1
|
Lu Y, Li H, Lu J, Yao T, Fu S, Wang Q, Ye L. Protective role of medium-concentration selenium nanoparticles against high salinity-induced oxidative stress in Crassostrea hongkongensis gills and hepatopancreas. MARINE POLLUTION BULLETIN 2025; 215:117912. [PMID: 40187201 DOI: 10.1016/j.marpolbul.2025.117912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 03/27/2025] [Accepted: 03/28/2025] [Indexed: 04/07/2025]
Abstract
This study investigated the effects of selenium nanoparticles (Se NPs) on the physiological responses of Crassostrea hongkongensis during high salinity exposure, which threatens this commercially important species. Oysters were pretreated with Se NPs (0, 0.4, 4, and 40 μg/L) for 14 days, followed by high salinity (30 psu) exposure for 7 days. Antioxidant, metabolic, and immune parameters were analyzed in gill and hepatopancreas tissues. Results revealed tissue-specific responses to Se NPs under salinity stress, with medium concentrations (4 μg/L) showing significant protective effects. In gills, medium Se NPs enhanced selenium-dependent antioxidant systems (glutathione peroxidase, GSH-PX and glutathione S-transferase, GST) and regulated metabolic enzymes (acid phosphatase, ACP; alanine aminotransferase, ALT; aspartate aminotransferase, AST). The hepatopancreas demonstrated increased antioxidant capacity (decreased malondialdehyde, MDA; increased superoxide dismutase, SOD) and metabolic adaptations (increased ALT). High Se NPs concentrations (40 μg/L) exacerbated physiological stress. These findings advance our understanding of nanomaterial-environment interactions with aquaculture implications.
Collapse
Affiliation(s)
- Yuchen Lu
- Guangdong Ocean University, College of Fisheries, Zhanjiang, Guangdong 524088, China; Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Hongyan Li
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; Dalian Ocean University, College of Fisheries and Life Sciences, Dalian 116023, China
| | - Jie Lu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; Sanya Tropical Fisheries Research Institute, Sanya 572426, China.
| | - Tuo Yao
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; Sanya Tropical Fisheries Research Institute, Sanya 572426, China
| | - Shengli Fu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Qingheng Wang
- Guangdong Ocean University, College of Fisheries, Zhanjiang, Guangdong 524088, China
| | - Lingtong Ye
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China.
| |
Collapse
|
2
|
Keyvanshokooh S, Salati AP, Ghasemi A, Nazemroaya S, Houshmand H, Mozanzadeh MT. Reproductive Benefits of Dietary Selenium Nanoparticles (SeNPs) in Asian Seabass (Lates calcarifer) Male Broodstock. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2025; 27:45. [PMID: 39937252 DOI: 10.1007/s10126-025-10429-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Accepted: 02/05/2025] [Indexed: 02/13/2025]
Abstract
Selenium (Se), a critical trace element for human and animal health, is essential for numerous physiological processes, including antioxidant defense, immune function, and reproduction. This study investigated the effects of dietary selenium nanoparticles (SeNPs) at 2 mg/kg on the reproductive performance, Se deposition, antioxidant status, and gene expression in male Asian seabass (Lates calcarifer). Over 120 days before spawning, the male broodfish were fed either a control diet (CD) or a SeNP-supplemented diet (SeD) in triplicate tanks per group. The SeD group exhibited significantly higher gonadosomatic index (GSI), fertilization rate, and hatching rate, along with lower rates of abnormal embryogenesis compared to the CD group (P < 0.05). Selenium accumulation was significantly elevated in the liver and testis tissues of the SeD group, corresponding with increased expression of the hepatic selenop gene. Reproduction-related genes, including ar, p450scc, and cdk1, were significantly upregulated in the testis of the SeD group, indicating enhanced reproductive processes. Antioxidant-related genes, including catalase (cat), superoxide dismutase (sod), and glutathione-s-transferase (gst) were also upregulated in both liver and testis tissues, while catalase activity increased in the testis. In terms of sex steroid hormones, the SeD group displayed significantly higher serum levels of testosterone and progesterone (P < 0.05), suggesting enhanced steroidogenesis. The absence of adverse effects further demonstrates the efficacy and safety of SeNP supplementation at 2 mg/kg. This study highlights the potential of SeNPs to enhance reproductive performance, regulate molecular pathways, and optimize broodstock management in aquaculture.
Collapse
Affiliation(s)
- Saeed Keyvanshokooh
- Department of Fisheries, Faculty of Marine Natural Resources, Khorramshahr University of Marine Science and Technology, Khorramshahr, Khuzestan, Iran.
| | - Amir Parviz Salati
- Department of Fisheries, Faculty of Marine Natural Resources, Khorramshahr University of Marine Science and Technology, Khorramshahr, Khuzestan, Iran.
| | - Ahmad Ghasemi
- Department of Biotechnology, Persian Gulf Research Institute, Persian Gulf University, Bushehr, Iran
| | - Samira Nazemroaya
- Agricultural Research Education and Extension Organization (AREEO), South of Iran Aquaculture Research Centre, Iranian Fisheries Science Institute (IFSRI), Ahwaz, Iran
| | - Hossein Houshmand
- Agricultural Research Education and Extension Organization (AREEO), South of Iran Aquaculture Research Centre, Iranian Fisheries Science Institute (IFSRI), Ahwaz, Iran
| | - Mansour Torfi Mozanzadeh
- Agricultural Research Education and Extension Organization (AREEO), South of Iran Aquaculture Research Centre, Iranian Fisheries Science Institute (IFSRI), Ahwaz, Iran
| |
Collapse
|
3
|
Saremi N, Keyvanshokooh S, Mousavi SM, Mohammadiazarm H. Synergistic effects of dietary selenium nanoparticles and vitamin C improve growth performance, immune response, and antioxidant status of juvenile common carp (Cyprinus carpio). J Trace Elem Med Biol 2024; 86:127530. [PMID: 39265202 DOI: 10.1016/j.jtemb.2024.127530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/08/2024] [Accepted: 09/09/2024] [Indexed: 09/14/2024]
Abstract
INTRODUCTION This study aimed to investigate the synergistic effects of dietary selenium nanoparticles (Se-NPs) and vitamin C (VC) on growth, body composition, antioxidant defense, immunity, and serum biochemical indexes of common carp (Cyprinus carp) juveniles. METHODOLOGY The test diets were supplemented with three levels of Se-NPs (0, 0.5, and 1 mg/Kg) and three levels of VC (0, 500, and 1000 mg/Kg): the basal diet without supplemental Se-NPs and VC (VC0SeNPs0; control), 0.5 mg Se-NPs /Kg (VC0SeNPs0.5), 1 mg Se-NPs /Kg (VC0SeNPs1), 500 mg VC/Kg (VC500SeNPs0), 1000 mg VC/Kg (VC1000SeNPs0), 500 mg VC/Kg and 0.5 mg Se-NPs (VC500SeNPs0.5), 1000 mg VC/Kg and 0.5 mg Se-NPs (VC1000SeNPs0.5), 500 mg VC/Kg and 1 mg Se-NPs (VC500SeNPs1), 1000 mg VC/Kg and 1 mg Se-NPs (VC1000SeNPs1). The fish were randomly divided into nine experimental groups in triplicate tanks per treatment and fed on their respective diets for 60 days. RESULTS The findings displayed that fish fed with VC500SeNPs1 and VC500SeNPs0.5 diets had significantly (P < 0.05) higher specific growth rates when compared to other groups. The lowest feed conversion ratio was detected in the VC1000SeNPs1 group and the highest in the control group (P < 0.05). VC, Se-NPs, and their interaction had no significant effect on serum malondialdehyde, ACH50, and IgM (P > 0.05). However, the best parameters associated with antioxidant capacity (higher serum levels of superoxide dismutase and total reduced glutathione) and physiological status (higher concentration of serum globulin and lower amounts of aspartate aminotransferase and lactate dehydrogenase) belonged to the VC1000SeNPs1 and VC500SeNPs1 groups. The results suggest that the Se-NPs and VC combination more efficiently influence the common carp's growth performance, antioxidant status, immunity, and physiological parameters. CONCLUSION Overall, the diet enriched with 500 mg VC and 1 mg Se-NPs /Kg (VC500SeNPs1) is suitable for boosting the growth and immunity of common carp.
Collapse
Affiliation(s)
- Narges Saremi
- Department of Fisheries, Faculty of Marine Natural Resources, Khorramshahr University of Marine Science and Technology, Khorramshahr, Khuzestan, Iran
| | - Saeed Keyvanshokooh
- Department of Fisheries, Faculty of Marine Natural Resources, Khorramshahr University of Marine Science and Technology, Khorramshahr, Khuzestan, Iran.
| | - Seyed Mohammad Mousavi
- Department of Fisheries, Faculty of Marine Natural Resources, Khorramshahr University of Marine Science and Technology, Khorramshahr, Khuzestan, Iran.
| | - Hamid Mohammadiazarm
- Department of Fisheries, Faculty of Marine Natural Resources, Khorramshahr University of Marine Science and Technology, Khorramshahr, Khuzestan, Iran
| |
Collapse
|
4
|
Sherif AH, Zommara MA. Selenium Nanoparticles Ameliorate Adverse Impacts of Aflatoxin in Nile Tilapia with Special Reference to Streptococcus agalactiae Infection. Biol Trace Elem Res 2024; 202:4767-4777. [PMID: 38147231 PMCID: PMC11339097 DOI: 10.1007/s12011-023-04031-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 12/18/2023] [Indexed: 12/27/2023]
Abstract
Aflatoxin B1 (AFB1) is a plant-origin toxin that could induce oxidative stress in fish. The micromineral selenium (Se) possesses well-documented antioxidant properties. To assess the ameliorative effects of SeNPs (1 mg/kg fish feed) on oxidative stress induced by AFB1 (500 μg/kg fish feed), Nile tilapia (32.2±1.7 g body weight) were distributed randomly and even in six groups for 8-week feeding trial. Live enzymes, AST, ALT, and ALP levels were increased in the serum of fish fed AFB1-contaminated diet, and the addition of SeNPs could restore normal values compared to the control. The gene expression of antioxidant enzymes, superoxide dismutase (SOD) enzyme and catalase (CAT) enzyme, and DNA fragmentation were significantly increased in response to aflatoxin exposure, while dietary SeNPs could mitigate the generated oxidative stress. The innate immunity, serum antibacterial activity (SAA), oxidative burst activity (OBA), phagocytic activities (PA and PI), and gene expression of cytokines (interleukin (IL)-1β, heat shock protein70 (Hsp), and tumor necrosis factor (TNF)-α) revealed a status of immunosuppression in Nile tilapia fed on AFB1-contaminated diet. These findings showed that fish became more vulnerable to Streptococcus agalactiae infection with a high mortality rate while dietary SeNPs provided a high relative protection level (RPL). From the obtained findings, SeNPs could mitigate the oxidative stress induced by feeding the AFB1 diet and could boost the immunity of stressed Nile tilapia.
Collapse
Affiliation(s)
- Ahmed H Sherif
- Fish Diseases Department, Animal Health Research Institute, Agriculture Research Center (ARC), Kafrelsheikh, 12619, Egypt.
| | - Mohsen A Zommara
- Dairy Sciences Department, Faculty of Agriculture, Kafrelsheikh University, Kafrelsheikh, 33511, Egypt
| |
Collapse
|
5
|
Al-Wakeel AH, Elbahnaswy S, Eldessouki EA, Risha E, Zahran E. Dietary biogenic selenium nanoparticles improve growth and immune-antioxidant indices without inducing inflammatory responses in Nile tilapia. Sci Rep 2024; 14:21990. [PMID: 39313526 PMCID: PMC11420227 DOI: 10.1038/s41598-024-72022-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 09/03/2024] [Indexed: 09/25/2024] Open
Abstract
The present study evaluated the use of green-synthesized selenium nanoparticles (SeNPs), using the microalgae Pediastrum boryanum as a diet additive in aquaculture to improve the growth performance, health, and immune response of Nile tilapia. Nile tilapia were fed different concentrations of green SeNPs (79.26 nm) as follows: 0, 0.75, and 1.5 mg/kg of SeNPs for 8 weeks. Following the trial, growth performance, biochemical indices, antioxidant and pro-inflammatory cytokine-related genes, and tissue histological examinations were performed. The study showed that SeNPs significantly improved (P < 0.05) growth performance and innate immune parameters (P < 0.001, IgM, and lysozyme) at both supplemented doses compared with the control. The protein profile and liver function enzymes were normal compared with those in the control group (P > 0.05). Serum malondialdehyde and superoxide dismutase levels were not significantly changed, while reduced glutathione and catalase were significantly enhanced (P < 0.01, P < 0.05) in the SeNPs 1.5 mg/kg compared to the control group. No inflammatory response was detected upon SeNP supplementation, as indicated by the absence of changes in the expression of pro-inflammatory cytokine genes. The earlier assays' results were histopathologically evidenced, where hepatic and splenic tissue architectures in SeNPs groups did not reveal any deviation from the control group. Our findings indicate that green selenium nanoparticles can potentially improve the growth and immunological response of Nile tilapia, offering opportunities for incorporating health benefits into functional foods and nutraceuticals, which corresponds to the increasing consumer interest in eco-friendly, environmentally sustainable dietary supplements.
Collapse
Affiliation(s)
- Ahmed H Al-Wakeel
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Samia Elbahnaswy
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Elsayed A Eldessouki
- Department of Fish Health and Diseases, Faculty of FishResources, Suez University, Suez, Egypt
| | - Engy Risha
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Eman Zahran
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt.
| |
Collapse
|
6
|
Uddin MH, Ritu JR, Putnala SK, Rachamalla M, Chivers DP, Niyogi S. Selenium toxicity in fishes: A current perspective. CHEMOSPHERE 2024; 364:143214. [PMID: 39214409 DOI: 10.1016/j.chemosphere.2024.143214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/14/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Anthropogenic activities have led to increased levels of contaminants that pose significant threats to aquatic organisms, particularly fishes. One such contaminant is Selenium (Se), a metalloid which is released by various industrial activities including mining and fossil fuel combustion. Selenium is crucial for various physiological functions, however it can bioaccumulate and become toxic at elevated concentrations. Given that fishes are key predators in aquatic ecosystems and a major protein source for humans, Se accumulation raises considerable ecological and food safety concerns. Selenium induces toxicity at the cellular level by disrupting the balance between reactive oxygen species (ROS) production and antioxidant capacity leading to oxidative damage. Chronic exposure to elevated Se impairs a wide range of critical physiological functions including metabolism, growth and reproduction. Selenium is also a potent teratogen and induces various types of adverse developmental effects in fishes, mainly due to its maternal transfer to the eggs. Moreover, that can persist across generations. Furthermore, Se-induced oxidative stress in the brain is a major driver of its neurotoxicity, which leads to impairment of several ecologically important behaviours in fishes including cognition and memory functions, social preference and interactions, and anxiety response. Our review provides an up-to-date and in-depth analysis of the various adverse physiological effects of Se in fishes, while identifying knowledge gaps that need to be addressed in future research for greater insights into the impact of Se in aquatic ecosystems.
Collapse
Affiliation(s)
- Md Helal Uddin
- Department of Biology, University of Saskatchewan, Saskatoon, SK, S7N 5E2, Canada; Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh.
| | - Jinnath Rehana Ritu
- Department of Biology, University of Saskatchewan, Saskatoon, SK, S7N 5E2, Canada; Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh.
| | - Sravan Kumar Putnala
- Department of Biology, University of Saskatchewan, Saskatoon, SK, S7N 5E2, Canada.
| | - Mahesh Rachamalla
- Department of Biology, University of Saskatchewan, Saskatoon, SK, S7N 5E2, Canada.
| | - Douglas P Chivers
- Department of Biology, University of Saskatchewan, Saskatoon, SK, S7N 5E2, Canada.
| | - Som Niyogi
- Department of Biology, University of Saskatchewan, Saskatoon, SK, S7N 5E2, Canada; Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK, S7N 5B3, Canada.
| |
Collapse
|
7
|
Wang Z, Li N, Zhou X, Wei S, Zhu Y, Li M, Gong J, He Y, Dong X, Gao C, Cheng S. Optimization of fermentation parameters to improve the biosynthesis of selenium nanoparticles by Bacillus licheniformis F1 and its comprehensive application. BMC Microbiol 2024; 24:271. [PMID: 39033096 PMCID: PMC11264884 DOI: 10.1186/s12866-024-03410-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 07/02/2024] [Indexed: 07/23/2024] Open
Abstract
BACKGROUND Selenium nanoparticles (SeNPs) are increasingly gaining attention due to its characteristics of low toxicity, high activity, and stability. Additionally, Bacillus licheniformis, as a probiotic, has achieved remarkable research outcomes in diverse fields such as medicine, feed processing, and pesticides, attracting widespread attention. Consequently, evaluating the activity of probiotics and SeNPs is paramount. The utilization of probiotics to synthesize SeNPs, achieving large-scale industrialization, is a current hotspot in the field of SeNPs synthesis and is currently the most promising synthetic method. To minimize production costs and maximize yield of SeNPs, this study selected agricultural by-products that are nutrient-rich, cost-effective, and readily available as culture medium components. This approach not only fulfills industrial production requirements but also mitigates the impact on downstream processes. RESULTS The experimental findings revealed that SeNPs synthesized by B. licheniformis F1 exhibited a spherical morphology with diameters ranging from 110 to 170 nm and demonstrating high stability. Both the secondary metabolites of B. licheniformis F1 and the synthesized SeNPs possessed significant free radical scavenging ability. To provide a more robust foundation for acquiring large quantities of SeNPs via fermentation with B. licheniformis F1, key factors were identified through single-factor experiments and response surface methodology (RSM) include a 2% seed liquid inoculum, a temperature of 37 ℃, and agitation at 180 rpm. Additionally, critical factors during the optimization process were corn powder (11.18 g/L), soybean meal (10.34 g/L), and NaCl (10.68 g/L). Upon validating the optimized conditions and culture medium, B. licheniformis F1 can synthesize nearly 100.00% SeNPs from 5 mmol/L sodium selenite. Subsequently, pilot-scale verification in a 5 L fermentor using the optimized medium resulted in a shortened fermentation time, significantly reducing production costs. CONCLUSION In this study, the efficient production of SeNPs by the probiotic B. licheniformis F1 was successfully achieved, leading to a significant reduction in fermentation costs. The exploration of the practical applications of this strain holds significant potential and provides valuable guidance for facilitating the industrial-scale implementation of microbial synthesis of SeNPs.
Collapse
Affiliation(s)
- Zhangqian Wang
- National R&D Center for Se-rich Agricultural Products Processing, Wuhan, 430028, China
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, 430028, China
| | - Nana Li
- National R&D Center for Se-rich Agricultural Products Processing, Wuhan, 430028, China
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, 430028, China
| | - Xin Zhou
- Medical Department of Gaoming Hospital of TCM, Foshan, 528500, China
| | - Shiya Wei
- National R&D Center for Se-rich Agricultural Products Processing, Wuhan, 430028, China
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, 430028, China
| | - Ying Zhu
- National R&D Center for Se-rich Agricultural Products Processing, Wuhan, 430028, China
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, 430028, China
| | - Mengjun Li
- National R&D Center for Se-rich Agricultural Products Processing, Wuhan, 430028, China
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, 430028, China
| | - Jue Gong
- Hubei National Se-rich Technology Development Co., Ltd., Enshi, 445000, China
| | - Yi He
- National R&D Center for Se-rich Agricultural Products Processing, Wuhan, 430028, China
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, 430028, China
| | - Xingxing Dong
- National R&D Center for Se-rich Agricultural Products Processing, Wuhan, 430028, China.
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, 430028, China.
| | - Chao Gao
- National R&D Center for Se-rich Agricultural Products Processing, Wuhan, 430028, China.
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, 430028, China.
| | - Shuiyuan Cheng
- National R&D Center for Se-rich Agricultural Products Processing, Wuhan, 430028, China.
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, 430028, China.
| |
Collapse
|
8
|
Zhang X, Cao J, Chen J, Wang G, Li L, Wei X, Zhang R. Combined Effects of Fluoride and Dietary Seleno-L-Methionine at Environmentally Relevant Concentrations on Female Zebrafish (Danio rerio) Liver: Histopathological Damages, Oxidative Stress and Inflammation. Biol Trace Elem Res 2024; 202:2314-2326. [PMID: 37682395 DOI: 10.1007/s12011-023-03837-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 08/29/2023] [Indexed: 09/09/2023]
Abstract
Fluoride, a global environmental pollutant, is ubiquitous in aquatic environments and coexists with selenium, which can cause complex effects on exposed organisms. However, data on the interaction of fluoride and selenium remain scarce. In this study, female zebrafish (Danio rerio) were exposed to fluoride (80 mg/L sodium fluoride) and/or dietary selenomethionine (Se-Met) for 30, 60 and 90 days, the effects on the liver of zebrafish were investigated. The results indicated that an increase in fluoride burden, inhibited growth and impaired liver morphology were recorded after fluoride exposure. Furthermore, fluoride alone caused oxidative stress and inflammation in the liver, as reflected by the increase in ROS and MDA contents, the reduction of anti-oxidative enzymes, the altered immune related enzymes (ACP, AKP, LZM and MPO) and the expression of IL-6, IL-1β, TNF-α, IL-10 and TGF-β. In contrast, co-exposure to fluoride and Se-Met decreased fluoride burden and restored growth. Furthermore, dietary Se-Met alleviated oxidative stress, inflammation and impaired morphology in liver trigger by fluoride. However, dietary Se-Met alone increased the activities of SOD and CAT. These results demonstrate that the protective effect of dietary Se-Met against chronic fluoride toxicity at a certain level.
Collapse
Affiliation(s)
- Xiulin Zhang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, 453003, Henan, China
| | - Jinling Cao
- College of Food Science and Technology, Shanxi Agricultural University, Taigu, 030801, Shanxi, China.
| | - Jianjie Chen
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, China.
| | - Guodong Wang
- School of Biology and Food Engineering, Anyang Institute of Technology, Anyang, 455000, Henan, China
| | - Lijuan Li
- College of Food and Environment, Jinzhong College of Information, Taigu, 030801, Shanxi, China
| | - Xiaobing Wei
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, 453003, Henan, China
| | - Runxiao Zhang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, 453003, Henan, China
| |
Collapse
|
9
|
Abdollahi-Mousavi SE, Keyvanshokooh S, Torfi Mozanzadeh M, Ghasemi A. Efficacy of nutritional selenium nanoparticles on growth performance, immune response, antioxidant capacity, expression of growth and immune-related genes, and post-stress recovery in juvenile Sobaity seabream (Sparidentex hasta). FISH & SHELLFISH IMMUNOLOGY 2024; 147:109452. [PMID: 38360194 DOI: 10.1016/j.fsi.2024.109452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 02/17/2024]
Abstract
This study evaluated the impacts of nano-Se on the growth, immunity, antioxidant capacity, physiological parameters, gene expression, and stress resistance of fingerling Sobaity seabream (Sparidentex hasta). The fish with an average weight of 21.5 ± 0.1 g were divided into four treatment groups in triplicates that received one of the test diets supplemented with varying levels of nano-Se: 0 (control), 0.5 (Se-0.5), 1 (Se-1), and 2 (Se-2) mg/Kg for 60 days. The results showed that final weight, weight gain rate, specific growth rate, feed intake, and feed conversion ratio improved with significant linear and quadratic trends (P < 0.05) in response to nano-Se-supplemented diets, and the best values were measured in the Se-2 group. Superoxide dismutase activity level remained unaffected among the four groups (P > 0.05). Catalase activity increased in nano-Se-supplemented groups, with the highest level measured in fish fed the Se-0.5 diet. Glutathione peroxidase activity levels were not significantly different between the control and nano-Se groups, but the lowest malondialdehyde concentration was detected in the Se-2 group. Nano-Se had no marked effect on total plasma Ig levels; however, the highest lysozyme activity and alternative complement activity (ACH50) were observed in the Se-0.5 and Se-2 groups, respectively. No significant differences (P > 0.05) were observed in plasma total protein, albumin, globulin, triglyceride, and thyroid hormone (T3 and T4) contents among the groups. However, the lowest cholesterol and low-density lipoprotein values and the highest high-density lipoprotein concentration were measured in the Se-2 group. The Se-0.5 and Se-1 groups exhibited significantly lower levels of aspartate aminotransferase activity, and the lowest alkaline phosphatase activity level was detected in the Se-1 group. The expression level of insulin-like growth factor I gene in all nano-Se-fed groups was significantly higher than the control. Also, the expression of interleukin-1β and lysozyme genes was significantly upregulated in nano-Se-supplemented groups, with the highest values in the Se-2 group. Following acute crowding stress, plasma cortisol and lactate levels at all post-stress time intervals were not significantly different among the experimental groups. Fish fed the Se-0.5 and Se-2 diets tended to have lower plasma glucose concentrations than other groups. In conclusion, dietary nano-Se at 2 mg/kg is recommended to promote growth performance and enhance antioxidant and immune parameters in Sobaity juveniles.
Collapse
Affiliation(s)
- Seyed Eisa Abdollahi-Mousavi
- Department of Fisheries, Faculty of Marine Natural Resources, Khorramshahr University of Marine Science and Technology, Khorramshahr, Khouzestan, Iran
| | - Saeed Keyvanshokooh
- Department of Fisheries, Faculty of Marine Natural Resources, Khorramshahr University of Marine Science and Technology, Khorramshahr, Khouzestan, Iran.
| | - Mansour Torfi Mozanzadeh
- South Iran Aquaculture Research Centre, Iranian Fisheries Science Institute (IFSRI), Agricultural Research Education and Extension Organization (AREEO), Ahwaz, Iran.
| | - Ahmad Ghasemi
- Department of Biotechnology, Persian Gulf Research Institute, Persian Gulf University, Bushehr, Iran
| |
Collapse
|
10
|
Zahran E, Elbahnaswy S, Ahmed F, Risha E, Mansour AT, Alqahtani AS, Awadin W, Sebaei MGE. Dietary microalgal-fabricated selenium nanoparticles improve Nile tilapia biochemical indices, immune-related gene expression, and intestinal immunity. BMC Vet Res 2024; 20:107. [PMID: 38500172 PMCID: PMC10946125 DOI: 10.1186/s12917-024-03966-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 03/04/2024] [Indexed: 03/20/2024] Open
Abstract
BACKGROUND Feed supplements, including essential trace elements are believed to play an important role in augmenting fish immune response. In this context, selenium nanoparticles (SeNPs) in fish diets via a green biosynthesis strategy have attracted considerable interest. In this investigation, selenium nanoparticles (SeNPs, 79.26 nm) synthesized from the green microalga Pediastrum boryanum were incorporated into Nile tilapia diets to explore its beneficial effects on the immune defense and intestinal integrity, in comparison with control basal diets containing inorganic Se source. Nile tilapia (No. 180, 54-57 g) were fed on three formulated diets at concentrations of 0, 0.75, and 1.5 mg/kg of SeNPs for 8 weeks. After the trial completion, tissue bioaccumulation, biochemical indices, antioxidant and pro-inflammatory cytokine-related genes, and intestinal histological examination were analyzed. RESULTS Our finding revealed that dietary SeNPs significantly decreased (P < 0.05) serum alkaline phosphatase (ALP), lactate dehydrogenase (LDH), and cholesterol, while increasing (P < 0.05) high-density lipoproteins (HDL). The Se concentration in the muscle tissues showed a dose-dependent increase. SeNPs at a dose of 1.5 mg/kg significantly upregulated intestinal interleukin 8 (IL-8) and interleukin 1 beta (IL-1β) gene transcription compared with the control diet. Glutathione reductase (GSR) and glutathione synthetase (GSS) genes were significantly upregulated in both SeNPs-supplemented groups compared with the control. No apoptotic changes or cell damages were observed as indicated by proliferating cell nuclear antigen (PCNA) and caspase-3 gene expression and evidenced histopathologically. SeNPs supplementation positively affects mucin-producing goblet cells (GCs), particularly at dose of 1.5 mg/kg. CONCLUSION Therefore, these results suggest that Green synthesized SeNPs supplementation has promising effects on enhancing Nile tilapia immunity and maintaining their intestinal health.
Collapse
Affiliation(s)
- Eman Zahran
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt.
| | - Samia Elbahnaswy
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Fatma Ahmed
- Department of Zoology, Faculty of Science, Sohag University, Sohag, 82524, Egypt
| | - Engy Risha
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Abdallah Tageldein Mansour
- Animal and Fish Production Department, College of Agricultural and Food Sciences, King Faisal University, P.O. Box 420, Al-Ahsa, 31982, Saudi Arabia
- Fish and Animal Production Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, 21531, Egypt
| | - Arwa Sultan Alqahtani
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), P.O. Box, Riyadh, 9095011623, Saudi Arabia
| | - Walaa Awadin
- Department of Pathology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Mahmoud G El Sebaei
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al-Ahsa, 31982, Saudi Arabia
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
11
|
Zhang H, Zhao L, Zhang P, Xie Y, Yao X, Pan X, Fu Y, Wei J, Bai H, Shao X, Ye J, Wu C. Effects of selenoprotein extracts from Cardamine hupingshanensis on growth, selenium metabolism, antioxidant capacity, immunity and intestinal health in largemouth bass Micropterus salmoides. Front Immunol 2024; 15:1342210. [PMID: 38318186 PMCID: PMC10839570 DOI: 10.3389/fimmu.2024.1342210] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/08/2024] [Indexed: 02/07/2024] Open
Abstract
This study aimed to assess the impact of dietary selenoprotein extracts from Cardamine hupingshanensis (SePCH) on the growth, hematological parameters, selenium metabolism, immune responses, antioxidant capacities, inflammatory reactions and intestinal barrier functions in juvenile largemouth bass (Micropterus salmoides). The base diet was supplemented with four different concentrations of SePCH: 0.00, 0.30, 0.60 and 1.20 g/Kg (actual selenium contents: 0.37, 0.59, 0.84 and 1.30 mg/kg). These concentrations were used to formulate four isonitrogenous and isoenergetic diets for juvenile largemouth bass during a 60-day culture period. Adequate dietary SePCH (0.60 and 1.20 g/Kg) significantly increased weight gain and daily growth rate compared to the control groups (0.00 g/Kg). Furthermore, 0.60 and 1.20 g/Kg SePCH significantly enhanced amounts of white blood cells, red blood cells, platelets, lymphocytes and monocytes, and levels of hemoglobin, mean corpuscular volume and mean corpuscular hemoglobin in the hemocytes. In addition, 0.60 and 1.20 g/Kg SePCH increased the mRNA expression levels of selenocysteine lyase, selenophosphate synthase 1, 15 kDa selenoprotein, selenoprotein T2, selenoprotein H, selenoprotein P and selenoprotein K in the fish liver and intestine compared to the controls. Adequate SePCH not only significantly elevated the activities of antioxidant enzymes (Total superoxide dismutase, catalase, glutathione reductase, glutathione peroxidase), the levels of total antioxidant capacity and glutathione, while increased mRNA transcription levels of NF-E2-related factor 2, Cu/Zn-superoxide dismutase, catalase, glutathione reductase and glutathione peroxidase. However, adequate SePCH significantly decreased levels of malondialdehyde and H2O2 and the mRNA expression levels of kelch-like ECH-associated protein 1a and kelch-like ECH-associated protein 1b in the fish liver and intestine compared to the controls. Meanwhile, adequate SePCH markedly enhanced the levels of immune factors (alkaline phosphatase, acid phosphatase, lysozyme, complement component 3, complement component 4 and immunoglobulin M) and innate immune-related genes (lysozyme, hepcidin, liver-expressed antimicrobial peptide 2, complement component 3 and complement component 4) in the fish liver and intestine compared to the controls. Adequate SePCH reduced the levels of pro-inflammatory cytokines (tumour necrosis factor-α, interleukin 8, interleukin 1β and interferon γ), while increasing transforming growth factor β1 levels at both transcriptional and protein levels in the liver and intestine. The mRNA expression levels of mitogen-activated protein kinase 13 (MAPK 13), MAPK14 and nuclear factor kappa B p65 were significantly reduced in the liver and intestine of fish fed with 0.60 and 1.20 g/Kg SePCH compared to the controls. Histological sections also demonstrated that 0.60 and 1.20 g/Kg SePCH significantly increased intestinal villus height and villus width compared to the controls. Furthermore, the mRNA expression levels of tight junction proteins (zonula occludens-1, zonula occludens-3, Claudin-1, Claudin-3, Claudin-5, Claudin-11, Claudin-23 and Claudin-34) and Mucin-17 were significantly upregulated in the intestinal epithelial cells of 0.60 and 1.20 g/Kg SePCH groups compared to the controls. In conclusion, these results found that 0.60 and 1.20 g/Kg dietary SePCH can not only improve growth, hematological parameters, selenium metabolism, antioxidant capacities, enhance immune responses and intestinal functions, but also alleviate inflammatory responses. This information can serve as a useful reference for formulating feeds for largemouth bass.
Collapse
Affiliation(s)
- Hao Zhang
- National-Local Joint Engineering Laboratory of Aquatic Animal Genetic Breeding and Nutrition (Zhejiang), School of Life Science, Huzhou University, Huzhou, China
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, School of Life Science, Huzhou University, Huzhou, China
| | - Long Zhao
- National-Local Joint Engineering Laboratory of Aquatic Animal Genetic Breeding and Nutrition (Zhejiang), School of Life Science, Huzhou University, Huzhou, China
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, School of Life Science, Huzhou University, Huzhou, China
| | - Penghui Zhang
- National-Local Joint Engineering Laboratory of Aquatic Animal Genetic Breeding and Nutrition (Zhejiang), School of Life Science, Huzhou University, Huzhou, China
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, School of Life Science, Huzhou University, Huzhou, China
| | - Yuanyuan Xie
- National-Local Joint Engineering Laboratory of Aquatic Animal Genetic Breeding and Nutrition (Zhejiang), School of Life Science, Huzhou University, Huzhou, China
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, School of Life Science, Huzhou University, Huzhou, China
| | - Xinfeng Yao
- National-Local Joint Engineering Laboratory of Aquatic Animal Genetic Breeding and Nutrition (Zhejiang), School of Life Science, Huzhou University, Huzhou, China
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, School of Life Science, Huzhou University, Huzhou, China
| | - Xuewen Pan
- National-Local Joint Engineering Laboratory of Aquatic Animal Genetic Breeding and Nutrition (Zhejiang), School of Life Science, Huzhou University, Huzhou, China
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, School of Life Science, Huzhou University, Huzhou, China
| | - Yifan Fu
- National-Local Joint Engineering Laboratory of Aquatic Animal Genetic Breeding and Nutrition (Zhejiang), School of Life Science, Huzhou University, Huzhou, China
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, School of Life Science, Huzhou University, Huzhou, China
| | - Jiao Wei
- National-Local Joint Engineering Laboratory of Aquatic Animal Genetic Breeding and Nutrition (Zhejiang), School of Life Science, Huzhou University, Huzhou, China
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, School of Life Science, Huzhou University, Huzhou, China
| | - Hongfeng Bai
- National-Local Joint Engineering Laboratory of Aquatic Animal Genetic Breeding and Nutrition (Zhejiang), School of Life Science, Huzhou University, Huzhou, China
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, School of Life Science, Huzhou University, Huzhou, China
| | - Xianping Shao
- National-Local Joint Engineering Laboratory of Aquatic Animal Genetic Breeding and Nutrition (Zhejiang), School of Life Science, Huzhou University, Huzhou, China
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, School of Life Science, Huzhou University, Huzhou, China
| | - Jinyun Ye
- National-Local Joint Engineering Laboratory of Aquatic Animal Genetic Breeding and Nutrition (Zhejiang), School of Life Science, Huzhou University, Huzhou, China
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, School of Life Science, Huzhou University, Huzhou, China
| | - Chenglong Wu
- National-Local Joint Engineering Laboratory of Aquatic Animal Genetic Breeding and Nutrition (Zhejiang), School of Life Science, Huzhou University, Huzhou, China
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, School of Life Science, Huzhou University, Huzhou, China
| |
Collapse
|
12
|
Mohtashemipour H, Mohammadian T, Torfi Mozanzadeh M, Mesbah M, Jangaran Nejad A. Dietary Selenium Nanoparticles Improved Growth and Health Indices in Asian Seabass ( Lates calcarifer) Juveniles Reared in High Saline Water. AQUACULTURE NUTRITION 2024; 2024:7480824. [PMID: 38234466 PMCID: PMC10794074 DOI: 10.1155/2024/7480824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/15/2023] [Accepted: 12/19/2023] [Indexed: 01/19/2024]
Abstract
A 60-day study was carried out to determine the effect of dietary selenium nanoparticles (SeNP) on growth, digestive enzymes, and health status of Asian seabass (Lates calcarifer, 46.5 ± 0.2 g) juveniles reared in high saline water (48 ppt). Five levels of SeNP were added to a basal diet (45% protein, 15% lipid), including control (0), 0.5 (SeNP0.5), 1.0 (SeNP1), 2 (SeNP2), and 4 (SeNP4) mg SeNP kg-1 diet. Fish were stocked into fifteen 2,000 L tanks (50 fish tank-1) filled with 1,800 L sand-filtered seawater (26.5 ± 1.5°C, 48.0 ± 0.2 ppt) in a flow-through system. Each dietary treatment was performed in three replicates. The growth rate positively increased in both linear and quadratic trends with increasing dietary SeNP level (P < 0.05). The liver Se concentration increased with increasing SeNP in diet (P < 0.05). Gut total protease, trypsin, chymotrypsin, alkaline phosphatase (ALP), lipase, and α-amylase activities were significantly enhanced in the SeNP4 group compared to the other treatments (P < 0.05). Antioxidant capacity improved in fish-fed SeNP2 and SeNP4 diets regarding catalase and superoxide dismutase activities and the liver glutathione content. Serum lysozyme and hemolytic activities and white blood cells' respiratory burst activity in the control were lower than in fish-fed SeNP-supplemented diets. Serum total protein, globulin, and globulin/albumin ratio in fish-fed SeNP1, SeNP2, and SeNP4 diets were higher than the other groups (P < 0.05). The interleukin-10 and granulocyte-macrophage colony-stimulating factor genes' relative transcription levels in the gut of fish-fed SeNP4 were higher than the other groups. Serum cholesterol, triglycerides, ALP, aspartate aminotransferase, alanine aminotransferase, and lactate dehydrogenase significantly decreased in fish with increasing SeNP content in the diet. In conclusion, supplementing the diet with 4 mg kg-1, SeNP was recommended to improve growth and health indices in L. calcarifer juveniles reared in high saline water (48 ppt).
Collapse
Affiliation(s)
- Hamzeh Mohtashemipour
- Department of Livestock, Poultry and Aquatic Animal Health, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Takavar Mohammadian
- Department of Livestock, Poultry and Aquatic Animal Health, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
- Member of Excellence Center of Warm Water Fish Health, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Mansour Torfi Mozanzadeh
- South Iran Aquaculture Research Centre, Iranian Fisheries Science Research Institute (IFSRI), Agricultural Research Education and Extension Organization (AREEO), Ahwaz, Iran
| | - Mehrzad Mesbah
- Department of Livestock, Poultry and Aquatic Animal Health, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
- Member of Excellence Center of Warm Water Fish Health, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | | |
Collapse
|
13
|
Keyvanshokooh S. A review of the quantitative real-time PCR and Omics approaches applied to study the effects of dietary selenium nanoparticles (nano-Se) on fish. COMPARATIVE IMMUNOLOGY REPORTS 2023; 6:200127. [PMCID: PMC10865848 DOI: 10.1016/j.cirep.2023.200127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/24/2023] [Accepted: 11/02/2023] [Indexed: 07/27/2024]
Abstract
•Selenium is an essential microelement required for the health of humans and animals. •Nano-Se have been applied in aquafeeds to enhance fish immunity and growth. •Omics are used to discover molecular mechanisms underlying biological processes. •This article reviews the omics platforms used to study the nano-Se effects in fish. Selenium (Se) is an essential trace microelement required for the overall health of humans and animals. The importance of Se is mainly related to its participation in the structure of selenoproteins with diverse biological functions, including antioxidant defense, immunity, and thyroid hormone metabolism. The functionality of Se depends on its chemical form (inorganic and organic Se). Due to low toxicity and higher efficacy, Se nanoparticles (nano-Se) have been recently applied in aquafeeds to enhance fish performance. New technological advances have offered different Omics approaches, such as transcriptomics, proteomics, and metabolomics, to realize molecular mechanisms underlying biological processes. In recent years, Omics approaches have been employed to study nano-Se effects on fish. The present article summarizes the impacts of nano-Se supplementation on fish performance, then reviews the qRT-PCR assay and Omics-based approaches used to study the dietary nano-Se supplementation effects in fish.
Collapse
Affiliation(s)
- Saeed Keyvanshokooh
- Department of Fisheries, Faculty of Marine Natural Resources, Khorramshahr University of Marine Science and Technology, Khorramshahr, Khouzestan, Iran
| |
Collapse
|
14
|
Li L, Liu Z, Zhao G, Quan J, Sun J, Lu J. Nano-selenium Antagonizes Heat Stress-Induced Apoptosis of Rainbow Trout (Oncorhynchus mykiss) Hepatocytes by Activating the PI3K/AKT Pathway. Biol Trace Elem Res 2023; 201:5805-5815. [PMID: 36973607 DOI: 10.1007/s12011-023-03637-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 03/15/2023] [Indexed: 03/29/2023]
Abstract
The cold-water fish rainbow trout (Oncorhynchus mykiss) shows poor resistance to heat, which is the main factor restricting their survival and yield. With the advancement of nanotechnology, nano-selenium (nano-Se) has emerged as a key nano-trace element, showing unique advantages, including high biological activity and low toxicity, for studying the response of animals to adverse environmental conditions. However, little is still known regarding the potential protective mechanisms of nano-Se against heat stress-induced cellular damage. Herein, we aimed to investigate the mechanism underlying the antagonistic effects of nano-Se on heat stress. Four groups were assessed: CG18 (0 μg/mL nano-Se, 18 °C), Se18 (5.0 μg/mL nano-Se, 18 °C), CG24 (0 μg/mL nano-Se, incubated at 18 °C for 24 h and then transferred to 24 °C culture), and Se24 (5.0 μg/mL nano-Se, incubated at 18 °C for 24 h and then transferred to 24 °C culture). We found that after heat treatment (CG24 group), T-AOC, GPx, and CAT activities in rainbow trout hepatocytes showed a decrease of 36%, 33%, and 19%, respectively, while ROS and MDA levels showed an increase of 67% and 93%, respectively (P < 0.05). Meanwhile, the mRNA levels of the apoptosis-related genes caspase3, caspase9, Cyt-c, Bax, and Bax/Bcl-2 in the CG24 group were 41%, 47%, 285%, 65%, and 151% higher than those in the CG18 group, respectively, while those of PI3K and AKT were 31% and 17% lower, respectively (P < 0.05). Besides, flow cytometry analysis showed an increase in the level of apoptotic cells after heat exposure. More importantly, we observed that nano-Se cotreatment (Se24 group) remarkably attenuated heat stress-induced effects (P < 0.05). We conclude that heat stress induces oxidative stress and apoptosis in rainbow trout hepatocytes. Nano-Se ameliorates heat stress-induced apoptosis by activating the PI3K/AKT pathway. Our results provide a new perspective to improve our understanding of the ability of nano-Se to confer heat stress resistance.
Collapse
Affiliation(s)
- Lanlan Li
- College of Animal Science & Technology, Gansu Agricultural University, No. 1 Yingmen Village, Anning District, Lanzhou, 730070, Gansu Province, China
| | - Zhe Liu
- College of Animal Science & Technology, Gansu Agricultural University, No. 1 Yingmen Village, Anning District, Lanzhou, 730070, Gansu Province, China.
| | - Guiyan Zhao
- College of Animal Science & Technology, Gansu Agricultural University, No. 1 Yingmen Village, Anning District, Lanzhou, 730070, Gansu Province, China
| | - Jinqiang Quan
- College of Animal Science & Technology, Gansu Agricultural University, No. 1 Yingmen Village, Anning District, Lanzhou, 730070, Gansu Province, China
| | - Jun Sun
- College of Animal Science & Technology, Gansu Agricultural University, No. 1 Yingmen Village, Anning District, Lanzhou, 730070, Gansu Province, China
| | - Junhao Lu
- College of Animal Science & Technology, Gansu Agricultural University, No. 1 Yingmen Village, Anning District, Lanzhou, 730070, Gansu Province, China
| |
Collapse
|
15
|
Zhang X, Cao J, Chen J, Wang G, Li L, Wei X, Zhang R. Combined Effects of Fluoride and Dietary Seleno-L-methionine at Environmentally Relevant Concentrations on Female Zebrafish (Danio rerio) Liver: Histopathological Damages, Oxidative Stress and Inflammation. Biol Trace Elem Res 2023:10.1007/s12011-023-03853-3. [PMID: 37728845 DOI: 10.1007/s12011-023-03853-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 09/07/2023] [Indexed: 09/21/2023]
Abstract
Fluoride, a global environmental pollutant, is ubiquitous in aquatic environments and coexists with selenium, which can cause complex effects on exposed organisms. However, data on the interaction of fluoride and selenium remain scarce. In this study, female zebrafish (Danio rerio) were exposed to fluoride (80 mg/L sodium fluoride) and/or dietary selenomethionine for 30, 60 and 90 days, the effects on the liver of zebrafish were investigated. The results indicated that an increase in fluoride burden, inhibited growth and impaired liver morphology were recorded after fluoride exposure. Furthermore, fluoride alone caused oxidative stress and inflammation in the liver, as reflected by the increase in ROS and MDA contents, the reduction of anti-oxidative enzymes, the altered immune related enzymes (ACP, AKP, LZM and MPO) and the expression of IL-6, IL-1β, TNF-α, IL-10 and TGF-β. In contrast, co-exposure to fluoride and Se-Met decreased fluoride burden and restored growth. Furthermore, dietary Se-Met alleviated oxidative stress, inflammation and impaired morphology in liver trigger by fluoride. However, dietary Se-Met alone increased the activities of SOD and CAT. These results demonstrate that the protective effect of dietary Se-Met against chronic fluoride toxicity at a certain level.
Collapse
Affiliation(s)
- Xiulin Zhang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, 453003, Henan, China
| | - Jinling Cao
- College of Food Science and Technology, Shanxi Agricultural University, Taigu, 030801, Shanxi, China.
| | - Jianjie Chen
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, China.
| | - Guodong Wang
- School of Biology and Food Engineering, Anyang Institute of Technology, Anyang, 455000, Henan, China
| | - Lijuan Li
- College of Food and Environment, Jinzhong College of Information, Taigu, 030801, Shanxi, China
| | - Xiaobing Wei
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, 453003, Henan, China
| | - Runxiao Zhang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, 453003, Henan, China
| |
Collapse
|
16
|
Li H, Liu W, Liao T, Zheng W, Qiu J, Xiong G, Zu X. Metabolomics and Proteomics Responses of Largemouth Bass ( Micropterus salmoides) Muscle under Organic Selenium Temporary Rearing. Molecules 2023; 28:5298. [PMID: 37513172 PMCID: PMC10383538 DOI: 10.3390/molecules28145298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/03/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
Organic selenium has been widely studied as a nutritional supplement for animal feed. However, there are few studies on the effect of organic selenium on flesh quality. In this study, the effects of organic selenium (yeast selenium (YS), Se 0.002 mg/L) on the metabolism and protein expression in Micropterus salmoides muscle under temporary fasting condition (6 weeks) were investigated. The muscle structure was observed through a microscope, and regulatory pathways were analyzed using proteomics and metabolomics methods. Electron microscopy showed that YS made the muscle fibers of M. salmoides more closely aligned. Differential analysis identified 523 lipid molecules and 268 proteins. The numbers of upregulated and downregulated proteins were 178 and 90, respectively, including metabolism (46.15%), cytoskeleton (11.24%) and immune oxidative stress (9.47%), etc. Integrated analyses revealed that YS enhanced muscle glycolysis, the tricarboxylic acid cycle and oxidative phosphorylation metabolism. In the YS group, the content of eicosapentaenoic acid was increased, and that of docosahexaenoic acid was decreased. YS slowed down protein degradation by downregulating ubiquitin and ubiquitin ligase expression. These results suggest that organic selenium can improve M. salmoides muscle quality through the aforementioned pathways, which provides potential insights into the improvement of the quality of aquatic products, especially fish.
Collapse
Affiliation(s)
- Hailan Li
- Key Laboratory of Cold Chain Logistics Technology for Agro-Product, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Wenbo Liu
- Key Laboratory of Cold Chain Logistics Technology for Agro-Product, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
- School of Chemical and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Tao Liao
- Key Laboratory of Cold Chain Logistics Technology for Agro-Product, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Wei Zheng
- Institute of Agricultural Economics and Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Jianhui Qiu
- Key Laboratory of Cold Chain Logistics Technology for Agro-Product, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Guangquan Xiong
- Key Laboratory of Cold Chain Logistics Technology for Agro-Product, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Xiaoyan Zu
- Key Laboratory of Cold Chain Logistics Technology for Agro-Product, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| |
Collapse
|
17
|
Satgurunathan T, Bhavan PS, Kalpana R, Jayakumar T, Sheu JR, Manjunath M. Influence of Garlic (Allium sativum) Clove-Based Selenium Nanoparticles on Status of Nutritional, Biochemical, Enzymological, and Gene Expressions in the Freshwater Prawn Macrobrachium rosenbergii (De Man, 1879). Biol Trace Elem Res 2023; 201:2036-2057. [PMID: 35665883 DOI: 10.1007/s12011-022-03300-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/26/2022] [Indexed: 11/02/2022]
Abstract
Selenium (Se) is one of the essential micronutrients for performing vital body functions. This study aims at examining the influence of dietary supplementation of garlic clove-based green-synthesized selenium nanoparticles (GBGS-SeNPs, 48-87 nm) on carcass minerals and trace elements, and growth, biochemical, enzymological, and gene expression analyses in the freshwater prawn, Macrobrachium rosenbergii post larvae (PL). The 96 h LC50 of this GBGS-SeNPs to M. rosenbergii PL was 52.23 mg L-1. Five different artificial diets without supplementation of GBGS-SeNPs (control, 0.0 mg kg-1) and with supplementations of GBGS-SeNPs starting from 100 times lower than the LC50 value (0.5, 1.0, 1.5, and 2.0 mg kg-1) were prepared and fed to M. rosenbergii PL for 90 days. A dose-dependent accumulation of Se was observed in the carcass of experimental prawns. GBGS-SeNPs, up to 1.5 mg kg-1 significantly influenced the absorption of other trace elements (Ca, Cu, and Fe) and mineral salts (K, Mg, Na, and Zn). GBGS-SeNPs-supplemented diets showed efficient food conversion ratio (FCR) of 1.32 g against 2.71 g, and therefore enhanced the survival rate (85.6% against 78.8% in control) and weight gain (WG) of 1.41 g against 0.46 g of control prawn. GBGS-SeNPs significantly elevated the activities of protease, amylase, and lipase, and the contents of total protein, essential amino acids (EAA), total carbohydrate, total lipid, monounsaturated fatty acids (MUFA), polyunsaturated fatty acids (PUFA), and ash. These indicate the growth promoting potential of GBGS-SeNPs in prawn. The insignificantly altered activities of glutamic oxaloacetate transaminase (GOT), glutamic pyruvate transaminase (GPT), superoxide dismutase (SOD), and catalase, and the content of malondialdehyde (MDA) up to 1.5 mg kg-1 suggest its acceptability in prawn. Moreover, a respective down- and upregulated myostatin (MSTN) and crustacean hyperglycemic hormone (CHH) genes confirmed the influence of GBGS-SeNPs on the growth of prawn. In contrast, 2.0 mg kg-1 GBGS-SeNPs supplementation starts to produce negative effects on prawn (FCR, 1.76 g; survival rate, 82.2%; WG, 0.84 g against respective values of 1.32 g, 85.6%; and 1.41 g observed in 1.5 mg kg-1 of GBGS-SeNPs-supplemented diet fed prawn). This study recommends a maximum of 1.5 mg kg-1 GBGS-SeNPs as dietary supplement to attain sustainable growth of M. rosenbergii. This was confirmed through polynomial and linear regression analyses.
Collapse
Affiliation(s)
- Thangavelu Satgurunathan
- Department of Zoology, Bharathiar University, Coimbatore, 641046, Tamil Nadu, India
- Present address of the first author: Department of Biotechnology, RVS College of Arts and Science (Autonomous), Sulur, Coimbatore, 641402, Tamil Nadu, India
| | | | - Ramasamy Kalpana
- Department of Zoology, Bharathiar University, Coimbatore, 641046, Tamil Nadu, India
| | - Thanasekaran Jayakumar
- Department of Ecology and Environmental Sciences, Pondicherry University, Puducherry, 605014, India
| | - Joen-Rong Sheu
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
| | - Manubolu Manjunath
- Department of Environmental Health Sciences and Organismal Biology, Ohio State University, Columbus, OH, 43212, USA
| |
Collapse
|
18
|
Ni J, Ren L, Ma Y, Xiong H, Jian W. Selenium nanoparticles coated with polysaccharide-protein complexes from abalone viscera improve growth and enhance resistance to diseases and hypoxic stress in juvenile Nile tilapia (Oreochromis niloticus). FISH & SHELLFISH IMMUNOLOGY 2023; 134:108624. [PMID: 36809842 DOI: 10.1016/j.fsi.2023.108624] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 02/14/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
The use of selenium nanoparticles (SeNPs) in aquaculture has been increasing gradually over the past few years. SeNPs enhance immunity, are highly effective against pathogens, and have low toxicity. In this study, SeNPs were prepared using polysaccharide-protein complexes (PSP) from abalone viscera. The acute toxicity of PSP-SeNPs to juvenile Nile tilapia and their effect on growth performance, intestinal tissue structure, antioxidation capacity, hypoxic stress, and Streptococcus agalactiae infection were investigated. The results showed that the spherical PSP-SeNPs were stable and safe, with an LC50 of 13.645 mg/L against tilapia, which was about 13-fold higher than that of sodium selenite (Na2SeO3). A basal diet supplemented with 0.1-1.5 mg/kg PSP-SeNPs improved the growth performance of tilapia juveniles to a certain extent, increased the intestinal villus length, and significantly enhanced the activities of liver antioxidant enzymes, including superoxide dismutase (SOD), glutathione peroxidase (GSH-PX), and catalase (CAT). PSP-SeNPs also enhanced the resistance of tilapia to hypoxic stress and Streptococcus agalactiae infection, with supplementation at 0.1-0.3 mg/kg exerting more obvious effects than 1.5 mg/kg. However, PSP-SeNPs at a concentration of 4.5 mg/kg and Na2SeO3 at 0.3 mg/kg negatively affected the growth, gut health, and the activity of the antioxidant enzymes of tilapia. Quadric polynomial regression analysis revealed that 0.1-1.2 mg/kg was the optimal PSP-SeNP supplementation concentration for tilapia feeds. The findings of this study lay a foundation for the application of PSP-SeNPs in aquaculture.
Collapse
Affiliation(s)
- Jing Ni
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Jimei University, Xiamen, 361021, China
| | - Lirong Ren
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Jimei University, Xiamen, 361021, China
| | - Ying Ma
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Jimei University, Xiamen, 361021, China.
| | - Hejian Xiong
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, 361021, China.
| | - Wenjie Jian
- Institute of Respiratory Diseases, Xiamen Medical College, Xiamen, 361023, China
| |
Collapse
|
19
|
Zambonino MC, Quizhpe EM, Mouheb L, Rahman A, Agathos SN, Dahoumane SA. Biogenic Selenium Nanoparticles in Biomedical Sciences: Properties, Current Trends, Novel Opportunities and Emerging Challenges in Theranostic Nanomedicine. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:424. [PMID: 36770385 PMCID: PMC9921003 DOI: 10.3390/nano13030424] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/15/2023] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
Selenium is an important dietary supplement and an essential trace element incorporated into selenoproteins with growth-modulating properties and cytotoxic mechanisms of action. However, different compounds of selenium usually possess a narrow nutritional or therapeutic window with a low degree of absorption and delicate safety margins, depending on the dose and the chemical form in which they are provided to the organism. Hence, selenium nanoparticles (SeNPs) are emerging as a novel therapeutic and diagnostic platform with decreased toxicity and the capacity to enhance the biological properties of Se-based compounds. Consistent with the exciting possibilities offered by nanotechnology in the diagnosis, treatment, and prevention of diseases, SeNPs are useful tools in current biomedical research with exceptional benefits as potential therapeutics, with enhanced bioavailability, improved targeting, and effectiveness against oxidative stress and inflammation-mediated disorders. In view of the need for developing eco-friendly, inexpensive, simple, and high-throughput biomedical agents that can also ally with theranostic purposes and exhibit negligible side effects, biogenic SeNPs are receiving special attention. The present manuscript aims to be a reference in its kind by providing the readership with a thorough and comprehensive review that emphasizes the current, yet expanding, possibilities offered by biogenic SeNPs in the biomedical field and the promise they hold among selenium-derived products to, eventually, elicit future developments. First, the present review recalls the physiological importance of selenium as an oligo-element and introduces the unique biological, physicochemical, optoelectronic, and catalytic properties of Se nanomaterials. Then, it addresses the significance of nanosizing on pharmacological activity (pharmacokinetics and pharmacodynamics) and cellular interactions of SeNPs. Importantly, it discusses in detail the role of biosynthesized SeNPs as innovative theranostic agents for personalized nanomedicine-based therapies. Finally, this review explores the role of biogenic SeNPs in the ongoing context of the SARS-CoV-2 pandemic and presents key prospects in translational nanomedicine.
Collapse
Affiliation(s)
- Marjorie C. Zambonino
- School of Biological Sciences and Engineering, Yachay Tech University, Hacienda San José s/n, San Miguel de Urcuquí 100119, Ecuador
| | - Ernesto Mateo Quizhpe
- School of Biological Sciences and Engineering, Yachay Tech University, Hacienda San José s/n, San Miguel de Urcuquí 100119, Ecuador
| | - Lynda Mouheb
- Laboratoire de Recherche de Chimie Appliquée et de Génie Chimique, Hasnaoua I, Université Mouloud Mammeri, BP 17 RP, Tizi-Ouzou 15000, Algeria
| | - Ashiqur Rahman
- Center for Midstream Management and Science, Lamar University, 211 Redbird Ln., Beaumont, TX 77710, USA
| | - Spiros N. Agathos
- Earth and Life Institute, Catholic University of Louvain, B-1348 Louvain-la-Neuve, Belgium
| | - Si Amar Dahoumane
- Department of Chemical Engineering, Polytechnique Montréal, C.P. 6079, Succ. Centre-Ville, Montréal, QC H3C 3A7, Canada
- Department of Chemistry and Biochemistry, Université de Moncton, 18, Ave Antonine-Maillet, Moncton, NB E1A 3E9, Canada
| |
Collapse
|
20
|
Mudgal V, Garg AK, Dass RS, Rawat M. Interaction of Antioxidant Trace Minerals Affecting Blood Picture Including Antioxidant Profile of Healthy Buffalo (Bubalus bubalis) Calves. Biol Trace Elem Res 2023; 201:156-169. [PMID: 35092580 DOI: 10.1007/s12011-022-03122-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 01/17/2022] [Indexed: 01/11/2023]
Abstract
Copper (Cu) and selenium (Se) are antioxidants and essential trace elements that have mutual interaction and are reported to have beneficial effects at supranutritional levels. The experiment was executed to evaluate the individual impact of supranutritional levels of targeted elements with the effect of their interactions in buffalo calves. Twenty male Murrah buffalo calves of about 8-9 months (bodyweight 112.1 ± 7.69 kg) were distributed into four groups of five calves in each group and fed either a control (C) diet or supplemented with supranutritional levels of Cu (T1), Se (T2), or combination of both (T3) for 120 days. Higher (P = 0.015) values of packed cell volume were observed in group T2 at day 120; otherwise, all other hematological parameters remained comparable among groups. Over the period (day 120 vs. day 0), an enhancement in the percentage of lymphocytes (P = 0.006) with a reduction in neutrophils (P = 0.028) and hemoglobin (P = 0.024) values was observed in the control group. An enhancement in the percentage of monocytes (P = 0.031), with a reduced percentage of neutrophils (P = 0.022), was reported in groups T2 and T3, respectively. Interaction of Cu and Se at supranutritional level (T3) dramatically reduced plasma Cu (P = 0.008) level against the control values, with an improvement in Se markers (i.e., plasma Se, P = 0.041 and enzyme glutathione peroxidase, P = 0.057) over the values in calves fed supplemental Se alone (T2). Additionally, Cu (T1 and T3) was forced to decline (P < 0.05) Zn level in the plasma of buffalo calves. Cu (T1, P < 0.05) and Se (T2 and T3, P ≤ 0.01) supplementation was able to improve their respective plasma levels. The interaction of two trace elements at the supranutritional level further helped in reducing the lipid peroxidation (P = 0.01) values as well. Though antioxidant vitamins and cell-mediated immunity remained unaffected, humoral immunity against antigen P. multocida was high (P = 0.005) in the group T2. The conclusion may be drawn that supranutritional Cu and Se were capable to influence certain blood parameters with an additional interaction effect due to simultaneous supplementation in buffalo calves.
Collapse
Affiliation(s)
- Vishal Mudgal
- Mineral and Vitamin Nutrition Laboratory, Centre for Advanced Faculty Training in Animal Nutrition, ICAR-Indian Veterinary Research Institute, Izatnagar, 243 122, Bareilly, UP, India.
- Division of Animal Nutrition and Feed Technology, ICAR - Central Institute for Research on Buffaloes, Hisar, 125001, Haryana, India.
| | - Anil Kumar Garg
- Mineral and Vitamin Nutrition Laboratory, Centre for Advanced Faculty Training in Animal Nutrition, ICAR-Indian Veterinary Research Institute, Izatnagar, 243 122, Bareilly, UP, India
| | - Ram Sharan Dass
- Mineral and Vitamin Nutrition Laboratory, Centre for Advanced Faculty Training in Animal Nutrition, ICAR-Indian Veterinary Research Institute, Izatnagar, 243 122, Bareilly, UP, India
| | - Mayank Rawat
- Biological Standardization Division, ICAR-Indian Veterinary Research Institute, Izatnagar, 243 122, Bareilly, UP, India
| |
Collapse
|
21
|
Saad AM, Sitohy MZ, Sultan-Alolama MI, El-Tarabily KA, El-Saadony MT. Green nanotechnology for controlling bacterial load and heavy metal accumulation in Nile tilapia fish using biological selenium nanoparticles biosynthesized by Bacillus subtilis AS12. Front Microbiol 2022; 13:1015613. [PMID: 36620021 PMCID: PMC9816870 DOI: 10.3389/fmicb.2022.1015613] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/31/2022] [Indexed: 12/24/2022] Open
Abstract
Heavy metal accumulation and pathogenic bacteria cause adverse effects on aquaculture. The active surface of selenium (Se) nanoparticles can mitigate these effects. The present study used Se-resistant Bacillus subtilis AS12 to fabricate biological Se nanoparticles (Bio-SeNPs). The double-edged Bio-SeNPs were tested for their ability to reduce the harmful effects of heavy metals and bacterial load in Nile tilapia (Oreochromis niloticus) and their respective influences on fish growth, behavior, and health. The Bio-SeNPs have a spherical shape with an average size of 77 nm and high flavonoids and phenolic content (0.7 and 1.9 g g-1 quercetin and gallic acid equivalents, respectively), resulting in considerable antioxidant and antibacterial activity. The Bio-SeNPs (3-5 μg ml-1) in the current study resolved two serious issues facing the aquaculture industry, firstly, the population of pathogenic bacteria, especially Aeromonas hydrophilia, which was reduced by 28-45% in fish organs. Secondly, heavy metals (Cd and Hg) at two levels (1 and 2 μg ml-1) were reduced by 50-87% and 57-73% in response to Bio-SeNPs (3-5 μg ml-1). Thus, liver function parameters were reduced, and inner immunity was enhanced. The application of Bio-SeNPs (3-5 μg ml-1) improved fish gut health, growth, and behavior, resulting in fish higher weight gain by 36-52% and a 40% specific growth rate, compared to controls. Furthermore, feeding and arousal times increased by 20-22% and 28-53%, respectively, while aggression time decreased by 78% compared to the control by the same treatment. In conclusion, Bio-SeNPs can mitigate the accumulation of heavy metals and reduce the bacterial load in a concentration-dependent manner, either in the fish media or fish organs.
Collapse
Affiliation(s)
- Ahmed M. Saad
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Mahmoud Z. Sitohy
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Mohamad I. Sultan-Alolama
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates,Department of Health, Research and Innovation Center, Zayed Complex for Herbal Research and Traditional Medicine, Abu Dhabi, United Arab Emirates
| | - Khaled A. El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates,Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al Ain, United Arab Emirates,Harry Butler Institute, Murdoch University, Murdoch, WA, Australia,*Correspondence: Khaled A. El-Tarabily,
| | - Mohamed T. El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| |
Collapse
|
22
|
Ghaniem S, Nassef E, Zaineldin AI, Bakr A, Hegazi S. A Comparison of the Beneficial Effects of Inorganic, Organic, and Elemental Nano-selenium on Nile Tilapia: Growth, Immunity, Oxidative Status, Gut Morphology, and Immune Gene Expression. Biol Trace Elem Res 2022; 200:5226-5241. [PMID: 35028868 DOI: 10.1007/s12011-021-03075-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 12/19/2021] [Indexed: 12/29/2022]
Abstract
This study investigates the effects of different sources of selenium (inorganic (SSE), organic (OSE), and elemental nano-selenium (NSE)) on the performance of Nile tilapia (Oreochromis niloticus). In total, 204 Nile tilapia fingerlings were randomly divided into 4 equal groups fed 1 of 4 diets: a control (adding no selenium) and 3 diets as selenium sources (1 mg/kg diet), After a 65-day feeding trial, the growth performance parameters of Nile tilapia were significantly enhanced by dietary selenium supplementation (P < 0.05), with the highest values recorded in the OSE- and NSE-supplemented groups. The selenium-supplemented groups had the highest packed-cell volume, hemoglobin, and red blood cell levels, with the highest values seen in the NSE-supplemented group (P < 0.05). Innate immune-related enzymes and immunoglobulin levels were significantly enhanced with selenium supplementation (P < 0.05); the NSE group demonstrated the highest significant levels of these enzyme activities (P < 0.05). In all selenium-supplemented groups, malondialdehyde levels were significantly and equally reduced (P < 0.05) compared with levels in the control. Bactericidal activity was only enhanced in the NSE group (P < 0.05) compared with other treatments. The expression of TNF-α and IL-Iβ genes was significantly upregulated in selenium-supplemented groups, with the highest expression in the OSE and NSE groups (P < 0.05). These findings support the importance of incorporating selenium in the diet of Nile tilapia. Furthermore, elementary nano-selenium is more effective than inorganic or organic selenium supplementation at improving Nile tilapia growth performance and overall health.
Collapse
Affiliation(s)
- Sameh Ghaniem
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
| | - Eldsokey Nassef
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
| | - Amr I Zaineldin
- Agriculture Research Center, Animal Health Research Institute (AHRI-DOKI), Kafrelsheikh, Egypt.
| | - Abdulnasser Bakr
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
| | - Sayed Hegazi
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
| |
Collapse
|
23
|
Rathore SS, Hanumappa SM, Yusufzai SI, Suyani NK, Abdullah-Al-Mamun M, Nasren S, Sidiq MJ, Hanumanthappa SK, Kalyani R. Dietary Administration of Engineered Nano-selenium and Vitamin C Ameliorates Immune Response, Nutritional Physiology, Oxidative Stress, and Resistance Against Aeromonas hydrophila in Nile Tilapia (Oreochromis niloticus). Biol Trace Elem Res 2022:10.1007/s12011-022-03473-3. [PMID: 36374364 DOI: 10.1007/s12011-022-03473-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/04/2022] [Indexed: 11/16/2022]
Abstract
Functional trace elements and vitamins can boost immunity and anti-oxidative response in aquatic animals with effects on nutritional physiology. Nano-selenium (nano-Se) and vitamin C (VC) have been used as immunomodulators and antioxidants in fish feed. The present work was performed to determine the protective effects of diets supplemented with different combinations of nano-Se and VC on Nile tilapia (Oreochromis niloticus). Triplicate groups of 20 fish/tank (13.87 ± 0.10 g) were reared and fed with basal diet (control-T1) (without supplementation of nano-Se and VC) and three experimental diets as T2, T3, and T4 (100, 200, and 300 mg/kg VC respectively) with a pre-determined dose of nano-Se (1.0 mg/kg) for 90 days. Different immune indices, haemato-biochemical, and antioxidant activities were measured at the end of the first, second, and third months of feeding. The findings depicted that significantly (p < 0.05) higher growth was observed in T4. Red blood cells, white blood cells, and haemoglobin were found significantly (p < 0.05) higher in T4 for the third month. Serum biochemical-immunological indices (alkaline phosphatase, glucose, cholesterol, lysozyme, myeloperoxidase, total protein, albumin and globulin) followed the same trend. Furthermore, antioxidant assays such as catalase, superoxide dismutase, glutathione peroxidase, glutathione S-transferase, and malondialdehyde were significantly (p < 0.05) improved in T4 for the third month. Significantly (p < 0.05) least cumulative mortality against Aeromonas hydrophila was obtained in the fish-fed diets incorporated with nano-Se and VC. Therefore, dietary supplementation with nano-Se and VC is noteworthy for improving growth, serum biochemical status, immune response, antioxidant status, and disease resistance.
Collapse
Affiliation(s)
- Sanjay Singh Rathore
- Department of Aquaculture, College of Fisheries, Karnataka Veterinary, Animal and Fisheries Sciences University, Mangalore, 575002, Karnataka, India.
| | - Shivananda Murthy Hanumappa
- Department of Aquaculture, College of Fisheries, Karnataka Veterinary, Animal and Fisheries Sciences University, Mangalore, 575002, Karnataka, India
| | | | - Nitin Kanji Suyani
- Department of Fisheries Resources and Management, College of Fisheries, Karnataka Veterinary, Animal and Fisheries Sciences University, Mangalore, 575002, Karnataka, India
| | - Muhammad Abdullah-Al-Mamun
- Department of Aquaculture, College of Fisheries, Karnataka Veterinary, Animal and Fisheries Sciences University, Mangalore, 575002, Karnataka, India
- Department of Fish Health Management, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
| | - Shamima Nasren
- Department of Aquaculture, College of Fisheries, Karnataka Veterinary, Animal and Fisheries Sciences University, Mangalore, 575002, Karnataka, India
- Department of Fish Biology and Genetics, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
| | - Mohammad Junaid Sidiq
- Department of Aquaculture, College of Fisheries, Karnataka Veterinary, Animal and Fisheries Sciences University, Mangalore, 575002, Karnataka, India
| | - Srinivasa Kamsagara Hanumanthappa
- Department of Aquaculture, College of Fisheries, Karnataka Veterinary, Animal and Fisheries Sciences University, Mangalore, 575002, Karnataka, India
| | - Rakesh Kalyani
- Department of Aquaculture, College of Fisheries, Karnataka Veterinary, Animal and Fisheries Sciences University, Mangalore, 575002, Karnataka, India
| |
Collapse
|
24
|
Hong H, Liu Z, Li S, Wu D, Jiang L, Li P, Wu Z, Xu J, Jiang A, Zhang Y, Wei Z, Yang Z. Zinc oxide nanoparticles (ZnO-NPs) exhibit immune toxicity to crucian carp (Carassius carassius) by neutrophil extracellular traps (NETs) release and oxidative stress. FISH & SHELLFISH IMMUNOLOGY 2022; 129:22-29. [PMID: 35932984 DOI: 10.1016/j.fsi.2022.07.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 07/10/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Zinc oxide nanoparticles (ZnO-NPs) are widely used in sunscreens, cosmetics, paint, construction materials, and other products. ZnO-NPs released into the environment can harm aquatic creatures and pose a health risk to humans through the food chain. ZnO-NPs are toxic to fish, but there are few reports on its immunotoxicity on crucian carp (Carassius carassius). In this study, ZnO-NPs increased the biochemical indexes of the liver in serum, including aspartate aminotransferase (AST) and alanine aminotransferase (ALT). In histopathological observation, many inflammatory cells were filled in the liver's central vein stimulated by ZnO-NPs. Furthermore, ZnO-NPs could increase malondialdehyde (MDA) level, lessen superoxide dismutase (SOD) level, and elevate the level of neutrophil extracellular traps (NETs). However, deoxyribonuclease I (DNase I) alleviated all biochemical indexes and histopathological changes. Immunofluorescence in vitro confirmed that NETs were composed of citrullinated histone 3, myeloperoxidase, and neutrophil elastase. ZnO-NPs-increased NETs were dependent on reactive oxygen species (ROS) and nicotinamide adenine dinucleotide phosphate (NADPH)-oxidase and were also related to partial processes of glycolysis. Our study confirms that ZnO-NPS has a toxic effect on the liver of crucian carp. DNase I can prevent liver damage caused by ZnO-NPs, which provides a new insight into the immunotoxicity of ZnO-NPs to fish.
Collapse
Affiliation(s)
- Hongrong Hong
- College of Life Sciences and Engineering, Foshan University, Foshan, 528225, Guangdong Province, PR China
| | - Ziyi Liu
- College of Life Sciences and Engineering, Foshan University, Foshan, 528225, Guangdong Province, PR China; College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin province, PR China
| | - Shuangqiu Li
- College of Life Sciences and Engineering, Foshan University, Foshan, 528225, Guangdong Province, PR China; College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin province, PR China
| | - Di Wu
- College of Life Sciences and Engineering, Foshan University, Foshan, 528225, Guangdong Province, PR China; College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin province, PR China
| | - Liqiang Jiang
- College of Life Sciences and Engineering, Foshan University, Foshan, 528225, Guangdong Province, PR China
| | - Peixuan Li
- College of Life Sciences and Engineering, Foshan University, Foshan, 528225, Guangdong Province, PR China
| | - Zhikai Wu
- College of Life Sciences and Engineering, Foshan University, Foshan, 528225, Guangdong Province, PR China
| | - Jingnan Xu
- College of Life Sciences and Engineering, Foshan University, Foshan, 528225, Guangdong Province, PR China
| | - Aimin Jiang
- College of Life Sciences and Engineering, Foshan University, Foshan, 528225, Guangdong Province, PR China; College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin province, PR China
| | - Yong Zhang
- College of Life Sciences and Engineering, Foshan University, Foshan, 528225, Guangdong Province, PR China; College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin province, PR China
| | - Zhengkai Wei
- College of Life Sciences and Engineering, Foshan University, Foshan, 528225, Guangdong Province, PR China.
| | - Zhengtao Yang
- College of Life Sciences and Engineering, Foshan University, Foshan, 528225, Guangdong Province, PR China; College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin province, PR China.
| |
Collapse
|
25
|
Rojekar S, Abadi LF, Pai R, Prajapati MK, Kulkarni S, Vavia PR. Mannose-Anchored Nano-Selenium Loaded Nanostructured Lipid Carriers of Etravirine for Delivery to HIV Reservoirs. AAPS PharmSciTech 2022; 23:230. [PMID: 35978154 DOI: 10.1208/s12249-022-02377-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 07/25/2022] [Indexed: 11/30/2022] Open
Abstract
The present investigation aims to develop and explore mannosylated lipid-based carriers to deliver an anti-HIV drug, Etravirine (TMC) and Selenium nanoparticles (SeNPs), to the HIV reservoirs via the mannose receptor. The successful mannosylation was evaluated by the change in zeta potential and lectin binding assay using fluorescence microscopy. Electron microscopy and scattering studies were employed to study the structure and surface of the nanocarrier system. The presence of selenium at the core-shell of the nanocarrier system was confirmed by X-ray photoelectron spectroscopy and energy dispersive X-ray analysis. Further, the in vitro anti-HIV1 efficacy was assessed using HIV1 infected TZM-bl cells followed by in vivo biodistribution studies to evaluate distribution to various reservoirs of HIV. The results exhibited higher effectiveness and a significant increase in the therapeutic index as against the plain drug. The confocal microscopy and flow cytometry studies exhibited the efficient uptake of the coumarin-6 tagged respective formulations. The protective effect of nano selenium toward oxidative stress was evaluated in rats, demonstrating the potential of the lipidic nanoparticle-containing selenium in mitigating oxidative stress in all the major organs. The in vivo biodistribution assessment in rats showed a 12.44, 8.05 and 9.83-fold improvement in the brain, ovary, and lymph node biodistribution, respectively as compared with plain TMC. Delivery of such a combination via mannosylated nanostructured lipid carriers could be an efficient approach for delivering drugs to reservoirs of HIV while simultaneously reducing the oxidative stress induced by such long-term therapies by co-loading Nano-Selenium.
Collapse
Affiliation(s)
- Satish Rojekar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, 400 019, India
| | - Leila Fotooh Abadi
- Department of Virology, Indian Council of Medical Research, National AIDS Research Institute, Pune, 411 026, India
| | - Rohan Pai
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, 400 056, India
| | - Mahendra Kumar Prajapati
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, 400 019, India
| | - Smita Kulkarni
- Department of Virology, Indian Council of Medical Research, National AIDS Research Institute, Pune, 411 026, India
| | - Pradeep R Vavia
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, 400 019, India.
| |
Collapse
|
26
|
Li L, Liu Z, Quan J, Sun J, Lu J, Zhao G. Comprehensive proteomic analysis to elucidate the anti-heat stress effects of nano-selenium in rainbow trout (Oncorhynchus mykiss). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 241:113736. [PMID: 35689887 DOI: 10.1016/j.ecoenv.2022.113736] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/29/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
Because of the continuous intensification of global warming, extreme climate fluctuations, and high-density farming, cold-water rainbow trout (Oncorhynchus mykiss) are exposed to conditions of heat stress, which has severely impacted their survival and yield. Nano-selenium (nano-Se) shows higher biological activity and lower toxicity and has emerged as an ideal and ecological Se formulation. Herein rainbow trout were fed either a basal diet (control group) or basal diet plus 5 mg/kg nano-Se (treatment group). Samples were collected before (18 °C for 9 days; CG18, Se18) and after (24 °C for 8 h; CG24, Se24) heat stress. The DIA/SWATH approach was then applied to compare changes at the proteome level. We found 223 and 269 differentially abundant proteins in the CG18-CG24 and Se18-Se24 groups, respectively, which mainly included apoptosis-, heat stress-, and lipid-related proteins. In comparison with the CG18-CG24 group, the Se18-Se24 group showed higher abundance of molecular chaperone, such as Hsp70, Hsp90a.1, Hspa8, Hsp30, DNAJA4, Dnajb1, Bag2 and Ahsa1; on nano-Se supplementation, the heat stress-induced decline in the abundance of the selenoprotein MsrB2 was partially restored. Furthermore, nano-Se supplementation downregulated the abundance of lipid-related (CYP51, EBP, DHCR7, DHCR24, and APOB) and pro-apoptotic (caspase-8 and Bad) proteins. Protein-protein interaction analyses suggested that nano-Se inhibits apoptosis by upregulating the expression of Hsp70, Hsp90a.1, Hspa8, and Dnajb1; further, Hsp70/Hspa8 and MsrB2 appear to play a synergistic role in antioxidant defense under heat stress. Overall, our findings provide novel insights into nano-Se-mediated tolerance of heat stress, demonstrating that nano-Se exerts its anti-heat stress effects in rainbow trout by promoting protein repair, enhancing recovery of antioxidant enzyme activity, and alleviating lipid metabolism and apoptosis.
Collapse
Affiliation(s)
- Lanlan Li
- College of Animal Science & Technology, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Zhe Liu
- College of Animal Science & Technology, Gansu Agricultural University, Lanzhou 730070, PR China.
| | - Jinqiang Quan
- College of Animal Science & Technology, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Jun Sun
- College of Animal Science & Technology, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Junhao Lu
- College of Animal Science & Technology, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Guiyan Zhao
- College of Animal Science & Technology, Gansu Agricultural University, Lanzhou 730070, PR China
| |
Collapse
|
27
|
Li L, Liu Z, Quan J, Lu J, Zhao G, Sun J. Dietary nanoselenium supplementation for heat-stressed rainbow trout: effects on organizational structure, lipid changes, and biochemical parameters as well as heat-shock-protein- and selenoprotein-related gene expression. FISH PHYSIOLOGY AND BIOCHEMISTRY 2022; 48:707-722. [PMID: 35597860 DOI: 10.1007/s10695-022-01084-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
Nanoselenium (nano-Se) shows unique protective effects against environmental heat stress in rainbow trout as a selenium source additive and free radical scavenger. Accordingly, we investigated the effects of supplementation with different levels of nano-Se (0, 5, and 10 mg/kg) and before and after heat stress (24°C) for different treatment times on the dynamic changes of rainbow trout liver tissue structure, lipid changes, biochemical properties, and gene expression. The results showed that, under heat stress, the fish supplementation of 5 mg/kg nano-Se significantly increased liver glutathione peroxidase (GPx) activity and upregulated expression levels of HSP70b, HSP90a1, GPx1a, and Trx mRNAs, while liver alanine aminotransferase (ALT), aspartate aminotransferase (AST), superoxide dismutase (SOD), and malondialdehyde (MDA) levels as well as tissue structure damage and lipid accumulation were decreased. Combining the trends for the above indicators indicated that stress began to increase significantly at 8 h. It can be concluded that supplementation with 5 mg/kg nano-Se effectively alleviates stress damage in rainbow trout. Furthermore, stress at 24°C for 8 h can be thought of as a critical time point for the study of heat stress in rainbow trout, with significant changes in response but no serious damage. Thus, these results provide a reference for the addition of nano-Se to rainbow trout feed and provide theoretical and practical guidance for enhancing the resistance of rainbow trout to heat stress.
Collapse
Affiliation(s)
- Lanlan Li
- College of Animal Science & Technology, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Zhe Liu
- College of Animal Science & Technology, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China.
| | - Jinqiang Quan
- College of Animal Science & Technology, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Junhao Lu
- College of Animal Science & Technology, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Guiyan Zhao
- College of Animal Science & Technology, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Jun Sun
- College of Animal Science & Technology, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| |
Collapse
|
28
|
Selenium Nanoparticles Biosynthesized by Pantoea agglomerans and Their Effects on Cellular and Physiological Parameters in the Rainbow Trout Oncorhynchus mykiss. BIOLOGY 2022; 11:biology11030463. [PMID: 35336836 PMCID: PMC8945037 DOI: 10.3390/biology11030463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/31/2021] [Accepted: 01/04/2022] [Indexed: 11/21/2022]
Abstract
Simple Summary Nanoparticles (Nps), new biotechnological tools, possess unique physical and chemical properties and are increasingly being used in several fields, such as manufacture, medicine and veterinary medicine. In this work, we evaluated the effects of selenium (Se) nanoparticles stabilized with L-Cysteine (Se0Nps/L-Cys) as a nutritional supplement, to modulate immunological, oxidative status, and productive parameters in O. mykiss. The results demonstrated that Se0Nps/L-Cys showed less toxicity and higher antioxidant activity than Se0Nps and Na2SeO3. The Se0Nps/L-Cys, as a dietary supplement, had a significantly better effect on both immunological and physiological parameters, causing improvements at the productive level of O. mykiss when compared with Se0Nps and Na2SeO3. We concluded that Se0Nps sythetised by P. agglomerans, used as dietary supplement, is an environmentally friendly and promising alternative for nutritional supplementation for O. mykiss. Abstract The applications of nanoparticles (Nps) as food additives, health enhancers, and antimicrobials in animal production are increasing. The aim of this study was to evaluate the effect of selenium (Se) nanoparticles (Se0Nps) stabilized with L-cysteine (Se0Nps/L-Cys), as a nutritional supplement, on immunological, oxidative status, and productive parameters in O. mykiss. TEM and SEM-EDS showed the accumulation of spherical Se0Nps entirely composed by elemental selenium (Se0) as intracellular and extracellular deposits in Pantoea agglomerans UC-32 strain. The in vitro antioxidant capacity of Se0Nps/L-Cys was significant more efficient ROS scavengers than Se0Nps and Na2SeO3. We also evaluate the effect of Se0Nps/L-Cys on cell viability and oxidative stress in RTgill-W1, RTS-11, or T-PHKM Oncorhynchus mykiss cell lines. Se0Nps/L-Cys showed less toxic and high antioxidant activity than Se0Nps and Na2SeO3. Finally, the dietary Se0Nps/L-Cys had a significant better effect on both plasma lysozyme and respiratory burst activity (innate immune response), on tissular Gpx activity (oxidative status), and on well-being (productive parameter) of O. mykiss when it is compared to Se0Nps and Na2SeO3. Se0Nps/L-Cys is a promising alternative for nutritional supplement for O. mykiss with better performance than Na2SeO3 and Se0Nps, ease to implementation, and reduced environmental impact.
Collapse
|
29
|
Wangkahart E, Bruneel B, Chantiratikul A, de Jong M, Pakdeenarong N, Subramani PA. Optimum dietary sources and levels of selenium improve growth, antioxidant status, and disease resistance: re-evaluation in a farmed fish species, Nile tilapia (Oreochromis niloticus). FISH & SHELLFISH IMMUNOLOGY 2022; 121:172-182. [PMID: 34958921 DOI: 10.1016/j.fsi.2021.12.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 12/02/2021] [Accepted: 12/05/2021] [Indexed: 06/14/2023]
Abstract
The objective of this study was to investigate the effects of sources and levels of selenium (Se) on juvenile Nile tilapia (Oreochromis niloticus). A completely randomized design involving a 2 × 3 factorial arrangement of treatments was used in this study. Organic Se (L-selenomethionine; SeMet) and inorganic Se (sodium selenite; Na2SeO3) were each added to the basal diet at 1, 3 and 5 mg Se/kg. The basal diet, without Se supplementation, was used as a control. There was a total of 7 experimental diets, and each was fed in triplicate to groups of fish with an initial average body weight of 13.5 g for 8 weeks. The results showed that growth performance was significantly affected by dietary sources and levels of Se (P < 0.05). Fish fed diets supplemented with SeMet of 1.0 mg Se/kg resulted in higher growth performance compared to basal diet (P < 0.05), but Na2SeO3 supplementation did not affect growth. The feed conversion ratio was significantly decreased as dietary sources of SeMet (P < 0.05). Interestingly, fish fed diets supplemented with both forms of Se had lower cholesterol levels than those fed the basal diet (P < 0.05). Moreover, dietary sources and levels of Se significantly increased (P < 0.05) the antioxidant enzyme activities such as lysozyme, catalase, myeloperoxidase, superoxide dismutase and glutathione peroxidase. Dietary sources and levels of Se significantly could enhance the Nile tilapia resistance against Streptococcusagalactiae infection (P < 0.05). Overall, it can be concluded that the inclusion level of 1.0 mg Se/kg of organic Se in the diet is suggested to be the optimal level for the growth performance and immune response of Nile tilapia. Therefore, dietary supplementation with Se is useful for improving growth, antioxidant status, immune response, and disease resistance.
Collapse
Affiliation(s)
- Eakapol Wangkahart
- Laboratory of Fish Immunology and Nutrigenomics, Applied Animal and Aquatic Sciences Research Unit, Division of Fisheries, Faculty of Technology, Mahasarakham University, Khamriang Sub-District, Kantarawichai, Mahasarakham, 44150, Thailand.
| | - Brecht Bruneel
- Orffa Additives BV., Minervum 7032, 4817, ZL, Breda, the Netherlands
| | - Anut Chantiratikul
- Division of Animal Science, Faculty of Technology, Mahasarakham University, Kantarawichai, Mahasarakham, 44150, Thailand
| | - Matthijs de Jong
- Orffa Additives BV., Minervum 7032, 4817, ZL, Breda, the Netherlands
| | - Noppakun Pakdeenarong
- Department of Biology, Faculty of Science, Mahasarakham University, Maha Sarakham, 44150, Thailand
| | | |
Collapse
|
30
|
Li L, Liu Z, Quan J, Lu J, Zhao G, Sun J. Metabonomics analysis reveals the protective effect of nano‑selenium against heat stress of rainbow trout (Oncorhynchus mykiss). J Proteomics 2022; 259:104545. [DOI: 10.1016/j.jprot.2022.104545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 02/16/2022] [Accepted: 02/22/2022] [Indexed: 10/19/2022]
|
31
|
Sun J, Liu Z, Quan J, Li L, Zhao G, Lu J. Protective effects of different concentrations of selenium nanoparticles on rainbow trout (Oncorhynchus mykiss) primary hepatocytes under heat stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 230:113121. [PMID: 34968796 DOI: 10.1016/j.ecoenv.2021.113121] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/13/2021] [Accepted: 12/21/2021] [Indexed: 06/14/2023]
Abstract
Heat stress leads to altered expression of associated heat shock proteins (HSPs), which are critical molecular chaperones related to cellular function in living organisms. Selenium nanoparticles (SeNPs), a nanocomposite form of Se, have a protective effect against heat stress-induced cellular damage. In this study, primary rainbow trout hepatocytes were isolated to identify the protective function of SeNPs in rainbow trout hepatocytes. Experiments were divided into five groups and SeNPs were added at concentrations of 0, 2.0, 3.0, 5.0 and 8.0 μg/mL and incubated at 18 ℃ for 4, 8, 12, 24 and 48 h respectively. Hepatocyte viability, GSH-Px and SOD activity were enhanced and MDA content was reduced following the addition of SeNPs. Expression of GSH-P1 and genes related to HSPs (including HSP70a, HSP60, HSP90β, HSP10 and HSP47) were significantly increased and the optimal concentration of SeNPs for adding to hepatocytes was identified as 5.0 µg/mL. Adding 5.0 µg/mL SeNPs following heat stress (24 ℃) increased hepatocyte viability, GSH-Px and SOD activity, while MDA levels first decreased and then increased. Expression of GSH-P1 and genes related to HSPs (including HSP70a, HSP60, HSP90β, HSP10 and HSP47) were significantly higher than controls. In summary, SeNPs and slight heat stress synergistically enhanced the expression of GSH-P1 and HSPs and protected hepatocytes from heat stress damage, suggesting that SeNPs is a potential hepatocyte protective therapeutic agent.
Collapse
Affiliation(s)
- Jun Sun
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Zhe Liu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, PR China.
| | - Jinqiang Quan
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Lanlan Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Guiyan Zhao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Junhao Lu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, PR China
| |
Collapse
|
32
|
Dietary Agaricus blazei Spent Substrate Improves Disease Resistance of Nile Tilapia (Oreochromis niloticus) against Streptococcus agalactiae In Vivo. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2022. [DOI: 10.3390/jmse10010100] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
This study evaluated the effects of the feeding of spent mushroom substrate from Agaricus blazei on Nile tilapia (Oreochromis niloticus). The safety of 0–1000 μg/mL A. blazei spent substrate water extract (ABSSE) was demonstrated in the primary hepatic and splenic macrophages and the THK cell line (a cell line with characteristics of melanomacrophages) using a cytotoxicity assay. Here, 10 μg/mL of crude ABSSE promoted the phagocytic activity of macrophages and THK cells. Stimulating ABSSE-primed THK cells with lipopolysaccharides or peptidoglycan resulted in higher expression levels of four cytokine genes (e.g., interleukinz (IL)-1β, IL-12b, IL-8 and tumor necrosis factor α (TNFα)) and one cytokine gene (TNFα), respectively. An in vitro bacterial growth inhibition assay demonstrated that ABSSE could inhibit the growth of Streptococcus agalactiae. In the first feeding trial, Nile tilapia were fed with experimental feed containing 0, 1, or 5% of A. blazei spent substrate (ABSS) for seven and fourteen days followed by bacterial challenge assay. The best result was obtained when Nile tilapia were continuously fed for seven days on a diet containing 1% ABSS, with the survival rate being higher than in groups with 0% and 5% ABSS after challenge with S. agalactiae. In the second trial, fish were fed diets supplemented with 0% or 1% ABSS for seven days, and then all the groups were given the control feed for several days prior to bacterial challenge in order to investigate the duration of the protective effect provided by ABSS. The results showed that the protective effects were sustained at day 7 after the feed was switched. Overall, spent mushroom substrate from A. blazei is a cost-effective feed additive for Nile tilapia that protects fish from S. agalactiae infection.
Collapse
|
33
|
Ghazi S, Diab AM, Khalafalla MM, Mohamed RA. Synergistic Effects of Selenium and Zinc Oxide Nanoparticles on Growth Performance, Hemato-biochemical Profile, Immune and Oxidative Stress Responses, and Intestinal Morphometry of Nile Tilapia (Oreochromis niloticus). Biol Trace Elem Res 2022; 200:364-374. [PMID: 33569732 DOI: 10.1007/s12011-021-02631-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 02/07/2021] [Indexed: 12/25/2022]
Abstract
This study was aimed to investigate the synergistic effects of selenium (Se-NP) and zinc oxide (ZnO-NP) nanoparticles on growth performance, hemato-biochemical profile, immune and oxidative stress responses, and intestinal morphometry of Nile tilapia (Oreochromis niloticus). Monosex Nile tilapia (12.50 ± 1.03 g, N= 180) were randomly allocated into 4 groups in triplicates. Fish were fed diet supplemented with 0 Se-NP and Zn-NP (control group, CG), while fish in the other experimental groups were fed diet supplemented with 1 mg/kg diet Se-NP (Se-NP group), 10 mg/kg diet ZnO-NP (Zn-NP group), and a mixture of 1 and 10 mg/kg diet Se-NP and Zn-NP, respectively (Se/Zn-NP group) for 60 days. Fish fed diet containing Se-NP, Zn-NP, and Se/Zn-NP showed higher final body weight, weight gain, weight gain rate, specific growth rate, and lower feed conversion ratio with respect to CG (P<0.05) with the highest being in fish fed with Se/Zn-NP. Fish fed with Se/Zn-NP showed higher hemoglobin, red blood cells, and globulin (P<0.05). The highest phagocytic activity, phagocytic index, lysozyme activity, and immunoglobulin M was recorded in fish that received Se/Zn-NP followed by Se-NP, Zn-NP, and the lowest in CG (P<0.05). Fish that received diet supplemented with Se-NP, Zn-NP, and Se/Zn-NP significantly (P<0.05) increased superoxide dismutase and catalase while reduced malonaldehyde activity compared to CG. Intestinal morphometry revealed significantly (P<0.05) increased villi length and goblet cells number in fish fed with Se-NP and/or Zn-NP. In conclusion, dietary supplementation of Nile tilapia with Se-NP and Zn-NP induces synergistic effects that improve growth performance, blood health, and intestinal histomorphology.
Collapse
Affiliation(s)
- Sherien Ghazi
- Department of Aquaculture, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafr El-sheikh, Egypt
| | - Amany M Diab
- Department of Aquaculture, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafr El-sheikh, Egypt
| | - Malik M Khalafalla
- Department of Aquaculture, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafr El-sheikh, Egypt
| | - Radi A Mohamed
- Department of Aquaculture, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafr El-sheikh, Egypt.
| |
Collapse
|
34
|
Effects of selenium nanoparticles on growth performance, hematological, serum biochemical parameters, and antioxidant status in fish. Anim Feed Sci Technol 2021. [DOI: 10.1016/j.anifeedsci.2021.115099] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
35
|
Tseng Y, Dominguez D, Bravo J, Acosta F, Robaina L, Geraert PA, Kaushik S, Izquierdo M. Organic Selenium (OH-MetSe) Effect on Whole Body Fatty Acids and Mx Gene Expression against Viral Infection in Gilthead Seabream ( Sparus aurata) Juveniles. Animals (Basel) 2021; 11:2877. [PMID: 34679898 PMCID: PMC8532762 DOI: 10.3390/ani11102877] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 11/16/2022] Open
Abstract
The supplementation of fish diets with OH-SeMet reduces oxidative stress and modulates immune response against bacterial infection. However, despite the importance of essential polyunsaturated fatty acids in fish nutrition and their high risk of oxidation, the potential protective effect of OH-SeMet on these essential fatty acids has not been studied in detail. Moreover, while viral infection is very relevant in seabream production, no studies have focused the Se effects against viral infection. The aim of the present study was to assess the impact of dietary supplementation with OH-SeMet on gilthead seabream fatty acid profiles, growth performance and response against viral infection. Gilthead seabream juveniles (21.73 ± 0.27 g) were fed for 91 days with three experimental diets, a control diet without supplementation of Se (0.29 mg Se kg diet-1) and two diets supplemented with OH-SeMet (0.52 and 0.79 mg Se kg diet-1). A crowding stress test was performed at week 7 and an anti-viral response challenge were conducted at the end of the feeding trial. Selenium, proximate and fatty acid composition of diets and body tissues were analyzed. Although fish growth was not affected, elevation in dietary Se proportionally raised Se content in body tissues, increased lipid content in the whole body and promoted retention and synthesis of n-3 polyunsaturated fatty acids. Specifically, a net production of DHA was observed in those fish fed diets with a higher Se content. Additionally, both monounsaturated and saturated fatty acids were significantly reduced by the increase in dietary Se. Despite the elevation of dietary Se to 0.79 mg kg-1 not affecting basal cortisol levels, 2 h post-stress plasma cortisol levels were markedly increased. Finally, at 24 h post-stimulation, dietary OH-SeMet supplementation significantly increased the expression of the antiviral response myxovirus protein gene, showing, for the first time in gilthead seabream, the importance of dietary Se levels on antiviral defense.
Collapse
Affiliation(s)
- Yiyen Tseng
- Aquaculture Research Group (GIA), Institute of Sustainable Aquaculture and Marine Ecosystems (ECOAQUA), Universidad de Las Palmas de Gran Canaria, Crta. Taliarte s/n, 35214 Telde, Spain; (D.D.); (J.B.); (F.A.); (L.R.); (S.K.); (M.I.)
| | - David Dominguez
- Aquaculture Research Group (GIA), Institute of Sustainable Aquaculture and Marine Ecosystems (ECOAQUA), Universidad de Las Palmas de Gran Canaria, Crta. Taliarte s/n, 35214 Telde, Spain; (D.D.); (J.B.); (F.A.); (L.R.); (S.K.); (M.I.)
| | - Jimena Bravo
- Aquaculture Research Group (GIA), Institute of Sustainable Aquaculture and Marine Ecosystems (ECOAQUA), Universidad de Las Palmas de Gran Canaria, Crta. Taliarte s/n, 35214 Telde, Spain; (D.D.); (J.B.); (F.A.); (L.R.); (S.K.); (M.I.)
| | - Felix Acosta
- Aquaculture Research Group (GIA), Institute of Sustainable Aquaculture and Marine Ecosystems (ECOAQUA), Universidad de Las Palmas de Gran Canaria, Crta. Taliarte s/n, 35214 Telde, Spain; (D.D.); (J.B.); (F.A.); (L.R.); (S.K.); (M.I.)
| | - Lidia Robaina
- Aquaculture Research Group (GIA), Institute of Sustainable Aquaculture and Marine Ecosystems (ECOAQUA), Universidad de Las Palmas de Gran Canaria, Crta. Taliarte s/n, 35214 Telde, Spain; (D.D.); (J.B.); (F.A.); (L.R.); (S.K.); (M.I.)
| | - Pierre-André Geraert
- Adisseo France S.A.S., 10 Place du General de Gaulle, Antony, 92160 Paris, France;
| | - Sadasivam Kaushik
- Aquaculture Research Group (GIA), Institute of Sustainable Aquaculture and Marine Ecosystems (ECOAQUA), Universidad de Las Palmas de Gran Canaria, Crta. Taliarte s/n, 35214 Telde, Spain; (D.D.); (J.B.); (F.A.); (L.R.); (S.K.); (M.I.)
| | - Marisol Izquierdo
- Aquaculture Research Group (GIA), Institute of Sustainable Aquaculture and Marine Ecosystems (ECOAQUA), Universidad de Las Palmas de Gran Canaria, Crta. Taliarte s/n, 35214 Telde, Spain; (D.D.); (J.B.); (F.A.); (L.R.); (S.K.); (M.I.)
| |
Collapse
|
36
|
The protective role of vitamins (E + C) on Nile tilapia (Oreochromis niloticus) exposed to ZnO NPs and Zn ions: Bioaccumulation and proximate chemical composition. ANNALS OF ANIMAL SCIENCE 2021. [DOI: 10.2478/aoas-2021-0051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
The accumulation potency of zinc nanoparticles in Nile tilapia (Oreochromis niloticus) were previously studied but their impacts on proximate chemical composition in muscle tissue by describing the dose-dependent accumulation and the protective role of vitamins (E + C), have not been investigated. Therefore, this study was carried out to assess the protective role of vitamins (E + C) on Zn accumulation in muscle and gill tissues of O. niloticus exposed to three sublethal concentrations (1/8 LC50, 1/4 LC50, and 1/2 LC50) of zinc oxide nanoparticles (ZnO NPs) compared to zinc oxide bulk particles (ZnO BPs) as well as their effects on the induced chemical composition alterations for different experimental periods (7, 14, 21, and 28 day). The data displayed that fish exposed to the different sublethal concentrations of ZnO NPs or ZnO BPs have a significant increase (p<0.05) in Zn ions accumulation in muscle and gill tissues compared to control group but Zn was accumulated in gill tissue higher than muscle tissue at all exposure periods. Also, Zn accumulation was higher in fish tissues exposed to ZnO NPs than ZnO BPs. On the other hand, groups supplemented with vitamins (E + C) showed a significant decreasing (p<0.05) in accumulated Zn levels compared to groups without supplementation. The values of these supplemented groups returned to similar levels established in the control at low concentrations but still higher than control at the high concentrations. Furthermore, the results showed that moisture and ash content slightly increased while protein and fat decreased in fish exposed to ZnO NPs or ZnO BPs compared to control group. In conclusion, the findings supported that a combination of vitamins (E + C) reduced Zn accumulation and ameliorated chemical composition alterations in O.niloticus fish.
Collapse
|
37
|
Jiang F, Lin Y, Miao L, Hao J. Addition of Bamboo Charcoal to Selenium (Se)-Rich Feed Improves Growth and Antioxidant Capacity of Blunt Snout Bream ( Megalobrama amblycephala). Animals (Basel) 2021; 11:ani11092585. [PMID: 34573550 PMCID: PMC8465871 DOI: 10.3390/ani11092585] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/12/2021] [Accepted: 08/31/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary In our previous studies, we determined that juvenile blunt snout bream (Megalobrama amblycephala) require a selenium (Se) dietary intake of 0.958–0.959 mg/kg based on the quadratic fitting method. Nevertheless, growth rates were significantly affected, and the expression of anti-inflammatory factors was inhibited when the feed contained excessively high Se concentrations. Given its activity as an insoluble carrier, bamboo charcoal can be used as a dietary supplement in fish feed to absorb and slowly release excess nutrients. However, these hypotheses have not been evaluated in diets containing excess Se. The present study determined that 2–3 g/kg bamboo charcoal inclusion in Se-rich feed could improve the growth performance of blunt snout bream. Dietary bamboo charcoal supplementation mobilized the antioxidant system and inhibited the inflammatory response by activating Nrf2-Keap1 signaling while suppressing NF-κB signaling. Abstract The ability of bamboo charcoal to reduce the negative effects of high dietary selenium (Se) concentrations was assessed by feeding juvenile blunt snout bream (Megalobrama amblycephala) one of five Se-rich diets (1.5 mg/kg Se; 36% protein, 8.7% lipid) containing graded levels (0–4 g/kg) of bamboo charcoal powder for eight weeks. There were four tanks (350 L) of fish (initial weight 16.0 ± 0.5 g) for each treatment, and the fish were fed to satiation four times each day. At the end of the feeding trial, all of the fish from each tank were weighed to calculate the growth performance. Blood samples were firstly obtained to collect plasma for the biochemical indexes determination. Liver tissues were then collected to determine the antioxidant enzyme activities and gene expression. Dorsal muscles were also collected to determine the nutrient composition. The results show that when the bamboo charcoal content in the Se-rich feed ranged between 0 and 3 g/kg, the weight growth rate (WGR) and specific growth rate (SGR) values increased with the higher dietary bamboo charcoal content, and the maximum WGR and SGR values were achieved when the bamboo charcoal content in the Se-rich feed was 2–3 g/kg (p < 0.05). The Se content in muscle tissues decreased significantly with the increased bamboo charcoal content (p < 0.05) in the Se-rich feed, which ranged from 0 to 4 g/kg. When the bamboo charcoal content in the Se-rich feed was 2–3 g/kg, the levels of glucose (GLU) and albumin (ALB) in plasma reached a maximum (p < 0.05), whereas the level of alkaline phosphatase (ALP) reached a minimum (p < 0.05). Additionally, the activities of catalase (CAT), total superoxide dismutase (T-SOD), total antioxidative capacity (T-AOC), and glutathione peroxidase (GSH-Px) were significantly enhanced (p < 0.05) when the bamboo charcoal content was 3 g/kg. In contrast, the malondialdehyde (MDA) level increased sharply when the bamboo charcoal content in the Se-rich feed was 1 g/kg, compared to the control group and the groups supplemented with 2–3 g/kg bamboo charcoal (p < 0.05). Regarding mRNA-level gene expression, the results show that dietary supplementation with 0 to 3 g/kg of bamboo charcoal increased the expression of keap1 and nrf2, whereas nfkb expression was inhibited (p < 0.05). The mRNA expression of the antioxidant enzymes cat, gpx, and mn-sod was consistently enhanced in the group fed with the 3 g/kg bamboo charcoal diet (p < 0.05). The expression of the pro-inflammatory cytokines tnfα and tgfβ was inhibited in the groups supplemented with 2–3 g/kg bamboo charcoal, whereas the expression of anti-inflammatory cytokines (il10) increased in the bamboo charcoal supplementation groups compared to the control group (p < 0.05). Generally, supplementation with 2–3 g/kg of bamboo charcoal in Se-rich feed improved the growth performance, physiological status, and antioxidant enzyme activities of blunt snout bream. Moreover, bamboo charcoal supplementation in Se-rich diets stimulated the antioxidant system and inhibited the inflammatory response by activating Nrf2-Keap1 and suppressing NF-κB.
Collapse
Affiliation(s)
- Fang Jiang
- Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Centre (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi 214081, China; (F.J.); (Y.L.)
| | - Yan Lin
- Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Centre (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi 214081, China; (F.J.); (Y.L.)
| | - Linghong Miao
- Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Centre (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi 214081, China; (F.J.); (Y.L.)
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China;
- Correspondence:
| | - Jingyuan Hao
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China;
| |
Collapse
|
38
|
Rojekar S, Pai R, Abadi LF, Mahajan K, Prajapati MK, Kulkarni S, Vavia P. Dual loaded nanostructured lipid carrier of nano-selenium and Etravirine as a potential anti-HIV therapy. Int J Pharm 2021; 607:120986. [PMID: 34389421 DOI: 10.1016/j.ijpharm.2021.120986] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/13/2021] [Accepted: 08/06/2021] [Indexed: 01/08/2023]
Abstract
There is a dire need for dual-long-acting therapy that could simultaneously target different stages of the HIV life cycle and providing a dual-prolonged strategy for improved anti-HIV therapy while reducing oxidative stress associated with the prolonged treatment. Thus, in the present work, nanostructured lipid carriers of Etravirine were developed and modified with nano-selenium. The dual-loaded nanocarrier system was fabricated using the double emulsion solvent evaporation method, further screened and optimized using the design of experiments methodology. The spherical core-shell type of a system was confirmed with an electron microscope and small-angle neutron scattering, while XPS confirmed the presence of selenium at the core-shell of the nanocarrier. In vitro assessment against HIV1 (R5 and X4 strains) infected TZM-bl cells exhibited higher efficacy for the dual-loaded nanocarrier system than the plain drug, which could be attributed to the synergistic effect of the nano-selenium. Confocal microscopy and flow cytometry results exhibited enhanced uptake in TZM-bl cells compared to plain drug. A significant increase of GSH, SOD, CAT was observed in animals administered with the dual-loaded nanocarrier system containing nano-selenium, suggesting the protective potential of the lipidic nanoparticle containing the nano-selenium. Improvement in the in vivo pharmacokinetic parameters was also observed, along with a higher accumulation of the dual-loaded nanocarrier in remote HIV reservoir organs like the brain, ovary, and lymph node. The results suggest the potential of a dual-loaded formulation for synergistically targeting the HIV1 infection while simultaneously improving the intracellular anti-oxidant balance for improving a prolonged anti-HIV therapy.
Collapse
Affiliation(s)
- Satish Rojekar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai 400019, India
| | - Rohan Pai
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai 400056, India
| | - Leila Fotooh Abadi
- Department of Virology, Indian Council of Medical Research, National AIDS Research Institute, Pune 411026, India
| | - Ketan Mahajan
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai 400019, India
| | - Mahendra Kumar Prajapati
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai 400019, India
| | - Smita Kulkarni
- Department of Virology, Indian Council of Medical Research, National AIDS Research Institute, Pune 411026, India
| | - Pradeep Vavia
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai 400019, India.
| |
Collapse
|
39
|
El-Garawani IM, Khallaf EA, Alne-Na-Ei AA, Elgendy RG, Mersal GAM, El-Seedi HR. The role of ascorbic acid combined exposure on Imidacloprid-induced oxidative stress and genotoxicity in Nile tilapia. Sci Rep 2021; 11:14716. [PMID: 34282219 PMCID: PMC8289846 DOI: 10.1038/s41598-021-94020-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 06/18/2021] [Indexed: 02/06/2023] Open
Abstract
Imidacloprid (Imid), a systemic neonicotinoid insecticide, is broadly used worldwide. It is reported to contaminate aquatic systems. This study was proposed to evaluate oxidative stress and genotoxicity of Imid on Nile tilapia (Oreochromis niloticus) and the protective effect of ascorbic acid (Asc). O. niloticus juveniles (30.4 ± 9.3 g, 11.9 ± 1.3 cm) were divided into six groups (n = 10/replicate). For 21 days, two groups were exposed to sub-lethal concentrations of Imid (8.75 ppm, 1/20 of 72 h-LC50 and 17.5 ppm, 1/10 of 72 h-LC50); other two groups were exposed to Asc (50 ppm) in combination with Imid (8.75 and 17.5 ppm); one group was exposed to Asc (50 ppm) in addition to a group of unexposed fish which served as controls. Oxidative stress was assessed in the liver where the level of enzymatic activities including superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX) in addition to mRNA transcripts and, Lipid peroxidation (LPO) were evaluated. Moreover, mitotic index (MI) and comet assay were performed, in addition, the erythrocytic micronucleus (MN), and nuclear abnormalities (NA) were observed to assess genotoxicity in fish. Imid exposure induced significant (p ˂ 0.05) changes in the antioxidant profile of the juveniles' liver by increasing the activities and gene expression of SOD, CAT and GPX as well as elevating the levels of LPO. DNA strand breaks in gill cells, erythrocytes and hepatocytes along with erythrocytic MN and NA were also significantly elevated in Imid-exposed groups. MI showed a significant (p ˂ 0.05) decrease associated with Imid exposure. Asc administration induced a significant amelioration towards the Imid toxicity (8.75 and 17.5 ppm). A significant protective potency against the genotoxic effects of Imid was evidenced in Asc co-treated groups. Collectively, results highlight the importance of Asc as a protective agent against Imid-induced oxidative stress and genotoxicity in O. niloticus juveniles.
Collapse
Affiliation(s)
- Islam M El-Garawani
- Zoology Department, Faculty of Science, Menoufia University, Shebin El-Kom 32512, Menoufia, Egypt.
| | - Elsayed A Khallaf
- Zoology Department, Faculty of Science, Menoufia University, Shebin El-Kom 32512, Menoufia, Egypt
| | - Alaa A Alne-Na-Ei
- Zoology Department, Faculty of Science, Menoufia University, Shebin El-Kom 32512, Menoufia, Egypt
| | - Rehab G Elgendy
- Zoology Department, Faculty of Science, Menoufia University, Shebin El-Kom 32512, Menoufia, Egypt
| | - Gaber A M Mersal
- Chemistry Department, College of Science, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Hesham R El-Seedi
- Pharmacognosy Group, Department of Pharmaceutical Biosciences, BMC, Uppsala University, Box 591, 751 24, Uppsala, Sweden.
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, 212013, China.
- Chemistry Department, Faculty of Science, Menoufia University, Shebin El-Kom 32512, Menoufia, Egypt.
| |
Collapse
|
40
|
Khoei AJ. Evaluation of potential immunotoxic effects of iron oxide nanoparticles (IONPs) on antioxidant capacity, immune responses and tissue bioaccumulation in common carp (Cyprinus carpio). Comp Biochem Physiol C Toxicol Pharmacol 2021; 244:109005. [PMID: 33610820 DOI: 10.1016/j.cbpc.2021.109005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/30/2021] [Accepted: 02/11/2021] [Indexed: 12/20/2022]
Abstract
Nanoparticles can be toxic and put human and animals' life at risk. The present work was carried out to evaluate the possible immunosuppressive effects of water borne iron oxide nanoparticles (IONPs) and the FeCl3 on immune components of common carp (Cyprinus carpio). Fish were exposed to a series of chronic levels of 25%, 50%, and 75% of IONPs LC50 96 h concentration (referred to as control, NP1, NP2, and NP3 respectively) or FeCl3 (same concentrations as IONPs referred to as S1, S2, and S3 respectively) for 21 days. Results revealed alterations in blood parameters, where IONPs significantly decreased number of white blood cells at all concentrations. Glucose and cortisol increased in all exposed fish after 21 days, suggesting activation of the maintenance mechanism cascade against a chronic stressor. IONPs or FeCl3 significantly accumulated in liver tissue of exposed fish. Immune responses were remarkably decreased in serum and skin mucus in response to IONPs or FeCl3. These components were at lowest levels in fish exposed to the highest concentrations of IONPs and FeCl3. The findings of the present study suggested that IONPs is accumulated in fish liver and intestine, where they may exhibit immunotoxicity.
Collapse
Affiliation(s)
- Arash Javanshir Khoei
- Department of Fisheries, Faculty of Natural Resources, University of Tehran, Karaj, Iran.
| |
Collapse
|
41
|
Hashem MA, Mahmoud EA, Abd-Allah NA. Hypolipidemic activity of an ethanolic extract of quinoa seeds in Triton X-100-induced hyperlipidemic rats. COMPARATIVE CLINICAL PATHOLOGY 2021; 30:473-482. [DOI: 10.1007/s00580-021-03241-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 04/14/2021] [Indexed: 09/02/2023]
|
42
|
Araujo JM, Fortes-Silva R, Pola CC, Yamamoto FY, Gatlin DM, Gomes CL. Delivery of selenium using chitosan nanoparticles: Synthesis, characterization, and antioxidant and growth effects in Nile tilapia (Orechromis niloticus). PLoS One 2021; 16:e0251786. [PMID: 34003829 PMCID: PMC8130939 DOI: 10.1371/journal.pone.0251786] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 05/03/2021] [Indexed: 11/19/2022] Open
Abstract
This study aimed to elucidate the effects of selenium-loaded chitosan nanoparticles used as a dietary supplement on Nile tilapia (Oreochromis niloticus) antioxidant and growth responses. First, chitosan-based nanoparticles containing selenium (Se) were synthesized using the ionotropic gelation method and their physicochemical characteristics, controlled release profile, and antioxidant activity properties were investigated. Thereafter, the effects on glutathione peroxidase and antioxidant activities (by radical scavenging activity), growth, and whole-body composition of Nile tilapia were evaluated when they were fed with Se-loaded chitosan nanoparticles and compared with other selenium dietary supplements. Se-loaded chitosan nanoparticles showed high entrapment efficiency (87%), spherical shape, smooth surface, and broad size distribution. The controlled release of Se consisted of an initial burst followed by a gradual release over 48 h. Se-loaded nanoparticles presented significantly higher antioxidant activity compared to free Se. A 60-day feeding trial was conducted to compare the effects of supplementing different dietary Se sources, including selenomethionine (as organic source), sodium selenite (as inorganic source), and Se-loaded chitosan nanoparticles (Se-Nano and Se-Nano x1.5) on antioxidant and growth responses of Nile tilapia. A basal diet without Se supplementation was used as the control. The dietary supplementations with different Se sources (free and encapsulated selenium) lead to significant improvements in final weight and feed efficiency of Nile tilapia fingerlings. However, dietary treatments did not affect whole-body protein and lipid content. Diets containing Se-Nano and Se-Nano x1.5 were more effective than sodium selenite and selenomethionine in preventing oxidative stress and improving antioxidant activity in Nile tilapia. Overall, Se-loaded nanoparticles presented a great potential as an efficient source for delivering dietary Se to Nile tilapia, directly affecting the growth performance, feed efficiency, oxidative stress, and antioxidant activity of this species.
Collapse
Affiliation(s)
- Juliana M. Araujo
- Department of Animal Science and Veterinary Medicine, Federal University of Bahia, Salvador, Bahia, Brazil
| | - Rodrigo Fortes-Silva
- Department of Animal Science and Veterinary Medicine, Federal University of Bahia, Salvador, Bahia, Brazil
- Laboratory of Feeding Behavior and Fish Nutrition, Center of Agricultural, Environmental and Biological Sciences, Federal University of Bahia, Cruz das Almas, Bahia, Brazil
| | - Cícero C. Pola
- Department of Mechanical Engineering, Iowa State University, Ames, Iowa, United States of America
| | - Fernando Y. Yamamoto
- Department of Wildlife and Fisheries Sciences, Texas A&M University, Texas, United States of America
| | - Delbert M. Gatlin
- Department of Wildlife and Fisheries Sciences, Texas A&M University, Texas, United States of America
| | - Carmen L. Gomes
- Department of Mechanical Engineering, Iowa State University, Ames, Iowa, United States of America
| |
Collapse
|
43
|
Moustafa EM, Abd El-Kader MF, Hassan MM, Fath El-Bab AF, Omar A, Farrag F, Gewida AG, Abd-Elghany MF, Shukry M, Alwakeel RA. Trial for use nanoselenium particle with different dietary regime in Oreochromis niloticus and Mugil cephalus polyculture ponds: Growth efficiency, haematological, antioxidant, immunity and transcriptional analysis. Vet Med Sci 2021; 7:1575-1586. [PMID: 33955189 PMCID: PMC8464258 DOI: 10.1002/vms3.490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 02/24/2021] [Accepted: 03/24/2021] [Indexed: 12/02/2022] Open
Abstract
Background Fish farming is one of the most productive economies in the world. One of the essential goals in fish production is to minimize processing costs while maintaining and increasing the vital functions, weight and immunity of fish. Objective We conducted this study to explore nanoselenium (Nano‐Se) particles in various feeding schemes. Material and Method Nano‐Se particles incorporated in the basal diet at (0.5 mg/kg diet), and the fish was divided into six groups after adaptation as the follows: The first group was feed daily with a diet containing Nano‐Se (0.5 mg/kg diet); the second group was exposed to a feeding programme in which it has day feeding followed by day of starvation with a diet containing Nano‐Se (0.5 mg/kg diet); the third group was day feeding followed by 2 days of starvation; the fourth group served as a negative control group in which this group was continuous feeding with a basal diet without Nano‐Se; the fifth group was day feeding with the basal diet followed by a day of starvation; and the sixth group was day feeding with basal diet followed by 2 days of starvation. Result Our result revealed that Group 2 showed significant improvement in haematological parameters, red blood cells and haemoglobin with a substantial increase in total protein (p < 0.05) as well as lysosomal and phagocytic activity with considerable upregulation of growth hormone and insulin growth factor 1 in addition to markedly increase in the pro‐inflammatory cytokines. Finally, this study offers the first‐time dietary regime with Nano‐Se supplementation that saves the feeding cost and increases fish welfare and growth.
Collapse
Affiliation(s)
- Eman M Moustafa
- Department of Fish Diseases and Management, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr el-Sheikh, Egypt
| | - Marwa F Abd El-Kader
- Fish Diseases and Management, Sakha Aquaculture Research Unit, Central Lab for Aquaculture Research, A.R.C., Cairo, Egypt
| | - Montaser M Hassan
- Department of Biology, College of Science, Taif University, Taif, Saudi Arabia
| | - Ahmed F Fath El-Bab
- Animal Production, Faculty of Agriculture, Damietta University, Damietta, Egypt
| | - Amira Omar
- Department of Fish Diseases and Management, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr el-Sheikh, Egypt
| | - Foad Farrag
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Ahmed G Gewida
- Department of Animal Production, Faculty of Agriculture, Al-Azhar University, Cairo, Egypt
| | - Mohamed F Abd-Elghany
- Department of Animal Production, Faculty of Agriculture, Al-Azhar University, Cairo, Egypt
| | - Mustafa Shukry
- Department of Physiology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Rasha A Alwakeel
- Department of Physiology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| |
Collapse
|
44
|
Ren L, Wu Z, Ma Y, Jian W, Xiong H, Zhou L. Preparation and growth-promoting effect of selenium nanoparticles capped by polysaccharide-protein complexes on tilapia. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:476-485. [PMID: 32643806 DOI: 10.1002/jsfa.10656] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 06/29/2020] [Accepted: 07/09/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Compared with traditional inorganic and organic selenium compounds, nano-selenium exhibited higher biological safety and nutritional potency. However, the biological efficacy of nano-selenium has not been comprehensively and accurately evaluated due to its dispersion instability. RESULTS In this study, novel selenium nanoparticles (SeNPs) with high dispersion stability were successfully prepared using a polysaccharide-protein complex (PSP) as the capping agent. This was isolated from abalone viscera. The average particle size and zeta potential of polysaccharide-protein complex selenium nanoparticles (PSP-SeNPs) were 63.33 nm, and -37.1 mV, respectively. The SeNPs were firmly capped by PSP through SeO and SeN bonds, as demonstrated by X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, and transmission electron microscopy. Due to this capping, the dispersion of PSP-SeNPs remained stable for 12 months at 4 °C, as evidenced by visual inspection and multiple light scattering. Furthermore, PSP-SeNPs imparted an excellent growth-promoting effect on tilapia. The FBW, WGR, and SGR values of tilapia juveniles fed with PSP-SeNPs supplemented diets (0.5-4.5 mg/kg) were significantly higher than those of the control (P < 0.05). A weight gain rate of 4.1%-43.4% and specific growth rate of 0.15%-1.74% were obtained in tilapia during 45-day feeding. CONCLUSIONS The use of marine viscera polysaccharides is a promising, green method for the synthesis of selenium nanoparticles. There are good opportunities for the application of the synthesized PSP-SeNPs in the life sciences. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Lirong Ren
- Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Fisheries College of Jimei University, Xiamen, China
- Institute of Nutrition and Food Safety, Xiamen Medical College, Xiamen, China
| | - Zhencong Wu
- Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Fisheries College of Jimei University, Xiamen, China
| | - Ying Ma
- Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Fisheries College of Jimei University, Xiamen, China
| | - Wenjie Jian
- Institute of Nutrition and Food Safety, Xiamen Medical College, Xiamen, China
| | - Hejian Xiong
- College of Food and Biological Engineering, Jimei University, Xiamen, China
| | - Lina Zhou
- Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Fisheries College of Jimei University, Xiamen, China
| |
Collapse
|
45
|
Influence of Dietary Garlic ( Allium sativum) and/or Ascorbic Acid on Performance, Feed Utilization, Body Composition and Hemato-Biochemical Parameters of Juvenile Asian Sea Bass ( Lates calcarifer). Animals (Basel) 2020; 10:ani10122396. [PMID: 33333762 PMCID: PMC7765223 DOI: 10.3390/ani10122396] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 11/27/2020] [Accepted: 12/04/2020] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Ascorbic acid and garlic have been used in several studies as enhancers or promoters of growth performance and health conditions in mammalian species. However, few studies have been performed in fish. In this regard, this study aimed to evaluate the effects of garlic and/or ascorbic acid on growth performance, feed utilization, chemical body composition, and hemato-biochemical parameters of juvenile Asian sea bass. The results demonstrated that dietary supplementation of garlic alone (40 g/kg diet) was highly effective in improving the studied parameters in comparison with that of ascorbic acid alone or a mixture of garlic (20 g/kg diet) and ascorbic acid (0.75 g/kg diet). Abstract The current study investigated effects of garlic (Allium sativum) and/or ascorbic acid on growth performance, feed utilization, biochemical body composition, and hemato-biochemical parameters of juvenile Asian sea bass. A total of 600 fish (43.14 ± 0.23 g body weight) were divided into four groups. Fish in the first group were fed basal diet and served as a control group. Fish in groups 2, 3 and 4 were fed a basal diet mixed with garlic (40 g/kg diet), ascorbic acid (1.5 g/kg diet), or garlic (20 g/kg diet)/ascorbic acid (0.75 g/kg diet) mixture, respectively, for 12 weeks. A significant (p < 0.05) increase was observed in growth performance, feed utilization, and chemical body composition in fish fed garlic alone in comparison with the control and other treated groups. All hematological indices, biochemical parameters, and survival rate were not changed significantly (p > 0.05) in all groups throughout the experimental period when compared with the control. Total cholesterol and feed conversion ratio were significantly (p < 0.05) decreased in fish fed garlic alone in comparison to the control and other treated groups. Conclusively, dietary supplementation of garlic alone (40 g/kg diet) was highly effective in improving most of the studied parameters in comparison with that of ascorbic acid alone or a mixture of garlic (20 g/kg diet) and ascorbic acid (0.75 g/kg diet).
Collapse
|
46
|
Al-Deriny SH, Dawood MAO, Elbialy ZI, El-Tras WF, Mohamed RA. Selenium Nanoparticles and Spirulina Alleviate Growth Performance, Hemato-Biochemical, Immune-Related Genes, and Heat Shock Protein in Nile Tilapia (Oreochromis niloticus). Biol Trace Elem Res 2020; 198:661-668. [PMID: 32157633 DOI: 10.1007/s12011-020-02096-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 02/24/2020] [Indexed: 12/13/2022]
Abstract
The present investigation aimed to evaluate the influence of selenium nanoparticles (Se-NPs) or/and spirulina (SP) on the growth, immunity, and oxidation resistance of Nile tilapia. Four groups of fish fed diets with Se-NPs or/and SP at 0 g (control), 1 g SP/kg diet (SP), 1 mg Se-NPs/kg diet (Se-NPs), and 1 g SP + 1 mg Se-NPs/kg diet (SP/Se-NPs) for 60 days. Fish fed Se-NPs or/and SP displayed significantly improved weight gain (WG) and decreased feed conversion ratio (P < 0.05). The highest WG has observed in fish fed both Se-NPs and SP, while the specific growth rate was improved by feeding Se-NPs only or both Se-NPs and SP (P < 0.05). Blood albumin was increased significantly with Se-NPs with regard to the control (P < 0.05), while there were no significant differences between fish fed Se-NPs or/and SP. Blood total protein also was improved by feeding Se-NPs only or both Se-NPs and SP (P < 0.05). Further, blood immunoglobulin M was increased by feeding both Se-NPs and SP (P < 0.05), while the differences were insignificantly differing with fish fed only Se-NPs (P > 0.05). The transcription of liver superoxide dismutase (SOD) and tumor necrosis factor-alpha (TNF-α) genes was upregulated significantly by Se-NPs or/and SP (P < 0.05). Interestingly, TNF-α was significantly upregulated by SP when compared to those fed Se-NPs only or both Se-NPs and SP. However, heat shock protein 70 (HSP70) gene transcription was downregulated by Se-NPs or/and SP (P < 0.05). Based on the measured parameters, the mixture of both Se-NPs and SP is highly recommended for the welfare of Nile tilapia.
Collapse
Affiliation(s)
- Shady H Al-Deriny
- Department of Aquaculture, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafr El Sheikh, Egypt
| | - Mahmoud A O Dawood
- Department of Animal Production, Faculty of Agriculture, Kafrelsheikh University, Kafr El Sheikh, 33516, Egypt.
| | - Zizy I Elbialy
- Department of Fish Processing and Biotechnology, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafr El Sheikh, Egypt
| | - Wael F El-Tras
- Department of Aquaculture, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafr El Sheikh, Egypt
| | - Radi A Mohamed
- Department of Aquaculture, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafr El Sheikh, Egypt
| |
Collapse
|
47
|
Ma Y, Hao L, Liang Z, Ma J, Ke H, Kang H, Yang H, Wu J, Feng G, Liu Z. Characterization of novel antigenic vaccine candidates for nile tilapia (Oreochromis niloticus) against Streptococcus agalactiae infection. FISH & SHELLFISH IMMUNOLOGY 2020; 105:405-414. [PMID: 32712231 DOI: 10.1016/j.fsi.2020.07.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 06/23/2020] [Accepted: 07/13/2020] [Indexed: 06/11/2023]
Abstract
Streptococcus agalactiae is one of the important pathogens responsible for high mortality and economic losses of the tilapia industry worldwide. Based on ten serovars of S. agalactiae infection, subunit vaccine with conserved antigens is promising strategy corresponding stimulated long-term immunity and provides protection for animals against different serotypes of S. agalactiae. In the present study, eight proteins (AP, AL, LivK, ESAT6, essA, essB, essC and esaA) were selected from the S. agalactiae serotype Ia genome as immunogenic antigens with bioinformation and immune experiment assays. These recombinant proteins were successfully obtained through expression in Escherichia coli and the immunogenicity was assessed in tilapia challenge model. The results showed that the recombinant proteins caused high-level-specific antibodies production and high lysozyme activities, suggesting that the recombinant proteins induced specific humoral immune response and innate immune response of tilapia. The signficant increase were observed in the cytokines levels of TNF-α, IL-1β, IFN-γ, cc1, cc2 and immune-related genes levels of CD8α and MHC factors in the spleen and head kidney tissues, suggesting that the recombinant proteins induced immune response of tilapia through cytokines signal pathway and activated high cytotoxic T-lymphocyte (CTL) activity of tilapia. Furthermore, vaccinated tilapia conferred high levels of protection against challenge with a lethal dose of highly virulent serovar Ⅰa (highest RPS was 91.60% in AL and essC protein groups). Our results indicated that the eight recombinant proteins induced high level of immune responses and offered protection against S. agalactiae infection, could be potential subunit vaccine candidates.
Collapse
Affiliation(s)
- Yanping Ma
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences; Key Laboratory of Livestock Disease Prevention of Guangdong Province; Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, PRC, Guangzhou, China
| | - Le Hao
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences; Key Laboratory of Livestock Disease Prevention of Guangdong Province; Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, PRC, Guangzhou, China
| | - Zhiling Liang
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences; Key Laboratory of Livestock Disease Prevention of Guangdong Province; Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, PRC, Guangzhou, China
| | - Jiangyao Ma
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences; Key Laboratory of Livestock Disease Prevention of Guangdong Province; Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, PRC, Guangzhou, China
| | - Hao Ke
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences; Key Laboratory of Livestock Disease Prevention of Guangdong Province; Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, PRC, Guangzhou, China
| | - Huahua Kang
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences; Key Laboratory of Livestock Disease Prevention of Guangdong Province; Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, PRC, Guangzhou, China; Zhaoqing Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Zhaoqing, China
| | - Hongwei Yang
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Jing Wu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Guoqing Feng
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences; Key Laboratory of Livestock Disease Prevention of Guangdong Province; Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, PRC, Guangzhou, China
| | - Zhenxing Liu
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences; Key Laboratory of Livestock Disease Prevention of Guangdong Province; Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, PRC, Guangzhou, China.
| |
Collapse
|
48
|
Zhang C, Chi C, Liu J, Ye M, Zheng X, Zhang D, Liu W. Protective effects of dietary arginine against oxidative damage and hepatopancreas immune responses induced by T-2 toxin in Chinese mitten crab (Eriocheir sinensis). FISH & SHELLFISH IMMUNOLOGY 2020; 104:447-456. [PMID: 32553565 DOI: 10.1016/j.fsi.2020.06.034] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 06/05/2020] [Accepted: 06/13/2020] [Indexed: 06/11/2023]
Abstract
T-2 toxin is a secondary metabolite produced by Fusarium spp. that is a major cereal and animal feed contaminant. T-2 toxin has numerous adverse effects on animals, including hepatotoxicity. Arginine (Arg) is closely associated with the regulation of immune responses and antioxidant activity in tissues. The objective of the present study was to evaluate the protective effects of dietary Arg against oxidative damage and immune responses of the hepatopancreas induced by T-2 toxin in Chinese mitten crab. According to the results, 3.17% Arg in the diet decreased alanine aminotransferase, aspartate aminotransferase, and alkaline phosphatase activity in the haemolymph significantly, when compared with the levels of activity in the T-2 toxin group. Arg supplementation also increased superoxide dismutase and glutathione peroxidase activity, while decreasing malondialdehyde concentrations in the hepatopancreas, when compared with the levels in the T-2 toxin group. In addition, 3.17% Arg in the diet increased acid phosphatase and alkaline phosphatase activity in the hepatopancreas, as well as albumin concentrations in the haemolymph, when compared with the T-2 toxin group. Dietary Arg also regulated the expression of antioxidant enzyme-related genes (mitochondrial manganese superoxide dismutase, cytosolic manganese superoxide dismutase, and catalase) and immune related genes (prophenoloxidase, NF-κB-like transcription factor Relish, and lipopolysaccharide-induced TNF-α factor) to alleviate the damage associated with the T-2 toxin. Furthermore, Arg ameliorated damage to the hepatopancreas microstructure in the crabs. The results of the present study indicate that dietary Arg could enhance the antioxidant and immune capacity of Chinese mitten crab against oxidative damage and immune injury to the hepatopancreas induced by T-2 toxin.
Collapse
Affiliation(s)
- Caiyan Zhang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, National Experimental Teaching Center for Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Cheng Chi
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, National Experimental Teaching Center for Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jiadai Liu
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, National Experimental Teaching Center for Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Mingwen Ye
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, National Experimental Teaching Center for Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaochuan Zheng
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, National Experimental Teaching Center for Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Dingdong Zhang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, National Experimental Teaching Center for Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wenbin Liu
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, National Experimental Teaching Center for Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
49
|
Mahmoud EA, Essawi WM, Neamat-Allah ANF. Influence of uterine torsion in water buffaloes (Bubalus bubalis) with insights into the hematological and biochemical prognostic values regarding to manual correction. Trop Anim Health Prod 2020; 52:3165-3171. [PMID: 32677006 DOI: 10.1007/s11250-020-02342-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 07/02/2020] [Indexed: 11/29/2022]
Abstract
Bovine uterine torsion refers to the rotation of the gravid uterus around its longitudinal axis. It is the dominant cause of dystocia in buffaloes. A total of two hundred and seventeen dystocia's Egyptian buffaloes were examined, and another twenty were apparently normal at the full term (healthy pregnant group). From the dystocia's buffaloes, twenty-three percentage (n = 50) was uterine torsion after gynecology inspection at presentation (Ut group) and 5 days after the manual correction (Utc group). The buffaloes with uterine torsion exhibited loss of appetite, constipation, colic, and straining. The incidence of torsion was mostly at first parity that accounting for 50% of cases. Regarding to the pregnancy stage, torsion mostly occurred at full term, where it primarily occurred in buffaloes at 3 years of age. Right-sided torsion ensued in 90% of all cases. The survival rate of the pregnant buffaloes was 90% (45 buffaloes), and 10% (5 buffaloes) was directed to the culling. Regarding to the fetal survival outcome, 30% of fetuses was survived where the other 70% was died. The hematological results denoted leucocytosis in Ut and Utc groups that attributed to neutrophilia, monocytosis, and eosinophilia. Biochemical assessments were denoted an augments in the levels of serum AST, LDH, CPK, creatinine, blood urea nitrogen, progesterone, cortisol, MDA, NO, TAC, blood lactate (bLac), TNF-α, and IL-6. Where there were a non significant fluctuations in the ALT, GGT, calcium, and phosphorus levels in the torsion cases. The significant declines in 17-β-oestradiol, total proteins, albumin, magnesium, and GSH levels in the dams suffering from Ut were observed. The robust elevations in AST (156 ± 3.47) and bLac (16.12 ± 0.18) with severe hypomagnesaemia (2.69 ± 0.15) were evident in 10% of the torsion cases that directed to the culling. This can conclude that robust elevations in AST and bLac with severe hypomagnesaemia are factors denoting a poor prognosis for uterine torsion in the buffaloes.
Collapse
Affiliation(s)
- Essam A Mahmoud
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Zagazig University, 1 Alzeraa Street, Zagazig City, Sharkia Province, 44511, Egypt
| | - Walaa M Essawi
- Department of Theriogenology, Faculty of Veterinary Medicine, Aswan University, Aswan, Egypt
| | - Ahmed N F Neamat-Allah
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Zagazig University, 1 Alzeraa Street, Zagazig City, Sharkia Province, 44511, Egypt.
| |
Collapse
|
50
|
Qiang J, Duan XJ, Zhu CK, He J, Bao JW, Tao YF, Zhu HJ, Xu P. Selenium-Cultured Potamogeton maackianus in the Diet Can Alleviate Oxidative Stress and Immune Suppression in Chinese Mitten Crab ( Eriocheir sinensis) Under Copper Exposure. Front Physiol 2020; 11:713. [PMID: 32655418 PMCID: PMC7325926 DOI: 10.3389/fphys.2020.00713] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 05/29/2020] [Indexed: 11/14/2022] Open
Abstract
Selenium (Se) is an essential trace element for aquatic animals. The aquatic plant Potamogeton maackianus is an important natural food of Chinese mitten crab (Eriocheir sinensis). The aim of this study was to determine whether the antioxidant and immune responses of Chinese mitten crab are affected by including Se-cultured P. maackianus in the diet. Three groups of P. maackianus were cultured at levels of 0.02 mg/kg Se, 8.83 mg/kg Se, and 16.92 mg/kg Se, and the plants in these groups were used in experimental diets fed to crabs (dietary Se content of 0.05, 0.43, and 0.82 mg/kg, respectively). Compared with crabs in the 0.05 mg/kg group, those in the 0.82 mg/kg group showed significantly increased specific growth rate, protease and lipase activities, triglyceride and cholesterol contents, and Se content in the hepatopancreas and muscle (P < 0.05); increased activities of glutathione peroxidase, glutathione reductase, and catalase in the antioxidant system; increased transcript levels of MT (encoding metallothionein); and decreased malondialdehyde content (P < 0.05). At the end of the rearing experiment, the crabs in the different groups were exposed to copper (Cu2+) stress for 96 h. All the juvenile crabs in the 0.43 and 0.82 mg/kg groups survived 96 h of Cu2+ stress. Crabs in the 0.82 mg/kg group showed enhanced antioxidant responses under Cu2+ stress, increased transcript levels of MT and LYZ, and increased resistance. Therefore, supplementation of the diet of Chinese mitten crab with increased levels of Se-cultured P. maackianus can reduce oxidative stress under Cu2+ exposure, activate the immune response, and benefit growth.
Collapse
Affiliation(s)
- Jun Qiang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Xue-Jun Duan
- Adult Education College, Wuxi Institute of Technology, Wuxi, China
| | - Chuan-Kun Zhu
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai'an, China
| | - Jie He
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Jin-Wen Bao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Yi-Fan Tao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Hao-Jun Zhu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Pao Xu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| |
Collapse
|