1
|
Qiu C, Li Z, Peng P. Human umbilical cord mesenchymal stem cells protect MC3T3-E1 osteoblasts from dexamethasone-induced apoptosis via induction of the Nrf2-ARE signaling pathway. Regen Ther 2024; 27:1-11. [PMID: 38476629 PMCID: PMC10926296 DOI: 10.1016/j.reth.2024.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/29/2024] [Accepted: 02/25/2024] [Indexed: 03/14/2024] Open
Abstract
Objective To investigate the protective effect human umbilical cord mesenchymal stem cells (hUC-MSCs) have on Dexamethasone (Dex)-induced apoptosis in osteogenesis via the Nrf2-ARE signaling pathway. Methods Glucocorticoid-induced osteonecrosis of the femoral head (GC-ONFH) was developed in rats through the administration of lipopolysaccharide and methylprednisolone. The incidence of femoral head necrosis, cavity notch, apoptosis of osteoblasts, and bone density were observed by HE staining, TUNEL staining, and Micro-CT. HUC-MSCs were co-cultured with mouse pre-osteoblast MC3T3-E1. The survival rate of osteoblasts was determined by CCK8, and apoptosis and ROS levels of osteoblasts were determined by flow cytometer. The viability of antioxidant enzymes SOD, GSH-Px, and CAT was analyzed by biochemistry. Nrf2 expression levels and those of its downstream proteins and apoptosis-related proteins were analyzed by Western blotting. Results In rats, hUC-MSCs can reduce the rates of empty bone lacuna and osteoblast apoptosis that are induced by glucocorticoids (GCs), while reducing the incidence of GC-ONFH. hUC-MSCs can significantly improve the survival rate and antioxidant SOD, GSH-Px, and CAT activity of MC3T3-E1 cells caused by Dex, and inhibit apoptosis and oxidative stress levels. In addition, hUC-MSCs can up-regulate the expression of osteoblast antioxidant protein Nrf2 and its downstream protein HO-1, NQO-1, GCLC, GCLM, and apoptosis-related protein bcl-2, while also down-regulating the expression of apoptosis-related protein bax, cleaved caspase-3, cleaved caspase-9, and cytochrome C in MC3T3-E1 cells. hUC-MSCs improve the ability of MC3T3-E1 cells to mineralize to osteogenesis. However, the promoting effects of hUC-MSCs were abolished following the blocking of the Nrf2-ARE signaling pathway for osteoblasts. Conclusion The results reveal that hUC-MSCs can reduce Dex-induced apoptosis in osteoblasts via the Nrf2-ARE signaling pathway.
Collapse
Affiliation(s)
- Chen Qiu
- Department of Sports Medicine, The Affiliated Hospital of Wuhan Sports University, Wuhan, 430000, China
| | - Zhaowen Li
- Department of Sports Medicine, The Affiliated Hospital of Wuhan Sports University, Wuhan, 430000, China
| | - Puji Peng
- Department of Orthopedics, Henan Provincial People's Hospital, Zhengzhou, 450003, China
| |
Collapse
|
2
|
Patel KD, Keskin-Erdogan Z, Sawadkar P, Nik Sharifulden NSA, Shannon MR, Patel M, Silva LB, Patel R, Chau DYS, Knowles JC, Perriman AW, Kim HW. Oxidative stress modulating nanomaterials and their biochemical roles in nanomedicine. NANOSCALE HORIZONS 2024; 9:1630-1682. [PMID: 39018043 DOI: 10.1039/d4nh00171k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Many pathological conditions are predominantly associated with oxidative stress, arising from reactive oxygen species (ROS); therefore, the modulation of redox activities has been a key strategy to restore normal tissue functions. Current approaches involve establishing a favorable cellular redox environment through the administration of therapeutic drugs and redox-active nanomaterials (RANs). In particular, RANs not only provide a stable and reliable means of therapeutic delivery but also possess the capacity to finely tune various interconnected components, including radicals, enzymes, proteins, transcription factors, and metabolites. Here, we discuss the roles that engineered RANs play in a spectrum of pathological conditions, such as cancer, neurodegenerative diseases, infections, and inflammation. We visualize the dual functions of RANs as both generator and scavenger of ROS, emphasizing their profound impact on diverse cellular functions. The focus of this review is solely on inorganic redox-active nanomaterials (inorganic RANs). Additionally, we deliberate on the challenges associated with current RANs-based approaches and propose potential research directions for their future clinical translation.
Collapse
Affiliation(s)
- Kapil D Patel
- John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601, Australia.
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
- School of Cellular and Molecular Medicine, University of Bristol, BS8 1TD, UK
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea.
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea
| | - Zalike Keskin-Erdogan
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, University College London, Royal Free Hospital, Rowland Hill Street, NW3 2PF, London, UK
- Department of Chemical Engineering, Imperial College London, Exhibition Rd, South Kensington, SW7 2BX, London, UK
| | - Prasad Sawadkar
- Division of Surgery and Interventional Science, UCL, London, UK
- The Griffin Institute, Northwick Park Institute for Medical Research, Northwick Park and St Mark's Hospitals, London, HA1 3UJ, UK
| | - Nik Syahirah Aliaa Nik Sharifulden
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, University College London, Royal Free Hospital, Rowland Hill Street, NW3 2PF, London, UK
| | - Mark Robert Shannon
- John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601, Australia.
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
- School of Cellular and Molecular Medicine, University of Bristol, BS8 1TD, UK
| | - Madhumita Patel
- Department of Chemistry and Nanoscience, Ewha Women University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| | - Lady Barrios Silva
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, University College London, Royal Free Hospital, Rowland Hill Street, NW3 2PF, London, UK
| | - Rajkumar Patel
- Energy & Environment Sciences and Engineering (EESE), Integrated Sciences and Engineering Division (ISED), Underwood International College, Yonsei University, 85 Songdongwahak-ro, Yeonsungu, Incheon 21938, Republic of Korea
| | - David Y S Chau
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, University College London, Royal Free Hospital, Rowland Hill Street, NW3 2PF, London, UK
| | - Jonathan C Knowles
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, University College London, Royal Free Hospital, Rowland Hill Street, NW3 2PF, London, UK
| | - Adam W Perriman
- John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601, Australia.
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
- School of Cellular and Molecular Medicine, University of Bristol, BS8 1TD, UK
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea.
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea
- Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan 31116, Republic of Korea
- Cell & Matter Institute, Dankook University, Cheonan 31116, Republic of Korea
| |
Collapse
|
3
|
Raby A, Missiroli S, Sanatine P, Langui D, Pansiot J, Beaude N, Vezzana L, Saleh R, Marinello M, Laforge M, Pinton P, Buj-Bello A, Burgo A. Spastin regulates ER-mitochondrial contact sites and mitochondrial homeostasis. iScience 2024; 27:110683. [PMID: 39252960 PMCID: PMC11382127 DOI: 10.1016/j.isci.2024.110683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 05/20/2024] [Accepted: 08/05/2024] [Indexed: 09/11/2024] Open
Abstract
Mitochondria-endoplasmic reticulum (ER) contact sites (MERCs) emerged to play critical roles in numerous cellular processes, and their dysregulation has been associated to neurodegenerative disorders. Mutations in the SPG4 gene coding for spastin are among the main causes of hereditary spastic paraplegia (HSP). Spastin binds and severs microtubules, and the long isoform of this protein, namely M1, spans the outer leaflet of ER membrane where it interacts with other ER-HSP proteins. Here, we showed that overexpressed M1 spastin localizes in ER-mitochondria intersections and that endogenous spastin accumulates in MERCs. We demonstrated in different cellular models that downregulation of spastin enhances the number of MERCs, alters mitochondrial morphology, and impairs ER and mitochondrial calcium homeostasis. These effects are associated with reduced mitochondrial membrane potential, oxygen species levels, and oxidative metabolism. These findings extend our knowledge on the role of spastin in the ER and suggest MERCs deregulation as potential causes of SPG4-HSP disease.
Collapse
Affiliation(s)
- Amelie Raby
- Genethon, 91000 Evry, France
- Université Paris-Saclay, University Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, 91000 Evry, France
| | - Sonia Missiroli
- Department of Medical Sciences, Section of Experimental Medicine, University of Ferrara, and Technopole of Ferrara, Laboratory for Advanced Therapies (LTTA), 44121 Ferrara, Italy
| | | | - Dominique Langui
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm U1127, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Paris, France
| | - Julien Pansiot
- Université Paris Cité, NeuroDiderot, Inserm, 75019 Paris, France
| | - Nissai Beaude
- Genethon, 91000 Evry, France
- Université Paris-Saclay, University Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, 91000 Evry, France
| | - Lucie Vezzana
- Genethon, 91000 Evry, France
- Université Paris-Saclay, University Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, 91000 Evry, France
| | - Rachelle Saleh
- Université Paris Cité, NeuroDiderot, Inserm, 75019 Paris, France
| | - Martina Marinello
- Genethon, 91000 Evry, France
- Université Paris-Saclay, University Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, 91000 Evry, France
| | - Mireille Laforge
- Université Paris Cité, NeuroDiderot, Inserm, 75019 Paris, France
| | - Paolo Pinton
- Department of Medical Sciences, Section of Experimental Medicine, University of Ferrara, and Technopole of Ferrara, Laboratory for Advanced Therapies (LTTA), 44121 Ferrara, Italy
| | - Ana Buj-Bello
- Genethon, 91000 Evry, France
- Université Paris-Saclay, University Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, 91000 Evry, France
| | - Andrea Burgo
- Genethon, 91000 Evry, France
- Université Paris-Saclay, University Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, 91000 Evry, France
| |
Collapse
|
4
|
Kang YH, Jeong HJ, Park YJ. Hydramethylnon induces mitochondria-mediated apoptosis in BEAS-2B human bronchial epithelial cells. Toxicol Appl Pharmacol 2024:117102. [PMID: 39270854 DOI: 10.1016/j.taap.2024.117102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/25/2024] [Accepted: 09/09/2024] [Indexed: 09/15/2024]
Abstract
Typically used household chemicals comprise numerous compounds. Determining mixture toxicity, as observed when using household chemicals containing multiple substances, is of considerable importance from a regulatory perspective. Upon examining the toxic effects of household chemical mixtures, we observed that hydramethylnon combined with tetramethrin resulted in synergistic toxicity. To determine the unknown toxicity mechanism of hydramethylnon, which carries the risk of inhalation exposure when using household chemicals, we conducted a further investigation using BEAS-2B cells, a human bronchial epithelial cell line. Hydramethylnon-induced cytotoxicity was determined following 24 and 48 h of exposure using the water-soluble tetrazolium 1 and lactate dehydrogenase assays. To elucidate the toxicity mechanism, we utilized flow cytometry and measured the levels of apoptosis-related proteins and caspase activities. Given that hydramethylnon, as an insecticide, disrupts the mitochondrial electron transfer chain, we analyzed the relevant mechanisms, including mitochondrial superoxide levels as well as the mitochondrial membrane potential (MMP). Hydramethylnon dose-dependently induced BEAS-2B cell apoptosis via the intrinsic pathway. Furthermore, it significantly increased mitochondrial superoxide levels and disrupted the MMP. Pre-treatment with a caspase inhibitor (Z-DEVD-FMK) confirmed that hydramethylnon induced caspase-dependent apoptosis. Apoptosis, a key event in the toxicological process of chemicals, can lead to lung diseases, including fibrosis and cancer. The results of the present study suggest a mechanism of toxicity of hydramethrylnon, an organofluorine biocide whose toxicity has been little studied, to the lung epithelium. Considering the potential risks associated with inhalation exposure, these results highlight the need for careful management and regulation of hydramethylnon.
Collapse
Affiliation(s)
- Yeon-Ho Kang
- College of Pharmacy, Kyungsung University, Busan 48434, Republic of Korea
| | - Hye-Jin Jeong
- College of Pharmacy, Kyungsung University, Busan 48434, Republic of Korea
| | - Yong Joo Park
- College of Pharmacy, Kyungsung University, Busan 48434, Republic of Korea.
| |
Collapse
|
5
|
Ježek P, Dlasková A, Engstová H, Špačková J, Tauber J, Průchová P, Kloppel E, Mozheitova O, Jabůrek M. Mitochondrial Physiology of Cellular Redox Regulations. Physiol Res 2024; 73:S217-S242. [PMID: 38647168 PMCID: PMC11412358 DOI: 10.33549/physiolres.935269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Mitochondria (mt) represent the vital hub of the molecular physiology of the cell, being decision-makers in cell life/death and information signaling, including major redox regulations and redox signaling. Now we review recent advances in understanding mitochondrial redox homeostasis, including superoxide sources and H2O2 consumers, i.e., antioxidant mechanisms, as well as exemplar situations of physiological redox signaling, including the intramitochondrial one and mt-to-cytosol redox signals, which may be classified as acute and long-term signals. This review exemplifies the acute redox signals in hypoxic cell adaptation and upon insulin secretion in pancreatic beta-cells. We also show how metabolic changes under these circumstances are linked to mitochondrial cristae narrowing at higher intensity of ATP synthesis. Also, we will discuss major redox buffers, namely the peroxiredoxin system, which may also promote redox signaling. We will point out that pathological thresholds exist, specific for each cell type, above which the superoxide sources exceed regular antioxidant capacity and the concomitant harmful processes of oxidative stress subsequently initiate etiology of numerous diseases. The redox signaling may be impaired when sunk in such excessive pro-oxidative state.
Collapse
Affiliation(s)
- P Ježek
- Laboratory of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic.
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Nossar LF, Lopes JA, Pereira-Acácio A, Costa-Sarmento G, Rachid R, Wendt CHC, Miranda K, Galina A, Rodrigues-Ferreira C, Muzi-Filho H, Vieyra A. Chronic undernutrition impairs renal mitochondrial respiration accompanied by intense ultrastructural damage in juvenile rats. Biochem Biophys Res Commun 2024; 739:150583. [PMID: 39182354 DOI: 10.1016/j.bbrc.2024.150583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/08/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024]
Abstract
This study investigated whether chronic undernutrition alters the mitochondrial structure and function in renal proximal tubule cells, thus impairing fluid transport and homeostasis. We previously showed that chronic undernutrition downregulates the renal proximal tubules (Na++K+)ATPase, the main molecular machine responsible for fluid transport and ATP consumption. Male rats received a multifactorial deficient diet, the so-called Regional Basic Diet (RBD), mimicking those used in impoverished regions worldwide, from weaning to a juvenile age (3 months). The diet has a low content (8 %) of poor-quality proteins, low lipids, and no vitamins compared to control (CTR). We investigated citrate synthase activity, mitochondrial respiration (oxygraphy) in phosphorylating and non-phosphorylating conditions with different substrates/inhibitors, potential across the internal membrane (Δψ), and anion superoxide/H2O2 formation. The data were correlated with ultrastructural alterations evaluated using transmission electron microscopy (TEM) and focused ion beam scanning electron microscopy (FIB-SEM). Citrate synthase activity decreased (∼50 %) in RBD rats, accompanied by a similar reduction in respiration in non-phosphorylating conditions, maximum respiratory capacity, and ATP synthesis. The Δψ generation and its dissipation after carbonyl cyanide-4-(trifluoromethoxy) phenylhydrazone remained unmodified in the survival mitochondria. H2O2 production increased (∼100 %) after Complex II energization. TEM demonstrated intense matrix vacuolization and disruption of cristae junctions in a subpopulation of RBD mitochondria, which was also demonstrated in the 3D analysis of FIB-SEM tomography. In conclusion, chronic undernutrition impairs mitochondrial functions in renal proximal tubules, with profound alterations in the matrix and internal membrane ultrastructure that culminate with the compromise of ATP supply for transport processes.
Collapse
Affiliation(s)
- Luiz F Nossar
- Center for Research in Precision Medicine, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Jarlene A Lopes
- Center for Research in Precision Medicine, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil; National Center of Structural Biology and Bioimaging/CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Amaury Pereira-Acácio
- Center for Research in Precision Medicine, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil; National Center of Structural Biology and Bioimaging/CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil; Graduate Program of Translational Biomedicine, University of Grande Rio, Duque de Caxias, 25071-202, Brazil
| | - Glória Costa-Sarmento
- Center for Research in Precision Medicine, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil; National Center of Structural Biology and Bioimaging/CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Rachel Rachid
- Center for Research in Precision Medicine, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil; National Center of Structural Biology and Bioimaging/CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Camila H C Wendt
- Center for Research in Precision Medicine, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil; National Institute of Science and Technology for Structural Biology and Bioimaging/INBEB, Rio de Janeiro, 21941-902, Brazil
| | - Kildare Miranda
- Center for Research in Precision Medicine, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil; National Center of Structural Biology and Bioimaging/CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil; National Institute of Science and Technology for Structural Biology and Bioimaging/INBEB, Rio de Janeiro, 21941-902, Brazil
| | - Antonio Galina
- Leopoldo de Meis Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Clara Rodrigues-Ferreira
- Center for Research in Precision Medicine, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil; National Center of Structural Biology and Bioimaging/CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Humberto Muzi-Filho
- Center for Research in Precision Medicine, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil; National Center of Structural Biology and Bioimaging/CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Adalberto Vieyra
- Center for Research in Precision Medicine, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil; National Center of Structural Biology and Bioimaging/CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil; Graduate Program of Translational Biomedicine, University of Grande Rio, Duque de Caxias, 25071-202, Brazil; National Institute of Science and Technology for Regenerative Medicine/REGENERA, Rio de Janeiro, 21941-902, Brazil.
| |
Collapse
|
7
|
Ding J, Ji R, Wang Z, Jia Y, Meng T, Song X, Gao J, He Q. Cardiovascular protection of YiyiFuzi powder and the potential mechanisms through modulating mitochondria-endoplasmic reticulum interactions. Front Pharmacol 2024; 15:1405545. [PMID: 38978978 PMCID: PMC11228702 DOI: 10.3389/fphar.2024.1405545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 05/28/2024] [Indexed: 07/10/2024] Open
Abstract
Cardiovascular diseases (CVD) remain the leading cause of death worldwide and represent a major public health challenge. YiyiFuzi Powder (YYFZ), composed of Coicis semen and Fuzi, is a classical traditional Chinese medicine prescription from the Synopsis of Golden Chamber dating back to the Han Dynasty. Historically, YYFZ has been used to treat various CVD, rooted in Chinese therapeutic principles. Network pharmacology analysis indicated that YYFZ may exhibit direct or indirect effects on mitochondria-endoplasmic reticulum (ER) interactions. This review, focusing on the cardiovascular protective effects of Coicis semen and Fuzi, summarizes the potential mechanisms by which YYFZ acts on mitochondria and the ER. The underlying mechanisms are associated with regulating cardiovascular risk factors (such as blood lipids and glucose), impacting mitochondrial structure and function, modulating ER stress, inhibiting oxidative stress, suppressing inflammatory responses, regulating cellular apoptosis, and maintaining calcium ion balance. The involved pathways include, but were not limited to, upregulating the IGF-1/PI3K/AKT, cAMP/PKA, eNOS/NO/cGMP/SIRT1, SIRT1/PGC-1α, Klotho/SIRT1, OXPHOS/ATP, PPARα/PGC-1α/SIRT3, AMPK/JNK, PTEN/PI3K/AKT, β2-AR/PI3K/AKT, and modified Q cycle signaling pathways. Meanwhile, the MCU, NF-κB, and JAK/STAT signaling pathways were downregulated. The PERK/eIF2α/ATF4/CHOP, PERK/SREBP-1c/FAS, IRE1, PINK1-dependent mitophagy, and AMPK/mTOR signaling pathways were bidirectionally regulated. High-quality experimental studies are needed to further elucidate the underlying mechanisms of YYFZ in CVD treatment.
Collapse
Affiliation(s)
- Jingyi Ding
- Department of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ran Ji
- Department of Intensive Care Unit, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ziyi Wang
- Department of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuzhi Jia
- Department of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tiantian Meng
- Department of Rehabilitation, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xinbin Song
- Graduate School, Henan University of Chinese Medicine, Zhengzhou, China
| | - Jing Gao
- Department of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qingyong He
- Department of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
8
|
Holt AG, Davies AM. The long term effects of uncoupling interventions as a therapy for dementia in humans. J Theor Biol 2024; 587:111825. [PMID: 38621584 DOI: 10.1016/j.jtbi.2024.111825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/25/2024] [Accepted: 04/09/2024] [Indexed: 04/17/2024]
Abstract
In this paper we use simulation methods to study a hypothetical uncoupling agent as a therapy for dementia. We simulate the proliferation of mitochondrial deletion mutants amongst a population of wild-type in human neurons. Mitochondria play a key role in ATP generation. Clonal expansion can lead to the wild-type being overwhelmed by deletions such that a diminished population can no longer fulfil a cell's energy requirement, eventually leading to its demise. The intention of uncoupling is to reduce the formation of deletion mutants by reducing mutation rate. However, a consequence of uncoupling is that the energy production efficacy is also reduced which in turn increases wild-type copy number in order to compensate for the energy deficit. The results of this paper showed that uncoupling reduced the severity of dementia, however, there was some increase in cognitive dysfunction pre-onset of dementia. The effectiveness of uncoupling was dependent upon the timing of intervention relative to the onset of dementia and would necessitate predicting its onset many years in advance.
Collapse
|
9
|
Mizzoni D, Logozzi M, Di Raimo R, Spada M, Fais S. Hydrogen-Rich Alkaline Water Supplementation Restores a Healthy State and Redox Balance in H 2O 2-Treated Mice. Int J Mol Sci 2024; 25:6736. [PMID: 38928440 PMCID: PMC11203767 DOI: 10.3390/ijms25126736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/10/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Water is a major requirement for our bodies, and alkaline water has induced an antioxidant response in a model of natural aging. A series of recent reports have shown that aging is related to reduced water intake. Hydrogen-rich water has been suggested to exert a general antioxidant effect in relation to both improving lifestyle and preventing a series of diseases. Here, we wanted to investigate the effect of the daily intake of hydrogen-rich alkaline water (HAW) in counteracting the redox imbalance induced in a model of H2O2-treated mice. Mice were treated with H2O2 for two weeks and either left untreated or supplied with HAW. The results show that HAW induced a reduction in the ROS plasmatic levels that was consistent with the increase in the circulating glutathione. At the same time, the reduction in plasmatic 8-hydroxy-2'-deoxyguanosine was associated with reduced DNA damage in the whole body. Further analysis of the spleen and bone marrow cells showed a reduced ROS content consistent with a significantly reduced mitochondrial membrane potential and superoxide accumulation and an increase in spontaneous proliferation. This study provides evidence for a clear preventive and curative effect of HAW in a condition of systemic toxic condition and redox imbalance.
Collapse
Affiliation(s)
- Davide Mizzoni
- Exo Lab Italia, Tecnopolo d’Abruzzo, Strada Statale 17, Località Boschetto di Pile, 67100 L’Aquila, Italy; (D.M.); (R.D.R.)
| | - Mariantonia Logozzi
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy;
| | - Rossella Di Raimo
- Exo Lab Italia, Tecnopolo d’Abruzzo, Strada Statale 17, Località Boschetto di Pile, 67100 L’Aquila, Italy; (D.M.); (R.D.R.)
| | - Massimo Spada
- Department of Centro Nazionale Sperimentazione e Benessere Animale, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy;
| | - Stefano Fais
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy;
| |
Collapse
|
10
|
Millichap L, Turton N, Damiani E, Marcheggiani F, Orlando P, Silvestri S, Tiano L, Hargreaves IP. The Effect of Neuronal CoQ 10 Deficiency and Mitochondrial Dysfunction on a Rotenone-Induced Neuronal Cell Model of Parkinson's Disease. Int J Mol Sci 2024; 25:6622. [PMID: 38928331 PMCID: PMC11204355 DOI: 10.3390/ijms25126622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Parkinson's disease (PD) is the second most prevalent neurodegenerative disorder currently affecting the ageing population. Although the aetiology of PD has yet to be fully elucidated, environmental factors such as exposure to the naturally occurring neurotoxin rotenone has been associated with an increased risk of developing PD. Rotenone inhibits mitochondrial respiratory chain (MRC) complex I activity as well as induces dopaminergic neuronal death. The aim of the present study was to investigate the underlying mechanisms of rotenone-induced mitochondrial dysfunction and oxidative stress in an in vitro SH-SY5Y neuronal cell model of PD and to assess the ability of pre-treatment with Coenzyme Q10 (CoQ10) to ameliorate oxidative stress in this model. Spectrophotometric determination of the mitochondrial enzyme activities and fluorescence probe studies of reactive oxygen species (ROS) production was assessed. Significant inhibition of MRC complex I and II-III activities was observed, together with a significant loss of neuronal viability, CoQ10 status, and ATP synthesis. Additionally, significant increases were observed in intracellular and mitochondrial ROS production. Remarkably, CoQ10 supplementation was found to reduce ROS formation. These results have indicated mitochondrial dysfunction and increased oxidative stress in a rotenone-induced neuronal cell model of PD that was ameliorated by CoQ10 supplementation.
Collapse
Affiliation(s)
- Lauren Millichap
- Department of Life and Environmental Sciences, Polytechnic University of Marche, I-60131 Ancona, Italy; (L.M.); (E.D.); (F.M.); (P.O.); (S.S.); (L.T.)
| | - Nadia Turton
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 5UA, UK;
| | - Elisabetta Damiani
- Department of Life and Environmental Sciences, Polytechnic University of Marche, I-60131 Ancona, Italy; (L.M.); (E.D.); (F.M.); (P.O.); (S.S.); (L.T.)
| | - Fabio Marcheggiani
- Department of Life and Environmental Sciences, Polytechnic University of Marche, I-60131 Ancona, Italy; (L.M.); (E.D.); (F.M.); (P.O.); (S.S.); (L.T.)
| | - Patrick Orlando
- Department of Life and Environmental Sciences, Polytechnic University of Marche, I-60131 Ancona, Italy; (L.M.); (E.D.); (F.M.); (P.O.); (S.S.); (L.T.)
| | - Sonia Silvestri
- Department of Life and Environmental Sciences, Polytechnic University of Marche, I-60131 Ancona, Italy; (L.M.); (E.D.); (F.M.); (P.O.); (S.S.); (L.T.)
| | - Luca Tiano
- Department of Life and Environmental Sciences, Polytechnic University of Marche, I-60131 Ancona, Italy; (L.M.); (E.D.); (F.M.); (P.O.); (S.S.); (L.T.)
| | - Iain P. Hargreaves
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 5UA, UK;
| |
Collapse
|
11
|
Pribil Pardun S, Bhat A, Anderson CP, Allen MF, Bruening W, Jacob J, Pendyala VV, Yu L, Bruett T, Zimmerman MC, Park SY, Zucker IH, Gao L. Electrical Pulse Stimulation Protects C2C12 Myotubes against Hydrogen Peroxide-Induced Cytotoxicity via Nrf2/Antioxidant Pathway. Antioxidants (Basel) 2024; 13:716. [PMID: 38929155 PMCID: PMC11201067 DOI: 10.3390/antiox13060716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/05/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
Skeletal muscle contraction evokes numerous biochemical alterations that underpin exercise benefits. This present study aimed to elucidate the mechanism for electrical pulse stimulation (EPS)-induced antioxidant adaptation in C2C12 myotubes. We found that EPS significantly upregulated Nrf2 and a broad array of downstream antioxidant enzymes involved in multiple antioxidant systems. These effects were completely abolished by pretreatment with a ROS scavenger, N-acetylcysteine. MitoSOX-Red, CM-H2DCFDA, and EPR spectroscopy revealed a significantly higher ROS level in mitochondria and cytosol in EPS cells compared to non-stimulated cells. Seahorse and Oroboros revealed that EPS significantly increased the maximal mitochondrial oxygen consumption rate, along with an upregulated protein expression of mitochondrial complexes I/V, mitofusin-1, and mitochondrial fission factor. A post-stimulation time-course experiment demonstrated that upregulated NQO1 and GSTA2 last at least 24 h following the cessation of EPS, whereas elevated ROS declines immediately. These findings suggest an antioxidant preconditioning effect in the EPS cells. A cell viability study suggested that the EPS cells displayed 11- and 36-fold higher survival rates compared to the control cells in response to 2 and 4 mM H2O2 treatment, respectively. In summary, we found that EPS upregulated a large group of antioxidant enzymes in C2C12 myotubes via a contraction-mitochondrial-ROS-Nrf2 pathway. This antioxidant adaptation protects cells against oxidative stress-associated cytotoxicity.
Collapse
Affiliation(s)
- Sarah Pribil Pardun
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (S.P.P.); (A.B.); (W.B.); (J.J.); (V.V.P.)
| | - Anjali Bhat
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (S.P.P.); (A.B.); (W.B.); (J.J.); (V.V.P.)
| | - Cody P. Anderson
- School of Health and Kinesiology, University of Nebraska Omaha, Omaha, NE 68182, USA; (C.P.A.); (M.F.A.); (S.-Y.P.)
| | - Michael F. Allen
- School of Health and Kinesiology, University of Nebraska Omaha, Omaha, NE 68182, USA; (C.P.A.); (M.F.A.); (S.-Y.P.)
| | - Will Bruening
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (S.P.P.); (A.B.); (W.B.); (J.J.); (V.V.P.)
| | - Joel Jacob
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (S.P.P.); (A.B.); (W.B.); (J.J.); (V.V.P.)
| | - Ved Vasishtha Pendyala
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (S.P.P.); (A.B.); (W.B.); (J.J.); (V.V.P.)
| | - Li Yu
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (L.Y.); (T.B.); (M.C.Z.); (I.H.Z.)
| | - Taylor Bruett
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (L.Y.); (T.B.); (M.C.Z.); (I.H.Z.)
| | - Matthew C. Zimmerman
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (L.Y.); (T.B.); (M.C.Z.); (I.H.Z.)
| | - Song-Young Park
- School of Health and Kinesiology, University of Nebraska Omaha, Omaha, NE 68182, USA; (C.P.A.); (M.F.A.); (S.-Y.P.)
| | - Irving H. Zucker
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (L.Y.); (T.B.); (M.C.Z.); (I.H.Z.)
| | - Lie Gao
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (S.P.P.); (A.B.); (W.B.); (J.J.); (V.V.P.)
| |
Collapse
|
12
|
Osiewacz HD. Impact of Mitochondrial Architecture, Function, Redox Homeostasis, and Quality Control on Organismic Aging: Lessons from a Fungal Model System. Antioxid Redox Signal 2024; 40:948-967. [PMID: 38019044 DOI: 10.1089/ars.2023.0487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Significance: Mitochondria are eukaryotic organelles with various essential functions. They are both the source and the targets of reactive oxygen species (ROS). Different branches of a mitochondrial quality control system (mQCS), such as ROS balancing, degradation of damaged proteins, or whole mitochondria, can mitigate the adverse effects of ROS stress. However, the capacity of mQCS is limited. Overwhelming this capacity leads to dysfunctions and aging. Strategies to interfere into mitochondria-dependent human aging with the aim to increase the healthy period of life, the health span, rely on the precise knowledge of mitochondrial functions. Experimental models such as Podospora anserina, a filamentous fungus with a clear mitochondrial aging etiology, proved to be instrumental to reach this goal. Recent Advances: Investigations of the P. anserina mQCS revealed that it is constituted by a complex network of different branches. Moreover, mitochondrial architecture and lipid homeostasis emerged to affect aging. Critical Issues: The regulation of the mQCS is only incompletely understood. Details about the involved signaling molecules and interacting pathways remain to be elucidated. Moreover, most of the currently generated experimental data were generated in well-controlled experiments that do not reflect the constantly changing natural life conditions and bear the danger to miss relevant aspects leading to incorrect conclusions. Future Directions: In P. anserina, the precise impact of redox signaling as well as of molecular damaging for aging remains to be defined. Moreover, natural fluctuation of environmental conditions needs to be considered to generate a realistic picture of aging mechanisms as they developed during evolution.
Collapse
|
13
|
Jones IH, Collins JE, Hall NJ, Heinson AI. Transcriptomic analysis of the effect of remote ischaemic conditioning in an animal model of necrotising enterocolitis. Sci Rep 2024; 14:10783. [PMID: 38734725 PMCID: PMC11088709 DOI: 10.1038/s41598-024-61482-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 05/06/2024] [Indexed: 05/13/2024] Open
Abstract
Necrotising enterocolitis (NEC) has a complex pathophysiology but the common end-point is ischaemia reperfusion injury (IRI) and intestinal necrosis. We have previously reported that RIC significantly reduces the intestinal injury in a rat model of NEC. Here we describe the changes in intestinal mRNA occurring in the intestine of animals exposed to IRI, both with and without RIC. Related rat-pups were randomly assigned to four groups: SHAM, IRI only, RIC only and RIC + IRI. IRI animals, underwent 40 min of intestinal ischaemia, and 90 min of reperfusion. Animals that underwent RIC had three cycles of 5 min of alternating ischaemia/reperfusion by means of a ligature applied to the hind limb. Samples from the terminal ileum were immediately stored in RNA-preserving media for later next generation sequencing and transciptome analysis using R v 3.6.1. Differential expression testing showed that 868 genes differentially expressed in animals exposed to RIC alone compared to SHAM and 135 in the IRI and RIC group compared to IRI alone. Comparison between these two sets showed that 25 genes were differentially expressed in both groups. Pro-inflammatory molecules: NF-ĸβ2, Cxcl1, SOD2 and Map3k8 all show reduced expression in response to RIC. Targeted gene analysis revealed increased expression in PI3K which is part of the so-called RISK-pathway which is a key part of the protective mechanisms of RIC in the heart. Overall, this transcriptomic analysis shows that RIC provides a protective effect to the intestine via anti-inflammatory pathways. This could be particularly relevant to treating and preventing NEC.
Collapse
Affiliation(s)
- Ian Howard Jones
- University Surgery Unit, Faculty of Medicine, University of Southampton, Tremona Road, Southampton, UK.
- Birmingham Children's Hospital, Steelhouse Lane, Birmingham, UK.
| | - Jane Elizabeth Collins
- University Surgery Unit, Faculty of Medicine, University of Southampton, Tremona Road, Southampton, UK
- Clinical and Experimental Sciences, University of Southampton School of Medicine, Southampton, UK
| | - Nigel John Hall
- University Surgery Unit, Faculty of Medicine, University of Southampton, Tremona Road, Southampton, UK
- Southampton Children's Hospital, Tremona Road, Southampton, UK
| | - Ashley Ivan Heinson
- University Surgery Unit, Faculty of Medicine, University of Southampton, Tremona Road, Southampton, UK
- Clinical Informatics Research Unit, Cancer Sciences, University of Southampton School of Medicine, Southampton, UK
| |
Collapse
|
14
|
Bej E, Cesare P, Volpe AR, d’Angelo M, Castelli V. Oxidative Stress and Neurodegeneration: Insights and Therapeutic Strategies for Parkinson's Disease. Neurol Int 2024; 16:502-517. [PMID: 38804477 PMCID: PMC11130796 DOI: 10.3390/neurolint16030037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/29/2024] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative condition marked by the gradual deterioration of dopaminergic neurons in the substantia nigra. Oxidative stress has been identified as a key player in the development of PD in recent studies. In the first part, we discuss the sources of oxidative stress in PD, including mitochondrial dysfunction, dopamine metabolism, and neuroinflammation. This paper delves into the possibility of mitigating oxidative stress as a potential treatment approach for PD. In addition, we examine the hurdles and potential of antioxidant therapy, including the challenge of delivering antioxidants to the brain and the requirement for biomarkers to track oxidative stress in PD patients. However, even if antioxidant therapy holds promise, further investigation is needed to determine its efficacy and safety in PD treatment.
Collapse
Affiliation(s)
| | | | | | | | - Vanessa Castelli
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (E.B.); (P.C.); (A.R.V.); (M.d.)
| |
Collapse
|
15
|
Alanazi M, Yong J, Wu M, Zhang Z, Tian D, Zhang R. Recent Advances in Detection of Hydroxyl Radical by Responsive Fluorescence Nanoprobes. Chem Asian J 2024; 19:e202400105. [PMID: 38447112 DOI: 10.1002/asia.202400105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/06/2024] [Accepted: 03/06/2024] [Indexed: 03/08/2024]
Abstract
Hydroxyl radical (•OH), a highly reactive oxygen species (ROS), is assumed as one of the most aggressive free radicals. This radical has a detrimental impact on cells as it can react with different biological substrates leading to pathophysiological disorders, including inflammation, mitochondrion dysfunction, and cancer. Quantification of this free radical in-situ plays critical roles in early diagnosis and treatment monitoring of various disorders, like macrophage polarization and tumor cell development. Luminescence analysis using responsive probes has been an emerging and reliable technique for in-situ detection of various cellular ROS, and some recently developed •OH responsive nanoprobes have confirmed the association with cancer development. This paper aims to summarize the recent advances in the characterization of •OH in living organisms using responsive nanoprobes, covering the production, the sources of •OH, and biological function, especially in the development of related diseases followed by the discussion of luminescence nanoprobes for •OH detection.
Collapse
Affiliation(s)
- Mazen Alanazi
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Queensland, 4072, Australia
| | - Jiaxi Yong
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, St. Lucia, Queensland, 4072, Australia
| | - Miaomiao Wu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Queensland, 4072, Australia
| | - Zexi Zhang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Queensland, 4072, Australia
| | - Dihua Tian
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Queensland, 4072, Australia
| | - Run Zhang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Queensland, 4072, Australia
| |
Collapse
|
16
|
Alghamdi A. A detailed review of pharmacology of MFN1 (mitofusion-1)-mediated mitochondrial dynamics: Implications for cellular health and diseases. Saudi Pharm J 2024; 32:102012. [PMID: 38463181 PMCID: PMC10924208 DOI: 10.1016/j.jsps.2024.102012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 02/22/2024] [Indexed: 03/12/2024] Open
Abstract
The mitochondria are responsible for the production of cellular ATP, the regulation of cytosolic calcium levels, and the organization of numerous apoptotic proteins through the release of cofactors necessary for the activation of caspases. This level of functional adaptability can only be attained by sophisticated structural alignment. The morphology of the mitochondria does not remain unchanged throughout time; rather, it undergoes change as a result of processes known as fusion and fission. Fzo in flies, Fzo1 in yeast, and mitofusins in mammals are responsible for managing the outer mitochondrial membrane fusion process, whereas Mgm1 in yeast and optic atrophy 1 in mammals are responsible for managing the inner mitochondrial membrane fusion process. The fusion process is composed of two phases. MFN1, a GTPase that is located on the outer membrane of the mitochondria, is involved in the process of linking nearby mitochondria, maintaining the potential of the mitochondrial membrane, and apoptosis. This article offers specific information regarding the functions of MFN1 in a variety of cells and organs found in living creatures. According to the findings of the literature review, MFN1 plays an important part in a number of diseases and organ systems; nevertheless, the protein's function in other disease models and cell types has to be investigated in the near future so that it can be chosen as a promising marker for the therapeutic and diagnostic potentials it possesses. Overall, the major findings of this review highlight the pivotal role of mitofusin (MFN1) in regulating mitochondrial dynamics and its implications across various diseases, including neurodegenerative disorders, cardiovascular diseases, and metabolic syndromes. Our review identifies novel therapeutic targets within the MFN1 signaling pathways and underscores the potential of MFN1 modulation as a promising strategy for treating mitochondrial-related diseases. Additionally, the review calls for further research into MFN1's molecular mechanisms to unlock new avenues for clinical interventions, emphasizing the need for targeted therapies that address MFN1 dysfunction.
Collapse
Affiliation(s)
- Adel Alghamdi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Baha University, P.O. Box 1988 Al-Baha, Saudi Arabia
| |
Collapse
|
17
|
Jorgensen AN, Rashdan NA, Rao KNS, Delgadillo LF, Kolluru GK, Krzywanski DM, Pattillo CB, Kevil CG, Nam HW. Neurogranin expression regulates mitochondrial function and redox balance in endothelial cells. Redox Biol 2024; 70:103085. [PMID: 38359746 PMCID: PMC10878108 DOI: 10.1016/j.redox.2024.103085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/08/2024] [Accepted: 02/10/2024] [Indexed: 02/17/2024] Open
Abstract
Endothelial dysfunction and endothelial activation are common early events in vascular diseases and can arise from mitochondrial dysfunction. Neurogranin (Ng) is a 17kD protein well known to regulate intracellular Ca2+-calmodulin (CaM) complex signaling, and its dysfunction is significantly implicated in brain aging and neurodegenerative diseases. We found that Ng is also expressed in human aortic endothelial cells (HAECs), and depleting Ng promotes Ca2+-CaM complex-dependent endothelial activation and redox imbalances. Endothelial-specific Ng knockout (Cre-CDH5-Ngf/f) mice demonstrate a significant delay in the flow-mediated dilation (FMD) response. Therefore, it is critical to characterize how endothelial Ng expression regulates reactive oxygen species (ROS) generation and affects cardiovascular disease. Label-free quantification proteomics identified that mitochondrial dysfunction and the oxidative phosphorylation pathway are significantly changed in the aorta of Cre-CDH5-Ngf/f mice. We found that a significant amount of Ng is expressed in the mitochondrial fraction of HAECs using western blotting and colocalized with the mitochondrial marker, COX IV, using immunofluorescence staining. Seahorse assay demonstrated that a lack of Ng decreases mitochondrial respiration. Treatment with MitoEbselen significantly restores the oxygen consumption rate in Ng knockdown cells. With the RoGFP-Orp1 approach, we identified that Ng knockdown increases mitochondrial-specific hydrogen peroxide (H2O2) production, and MitoEbselen treatment significantly reduced mitochondrial ROS (mtROS) levels in Ng knockdown cells. These results suggest that Ng plays a significant role in mtROS production. We discovered that MitoEbselen treatment also rescues decreased eNOS expression and nitric oxide (NO) levels in Ng knockdown cells, which implicates the critical role of Ng in mtROS-NO balance in the endothelial cells.
Collapse
Affiliation(s)
- Ashton N Jorgensen
- Department of Pharmacology, Toxicology, and Neuroscience, Louisiana State University Health Sciences Center, Shreveport, LA, 71103, USA
| | - Nabil A Rashdan
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA, 71103, USA
| | - K N Shashanka Rao
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, LA, 71103, USA
| | - Luisa F Delgadillo
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA, 71103, USA
| | - Gopi K Kolluru
- Department of Pathology, Louisiana State University Health Sciences Center, Shreveport, LA, 71103, USA
| | - David M Krzywanski
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, LA, 71103, USA
| | - Christopher B Pattillo
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA, 71103, USA
| | - Christopher G Kevil
- Department of Pathology, Louisiana State University Health Sciences Center, Shreveport, LA, 71103, USA
| | - Hyung W Nam
- Department of Pharmacology, Toxicology, and Neuroscience, Louisiana State University Health Sciences Center, Shreveport, LA, 71103, USA.
| |
Collapse
|
18
|
Win S, Than TA, Kaplowitz N. Mitochondrial P-JNK target, SAB (SH3BP5), in regulation of cell death. Front Cell Dev Biol 2024; 12:1359152. [PMID: 38559813 PMCID: PMC10978662 DOI: 10.3389/fcell.2024.1359152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/19/2024] [Indexed: 04/04/2024] Open
Abstract
Cell death occurs in various circumstances, such as homeostasis, stress response, and defense, via specific pathways and mechanisms that are regulated by specific activator-induced signal transductions. Among them, Jun N-terminal kinases (JNKs) participate in various aspects, and the recent discovery of JNKs and mitochondrial protein SAB interaction in signal regulation of cell death completes our understanding of the mechanism of sustained activation of JNK (P-JNK), which leads to triggering of the machinery of cell death. This understanding will lead the investigators to discover the modulators facilitating or preventing cell death for therapeutic application in acute or chronic diseases and cancer. We discuss here the mechanism and modulators of the JNK-SAB-ROS activation loop, which is the core component of mitochondria-dependent cell death, specifically apoptosis and mitochondrial permeability transition (MPT)-driven necrosis, and which may also contribute to cell death mechanisms of ferroptosis and pyroptosis. The discussion here is based on the results and evidence discovered from liver disease models, but the JNK-SAB-ROS activation loop to sustain JNK activation is universally applicable to various disease models where mitochondria and reactive oxygen species contribute to the mechanism of disease.
Collapse
Affiliation(s)
- Sanda Win
- *Correspondence: Sanda Win, ; Neil Kaplowitz,
| | | | - Neil Kaplowitz
- Department of Medicine, Division of Gastroenterology and Liver Diseases, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
19
|
Klemmensen MM, Borrowman SH, Pearce C, Pyles B, Chandra B. Mitochondrial dysfunction in neurodegenerative disorders. Neurotherapeutics 2024; 21:e00292. [PMID: 38241161 PMCID: PMC10903104 DOI: 10.1016/j.neurot.2023.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 10/07/2023] [Indexed: 01/21/2024] Open
Abstract
Recent advances in understanding the role of mitochondrial dysfunction in neurodegenerative diseases have expanded the opportunities for neurotherapeutics targeting mitochondria to alleviate symptoms and slow disease progression. In this review, we offer a historical account of advances in mitochondrial biology and neurodegenerative disease. Additionally, we summarize current knowledge of the normal physiology of mitochondria and the pathogenesis of mitochondrial dysfunction, the role of mitochondrial dysfunction in neurodegenerative disease, current therapeutics and recent therapeutic advances, as well as future directions for neurotherapeutics targeting mitochondrial function. A focus is placed on reactive oxygen species and their role in the disruption of telomeres and their effects on the epigenome. The effects of mitochondrial dysfunction in the etiology and progression of Alzheimer's disease, amyotrophic lateral sclerosis, Parkinson's disease, and Huntington's disease are discussed in depth. Current clinical trials for mitochondria-targeting neurotherapeutics are discussed.
Collapse
Affiliation(s)
- Madelyn M Klemmensen
- University of Iowa Roy J and Lucille A Carver College of Medicine, Iowa City, IA 52242, USA
| | - Seth H Borrowman
- Division of Medical Genetics and Genomics, Stead Family Department of Pediatrics, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA
| | - Colin Pearce
- Division of Medical Genetics and Genomics, Stead Family Department of Pediatrics, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA
| | - Benjamin Pyles
- Aper Funis Research, Union River Innovation Center, Ellsworth, ME 04605, USA
| | - Bharatendu Chandra
- University of Iowa Roy J and Lucille A Carver College of Medicine, Iowa City, IA 52242, USA; Division of Medical Genetics and Genomics, Stead Family Department of Pediatrics, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA.
| |
Collapse
|
20
|
Awata WMC, Alves JV, Costa RM, Bruder-Nascimento A, Singh S, Barbosa GS, Tirapelli CR, Bruder-Nascimento T. Vascular injury associated with ethanol intake is driven by AT1 receptor and mitochondrial dysfunction. Biomed Pharmacother 2023; 169:115845. [PMID: 37951022 DOI: 10.1016/j.biopha.2023.115845] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/27/2023] [Accepted: 11/05/2023] [Indexed: 11/13/2023] Open
Abstract
BACKGROUND Renin-angiotensin (Ang II)-aldosterone system (RAAS) is crucial for the cardiovascular risk associated with excessive ethanol consumption. Disturbs in mitochondria have been implicated in multiple cardiovascular diseases. However, if mitochondria dysfunction contributes to ethanol-induced vascular dysfunction is still unknown. We investigated whether ethanol leads to vascular dysfunction via RAAS activation, mitochondria dysfunction, and mitochondrial reactive oxygen species (mtROS). METHODS Male C57/BL6J or mt-keima mice (6-8-weeks old) were treated with ethanol (20% vol./vol.) for 12 weeks with or without Losartan (10 mg/kg/day). RESULTS Ethanol induced aortic hypercontractility in an endothelium-dependent manner. PGC1α (a marker of biogenesis), Mfn2, (an essential protein for mitochondria fusion), as well as Pink-1 and Parkin (markers of mitophagy), were reduced in aortas from ethanol-treated mice. Disturb in mitophagy flux was further confirmed in arteries from mt-keima mice. Additionally, ethanol increased mtROS and reduced SOD2 expression. Strikingly, losartan prevented vascular hypercontractility, mitochondrial dysfunction, mtROS, and restored SOD2 expression. Both MnTMPyP (SOD2 mimetic) and CCCP (a mitochondrial uncoupler) reverted ethanol-induced vascular dysfunction. Moreover, L-NAME (NOS inhibitor) and EUK 134 (superoxide dismutase/catalase mimetic) did not affect vascular response in ethanol group, suggesting that ethanol reduces aortic nitric oxide (NO) and H2O2 bioavailability. These responses were prevented by losartan. CONCLUSION AT1 receptor modulates ethanol-induced vascular hypercontractility by promoting mitochondrial dysfunction, mtROS, and reduction of NO and H2O2 bioavailability. Our findings shed a new light in our understanding of ethanol-induced vascular toxicity and open perspectives of new therapeutic approaches for patients with disorder associated with abusive ethanol drinking.
Collapse
Affiliation(s)
- Wanessa M C Awata
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA; Center for Pediatrics Research in Obesity and Metabolism (CPROM), University of Pittsburgh, Pittsburgh, PA, USA; Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Juliano V Alves
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA; Center for Pediatrics Research in Obesity and Metabolism (CPROM), University of Pittsburgh, Pittsburgh, PA, USA; Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Rafael M Costa
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA; Center for Pediatrics Research in Obesity and Metabolism (CPROM), University of Pittsburgh, Pittsburgh, PA, USA; Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Ariane Bruder-Nascimento
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA; Center for Pediatrics Research in Obesity and Metabolism (CPROM), University of Pittsburgh, Pittsburgh, PA, USA
| | - Shubhnita Singh
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA; Center for Pediatrics Research in Obesity and Metabolism (CPROM), University of Pittsburgh, Pittsburgh, PA, USA
| | - Gabriela S Barbosa
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA; Center for Pediatrics Research in Obesity and Metabolism (CPROM), University of Pittsburgh, Pittsburgh, PA, USA; UNIPEX, Medical School, Sao Paulo State University (UNESP), Botucatu, Brazil
| | | | - Thiago Bruder-Nascimento
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA; Center for Pediatrics Research in Obesity and Metabolism (CPROM), University of Pittsburgh, Pittsburgh, PA, USA; Endocrinology Division at UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA; Vascular Medicine, Institute (VMI), University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
21
|
Peng M, Vercauteren M, Grootaert C, Rajkovic A, Boon N, Janssen C, Asselman J. Cellular and bioenergetic effects of polystyrene microplastic in function of cell type, differentiation status and post-exposure time. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 337:122550. [PMID: 37716692 DOI: 10.1016/j.envpol.2023.122550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/21/2023] [Accepted: 09/12/2023] [Indexed: 09/18/2023]
Abstract
The ubiquity of microplastics (MPs) in food sources and personal care products increasingly raises concerns on human health. However, little is known about the duration of the effects of MPs and whether effects depend on cellular differentiation status. Herein, cellular and bioenergetic effects of MPs in different exposure scenarios on four types of human cell lines derived from lung (A549 and BEAS-2B), colon (Caco-2) and liver (HepG2) were investigated. These cell lines are models for the major exposure routes in the body (inhalation, ingestion and physiological transport through the liver by the portal vein). To this aim, different scenarios were implemented by exposing undifferentiated and differentiated cells to single dosing of 2-μm polystyrene (PS) (102-105 particles/mL) for 48 h and 12 days. The undifferentiated Caco-2 cells with short exposure (48 h) showed the highest uptake rate of PS yet without significant cellular and mitochondrial responses. The biological effects, with the exception of ROS production, were not influenced by differentiation states of A549 and Caco-2 cells although differentiated cells showed much weaker ability to internalize PS. However, PS had significantly long-term impacts on cellular and mitochondrial functions even after the initial exposure period. In particular, Caco-2 cells that were post-exposed for 12 days after single PS dosing suffered higher oxidative stress and exhibited mitochondrial dysfunction than that for short exposure. Correspondingly, we observed that PS particles still remained in cell membrane and even in nuclei with high retention rate by 14-d post exposure during which metabolism and exchange of internalization and release occurred in cells. This indicates PS could induce chronic stress and even harmful effects on human cells after single intake that persists for a long time. This study paves the way for assessing the influence of PS on human health at low particle concentrations and with multiple exposure scenarios.
Collapse
Affiliation(s)
- Miao Peng
- Laboratory of Environmental Toxicology and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium; Blue Growth Research Lab, Ghent University, Wetenschapspark 1, 8400, Oostende, Belgium.
| | - Maaike Vercauteren
- Laboratory of Environmental Toxicology and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium; Blue Growth Research Lab, Ghent University, Wetenschapspark 1, 8400, Oostende, Belgium
| | - Charlotte Grootaert
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Andreja Rajkovic
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Nico Boon
- Center for Microbial Technology and Ecology (CMET), Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Colin Janssen
- Laboratory of Environmental Toxicology and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium; Blue Growth Research Lab, Ghent University, Wetenschapspark 1, 8400, Oostende, Belgium
| | - Jana Asselman
- Laboratory of Environmental Toxicology and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium; Blue Growth Research Lab, Ghent University, Wetenschapspark 1, 8400, Oostende, Belgium
| |
Collapse
|
22
|
Nesci S. Proton leak through the UCPs and ANT carriers and beyond: A breath for the electron transport chain. Biochimie 2023; 214:77-85. [PMID: 37336388 DOI: 10.1016/j.biochi.2023.06.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 06/16/2023] [Indexed: 06/21/2023]
Abstract
Mitochondria produce heat as a result of an ineffective H+ cycling of mitochondria respiration across the inner mitochondrial membrane (IMM). This event present in all mitochondria, known as proton leak, can decrease protonmotive force (Δp) and restore mitochondrial respiration by partially uncoupling the substrate oxidation from the ADP phosphorylation. During impaired conditions of ATP generation with F1FO-ATPase, the Δp increases and IMM is hyperpolarized. In this bioenergetic state, the respiratory complexes support H+ transport until the membrane potential stops the H+ pump activity. Consequently, the electron transfer is stalled and the reduced form of electron carriers of the respiratory chain can generate O2∙¯ triggering the cascade of ROS formation and oxidative stress. The physiological function to attenuate the production of O2∙¯ by Δp dissipation can be attributed to the proton leak supported by the translocases of IMM.
Collapse
Affiliation(s)
- Salvatore Nesci
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano Emilia, 40064, BO, Italy.
| |
Collapse
|
23
|
Dey S, Joshi P, O'Rourke B, Estes S, DeMazumder D. Cardiac sympathetic denervation prevents sudden cardiac arrest and improves cardiac function by enhancing mitochondrial-antioxidant capacity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.29.526082. [PMID: 36778270 PMCID: PMC9915471 DOI: 10.1101/2023.01.29.526082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
RATIONALE Sudden cardiac arrest (SCA) and heart failure (HF) are leading causes of death. The underlying mechanisms are incompletely understood, limiting the design of new therapies. Whereas most autonomic modulation therapies have not shown clear benefit in HF patients, growing evidence indicates cardiac sympathetic denervation (CSD) exerts cardioprotective effects. The underlying molecular and cellular mechanisms remain unexplored. OBJECTIVE Based on the hypothesis that mitochondrial reactive oxygen species (mROS) drive the pathogenesis of HF and SCA, we investigated whether CSD prevents SCA and HF by improving mitochondrial antioxidant capacity and redox balance, to correct impaired Ca2+ handling and repolarization reserve. METHODS AND RESULTS We interrogated CSD-specific responses in pressure-overload HF models with spontaneous SCA using in vivo echocardiographic and electrocardiographic studies and in vitro biochemical and functional studies including ratiometric measures of mROS, Ca2+ and sarcomere dynamics in left ventricular myocytes. Pressure-overloaded HF reduced mitochondrial antioxidant capacity and increased mROS, which impaired β-adrenergic signaling and caused SR Ca2+ leak, reducing SR Ca2+ and increasing diastolic Ca2+, impaired myofilament contraction and further increased the sympathetic stress response. CSD improved contractile function and mitigated mROS-mediated diastolic Ca2+ overload, dispersion of repolarization, triggered activity and SCA by upregulating mitochondrial antioxidant and NADPH-producing enzymes. CONCLUSIONS Our findings support a fundamental role of sympathetic stress-induced downregulation of mROS scavenging enzymes and RyR-leak mediated diastolic Ca2+ overload in HF and SCA pathogenesis that are mitigated by CSD. This first report on the molecular and cellular mechanisms of CSD supports its evaluation in additional high-risk patient groups.
Collapse
|
24
|
Colosio M, Brocca L, Gatti MF, Neri M, Crea E, Cadile F, Canepari M, Pellegrino MA, Polla B, Porcelli S, Bottinelli R. Structural and functional impairments of skeletal muscle in patients with postacute sequelae of SARS-CoV-2 infection. J Appl Physiol (1985) 2023; 135:902-917. [PMID: 37675472 DOI: 10.1152/japplphysiol.00158.2023] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/08/2023] Open
Abstract
Following acute coronavirus disease 2019 (COVID-19), a substantial proportion of patients showed symptoms and sequelae for several months, namely the postacute sequelae of COVID-19 (PASC) syndrome. Major phenomena are exercise intolerance, muscle weakness, and fatigue. We aimed to investigate the physiopathology of exercise intolerance in patients with PASC syndrome by structural and functional analyses of skeletal muscle. At least 3 mo after infection, nonhospitalized patients with PASC (n = 11, age: 54 ± 11 yr; PASC) and patients without long-term symptoms (n = 12, age: 49 ± 9 yr; CTRL) visited the laboratory on four nonconsecutive days. Spirometry, lung diffusion capacity, and quality of life were assessed at rest. A cardiopulmonary incremental exercise test was performed. Oxygen consumption (V̇o2) kinetics were determined by moderate-intensity exercises. Muscle oxidative capacity (k) was assessed by near-infrared spectroscopy. Histochemical analysis, O2 flux (JO2) by high-resolution respirometry, and quantification of key molecular markers of mitochondrial biogenesis and dynamics were performed in vastus lateralis biopsies. Pulmonary and cardiac functions were within normal range in all patients. V̇o2peak was lower in PASC than CTRL (24.7 ± 5.0 vs. 32.9 ± 7.4 mL·min-1·kg-1, respectively, P < 0.05). V̇o2 kinetics was slower in PASC than CTRL (41 ± 12 vs. 30 ± 9 s-1, P < 0.05). k was lower in PASC than CTRL (1.54 ± 0.49 vs. 2.07 ± 0.51 min-1, P < 0.05). Citrate synthase, peroxisome proliferator-activated receptor-γ coactivator (PGC)1α, and JO2 for mitochondrial complex II were significantly lower in PASC vs. CTRL (all P values <0.05). In our cohort of patients with PASC, we showed limited exercise tolerance mainly due to "peripheral" determinants. Substantial reductions were observed for biomarkers of mitochondrial function, content, and biogenesis. PASC syndrome, therefore, appears to negatively impact skeletal muscle function, although the disease is a heterogeneous condition.NEW & NOTEWORTHY Several months after mild acute SARS-CoV-2 infection, a substantial proportion of patients present persisting, and often debilitating, symptoms and sequelae. These patients show reduced quality of life due to exercise intolerance, muscle weakness, and fatigue. The present study supports the hypothesis that "peripheral" impairments at skeletal muscle level, namely, reduced mitochondrial function and markers of mitochondrial biogenesis, are major determinants of exercise intolerance and fatigue, "central" phenomena at respiratory, and cardiac level being less relevant.
Collapse
Affiliation(s)
- Marta Colosio
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Lorenza Brocca
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Marco F Gatti
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Marianna Neri
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Emanuela Crea
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Francesca Cadile
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Monica Canepari
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Maria Antonietta Pellegrino
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Interdepartmental Centre of Biology and Sport Medicine, University of Pavia, Pavia, Italy
| | - Biagio Polla
- Rehabilitation Center, Teresio Borsalino, Alessandria, Italy
| | - Simone Porcelli
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- IRCCS Fondazione Policlinico San Matteo, Pavia, Italy
| | - Roberto Bottinelli
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- IRCCS Mondino Foundation, Pavia, Italy
| |
Collapse
|
25
|
Clemente-Suárez VJ, Redondo-Flórez L, Beltrán-Velasco AI, Ramos-Campo DJ, Belinchón-deMiguel P, Martinez-Guardado I, Dalamitros AA, Yáñez-Sepúlveda R, Martín-Rodríguez A, Tornero-Aguilera JF. Mitochondria and Brain Disease: A Comprehensive Review of Pathological Mechanisms and Therapeutic Opportunities. Biomedicines 2023; 11:2488. [PMID: 37760929 PMCID: PMC10526226 DOI: 10.3390/biomedicines11092488] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/02/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Mitochondria play a vital role in maintaining cellular energy homeostasis, regulating apoptosis, and controlling redox signaling. Dysfunction of mitochondria has been implicated in the pathogenesis of various brain diseases, including neurodegenerative disorders, stroke, and psychiatric illnesses. This review paper provides a comprehensive overview of the intricate relationship between mitochondria and brain disease, focusing on the underlying pathological mechanisms and exploring potential therapeutic opportunities. The review covers key topics such as mitochondrial DNA mutations, impaired oxidative phosphorylation, mitochondrial dynamics, calcium dysregulation, and reactive oxygen species generation in the context of brain disease. Additionally, it discusses emerging strategies targeting mitochondrial dysfunction, including mitochondrial protective agents, metabolic modulators, and gene therapy approaches. By critically analysing the existing literature and recent advancements, this review aims to enhance our understanding of the multifaceted role of mitochondria in brain disease and shed light on novel therapeutic interventions.
Collapse
Affiliation(s)
- Vicente Javier Clemente-Suárez
- Faculty of Sports Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain; (V.J.C.-S.); (J.F.T.-A.)
- Group de Investigación en Cultura, Educación y Sociedad, Universidad de la Costa, Barranquilla 080002, Colombia
| | - Laura Redondo-Flórez
- Department of Health Sciences, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, C/Tajo s/n, Villaviciosa de Odón, 28670 Madrid, Spain
| | - Ana Isabel Beltrán-Velasco
- Psychology Department, Facultad de Ciencias de la Vida y la Naturaleza, Universidad Antonio de Nebrija, 28240 Madrid, Spain
| | - Domingo Jesús Ramos-Campo
- LFE Research Group, Department of Health and Human Performance, Faculty of Physical Activity and Sport Science-INEF, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - Pedro Belinchón-deMiguel
- Department of Nursing and Nutrition, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, 28670 Villaviciosa de Odón, Spain;
| | | | - Athanasios A. Dalamitros
- Laboratory of Evaluation of Human Biological Performance, School of Physical Education and Sport Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Rodrigo Yáñez-Sepúlveda
- Faculty of Education and Social Sciences, Universidad Andres Bello, Viña del Mar 2520000, Chile;
| | - Alexandra Martín-Rodríguez
- Faculty of Sports Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain; (V.J.C.-S.); (J.F.T.-A.)
| | | |
Collapse
|
26
|
Long Z, Qin H, Huang Z, Xu A, Ye Y, Li Z. Effects of heat stress on physiological parameters, biochemical parameters and expression of heat stress protein gene in Lateolabraxmaculatus. J Therm Biol 2023; 115:103606. [PMID: 37385109 DOI: 10.1016/j.jtherbio.2023.103606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 05/26/2023] [Accepted: 05/26/2023] [Indexed: 07/01/2023]
Abstract
With global warming and the increasing frequency of extreme heat, we have to consider the heat tolerance of fish to sudden high temperatures. This study investigated the effects of high temperature (32 °C) on physiology and biochemistry and heat shock proteins (HSPs) gene of spotted sea bass (Lateolabrax maculatus). The spotted sea bass (14.7 ± 1.54 g) temporarily cultured at 26 °C was directly transferred to the 32 °C high temperature group, and the gill morphology, liver antioxidant activity, respiratory metabolism related enzyme activity and the expression of five HSP70 family members genes were measured at 3, 6, 9, 12, 24, 48, 72, and 96 h. The results showed that 32 °C had damage effect on gill tissue and antioxidant system, and the damage degree increased with high temperature. Respiratory rate and malondialdehyde increased gradually with the continuous heat stress. Superoxide dismutase and total antioxidant capacity increased briefly and then decreased continuously. Succinate dehydrogenase decreased to the lowest value at 24 h and then continued to increase. Lactate dehydrogenase decreased continuously; the expression of HSP70 increased rapidly and then decreased. These results indicated that the antioxidant system and HSP70 were activated under heat stress condition and provided protection to the body, but with the continuous high temperature, the protective effect was limited, and the fish body was irreversibly damaged. It is necessary to pay close attention to the temperature change in the production practice of spotted sea bass to reduce the influence caused by high temperature.
Collapse
Affiliation(s)
- Zhongying Long
- Fisheries College, Jimei University, Xiamen, China; Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Xiamen, China
| | - Huihui Qin
- Fisheries College, Jimei University, Xiamen, China; Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Xiamen, China
| | - Zhangfan Huang
- Fisheries College, Jimei University, Xiamen, China; Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Xiamen, China
| | - Anle Xu
- Fisheries College, Jimei University, Xiamen, China; Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Xiamen, China
| | - Youling Ye
- Fisheries College, Jimei University, Xiamen, China; Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Xiamen, China
| | - Zhongbao Li
- Fisheries College, Jimei University, Xiamen, China; Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Xiamen, China.
| |
Collapse
|
27
|
Di Raimo R, Mizzoni D, Spada M, Dolo V, Fais S, Logozzi M. Oral Treatment with Plant-Derived Exosomes Restores Redox Balance in H 2O 2-Treated Mice. Antioxidants (Basel) 2023; 12:1169. [PMID: 37371899 DOI: 10.3390/antiox12061169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/22/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
Plant-derived exosomes (PDEs) are receiving much attention as a natural source of antioxidants. Previous research has shown that PDEs contain a series of bioactives and that their content varies depending on the fruit or vegetable source. It has also been shown that fruits and vegetables derived from organic agriculture produce more exosomes, are safer, free of toxic substances, and contain more bioactives. The aim of this study was to investigate the ability of orally administered mixes of PDE (Exocomplex®) to restore the physiological conditions of mice treated for two weeks with hydrogen peroxide (H2O2), compared with mice left untreated after the period of H2O2 administration and mice that received only water during the experimental period. The results showed that Exocomplex® had a high antioxidant capacity and contained a series of bioactives, including Catalase, Glutathione (GSH), Superoxide Dismutase (SOD), Ascorbic Acid, Melatonin, Phenolic compounds, and ATP. The oral administration of Exocomplex® to the H2O2-treated mice re-established redox balance with reduced serum levels of both reactive oxygen species (ROS) and malondialdehyde (MDA), but also a general recovery of the homeostatic condition at the organ level, supporting the future use of PDE for health care.
Collapse
Affiliation(s)
- Rossella Di Raimo
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy
- ExoLab Italia, Tecnopolo d'Abruzzo, 67100 L'Aquila, Italy
| | - Davide Mizzoni
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy
- ExoLab Italia, Tecnopolo d'Abruzzo, 67100 L'Aquila, Italy
| | - Massimo Spada
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Vincenza Dolo
- Department of Clinical Medicine, Public Health, Life and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Stefano Fais
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Mariantonia Logozzi
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy
| |
Collapse
|
28
|
Kimura K, Chun JH, Lin YL, Liang YC, Jackson TLB, Huang RCC. Tetra-O-methyl-nordihydroguaiaretic acid inhibits energy metabolism and synergistically induces anticancer effects with temozolomide on LN229 glioblastoma tumors implanted in mice while preventing obesity in normal mice that consume high-fat diets. PLoS One 2023; 18:e0285536. [PMID: 37228120 DOI: 10.1371/journal.pone.0285536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 04/25/2023] [Indexed: 05/27/2023] Open
Abstract
Tetra-O-methyl-nordihydroguaiaretic acid (terameprocol; M4N), a global transcription inhibitor, in combination with a second anticancer drug induces strong tumoricidal activity and has the ability to suppress energy metabolism in cultured cancer cells. In this study, we showed that after continuous oral consumption of high-fat (HF) diets containing M4N, the M4N concentration in most of the organs in mice reached ~1 μM (the M4N concentration in intestines and fat pads was as high as 20-40 μM) and treatment with the combination of M4N with temozolomide (TMZ) suppressed glycolysis and the tricarboxylic acid cycle in LN229 human glioblastoma implanted in xenograft mice. Combination treatment of M4N with TMZ also reduced the levels of lactate dehydrogenase A (LDHA), a key enzyme for glycolysis; lactate, a product of LDHA-mediated enzymatic activity; nicotinamide phosphoribosyltransferase, a rate-limiting enzyme for nicotinamide adenine dinucleotide plus hydrogen (NADH)/NAD+ salvage pathway; and NAD+, a redox electron carrier essential for energy metabolism. It was also shown that M4N suppressed oxygen consumption in cultured LN229 cells, indicating that M4N inhibited oxidative phosphorylation. Treatment with M4N and TMZ also decreased the level of hypoxia-inducible factor 1A, a major regulator of LDHA, under hypoxic conditions. The ability of M4N to suppress energy metabolism resulted in induction of the stress-related proteins activating transcription factor 4 and cation transport regulator-like protein 1, and an increase in reactive oxygen species production. In addition, the combination treatment of M4N with TMZ reduced the levels of oncometabolites such as 2-hydroxyglutarate as well as the aforementioned lactate. M4N also induced methylidenesuccinic acid (itaconate), a macrophage-specific metabolite with anti-inflammatory activity, in tumor microenvironments. Meanwhile, the ability of M4N to suppress energy metabolism prevented obesity in mice consuming HF diets, indicating that M4N has beneficial effects on normal tissues. The dual ability of combination treatment with M4N to suppress both energy metabolism and oncometabolites shows that it is potentially an effective therapy for cancer.
Collapse
Affiliation(s)
- Kotohiko Kimura
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Jong Ho Chun
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Yu-Ling Lin
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan, Republic of China
| | - Yu-Chuan Liang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan, Republic of China
| | - Tiffany L B Jackson
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Ru Chih C Huang
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, United States of America
- Academician, Academia Sinica, Taipei, Taiwan, Republic of China
| |
Collapse
|
29
|
Heinle JW, DiJoseph K, Sabag A, Oh S, Kimball SR, Keating S, Stine JG. Exercise Is Medicine for Nonalcoholic Fatty Liver Disease: Exploration of Putative Mechanisms. Nutrients 2023; 15:nu15112452. [PMID: 37299416 DOI: 10.3390/nu15112452] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/18/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
Exercise remains a key component of nonalcoholic fatty liver disease (NAFLD) treatment. The mechanisms that underpin improvements in NAFLD remain the focus of much exploration in our attempt to better understand how exercise benefits patients with NAFLD. In this review, we summarize the available scientific literature in terms of mechanistic studies which explore the role of exercise training in modulating fatty acid metabolism, reducing hepatic inflammation, and improving liver fibrosis. This review highlights that beyond simple energy expenditure, the activation of key receptors and pathways may influence the degree of NAFLD-related improvements with some pathways being sensitive to exercise type, intensity, and volume. Importantly, each therapeutic target of exercise training in this review is also the focus of previous or ongoing drug development studies in patients with nonalcoholic steatohepatitis (NASH), and even when a regulatory-agency-approved drug comes to market, exercise will likely remain an integral component in the clinical management of patients with NAFLD and NASH.
Collapse
Affiliation(s)
- James Westley Heinle
- Division of Gastroenterology and Hepatology, Department of Medicine, Penn State Health Milton S. Hershey Medical Center, Hershey, PA 17033, USA
| | - Kara DiJoseph
- Division of Gastroenterology and Hepatology, Department of Medicine, Penn State Health Milton S. Hershey Medical Center, Hershey, PA 17033, USA
| | - Angelo Sabag
- School of Health Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Sechang Oh
- Department of Physical Therapy, Faculty of Rehabilitation, R Professional University of Rehabilitation, Tsuchiura 300-0032, Ibaraki, Japan
| | - Scot R Kimball
- Department of Cellular and Molecular Physiology, College of Medicine, The Pennsylvania State University, Hershey, PA 17033, USA
| | - Shelley Keating
- School of Human Movement and Nutrition Sciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Jonathan G Stine
- Division of Gastroenterology and Hepatology, Department of Medicine, Penn State Health Milton S. Hershey Medical Center, Hershey, PA 17033, USA
- Department of Public Health Sciences, College of Medicine, The Pennsylvania State University, Hershey, PA 17033, USA
- Fatty Liver Program, Penn State Health Milton S. Hershey Medical Center, Hershey, PA 17033, USA
- Liver Center, Penn State Health Milton S. Hershey Medical Center, Hershey, PA 17033, USA
- Cancer Institute, Penn State Health Milton S. Hershey Medical Center, Hershey, PA 17033, USA
| |
Collapse
|
30
|
Clemente-Suárez VJ, Bustamante-Sanchez Á, Mielgo-Ayuso J, Martínez-Guardado I, Martín-Rodríguez A, Tornero-Aguilera JF. Antioxidants and Sports Performance. Nutrients 2023; 15:nu15102371. [PMID: 37242253 DOI: 10.3390/nu15102371] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
The role of reactive oxygen species and antioxidant response in training adaptations and sports performance has been a large issue investigated in the last few years. The present review aims to analyze the role of reactive oxygen species and antioxidant response in sports performance. For this aim, the production of reactive oxygen species in physical activities, the effect of reactive oxygen species on sports performance, the relationship between reactive oxygen species and training adaptations, inflammation, and the microbiota, the effect of antioxidants on recovery and sports performance, and strategies to use antioxidants supplementations will be discussed. Finally, practical applications derived from this information are discussed. The reactive oxygen species (ROS) production during physical activity greatly influences sports performance. This review concludes that ROS play a critical role in the processes of training adaptation induced by resistance training through a reduction in inflammatory mediators and oxidative stress, as well as appropriate molecular signaling. Additionally, it has been established that micronutrients play an important role in counteracting free radicals, such as reactive oxygen species, which cause oxidative stress, and the effects of antioxidants on recovery, sports performance, and strategies for using antioxidant supplements, such as vitamin C, vitamin E, resveratrol, coenzyme Q10, selenium, and curcumin to enhance physical and mental well-being.
Collapse
Affiliation(s)
| | | | - Juan Mielgo-Ayuso
- Department of Health Sciences, Faculty of Health Sciences, University of Burgos, 09001 Burgos, Spain
| | - Ismael Martínez-Guardado
- BRABE Group, Department of Psychology, Faculty of Life and Natural Sciences, University of Nebrija, C/del Hostal, 28248 Madrid, Spain
| | | | | |
Collapse
|
31
|
Sun A, Wang WX. Photodegradation of Microplastics by ZnO Nanoparticles with Resulting Cellular and Subcellular Responses. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:8118-8129. [PMID: 37192337 DOI: 10.1021/acs.est.3c01307] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Both zinc oxide nanoparticles (ZnO NPs) and microplastics (MPs) were extracted from one commercial sunscreen, while other ingredients were removed based on the "like dissolves like" principle. MPs were further extracted by acidic digestion of ZnO NPs using HCl and characterized as spherical particles of approximately 5 μm with layered sheets in an irregular shape on the surface. Although MPs were stable in the presence of simulated sunlight and water after 12 h of exposure, ZnO NPs promoted the photooxidation by producing hydroxyl radicals, with a 2.5-fold increase in the carbonyl index of the degree of surface oxidation. As a result of surface oxidation, spherical MPs were more soluble in water and fragmented to irregular shapes with sharp edges. We then compared the cytotoxicity of primary MPs and secondary MPs (25-200 mg/L) to the HaCaT cell line based on viability loss and subcellular damages. The cellular uptake of MPs transformed by ZnO NPs was enhanced by over 20%, and MPs caused higher cytotoxicity compared with the pristine ones, as evidenced by a 46% lower cell viability, 220% higher lysosomal accumulation, 69% higher cellular reactive oxygen species, 27% more mitochondrial loss, and 72% higher mitochondrial superoxide at 200 mg/L. Our study for the first time explored the activation of MPs by ZnO NPs derived from commercial products and revealed the high cytotoxicity caused by secondary MPs, providing new evidence on the effects of secondary MPs on human health.
Collapse
Affiliation(s)
- Anqi Sun
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Wen-Xiong Wang
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| |
Collapse
|
32
|
Donati G, Nicoli P, Verrecchia A, Vallelonga V, Croci O, Rodighiero S, Audano M, Cassina L, Ghsein A, Binelli G, Boletta A, Mitro N, Amati B. Oxidative stress enhances the therapeutic action of a respiratory inhibitor in MYC-driven lymphoma. EMBO Mol Med 2023:e16910. [PMID: 37158102 DOI: 10.15252/emmm.202216910] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 04/13/2023] [Accepted: 04/21/2023] [Indexed: 05/10/2023] Open
Abstract
MYC is a key oncogenic driver in multiple tumor types, but concomitantly endows cancer cells with a series of vulnerabilities that provide opportunities for targeted pharmacological intervention. For example, drugs that suppress mitochondrial respiration selectively kill MYC-overexpressing cells. Here, we unravel the mechanistic basis for this synthetic lethal interaction and exploit it to improve the anticancer effects of the respiratory complex I inhibitor IACS-010759. In a B-lymphoid cell line, ectopic MYC activity and treatment with IACS-010759 added up to induce oxidative stress, with consequent depletion of reduced glutathione and lethal disruption of redox homeostasis. This effect could be enhanced either with inhibitors of NADPH production through the pentose phosphate pathway, or with ascorbate (vitamin C), known to act as a pro-oxidant at high doses. In these conditions, ascorbate synergized with IACS-010759 to kill MYC-overexpressing cells in vitro and reinforced its therapeutic action against human B-cell lymphoma xenografts. Hence, complex I inhibition and high-dose ascorbate might improve the outcome of patients affected by high-grade lymphomas and potentially other MYC-driven cancers.
Collapse
Affiliation(s)
- Giulio Donati
- European Institute of Oncology (IEO) - IRCCS, Milan, Italy
| | - Paola Nicoli
- European Institute of Oncology (IEO) - IRCCS, Milan, Italy
| | | | | | - Ottavio Croci
- Center for Genomic Science of IIT@SEMM, Milan, Italy
| | | | - Matteo Audano
- DiSFeB, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Laura Cassina
- IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Aya Ghsein
- European Institute of Oncology (IEO) - IRCCS, Milan, Italy
| | - Giorgio Binelli
- Dipartimento di Biotecnologie e Scienze della Vita, Università dell'Insubria, Varese, Italy
| | | | - Nico Mitro
- European Institute of Oncology (IEO) - IRCCS, Milan, Italy
- DiSFeB, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Bruno Amati
- European Institute of Oncology (IEO) - IRCCS, Milan, Italy
| |
Collapse
|
33
|
Goicoechea L, Conde de la Rosa L, Torres S, García-Ruiz C, Fernández-Checa JC. Mitochondrial cholesterol: Metabolism and impact on redox biology and disease. Redox Biol 2023; 61:102643. [PMID: 36857930 PMCID: PMC9989693 DOI: 10.1016/j.redox.2023.102643] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/10/2023] [Accepted: 02/22/2023] [Indexed: 02/26/2023] Open
Abstract
Cholesterol is a crucial component of membrane bilayers by regulating their structural and functional properties. Cholesterol traffics to different cellular compartments including mitochondria, whose cholesterol content is low compared to other cell membranes. Despite the limited availability of cholesterol in the inner mitochondrial membrane (IMM), the metabolism of cholesterol in the IMM plays important physiological roles, acting as the precursor for the synthesis of steroid hormones and neurosteroids in steroidogenic tissues and specific neurons, respectively, or the synthesis of bile acids through an alternative pathway in the liver. Accumulation of cholesterol in mitochondria above physiological levels has a negative impact on mitochondrial function through several mechanisms, including the limitation of crucial antioxidant defenses, such as the glutathione redox cycle, increased generation of reactive oxygen species and consequent oxidative modification of cardiolipin, and defective assembly of respiratory supercomplexes. These adverse consequences of increased mitochondrial cholesterol trafficking trigger the onset of oxidative stress and cell death, and, ultimately, contribute to the development of diverse diseases, including metabolic liver diseases (i.e. fatty liver disease and liver cancer), as well as lysosomal disorders (i.e. Niemann-Pick type C disease) and neurodegenerative diseases (i.e. Alzheimer's disease). In this review, we summarize the metabolism and regulation of mitochondrial cholesterol and its potential impact on liver and neurodegenerative diseases.
Collapse
Affiliation(s)
- Leire Goicoechea
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, Barcelona, Spain; Liver Unit, Hospital Clinic i Provincial de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red (CIBEREHD), Barcelona, Spain
| | - Laura Conde de la Rosa
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, Barcelona, Spain; Liver Unit, Hospital Clinic i Provincial de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red (CIBEREHD), Barcelona, Spain
| | - Sandra Torres
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, Barcelona, Spain; Liver Unit, Hospital Clinic i Provincial de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red (CIBEREHD), Barcelona, Spain
| | - Carmen García-Ruiz
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, Barcelona, Spain; Liver Unit, Hospital Clinic i Provincial de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red (CIBEREHD), Barcelona, Spain; Research Center for ALPD, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA.
| | - José C Fernández-Checa
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, Barcelona, Spain; Liver Unit, Hospital Clinic i Provincial de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red (CIBEREHD), Barcelona, Spain; Research Center for ALPD, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA.
| |
Collapse
|
34
|
Segalés J, Sánchez-Martín C, Pujol-Morcillo A, Martín-Ruiz M, de Los Santos P, Lobato-Alonso D, Oliver E, Rial E. Role of UCP2 in the Energy Metabolism of the Cancer Cell Line A549. Int J Mol Sci 2023; 24:ijms24098123. [PMID: 37175829 PMCID: PMC10179244 DOI: 10.3390/ijms24098123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/21/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
The uncoupling protein UCP2 is a mitochondrial carrier for which transport activity remains controversial. The physiological contexts in which UCP2 is expressed have led to the assumption that, like UCP1, it uncouples oxidative phosphorylation and thereby reduces the generation of reactive oxygen species. Other reports have involved UCP2 in the Warburg effect, and results showing that UCP2 catalyzes the export of matrix C4 metabolites to facilitate glutamine utilization suggest that the carrier could be involved in the metabolic adaptations required for cell proliferation. We have examined the role of UCP2 in the energy metabolism of the lung adenocarcinoma cell line A549 and show that UCP2 silencing decreased the basal rate of respiration, although this inhibition was not compensated by an increase in glycolysis. Silencing did not lead to either changes in proton leakage, as determined by the rate of respiration in the absence of ATP synthesis, or changes in the rate of formation of reactive oxygen species. The decrease in energy metabolism did not alter the cellular energy charge. The decreased cell proliferation observed in UCP2-silenced cells would explain the reduced cellular ATP demand. We conclude that UCP2 does not operate as an uncoupling protein, whereas our results are consistent with its activity as a C4-metabolite carrier involved in the metabolic adaptations of proliferating cells.
Collapse
Affiliation(s)
- Jessica Segalés
- Centro de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Carlos Sánchez-Martín
- Centro de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Aleida Pujol-Morcillo
- Centro de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Marta Martín-Ruiz
- Centro de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Patricia de Los Santos
- Centro de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Daniel Lobato-Alonso
- Centro de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Eduardo Oliver
- Centro de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - Eduardo Rial
- Centro de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| |
Collapse
|
35
|
Castelo Rueda MP, Zanon A, Gilmozzi V, Lavdas AA, Raftopoulou A, Delcambre S, Del Greco M F, Klein C, Grünewald A, Pramstaller PP, Hicks AA, Pichler I. Molecular phenotypes of mitochondrial dysfunction in clinically non-manifesting heterozygous PRKN variant carriers. NPJ Parkinsons Dis 2023; 9:65. [PMID: 37072441 PMCID: PMC10113363 DOI: 10.1038/s41531-023-00499-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 03/23/2023] [Indexed: 04/20/2023] Open
Abstract
Homozygous or compound heterozygous (biallelic) variants in PRKN are causal for PD with highly penetrant symptom expression, while the much more common heterozygous variants may predispose to PD with highly reduced penetrance, through altered mitochondrial function. In the presence of pathogenic heterozygous variants, it is therefore important to test for mitochondrial alteration in cells derived from variant carriers to establish potential presymptomatic molecular markers. We generated lymphoblasts (LCLs) and human induced pluripotent stem cell (hiPSC)-derived neurons from non-manifesting heterozygous PRKN variant carriers and tested them for mitochondrial functionality. In LCLs, we detected hyperactive mitochondrial respiration, and, although milder compared to a biallelic PRKN-PD patient, hiPSC-derived neurons of non-manifesting heterozygous variant carriers also displayed several phenotypes of altered mitochondrial function. Overall, we identified molecular phenotypes that might be used to monitor heterozygous PRKN variant carriers during the prodromal phase. Such markers might also be useful to identify individuals at greater risk of eventual disease development and for testing potential mitochondrial function-based neuroprotective therapies before neurodegeneration advances.
Collapse
Affiliation(s)
- Maria Paulina Castelo Rueda
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy.
| | - Alessandra Zanon
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | - Valentina Gilmozzi
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | - Alexandros A Lavdas
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | - Athina Raftopoulou
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy
- Department of Economics, University of Patras, Patras, Greece
| | - Sylvie Delcambre
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esche-sur-Alzette, Luxembourg
| | - Fabiola Del Greco M
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | - Christine Klein
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Anne Grünewald
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esche-sur-Alzette, Luxembourg
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Peter P Pramstaller
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy
- Department of Neurology, University Medical Center Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Andrew A Hicks
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy.
| | - Irene Pichler
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| |
Collapse
|
36
|
Lai HY, Setyawati MI, Duarte CV, Chua HM, Low CT, Ng KW. Human hair proteins as natural reactive oxygen species scavengers for in vitro applications. J Biomed Mater Res B Appl Biomater 2023; 111:933-945. [PMID: 36418224 DOI: 10.1002/jbm.b.35203] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 11/09/2022] [Accepted: 11/13/2022] [Indexed: 11/25/2022]
Abstract
Human hair proteins are recognized for their intrinsically high cysteine content. They can be solubilized while preserving their highly reductive thiol groups for free radical scavenging applications. The presence of aromatic and nucleophilic amino acids such as methionine, serine, phenylalanine, and threonine further contribute to the antioxidative potential of this material. Herein, utilizing the DPPH (2,2-diphenyl-1-picrylhydrazyl) and acellular 2',7'-dichlorodihydrofluorescein diacetate (H2 DCFDA) assays, keratins are demonstrated to possess the highest radical scavenging activity among the studied hair proteins. Consequently, protection against hydrogen peroxide-induced oxidative stress in human dermal fibroblasts (HDFs) cultured in human hair keratin supplemented media is demonstrated. Quenching of reactive oxygen species in the HDF is observed using the CellROX Green dye and the expression levels of antioxidant (HMOX1, SOD2, GPX1) and tumor suppressor (TP53) genes is analyzed using qPCR. Collectively, this study presents further evidence and demonstrates the in vitro application potential of hair proteins, especially keratins, as an antioxidizing supplement.
Collapse
Affiliation(s)
- Hui Ying Lai
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore.,Nanyang Environment & Water Research Institute (Environmental Chemistry and Materials Centre), Interdisciplinary Graduate Program, Nanyang Technological University, Singapore, Singapore
| | | | - Catarina Vizetto Duarte
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Huei Min Chua
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Choon Teck Low
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Kee Woei Ng
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore.,Nanyang Environment & Water Research Institute (Environmental Chemistry and Materials Centre), Interdisciplinary Graduate Program, Nanyang Technological University, Singapore, Singapore.,Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| |
Collapse
|
37
|
Huesca-Gómez C, Torres-Paz YE, Fuentevilla-Álvarez G, González-Moyotl NJ, Ramírez-Marroquín ES, Vásquez-Jiménez X, Sainz-Escarrega V, Soto ME, Samano R, Gamboa R. Expressions of mRNA and encoded proteins of mitochondrial uncoupling protein genes ( UCP1, UCP2, and UCP3) in epicardial and mediastinal adipose tissue and associations with coronary artery disease. ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2023; 67:214-223. [PMID: 36651711 PMCID: PMC10689038 DOI: 10.20945/2359-3997000000582] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 08/03/2022] [Indexed: 01/19/2023]
Abstract
Objective To evaluate the expression of UCP1, UCP2, and UCP3 mRNA and encoded proteins in epicardial and mediastinal adipose tissues in patients with coronary artery disease (CAD). Subjects and methods We studied 60 patients with CAD and 106 patients undergoing valve replacement surgery (controls). Expression levels of UCP1, UCP2, and UCP3 mRNA and encoded proteins were measured by quantitative real-time PCR and Western blot analysis, respectively. Results : We found increased UCP1, UCP2, and UCP3 mRNA levels in the epicardial adipose tissue in the CAD versus the control group, and higher UCP1 and UCP3 mRNA expression in the epicardial compared with the mediastinal tissue in the CAD group. There was also increased expression of UCP1 protein in the epicardial tissue and UCP2 protein in the mediastinum tissue in patients with CAD. Finally, UCP1 expression was associated with levels of fasting plasma glucose, and UCP3 expression was associated with levels of high-density lipoprotein cholesterol and low-density cholesterol in the epicardial tissue. Conclusion Our study supports the hypothesis that higher mRNA expression by UCP genes in the epicardial adipose tissue could be a protective mechanism against the production of reactive oxygen species and may guard the myocardium against damage. Thus, UCP levels are essential to maintain the adaptive phase of cardiac injury in the presence of metabolic disorders.
Collapse
Affiliation(s)
- Claudia Huesca-Gómez
- Instituto Nacional de Cardiología "Ignacio Chávez", Departamento de Fisiología, Ciudad de México, México
| | - Yazmín Estela Torres-Paz
- Instituto Nacional de Cardiología "Ignacio Chávez", Departamento de Fisiología, Ciudad de México, México
| | | | | | | | - Xicótencatl Vásquez-Jiménez
- Instituto Nacional de Cardiología "Ignacio Chávez", Departamento de Cirugía Cardiotorácica, Ciudad de México, México
| | - Víctor Sainz-Escarrega
- Instituto Nacional de Cardiología "Ignacio Chávez", Departamento de Cirugía Cardiotorácica, Ciudad de México, México
| | - María Elena Soto
- Instituto Nacional de Cardiología "Ignacio Chávez", Departamento de Inmunología, Ciudad de México, México
| | - Reyna Samano
- Instituto Nacional de Perinatología, Coordinación de Nutrición y Bioprogramación, Ciudad de México, México
| | - Ricardo Gamboa
- Instituto Nacional de Cardiología "Ignacio Chávez", Departamento de Fisiología, Ciudad de México, México
| |
Collapse
|
38
|
Colloidal Nanoparticles Isolated from Duck Soup Exhibit Antioxidant Effect on Macrophages and Enterocytes. Foods 2023; 12:foods12050981. [PMID: 36900498 PMCID: PMC10000818 DOI: 10.3390/foods12050981] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/07/2023] [Accepted: 02/17/2023] [Indexed: 03/02/2023] Open
Abstract
Food-derived colloidal nanoparticles (CNPs) have been found in many food cooking processes, and their specific effects on human health need to be further explored. Here, we report on the successful isolation of CNPs from duck soup. The hydrodynamic diameters of the obtained CNPs were 255.23 ± 12.77 nm, which comprised lipids (51.2%), protein (30.8%), and carbohydrates (7.9%). As indicated by the tests of free radical scavenging and ferric reducing capacities, the CNPs possessed remarkable antioxidant activity. Macrophages and enterocytes are essential for intestinal homeostasis. Therefore, RAW 264.7 and Caco-2 were applied to establish an oxidative stress model to investigate the antioxidant characteristics of the CNPs. The results showed that the CNPs from duck soup could be engulfed by these two cell lines, and could significantly alleviate 2,2'-Azobis(2-methylpropionamidine) dihydrochloride (AAPH)-induced oxidative damage. It indicates that the intake of duck soup is beneficial for intestinal health. These data contribute to revealing the underlying functional mechanism of Chinese traditional duck soup and the development of food-derived functional components.
Collapse
|
39
|
Zhang R, Xiao N, Xu Q, Gong Q, Kong F, Jiang H. Pleiotropic effects of a mitochondrion-targeted glutathione reductase inhibitor on restraining tumor cells. Eur J Med Chem 2023; 248:115069. [PMID: 36610249 DOI: 10.1016/j.ejmech.2022.115069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/23/2022] [Accepted: 12/27/2022] [Indexed: 12/29/2022]
Abstract
Mitochondria has been identified as a target for tumor therapy. Agents preferentially concentrated in mitochondria may exert more potent antitumor effects by interfering with the normal function of mitochondria. Glutathione reductase (GR) in mitochondria is a crucial antioxidant enzyme to maintain mitochondrial function, and has been recognized as an important target for the development of anticancer drugs. Herein, we present a triphenylphosphonium-modified anticancer agent, MT-1, which can preferentially accumulate in mitochondria and bind to GR by covalent binding manner. As a result, morphology and function of mitochondria were severely damaged, as well as cellular energy supply was severely impeded due to the simultaneously inhibition against mitochondrial respiration and glycolysis. Moreover, MT-1 was found to bind to a completely new site of GR (C278) that has never considered as binding site of inhibitors before. This new binding mode led to the change of GR structure, which affected the stability of the transition state of the catalytic process, and finally led to the inhibition of GR activity. Thus, current study provided a potentially novel tumor therapeutic strategy by targeting novel sites of GR in mitochondrion.
Collapse
Affiliation(s)
- Renshuai Zhang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China; Cancer Institute, Qingdao University, Qingdao, 266071, China
| | - Na Xiao
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agriculture University, Tai'an, Shandong, 271018, China
| | - Qi Xu
- School of Pharmaceutical Sciences, Laboratory of Immunology for Environment and Health, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Qiuyu Gong
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Fandong Kong
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning, 530006, China.
| | - Hongfei Jiang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China; Cancer Institute, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
40
|
Joshi M, Joshi S, Khambete M, Degani M. Role of calcium dysregulation in Alzheimer's disease and its therapeutic implications. Chem Biol Drug Des 2023; 101:453-468. [PMID: 36373976 DOI: 10.1111/cbdd.14175] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/29/2022] [Accepted: 11/02/2022] [Indexed: 11/16/2022]
Abstract
The increasing incidence of Alzheimer's disease (AD) coupled with the lack of therapeutics to address the underlying pathology of the disease has necessitated the need for exploring newer targets. Calcium dysregulation represents a relatively newer target associated with AD. Ca+2 serves as an important cellular messenger in neurons. The concentration of the Ca+2 ion needs to be regulated at optimal concentrations intracellularly for normal functioning of the neurons. This is achieved with the help of mitochondria, endoplasmic reticulum, and neuronal plasma membrane channel proteins. Disruption in normal calcium homeostasis can induce formation of amyloid beta plaques, accumulation of neurofibrillary tangles, and dysfunction of synaptic plasticity, which in turn can affect calcium homeostasis further, thus forming a vicious cycle. Hence, understanding calcium dysregulation can prove to be a key to develop newer therapeutics. This review provides detailed account of physiology of calcium homeostasis and its dysregulation associated with AD. Further, with an understanding of various receptors and organelles involved in these pathways, the review also discusses various calcium channel blockers explored in AD hand in hand with some multitarget molecules addressing calcium as one of the targets.
Collapse
Affiliation(s)
- Maithili Joshi
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, India
| | - Siddhi Joshi
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, India
| | - Mihir Khambete
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, India
| | - Mariam Degani
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, India
| |
Collapse
|
41
|
Jové M, Mota-Martorell N, Obis È, Sol J, Martín-Garí M, Ferrer I, Portero-Otín M, Pamplona R. Lipid Adaptations against Oxidative Challenge in the Healthy Adult Human Brain. Antioxidants (Basel) 2023; 12:177. [PMID: 36671039 PMCID: PMC9855103 DOI: 10.3390/antiox12010177] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
It is assumed that the human brain is especially susceptible to oxidative stress, based on specific traits such as a higher rate of mitochondrial free radical production, a high content in peroxidizable fatty acids, and a low antioxidant defense. However, it is also evident that human neurons, although they are post-mitotic cells, survive throughout an entire lifetime. Therefore, to reduce or avoid the impact of oxidative stress on neuron functionality and survival, they must have evolved several adaptive mechanisms to cope with the deleterious effects of oxidative stress. Several of these antioxidant features are derived from lipid adaptations. At least six lipid adaptations against oxidative challenge in the healthy human brain can be discerned. In this work, we explore the idea that neurons and, by extension, the human brain is endowed with an important arsenal of non-pro-oxidant and antioxidant measures to preserve neuronal function, refuting part of the initial premise.
Collapse
Affiliation(s)
- Mariona Jové
- Department of Experimental Medicine, Lleida Biomedical Research Institute (IRBLleida), Lleida University (UdL), E-25198 Lleida, Spain
| | - Natàlia Mota-Martorell
- Department of Experimental Medicine, Lleida Biomedical Research Institute (IRBLleida), Lleida University (UdL), E-25198 Lleida, Spain
| | - Èlia Obis
- Department of Experimental Medicine, Lleida Biomedical Research Institute (IRBLleida), Lleida University (UdL), E-25198 Lleida, Spain
| | - Joaquim Sol
- Department of Experimental Medicine, Lleida Biomedical Research Institute (IRBLleida), Lleida University (UdL), E-25198 Lleida, Spain
- Catalan Institute of Health (ICS), Research Support Unit (USR), Fundació Institut Universitari per a la Recerca en Atenció Primària de Salut Jordi Gol i Gurina (IDIAP JGol), E-25007 Lleida, Spain
| | - Meritxell Martín-Garí
- Department of Experimental Medicine, Lleida Biomedical Research Institute (IRBLleida), Lleida University (UdL), E-25198 Lleida, Spain
| | - Isidre Ferrer
- Department of Pathology and Experimental Therapeutics, University of Barcelona (UB), E-08907 Barcelona, Spain
- Neuropathology Group, Institute of Biomedical Research of Bellvitge (IDIBELL), E-08907 Barcelona, Spain
- Network Research Center of Neurodegenerative Diseases (CIBERNED), Instituto Carlos III, E-08907 Barcelona, Spain
| | - Manuel Portero-Otín
- Department of Experimental Medicine, Lleida Biomedical Research Institute (IRBLleida), Lleida University (UdL), E-25198 Lleida, Spain
| | - Reinald Pamplona
- Department of Experimental Medicine, Lleida Biomedical Research Institute (IRBLleida), Lleida University (UdL), E-25198 Lleida, Spain
| |
Collapse
|
42
|
Irina ZV, Natalya KI, Vladimir BI, Elena M, Irina R, Alexander G. Ethoxidol as a Broad-spectrum Adaptogen. Curr Mol Pharmacol 2023; 16:109-115. [PMID: 35260065 DOI: 10.2174/1874467215666220308115514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 12/03/2021] [Accepted: 12/13/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Stress factors lead to a shift in the antioxidant-prooxidant relationship, allowing an increase in the generation of reactive oxygen species (ROS) by mitochondria, which results in the development of oxidative stress. Consequently, it is possible to put forward an assumption that drugs which reduce the excessive generation of ROS by these organelles should increase the body's resistance to stress factors. Antioxidants can be used as such drugs. In this regard, the aim of this work was to study the bioenergetics characteristic of mitochondria under stress conditions and under the action of 2-ethyl-6-methyl-3-hydroxypyridinium hydroxybutanedioate (ethoxidol). METHODS The antiradical activity of the drug was evaluated by the chemiluminescent method (CL). The functional state of the mitochondria was studied with reference to the level of lipid peroxidation by the spectrofluorimetry and in terms of fatty acid composition of mitochondrial membranes using the chromatography technique. The study of mitochondrial morphology was performed employing the method of atomic force microscopy. RESULTS The injection in mice of ethoxidol at a dose of 10-5 mol/kg for 7 days led to the prevention of the stress-induced increase in the intensity of LPO in the membranes of the mitochondria, and swelling of these organelles; it also prevented a decrease in the content of unsaturated fatty acids, containing 18 and 20 carbon atoms. At the same time, ethoxidol increased the life expectancy of mice by 3.0-4.2 times in conditions of various types of hypoxia. CONCLUSION The adaptogenic properties of ethoxidol can be attributed to its antiradical and antioxidant properties.
Collapse
Affiliation(s)
- Zhigacheva V Irina
- Emanue Institute of Biochemical Physics of Russian Academy of Sciences, st.Kosygin, 4, Moscow, 119334 Russia
| | - Krikunova I Natalya
- Emanue Institute of Biochemical Physics of Russian Academy of Sciences, st.Kosygin, 4, Moscow, 119334 Russia
| | - Binyukov I Vladimir
- Emanue Institute of Biochemical Physics of Russian Academy of Sciences, st.Kosygin, 4, Moscow, 119334 Russia
| | - Mil Elena
- Emanue Institute of Biochemical Physics of Russian Academy of Sciences, st.Kosygin, 4, Moscow, 119334 Russia
| | - Rusina Irina
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, st. Kosygin, Moscow, 119334 Russia
| | - Goloshchapov Alexander
- Emanue Institute of Biochemical Physics of Russian Academy of Sciences, st.Kosygin, 4, Moscow, 119334 Russia
| |
Collapse
|
43
|
The complex role of inflammation and gliotransmitters in Parkinson's disease. Neurobiol Dis 2023; 176:105940. [PMID: 36470499 PMCID: PMC10372760 DOI: 10.1016/j.nbd.2022.105940] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 11/28/2022] [Accepted: 12/01/2022] [Indexed: 12/09/2022] Open
Abstract
Our understanding of the role of innate and adaptive immune cell function in brain health and how it goes awry during aging and neurodegenerative diseases is still in its infancy. Inflammation and immunological dysfunction are common components of Parkinson's disease (PD), both in terms of motor and non-motor components of PD. In recent decades, the antiquated notion that the central nervous system (CNS) in disease states is an immune-privileged organ, has been debunked. The immune landscape in the CNS influences peripheral systems, and peripheral immunological changes can alter the CNS in health and disease. Identifying immune and inflammatory pathways that compromise neuronal health and survival is critical in designing innovative and effective strategies to limit their untoward effects on neuronal health.
Collapse
|
44
|
Therapeutic strategies for liver diseases based on redox control systems. Biomed Pharmacother 2022; 156:113764. [DOI: 10.1016/j.biopha.2022.113764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/22/2022] [Accepted: 09/26/2022] [Indexed: 11/18/2022] Open
|
45
|
Tao Y, Leng SX, Zhang H. Ketogenic Diet: An Effective Treatment Approach for Neurodegenerative Diseases. Curr Neuropharmacol 2022; 20:2303-2319. [PMID: 36043794 PMCID: PMC9890290 DOI: 10.2174/1570159x20666220830102628] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 06/13/2022] [Accepted: 07/03/2022] [Indexed: 12/29/2022] Open
Abstract
This review discusses the effects and mechanisms of a ketogenic diet on neurodegenerative diseases on the basis of available evidence. A ketogenic diet refers to a high-fat, mediumprotein, and low-carbohydrate diet that leads to a metabolic shift to ketosis. This review systematically summarizes the scientific literature supporting this effective treatment approach for neurodegenerative diseases, including effects on mitochondrial function, oxidative stress, neuronal apoptosis, neuroinflammation, and the microbiota-gut-brain axis. It also highlights the clinical evidence for the effects of the ketogenic diet in the treatment of Alzheimer's disease, Parkinson's disease, and motor neuron disease. Finally, it discusses the common adverse effects of ketogenic therapy. Although the complete mechanism of the ketogenic diet in the treatment of neurodegenerative diseases remains to be elucidated, its clinical efficacy has attracted many new followers. The ketogenic diet is a good candidate for adjuvant therapy, but its specific applicability depends on the type and the degree of the disease.
Collapse
Affiliation(s)
- Ye Tao
- Department of Geriatrics, The First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Sean X Leng
- Division of Geriatric Medicine and Gerontology, Department of Medicine, Johns Hopkins University School of Medicine, 5501 Hopkins Bayview Circle - Room 1A.38A, Baltimore, MD, 21224, USA
| | - Haiyan Zhang
- Department of Geriatrics, The First Affiliated Hospital of China Medical University, Shenyang 110001, China
| |
Collapse
|
46
|
Mitochondrial Fission Process 1 controls inner membrane integrity and protects against heart failure. Nat Commun 2022; 13:6634. [PMID: 36333300 PMCID: PMC9636241 DOI: 10.1038/s41467-022-34316-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 10/21/2022] [Indexed: 11/06/2022] Open
Abstract
Mitochondria are paramount to the metabolism and survival of cardiomyocytes. Here we show that Mitochondrial Fission Process 1 (MTFP1) is an inner mitochondrial membrane (IMM) protein that is dispensable for mitochondrial division yet essential for cardiac structure and function. Constitutive knockout of cardiomyocyte MTFP1 in mice resulted in a fatal, adult-onset dilated cardiomyopathy accompanied by extensive mitochondrial and cardiac remodeling during the transition to heart failure. Prior to the onset of disease, knockout cardiac mitochondria displayed specific IMM defects: futile proton leak dependent upon the adenine nucleotide translocase and an increased sensitivity to the opening of the mitochondrial permeability transition pore, with which MTFP1 physically and genetically interacts. Collectively, our data reveal new functions of MTFP1 in the control of bioenergetic efficiency and cell death sensitivity and define its importance in preventing pathogenic cardiac remodeling.
Collapse
|
47
|
Hu S, Feng J, Wang M, Wufuer R, Liu K, Zhang Z, Zhang Y. Nrf1 is an indispensable redox-determining factor for mitochondrial homeostasis by integrating multi-hierarchical regulatory networks. Redox Biol 2022; 57:102470. [PMID: 36174386 PMCID: PMC9520269 DOI: 10.1016/j.redox.2022.102470] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/04/2022] [Accepted: 09/07/2022] [Indexed: 11/24/2022] Open
Abstract
To defend against a vast variety of challenges in oxygenated environments, all life forms have evolutionally established a set of antioxidants, detoxification, and cytoprotective systems during natural selection and adaptive survival, to maintain cell redox homeostasis and organ integrity in the healthy development and growth. Such antioxidant defense systems are predominantly regulated by two key transcription factors Nrf1 and Nrf2, but the underlying mechanism(s) for their coordinated redox control remains elusive. Here, we found that loss of full-length Nrf1 led to a dramatic increase in reactive oxygen species (ROS) and oxidative damages in Nrf1α-∕- cells, and this increase was not eliminated by drastic elevation of Nrf2, even though the antioxidant systems were also substantially enhanced by hyperactive Nrf2. Further studies revealed that the increased ROS production in Nrf1α-∕- resulted from a striking impairment in the mitochondrial oxidative respiratory chain and its gene expression regulated by nuclear respiratory factors, called αPalNRF1 and GABPNRF2. In addition to the antioxidant capacity of cells, glycolysis was greatly augmented by aberrantly-elevated Nrf2, so to partially relieve the cellular energy demands, but aggravate its mitochondrial stress. The generation of ROS was also differentially regulated by Nrf1 and Nrf2 through miR-195 and/or mIR-497-mediated UCP2 pathway. Consequently, the epithelial-mesenchymal transformation (EMT) of Nrf1α-∕- cells was activated by putative ROS-stimulated signaling via MAPK, HIF1α, NF-ƙB, PI3K and AKT, all players involved in cancer development and progression. Taken together, it is inferable that Nrf1 acts as a potent integrator of redox regulation by multi-hierarchical networks.
Collapse
Affiliation(s)
- Shaofan Hu
- Bioengineering College and Graduate School, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing, 400044, China; Chongqing University Jiangjin Hospital, School of Medicine, Chongqing University, No. 725 Jiangzhou Avenue, Dingshan Street, Jiangjin District, Chongqing, 402260, China; The Laboratory of Cell Biochemistry and Topogenetic Regulation, College of Bioengineering & Faculty of Medical Sciences, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing, 400044, China
| | - Jing Feng
- Bioengineering College and Graduate School, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing, 400044, China; Chongqing University Jiangjin Hospital, School of Medicine, Chongqing University, No. 725 Jiangzhou Avenue, Dingshan Street, Jiangjin District, Chongqing, 402260, China; The Laboratory of Cell Biochemistry and Topogenetic Regulation, College of Bioengineering & Faculty of Medical Sciences, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing, 400044, China
| | - Meng Wang
- Bioengineering College and Graduate School, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing, 400044, China; The Laboratory of Cell Biochemistry and Topogenetic Regulation, College of Bioengineering & Faculty of Medical Sciences, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing, 400044, China
| | - Reziyamu Wufuer
- Bioengineering College and Graduate School, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing, 400044, China; Chongqing University Jiangjin Hospital, School of Medicine, Chongqing University, No. 725 Jiangzhou Avenue, Dingshan Street, Jiangjin District, Chongqing, 402260, China; The Laboratory of Cell Biochemistry and Topogenetic Regulation, College of Bioengineering & Faculty of Medical Sciences, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing, 400044, China
| | - Keli Liu
- Bioengineering College and Graduate School, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing, 400044, China; Chongqing University Jiangjin Hospital, School of Medicine, Chongqing University, No. 725 Jiangzhou Avenue, Dingshan Street, Jiangjin District, Chongqing, 402260, China; The Laboratory of Cell Biochemistry and Topogenetic Regulation, College of Bioengineering & Faculty of Medical Sciences, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing, 400044, China
| | - Zhengwen Zhang
- Laboratory of Neuroscience, Institute of Cognitive Neuroscience and School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, England, United Kingdom
| | - Yiguo Zhang
- Chongqing University Jiangjin Hospital, School of Medicine, Chongqing University, No. 725 Jiangzhou Avenue, Dingshan Street, Jiangjin District, Chongqing, 402260, China; The Laboratory of Cell Biochemistry and Topogenetic Regulation, College of Bioengineering & Faculty of Medical Sciences, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing, 400044, China.
| |
Collapse
|
48
|
Blanco-Prieto O, Maside C, Àlex Peña, Ibáñez-Príncep J, Bonet S, Yeste M, Rodríguez-Gil JE. The effects of red LED light on pig sperm function rely upon mitochondrial electron chain activity rather than on a PKC-mediated mechanism. Front Cell Dev Biol 2022; 10:930855. [PMID: 36274839 PMCID: PMC9585505 DOI: 10.3389/fcell.2022.930855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 09/12/2022] [Indexed: 12/04/2022] Open
Abstract
While irradiation with red LED light has been reported to modulate sperm function in different mammalian species, the mechanisms underlying their response are poorly understood. This work sought to provide new insights into whether this effect relies on a direct action upon mitochondrial electron chain and/or on PKC-linked mechanisms such as those related to opsins. For this purpose, pig semen was light-stimulated for 1, 5 or 10 min in the presence/absence of antimycin A, an inhibitor of the mitochondrial electron chain, or PKC 20–28® (PKCi), a PKC inhibitor. Antimycin A completely blocked the effects of light at all the performed irradiation patterns. This effect was linked to a complete immobility of sperm, which was accompanied with a significant (p < 0.05) drop in several markers of mitochondrial activity, such as JC-1 staining and O2 consumption rate. Antimycin A, however, did not affect intracellular ATP levels, intramitochondrial calcium, total ROS, superoxides or cytochrome C oxidase (CCO) activity. In the case of PKCi, it did also counteract the effects of light on motility, O2 consumption rate and CCO activity, but not to the same extent than that observed for antimycin A. Finally, the effects observed when sperm were co-incubated with antimycin A and PKCi were similar to those observed with antimycin A alone. In conclusion, red LED light acts on sperm function via a direct effect on mitochondrial electron chain. Additionally, light-activated PKC pathways have a supplementary effect to that observed in the electron chain, thereby modulating sperm parameters such as motility and CCO activity.
Collapse
|
49
|
Dursun F, Genc HM, Mine Yılmaz A, Tas I, Eser M, Pehlivanoglu C, Yilmaz BK, Guran T. Primary adrenal insufficiency in a patient with biallelic QRSL1 mutations. Eur J Endocrinol 2022; 187:K27-K32. [PMID: 35894854 DOI: 10.1530/eje-22-0233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 06/27/2022] [Indexed: 11/08/2022]
Abstract
BACKGROUND Biallelic QRSL1 mutations cause mitochondrial 'combined oxidative phosphorylation deficiency-40' (COXPD40). COXPD40 has been reported to be invariably lethal in infancy. Adrenal insufficiency was weakly reported and investigated among seven previously reported patients with COXPD40. OBJECTIVE We report the clinical, biochemical, molecular, and functional characteristics of a patient with adrenal insufficiency due to COXPD40. METHODS The medical history and adrenal function tests were examined. Genetic analysis was performed using whole-exome sequencing. Mitochondrial function was tested using mitochondrial membrane potential (MMP) and superoxide dismutase (SOD) enzyme assays. RESULTS An 8-year-old boy was investigated for adrenal insufficiency. He also had mild developmental delay, sensorineural hearing loss, hypertrophic cardiomyopathy, nephrocalcinosis, elevated parathyroid hormone and creatine kinase, and lactic acidosis. Biallelic novel QRSL1 variants (c.300T>A;Y100* and c.610G>A;G204R) were identified. Oxidative damage in mitochondria was shown by reduced MMP and SOD assays in the patient compared to controls (P < 0.0001). Adrenal function tests revealed a 'primary adrenal insufficiency other than congenital adrenal hyperplasia' (non-CAH PAI) with an isolated glucocorticoid deficiency. In the 8-year follow-up, having the longest survival of reported COXPD40 patients, he had preserved mineralocorticoid functions and gonadal steroidogenesis. CONCLUSION Biallelic QRSL1 mutations can cause non-CAH PAI. Adrenal functions should be monitored in mitochondrial disorders to improve clinical outcomes.
Collapse
Affiliation(s)
- Fatma Dursun
- Umraniye Training and Research Hospital, Department of Pediatric Endocrinology and Diabetes
| | - Hulya Maras Genc
- Umraniye Training and Research Hospital, Department of Pediatric Neurology, University of Health Sciences, Istanbul, Turkey
| | - Ayşe Mine Yılmaz
- School of Medicine, Department of Biochemistry, Genetic and Metabolic Diseases Research and Investigation Center, Marmara University, Istanbul, Turkey
| | - Ibrahim Tas
- Umraniye Training and Research Hospital, Department of Pediatric Nutrition and Metabolism
| | - Metin Eser
- Umraniye Training and Research Hospital, Department of Medical Genetics
| | - Cemile Pehlivanoglu
- Umraniye Training and Research Hospital, Department of Pediatric Nephrology, University of Health Sciences, Istanbul, Turkey
| | - Betul Karademir Yilmaz
- School of Medicine, Department of Biochemistry, Genetic and Metabolic Diseases Research and Investigation Center, Marmara University, Istanbul, Turkey
| | - Tulay Guran
- School of Medicine, Department of Pediatric Endocrinology and Diabetes, Marmara University, Istanbul, Turkey
| |
Collapse
|
50
|
Sandroni PB, Fisher-Wellman KH, Jensen BC. Adrenergic Receptor Regulation of Mitochondrial Function in Cardiomyocytes. J Cardiovasc Pharmacol 2022; 80:364-377. [PMID: 35170492 PMCID: PMC9365878 DOI: 10.1097/fjc.0000000000001241] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 02/01/2022] [Indexed: 01/31/2023]
Abstract
ABSTRACT Adrenergic receptors (ARs) are G protein-coupled receptors that are stimulated by catecholamines to induce a wide array of physiological effects across tissue types. Both α1- and β-ARs are found on cardiomyocytes and regulate cardiac contractility and hypertrophy through diverse molecular pathways. Acute activation of cardiomyocyte β-ARs increases heart rate and contractility as an adaptive stress response. However, chronic β-AR stimulation contributes to the pathobiology of heart failure. By contrast, mounting evidence suggests that α1-ARs serve protective functions that may mitigate the deleterious effects of chronic β-AR activation. Here, we will review recent studies demonstrating that α1- and β-ARs differentially regulate mitochondrial biogenesis and dynamics, mitochondrial calcium handling, and oxidative phosphorylation in cardiomyocytes. We will identify potential mechanisms of these actions and focus on the implications of these findings for the modulation of contractile function in the uninjured and failing heart. Collectively, we hope to elucidate important physiological processes through which these well-studied and clinically relevant receptors stimulate and fuel cardiac contraction to contribute to myocardial health and disease.
Collapse
Affiliation(s)
- Peyton B. Sandroni
- University of North Carolina School of Medicine, Department of Pharmacology
- University of North Carolina School of Medicine, McAllister Heart Institute
| | - Kelsey H. Fisher-Wellman
- East Carolina University Brody School of Medicine, Department of Physiology
- East Carolina University Diabetes and Obesity Institute
| | - Brian C. Jensen
- University of North Carolina School of Medicine, Department of Pharmacology
- University of North Carolina School of Medicine, McAllister Heart Institute
- University of North Carolina School of Medicine, Department of Medicine, Division of Cardiology
| |
Collapse
|