthrough in the Field of Curcumin Metal Complexes. Molecules 2023; 28:6033. [PMID: 37630284 PMCID: PMC10458717 DOI: 10.3390/molecules28166033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/01/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
The first single crystal structure of the homoleptic copper (II) ML2 complex (M=Cu (II), L = curcumin) was obtained and its structure was elucidated by X-ray diffraction showing a square planar geometry, also confirmed by EPR. The supramolecular arrangement is supported by C-H···O interactions and the solvent (MeOH) plays an important role in stabilizing the crystal packing Crystallinity was additionally assessed by XRD patterns. The log P value of the complex (2.3 ± 0.15) was determined showing the improvement in water solubility. The cytotoxic activity of the complex against six cancer cell lines substantially surpasses that of curcumin itself, and it is particularly selective against leukemia (K562) and human glioblastoma (U251) cell lines, with similar antioxidant activity to BHT. This constitutes the first crystal structure of pristine curcumin complexed with a metal ion.
Collapse
Affiliation(s)
- Antonino Arenaza-Corona
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (A.A.-C.); (M.A.O.-M.); (M.T.R.-A.); (A.N.-C.); (R.A.T.); (L.L.P.-G.); (R.S.-O.)
| | - Marco A. Obregón-Mendoza
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (A.A.-C.); (M.A.O.-M.); (M.T.R.-A.); (A.N.-C.); (R.A.T.); (L.L.P.-G.); (R.S.-O.)
| | - William Meza-Morales
- Department of Chemical Engineering, University of Puerto Rico-Mayaguez, Mayagüez, PR 00680, USA;
| | - María Teresa Ramírez-Apan
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (A.A.-C.); (M.A.O.-M.); (M.T.R.-A.); (A.N.-C.); (R.A.T.); (L.L.P.-G.); (R.S.-O.)
| | - Antonio Nieto-Camacho
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (A.A.-C.); (M.A.O.-M.); (M.T.R.-A.); (A.N.-C.); (R.A.T.); (L.L.P.-G.); (R.S.-O.)
| | - Rubén A. Toscano
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (A.A.-C.); (M.A.O.-M.); (M.T.R.-A.); (A.N.-C.); (R.A.T.); (L.L.P.-G.); (R.S.-O.)
| | - Leidys L. Pérez-González
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (A.A.-C.); (M.A.O.-M.); (M.T.R.-A.); (A.N.-C.); (R.A.T.); (L.L.P.-G.); (R.S.-O.)
| | - Rubén Sánchez-Obregón
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (A.A.-C.); (M.A.O.-M.); (M.T.R.-A.); (A.N.-C.); (R.A.T.); (L.L.P.-G.); (R.S.-O.)
| | - Raúl G. Enríquez
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (A.A.-C.); (M.A.O.-M.); (M.T.R.-A.); (A.N.-C.); (R.A.T.); (L.L.P.-G.); (R.S.-O.)
| |
Collapse
|
30
|
Li J, Yan Y, Chen Y, Fang Q, Hussain MI, Wang LN. Flexible Curcumin-Loaded Zn-MOF Hydrogel for Long-Term Drug Release and Antibacterial Activities. Int J Mol Sci 2023; 24:11439. [PMID: 37511198 PMCID: PMC10380506 DOI: 10.3390/ijms241411439] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Management of chronic inflammation and wounds has always been a key issue in the pharmaceutical and healthcare sectors. Curcumin (CCM) is an active ingredient extracted from turmeric rhizomes with antioxidant, anti-inflammatory, and antibacterial activities, thus showing significant effectiveness toward wound healing. However, its shortcomings, such as poor water solubility, poor chemical stability, and fast metabolic rate, limit its bioavailability and long-term use. In this context, hydrogels appear to be a versatile matrix for carrying and stabilizing drugs due to their biomimetic structure, soft porous microarchitecture, and favorable biomechanical properties. The drug loading/releasing efficiencies can also be controlled via using highly crystalline and porous metal-organic frameworks (MOFs). Herein, a flexible hydrogel composed of a sodium alginate (SA) matrix and CCM-loaded MOFs was constructed for long-term drug release and antibacterial activity. The morphology and physicochemical properties of composite hydrogels were analyzed by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), ultraviolet-visible spectroscopy (UV-Vis), Raman spectroscopy, and mechanical property tests. The results showed that the composite hydrogel was highly twistable and bendable to comply with human skin mechanically. The as-prepared hydrogel could capture efficient CCM for slow drug release and effectively kill bacteria. Therefore, such composite hydrogel is expected to provide a new management system for chronic wound dressings.
Collapse
Affiliation(s)
- Jiaxin Li
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yachao Yan
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yingzhi Chen
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
- School of Shunde Graduate, University of Science and Technology Beijing, Foshan 528399, China
| | - Qinglin Fang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Muhammad Irfan Hussain
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Lu-Ning Wang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
- School of Shunde Graduate, University of Science and Technology Beijing, Foshan 528399, China
| |
Collapse
|
31
|
Morillo-Bargues MJ, Osorno AO, Guerri C, Pradas MM, Martínez-Ramos C. Characterization of Electrospun BDMC-Loaded PLA Nanofibers with Drug Delivery Function and Anti-Inflammatory Activity. Int J Mol Sci 2023; 24:10340. [PMID: 37373487 DOI: 10.3390/ijms241210340] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/04/2023] [Accepted: 06/10/2023] [Indexed: 06/29/2023] Open
Abstract
Controlled drug release systems are the subject of many investigations to achieve the therapeutic effect of drugs. They have numerous advantages, such as localized effects, lower side effects, and less onset of action. Among drug-delivery systems, electrospinning is a versatile and cost-effective method for biomedical applications. Furthermore, electrospun nanofibers are promising as drug carrier candidates due to their properties that mimic the extracellular matrix. In this work, electrospun fibers were made of Poly-L-lactic acid (PLA), one of the most widely tested materials, which has excellent biocompatible and biodegradable properties. A curcuminoid, bisdemethoxycurcumin (BDMC) was added in order to complete the drug delivery system. The PLA/BDMC membranes were characterized, and biological characteristics were examined in vitro. The results show that the average fiber diameter was reduced with the drug, which was mainly released during the first 24 h by a diffusion mechanism. It was seen that the use of our membranes loaded with BDMC enhanced the rate of proliferation in Schwann cells, the main peripheral neuroglial cells, and modulated inflammation by reducing NLRP3 inflammasome activation. Considering the results, the prepared PLA/BDMC membranes hold great potential for being used in tissue engineering applications.
Collapse
Affiliation(s)
- María José Morillo-Bargues
- Center for Biomaterials and Tissue Engineering, Universitat Politècnica de València, Cno. de Vera s/n, 46022 Valencia, Spain
| | - Andrea Olivos Osorno
- Center for Biomaterials and Tissue Engineering, Universitat Politècnica de València, Cno. de Vera s/n, 46022 Valencia, Spain
- Departamento de Ingeniería Biomédica, Universidad Iberoamericana, Prolongación Paseo de la Reforma 880, Lomas de Santa Fe, Ciudad de México 01219, Mexico
| | - Consuelo Guerri
- Molecular and Cellular Pathology of Alcohol Laboratory, Prince Felipe Research Institute, 3 Eduardo Primo Yúfera Street, 46012 Valencia, Spain
| | - Manuel Monleón Pradas
- Center for Biomaterials and Tissue Engineering, Universitat Politècnica de València, Cno. de Vera s/n, 46022 Valencia, Spain
- Biomedical Research Networking Center in Bioengineering Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
| | - Cristina Martínez-Ramos
- Center for Biomaterials and Tissue Engineering, Universitat Politècnica de València, Cno. de Vera s/n, 46022 Valencia, Spain
- Department of Medicine, Universitat Jaume I, Av. Vicent-Sos Baynat s/n, 12071 Castellón de la Plana, Spain
| |
Collapse
|
32
|
Cao X, Liu Q, Shi W, Liu K, Deng T, Weng X, Pan S, Yu Q, Deng W, Yu J, Wang Q, Xiao G, Xu X. Microfluidic fabricated bisdemethoxycurcumin thermosensitive liposome with enhanced antitumor effect. Int J Pharm 2023; 641:123039. [PMID: 37225026 DOI: 10.1016/j.ijpharm.2023.123039] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 04/17/2023] [Accepted: 05/05/2023] [Indexed: 05/26/2023]
Abstract
Bisdemethoxycurcumin (BDMC) is the main active ingredient that is isolated from Zingiberaceae plants, wherein it has excellent anti-tumor effects. However, insolubility in water limits its clinical application. Herein, we reported a microfluidic chip device that can load BDMC into the lipid bilayer to form BDMC thermosensitive liposome (BDMC TSL). The natural active ingredient glycyrrhizin was selected as the surfactant to improve solubility of BDMC. Particles of BDMC TSL had small size, homogenous size distribution, and enhanced cultimulative release in vitro. The anti-tumor effect of BDMC TSL on human hepatocellular carcinomas was investigated via 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide method, live/dead staining, and flowcytometry. These results showed that the formulated liposome had a strong cancer cell inhibitory, and presented a dose-dependent inhibitory effect on migration. Further mechanistic studies showed that BDMC TSL combined with mild local hyperthermia could significantly upregulate B cell lymphoma 2 associated X protein levels and decrease B cell lymphoma 2 protein levels, thereby inducing cell apoptosis. The BDMC TSL that was fabricated via microfluidic device were decomposed under mild local hyperthermia, which could beneficially enhance the anti-tumor effect of raw insoluble materials and promote translation of liposome.
Collapse
Affiliation(s)
- Xia Cao
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China; Medicinal function development of new food resources, Jiangsu Provincial Research center, Jiangsu, People's Republic of China
| | - Qi Liu
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China; Medicinal function development of new food resources, Jiangsu Provincial Research center, Jiangsu, People's Republic of China
| | - Wenwan Shi
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China; Medicinal function development of new food resources, Jiangsu Provincial Research center, Jiangsu, People's Republic of China
| | - Kai Liu
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China; Medicinal function development of new food resources, Jiangsu Provincial Research center, Jiangsu, People's Republic of China
| | - Tianwen Deng
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China; Medicinal function development of new food resources, Jiangsu Provincial Research center, Jiangsu, People's Republic of China
| | - Xuedi Weng
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China
| | - Siting Pan
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China
| | - Qingtong Yu
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China; Medicinal function development of new food resources, Jiangsu Provincial Research center, Jiangsu, People's Republic of China
| | - Wenwen Deng
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China; Medicinal function development of new food resources, Jiangsu Provincial Research center, Jiangsu, People's Republic of China
| | - Jiangnan Yu
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China; Medicinal function development of new food resources, Jiangsu Provincial Research center, Jiangsu, People's Republic of China
| | - Qilong Wang
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China; Medicinal function development of new food resources, Jiangsu Provincial Research center, Jiangsu, People's Republic of China.
| | - Gao Xiao
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou 350108, Fujian, P. R. China.
| | - Ximing Xu
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China; Medicinal function development of new food resources, Jiangsu Provincial Research center, Jiangsu, People's Republic of China.
| |
Collapse
|
33
|
Zhang L, Xiao Q, Xiao Z, Zhang Y, Weng H, Chen F, Xiao A. Hydrophobic modified agar: Structural characterization and application in encapsulation and release of curcumin. Carbohydr Polym 2023; 308:120644. [PMID: 36813337 DOI: 10.1016/j.carbpol.2023.120644] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/26/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023]
Abstract
In this study, three kinds of anhydrides with different structures were introduced into agar molecules to study the effects of varying degrees of substitution (DS) and anhydride structures on the physicochemical properties and curcumin (CUR) loading capacity. Increasing the carbon chain length and saturation of the anhydride affects the hydrophobic interaction and hydrogen bonding of the esterified agar, thereby changing the stable structure of the agar. Although the gel performance declined, the hydrophilic carboxyl group and the loose porous structure provide more binding sites for the adsorption of water molecules, hence providing excellent water retention (1700 %). Next, CUR was used as a hydrophobic active ingredient to study agar microspheres' drug encapsulation and in vitro release ability. Results showed that the excellent swelling and hydrophobic structure of esterified agar could promote the encapsulation of CUR (70.3 %). The release process is controlled by pH, and the release of CUR under weak alkaline conditions is significant, which can be explained by the pore structure, swelling characteristics, and carboxyl binding of agar. Therefore, this study shows the application potential of hydrogel microspheres in loading hydrophobic active ingredients and sustained release and provides the possibility for the application of agar in drug delivery systems.
Collapse
Affiliation(s)
- Luyao Zhang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; National R&D Center for Red Alga Processing Technology, Xiamen 361021, China; Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, China
| | - Qiong Xiao
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; National R&D Center for Red Alga Processing Technology, Xiamen 361021, China; Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, China
| | - Zhechen Xiao
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yonghui Zhang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; National R&D Center for Red Alga Processing Technology, Xiamen 361021, China; Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, China
| | - Huifen Weng
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; National R&D Center for Red Alga Processing Technology, Xiamen 361021, China; Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, China
| | - Fuquan Chen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; National R&D Center for Red Alga Processing Technology, Xiamen 361021, China; Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, China.
| | - Anfeng Xiao
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; National R&D Center for Red Alga Processing Technology, Xiamen 361021, China; Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, China.
| |
Collapse
|
34
|
Kumar P, Singh A, Kumar A, Kumar R, Pal R, Sachan AK, Dixit RK, Nath R. Effect of Curcumin and Coenzyme Q10 Alone and in Combination on Learning and Memory in an Animal Model of Alzheimer's Disease. Biomedicines 2023; 11:biomedicines11051422. [PMID: 37239093 DOI: 10.3390/biomedicines11051422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/18/2023] [Accepted: 05/02/2023] [Indexed: 05/28/2023] Open
Abstract
The most frequent neurodegenerative illness among senior people and the main cause of dementia is Alzheimer's disease. The present dementia medications available only help with the symptoms of cognitive deficits and have several negative effects. The current study's goal is to assess the effects of curcumin and coenzyme Q10, two herbal medicines, both separately and in combination, on learning and memory before comparing them to the industry standard drug. A total of 42 adult healthy Wistar rats were used in our study. In this experiment, rats were given daily doses of 2.5 mg/kg of body weight of scopolamine hydrobromide for 7 days to induce Alzheimer's disease. On the eighth day, behavioural testing was conducted. Following testing, scopolamine and the test medications were given daily for the following 21 days. On days 29 and 30, behavioural testing was conducted once more, and then animals were slaughtered. Brain homogenate was produced for the estimation of molecular and biochemical markers. Curcumin has demonstrated a dose-response relationship, with a higher dose (200 mg/kg b.w. p.o.) being more effective than a lower dose (100 mg/kg b.w. p.o.). Similar to the greater dose of curcumin, coenzyme Q10 (200 mg/kg b.w. p.o.) has also been found to improve memory and learning. Higher doses of curcumin and coenzyme Q10 had more pronounced and meaningful effects. Acetylcholinesterase and TNF levels increased in scopolamine-induced memory impairment, but these effects were restored by the test medications, and improved by the combined therapy. These outcomes are comparable to those of the common medication memantine. As a result, we may infer from our results that curcumin at higher doses and its combination with coenzyme Q10 (200 mg/kg b.w. p.o.) have a significant impact on cognitive impairment in animal models of Alzheimer's disease and can be utilised alone or as an add-on therapy for the condition.
Collapse
Affiliation(s)
- Pramod Kumar
- Department of Pharmacology &Therapeutics King George's Medical University, Lucknow 226003, Uttar Pradesh, India
| | - Aarti Singh
- Department of Pharmacology &Therapeutics King George's Medical University, Lucknow 226003, Uttar Pradesh, India
| | - Anurag Kumar
- Department of Pharmacology &Therapeutics King George's Medical University, Lucknow 226003, Uttar Pradesh, India
| | - Rahul Kumar
- Department of Pharmacology &Therapeutics King George's Medical University, Lucknow 226003, Uttar Pradesh, India
| | - Rishi Pal
- Department of Pharmacology &Therapeutics King George's Medical University, Lucknow 226003, Uttar Pradesh, India
| | - Amod Kumar Sachan
- Department of Pharmacology &Therapeutics King George's Medical University, Lucknow 226003, Uttar Pradesh, India
| | - Rakesh Kumar Dixit
- Department of Pharmacology &Therapeutics King George's Medical University, Lucknow 226003, Uttar Pradesh, India
| | - Rajendra Nath
- Department of Pharmacology, King George Medical University, Lucknow 226003, Uttar Pradesh, India
| |
Collapse
|
35
|
Wang Y, Sui Z, Wang M, Liu P. Natural products in attenuating renal inflammation via inhibiting the NLRP3 inflammasome in diabetic kidney disease. Front Immunol 2023; 14:1196016. [PMID: 37215100 PMCID: PMC10196020 DOI: 10.3389/fimmu.2023.1196016] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 04/26/2023] [Indexed: 05/24/2023] Open
Abstract
Diabetic kidney disease (DKD) is a prevalent and severe complications of diabetes and serves as the primary cause of end-stage kidney disease (ESKD) globally. Increasing evidence indicates that renal inflammation is critical in the pathogenesis of DKD. The nucleotide - binding oligomerization domain (NOD) - like receptor family pyrin domain containing 3 (NLRP3) inflammasome is the most extensively researched inflammasome complex and is considered a crucial regulator in the pathogenesis of DKD. The activation of NLRP3 inflammasome is regulated by various signaling pathways, including NF- κB, thioredoxin-interacting protein (TXNIP), and non-coding RNAs (ncRNA), among others. Natural products are chemicals extracted from living organisms in nature, and they typically possess pharmacological and biological activities. They are invaluable sources for drug design and development. Research has demonstrated that many natural products can alleviate DKD by targeting the NLRP3 inflammasome. In this review, we highlight the role of the NLRP3 inflammasome in DKD, and the pathways by which natural products fight against DKD via inhibiting the NLRP3 inflammasome activation, so as to provide novel insights for the treatment of DKD.
Collapse
Affiliation(s)
- Yan Wang
- Department of Nephrology, Peking University People’s Hospital, Beijing, China
| | - Zhun Sui
- Department of Nephrology, Peking University People’s Hospital, Beijing, China
| | - Mi Wang
- Department of Nephrology, Peking University People’s Hospital, Beijing, China
| | - Peng Liu
- Shunyi Hospital, Beijing Traditional Chinese Medicine Hospital, Beijing, China
| |
Collapse
|
36
|
Ozturk I, Elbe H, Bicer Y, Karayakali M, Onal MO, Altinoz E. Therapeutic role of melatonin on acrylamide-induced hepatotoxicity in pinealectomized rats: Effects on oxidative stress, NF-κB signaling pathway, and hepatocellular proliferation. Food Chem Toxicol 2023; 174:113658. [PMID: 36780936 DOI: 10.1016/j.fct.2023.113658] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/13/2023]
Abstract
Acrylamide (AA) is formed in some foods by the cooking process at high temperatures, and it could be a carcinogen in humans and rodents. The purpose of the current study was to reveal the possible protective effects of melatonin against AA-induced hepatic oxidative stress, hepatic inflammation, and hepatocellular proliferation in pinealectomized rats. Hence, the sham and pinealectomized rats were consecutively given AA alone (25 mg/kg) or with melatonin (10 mg/kg) for 21 days. Melatonin acts as an antioxidant, anti-inflammatory, and antiapoptotic agent and introduces as a therapeutic strategy for AA-induced hepatotoxicity. Melatonin supplementation reduced AA-caused liver damage by decreasing the serum AST, ALT, and ALP levels. Melatonin raised the activities of SOD and CAT and levels of GSH and suppressed hepatic inflammation (TNF-α) and hepatic oxidative stress in liver tissues. Moreover, histopathological alterations and the disturbances in immunohistochemical expression of NF-κB and Ki67 were improved after melatonin treatment in AA-induced hepatotoxicity. Overall, our results demonstrate that melatonin supplementation exhibits adequate hepatoprotective effects against hepatotoxicity of AA on pinealectomized rat liver architecture and the tissue function through the equilibration of oxidant/antioxidant status, the regulation of cell proliferation and the suppression of the release of proinflammatory cytokines.
Collapse
Affiliation(s)
- Ipek Ozturk
- Department of Medical Biochemistry, Faculty of Medicine, Karabuk University, Karabuk, Turkey
| | - Hulya Elbe
- Department of Histology and Embryology, Faculty of Medicine, Mugla Sıtkı Kocman University, Mugla, Turkey
| | - Yasemin Bicer
- Department of Medical Biochemistry, Faculty of Medicine, Karabuk University, Karabuk, Turkey
| | - Melike Karayakali
- Department of Medical Biochemistry, Faculty of Medicine, Karabuk University, Karabuk, Turkey
| | - Melike Ozgul Onal
- Department of Histology and Embryology, Faculty of Medicine, Mugla Sıtkı Kocman University, Mugla, Turkey
| | - Eyup Altinoz
- Department of Medical Biochemistry, Faculty of Medicine, Karabuk University, Karabuk, Turkey.
| |
Collapse
|
37
|
Sadeghi M, Dehnavi S, Asadirad A, Xu S, Majeed M, Jamialahmadi T, Johnston TP, Sahebkar A. Curcumin and chemokines: mechanism of action and therapeutic potential in inflammatory diseases. Inflammopharmacology 2023; 31:1069-1093. [PMID: 36997729 DOI: 10.1007/s10787-023-01136-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 01/09/2023] [Indexed: 04/01/2023]
Abstract
Chemokines belong to the family of cytokines with chemoattractant properties that regulate chemotaxis and leukocyte migration, as well as the induction of angiogenesis and maintenance of hemostasis. Curcumin, the major component of the Curcuma longa rhizome, has various pharmacological actions, including anti-inflammatory, immune-regulatory, anti-oxidative, and lipid-modifying properties. Chemokines and chemokine receptors are influenced/modulated by curcumin. Thus, the current review focuses on the molecular mechanisms associated with curcumin's effects on chemoattractant cytokines, as well as putting into context the many studies that have reported curcumin-mediated regulatory effects on inflammatory conditions in the organs/systems of the body (e.g., the central nervous system, liver, and cardiovascular system). Curcumin's effects on viral and bacterial infections, cancer, and adverse pregnancy outcomes are also reviewed.
Collapse
Affiliation(s)
- Mahvash Sadeghi
- Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sajad Dehnavi
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ali Asadirad
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Suowen Xu
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | | | - Tannaz Jamialahmadi
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Thomas P Johnston
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- School of Medicine, The University of Western Australia, Perth, Australia.
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, P.O. Box, Mashhad, 91779-48564, Iran.
| |
Collapse
|
38
|
Meza-Morales W, Alvarez-Ricardo Y, Obregón-Mendoza MA, Arenaza-Corona A, Ramírez-Apan MT, Toscano RA, Poveda-Jaramillo JC, Enríquez RG. Three new coordination geometries of homoleptic Zn complexes of curcuminoids and their high antiproliferative potential. RSC Adv 2023; 13:8577-8585. [PMID: 36936838 PMCID: PMC10016078 DOI: 10.1039/d3ra00167a] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/01/2023] [Indexed: 03/17/2023] Open
Abstract
To our previously reported first crystal structure of a homoleptic zinc curcuminoid complex with square pyramidal geometry, we add herein three new geometries of homoleptic type complexes i.e. octahedral, trigonal-pyramidal, and trigonal-bipyramidal. Octahedral geometry was observed in the new pseudo-polymorph of the DAC-Zn complex resulting from crystallization in DMF, while square-pyramidal geometry was obtained in DMSO. Improving crystallinity involved suppressing the phenolic interactions by etherification and esterification. The complete characterization of these complexes was carried out using SCXRD, IR, MS, EA, liquid, and solid-state NMR. Moreover, the cytotoxic activity of all complexes was evaluated. The IC50 values for the DiMeOC-Zn (7) complex were 8 or 22 times higher than for cisplatin in the U251 and HCT-15 cell lines, indicating a high antiproliferative and therapeutic potential.
Collapse
Affiliation(s)
- William Meza-Morales
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria Mexico City C.P. 04510 Mexico
- Department of Chemical Engineering, University of Puerto Rico-Mayaguez Route 108, Mayaguez Puerto Rico USA
| | - Yair Alvarez-Ricardo
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria Mexico City C.P. 04510 Mexico
| | - Marco A Obregón-Mendoza
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria Mexico City C.P. 04510 Mexico
| | - Antonino Arenaza-Corona
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria Mexico City C.P. 04510 Mexico
| | - María Teresa Ramírez-Apan
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria Mexico City C.P. 04510 Mexico
| | - Rubén A Toscano
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria Mexico City C.P. 04510 Mexico
| | - Juan Carlos Poveda-Jaramillo
- Laboratorio de Resonancia Magnética Nuclear, Universidad Industrial de Santander Sede Guatiguará Km. 2 vía El Refugio 681011 Piedecuesta Santander Colombia
| | - Raúl G Enríquez
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria Mexico City C.P. 04510 Mexico
| |
Collapse
|
39
|
PAMAM dendrimers of generation 4.5 loaded with curcumin interfere with α-synuclein aggregation. OPENNANO 2023. [DOI: 10.1016/j.onano.2023.100140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
|
40
|
Dong-Chen X, Yong C, Yang X, Chen-Yu S, Li-Hua P. Signaling pathways in Parkinson's disease: molecular mechanisms and therapeutic interventions. Signal Transduct Target Ther 2023; 8:73. [PMID: 36810524 PMCID: PMC9944326 DOI: 10.1038/s41392-023-01353-3] [Citation(s) in RCA: 103] [Impact Index Per Article: 51.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 01/16/2023] [Accepted: 02/13/2023] [Indexed: 02/24/2023] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease worldwide, and its treatment remains a big challenge. The pathogenesis of PD may be related to environmental and genetic factors, and exposure to toxins and gene mutations may be the beginning of brain lesions. The identified mechanisms of PD include α-synuclein aggregation, oxidative stress, ferroptosis, mitochondrial dysfunction, neuroinflammation, and gut dysbiosis. The interactions among these molecular mechanisms complicate the pathogenesis of PD and pose great challenges to drug development. At the same time, the diagnosis and detection of PD are also one of obstacles to the treatment of PD due to its long latency and complex mechanism. Most conventional therapeutic interventions for PD possess limited effects and have serious side effects, heightening the need to develop novel treatments for this disease. In this review, we systematically summarized the pathogenesis, especially the molecular mechanisms of PD, the classical research models, clinical diagnostic criteria, and the reported drug therapy strategies, as well as the newly reported drug candidates in clinical trials. We also shed light on the components derived from medicinal plants that are newly identified for their effects in PD treatment, with the expectation to provide the summary and outlook for developing the next generation of drugs and preparations for PD therapy.
Collapse
Affiliation(s)
- Xu Dong-Chen
- College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, P. R. China
| | - Chen Yong
- College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, P. R. China
| | - Xu Yang
- College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, P. R. China
| | - ShenTu Chen-Yu
- College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, P. R. China
| | - Peng Li-Hua
- College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, P. R. China. .,State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, P. R. China.
| |
Collapse
|
41
|
Curcumin promotes microglial M2 polarization and suppresses chronic constriction: Injury-induced neuropathic pain in a rat model of peripheral neuropathy. Nutrition 2023; 109:112004. [PMID: 36931068 DOI: 10.1016/j.nut.2023.112004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023]
Abstract
OBJECTIVES Glia (i.e., astrocyte and microglia) activation in the central nervous system plays a critical role in developing neuropathic pain. Microglia can be activated into proinflammatory (M1) and anti-inflammatory (M2) phenotypes. Switching microglial polarization from M1 to M2 phenotypes represents a novel therapeutic strategy for neuropathic pain. Curcumin has been widely used for its anti-inflammatory and immunomodulatory effects. This study investigated effects of curcumin on astrocyte activation and microglia polarization in the cuneate nucleus (CN) and development of neuropathic pain behavior after chronic constriction injury (CCI) of the median nerve. METHODS Rats were fed with curcumin once daily at a dose of 40, 80, or 120 mg/kg 30 min before and until 7 d after median nerve CCI. Subsequently, mechanical allodynia and thermal hyperalgesia were evaluated using von Frey filaments and plantar tests, respectively. The levels of astrocyte marker, monoclonal glial fibrillary acidic protein; microglia marker, ionized calcium-binding adapter molecule 1; M1 marker, CD86; and M2 marker, CD206 in the cuneate nucleus were determined. Enzyme-linked immunosorbent assay was applied to measure cytokine concentrations. RESULTS Curcumin administration dose-dependently reduced mechanical allodynia and thermal hyperalgesia and decreased monoclonal glial fibrillary acidic protein and ionized calcium-binding adapter molecule 1 immunoreactivity in the ipsilateral cuneate nucleus after CCI. On ultrastructural observation, curcumin treatment was associated with fewer features of activated astrocytes and microglia. Furthermore, CCI rats given curcumin exhibited a decline in CD86 immunoreactivity and proinflammatory cytokine levels but an increase in CD206 immunoreactivity and release of anti-inflammatory cytokines. CONCLUSIONS In our findings, curcumin switches microglial phenotypes from M1 to M2 by suppressing astrocytic activation, reducing proinflammatory cytokine release, promoting anti-inflammatory cytokine production, and contributing to relief of neuropathic pain.
Collapse
|
42
|
Kah G, Chandran R, Abrahamse H. Curcumin a Natural Phenol and Its Therapeutic Role in Cancer and Photodynamic Therapy: A Review. Pharmaceutics 2023; 15:pharmaceutics15020639. [PMID: 36839961 PMCID: PMC9962422 DOI: 10.3390/pharmaceutics15020639] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 02/07/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
Cancer continues to cause an alarming number of deaths globally, and its burden on the health system is significant. Though different conventional therapeutic procedures are exploited for cancer treatment, the prevalence and death rates remain elevated. These, therefore, insinuate that novel and more efficient treatment procedures are needed for cancer. Curcumin, a bioactive, natural, phenolic compound isolated from the rhizome of the herbaceous plant turmeric, is receiving great interest for its exciting and broad pharmacological properties. Curcumin presents anticancer therapeutic capacities and can be utilized as a photosensitizing drug in cancer photodynamic therapy (PDT). Nonetheless, curcumin's poor bioavailability and related pharmacokinetics limit its clinical utility in cancer treatment. This review looks at the physical and chemical properties, bioavailability, and safety of curcumin, while focusing on curcumin as an agent in cancer therapy and as a photosensitizer in cancer PDT. The possible mechanisms and cellular targets of curcumin in cancer therapy and PDT are highlighted. Furthermore, recent improvements in curcumin's bioavailability in cancer therapy using nanoformulations and delivery systems are presented.
Collapse
|
43
|
Homoleptic Complexes of Heterocyclic Curcuminoids with Mg(II) and Cu(II): First Conformationally Heteroleptic Case, Crystal Structures, and Biological Properties. Molecules 2023; 28:molecules28031434. [PMID: 36771102 PMCID: PMC9919861 DOI: 10.3390/molecules28031434] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/10/2022] [Accepted: 11/13/2022] [Indexed: 02/05/2023] Open
Abstract
We report herein the synthesis and characterization of three heterocyclic curcuminoid ligands and their homoleptic metal complexes with magnesium and copper. Thus, N-methyl-2-pyrrolecarboxaldehyde, Furan-2-carboxaldehyde, and 2-Thiophenecarboxaldehyde were condensed with 2,4-pentanedione-boron trioxide complex. The first N-methyl-2-pyrrole curcuminoid and its Mg(II) complex are reported. All curcuminoid ligands and their corresponding metal complexes were characterized by infrared spectroscopy (IR), liquid state nuclear magnetic resonance (LSNMR), electron paramagnetic resonance (EPR), mass spectrometry (MS) and single crystal X-ray diffraction (SCXRD). The ThiopheneCurc-Cu (9) constitutes the first case of a "conformationally-heteroleptic" complex. The unique six-peaks star arrangement for the ThiopheneCurc ligand derived from the supramolecular description is reported. The metal complexes of FuranCurc-Mg (5) and ThiopheneCurc-Cu (9) have a good antioxidant effect (IC50 = 11.26 ± 1.73 and 10.30 ± 0.59 μM), three and two times higher than their free ligands respectively. Additionally, (5) shows remarkable cytotoxicity against colon cancer adenocarcinoma cell line HCT-15, comparable to that of cisplatin, with a negligible toxic effect in vitro towards a healthy monkey kidney cell line (COS-7).
Collapse
|
44
|
Sik Kim W, Jeong SH, Shin KW, Jin Lee H, Park JY, Lee IC, Jae Jeong H, Bae Ryu Y, Kwon HJ, Song Lee W. Solubilized curcuminoid complex prevents extensive immunosuppression through immune restoration and antioxidant activity: Therapeutic potential against SARS-CoV-2 (COVID-19). Int Immunopharmacol 2023; 115:109635. [PMID: 36580758 PMCID: PMC9790878 DOI: 10.1016/j.intimp.2022.109635] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/29/2022] [Accepted: 12/21/2022] [Indexed: 12/27/2022]
Abstract
The therapeutic benefits of curcuminoids in various diseases have been extensively reported. However, little is known regarding their preventive effects on extensive immunosuppression. We investigated the immunoregulatory effects of a curcuminoid complex (CS/M), solubilized with stevioside, using a microwave-assisted method in a cyclophosphamide (CTX)-induced immunosuppressive mouse model and identified its new pharmacological benefits. CTX-treated mice showed a decreased number of innate cells, such as dendritic cells (DCs), neutrophils, and natural killer (NK) cells, and adaptive immune cells (CD4 and CD8 T cells) in the spleen. In addition, CTX administration decreased T cell activation, especially that of Th1 and CD8 T cells, whereas it increased Th2 and regulatory T (Treg) cell activations. Pre-exposure of CS/M to CTX-induced immunosuppressed mice restored the number of innate cells (DCs, neutrophils, and NK cells) and increased their activity (including the activity of macrophages). Exposure to CS/M also led to the superior restoration of T cell numbers, including Th1, activated CD8 T cells, and multifunctional T cells, suppressed by CTX, along with a decrease in Th2 and Treg cells. Furthermore,CTX-injected mice pre-exposed to CS/M were accompanied by an increase in the levels of antioxidant enzymes (superoxide dismutase, catalase, and glutathione peroxidase), which play an essential role against oxidative stress. Importantly, CS/M treatment significantly reduced viral loads in severe acute respiratory syndrome coronavirus2-infected hamsters and attenuated the gross pathology in the lungs. These results provide new insights into the immunological properties of CS/M in preventing extensive immunosuppression and offer new therapeutic opportunities against various cancers and infectious diseases caused by viruses and intracellular bacteria.
Collapse
Affiliation(s)
- Woo Sik Kim
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 56212, Republic of Korea.
| | - Seong-Hun Jeong
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 56212, Republic of Korea,Laboratory of Veterinary Pathology, College of Veterinary Medicine, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Ki-Won Shin
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 56212, Republic of Korea,Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Hyeon Jin Lee
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 56212, Republic of Korea,Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Ji-Young Park
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 56212, Republic of Korea
| | - In-Chul Lee
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 56212, Republic of Korea
| | - Hyung Jae Jeong
- Bio-processing Technology Development and Support Team, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 56212, Republic of Korea
| | - Young Bae Ryu
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 56212, Republic of Korea
| | - Hyung-Jun Kwon
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 56212, Republic of Korea.
| | - Woo Song Lee
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 56212, Republic of Korea.
| |
Collapse
|
45
|
Liang S, Du J, Hong Y, Cheng L, Gu Z, Li Z, Li C. Octenyl succinate anhydride debranched starch-based nanocarriers for curcumin with improved stability and antioxidant activity. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
46
|
Modulatory Role of Curcumin on Cobalt-Induced Memory Deficit, Hippocampal Oxidative Damage, Astrocytosis, and Nrf2 Expression. Neurotox Res 2023; 41:201-211. [PMID: 36692684 DOI: 10.1007/s12640-023-00635-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/13/2022] [Accepted: 11/26/2022] [Indexed: 01/25/2023]
Abstract
Chemical overexposure is a growing environmental risk factor for many medical issues. Cobalt toxicity from environmental, industrial, and medical exposure has previously been linked to neurological impairment. Hence, the current study looked into the neuroprotective potential of curcumin, a natural polyphenol contained in the spice turmeric, against cobalt-induced neurotoxicity. Adult rats were randomly divided into six groups as follows: control, 40 mg/kg cobalt chloride (CoCl2) only, 240 mg/kg curcumin only, 120 mg/kg or 240 mg/kg curcumin, or 100 mg/kg vitamin C co-administered with CoCl2. The administration was via oral route daily for 4 weeks. After that, neurobehavioral tests were undertaken to evaluate short-term spatial memory. Biochemical investigation was performed to determine the hippocampal levels of status via measures of SOD, CAT, GST, and LPO. Furthermore, immunohistochemical assessment of the expression of GFAP and Nrf2 in the hippocampus was carried out. In the CoCl2 group, the results showed altered behavioral responses, a decrease in antioxidant activities, increased expression of GFAP and the number of activated astrocytes, and decreased immunoexpression of Nrf2. These effects were mitigated in the curcumin- and vitamin C-treated groups. These results collectively imply that curcumin enhances memory functions in rats exposed to cobalt possibly by attenuating oxidative responses, mitigating astrocytosis, and modulating Nrf2 signaling.
Collapse
|
47
|
Ashraaf S, Tahir HM, Raza C, Awad EM, Ali S, Khan SY, Barisani-Asenbauer T. Synergistic Effect of Silk Sericin and Curcumin to Treat an Inflammatory Condition. J Burn Care Res 2023; 44:106-113. [PMID: 36269798 DOI: 10.1093/jbcr/irac157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Indexed: 01/11/2023]
Abstract
Inflammation-related diseases are recognized as the major cause of morbidity around the globe. In this study, the anti-inflammatory potential of sericin, curcumin, and their mixture was investigated in vivo and in vitro. Edema was induced via 1% carrageenan and then sericin (0.03, 0.06, 0.09 mg/ml), curcumin (1%, 2%, 3%), and their mixture doses were applied topically. The paw circumference and thickness were measured after 1-, 2-, 3-, 4-, 5-, and 6-hour post-carrageenan injection. The levels of IL-4 and IL-10 were measured from the serum. In mice fibroblast cells, sericin (20, 40, 60 μg/ml), curcumin (5, 10, 20 μM), and mixture concentrations were applied and then stimulated with lipopolysaccharide (LPS). Afterward, the cells were used for the analysis of gene expression, and the supernatant was collected for protein expression of IL-1β, IL-4, and IL-10. Our results demonstrated that sericin and curcumin caused a dose-dependent reduction in edema, whereas the mixture-treated group reduced the paw thickness and circumference most significantly (p = .0001). Furthermore, the mixture treatment of carrageenan-inflicted group increased the levels of anti-inflammatory cytokines, IL-4 (650.87 pg/ml) and IL-10 (183.14 pg/ml), in comparison to the carrageenan control. The in vitro data revealed that among all the treatment doses, the mixture-treated group has effectively reduced the gene (1.13-fold) and protein (51.9 pg/ml) expression of IL-1β in comparison to McCoy cells stimulated with LPS. Moreover, mixture treatment elevated the expression of IL-4 and IL-10 at genes (4.3-fold and 3.7-fold, respectively) and protein levels (169.33 and 141.83 pg/ml, respectively). The current study reports the enhanced anti-inflammatory effects of the mixture of curcumin and sericin through modulating expressions of interleukins in vitro and in vivo. Thus, natural products (curcumin and sericin)-based formulations have greater potential for clinical investigations.
Collapse
Affiliation(s)
- Sehrish Ashraaf
- Department of Zoology, Government College University, Lahore, Pakistan
| | | | - Chand Raza
- Department of Zoology, Government College University, Lahore, Pakistan
| | - Ezzat M Awad
- Center of Ocular Inflammation and Infection, Laura Bassi Centres of Expertise (OCUVAC), Institute of Specific Prophylaxis and Tropical Medicine [ISPTM], Center for Pathophysiology, Infectiology and Immunology (CePII), Medical University of Vienna, Vienna, Austria
| | - Shaukat Ali
- Department of Zoology, Government College University, Lahore, Pakistan
| | - Shafaat Yar Khan
- Department of Zoology, University of Sargodha, Sargodha, Pakistan
| | - Talin Barisani-Asenbauer
- Center of Ocular Inflammation and Infection, Laura Bassi Centres of Expertise (OCUVAC), Institute of Specific Prophylaxis and Tropical Medicine [ISPTM], Center for Pathophysiology, Infectiology and Immunology (CePII), Medical University of Vienna, Vienna, Austria
| |
Collapse
|
48
|
Sajadimajd S, Deravi N, Forouhar K, Rahimi R, Kheirandish A, Bahramsoltani R. Endoplasmic reticulum as a therapeutic target in type 2 diabetes: Role of phytochemicals. Int Immunopharmacol 2023; 114:109508. [PMID: 36495694 DOI: 10.1016/j.intimp.2022.109508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 11/23/2022] [Accepted: 11/23/2022] [Indexed: 12/12/2022]
Abstract
Type 2 diabetes mellitus (T2DM) is a metabolic disorders characterized by insulin resistance and β-cell dysfunction with an increasing worldwide incidence. Several studies have revealed that long-term glucotoxicity results in β-cell failure and death through induction of endoplasmic reticulum (ER) stress. Owing to the chronic progression of T2DM and the low effectiveness of antidiabetic drugs in long-term use, medicinal plants and their secondary metabolites seem to be the promising alternatives. Here we have provided a comprehensive review regarding the role of phytochemicals to alleviate ER stress in T2DM. Ginsenoside compound K, baicalein, quercetin, isopulegol, kaempferol, liquiritigenin, aspalathin, and tyrosol have demonstrated remarkable improvement of T2DM via modulation of ER stress. Arctigenin and total glycosides of peony have been shown to be effective in the treatment of diabetic retinopathy through modulation of ER stress. The effectiveness of grape seed proanthocyanidins and wolfberry is also shown in the relief of diabetic neuropathy and retinopathy. Resveratrol is involved in the prevention of atherosclerosis via ER stress modulation. Taken together, the data described herein revealed the capability of herbal constituents to prevent different complications of T2DM via a decrease in ER stress which open new doors to the treatment of diabetes.
Collapse
Affiliation(s)
- Soraya Sajadimajd
- Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran
| | - Niloofar Deravi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kimia Forouhar
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Roja Rahimi
- Derpartment of Traditional Pharmacy, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran; PhytoPharmacology Interest Group (PPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Ali Kheirandish
- Department of Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Roodabeh Bahramsoltani
- Derpartment of Traditional Pharmacy, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran; PhytoPharmacology Interest Group (PPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| |
Collapse
|
49
|
Refaey MS, Shah MA, Fayed MA, Rasul A, Siddiqui MF, Qasim M, Althobaiti NA, Saleem U, Malik A, Blundell R, Eldahshan OA. Neuroprotective effects of steroids. PHYTONUTRIENTS AND NEUROLOGICAL DISORDERS 2023:283-304. [DOI: 10.1016/b978-0-12-824467-8.00005-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
50
|
High Yield Synthesis of Curcumin and Symmetric Curcuminoids: A "Click" and "Unclick" Chemistry Approach. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010289. [PMID: 36615495 PMCID: PMC9822029 DOI: 10.3390/molecules28010289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/23/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023]
Abstract
The worldwide known and employed spice of Asian origin, turmeric, receives significant attention due to its numerous purported medicinal properties. Herein, we report an optimized synthesis of curcumin and symmetric curcuminoids of aromatic (bisdemethoxycurcumin) and heterocyclic type, with yields going from good to excellent using the cyclic difluoro-boronate derivative of acetylacetone prepared by reaction of 2,4-pentanedione with boron trifluoride in THF (ca. 95%). The subsequent cleavage of the BF2 group is of significant importance for achieving a high overall yield in this two-step procedure. Such cleavage occurs by treatment with hydrated alumina (Al2O3) or silica (SiO2) oxides, thus allowing the target heptanoids obtained in high yields as an amorphous powder to be filtered off directly from the reaction media. Furthermore, crystallization instead of chromatographic procedures provides a straightforward purification step. The ease and efficiency with which the present methodology can be applied to synthesizing the title compounds earns the terms "click" and "unclick" applied to describe particularly straightforward, efficient reactions. Furthermore, the methodology offers a simple, versatile, fast, and economical synthetic alternative for the obtention of curcumin (85% yield), bis-demethoxycurcumin (78% yield), and the symmetrical heterocyclic curcuminoids (80-92% yield), in pure form and excellent yields.
Collapse
|