1
|
Santoyo G, Urtis-Flores C, Orozco-Mosqueda MDC. Rhizobacterial community and growth-promotion trait characteristics of Zea mays L. inoculated with Pseudomonas fluorescens UM270 in three different soils. Folia Microbiol (Praha) 2024; 69:1291-1303. [PMID: 38748205 DOI: 10.1007/s12223-024-01171-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 05/06/2024] [Indexed: 10/17/2024]
Abstract
There is an increasing demand for bioinoculants based on plant growth-promoting rhizobacteria (PGPR) for use in agricultural ecosystems. However, there are still concerns and limited data on their reproducibility in different soil types and their effects on endemic rhizosphere communities. Therefore, this study explored the effects of inoculating the PGPR, Pseudomonas fluorescens strain UM270, on maize growth (Zea mays L.) and its associated rhizosphere bacteriome by sequencing the 16S ribosomal genes under greenhouse conditions. The results showed that inoculation with PGPR P. fluorescens UM270 improved shoot and root dry weights, chlorophyll concentration, and total biomass in the three soil types evaluated (clay, sandy-loam, and loam) compared to those of the controls. Bacterial community analysis of the three soil types revealed that maize plants inoculated with the UM270 strain showed a significant increase in Proteobacteria and Acidobacteria populations, whereas Actinobacteria and Bacteroidetes decreased. Shannon, Pielou, and Faith alpha-biodiversity indices did not reveal significant differences between treatments. Beta diversity revealed a bacterial community differential structure in each soil type, with some variation among treatments. Finally, some bacterial groups were found to co-occur and co-exclude with respect to UM270 inoculation. Considered together, these results show that PGPR P. fluorescens UM270 increases maize plant growth and has an important effect on the resident rhizobacterial communities of each soil type, making it a potential agricultural biofertilizer.
Collapse
Affiliation(s)
- Gustavo Santoyo
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mich, 58030, México.
| | - Carlos Urtis-Flores
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mich, 58030, México
| | - Ma Del Carmen Orozco-Mosqueda
- Departamento de Ingeniería Bioquímica y Ambiental, Tecnológico Nacional de México en Celaya, 38010, Celaya, Gto, México
| |
Collapse
|
2
|
Patel M, Islam S, Glick BR, Vimal SR, Bhor SA, Bernardi M, Johora FT, Patel A, de Los Santos Villalobos S. Elaborating the multifarious role of PGPB for sustainable food security under changing climate conditions. Microbiol Res 2024; 289:127895. [PMID: 39276501 DOI: 10.1016/j.micres.2024.127895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/30/2024] [Accepted: 09/01/2024] [Indexed: 09/17/2024]
Abstract
Changing climate creates a challenge to agricultural sustainability and food security by changing patterns of parameters like increased UV radiation, rising temperature, altered precipitation patterns, and higher occurrence of extreme weather incidents. Plants are vulnerable to different abiotic stresses such as waterlogging, salinity, heat, cold, and drought in their natural environments. The prevailing agricultural management practices play a major role in the alteration of the Earth's climate by causing biodiversity loss, soil degradation through chemical and physical degradation, and pollution of water bodies. The extreme usage of pesticides and fertilizers leads to climate change by releasing greenhouse gases (GHGs) and depositing toxic substances in the soil. At present, there is an urgent need to address these abiotic stresses to achieve sustainable growth in agricultural production and fulfill the rising global food demand. Several types of bacteria that are linked with plants can increase plant resistance to stress and lessen the negative effects of environmental challenges. This review aims to explore the environmentally friendly capabilities and prospects of multi-trait plant growth-promoting bacteria (PGPB) in the alleviation of detrimental impacts of harsh environmental conditions on plants.
Collapse
Affiliation(s)
- Margi Patel
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, Gujarat 384265, India.
| | - Shaikhul Islam
- Plant Pathology Division, Bangladesh Wheat and Maize Research Institute, Nashipur, Dinajpur 5200, Bangladesh.
| | - Bernard R Glick
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada.
| | - Shobhit Raj Vimal
- Department of Botany, University of Allahabad, Prayagraj 211002, India.
| | - Sachin Ashok Bhor
- Laboratory of Plant Molecular Biology and Virology, Faculty of Agriculture, Ehime University, Matsuyama, Ehime, Japan.
| | - Matteo Bernardi
- Department of Life, Health and Environmental Sciences, University of L'Aquila, via Vetoio, Coppito 67100, Italy.
| | - Fatema Tuj Johora
- Lincoln University, Department of Sustainable Agriculture, 1570 Baltimore Pike, PA 19352, USA.
| | - Ashish Patel
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, Gujarat 384265, India.
| | | |
Collapse
|
3
|
Vafa ZN, Sohrabi Y, Mirzaghaderi G, Heidari G, Rizwan M, Sayyed RZ. Effect of bio-fertilizers and seaweed extract on growth and yield of wheat (Triticum aestivum L.) under different irrigation regimes: Two-year field study. CHEMOSPHERE 2024; 364:143068. [PMID: 39151584 DOI: 10.1016/j.chemosphere.2024.143068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 08/07/2024] [Accepted: 08/08/2024] [Indexed: 08/19/2024]
Abstract
Wheat productivity is constrained by genetic, agronomic, and climate factors, though it is an important crop for food production worldwide. The present study evaluated the effect of bio-fertilizer consortia and seaweed extracts on the growth and yield of two wheat varieties under different irrigation regimes in a field study. This experiment was conducted in a split-split plot based on a randomized complete block design with four replications in 2018 and 2019. Irrigation treatments were the main factor, wheat variety (Sardari and Sirvan) the sub-factor, and bio-fertilizers the sub-sub-factors. The results showed that irrigation regimes significantly improved leaf width, number of leaves, fresh weight of roots and shoots, osmotic potential, leaf water content, and number of stomata respectively by 57.53, 38.59, 106.65, 135.29, 87.92, 14.22 and 13.77, 88.02 and 96.11 percent compared to dry-land conditions. Applying one- and two-times irrigation increased grain yield by 51% and 79%, respectively, and the response varied in wheat varieties. Sardari variety due to having smaller leaf dimensions (Leaf length and width) and lower fresh and dry weight of roots and shoots, as well as lower leaf and tissue water content, had lower grain yield than the Sirvan variety. All the bio-fertilizers positively impacted the growth and yield of both varieties. However, the highest average grain yield in the first and second years of the experiment (with an average of 5226.25 and 4923.33 kg/ha, respectively) were found under the combined application of Mycorrhiza + Nitrozist and Phosphozist + Seaweed extract. The results of the present study underscore the importance of irrigation regimes and consortia of bio-fertilizers for improving grain yield. This study also highlighted the resilience of the studied wheat varieties and bio-fertilizers to projected climate changes. These findings could provide insights into adaptive strategies for mitigating the impact of climate change on wheat production.
Collapse
Affiliation(s)
- Zahra Najafi Vafa
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran
| | - Yousef Sohrabi
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran.
| | - Ghader Mirzaghaderi
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran
| | - Gholamreza Heidari
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran
| | - Muhammad Rizwan
- Department of Environmental Sciences, Government College University Faisalabad, Faisalabad, 38000, Pakistan.
| | - R Z Sayyed
- Department of Microbiology, PSGVP Mandal's Arts, Science and Commerce College, Shahada, Maharashtra, 4245409, India
| |
Collapse
|
4
|
Berríos D, Fincheira P, González F, Santander C, Cornejo P, Ruiz A. Impact of Sodium Alginate-Encapsulated Iron Nanoparticles and Soil Yeasts on the Photosynthesis Performance of Lactuca sativa L. Plants. PLANTS (BASEL, SWITZERLAND) 2024; 13:2042. [PMID: 39124160 PMCID: PMC11314604 DOI: 10.3390/plants13152042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 06/27/2024] [Accepted: 07/03/2024] [Indexed: 08/12/2024]
Abstract
In a scenario of accelerated global climate change, the continuous growth of the world population, and the excessive use of chemical fertiliser, the search for sustainable alternatives for agricultural production is crucial. The present study was conducted to evaluate the plant growth-promoting (PGP) characteristics of two yeast strains, Candida guilliermondii and Rhodotorula mucilaginosa, and the physicochemical characteristics of nanometric capsules and iron oxide nanoparticles (Fe2O3-NPs) for the formulation of nanobiofertilisers. The physiological and productive effects were evaluated in a greenhouse assay using lettuce plants. The results showed that C. guilliermondii exhibited higher tricalcium phosphate solubilisation capacity, and R. mucilaginosa had a greater indole-3-acetic acid (IAA) content. The encapsulation of C. guilliermondii in sodium alginate capsules significantly improved the growth, stomatal conductance, and photosynthetic rate of the lettuce plants. Physicochemical characterisation of the Fe2O3-NPs revealed a particle size of 304.1 nm and a negative Z-potential, which indicated their stability and suitability for agricultural applications. The incorporation of Fe2O3-NPs into the capsules was confirmed by SEM-EDX analysis, which showed the presence of Fe as the main element. In summary, this study highlights the potential of nanobiofertilisers containing yeast strains encapsulated in sodium alginate with Fe2O3-NPs to improve plant growth and photosynthetic efficiency as a path toward more sustainable agriculture.
Collapse
Affiliation(s)
- Daniela Berríos
- Departamento de Ciencias Químicas y Recursos Naturales, Scientific and Technological Bioresource Nucleus BIOREN-UFRO, Universidad de La Frontera, Temuco 4811230, Chile
- Programa de Doctorado en Ciencias Agroalimentarias y Medioambiente, Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de La Frontera, Temuco 4811230, Chile
| | - Paola Fincheira
- Laboratorio de Nanobiotecnología Ambiental, Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco 4811230, Chile
| | - Felipe González
- Programa de Doctorado en Ciencias Mención Biología Celular y Molecular Aplicada, Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de La Frontera, Temuco 4811230, Chile
| | - Christian Santander
- Departamento de Ciencias Químicas y Recursos Naturales, Scientific and Technological Bioresource Nucleus BIOREN-UFRO, Universidad de La Frontera, Temuco 4811230, Chile
| | - Pablo Cornejo
- Escuela de Agronomía, Facultad de Ciencias Agronómica y de los Alimentos, Pontificia Universidad Católica de Valparaíso, Quillota 2260000, Chile
- Centro Regional de Investigación e Innovación para la Sostenibilidad de la Agricultura y los Territorios Rurales, CERES, La Palma, Quillota 2260000, Chile
| | - Antonieta Ruiz
- Departamento de Ciencias Químicas y Recursos Naturales, Scientific and Technological Bioresource Nucleus BIOREN-UFRO, Universidad de La Frontera, Temuco 4811230, Chile
| |
Collapse
|
5
|
Kumar D, Ali M, Sharma N, Sharma R, Manhas RK, Ohri P. Unboxing PGPR-mediated management of abiotic stress and environmental cleanup: what lies inside? ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:47423-47460. [PMID: 38992305 DOI: 10.1007/s11356-024-34157-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 06/24/2024] [Indexed: 07/13/2024]
Abstract
Abiotic stresses including heavy metal toxicity, drought, salt and temperature extremes disrupt the plant growth and development and lowers crop output. Presence of environmental pollutants further causes plants suffering and restrict their ability to thrive. Overuse of chemical fertilizers to reduce the negative impact of these stresses is deteriorating the environment and induces various secondary stresses to plants. Therefore, an environmentally friendly strategy like utilizing plant growth-promoting rhizobacteria (PGPR) is a promising way to lessen the negative effects of stressors and to boost plant growth in stressful conditions. These are naturally occurring inhabitants of various environments, an essential component of the natural ecosystem and have remarkable abilities to promote plant growth. Furthermore, multifarious role of PGPR has recently been widely exploited to restore natural soil against a range of contaminants and to mitigate abiotic stress. For instance, PGPR may mitigate metal phytotoxicity by boosting metal translocation inside the plant and changing the metal bioavailability in the soil. PGPR have been also reported to mitigate other abiotic stress and to degrade environmental contaminants remarkably. Nevertheless, despite the substantial quantity of information that has been produced in the meantime, there has not been much advancement in either the knowledge of the processes behind the alleged positive benefits or in effective yield improvements by PGPR inoculation. This review focuses on addressing the progress accomplished in understanding various mechanisms behind the protective benefits of PGPR against a variety of abiotic stressors and in environmental cleanups and identifying the cause of the restricted applicability in real-world.
Collapse
Affiliation(s)
- Deepak Kumar
- Department of Zoology, Guru Nanak Dev University, Amritsar, 143005, Punjab, India
| | - Mohd Ali
- Department of Zoology, Guru Nanak Dev University, Amritsar, 143005, Punjab, India
| | - Nandni Sharma
- Department of Zoology, Guru Nanak Dev University, Amritsar, 143005, Punjab, India
| | - Roohi Sharma
- Department of Zoology, Guru Nanak Dev University, Amritsar, 143005, Punjab, India
| | - Rajesh Kumari Manhas
- Department of Microbiology, Guru Nanak Dev University, Amritsar, 143005, Punjab, India
| | - Puja Ohri
- Department of Zoology, Guru Nanak Dev University, Amritsar, 143005, Punjab, India.
| |
Collapse
|
6
|
Rojas-Sánchez B, Castelán-Sánchez H, Garfias-Zamora EY, Santoyo G. Diversity of the Maize Root Endosphere and Rhizosphere Microbiomes Modulated by the Inoculation with Pseudomonas fluorescens UM270 in a Milpa System. PLANTS (BASEL, SWITZERLAND) 2024; 13:954. [PMID: 38611483 PMCID: PMC11013257 DOI: 10.3390/plants13070954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/11/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024]
Abstract
Milpa is an agroecological production system based on the polyculture of plant species, with corn featuring as a central component. Traditionally, the milpa system does not require the application of chemicals, and so pest attacks and poor growth in poor soils can have adverse effects on its production. Therefore, the application of bioinoculants could be a strategy for improving crop growth and health; however, the effect of external inoculant agents on the endemic microbiota associated with corn has not been extensively studied. Here, the objective of this work was to fertilize a maize crop under a milpa agrosystem with the PGPR Pseudomonas fluorescens UM270, evaluating its impact on the diversity of the rhizosphere (rhizobiome) and root endophytic (root endobiome) microbiomes of maize plants. The endobiome of maize roots was evaluated by 16S rRNA and internal transcribed spacer region (ITS) sequencing, and the rhizobiome was assessed by metagenomic sequencing upon inoculation with the strain UM270. The results showed that UM270 inoculation of the rhizosphere of P. fluorescens UM270 did not increase alpha diversity in either the monoculture or milpa, but it did alter the endophytic microbiome of maize plant roots by stimulating the presence of bacterial operational taxonomic units (OTUs) of the genera Burkholderia and Pseudomonas (in a monoculture), whereas, in the milpa system, the PGPR stimulated greater endophytic diversity and the presence of genera such as Burkholderia, Variovorax, and N-fixing rhizobia genera, including Rhizobium, Mesorhizobium, and Bradyrhizobium. No clear association was found between fungal diversity and the presence of strain UM270, but beneficial fungi, such as Rizophagus irregularis and Exophiala pisciphila, were detected in the Milpa system. In addition, network analysis revealed unique interactions with species such as Stenotrophomonas sp., Burkholderia xenovorans, and Sphingobium yanoikuyae, which could potentially play beneficial roles in the plant. Finally, the UM270 strain does not seem to have a strong impact on the microbial diversity of the rhizosphere, but it does have a strong impact on some functions, such as trehalose synthesis, ammonium assimilation, and polyamine metabolism. The inoculation of UM270 biofertilizer in maize plants modifies the rhizo- and endophytic microbiomes with a high potential for stimulating plant growth and health in agroecological crop models.
Collapse
Affiliation(s)
- Blanca Rojas-Sánchez
- Genomic Diversity Lab, Institute of Chemical and Biological Research, Universidad Michoacana de San Nicolas de Hidalgo, Morelia 58030, Mexico; (B.R.-S.); (E.Y.G.-Z.)
| | - Hugo Castelán-Sánchez
- Department of Pathology and Laboratory Medicine, Western University, London, ON N6A 3K7, Canada;
| | - Esmeralda Y. Garfias-Zamora
- Genomic Diversity Lab, Institute of Chemical and Biological Research, Universidad Michoacana de San Nicolas de Hidalgo, Morelia 58030, Mexico; (B.R.-S.); (E.Y.G.-Z.)
| | - Gustavo Santoyo
- Department of Pathology and Laboratory Medicine, Western University, London, ON N6A 3K7, Canada;
| |
Collapse
|
7
|
Chowdhury MZH, Mostofa MG, Mim MF, Haque MA, Karim MA, Sultana R, Rohman MM, Bhuiyan AUA, Rupok MRB, Islam SMN. The fungal endophyte Metarhizium anisopliae (MetA1) coordinates salt tolerance mechanisms of rice to enhance growth and yield. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108328. [PMID: 38183902 DOI: 10.1016/j.plaphy.2023.108328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 12/06/2023] [Accepted: 12/29/2023] [Indexed: 01/08/2024]
Abstract
The implementation of salt stress mitigation strategies aided by microorganisms has the potential to improve crop growth and yield. The endophytic fungus Metarhizium anisopliae shows the ability to enhance plant growth and mitigate diverse forms of abiotic stress. We examined the functions of M. anisopliae isolate MetA1 (MA) in promoting salinity resistance by investigating several morphological, physiological, biochemical, and yield features in rice plants. In vitro evaluation demonstrated that rice seeds primed with MA enhanced the growth features of rice plants exposed to 4, 8, and 12 dS/m of salinity for 15 days in an agar medium. A pot experiment was carried out to evaluate the growth and development of MA-primed rice seeds after exposing them to similar levels of salinity. Results indicated MA priming in rice improved shoot and root biomass, photosynthetic pigment contents, leaf succulence, and leaf relative water content. It also significantly decreased Na+/K+ ratios in both shoots and roots and the levels of electrolyte leakage, malondialdehyde, and hydrogen peroxide, while significantly increasing proline content in the leaves. The antioxidant enzymes catalase, glutathione S-transferase, ascorbate peroxidase, and peroxidase, as well as the non-enzymatic antioxidants phenol and flavonoids, were significantly enhanced in MA-colonized plants when compared with MA-unprimed plants under salt stress. The MA-mediated restriction of salt accumulation and improvement in physiological and biochemical mechanisms ultimately contributed to the yield improvement in salt-exposed rice plants. Our findings suggest the potential use of the MA seed priming strategy to improve salt tolerance in rice and perhaps in other crop plants.
Collapse
Affiliation(s)
- Md Zahid Hasan Chowdhury
- Institute of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman, Agricultural University, Gazipur, 1706, Bangladesh
| | - Mohammad Golam Mostofa
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, 48824, USA
| | - Mahjabin Ferdaous Mim
- Institute of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman, Agricultural University, Gazipur, 1706, Bangladesh
| | - Md Ashraful Haque
- Institute of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman, Agricultural University, Gazipur, 1706, Bangladesh
| | - M Abdul Karim
- Department of Agronomy, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | - Razia Sultana
- Department of Agricultural Chemistry, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Md Motiar Rohman
- Plant Breeding Division, Bangladesh Agricultural Research Institute, Gazipur, 1701, Bangladesh
| | - Ashkar-Ul-Alam Bhuiyan
- Institute of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman, Agricultural University, Gazipur, 1706, Bangladesh
| | - Md Rahat Bari Rupok
- Department of Environmental Science, Bangabandhu Sheikh Mujibur Rahman, Agricultural University, Gazipur, 1706, Bangladesh
| | - Shah Mohammad Naimul Islam
- Institute of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman, Agricultural University, Gazipur, 1706, Bangladesh.
| |
Collapse
|
8
|
Gu Z, Hu C, Gan Y, Zhou J, Tian G, Gao L. Role of Microbes in Alleviating Crop Drought Stress: A Review. PLANTS (BASEL, SWITZERLAND) 2024; 13:384. [PMID: 38337917 PMCID: PMC10857462 DOI: 10.3390/plants13030384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 02/12/2024]
Abstract
Drought stress is an annual global phenomenon that has devastating effects on crop production, so numerous studies have been conducted to improve crop drought resistance. Plant-associated microbiota play a crucial role in crop health and growth; however, we have a limited understanding of the key processes involved in microbiome-induced crop adaptation to drought stress. In this review, we summarize the adverse effects of drought stress on crop growth in terms of germination, photosynthesis, nutrient uptake, biomass, and yield, with a focus on the response of soil microbial communities to drought stress and plant-microbe interactions under drought stress. Moreover, we review the morpho-physiological, biochemical, and molecular mechanisms underlying the mitigation effect of microbes on crop drought stress. Finally, we highlight future research directions, including the characterization of specific rhizosphere microbiome species with corresponding root exudates and the efficiency of rhizobacteria inoculants under drought conditions. Such research will advance our understanding of the complex interactions between crops and microbes and improve crop resistance to drought stress through the application of beneficial drought-adaptive microbes.
Collapse
Affiliation(s)
- Zechen Gu
- Engineering and Technical Center for Modern Horticulture, Jiangsu Vocational College of Agriculture and Forestry, Jurong 212400, China;
- Department of Agronomy and Horticulture, Jiangsu Vocational College of Agriculture and Forestry, Jurong 212400, China; (C.H.); (Y.G.); (J.Z.); (G.T.)
| | - Chengji Hu
- Department of Agronomy and Horticulture, Jiangsu Vocational College of Agriculture and Forestry, Jurong 212400, China; (C.H.); (Y.G.); (J.Z.); (G.T.)
| | - Yuxin Gan
- Department of Agronomy and Horticulture, Jiangsu Vocational College of Agriculture and Forestry, Jurong 212400, China; (C.H.); (Y.G.); (J.Z.); (G.T.)
| | - Jinyan Zhou
- Department of Agronomy and Horticulture, Jiangsu Vocational College of Agriculture and Forestry, Jurong 212400, China; (C.H.); (Y.G.); (J.Z.); (G.T.)
| | - Guangli Tian
- Department of Agronomy and Horticulture, Jiangsu Vocational College of Agriculture and Forestry, Jurong 212400, China; (C.H.); (Y.G.); (J.Z.); (G.T.)
| | - Limin Gao
- Nanjing Institute of Agricultural Sciences in Jiangsu Hilly Area, Nanjing 210014, China
| |
Collapse
|
9
|
Sharma A, Choudhary P, Chakdar H, Shukla P. Molecular insights and omics-based understanding of plant-microbe interactions under drought stress. World J Microbiol Biotechnol 2023; 40:42. [PMID: 38105277 DOI: 10.1007/s11274-023-03837-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 11/11/2023] [Indexed: 12/19/2023]
Abstract
The detrimental effects of adverse environmental conditions are always challenging and remain a major concern for plant development and production worldwide. Plants deal with such constraints by physiological, biochemical, and morphological adaptations as well as acquiring mutual support of beneficial microorganisms. As many stress-responsive traits of plants are influenced by microbial activities, plants have developed a sophisticated interaction with microbes to cope with adverse environmental conditions. The production of numerous bioactive metabolites by rhizospheric, endo-, or epiphytic microorganisms can directly or indirectly alter the root system architecture, foliage production, and defense responses. Although plant-microbe interactions have been shown to improve nutrient uptake and stress resilience in plants, the underlying mechanisms are not fully understood. "Multi-omics" application supported by genomics, transcriptomics, and metabolomics has been quite useful to investigate and understand the biochemical, physiological, and molecular aspects of plant-microbe interactions under drought stress conditions. The present review explores various microbe-mediated mechanisms for drought stress resilience in plants. In addition, plant adaptation to drought stress is discussed, and insights into the latest molecular techniques and approaches available to improve drought-stress resilience are provided.
Collapse
Affiliation(s)
- Aditya Sharma
- Enzyme Technology and Protein Bioinformatics Laboratory, School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Prassan Choudhary
- Microbial Technology Unit II, ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Mau, Uttar Pradesh, 275103, India
| | - Hillol Chakdar
- Microbial Technology Unit II, ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Mau, Uttar Pradesh, 275103, India
| | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India.
| |
Collapse
|
10
|
Kulhánek M, Asrade DA, Suran P, Sedlář O, Černý J, Balík J. Plant Nutrition-New Methods Based on the Lessons of History: A Review. PLANTS (BASEL, SWITZERLAND) 2023; 12:4150. [PMID: 38140480 PMCID: PMC10747035 DOI: 10.3390/plants12244150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 12/08/2023] [Accepted: 12/10/2023] [Indexed: 12/24/2023]
Abstract
As with new technologies, plant nutrition has taken a big step forward in the last two decades. The main objective of this review is to briefly summarise the main pathways in modern plant nutrition and attract potential researchers and publishers to this area. First, this review highlights the importance of long-term field experiments, which provide us with valuable information about the effects of different applied strategies. The second part is dedicated to the new analytical technologies (tomography, spectrometry, and chromatography), intensively studied environments (rhizosphere, soil microbial communities, and enzymatic activity), nutrient relationship indexes, and the general importance of proper data evaluation. The third section is dedicated to the strategies of plant nutrition, i.e., (i) plant breeding, (ii) precision farming, (iii) fertiliser placement, (iv) biostimulants, (v) waste materials as a source of nutrients, and (vi) nanotechnologies. Finally, the increasing environmental risks related to plant nutrition, including biotic and abiotic stress, mainly the threat of soil salinity, are mentioned. In the 21st century, fertiliser application trends should be shifted to local application, precise farming, and nanotechnology; amended with ecofriendly organic fertilisers to ensure sustainable agricultural practices; and supported by new, highly effective crop varieties. To optimise agriculture, only the combination of the mentioned modern strategies supported by a proper analysis based on long-term observations seems to be a suitable pathway.
Collapse
Affiliation(s)
- Martin Kulhánek
- Department of Agro-Environmental Chemistry and Plant Nutrition, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, 165 00 Prague, Czech Republic; (D.A.A.); (P.S.); (O.S.); (J.Č.); (J.B.)
| | | | | | | | | | | |
Collapse
|
11
|
Feng Z, Xie X, Wu P, Chen M, Qin Y, Zhou Y, Zhu H, Yao Q. Phenylalanine-mediated changes in the soil bacterial community promote nitrogen cycling and plant growth. Microbiol Res 2023; 275:127447. [PMID: 37441843 DOI: 10.1016/j.micres.2023.127447] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/27/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023]
Abstract
Soil amino acids (AAs) are the most active components of soil N, which can be mineralized or absorbed by bacteria as N and C sources. We hypothesized that exogenous AAs could regulate the bacterial community and affect soil N cycling, and the effect sizes could vary depending on individual AAs. Here, we applied feather (keratin)-based compost rich in AAs to Poncirus trifoliata (L.) to evaluate the regulation of bacterial community by AAs; furthermore, we applied six individual AAs to test their effects. The compost significantly increased soil hydrolysable AA content, ammonia monooxygenase gene abundance, and plant growth and changed bacterial community structure. Redundancy analysis revealed that the effects of AAs on the bacterial community composition were greater than those of soil chemical properties, and phenylalanine (Phe) was the most effective among thirteen individual AAs. When applied individually, Phe caused the greatest increase in N cycling-related enzyme activity and plant growth and most significantly altered the bacterial community structure among the six exogenous AAs. Notably, Phe significantly increased the relative abundances of Burkholderia-Caballeronia-Paraburkholderia, Azospirillum, Cupriavidus, and Achromobacter, whose abundances were significantly positively correlated with plant biomass, and significantly reduced the relative abundances of Arachidicoccus, Pseudopedobacter, Sphingobacterium, and Paenibacillus, whose abundances were significantly negatively correlated with plant biomass. We demonstrate that soil AAs strongly shape the bacterial community. Particularly, Phe enhances N cycling and plant growth by increasing the potentially beneficial bacterial taxa and inhibiting the potentially harmful bacterial taxa, which needs further validation.
Collapse
Affiliation(s)
- Zengwei Feng
- College of Horticulture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Guangdong Engineering Research Center for Litchi, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Xiaolin Xie
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; Guangdong BoWoTe Biotechnology Co. Ltd., Shaoguan 512026, China
| | - Peidong Wu
- College of Horticulture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Guangdong Engineering Research Center for Litchi, South China Agricultural University, Guangzhou 510642, China
| | - Meng Chen
- College of Horticulture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Guangdong Engineering Research Center for Litchi, South China Agricultural University, Guangzhou 510642, China; Guangdong BoWoTe Biotechnology Co. Ltd., Shaoguan 512026, China
| | - Yongqiang Qin
- College of Horticulture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Guangdong Engineering Research Center for Litchi, South China Agricultural University, Guangzhou 510642, China
| | - Yang Zhou
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Honghui Zhu
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China.
| | - Qing Yao
- College of Horticulture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Guangdong Engineering Research Center for Litchi, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
12
|
Orozco-Mosqueda MDC, Kumar A, Babalola OO, Santoyo G. Rhizobiome Transplantation: A Novel Strategy beyond Single-Strain/Consortium Inoculation for Crop Improvement. PLANTS (BASEL, SWITZERLAND) 2023; 12:3226. [PMID: 37765390 PMCID: PMC10535606 DOI: 10.3390/plants12183226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/05/2023] [Accepted: 09/09/2023] [Indexed: 09/29/2023]
Abstract
The growing human population has a greater demand for food; however, the care and preservation of nature as well as its resources must be considered when fulfilling this demand. An alternative employed in recent decades is the use and application of microbial inoculants, either individually or in consortium. The transplantation of rhizospheric microbiomes (rhizobiome) recently emerged as an additional proposal to protect crops from pathogens. In this review, rhizobiome transplantation was analyzed as an ecological alternative for increasing plant protection and crop production. The differences between single-strain/species inoculation and dual or consortium application were compared. Furthermore, the feasibility of the transplantation of other associated micro-communities, including phyllosphere and endosphere microbiomes, were evaluated. The current and future challenges surrounding rhizobiome transplantation were additionally discussed. In conclusion, rhizobiome transplantation emerges as an attractive alternative that goes beyond single/group inoculation of microbial agents; however, there is still a long way ahead before it can be applied in large-scale agriculture.
Collapse
Affiliation(s)
- Ma. del Carmen Orozco-Mosqueda
- Departamento de Ingeniería Bioquímica y Ambiental, Tecnológico Nacional de México en Celaya, Celaya 38010, Guanajuato, Mexico;
| | - Ajay Kumar
- Amity Institute of Biotechnology, Amity University, Noida 201303, India;
| | - Olubukola Oluranti Babalola
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Mail Bag X2046, Mmabatho 2735, South Africa;
| | - Gustavo Santoyo
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58030, Michoacan, Mexico
| |
Collapse
|
13
|
Mazoyon C, Firmin S, Bensaddek L, Pecourt A, Chabot A, Faucon MP, Sarazin V, Dubois F, Duclercq J. Optimizing Crop Production with Bacterial Inputs: Insights into Chemical Dialogue between Sphingomonas sediminicola and Pisum sativum. Microorganisms 2023; 11:1847. [PMID: 37513019 PMCID: PMC10385058 DOI: 10.3390/microorganisms11071847] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/13/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
The use of biological inputs is an interesting approach to optimize crop production and reduce the use of chemical inputs. Understanding the chemical communication between bacteria and plants is critical to optimizing this approach. Recently, we have shown that Sphingomonas (S.) sediminicola can improve both nitrogen supply and yield in pea. Here, we used biochemical methods and untargeted metabolomics to investigate the chemical dialog between S. sediminicola and pea. We also evaluated the metabolic capacities of S. sediminicola by metabolic profiling. Our results showed that peas release a wide range of hexoses, organic acids, and amino acids during their development, which can generally recruit and select fast-growing organisms. In the presence of S. sediminicola, a more specific pattern of these molecules took place, gradually adapting to the metabolic capabilities of the bacterium, especially for pentoses and flavonoids. In turn, S. sediminicola is able to produce several compounds involved in cell differentiation, biofilm formation, and quorum sensing to shape its environment, as well as several molecules that stimulate pea growth and plant defense mechanisms.
Collapse
Affiliation(s)
- Candice Mazoyon
- Ecologie et Dynamique des Systèmes Anthropisés (EDYSAN, UMR7058 CNRS), Université de Picardie Jules Verne (UPJV), 80039 Amiens, France
| | - Stéphane Firmin
- Agroécologie, Hydrogéochimie, Milieux et Ressources (AGHYLE, UP2018.C101) UniLaSalle, 60026 Beauvais, France
| | - Lamine Bensaddek
- Ecologie et Dynamique des Systèmes Anthropisés (EDYSAN, UMR7058 CNRS), Université de Picardie Jules Verne (UPJV), 80039 Amiens, France
| | - Audrey Pecourt
- Ecologie et Dynamique des Systèmes Anthropisés (EDYSAN, UMR7058 CNRS), Université de Picardie Jules Verne (UPJV), 80039 Amiens, France
- AgroStation, 68700 Aspach-le-Bas, France
| | - Amélie Chabot
- UFR des Sciences, Université de Picardie Jules Verne (UPJV), 80039 Amiens, France
| | - Michel-Pierre Faucon
- Agroécologie, Hydrogéochimie, Milieux et Ressources (AGHYLE, UP2018.C101) UniLaSalle, 60026 Beauvais, France
| | | | - Fréderic Dubois
- Ecologie et Dynamique des Systèmes Anthropisés (EDYSAN, UMR7058 CNRS), Université de Picardie Jules Verne (UPJV), 80039 Amiens, France
| | - Jérôme Duclercq
- Ecologie et Dynamique des Systèmes Anthropisés (EDYSAN, UMR7058 CNRS), Université de Picardie Jules Verne (UPJV), 80039 Amiens, France
| |
Collapse
|
14
|
Yadav RC, Sharma SK, Varma A, Singh UB, Kumar A, Bhupenchandra I, Rai JP, Sharma PK, Singh HV. Zinc-solubilizing Bacillus spp. in conjunction with chemical fertilizers enhance growth, yield, nutrient content, and zinc biofortification in wheat crop. Front Microbiol 2023; 14:1210938. [PMID: 37469421 PMCID: PMC10352851 DOI: 10.3389/fmicb.2023.1210938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 05/29/2023] [Indexed: 07/21/2023] Open
Abstract
Micronutrient deficiency is a serious health issue in resource-poor human populations worldwide, which is responsible for the death of millions of women and underage children in most developing countries. Zinc (Zn) malnutrition in middle- and lower-class families is rampant when daily calorie intake of staple cereals contains extremely low concentrations of micronutrients, especially Zn and Fe. Looking at the importance of the problem, the present investigation aimed to enhance the growth, yield, nutrient status, and biofortification of wheat crop by inoculation of native zinc-solubilizing Bacillus spp. in conjunction with soil-applied fertilizers (NPK) and zinc phosphate in saline soil. In this study, 175 bacterial isolates were recovered from the rhizosphere of wheat grown in the eastern parts of the Indo-Gangetic Plain of India. These isolates were further screened for Zn solubilization potential using sparingly insoluble zinc carbonate (ZnCO3), zinc oxide (ZnO), and zinc phosphate {Zn3(PO4)2} as a source of Zn under in vitro conditions. Of 175 bacterial isolates, 42 were found to solubilize either one or two or all the three insoluble Zn compounds, and subsequently, these isolates were identified based on 16S rRNA gene sequences. Based on zone halo diameter, solubilization efficiency, and amount of solubilized zinc, six potential bacterial strains, i.e., Bacillus altitudinis AJW-3, B. subtilis ABW-30, B. megaterium CHW-22, B. licheniformis MJW-38, Brevibacillus borstelensis CHW-2, and B. xiamenensis BLW-7, were further shortlisted for pot- and field-level evaluation in wheat crop. The results of the present investigation clearly indicated that these inoculants not only increase plant growth but also enhance the yield and yield attributes. Furthermore, bacterial inoculation also enhanced available nutrients and microbial activity in the wheat rhizosphere under pot experiments. It was observed that the application of B. megaterium CHW-22 significantly increased the Zn content in wheat straw and grains along with other nutrients (N, P, K, Fe, Cu, and Mn) followed by B. licheniformis MJW-38 as compared to other inoculants. By and large, similar observations were recorded under field conditions. Interestingly, when comparing the nutrient use efficiency (NUE) of wheat, bacterial inoculants showed their potential in enhancing the NUE in a greater way, which was further confirmed by correlation and principal component analyses. This study apparently provides evidence of Zn biofortification in wheat upon bacterial inoculation in conjunction with chemical fertilizers and zinc phosphate in degraded soil under both nethouse and field conditions.
Collapse
Affiliation(s)
- Ramesh Chandra Yadav
- Amity Institute of Microbial Technology, Amity University, Noida, Uttar Pradesh, India
- Plant-Microbe Interaction and Rhizosphere Biology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms, Kushmaur, Uttar Pradesh, India
| | - Sushil K. Sharma
- Plant-Microbe Interaction and Rhizosphere Biology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms, Kushmaur, Uttar Pradesh, India
| | - Ajit Varma
- Amity Institute of Microbial Technology, Amity University, Noida, Uttar Pradesh, India
| | - Udai B. Singh
- Plant-Microbe Interaction and Rhizosphere Biology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms, Kushmaur, Uttar Pradesh, India
| | - Adarsh Kumar
- Plant-Microbe Interaction and Rhizosphere Biology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms, Kushmaur, Uttar Pradesh, India
| | - Ingudam Bhupenchandra
- Farm Science Centre, ICAR-Research Complex for North Eastern Hill Region, Tamenglong, Manipur, India
| | - Jai P. Rai
- Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Pawan K. Sharma
- Plant-Microbe Interaction and Rhizosphere Biology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms, Kushmaur, Uttar Pradesh, India
| | - Harsh V. Singh
- Plant-Microbe Interaction and Rhizosphere Biology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms, Kushmaur, Uttar Pradesh, India
| |
Collapse
|
15
|
Loguercio LL, Silva ACM, Ribeiro DH, de Lima Cruz JMF, Soares ACF, Marbach PAS, Cruz-Magalhães V, De Souza JT. Assessing the functional diversity of rhizobacteria from cacao by partitioning root and shoot biomasses. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12603-3. [PMID: 37256326 DOI: 10.1007/s00253-023-12603-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 05/15/2023] [Accepted: 05/18/2023] [Indexed: 06/01/2023]
Abstract
Plant-microbe interactions are critical for the sustainability of agricultural production. In this study, our aims were to characterize the genetic and functional diversity of the culturable bacterial community associated with the cacao rhizosphere and access their potential for growth promotion of cacao seedling. Culture-dependent and molecular methods were used to characterize the population densities and diversity of bacterial communities from soil and cacao plants at two locations and two plant ages. A total of 63 strains were identified through hsp60 sequencing. Pseudomonas and Enterobacter were the most abundant genera in association with the cacao rhizosphere, whereas Bacillus was more numerous in soil. Parameters of seedling growth promotion were evaluated 60 days after inoculation of seeds, with partition of the assessments into root and shoot weight. Each isolate showed beneficial, neutral or deleterious effects on plant growth, depending on the isolate and on the parts of plant assessed. Interestingly, although an apparent overall decrease in total biomass of seedlings (roots + shoots dry matters) was observed for the majority of isolates (89%), 94% of all isolates, in fact, revealed an increase in plant roots/shoots dry biomass ratio. Despite that part of the isolates (35%) appeared to significantly decrease plant height, and that 65% did not influence plant height (neutral effect), 18 had significantly increased root dry biomass; nevertheless, seven of these root growth-increasing isolates simultaneously decreased shoots-related growth parameters. The results of this study evidentiated the functional diversity of culturable cacao rhizobacteria and how the partitioning of roots and shoots in the assessment of plant growth parameters could reveal the biotechnological potential of these isolates for promoting growth of clones for rehabilitation of commercial cacao plantations. KEY POINTS: • The most common culturable bacteria in cacao roots were Pseudomonas and Enterobacter • Most culturable bacteria from cacao roots increased the root/shoot ratio • Roots and shoots should be examined separately to detect cacao beneficial bacteria.
Collapse
Affiliation(s)
- Leandro Lopes Loguercio
- Department of Biological Sciences, Santa Cruz State University, Ilhéus, BA, 45662-900, Brazil
| | - Augusto César Moura Silva
- Center for Agricultural, Biological and Environmental Sciences, Federal University of Recôncavo da Bahia, Cruz das Almas, BA, 44380-000, Brazil
- EMBRAPA Centro Nacional de Pesquisa de Mandioca E Fruticultura Tropical, Cruz das Almas, BA, 44380-000, Brazil
| | | | | | - Ana Cristina Fermino Soares
- Center for Agricultural, Biological and Environmental Sciences, Federal University of Recôncavo da Bahia, Cruz das Almas, BA, 44380-000, Brazil
| | - Phellippe Arthur Santos Marbach
- Center for Agricultural, Biological and Environmental Sciences, Federal University of Recôncavo da Bahia, Cruz das Almas, BA, 44380-000, Brazil
| | - Valter Cruz-Magalhães
- Department of Plant Pathology, Federal University of Lavras, Lavras, MG, 37200-000, Brazil
| | - Jorge Teodoro De Souza
- Department of Plant Pathology, Federal University of Lavras, Lavras, MG, 37200-000, Brazil.
| |
Collapse
|
16
|
Devi S, Sharma S, Tiwari A, Bhatt AK, Singh NK, Singh M, Kumar A. Screening for Multifarious Plant Growth Promoting and Biocontrol Attributes in Bacillus Strains Isolated from Indo Gangetic Soil for Enhancing Growth of Rice Crops. Microorganisms 2023; 11:microorganisms11041085. [PMID: 37110508 PMCID: PMC10142854 DOI: 10.3390/microorganisms11041085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 03/28/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
Multifarious plant growth-promoting Bacillus strains recovered from rhizospheric soils of the Indo Gangetic plains (IGPs) were identified as Bacillus licheniformis MNNITSR2 and Bacillus velezensis MNNITSR18 based on their biochemical characteristics and 16S rDNA gene analysis. Both strains exhibited the ability to produce IAA, siderophores, ammonia, lytic enzymes, HCN production, and phosphate solubilization capability and strongly inhibited the growth of phytopathogens such as Rhizoctonia solani and Fusariun oxysporum in vitro. In addition, these strains are also able to grow at a high temperature of 50 °C and tolerate up to 10-15% NaCl and 25% PEG 6000. The results of the pot experiment showed that individual seed inoculation and the coinoculation of multifarious plant growth promoting (PGP) Bacillus strains (SR2 and SR18) in rice fields significantly enhanced plant height, root length volume, tiller numbers, dry weight, and yield compared to the untreated control. This indicates that these strains are potential candidates for use as PGP inoculants/biofertilizers to increase rice productivity under field conditions for IGPs in Uttar Pradesh, India.
Collapse
Affiliation(s)
- Shikha Devi
- Department of Microbiology, Himachal Pradesh University, Summerhill, Shimla 171005, India
| | - Shivesh Sharma
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, India
| | - Ashish Tiwari
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, India
| | - Arvind Kumar Bhatt
- Department of Biotechnology, Himachal Pradesh University, Summerhill, Shimla 171005, India
| | - Nand Kumar Singh
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, India
| | - Monika Singh
- Department of Biotechnology, School of Applied and Life Sciences, Uttaranchal University, Dehradun 248007, India
| | - Ajay Kumar
- Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi 221005, India
| |
Collapse
|
17
|
Rahnama S, Ghehsareh Ardestani E, Ebrahimi A, Nikookhah F. Seed priming with plant growth-promoting bacteria (PGPB) improves growth and water stress tolerance of Secale montanum. Heliyon 2023; 9:e15498. [PMID: 37151636 PMCID: PMC10161722 DOI: 10.1016/j.heliyon.2023.e15498] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 04/04/2023] [Accepted: 04/11/2023] [Indexed: 05/09/2023] Open
Abstract
Abiotic and biotic stresses are major global threats to food security in the 21st century. Application of plant growth-promoting bacteria (PGPB) in rangeland plants is the only possible alternative that supports plant growth and development to combat environmental stress and successfully restoring rangelands. PGPBs were also found to be a potential substitute for chemical fertilizers and pesticides. The challenge is to determine which biofertilizers can be used for Secale montanum in normal and under water stress conditions. We sought to determine the benefits of PGPB for S. montanum under water stress conditions in terms of seedling growth traits, growth indicators, and nutrient uptake in the research greenhouse. Therefore, a completely randomized factorial design was conducted with two treatments of PGPB inoculation, including the control (no PGPB inoculation), PGPBs Bacillus cereus, Pseudomonas aeruginosa, Azospirillum lipoferm, and Azotobacter chroococcum, and water stress in the research greenhouse. Overall, the results of the current study showed that water stress greatly reduced the above-ground fresh weight of above-ground plant parts and the nitrogen and potassium content of S. montanum. The present study confirms the positive effects of PGPB on fresh and dry weights of above- and below-ground parts and seedling, vigor index, quality index, and nitrogen and potassium content of S. montanum, except for below-ground parts length, compared with the controls, which shows that PGPB usually improves some indicators of plant growth and development. We suggest that restoration of S. montanum seed inoculation with PGPB should be supported in degraded rangelands and marginal drylands in low rainfall years, which may cause water scarcity and consequently water stress in arid and semi-arid regions.
Collapse
Affiliation(s)
- Shiva Rahnama
- Department of Rangeland and Watershed Management, Faculty of Natural Resources and Earth Sciences, Shahrekord University, Shahrekord, 8818634141, Iran
| | - Elham Ghehsareh Ardestani
- Department of Rangeland and Watershed Management, Faculty of Natural Resources and Earth Sciences, Shahrekord University, Shahrekord, 8818634141, Iran
- Central Laboratory, Shahrekord University, Shahrekord, Iran
- Corresponding author. Department of Rangeland and Watershed Management, Faculty of Natural Resources and Earth Sciences, Shahrekord University, Shahrekord, 8818634141, Iran.
| | - Ataollah Ebrahimi
- Department of Rangeland and Watershed Management, Faculty of Natural Resources and Earth Sciences, Shahrekord University, Shahrekord, 8818634141, Iran
| | - Farzaneh Nikookhah
- Department of Fishery Science, Faculty of Natural Resources and Earth Sciences, Shahrekord University, Shahrekord, 8818634141, Iran
| |
Collapse
|
18
|
Faist H, Trognitz F, Antonielli L, Symanczik S, White PJ, Sessitsch A. Potato root-associated microbiomes adapt to combined water and nutrient limitation and have a plant genotype-specific role for plant stress mitigation. ENVIRONMENTAL MICROBIOME 2023; 18:18. [PMID: 36918963 PMCID: PMC10012461 DOI: 10.1186/s40793-023-00469-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Due to climate change and reduced use of fertilizers combined stress scenarios are becoming increasingly frequent in crop production. In a field experiment we tested the effect of combined water and phosphorus limitation on the growth performance and plant traits of eight tetraploid and two diploid potato varieties as well as on root-associated microbiome diversity and functional potential. Microbiome and metagenome analysis targeted the diversity and potential functions of prokaryotes, fungi, plasmids, and bacteriophages and was linked to plant traits like tuber yield or timing of canopy closure. RESULTS The different potato genotypes responded differently to the combined stress and hosted distinct microbiota in the rhizosphere and the root endosphere. Proximity to the root, stress and potato genotype had significant effects on bacteria, whereas fungi were only mildly affected. To address the involvement of microbial functions, we investigated well and poorly performing potato genotypes (Stirling and Desirée, respectively) under stress conditions and executed a metagenome analysis of rhizosphere microbiomes subjected to stress and no stress conditions. Functions like ROS detoxification, aromatic amino acid and terpene metabolism were enriched and in synchrony with the metabolism of stressed plants. In Desirée, Pseudonocardiales had the genetic potential to take up assimilates produced in the fast-growing canopy and to reduce plant stress-sensing by degrading ethylene, but overall yield losses were high. In Stirling, Xanthomonadales had the genetic potential to reduce oxidative stress and to produce biofilms, potentially around roots. Biofilm formation could be involved in drought resilience and nutrient accessibility of Stirling and explain the recorded low yield losses. In the rhizosphere exposed to combined stress, the relative abundance of plasmids was reduced, and the diversity of phages was enriched. Moreover, mobile elements like plasmids and phages were affected by combined stresses in a genotype-specific manner. CONCLUSION Our study gives new insights into the interconnectedness of root-associated microbiota and plant stress responses in the field. Functional genes in the metagenome, phylogenetic composition and mobile elements play a role in potato stress adaption. In a poor and a well performing potato genotype grown under stress conditions, distinct functional genes pinpoint to a distinct stress sensing, water availability and compounds in the rhizospheres.
Collapse
Affiliation(s)
- Hanna Faist
- Bioresources Unit, AIT Austrian Institute of Technology, Konrad-Lorenz-Straße 24, 3430 Tulln, Austria
| | - Friederike Trognitz
- Bioresources Unit, AIT Austrian Institute of Technology, Konrad-Lorenz-Straße 24, 3430 Tulln, Austria
| | - Livio Antonielli
- Bioresources Unit, AIT Austrian Institute of Technology, Konrad-Lorenz-Straße 24, 3430 Tulln, Austria
| | - Sarah Symanczik
- Soil Science Department, Research Institute of Organic Agriculture (FiBL), Ackerstraße 113, 5070 Frick, Switzerland
| | | | - Angela Sessitsch
- Bioresources Unit, AIT Austrian Institute of Technology, Konrad-Lorenz-Straße 24, 3430 Tulln, Austria
| |
Collapse
|
19
|
Khoshru B, Mitra D, Joshi K, Adhikari P, Rion MSI, Fadiji AE, Alizadeh M, Priyadarshini A, Senapati A, Sarikhani MR, Panneerselvam P, Mohapatra PKD, Sushkova S, Minkina T, Keswani C. Decrypting the multi-functional biological activators and inducers of defense responses against biotic stresses in plants. Heliyon 2023; 9:e13825. [PMID: 36873502 PMCID: PMC9981932 DOI: 10.1016/j.heliyon.2023.e13825] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 01/31/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023] Open
Abstract
Plant diseases are still the main problem for the reduction in crop yield and a threat to global food security. Additionally, excessive usage of chemical inputs such as pesticides and fungicides to control plant diseases have created another serious problem for human and environmental health. In view of this, the application of plant growth-promoting rhizobacteria (PGPR) for controlling plant disease incidences has been identified as an eco-friendly approach for coping with the food security issue. In this review, we have identified different ways by which PGPRs are capable of reducing phytopathogenic infestations and enhancing crop yield. PGPR suppresses plant diseases, both directly and indirectly, mediated by microbial metabolites and signaling components. Microbial synthesized anti-pathogenic metabolites such as siderophores, antibiotics, lytic enzymes, hydrogen cyanide, and several others act directly on phytopathogens. The indirect mechanisms of reducing plant disease infestation are caused by the stimulation of plant immune responses known as initiation of systemic resistance (ISR) which is mediated by triggering plant immune responses elicited through pathogen-associated molecular patterns (PAMPs). The ISR triggered in the infected region of the plant leads to the development of systemic acquired resistance (SAR) throughout the plant making the plant resistant to a wide range of pathogens. A number of PGPRs including Pseudomonas and Bacillus genera have proven their ability to stimulate ISR. However, there are still some challenges in the large-scale application and acceptance of PGPR for pest and disease management. Further, we discuss the newly formulated PGPR inoculants possessing both plant growth-promoting activities and plant disease suppression ability for a holistic approach to sustaining plant health and enhancing crop productivity.
Collapse
Affiliation(s)
- Bahman Khoshru
- Department of Soil Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Debasis Mitra
- Department of Microbiology, Raiganj University, Raiganj - 733 134, West Bengal, India
| | - Kuldeep Joshi
- G.B. Pant National Institute of Himalayan Environment, Kosi-Katarmal, Almora-263643, Uttarakhand, India
| | - Priyanka Adhikari
- Centre for Excellence on GMP Extraction Facility (DBT, Govt. of India), National Institute of Pharmaceutical Education and Research. Guwahati-781101, Assam, India
| | | | - Ayomide Emmanuel Fadiji
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho 2735, South Africa
| | - Mehrdad Alizadeh
- Department of Plant Pathology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Ankita Priyadarshini
- Crop Production Division, ICAR – National Rice Research Institute, Cuttack, 753006, Odisha, India
| | - Ansuman Senapati
- Crop Production Division, ICAR – National Rice Research Institute, Cuttack, 753006, Odisha, India
| | | | - Periyasamy Panneerselvam
- Crop Production Division, ICAR – National Rice Research Institute, Cuttack, 753006, Odisha, India
| | | | - Svetlana Sushkova
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don 344090, Russia
| | - Tatiana Minkina
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don 344090, Russia
| | - Chetan Keswani
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don 344090, Russia
| |
Collapse
|
20
|
Nagrale DT, Chaurasia A, Kumar S, Gawande SP, Hiremani NS, Shankar R, Gokte-Narkhedkar N, Renu, Prasad YG. PGPR: the treasure of multifarious beneficial microorganisms for nutrient mobilization, pest biocontrol and plant growth promotion in field crops. World J Microbiol Biotechnol 2023; 39:100. [PMID: 36792799 DOI: 10.1007/s11274-023-03536-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 01/30/2023] [Indexed: 02/17/2023]
Abstract
Plant growth-promoting rhizobacteria (PGPR) have multifarious beneficial activities for plant growth promotion; act as source of metabolites, enzymes, nutrient mobilization, biological control of pests, induction of disease resistance vis-a-vis bioremediation potentials by phytoextraction and detoxification of heavy metals, pollutants and pesticides. Agrochemicals and synthetic pesticides are currently being utilized widely in all major field crops, thereby adversely affecting human and animal health, and posing serious threats to the environments. Beneficial microorganisms like PGPR could potentially substitute and supplement the toxic chemicals and pesticides with promising application in organic farming leading to sustainable agriculture practices and bioremediation of heavy metal contaminated sites. Among field crops limited bio-formulations have been prepared till now by utilization of PGPR strains having plant growth promotion, metabolites, enzymes, nutrient mobilization and biocontrol activities. The present review contributes comprehensive description of PGPR applications in field crops including commercial, oilseeds, leguminous and cereal crops to further extend the utilization of these potent groups of beneficial microorganisms so that even higher level of crop productivity and quality produce of field crops could be achieved. PGPR and bacteria based commercialized bio-formulations available worldwide for its application in the field crops have been compiled in this review which can be a substitute for the harmful synthetic chemicals. The current knowledge gap and potential target areas for future research have also been projected.
Collapse
Affiliation(s)
- D T Nagrale
- ICAR-Central Institute for Cotton Research, Nagpur, Maharashtra, 440010, India.
| | - A Chaurasia
- ICAR-Indian Institute of Vegetable Research, Varanasi, Uttar Pradesh, 221305, India.
| | - S Kumar
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, Library Avenue, Pusa, New Delhi, 110012, India
| | - S P Gawande
- ICAR-Central Institute for Cotton Research, Nagpur, Maharashtra, 440010, India
| | - N S Hiremani
- ICAR-Central Institute for Cotton Research, Nagpur, Maharashtra, 440010, India
| | - Raja Shankar
- ICAR-Indian Institute of Horticultural Research, Hessaraghatta Lake Post, Bengaluru, 560089, India
| | - N Gokte-Narkhedkar
- ICAR-Central Institute for Cotton Research, Nagpur, Maharashtra, 440010, India
| | - Renu
- Indian Council of Agricultural Research, Krishi Bhawan, New Delhi, 110001, India
| | - Y G Prasad
- ICAR-Central Institute for Cotton Research, Nagpur, Maharashtra, 440010, India
| |
Collapse
|
21
|
Liu J, Zhang J, Shi Q, Liu X, Yang Z, Han P, Li J, Wei Z, Hu T, Liu F. The Interactive Effects of Deficit Irrigation and Bacillus pumilus Inoculation on Growth and Physiology of Tomato Plant. PLANTS (BASEL, SWITZERLAND) 2023; 12:670. [PMID: 36771756 PMCID: PMC9919795 DOI: 10.3390/plants12030670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
The effects of inoculating plant growth promoting rhizobacteria (PGPR) and soil water deficits on crop growth and physiology remain largely unknown. Here, the responses of leaf gas exchange, growth, and water use efficiency (WUE) of tomato plants to Bacillus pumilus (B.p.) inoculation under four irrigation strategies (I1-I4) were investigated in a greenhouse. Results showed that soil water deficits, especially at I4 (20%, v/v), significantly decreased leaf stomatal conductance (gs), transpiration rate (Tr), and photosynthetic rate (An), and the decrease of gs and Tr were more pronounced than An. Reduced irrigation regimes significantly lowered dry matter and plant water use both in the non-B.p. control and the B.p. plants, while reduced irrigation significantly increased plant WUE, and B.p. inoculation had little effect on this parameter. Synergistic effects of PGPR and deficit irrigation on leaf gas exchange, leaf abscisic acid content, and stomatal density were found in this study, and specifically, B.p. treated plants at I4 possessed the highest WUE at stomatal and leaf scales, suggesting that B.p. inoculation could optimize water use and partly alleviate the negative effects of soil water deficit. These findings provide useful information for effective irrigation management and the application of PGPR in agriculture in the future.
Collapse
Affiliation(s)
- Jie Liu
- Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Xianyang 712100, China
| | - Jiarui Zhang
- Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Xianyang 712100, China
| | - Qimiao Shi
- Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Xianyang 712100, China
| | - Xiangliang Liu
- Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Xianyang 712100, China
| | - Zhen Yang
- Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Xianyang 712100, China
| | - Pan Han
- Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Xianyang 712100, China
| | - Jingjing Li
- Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Xianyang 712100, China
| | - Zhenhua Wei
- Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Xianyang 712100, China
| | - Tiantian Hu
- Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Xianyang 712100, China
| | - Fulai Liu
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Højbakkegaard Allé 13, 2630 Taastrup, Denmark
| |
Collapse
|
22
|
Ahmad M, Hussain A, Dar A, Luqman M, Ditta A, Iqbal Z, Ahmad HT, Nazli F, Soufan W, Almutairi K, Sabagh AE. Combating iron and zinc malnutrition through mineral biofortification in maize through plant growth promoting Bacillus and Paenibacillus species. FRONTIERS IN PLANT SCIENCE 2023; 13:1094551. [PMID: 36816488 PMCID: PMC9929565 DOI: 10.3389/fpls.2022.1094551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 12/19/2022] [Indexed: 06/18/2023]
Abstract
INTRODUCTION The burgeoning population of the world is causing food insecurity not only by less food availability but also by the malnutrition of essential nutrients and vitamins. Malnutrition is mostly linked with food having micronutrients lower than the optimal concentration of that specific food commodity and becoming an emerging challenge over the globe. Microbial biofortification in agriculture ensures nutritional security through microbial nitrogen fixation, and improved phosphate and zinc solubilization, which increase the uptake of these nutrients. The present study evaluates the novel plant growth-promoting rhizobacteria (PGPR) to biofortify maize gain. METHODS For this purpose, a pot and two field experiments for maize were conducted. PGPRs were applied alone and in combination for a better understanding of the biofortification potential of these strains. At physiological maturity, the growth parameters, and at harvest, the yield, microbial population, and nutritional status of maize were determined. RESULTS AND DISCUSSION Results revealed that the consortium (ZM27+ZM63+S10) has caused the maximum increase in growth under pot studies like plant height (31%), shoot fresh weight (28%), shoot dry weight (27%), root fresh (33%) and dry weights (29%), and microbial count (21%) in the maize rhizosphere. The mineral analysis of the pot trial also revealed that consortium of ZM27+ZM63+S10 has caused 28, 16, 20, 11 and 11% increases in P, N, K, Fe, and Zn contents in maize, respectively, as compared to un-inoculated treatment in pot studies. A similar trend of results was also observed in both field trials as the consortium of ZM27+ZM63+S10 caused the maximum increase in not only growth and biological properties but also caused maximum biofortification of mineral nutrients in maize grains. The grain yield and 1000-grain weight were also found significantly higher 17 and 12%, respectively, under consortium application as compared to control. So, it can be concluded from these significant results obtained from the PGPR consortium application that microbial inoculants play a significant role in enhancing the growth, yield, and quality of the maize. However, the extensive evaluation of the consortium may help in the formulation of a biofertilizer for sustainable production and biofortification of maize to cope with nutritional security.
Collapse
Affiliation(s)
- Maqshoof Ahmad
- Department of Soil Science, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Azhar Hussain
- Department of Soil Science, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Abubakar Dar
- Department of Soil Science, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Muhammad Luqman
- Department of Soil Science, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Allah Ditta
- Department of environmental science, Shaheed Benazir Bhutto University, Sheringal, Pakistan
- School of Biological Sciences, The University of Western Australia, Perth, WA, Australia
| | - Zafar Iqbal
- National Research Center of Intercropping, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Hafiz Tanvir Ahmad
- Provincial Reference Fertilizer Testing Laboratory, Raiwind Lahore, Lahore, Pakistan
| | - Farheen Nazli
- Institute of Agroindustry and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Walid Soufan
- Plant Production Department, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Khalid Almutairi
- Plant Production Department, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Ayman El Sabagh
- Department of Agronomy, Faculty of Agriculture, University of Kafrelsheikh, Kafr el-Sheikh, Egypt
| |
Collapse
|
23
|
Kaushal P, Ali N, Saini S, Pati PK, Pati AM. Physiological and molecular insight of microbial biostimulants for sustainable agriculture. FRONTIERS IN PLANT SCIENCE 2023; 14:1041413. [PMID: 36794211 PMCID: PMC9923114 DOI: 10.3389/fpls.2023.1041413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 01/13/2023] [Indexed: 06/18/2023]
Abstract
Increased food production to cater the need of growing population is one of the major global challenges. Currently, agro-productivity is under threat due to shrinking arable land, increased anthropogenic activities and changes in the climate leading to frequent flash floods, prolonged droughts and sudden fluctuation of temperature. Further, warm climatic conditions increase disease and pest incidences, ultimately reducing crop yield. Hence, collaborated global efforts are required to adopt environmentally safe and sustainable agro practices to boost crop growth and productivity. Biostimulants appear as a promising means to improve growth of plants even under stressful conditions. Among various categories of biostimulants, microbial biostimulants are composed of microorganisms such as plant growth-promoting rhizobacteria (PGPR) and/or microbes which stimulate nutrient uptake, produce secondary metabolites, siderophores, hormones and organic acids, participate in nitrogen fixation, imparts stress tolerance, enhance crop quality and yield when applied to the plants. Though numerous studies convincingly elucidate the positive effects of PGPR-based biostimulants on plants, yet information is meagre regarding the mechanism of action and the key signaling pathways (plant hormone modulations, expression of pathogenesis-related proteins, antioxidants, osmolytes etc.) triggered by these biostimulants in plants. Hence, the present review focuses on the molecular pathways activated by PGPR based biostimulants in plants facing abiotic and biotic challenges. The review also analyses the common mechanisms modulated by these biostimulants in plants to combat abiotic and biotic stresses. Further, the review highlights the traits that have been modified through transgenic approach leading to physiological responses akin to the application of PGPR in the target plants.
Collapse
Affiliation(s)
- Priya Kaushal
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, HP, India
| | - Nilofer Ali
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, HP, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Shivani Saini
- Department of Botany, Goswami Ganesh Dutta Sanatan Dharma College, Chandigarh, India
| | - Pratap Kumar Pati
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Aparna Maitra Pati
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, HP, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
24
|
Bioinoculant mediated regulation of signalling cascades in various stress responses in plants. Heliyon 2023; 9:e12953. [PMID: 36711264 PMCID: PMC9873674 DOI: 10.1016/j.heliyon.2023.e12953] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/26/2022] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Bio-inoculation involves the association of plant with some beneficial microorganisms, and among these microbiotas, those bacteria which can promote plant growth and development are known as Plant Growth Promoting Rhizobacteria (PGPR). It can help a plant directly or indirectly, which includes root development, biological nitrogen (N2) fixation, stress tolerance, cell division and elongation, solubilization of Zinc, Phosphate, Potassium, soil health improvement and many more. PGPR have gained attention as it can be used as biofertilizers and helpful in bioremediation techniques, which in turn can reduce the chemical dependency in agriculture. PGPR mediated plant growth and stress management is developed by the virtue of the interaction of plant and microbial signalling pathways. On the other hand, environmental stresses are something to which a plant is always exposed irrespective of other factors. The present review is all about the better understanding of the convergence strategies of these signalling molecules and the ambiguities of signalling activities occurring in the host due to the interaction with PGPR under environmental stressed conditions.
Collapse
|
25
|
Yahya M, Rasul M, Hussain SZ, Dilawar A, Ullah M, Rajput L, Afzal A, Asif M, Wubet T, Yasmin S. Integrated analysis of potential microbial consortia, soil nutritional status, and agro-climatic datasets to modulate P nutrient uptake and yield effectiveness of wheat under climate change resilience. FRONTIERS IN PLANT SCIENCE 2023; 13:1074383. [PMID: 36714699 PMCID: PMC9878846 DOI: 10.3389/fpls.2022.1074383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 11/18/2022] [Indexed: 06/18/2023]
Abstract
Climate change has a devastating effect on wheat production; therefore, crop production might decline by 2030. Phosphorus (P) nutrient deficiency is another main limiting factor of reduced yield. Hence, there is a dire need to judiciously consider wheat yield, so that human requirements and nutrition balance can be sustained efficiently. Despite the great significance of biostimulants in sustainable agriculture, there is still a lack of integrated technology encompassing the successful competitiveness of inoculated phosphate-solubilizing bacteria (PSB) in agricultural systems in the context of climatic conditions/meteorological factors and soil nutritional status. Therefore, the present study reveals the modulation of an integrated P nutrient management approach to develop potential PSB consortia for recommended wheat varieties by considering the respective soil health and agro-climatic conditions. The designed consortia were found to maintain adequate viability for up to 9 months, verified through field emission scanning electron microscopy and viable count. Furthermore, a significant increase in grain yield (5%-8%) and seed P (4%) content was observed in consortia-inoculated wheat plants with 20% reduced Diammonium phosphate (DAP) application under net house conditions. Fluorescence in situ hybridization analysis of roots and amplification of the gcd gene of Ochrobactrum sp. SSR indicated the survival and rhizosphere competency of the inoculated PSB. Categorical principal component analysis (CAT-PCA) showed a positive correlation of inoculated field-grown wheat varieties in native soils to grain yield, soil P content, and precipitation for sites belonging to irrigated plains and seed P content, soil organic matter, and number of tillers for sites belonging to Northern dry mountains. However, the impact of inoculation at sites belonging to the Indus delta was found significantly correlated to soil potassium (K) content, electrical conductivity (EC), and temperature. Additionally, a significant increase in grain yield (15%) and seed P (14%) content was observed in inoculated wheat plants. Thus, the present study demonstrates for the first time the need to integrate soil biological health and agro-climatic conditions for consistent performance of augmented PSB and enhanced P nutrient uptake to curtail soil pollution caused by the extensive use of agrochemicals. This study provides innovative insights and identifies key questions for future research on PSB to promote its successful implementation in agriculture.
Collapse
Affiliation(s)
- Mahreen Yahya
- Soil and Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Punjab, Pakistan
| | - Maria Rasul
- Soil and Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Punjab, Pakistan
- Department of Environment and Energy, Sejong University, Neungdong-ro, Gwangjin-gu, Republic of Korea
| | - Sayed Zajif Hussain
- Department of Chemistry and Chemical Engineering, Syed Babar Ali-School of Science and Engineering (SBA-SSE), Lahore University of Management Sciences (LUMS), Punjab, Pakistan
| | - Adil Dilawar
- State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences (UCAS), Beijing, China
| | - Midrar Ullah
- Department of Biotechnology, Shaheed Benazir Bhutto University, Khyber Pakhtunkhwa, Pakistan
| | - Lubna Rajput
- Plant Physiology and Biotechnology Agricultural Research Centre, Sindh, Pakistan
| | - Aftab Afzal
- Department of Botany, Hazara University Mansehra, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Asif
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Punjab, Pakistan
| | - Tesfaye Wubet
- Department of Community Ecology, Helmholtz Centre for Environmental Research (UFZ), Halle, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Sumera Yasmin
- Soil and Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Punjab, Pakistan
| |
Collapse
|
26
|
Ganugi P, Fiorini A, Rocchetti G, Bonini P, Tabaglio V, Lucini L. A response surface methodology approach to improve nitrogen use efficiency in maize by an optimal mycorrhiza-to- Bacillus co-inoculation rate. FRONTIERS IN PLANT SCIENCE 2022; 13:956391. [PMID: 36035726 PMCID: PMC9404334 DOI: 10.3389/fpls.2022.956391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Co-inoculation of arbuscular mycorrhizal fungi (AMF) and bacteria can synergically and potentially increase nitrogen use efficiency (NUE) in plants, thus, reducing nitrogen (N) fertilizers use and their environmental impact. However, limited research is available on AMF-bacteria interaction, and the definition of synergisms or antagonistic effects is unexplored. In this study, we adopted a response surface methodology (RSM) to assess the optimal combination of AMF (Rhizoglomus irregulare and Funneliformis mosseae) and Bacillus megaterium (a PGPR-plant growth promoting rhizobacteria) formulations to maximize agronomical and chemical parameters linked to N utilization in maize (Zea mays L.). The fitted mathematical models, and also 3D response surface and contour plots, allowed us to determine the optimal AMF and bacterial doses, which are approximately accorded to 2.1 kg ha-1 of both formulations. These levels provided the maximum values of SPAD, aspartate, and glutamate. On the contrary, agronomic parameters were not affected, except for the nitrogen harvest index (NHI), which was slightly affected (p-value of < 0.10) and indicated a higher N accumulation in grain following inoculation with 4.1 and 0.1 kg ha-1 of AMF and B. megaterium, respectively. Nonetheless, the identification of the saddle points for asparagine and the tendency to differently allocate N when AMF or PGPR were used alone, pointed out the complexity of microorganism interaction and suggests the need for further investigations aimed at unraveling the mechanisms underlying this symbiosis.
Collapse
Affiliation(s)
- Paola Ganugi
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Andrea Fiorini
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Gabriele Rocchetti
- Department of Animal Science, Food and Nutrition, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | | | - Vincenzo Tabaglio
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Luigi Lucini
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| |
Collapse
|
27
|
Orozco-Mosqueda MDC, Fadiji AE, Babalola OO, Glick BR, Santoyo G. Rhizobiome engineering: Unveiling complex rhizosphere interactions to enhance plant growth and health. Microbiol Res 2022; 263:127137. [PMID: 35905581 DOI: 10.1016/j.micres.2022.127137] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 06/17/2022] [Accepted: 07/13/2022] [Indexed: 12/13/2022]
Abstract
Crop plants are affected by a series of inhibitory environmental and biotic factors that decrease their growth and production. To counteract these adverse effects, plants work together with the microorganisms that inhabit their rhizosphere, which is part of the soil influenced by root exudates. The rhizosphere is a microecosystem where a series of complex interactions takes place between the resident microorganisms (rhizobiome) and plant roots. Therefore, this study analyzes the dynamics of plant-rhizobiome communication, the role of exudates (diffusible and volatile) as a factor in stimulating a diverse rhizobiome, and the differences between rhizobiomes of domesticated crops and wild plants. The study also analyzes different strategies to decipher the rhizobiome through both classical cultivation techniques and the so-called "omics" sciences. In addition, the rhizosphere engineering concept and the two general strategies to manipulate the rhizobiome, i.e., top down and bottom up engineering have been revisited. In addition, recent studies on the effects on the indigenous rhizobiome of inoculating plants with foreign strains, the impact on the endobiome, and the collateral effects on plant crops are discussed. Finally, understanding of the complex rhizosphere interactions and the biological repercussions of rhizobiome engineering as essential steps for improving plant growth and health is proposed, including under adverse conditions.
Collapse
Affiliation(s)
| | - Ayomide Emmanuel Fadiji
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
| | - Olubukola Oluranti Babalola
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
| | - Bernard R Glick
- Department of Biology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Gustavo Santoyo
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mich 58030, Mexico.
| |
Collapse
|
28
|
Zhao D, Ding Y, Cui Y, Zhang Y, Liu K, Yao L, Han X, Peng Y, Gou J, Du B, Wang C. Isolation and Genome Sequence of a Novel Phosphate-Solubilizing Rhizobacterium Bacillus altitudinis GQYP101 and Its Effects on Rhizosphere Microbial Community Structure and Functional Traits of Corn Seedling. Curr Microbiol 2022; 79:249. [PMID: 35834051 DOI: 10.1007/s00284-022-02944-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 06/20/2022] [Indexed: 11/03/2022]
Abstract
Bacillus altitudinis is a widely distributed soil bacterium that has various functional activities, including remediation of contaminated soil, degradation of herbicides, and enhancement of plant growth. B. altitudinis GQYP101 was isolated from the rhizosphere soil of Lycium barbarum L. and demonstrated potential as a plant growth-promoting bacterium. In this work, strain GQYP101 could solubilize phosphorus, and increased the stem diameter, maximum leaf area, and fresh weight of corn in a pot experiment. Nitrogen and phosphorus contents of corn seedlings (aerial part) increased by 100% and 47.9%, respectively, after application of strain GQYP101. Concurrently, nitrogen and phosphorus contents of corn root also increased, by 55.40% and 20.3%, respectively. Furthermore, rhizosphere soil nutrients were altered and the content of available phosphorus increased by 73.2% after application of strain GQYP101. The mechanism by which strain GQYP101 improved plant growth was further investigated by whole genome sequence analysis. Strain GQYP101 comprises a circular chromosome and a linear plasmid. Some key genes of strain GQYP101 were identified that were related to phosphate solubilization, alkaline phosphatase, chemotaxis, and motility. The findings of this study may provide a theoretical basis for strain GQYP101 to enhance crop yield as microbial fertilizer.
Collapse
Affiliation(s)
- Dongying Zhao
- College of Life Sciences and Shandong Engineering Research Center of Plant, Microbia Restoration for Saline-Alkali Land and Shandong Key Laboratory of Agricultural Microbiology and National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Shandong Agricultural University, Taian, China
| | - Yanqin Ding
- College of Life Sciences and Shandong Engineering Research Center of Plant, Microbia Restoration for Saline-Alkali Land and Shandong Key Laboratory of Agricultural Microbiology and National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Shandong Agricultural University, Taian, China
| | - Yanru Cui
- College of Life Sciences and Shandong Engineering Research Center of Plant, Microbia Restoration for Saline-Alkali Land and Shandong Key Laboratory of Agricultural Microbiology and National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Shandong Agricultural University, Taian, China
| | - Yanan Zhang
- College of Life Sciences and Shandong Engineering Research Center of Plant, Microbia Restoration for Saline-Alkali Land and Shandong Key Laboratory of Agricultural Microbiology and National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Shandong Agricultural University, Taian, China
| | - Kai Liu
- College of Life Sciences and Shandong Engineering Research Center of Plant, Microbia Restoration for Saline-Alkali Land and Shandong Key Laboratory of Agricultural Microbiology and National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Shandong Agricultural University, Taian, China
| | - Liangtong Yao
- College of Life Sciences and Shandong Engineering Research Center of Plant, Microbia Restoration for Saline-Alkali Land and Shandong Key Laboratory of Agricultural Microbiology and National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Shandong Agricultural University, Taian, China
| | - Xiaobin Han
- Zunyi Tobacco Monopoly Administration of Guizhou, Zunyi, China
| | - Yulong Peng
- Zunyi Tobacco Monopoly Administration of Guizhou, Zunyi, China
| | - Jianyu Gou
- Zunyi Tobacco Monopoly Administration of Guizhou, Zunyi, China
| | - Binghai Du
- College of Life Sciences and Shandong Engineering Research Center of Plant, Microbia Restoration for Saline-Alkali Land and Shandong Key Laboratory of Agricultural Microbiology and National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Shandong Agricultural University, Taian, China
| | - Chengqiang Wang
- College of Life Sciences and Shandong Engineering Research Center of Plant, Microbia Restoration for Saline-Alkali Land and Shandong Key Laboratory of Agricultural Microbiology and National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Shandong Agricultural University, Taian, China.
| |
Collapse
|
29
|
Bueno CB, dos Santos RM, de Souza Buzo F, de Andrade da Silva MSR, Rigobelo EC. Effects of Chemical Fertilization and Microbial Inoculum on Bacillus subtilis Colonization in Soybean and Maize Plants. Front Microbiol 2022; 13:901157. [PMID: 35875531 PMCID: PMC9298503 DOI: 10.3389/fmicb.2022.901157] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/09/2022] [Indexed: 11/13/2022] Open
Abstract
Plant growth-promoting endophytic microorganisms in agriculture have been expanding in Brazil and are an excellent strategy to face the challenges of current agriculture, such as reducing production costs with fewer environmental impacts, without detriment to productivity. However, little is known about the factors that can affect the colonization of endophytic such as inoculant concentration and mineral fertilization. The present study aimed to evaluate the influence of these factors on soybean and maize crops and found that for soybean crops, the highest Bacillus subtilis concentration of 1 × 104 and 1 × 1010 CFU ml−1 promoted the highest number of recovered bacteria, when there was no mineral fertilization. However, mineral fertilization limited the number of recovered bacteria, suggesting that mineral fertilization interferes with endophytic colonization. For maize crops, the highest number of recovered bacteria occurred from the concentration of 1 × 106 CFU ml−1, not differing from the highest concentrations. A mineral fertilization dose of 25% promoted the greatest B. subtilis recovery compared to the other treatments. Regarding plant development, the highest microbial inoculum concentrations did not necessarily promote greater positive growth promotion effects compared to the concentration of 1 × 104 CFU ml−1 for both crops. The results also suggest that the higher number of endophytic bacteria recovered in the plant does not necessarily affect plant growth in the same proportion. For soybean plants, there is a strong tendency that with the increase in the B. subtilis inoculant concentration, the need for mineral fertilization doses to achieve the same plant development is consequently increased, and inoculations with 1 × 105 and 1 × 106 CFU ml−1 with fertilization doses between 44% and 62% are the ideal combinations for greater plant development. In maize plants, the best growth promotion response (height) was obtained using inoculation concentration of 1 × 102 and 1 × 1010 CFU ml−1, increasing according to the increase in fertilization doses. The findings suggest, for soybean crop, that these high inoculum concentrations required more photosynthetic metabolites from the plants and more nutrients from the soil. Thus, the need for mineral fertilization for plant growth must be increased.
Collapse
Affiliation(s)
- Clara Barros Bueno
- School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Jaboticabal, Brazil
| | - Roberta Mendes dos Santos
- Agricultural and Livestock Microbiology Graduation Program, São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Jaboticabal, São Paulo, Brazil
| | - Fernando de Souza Buzo
- Department of Plant Science, Food Technology and Socioeconomics, Faculty of Engineering of Ilha Solteira/UNESP, Ilha Solteira, Brazil
| | - Maura Santos Reis de Andrade da Silva
- Agricultural and Livestock Microbiology Graduation Program, São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Jaboticabal, São Paulo, Brazil
| | - Everlon Cid Rigobelo
- Agricultural and Livestock Microbiology Graduation Program, São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Jaboticabal, São Paulo, Brazil
- *Correspondence: Everlon Cid Rigobelo,
| |
Collapse
|
30
|
Qiu Z, Paungfoo-Lonhienne C, Ye J, Garcia AG, Petersen I, Di Bella L, Hobbs R, Ibanez M, Heenan M, Wang W, Reeves S, Schmidt S. Biofertilizers can enhance nitrogen use efficiency of sugarcane. Environ Microbiol 2022; 24:3655-3671. [PMID: 35506306 PMCID: PMC9544788 DOI: 10.1111/1462-2920.16027] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 04/21/2022] [Indexed: 12/01/2022]
Abstract
Fertilizers are costly inputs into crop systems. To compensate for inefficiencies and losses from soil, farmers apply on average double the amount of nitrogen (N) fertilizer acquired by crops. We explored if N efficiency improves with biofertilizers formulated with organic waste, mineral N or plant growth-promoting rhizobacteria (PGPR). We compared treatments receiving mineral N fertilizer or biofertilizers at industry-recommended (100%) or lower (60%) N rates at two commercial sugarcane farms. Biofertilizer at the 60% N-rate generated promising results at one farm with significantly higher biomass and sugar yield than the no-N control, which matched the 100% mineral N treatment. This yield difference was accompanied by a shift in microbial diversity and composition. Correlation analysis confirmed that shifts in microbial communities were strongly linked to soil mineral N levels, as well as crop productivity and yield. Microbial co-occurrence networks further revealed that biofertilizer, including treatments with an added PGPR, can enhance bacterial associations, especially in the context of complex fungal networks. Collectively, the results confirm that biofertilizers have quantifiable effects on soil microbial communities in a crop system setting, which underscores the opportunities for biofertilizers to promote N use efficiency and the circular N economy.
Collapse
Affiliation(s)
- Zhiguang Qiu
- School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Qld, 4072, Australia.,School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, China
| | | | - Jun Ye
- School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Qld, 4072, Australia
| | - Axa Gonzalez Garcia
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Qld, 4072, Australia
| | - Ian Petersen
- School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Qld, 4072, Australia.,Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Qld, 4072, Australia
| | - Lawrence Di Bella
- Herbert Cane Productivity Services Ltd., Ingham, Qld, 4850, Australia
| | - Richard Hobbs
- Herbert Cane Productivity Services Ltd., Ingham, Qld, 4850, Australia
| | - Minka Ibanez
- Herbert Cane Productivity Services Ltd., Ingham, Qld, 4850, Australia
| | - Marijke Heenan
- Department of Environment and Science, Brisbane, Qld, 4001, Australia
| | - Weijin Wang
- Department of Environment and Science, Brisbane, Qld, 4001, Australia
| | - Steven Reeves
- Department of Environment and Science, Brisbane, Qld, 4001, Australia
| | - Susanne Schmidt
- School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Qld, 4072, Australia
| |
Collapse
|
31
|
Roychoudhury T, Ray B, Seal A. Metabolically dependent consortia in biofilm: A new horizon for green agriculture. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2021.102256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
32
|
Bello AS, Ben-Hamadou R, Hamdi H, Saadaoui I, Ahmed T. Application of Cyanobacteria ( Roholtiella sp.) Liquid Extract for the Alleviation of Salt Stress in Bell Pepper ( Capsicum annuum L.) Plants Grown in a Soilless System. PLANTS (BASEL, SWITZERLAND) 2021; 11:plants11010104. [PMID: 35009109 PMCID: PMC8747557 DOI: 10.3390/plants11010104] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/17/2021] [Accepted: 12/27/2021] [Indexed: 05/17/2023]
Abstract
Salinity is one of the abiotic stresses that affect crop growth and productivity in arid and semi-arid regions. Unfortunately, there are few known methods to mitigate the deleterious impacts of salt stress on the development and yield of vegetable crops. Blue-green algae (cyanobacteria) are endowed with the potential to curb the negative impacts of salt stress as they are characterized by biostimulant properties. The present work aimed to investigate the effects of Roholtiella sp. as a foliar extract on the growth characteristics, physiological and biochemical responses of bell pepper (Capsicum annuum L.) plants under varying levels of salinity conditions. A soilless water experiment was carried out in a greenhouse where bell pepper seedlings were grown under five salt concentrations (0, 50, 200, 150, and 200 mM of NaCl). Growth characteristics, pigments content, relative water content, and antioxidant activity (CAT) were determined. Our results showed that growth parameters, relative water content (RWC), chlorophyll a & b concentrations under salinity conditions were negatively affected at the highest concentration (200 mM). Interestingly, the application of Roholtiella sp. foliar extract enhanced the plant growth characteristics as shoot length increased by 17.014%, fresh weight by 39.15%, dry and weight by 31.02%, at various salt treatments. Moreover, chlorophyll a and b increased significantly compared with seedlings sprayed with water. Similarly, RWC exhibited a significant increase (92.05%) compared with plants sprayed with water. In addition, antioxidants activities and accumulation of proline were improved in Roholtella sp. extract foliar sprayed seedlings compared to the plants foliar sprayed with water. Conclusively, at the expiration of our study, the Rohotiella sp. extract-treated plants were found to be more efficient in mitigating the deleterious effects caused by the salinity conditions which is an indication of an enhancement potential of tolerating salt-stressed plants when compared to the control group.
Collapse
Affiliation(s)
- Adewale Suraj Bello
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha P.O. Box 2713, Qatar; (A.S.B.); (R.B.-H.)
| | - Radhouane Ben-Hamadou
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha P.O. Box 2713, Qatar; (A.S.B.); (R.B.-H.)
| | - Helmi Hamdi
- Center for Sustainable Development, Qatar University, Doha P.O. Box 2713, Qatar; (H.H.); (I.S.)
| | - Imen Saadaoui
- Center for Sustainable Development, Qatar University, Doha P.O. Box 2713, Qatar; (H.H.); (I.S.)
| | - Talaat Ahmed
- Environmental Science Centre, Qatar University, Doha P.O. Box 2713, Qatar
- Correspondence: ; Tel.: +974-44034563
| |
Collapse
|
33
|
Sani MNH, Yong JWH. Harnessing Synergistic Biostimulatory Processes: A Plausible Approach for Enhanced Crop Growth and Resilience in Organic Farming. BIOLOGY 2021; 11:biology11010041. [PMID: 35053039 PMCID: PMC8773105 DOI: 10.3390/biology11010041] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 12/24/2021] [Accepted: 12/26/2021] [Indexed: 12/15/2022]
Abstract
Simple Summary Demand for organically grown crops has risen globally due to its healthier and safer food products. From a sustainability perspective, organic farming offers an eco-friendly cultivation system that minimizes agrochemicals and producing food with little or no environmental footprint. However, organic agriculture’s biggest drawback is the generally lower and variable yield in contrast to conventional farming. Compatible with organic farming, the selective use of biostimulants can close the apparent yield gap between organic and conventional cultivation systems. A biostimulant is defined as natural microorganisms (bacteria, fungi) or biologically active substances that are able to improve plant growth and yield through several processes. Biostimulants are derived from a range of natural resources including organic materials (composts, seaweeds), manures (earthworms, fish, insects) and extracts derived from microbes, plant, insect or animal origin. The current trend is indicative that a mixture of biostimulants is generally delivering better growth, yield and quality rather than applying biostimulant individually. When used correctly, biostimulants are known to help plants cope with stressful situations like drought, salinity, extreme temperatures and even certain diseases. More research is needed to understand the different biostimulants, key components, and also to adjust the formulations to improve their reliability in the field. Abstract Demand for organically grown food crops is rising substantially annually owing to their contributions to human health. However, organic farm production is still generally lower compared to conventional farming. Nutrient availability, content consistency, uptake, assimilation, and crop responses to various stresses were reported as critical yield-limiting factors in many organic farming systems. In recent years, plant biostimulants (BSs) have gained much interest from researchers and growers, and with the objective of integrating these products to enhance nutrient use efficiency (NUE), crop performance, and delivering better stress resilience in organic-related farming. This review gave an overview of direct and indirect mechanisms of microbial and non-microbial BSs in enhancing plant nutrient uptake, physiological status, productivity, resilience to various stressors, and soil-microbe-plant interactions. BSs offer a promising, innovative and sustainable strategy to supplement and replace agrochemicals in the near future. With greater mechanistic clarity, designing purposeful combinations of microbial and non-microbial BSs that would interact synergistically and deliver desired outcomes in terms of acceptable yield and high-quality products sustainably will be pivotal. Understanding these mechanisms will improve the next generation of novel and well-characterized BSs, combining microbial and non-microbial BSs strategically with specific desired synergistic bio-stimulatory action, to deliver enhanced plant growth, yield, quality, and resilience consistently in organic-related cultivation.
Collapse
Affiliation(s)
- Md. Nasir Hossain Sani
- School of Natural Sciences, Bangor University, Bangor LL57 2DG, UK
- Correspondence: (M.N.H.S.); (J.W.H.Y.)
| | - Jean W. H. Yong
- Department of Biosystems and Technology, Swedish University of Agricultural Sciences, 234 56 Alnarp, Sweden
- Correspondence: (M.N.H.S.); (J.W.H.Y.)
| |
Collapse
|
34
|
Nordstedt NP, Jones ML. Serratia plymuthica MBSA-MJ1 Increases Shoot Growth and Tissue Nutrient Concentration in Containerized Ornamentals Grown Under Low-Nutrient Conditions. Front Microbiol 2021; 12:788198. [PMID: 34925296 PMCID: PMC8675082 DOI: 10.3389/fmicb.2021.788198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 11/10/2021] [Indexed: 11/16/2022] Open
Abstract
High fertilizer rates are often applied to horticulture crop production systems to produce high quality crops with minimal time in production. Much of the nutrients applied in fertilizers are not taken up by the plant and are leached out of the containers during regular irrigation. The application of plant growth promoting rhizobacteria (PGPR) can increase the availability and uptake of essential nutrients by plants, thereby reducing nutrient leaching and environmental contamination. Identification of PGPR can contribute to the formulation of biostimulant products for use in commercial greenhouse production. Here, we have identified Serratia plymuthica MBSA-MJ1 as a PGPR that can promote the growth of containerized horticulture crops grown with low fertilizer inputs. MBSA-MJ1 was applied weekly as a media drench to Petunia×hybrida (petunia), Impatiens walleriana (impatiens), and Viola×wittrockiana (pansy). Plant growth, quality, and tissue nutrient concentration were evaluated 8weeks after transplant. Application of MBSA-MJ1 increased the shoot biomass of all three species and increased the flower number of impatiens. Bacteria application also increased the concentration of certain essential nutrients in the shoots of different plant species. In vitro and genomic characterization identified multiple putative mechanisms that are likely contributing to the strain’s ability to increase the availability and uptake of these nutrients by plants. This work provides insight into the interconnectedness of beneficial PGPR mechanisms and how these bacteria can be utilized as potential biostimulants for sustainable crop production with reduced chemical fertilizer inputs.
Collapse
Affiliation(s)
- Nathan P Nordstedt
- Department of Horticulture and Crop Science, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH, United States
| | - Michelle L Jones
- Department of Horticulture and Crop Science, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH, United States
| |
Collapse
|
35
|
Jha Y, Dehury B, Kumar SPJ, Chaurasia A, Singh UB, Yadav MK, Angadi UB, Ranjan R, Tripathy M, Subramanian RB, Kumar S, Simal-Gandara J. Delineation of molecular interactions of plant growth promoting bacteria induced β-1,3-glucanases and guanosine triphosphate ligand for antifungal response in rice: a molecular dynamics approach. Mol Biol Rep 2021; 49:2579-2589. [PMID: 34914086 PMCID: PMC8924079 DOI: 10.1007/s11033-021-07059-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/07/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND The plant growth is influenced by multiple interactions with biotic (microbial) and abiotic components in their surroundings. These microbial interactions have both positive and negative effects on plant. Plant growth promoting bacterial (PGPR) interaction could result in positive growth under normal as well as in stress conditions. METHODS Here, we have screened two PGPR's and determined their potential in induction of specific gene in host plant to overcome the adverse effect of biotic stress caused by Magnaporthe grisea, a fungal pathogen that cause blast in rice. We demonstrated the glucanase protein mode of action by performing comparative modeling and molecular docking of guanosine triphosphate (GTP) ligand with the protein. Besides, molecular dynamic simulations have been performed to understand the behavior of the glucanase-GTP complex. RESULTS The results clearly showed that selected PGPR was better able to induce modification in host plant at morphological, biochemical, physiological and molecular level by activating the expression of β-1,3-glucanases gene in infected host plant. The docking results indicated that Tyr75, Arg256, Gly258, and Ser223 of glucanase formed four crucial hydrogen bonds with the GTP, while, only Val220 found to form hydrophobic contact with ligand. CONCLUSIONS The PGPR able to induce β-1,3-glucanases gene in host plant upon pathogenic interaction and β-1,3-glucanases form complex with GTP by hydrophilic interaction for induction of defense cascade for acquiring resistance against Magnaporthe grisea.
Collapse
Affiliation(s)
- Yachana Jha
- N. V. Patel College of Pure and Applied Sciences, S.P. University, Anand, 388315, India.,BRD School of Bioscience, Sardar Patel University, Anand, 388120, Gujarat, India
| | - Budheswar Dehury
- ICMR-Regional Medical Research Centre, Bhubaneswar, 751023, India
| | - S P Jeevan Kumar
- ICAR-Directorate of Floricultural Research, Pune, 411036, Maharashtra, India
| | - Anurag Chaurasia
- ICAR- Indian Institute of Vegetable Research, Varanasi, 221305, India
| | - Udai B Singh
- ICAR-National Bureau of Agriculturally Important Microorganisms, Mau, 275103, Uttar Pradesh, India
| | | | - U B Angadi
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012, India
| | - Rajiv Ranjan
- Dayalbagh Educational Institute, Agra, 282005, Uttar Pradesh, India
| | | | - R B Subramanian
- BRD School of Bioscience, Sardar Patel University, Anand, 388120, Gujarat, India
| | - Sunil Kumar
- ICAR-National Bureau of Agriculturally Important Microorganisms, Mau, 275103, Uttar Pradesh, India. .,ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012, India.
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Science, Universidade de Vigo, E32004, Ourense, Spain.
| |
Collapse
|
36
|
Marathe D, Raghunathan K, Singh A, Thawale P, Kumari K. A Modified Lysimeter Study for Phyto-Treatment of Moderately Saline Wastewater Using Plant-Derived Filter Bedding Materials. Front Microbiol 2021; 12:767132. [PMID: 34938280 PMCID: PMC8685380 DOI: 10.3389/fmicb.2021.767132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/18/2021] [Indexed: 11/26/2022] Open
Abstract
The present study focuses on determining the phyto-treatment efficiency for treatment of moderately saline wastewater using organic raw materials, such as rice husk, coconut husk, rice straw, and charcoal. The moderately saline wastewater with total dissolved solids (TDS) concentration up to 6143.33 ± 5.77 mg/L was applied to the lysimeters at the rate of 200 m3 ha-1 day-1 in five different lysimeter treatments planted with Eucalyptus camaldulensis (T1, T2, T3, T4, and T5). T1 was a control without any filter bedding material, whereas rice straw, rice husk, coconut husk, and charcoal were used as filter bedding materials in the T2, T3, T4, and T5 treatment systems, respectively. Each treatment showed significant treatment efficiency wherein T3 had the highest removal efficiency of 76.21% followed by T4 (67.57%), T5 (65.18%), T2 (46.46%), and T1 (45.5%). T3 and T4 also showed higher salt accumulation, such as sodium (Na) and potassium (K). Further, the pollution load in terms of TDS and chemical and biological oxygen demand significantly reduced from leachate in the T3 and T4 treatments in comparison with other treatments. Parameters of the soil, such as electrical conductivity, exchangeable sodium percentage, and cation exchange capacity did not show values corresponding to high salinity or sodic soils, and therefore, no adverse impact on soil was observed in the present study. Also, Eucalyptus camaldulensis plant species showed good response to wastewater treatment in terms of growth parameters, such as root/shoot weight and nitrogen, phosphorus, and potassium (NPK) uptake, plant height, biomass, and chlorophyll content. Root and shoot dry weight were in the order T3 (51.2 and 44.6 g)>T4 (49.3 and 43.5 g) > T5 (47.6 and 40.5 g) > T2 (46.9 and 38.2 g) > T1 (45.6 and 37.1 g). Likewise, the total chlorophyll content was highest in T3 (12.6 μg/g) followed by T4 (12.3 μg/g), T5 (11.9 μg/g), T2 (11.5 μg/g), and the control, that is, T1 (11.0 μg/g). However, the most promising results were obtained for T3 and T4 treatments in comparison with the control (T1), which implies that, among all organic raw materials, coconut and rice husks showed the highest potential for salt accumulation and thereby wastewater treatment. Conclusively, the findings of the study suggest that organic raw material-based amendments are useful in managing the high salts levels in both plants and leachates.
Collapse
Affiliation(s)
- Deepak Marathe
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nagpur, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Karthik Raghunathan
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nagpur, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Anshika Singh
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nagpur, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Prashant Thawale
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nagpur, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Kanchan Kumari
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nagpur, India
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Kolkata Zonal Centre, Kolkata, India
| |
Collapse
|
37
|
Dzandu E, Enu-Kwesi L, Markwei CM, Ayeh KO. Screening for drought tolerance potential of nine cocoa ( Theobroma cacao L.) genotypes from Ghana. Heliyon 2021; 7:e08389. [PMID: 34849420 PMCID: PMC8608854 DOI: 10.1016/j.heliyon.2021.e08389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 08/06/2021] [Accepted: 11/11/2021] [Indexed: 11/26/2022] Open
Abstract
This study was conducted with a view to screen nine genotypes of Cacao from The Cocoa Research Institute of Ghana (CRIG) to test their abilities to withstand drought stress conditions using parameters such as leaf relative water content (RWC), proline accumulation in leaves and trichomes. The experimental design consisted of three replicates of the genotypes used and these were laid out in Complete Randomized Block Design (CRBD) to determine the drought tolerance potentials of the nine genotypes of cocoa at the seedling stage. Two water treatments were used which involved withholding water from one day after full saturation with water prior to the first appearance of drought symptoms (FADS) and watering every two days to the completion of the experiment. Results in this research revealed that proline was found to gather in water-stressed seedlings, and the differences in the mean proline amounts in the genotypes was found to be significant. Genotype T63/971 x Sca9 had the most elevated concentration of free proline at FADS (4 μg/g DW) followed by genotype T60 x Pound10 (3.5 μg/g DW) whereas genotype PA150 × 9006 had the smallest amount of accumulated proline in leaves. Genotype PA150 × 6020 had the highest RWC and SMC of 65% and 1.5% respectively at FADS whilst genotype PA7 x 6035 had the lowest RWC of 43%. There was a direct relationship between the amounts of free proline of genotypes T63/971 x SCA9 and T60 x POUND10 and their respective RWC of the leaves. Genotypes T63/971 x SCA9 and PA150 × 9006 had the highest and lowest numbers of trichomes respectively. Inference from this study revealed that T63/971 x SCA9 and T60 x POUND10 genotypes appear to be the most drought-tolerant genotypes in view of their relatively high values of free proline content, leaf RWC, trichomes and lower values of soil water use (SMC).
Collapse
Affiliation(s)
- Ellis Dzandu
- Department of Plant and Environmental Biology, School of Biological Sciences, College of Basic and Applied Sciences, University of Ghana, P.O. Box LG 55, Legon, Ghana
| | - Lewis Enu-Kwesi
- Department of Plant and Environmental Biology, School of Biological Sciences, College of Basic and Applied Sciences, University of Ghana, P.O. Box LG 55, Legon, Ghana
| | - Carol Merley Markwei
- Department of Plant and Environmental Biology, School of Biological Sciences, College of Basic and Applied Sciences, University of Ghana, P.O. Box LG 55, Legon, Ghana
| | - Kwadwo Owusu Ayeh
- Department of Plant and Environmental Biology, School of Biological Sciences, College of Basic and Applied Sciences, University of Ghana, P.O. Box LG 55, Legon, Ghana
| |
Collapse
|
38
|
Rizvi A, Ahmed B, Khan MS, Umar S, Lee J. Sorghum-Phosphate Solubilizers Interactions: Crop Nutrition, Biotic Stress Alleviation, and Yield Optimization. FRONTIERS IN PLANT SCIENCE 2021; 12:746780. [PMID: 34925401 PMCID: PMC8671763 DOI: 10.3389/fpls.2021.746780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 11/01/2021] [Indexed: 06/14/2023]
Abstract
Sweet sorghum [Sorghum bicolor (L.) Moench] is a highly productive, gluten-free cereal crop plant that can be used as an alternative energy resource, human food, and livestock feed or for biofuel-ethanol production. Phosphate fertilization is a common practice to optimize sorghum yield but because of high cost, environmental hazards, and soil fertility reduction, the use of chemical P fertilizer is discouraged. Due to this, the impetus to search for an inexpensive and eco-friendly microbiome as an alternative to chemical P biofertilizer has been increased. Microbial formulations, especially phosphate solubilizing microbiome (PSM) either alone or in synergism with other rhizobacteria, modify the soil nutrient pool and augment the growth, P nutrition, and yield of sorghum. The use of PSM in sorghum disease management reduces the dependence on pesticides employed to control the phytopathogens damage. The role of PSM in the sorghum cultivation system is, however, relatively unresearched. In this manuscript, the diversity and the strategies adopted by PSM to expedite sorghum yield are reviewed, including the nutritional importance of sorghum in human health and the mechanism of P solubilization by PSM. Also, the impact of solo or composite inoculations of biological enhancers (PSM) with nitrogen fixers or arbuscular mycorrhizal fungi is explained. The approaches employed by PSM to control sorghum phytopathogens are highlighted. The simultaneous bio-enhancing and biocontrol activity of the PS microbiome provides better options for the replacement of chemical P fertilizers and pesticide application in sustainable sorghum production practices.
Collapse
Affiliation(s)
- Asfa Rizvi
- Department of Botany, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | - Bilal Ahmed
- School of Chemical Engineering, Yeungnam University, Gyeongsan, South Korea
| | - Mohammad Saghir Khan
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, India
| | - Shahid Umar
- Department of Botany, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan, South Korea
| |
Collapse
|
39
|
Ahmed B, Shahid M, Syed A, Rajput VD, Elgorban AM, Minkina T, Bahkali AH, Lee J. Drought Tolerant Enterobacter sp./ Leclercia adecarboxylata Secretes Indole-3-acetic Acid and Other Biomolecules and Enhances the Biological Attributes of Vigna radiata (L.) R. Wilczek in Water Deficit Conditions. BIOLOGY 2021; 10:1149. [PMID: 34827142 PMCID: PMC8614786 DOI: 10.3390/biology10111149] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/31/2021] [Accepted: 11/01/2021] [Indexed: 12/17/2022]
Abstract
Drought or water stress is a limiting factor that hampers the growth and yield of edible crops. Drought-tolerant plant growth-promoting rhizobacteria (PGPR) can mitigate water stress in crops by synthesizing multiple bioactive molecules. Here, strain PAB19 recovered from rhizospheric soil was biochemically and molecularly characterized, and identified as Enterobacter sp./Leclercia adecarboxylata (MT672579.1). Strain PAB19 tolerated an exceptionally high level of drought (18% PEG-6000) and produced indole-3-acetic acid (176.2 ± 5.6 µg mL-1), ACC deaminase (56.6 ± 5.0 µg mL-1), salicylic acid (42.5 ± 3.0 µg mL-1), 2,3-dihydroxy benzoic acid (DHBA) (44.3 ± 2.3 µg mL-1), exopolysaccharide (204 ± 14.7 µg mL-1), alginate (82.3 ± 6.5 µg mL-1), and solubilized tricalcium phosphate (98.3 ± 3.5 µg mL-1), in the presence of 15% polyethylene glycol. Furthermore, strain PAB19 alleviated water stress and significantly (p ≤ 0.05) improved the overall growth and biochemical attributes of Vigna radiata (L.) R. Wilczek. For instance, at 2% PEG stress, PAB19 inoculation maximally increased germination, root dry biomass, leaf carotenoid content, nodule biomass, leghaemoglobin (LHb) content, leaf water potential (ΨL), membrane stability index (MSI), and pod yield by 10%, 7%, 14%, 38%, 9%, 17%, 11%, and 11%, respectively, over un-inoculated plants. Additionally, PAB19 inoculation reduced two stressor metabolites, proline and malondialdehyde, and antioxidant enzymes (POD, SOD, CAT, and GR) levels in V. radiata foliage in water stress conditions. Following inoculation of strain PAB19 with 15% PEG in soil, stomatal conductance, intercellular CO2 concentration, transpiration rate, water vapor deficit, intrinsic water use efficiency, and photosynthetic rate were significantly improved by 12%, 8%, 42%, 10%, 9% and 16%, respectively. Rhizospheric CFU counts of PAB19 were 2.33 and 2.11 log CFU g-1 after treatment with 15% PEG solution and 8.46 and 6.67 log CFU g-1 for untreated controls at 40 and 80 DAS, respectively. Conclusively, this study suggests the potential of Enterobacter sp./L. adecarboxylata PAB19 to alleviate water stress by improving the biological and biochemical features and of V. radiata under water-deficit conditions.
Collapse
Affiliation(s)
- Bilal Ahmed
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Korea
| | - Mohammad Shahid
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh 202002, India;
| | - Asad Syed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (A.S.); (A.M.E.); (A.H.B.)
| | - Vishnu D. Rajput
- Academy of Biology and Biotechnology, Southern Federal University, 344090 Rostov-on-Don, Russia; (V.D.R.); (T.M.)
| | - Abdallah M. Elgorban
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (A.S.); (A.M.E.); (A.H.B.)
| | - Tatiana Minkina
- Academy of Biology and Biotechnology, Southern Federal University, 344090 Rostov-on-Don, Russia; (V.D.R.); (T.M.)
| | - Ali H. Bahkali
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (A.S.); (A.M.E.); (A.H.B.)
| | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Korea
| |
Collapse
|
40
|
Sarkar D, Sankar A, Devika OS, Singh S, Shikha, Parihar M, Rakshit A, Sayyed RZ, Gafur A, Ansari MJ, Danish S, Fahad S, Datta R. Optimizing nutrient use efficiency, productivity, energetics, and economics of red cabbage following mineral fertilization and biopriming with compatible rhizosphere microbes. Sci Rep 2021; 11:15680. [PMID: 34344947 PMCID: PMC8333308 DOI: 10.1038/s41598-021-95092-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 07/15/2021] [Indexed: 02/07/2023] Open
Abstract
Conventional agricultural practices and rising energy crisis create a question about the sustainability of the present-day food production system. Nutrient exhaustive crops can have a severe impact on native soil fertility by causing nutrient mining. In this backdrop, we conducted a comprehensive assessment of bio-priming intervention in red cabbage production considering nutrient uptake, the annual change in soil fertility, nutrient use efficiency, energy budgeting, and economic benefits for its sustainable intensification, among resource-poor farmers of Middle Gangetic Plains. The compatible microbial agents used in the study include Trichoderma harzianum, Pseudomonas fluorescens, and Bacillus subtilis. Field assays (2016-2017 and 2017-2018) of the present study revealed supplementing 75% of recommended NPK fertilizer with dual inoculation of T. harzianum and P. fluorescens increased macronutrient uptake (N, P, and K), root length, heading percentage, head diameter, head weight, and the total weight of red cabbage along with a positive annual change in soil organic carbon. Maximum positive annual change in available N and available P was recorded under 75% RDF + P. fluorescens + B. subtilis and 75% RDF + T. harzianum + B. subtilis, respectively. Bio-primed plants were also higher in terms of growth and nutrient use efficiency (agronomic efficiency, physiological efficiency, apparent recovery efficiency, partial factor productivity). Energy output (26,370 and 26,630 MJ ha-1), energy balance (13,643 and 13,903 MJ ha-1), maximum gross return (US $ 16,030 and 13,877 ha-1), and net return (US $ 15,966 and 13,813 ha-1) were considerably higher in T. harzianum, and P. fluorescens treated plants. The results suggest the significance of the bio-priming approach under existing integrated nutrient management strategies and the role of dual inoculations in producing synergistic effects on plant growth and maintaining the soil, food, and energy nexus.
Collapse
Affiliation(s)
- Deepranjan Sarkar
- grid.411507.60000 0001 2287 8816Department of Soil Science and Agricultural Chemistry, Institute of Agricultural Sciences, Banaras Hindu University, Uttar Pradesh, Varanasi, 221005 India
| | - Ardith Sankar
- grid.411507.60000 0001 2287 8816Department of Agronomy, Institute of Agricultural Sciences, Banaras Hindu University, Uttar Pradesh, Varanasi, 221005 India
| | - O. Siva Devika
- grid.411507.60000 0001 2287 8816Department of Soil Science and Agricultural Chemistry, Institute of Agricultural Sciences, Banaras Hindu University, Uttar Pradesh, Varanasi, 221005 India
| | - Sonam Singh
- grid.411507.60000 0001 2287 8816Department of Soil Science and Agricultural Chemistry, Institute of Agricultural Sciences, Banaras Hindu University, Uttar Pradesh, Varanasi, 221005 India
| | - Shikha
- grid.506070.4Krishi Vigyan Kendra, Ranichauri, Veer Chandra Singh Garhwali Uttarakhand University of Horticulture and Forestry, Tehri Garhwal, 249199 Uttarakhand India
| | - Manoj Parihar
- grid.473812.b0000 0004 1755 9396Crop Production Division, ICAR-Vivekananda Parvatiya Krishi Anusandhan Sansthan, Almora, 263601 Uttarakhand India
| | - Amitava Rakshit
- grid.411507.60000 0001 2287 8816Department of Soil Science and Agricultural Chemistry, Institute of Agricultural Sciences, Banaras Hindu University, Uttar Pradesh, Varanasi, 221005 India
| | - R. Z. Sayyed
- Department of Microbiology, PSGVP Mandal’s, Arts, Science & Commerce College, 425409, Shahada, Maharashtra India
| | - Abdul Gafur
- Sinarmas Forestry Corporate Research and Development, Perawang, 28772 Indonesia
| | - Mohammad Javed Ansari
- grid.411529.a0000 0001 0374 9998Department of Botany, Hindu College Moradabad (Mahatma Jyotiba Phule Rohilkhand Univesity Bareilly), Moradabad, Uttar Pradesh 244001 India
| | - Subhan Danish
- grid.411501.00000 0001 0228 333XDepartment of Soil Science, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, 60800 Pakistan ,grid.7112.50000000122191520Department of Geology and Pedology, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemedelska1, 61300 Brno, Czech Republic
| | - Shah Fahad
- grid.467118.d0000 0004 4660 5283Department of Agronomy, The University of Haripur, Haripur, 22620 Pakistan
| | - Rahul Datta
- grid.7112.50000000122191520Department of Geology and Pedology, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemedelska1, 61300 Brno, Czech Republic
| |
Collapse
|
41
|
Castiglione AM, Mannino G, Contartese V, Bertea CM, Ertani A. Microbial Biostimulants as Response to Modern Agriculture Needs: Composition, Role and Application of These Innovative Products. PLANTS 2021; 10:plants10081533. [PMID: 34451578 PMCID: PMC8400793 DOI: 10.3390/plants10081533] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/23/2021] [Accepted: 07/24/2021] [Indexed: 01/09/2023]
Abstract
An increasing need for a more sustainable agriculturally-productive system is required in order to preserve soil fertility and reduce soil biodiversity loss. Microbial biostimulants are innovative technologies able to ensure agricultural yield with high nutritional values, overcoming the negative effects derived from environmental changes. The aim of this review was to provide an overview on the research related to plant growth promoting microorganisms (PGPMs) used alone, in consortium, or in combination with organic matrices such as plant biostimulants (PBs). Moreover, the effectiveness and the role of microbial biostimulants as a biological tool to improve fruit quality and limit soil degradation is discussed. Finally, the increased use of these products requires the achievement of an accurate selection of beneficial microorganisms and consortia, and the ability to prepare for future agriculture challenges. Hence, the implementation of the microorganism positive list provided by EU (2019/1009), is desirable.
Collapse
Affiliation(s)
- Adele M. Castiglione
- Plant Physiology Unit, Department of Life Sciences and Systems Biology, University of Torino, 10135 Turin, Italy; (A.M.C.); (G.M.)
- Green Has Italia S.P.A, 12043 Canale, Italy;
| | - Giuseppe Mannino
- Plant Physiology Unit, Department of Life Sciences and Systems Biology, University of Torino, 10135 Turin, Italy; (A.M.C.); (G.M.)
| | | | - Cinzia M. Bertea
- Plant Physiology Unit, Department of Life Sciences and Systems Biology, University of Torino, 10135 Turin, Italy; (A.M.C.); (G.M.)
- Correspondence: ; Tel.: +39-0116706361
| | - Andrea Ertani
- Department of Agricultural Forest and Food Sciences, University of Torino, 10095 Turin, Italy;
| |
Collapse
|
42
|
Rhizobacteria from 'flowering desert' events contribute to the mitigation of water scarcity stress during tomato seedling germination and growth. Sci Rep 2021; 11:13745. [PMID: 34215802 PMCID: PMC8253767 DOI: 10.1038/s41598-021-93303-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 06/16/2021] [Indexed: 02/06/2023] Open
Abstract
Tomato (Solanum lycopersicum L.) is an important vegetable cultivated around the world. Under field conditions, tomato can be negatively affected by water scarcity in arid and semiarid regions. The application of native plant growth-promoting rhizobacteria (PGPR) isolated from arid environments has been proposed as an inoculant to mitigate abiotic stresses in plants. In this study, we evaluated rhizobacteria from Cistanthe longiscapa (syn Calandrinia litoralis and Calandrinia longiscapa), a representative native plant of flowering desert (FD) events (Atacama Desert, Chile), to determine their ability to reduce water scarcity stress on tomato seedlings. The isolated bacterial strains were characterized with respect to their PGPR traits, including P solubilization, 1-aminocyclopropane-1-carboxylate deaminase activity, and tryptophan-induced auxin and exopolysaccharide production. Three PGPR consortia were formulated with isolated Bacillus strains and then applied to tomato seeds, and then, the seedlings were exposed to different levels of water limitations. In general, tomato seeds and seedlings inoculated with the PGPR consortia presented significantly (P ≤ 0.05) greater plant growth (48 to 60 cm of height and 171 to 214 g of weight) and recovery rates (88 to 100%) compared with those without inoculation (37 to 51 cm of height; 146 to 197 g of fresh weight; 54 to 92% of recovery) after exposure to a lack of irrigation over different time intervals (24, 72 and 120 h) before transplantation. Our results revealed the effectiveness of the formulated PGPR consortia from FD to improve the performance of inoculated seeds and seedlings subjected to water scarcity; thus, the use of these consortia can represent an alternative approach for farmers facing drought events and water scarcity associated with climate change in semiarid and arid regions worldwide.
Collapse
|
43
|
Morphological and Metabolite Responses of Potatoes under Various Phosphorus Levels and Their Amelioration by Plant Growth-Promoting Rhizobacteria. Int J Mol Sci 2021; 22:ijms22105162. [PMID: 34068175 PMCID: PMC8153024 DOI: 10.3390/ijms22105162] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/07/2021] [Accepted: 05/09/2021] [Indexed: 12/13/2022] Open
Abstract
Low phosphorus (P) availability is a major limiting factor for potatoes. P fertilizer is applied to enhance P availability; however, it may become toxic when plants accumulate at high concentrations. Therefore, it is necessary to gain more knowledge of the morphological and biochemical processes associated with P deficiency and toxicity for potatoes, as well as to explore an alternative approach to ameliorate the P deficiency condition. A comprehensive study was conducted (I) to assess plant morphology, mineral allocation, and metabolites of potatoes in response to P deficiency and toxicity; and (II) to evaluate the potency of plant growth-promoting rhizobacteria (PGPR) in improving plant biomass, P uptake, and metabolites at low P levels. The results revealed a reduction in plant height and biomass by 60–80% under P deficiency compared to P optimum. P deficiency and toxicity conditions also altered the mineral concentration and allocation in plants due to nutrient imbalance. The stress induced by both P deficiency and toxicity was evident from an accumulation of proline and total free amino acids in young leaves and roots. Furthermore, root metabolite profiling revealed that P deficiency reduced sugars by 50–80% and organic acids by 20–90%, but increased amino acids by 1.5–14.8 times. However, the effect of P toxicity on metabolic changes in roots was less pronounced. Under P deficiency, PGPR significantly improved the root and shoot biomass, total root length, and root surface area by 32–45%. This finding suggests the potency of PGPR inoculation to increase potato plant tolerance under P deficiency.
Collapse
|
44
|
Hafez EM, Osman HS, Gowayed SM, Okasha SA, Omara AED, Sami R, Abd El-Monem AM, Abd El-Razek UA. Minimizing the Adversely Impacts of Water Deficit and Soil Salinity on Maize Growth and Productivity in Response to the Application of Plant Growth-Promoting Rhizobacteria and Silica Nanoparticles. AGRONOMY 2021; 11:676. [DOI: 10.3390/agronomy11040676] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
The development of new approaches for sustaining soil quality, leaf health, and maize productivity are imperative in light of water deficit and soil salinity. Plant growth-promoting rhizobacteria (PGPR) and silica nanoparticles (SiNP) are expected to improve soil chemistry leading to improved plant performance and productivity. In this field experiment, water deficit is imposed by three irrigation intervals—12 (I1), 15 (I2), and 18 (I3) days. Plants are also treated with foliar and soil applications (control, PGPR, SiNP, and PGPR + SiNP) to assess soil enzymatic activity, soil physicochemical properties, plant physiological traits, biochemical analysis, nutrient uptake, and productivity of maize (Zea mays L.) plants grown under salt-affected soil during the 2019 and 2020 seasons. With longer irrigation intervals, soil application of PGPR relieves the deleterious impacts of water shortage and improves yield-related traits and maize productivity. This is attributed to the improvement in soil enzymatic activity (dehydrogenase and alkaline phosphatase) and soil physicochemical characteristics, which enhances the plants’ health and growth under longer irrigation intervals (i.e., I2 and I3). Foliar spraying of SiNP shows an improvement in the physiological traits in maize plants grown under water shortage. This is mainly owing to the decline in oxidative stress by improving the enzymatic activity (CAT, SOD, and POD) and ion balance (K+/Na+), resulting in higher photosynthetic rate, relative water content, photosynthetic pigments, and stomatal conductance, alongside reduced proline content, electrolyte leakage, lipid peroxidase, and sodium content under salt-affected soil. The co-treatment of SiNP with PGPR confirms greater improvement in yield-related traits, maize productivity, as well as nutrient uptake (N, P, and K). Accordingly, their combination is a good strategy for relieving the detrimental impacts of water shortage and soil salinity on maize production.
Collapse
|
45
|
Complete Genome Sequence of Bacillus sp. Strain IGA-FME-1, Isolated from the Bulk Soil of Maize ( Zea mays L.). Microbiol Resour Announc 2021; 10:10/13/e00192-21. [PMID: 33795345 PMCID: PMC8104053 DOI: 10.1128/mra.00192-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Here, we present the complete genome of Bacillus sp. strain IGA-FME-1 (isolated from the bulk soil of maize [Zea mays L.]). This genome consists of 5,147,837 bp, 5,219 protein-coding genes, 112 tRNAs, thirteen 16S rRNAs, thirteen 23S rRNAs, and thirteen 5S rRNAs, with a G+C content of 38.2%. Here, we present the complete genome of Bacillus sp. strain IGA-FME-1 (isolated from the bulk soil of maize [Zea mays L.]). This genome consists of 5,147,837 bp, 5,219 protein-coding genes, 112 tRNAs, 13 16S rRNAs, 13 23S rRNAs, and 13 5S rRNAs, with a G+C content of 38.2%.
Collapse
|
46
|
Karmakar S, Billah M, Hasan M, Sohan SR, Hossain MF, Faisal Hoque KM, Kabir AH, Rashid MM, Talukder MR, Reza MA. Impact of LFGD (Ar+O 2) plasma on seed surface, germination, plant growth, productivity and nutritional composition of maize ( Zea mays L.). Heliyon 2021; 7:e06458. [PMID: 33768173 PMCID: PMC7980070 DOI: 10.1016/j.heliyon.2021.e06458] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 12/31/2020] [Accepted: 03/04/2021] [Indexed: 12/20/2022] Open
Abstract
In this present study conducted with the LFGD (Low-Frequency Glow Discharge) (Ar + O2) plasma treated maize seeds, to inspect the effect on seed surface modifications, seed germination, growth, development, productivity and nutritional compositions of maize plants. This study reported that LFGD (Ar + O2) plasma treated maize seeds have a potential effect to change its smooth seed surfaces and, it becomes rougher. It also enhances the seed germination rate up to (15.88%), which might help to increase the shoot length (33.42%), root length (10.67%), stem diameter (13.37%), total chlorophyll content (46.93%), total soluble protein (52.48%), total soluble phenol (21.68%) and sugar (1.62%) concentrations in respect controls of our experimental plants. For this reason, the acceptable treatment duration for maize seeds were 30sec, 60sec, 90sec and 120sec. After treatment, the plants exhibited a significant increase in CAT, SOD, APX and GR activities in the leaves and roots, and also significantly changes in H2O2 (208.33 ± 5.87μ molg-1 FW) in the leaves and (61.13 ± 1.72μ molg-1 FW) in the roots, NO was (369.24 ± 213.19μ molg-1FW) and (1094.23 ± 135.44μ molg-1FW) in the leaves and roots. LFGD plasma treatment also contributed to enhancement of productivity (1.27%), nutritional (moisture, ash, fat, and crude fiber) compositions, and iron and zinc micro-nutrition concentrations of maize. From this research, LFGD (Ar + O2) plasma treatment showed a potential impact on the maize cultivation system, which is very effective tools and both in nationally and internationally alter the conventional cultivation system of maize. Because it promotes seed surface modification, improved germination rate, shoot length, root length, chlorophyll content, some of the growths related enzymatic activity, nutrient composition, iron, and zinc micro-nutrients and the productivity of maize.
Collapse
Affiliation(s)
- Sumon Karmakar
- Molecular Biology and Protein Science Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Mutasim Billah
- Molecular Biology and Protein Science Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Mahedi Hasan
- Molecular Biology and Protein Science Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Sohanur Rahman Sohan
- Molecular Biology and Protein Science Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Md Forhad Hossain
- Molecular Biology and Protein Science Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Kazi Md Faisal Hoque
- Molecular Biology and Protein Science Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Ahmad Humayan Kabir
- Molecular Plant Physiology Laboratory, Department of Botany, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Md Mamunur Rashid
- Plasma Science and Technology Laboratory, Department of Applied Physics and Electronic Engineering, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Mamunur Rashid Talukder
- Plasma Science and Technology Laboratory, Department of Applied Physics and Electronic Engineering, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Md Abu Reza
- Molecular Biology and Protein Science Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh
| |
Collapse
|