1
|
Ehnert P, Krücken J, Fiedler S, Horn F, Helm CS, Neubert A, Weiher W, Terhalle W, Steuber S, Daher R, von Samson-Himmelstjerna G. Anthelmintic resistance against benzimidazoles and macrocyclic lactones in strongyle populations on cattle farms in northern Germany. Sci Rep 2025; 15:17973. [PMID: 40410299 PMCID: PMC12102382 DOI: 10.1038/s41598-025-02838-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Accepted: 05/16/2025] [Indexed: 05/25/2025] Open
Abstract
Anthelmintic resistance (AR) in cattle gastrointestinal nematodes (GIN) is an increasing global concern, with low to moderate levels recently documented in Central Europe. This study reports on resistance against both macrocyclic lactones (MLs) and benzimidazoles (BZs) in northern Germany, highlighting that AR is spreading. The fecal egg count reduction test (FECRT) remains the primary tool for AR assessment, yet differing methodologies and recent guideline updates complicate resistance interpretation across studies. Statistical methods, such as Bayesian approaches used by eggCounts and bayescount, yield varying confidence intervals, further influencing results. Notably, the nemabiome analysis identified Ostertagia ostertagi and Cooperia oncophora as predominant species in the region, though unexpected diversity among farms with additional GIN species occurring sometimes even at high frequency, suggests morphological analysis of coprocultures may underestimate species prevalence. Detecting AR against both drug classes on some farms underscores the urgency of implementing sustainable strategies, such as targeted selective treatment and combinations of anthelmintics with different mode of action, to prevent scenarios of multi-drug resistance observed elsewhere. Effective resistance management requires immediate discussions with veterinarians and stakeholders to steer toward informed, preventive measures in cattle farming.
Collapse
Affiliation(s)
- Paula Ehnert
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, 14163, Berlin, Germany
- Veterinary Centre for Resistance Research, Freie Universität Berlin, Berlin, Germany
| | - Jürgen Krücken
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, 14163, Berlin, Germany
- Veterinary Centre for Resistance Research, Freie Universität Berlin, Berlin, Germany
| | - Stefan Fiedler
- Federal Office of Consumer Protection and Food Safety, Berlin, Germany
| | - Fabian Horn
- Federal Office of Consumer Protection and Food Safety, Berlin, Germany
| | - Christina S Helm
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, 14163, Berlin, Germany
- Veterinary Centre for Resistance Research, Freie Universität Berlin, Berlin, Germany
| | - Ann Neubert
- Federal Office of Consumer Protection and Food Safety, Berlin, Germany
| | - Wiebke Weiher
- Federal Office of Consumer Protection and Food Safety, Berlin, Germany
| | - Werner Terhalle
- Federal Office of Consumer Protection and Food Safety, Berlin, Germany
| | - Stephan Steuber
- Federal Office of Consumer Protection and Food Safety, Berlin, Germany
| | - Ricarda Daher
- Federal Office of Consumer Protection and Food Safety, Berlin, Germany
| | - Georg von Samson-Himmelstjerna
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, 14163, Berlin, Germany.
- Veterinary Centre for Resistance Research, Freie Universität Berlin, Berlin, Germany.
| |
Collapse
|
2
|
Stevenson ZC, Laufer E, Estevez AO, Robinson K, Phillips PC. Precise Lineage Tracking Using Molecular Barcodes Demonstrates Fitness Trade-offs for Ivermectin Resistance in Nematodes. G3 (BETHESDA, MD.) 2025:jkaf081. [PMID: 40208109 DOI: 10.1093/g3journal/jkaf081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 03/20/2025] [Indexed: 04/11/2025]
Abstract
A fundamental tenet of evolutionary genetics is that the direction and strength of selection on individual loci varies with the environment. Barcoded evolutionary lineage tracking is a powerful approach for high-throughput measurement of selection within experimental evolution that to date has largely been restricted to studies within microbial systems, largely because the random integration of barcodes within animals is limited by physical and molecular protection of the germline. Here, we use the recently developed TARDIS barcoding system in Caenorhabditis elegans (Stevenson et al., 2023) to implement the first randomly inserted genomic-barcode fitness experiment within an animal model and use this system to precisely measure the influence of the concentration of the anthelmintic compound ivermectin on the strength of selection on an ivermectin resistance cassette. The combination of the trio of knockouts in neuronally expressed GluCl channels, avr-14, avr-15, and glc-1, has been previously demonstrated to provide resistance to ivermectin at high concentrations. Varying the concentration of ivermectin in liquid culture allows the strength of selection on these genes to be precisely controlled within populations of millions of individuals, with the frequency of each barcode then being measured at multiple time points via sequencing at deep coverage and used to estimate the fitness of the individual lineages in the population. The mutations display a high cost to resistance at low concentrations, rapidly losing out to wildtype genotypes, but the balance tips in their favor when the ivermectin concentration exceeds 2nM. This trade-off in resistance is likely generated by a hindered rate of development in resistant individuals. Our results demonstrate that C. elegans can be used to generate high precision estimates of fitness using a high-throughput barcoding approach to yield novel insights into evolutionarily and economically important traits.
Collapse
Affiliation(s)
- Zachary C Stevenson
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97401, USA
| | - Eleanor Laufer
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97401, USA
| | - Annette O Estevez
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97401, USA
| | - Kristin Robinson
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97401, USA
| | - Patrick C Phillips
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97401, USA
| |
Collapse
|
3
|
Godoy P, Rezanezhad Dizaji B, Zardini Buzatto A, Sanchez L, Li L. The Lipid Composition of the Exo-Metabolome from Haemonchus contortus. Metabolites 2025; 15:193. [PMID: 40137157 PMCID: PMC11944095 DOI: 10.3390/metabo15030193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/24/2025] [Accepted: 03/04/2025] [Indexed: 03/27/2025] Open
Abstract
Background/Objectives: Metabolomic studies of different parasite-derived biomolecules, such as lipids, are needed to broaden the discovery of novel targets and overcome anthelmintic resistance. Lipids are involved in diverse functions in biological systems, including parasitic helminths, but little is known about their role in the biology of these organisms and their impact on host-parasite interactions. This study aimed to characterize the lipid profile secreted by Haemonchus contortus, the major parasitic nematodes of farm ruminants. Methods: H. contortus adult worms were recovered from infected sheep and cultured ex vivo. Parasite medium was collected at different time points and samples were subjected to an untargeted global lipidomic analysis. Lipids were extracted and subjected to Liquid Chromatography-Mass Spectrometry (LC-MS/MS). Annotated lipids were normalized and subjected to statistical analysis. Lipid clusters' fold change (FC) and individual lipid features were compared at different time points. Lipids were also analyzed by structural composition and saturation bonding. Results: A total of 1057 H. contortus lipid features were annotated, including glycerophospholipids, fatty acyls, sphingolipids, glycerolipids, and sterols. Most of these compounds were unsaturated lipids. We found significant FC differences in the lipid profile in a time-dependent manner. Conclusions: We predict that many lipids found in our study act as signaling molecules for nematodes' physiological functions, such as adaptation to nutrient changes, life span and mating, and as modulators on the host immune responses.
Collapse
Affiliation(s)
- Pablo Godoy
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC J2S 2M2, Canada; (B.R.D.); (L.S.)
- Independent Researcher and Animal Health Consultant, Montreal, QC H4A 2V2, Canada
| | - Behrouz Rezanezhad Dizaji
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC J2S 2M2, Canada; (B.R.D.); (L.S.)
| | | | - Laura Sanchez
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC J2S 2M2, Canada; (B.R.D.); (L.S.)
| | - Liang Li
- The Metabolomics Innovation Centre (TMIC), Edmonton, AB T6G 2E9, Canada
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2N4, Canada
| |
Collapse
|
4
|
Arsenopoulos KV, Gelasakis AI, Papadopoulos E. Abattoir Countrywide Survey of Dairy Small Ruminants' Haemonchosis in Greece and Associated Risk Factors. Animals (Basel) 2025; 15:487. [PMID: 40002969 PMCID: PMC11851873 DOI: 10.3390/ani15040487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/04/2025] [Accepted: 02/07/2025] [Indexed: 02/27/2025] Open
Abstract
OBJECTIVES The objectives of this study were to (i) determine the prevalence of Haemonchus contortus infections in dairy sheep and goats in continental and insular Greece, based on an abattoir survey, and (ii) to evaluate potential host-related risk factors including the age and sex, as well as the altitude, the management system, the co-existence of goats and sheep, the season, and the anthelmintic treatment, on the occurrence of haemonchosis. METHODS In total, 1004 abomasa of small ruminants were examined to evaluate the prevalence of Haemonchus spp. Moreover, a structured questionnaire was used to obtain relevant information regarding animal and farm characteristics. Haemonchus-like helminths were collected from the abomasa and used for the molecular species identification; a fragment of 321 base pairs of the internal transcribed spacer 2 sequence of nuclear DNA was amplified. RESULTS The prevalence of mono-species H. contortus infection of small ruminants was 37.2%. For sheep, a multivariable analysis revealed the anthelmintic treatment (treatment with pro/benzimidazoles), the age (lambs under 2 months old), and the management system (intensive management system) as significant factors for preventing H. contortus infection. Likewise, the management system (intensive management system), the anthelmintic treatment (treatment with macrocyclic lactones and their combination with pro/benzimidazoles), the altitude of the farms (farms located over 300 m above sea level), and the season (spring and summer) were significant risk factors in preventing H. contortus infection in goats. CONCLUSION These findings emphasize the urgent need for targeted management practices and region-specific veterinary protocols to effectively reduce parasitic burdens.
Collapse
Affiliation(s)
- Konstantinos V. Arsenopoulos
- Department of Veterinary Medicine, School of Veterinary Medicine, University of Nicosia, Engomi, 2414 Nicosia, Cyprus
| | - Athanasios I. Gelasakis
- Laboratory of Anatomy and Physiology of Farm Animals, Department of Animal Science, Agricultural University of Athens (AUA), Iera Odos 75 Str., 11855 Athens, Greece;
| | - Elias Papadopoulos
- Laboratory of Parasitology and Parasitic Diseases, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| |
Collapse
|
5
|
Maier GU, Torcal P, Stackhouse J, Davy JS, Forero LC, Snell L, Woodmansee G. Gastrointestinal parasitic worm burdens and efficacy of deworming practices in growing beef cattle grazing California pastures. Transl Anim Sci 2025; 9:txaf007. [PMID: 39931128 PMCID: PMC11808572 DOI: 10.1093/tas/txaf007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 01/22/2025] [Indexed: 02/13/2025] Open
Abstract
Treatment for enteric parasites is a common practice in beef cattle, yet little data is known about the prevalence of nematode and trematode parasite infections in beef cattle in the western United States. Likewise, the data on the efficacy of deworming practices and the presence of anthelmintic resistance (AR) of these parasites in this region is sparse. The current study collected evidence for the presence of nematode and trematode parasites in 18 herds of young beef cattle grazing either dryland or irrigated pasture in northern California as well as on efficacy and evidence of AR in a subgroup of herds. We found variable levels of fecal egg counts (FEC) ranging from 6 to 322 for the arithmetic mean eggs per gram (EPG) in the tested cattle groups. There was no difference in the number of EPG between herds grazing dryland or irrigated pasture (P = 0.54). We did not find any evidence for liver flukes or lungworms in the tested cattle. There was evidence of AR to macrocyclic lactones in all eight herds where fecal egg count reduction tests (FECRT) were performed, however due to types and execution of treatment applications and sample sizes, these results need to be interpreted with caution. The most common genus of third stage larvae in coproculture testing before treatment was Cooperia (between 55% and 98% of larvae) as well as post treatment for those herds undergoing FECRT (between 50% and 96%). Ostertagia was the second most frequent genus of larvae found in coproculture testing making up between 0% and 27% of larvae before treatment and between 5% and 50% of larvae after treatment. Anthelmintic practices in beef herds in northern California and likely in a larger geographic area in the western United States need to be updated in order to continue effective use of the currently available drugs.
Collapse
Affiliation(s)
- Gabriele U Maier
- Department of Population Health & Reproduction, University of California Davis, CA 95616, USA
| | - Phillip Torcal
- Department of Population Health & Reproduction, University of California Davis, CA 95616, USA
| | - Jeffery Stackhouse
- Agriculture and Natural Resources Humboldt and Del Norte counties, University of California, Eureka, CA 95503, USA
| | - Josh S Davy
- Agriculture and Natural Resources Tehama, Glenn and Colusa counties, University of California, Red Bluff, CA 96080, USA
| | - Larry C Forero
- Agriculture and Natural Resources Shasta and Trinity counties, University of California, Redding, CA 96002, USA
| | - Laura Snell
- Agriculture and Natural Resources Modoc county, University of California, Alturas, CA 96101, USA
| | - Grace Woodmansee
- Agriculture and Natural Resources Siskiyou county, University of California, Yreka, CA 96097, USA
| |
Collapse
|
6
|
Hoshiki A, Soul W, Bernard NG. The anthelmintic activity of the white wormwood (Artemisia herba Alba) against Haemonchus contortus in beef cattle. Sci Rep 2025; 15:637. [PMID: 39754020 PMCID: PMC11698843 DOI: 10.1038/s41598-024-84656-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 12/25/2024] [Indexed: 01/06/2025] Open
Abstract
The objective of the study was to determine the efficacy of white wormwood on helminthes in beef cattle production. Water extracts of white wormwood of different levels of phytotoxicity were used to treat female adult H. contortus over 8 h under controlled laboratory conditions. The experiment was designed in a completely randomized design with six treatments replicated three times. Treatments 3-6 showed a reduction in worm motility over time (P < 0.05) while it did not change much for T1 and T2 (P < 0.05). Even after 8 h of incubation, more than 50% of the worms were still active in T1, T2 and T3. Meaningful reductions in activity were observed in T4 from 6 to 8 h, T5 form 4-8 h and T6 form 2-6 h. The highest mortality was observed in T4, T5 and T6, 8 h after incubation, however only T6 totally killed all worms 6 h after incubation. Treatments 4 and 5 only achieved 80 and 82% mortality respectively, 8 h post incubation. It is therefore concluded that wormwood aqueous extracts at 5 mg/mL and 10 mg/mL have the capability to immobilize, inactivate and kill mature H. contortus worms from beef cattle.
Collapse
Affiliation(s)
- Annamore Hoshiki
- Department of Agriculture, Women's University in Africa, 549 Arcturus Road, Harare, Zimbabwe
| | - Washaya Soul
- Gary Magadzire School of Agriculture, Department of Livestock, Wildlife, and Fisheries, Great Zimbabwe University, P O Box 1325, Masvingo, Zimbabwe.
| | | |
Collapse
|
7
|
Fahs HZ, Refai FS, Gopinadhan S, Moussa Y, Gan HH, Hunashal Y, Battaglia G, Cipriani PG, Ciancia C, Rahiman N, Kremb S, Xie X, Pearson YE, Butterfoss GL, Maizels RM, Esposito G, Page AP, Gunsalus KC, Piano F. A new class of natural anthelmintics targeting lipid metabolism. Nat Commun 2025; 16:305. [PMID: 39746976 PMCID: PMC11695593 DOI: 10.1038/s41467-024-54965-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 11/26/2024] [Indexed: 01/04/2025] Open
Abstract
Parasitic helminths are a major global health threat, infecting nearly one-fifth of the human population and causing significant losses in livestock and crops. Resistance to the few anthelmintic drugs is increasing. Here, we report a set of avocado fatty alcohols/acetates (AFAs) that exhibit nematocidal activity against four veterinary parasitic nematode species: Brugia pahangi, Teladorsagia circumcincta and Heligmosomoides polygyrus, as well as a multidrug resistant strain (UGA) of Haemonchus contortus. AFA shows significant efficacy in H. polygyrus infected mice. In C. elegans, AFA exposure affects all developmental stages, causing paralysis, impaired mitochondrial respiration, increased reactive oxygen species production and mitochondrial damage. In embryos, AFAs penetrate the eggshell and induce rapid developmental arrest. Genetic and biochemical tests reveal that AFAs inhibit POD-2, encoding an acetyl CoA carboxylase, the rate-limiting enzyme in lipid biosynthesis. These results uncover a new anthelmintic class affecting lipid metabolism.
Collapse
Affiliation(s)
- Hala Zahreddine Fahs
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, United Arab Emirates
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, USA
| | - Fathima S Refai
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, United Arab Emirates
| | - Suma Gopinadhan
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, United Arab Emirates
| | - Yasmine Moussa
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, United Arab Emirates
| | - Hin Hark Gan
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, USA
| | - Yamanappa Hunashal
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, United Arab Emirates
| | - Gennaro Battaglia
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, United Arab Emirates
- Dipartimento di Scienze Chimiche, Università di Napoli "Federico II", 80138, Naples, Italy
| | - Patricia G Cipriani
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, United Arab Emirates
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, USA
| | - Claire Ciancia
- School of Infection and Immunity, University of Glasgow, Scotland, UK
| | - Nabil Rahiman
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, United Arab Emirates
| | - Stephan Kremb
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, United Arab Emirates
| | - Xin Xie
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, United Arab Emirates
| | - Yanthe E Pearson
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, United Arab Emirates
| | - Glenn L Butterfoss
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, United Arab Emirates
| | - Rick M Maizels
- School of Infection and Immunity, University of Glasgow, Scotland, UK
| | - Gennaro Esposito
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, United Arab Emirates
- Istituto Nazionale Biostrutture e Biosistemi, 00136, Rome, Italy
| | - Antony P Page
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Scotland, UK
| | - Kristin C Gunsalus
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, United Arab Emirates.
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, USA.
| | - Fabio Piano
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, United Arab Emirates.
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, USA.
| |
Collapse
|
8
|
Stevenson ZC, Laufer E, Estevez AO, Robinson K, Phillips PC. Precise Lineage Tracking Using Molecular Barcodes Demonstrates Fitness Trade-offs for Ivermectin Resistance in Nematodes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.08.622685. [PMID: 39574588 PMCID: PMC11581038 DOI: 10.1101/2024.11.08.622685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
A fundamental tenet of evolutionary genetics is that the direction and strength of selection on individual loci varies with the environment. Barcoded evolutionary lineage tracking is a powerful approach for high-throughput measurement of selection within experimental evolution that to date has largely been restricted to studies within microbial systems, largely because the random integration of barcodes within animals is limited by physical and molecular protection of the germline. Here, we use the recently developed TARDIS barcoding system in Caenorhabditis elegans (Stevenson et al., 2023) to implement the first randomly inserted genomic-barcode experimental evolution animal model and use this system to precisely measure the influence of the concentration of the anthelmintic compound ivermectin on the strength of selection on an ivermectin resistance cassette. The combination of the trio of knockouts in neuronally expressed GluCl channels, avr-14, avr-15, and glc-1, has been previously demonstrated to provide resistance to ivermectin at high concentrations. Varying the concentration of ivermectin in liquid culture allows the strength of selection on these genes to be precisely controlled within populations of millions of individuals, yielding the largest animal experimental evolution study to date. The frequency of each barcode was determined at multiple time points via sequencing at deep coverage and then used to estimate the fitness of the individual lineages in the population. The mutations display a high cost to resistance at low concentrations, rapidly losing out to wildtype genotypes, but the balance tips in their favor when the ivermectin concentration exceeds 2nM. This trade-off in resistance is likely generated by a hindered rate of development in resistant individuals. Our results demonstrate that C. elegans can be used to generate high precision estimates of fitness using a high-throughput barcoding approach to yield novel insights into evolutionarily and economically important traits.
Collapse
Affiliation(s)
| | - Eleanor Laufer
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97401, USA
| | - Annette O. Estevez
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97401, USA
| | - Kristin Robinson
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97401, USA
| | - Patrick C. Phillips
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97401, USA
| |
Collapse
|
9
|
Maurizio A, Dotto G, Fasoli A, Gaio F, Petratti S, Pertile A, Tessarin C, Marchiori E, Dellamaria D, Vadlejch J, Cassini R. Treatment ineffectiveness towards Haemonchus contortus is highly prevalent in sheep and goat farms of North-Eastern Italy. BMC Vet Res 2024; 20:498. [PMID: 39478551 PMCID: PMC11523670 DOI: 10.1186/s12917-024-04347-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 10/22/2024] [Indexed: 11/03/2024] Open
Abstract
BACKGROUND Anthelmintic resistance (AR) is a global threat to grazing livestock farming. In Italy, anthelmintic efficacy remains high compared to other European countries, but many parts of the country haven't been investigated yet. Local veterinary practitioners from Trentino and Veneto regions reported suspected inefficacy towards anthelmintic drugs in some of their farms, prompting a study on AR in sheep and goat farms of northern Italy. The study aimed to assess anthelmintic effectiveness using genus-specific faecal egg count reduction tests (FECRT), to detect differences in treatment response among nematode genera involved in the infection. RESULTS Twelve farms (6 sheep and 6 goat farms) were included based on clinical suspicion of AR. Treatments were carried out with either benzimidazoles (BZ) or macrocyclic lactones (ML) Treatment was effective in 3/6 goat trials, with reduced effectiveness to BZ in two farms and to ML the last one. In sheep farms (6/6), effectiveness was consistently and more severely insufficient. Ineffectiveness was particularly high towards Haemonchus contortus, while Oesophagostomum/Chabertia maintained susceptibility in nearly all trials. Trichostrongylus/Teladorsagia exhibited intermediate results. CONCLUSIONS This study reveals diminished efficacy of both BZ and ML in small ruminant farms in north-eastern Italy, an area previously lacking data on the topic, except for goats in South Tyrol. Variability in treatment responses among nematode genera support suspicions of AR, and further concerns are raised by the prevalence of treatment ineffectiveness against the highly pathogenic Haemonchus contortus. This finding underscores the urgent need for comprehensive AR monitoring in the area and improved management practices to prevent further resistance development and protect livestock health.
Collapse
Affiliation(s)
- Anna Maurizio
- Department of Animal Medicine, Production and Health, University of Padova, Viale dell'Università, 16, Legnaro, PD, 35020, Italy.
| | - Giorgia Dotto
- Department of Animal Medicine, Production and Health, University of Padova, Viale dell'Università, 16, Legnaro, PD, 35020, Italy
| | | | | | | | | | - Cinzia Tessarin
- Department of Animal Medicine, Production and Health, University of Padova, Viale dell'Università, 16, Legnaro, PD, 35020, Italy
| | - Erica Marchiori
- Department of Animal Medicine, Production and Health, University of Padova, Viale dell'Università, 16, Legnaro, PD, 35020, Italy
| | - Debora Dellamaria
- Istituzione Zooprofilattico Sperimentale delle Venezie, Viale dell'Università, 10, Legnaro, PD, 35020, Italy
| | - Jaroslav Vadlejch
- Department of Zoology and Fisheries, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, Prague Suchdol, 165 00, Czech Republic
| | - Rudi Cassini
- Department of Animal Medicine, Production and Health, University of Padova, Viale dell'Università, 16, Legnaro, PD, 35020, Italy
| |
Collapse
|
10
|
Yang Z, Chan KW, Abu Bakar MZ, Deng X. Unveiling Drimenol: A Phytochemical with Multifaceted Bioactivities. PLANTS (BASEL, SWITZERLAND) 2024; 13:2492. [PMID: 39273976 PMCID: PMC11397239 DOI: 10.3390/plants13172492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024]
Abstract
Drimenol, a phytochemical with a distinct odor is found in edible aromatic plants, such as Polygonum minus (known as kesum in Malaysia) and Drimys winteri. Recently, drimenol has received increasing attention owing to its diverse biological activities. This review offers the first extensive overview of drimenol, covering its sources, bioactivities, and derivatives. Notably, drimenol possesses a wide spectrum of biological activities, including antifungal, antibacterial, anti-insect, antiparasitic, cytotoxic, anticancer, and antioxidant effects. Moreover, some mechanisms of its activities, such as its antifungal effects against human mycoses and anticancer activities, have been investigated. However, there are still several crucial issues in the research on drimenol, such as the lack of experimental understanding of its pharmacokinetics, bioavailability, and toxicity. By synthesizing current research findings, this review aims to present a holistic understanding of drimenol, paving the way for future studies and its potential utilization in diverse fields.
Collapse
Affiliation(s)
- Zhongming Yang
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Kim Wei Chan
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Md Zuki Abu Bakar
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Malaysia
- Department of Veterinary Preclinical Science, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Xi Deng
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Malaysia
| |
Collapse
|
11
|
Tookhy NA, Isa NMM, Rahaman YA, Ahmad NI, Sharma RSK, Idris LH, Mansor R, Bui DT, Hamzah NH, Shakhes SA. Epidemiology of rumen fluke infection in selected buffalo farms in perak, malaysia: prevalence, molecular species identification, and associated risk factors. Parasitol Res 2024; 123:199. [PMID: 38687367 DOI: 10.1007/s00436-024-08219-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 04/22/2024] [Indexed: 05/02/2024]
Abstract
Rumen flukes cause heavy economic losses in the ruminant industry worldwide, especially in tropical and subtropical countries. This study estimated the prevalence of rumen flukes in buffaloes, identified the species diversity, and determined risk factors associated with rumen fluke prevalence in Perak, Peninsular Malaysia. A cross-sectional study was conducted, and 321 faecal samples were collected from six buffalo farms. A structured questionnaire was developed, and farmers were interviewed to obtain information regarding risk factors associated with rumen fluke infection. The faecal samples were examined using sedimentation and Flukefinder® techniques. Genomic DNA was extracted from the fluke eggs recovered using the Flukefinder® method, and the internal transcribed spacer 2 (ITS2) fragment was amplified and sequenced to facilitate species identification. The results showed that the overall prevalence of rumen fluke across the sampled farms was 40.2% (129/321). Three rumen fluke species were identified, namely, Fischoederius elongatus, F. cobboldi, and Orthocoelium streptocoelium. Several management factors had a significant association (P < 0.05) with rumen fluke prevalence, including production type, cleaning of the stable, drinking water system, flooding around the farm, grazing system, pasture sharing with other livestock, and deworming program. This work constitutes the first attempt to understand the epidemiology of rumen fluke infection in the region and suggests that good farm management, pasture management, choosing appropriate drugs, and proper husbandry practices may improve buffalo health and production in areas where rumen flukes are prevalent.
Collapse
Affiliation(s)
- Nazir Ahmad Tookhy
- Department of Paraclinic, Faculty of Veterinary Sciences, Herat University, Herat, Afghanistan
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Nur-Mahiza Md Isa
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
- Laboratory of Animal Production and Sustainable Biodiversity, Institute of Tropical Agriculture and Food Security (ITAFoS), Universiti Putra Malaysia, 43400, UPM Serdang, Malaysia.
| | - Yasmin Abd Rahaman
- Department of Veterinary Laboratory Diagnosis, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Nur Indah Ahmad
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Reuben Sunil Kumar Sharma
- Laboratory of Vaccine and Biomolecules, Institute of Bioscience, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Lokman Hakim Idris
- Department of Veterinary Pre-Clinical Science, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Rozaihan Mansor
- Department of Farm and Exotic Animals Medicine and Surgery, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Dung Thi Bui
- Institute of Ecology and Biological Resources, Graduate University of Science and Technology, Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Ha Noi, Vietnam
| | - Noor Hazfalinda Hamzah
- Forensic Science Program, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, 43600, Bangi, Malaysia
| | - Shoaib Ahmad Shakhes
- Department of Paraclinic, Faculty of Veterinary Sciences, Herat University, Herat, Afghanistan
| |
Collapse
|
12
|
Castagna F, Bava R, Palma E, Morittu V, Spina A, Ceniti C, Lupia C, Cringoli G, Rinaldi L, Bosco A, Ruga S, Britti D, Musella V. Effect of pomegranate ( Punica granatum) anthelmintic treatment on milk production in dairy sheep naturally infected with gastrointestinal nematodes. Front Vet Sci 2024; 11:1347151. [PMID: 38384955 PMCID: PMC10879392 DOI: 10.3389/fvets.2024.1347151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/18/2024] [Indexed: 02/23/2024] Open
Abstract
Anthelmintic drug resistance has proliferated across Europe in sheep gastrointestinal nematodes (GINs). Sheep welfare and health are adversely impacted by these phenomena, which also have an impact on productivity. Finding alternatives for controlling GINs in sheep is thus of utmost importance. In this study, the anthelmintic effectiveness (AE) of a Calabrian ethnoveterinary aqueous macerate based on Punica granatum (whole fruits) was assessed in Comisana pregnant sheep. Furthermore, an examination, both qualitative and quantitative, was conducted on milk. Forty-five sheep were selected for the investigation. The sheep were divided by age, weight, physiological state (pluripara at 20 days before parturition), and eggs per gram of feces (EPG) into three homogeneous groups of 15 animals each: PG received a single oral dosage of P. granatum macerate at a rate of 50 mL per sheep; AG, treated with albendazole, was administered orally at 3.75 mg/kg/bw; and CG received no treatment. Timelines were as follows: D0, treatments, group assignment, fecal sampling, and AE assessment; D7, D14, D21, fecal sampling, and AE evaluation. The FLOTAC technique was used to evaluate the individual GIN fecal egg count (FEC) using a sodium chloride flotation solution (specific gravity = 1.20) and 100 × (1-[T2/C2]) as the formula for evaluating FEC reduction. Following the lambs' weaning, milk was collected on the following days (DL) in order to quantify production: DL35, DL42, DL49, DL56, DL63, DL70, DL77, and DL84. The amount of milk produced by every animal was measured and reported in milliliters (ml) for quantitative evaluations. Using MilkoScan TM fT + foss electric, Denmark, the quality of the milk (casein, lactose, protein concentration, and fat, expressed as a percentage) was assessed. The macerate demonstrated a considerable AE (51.8%). Moreover, its use has resulted in higher milk production rates quantitatively (15.5%) and qualitatively (5.12% protein, 4.12% casein, 4.21% lactose, and 8.18% fat). The study showed that green veterinary pharmacology could be the easiest future approach to counteracting anthelmintic resistance in sheep husbandry.
Collapse
Affiliation(s)
- Fabio Castagna
- Department of Health Sciences, University of Catanzaro Magna Græcia, Catanzaro, Italy
- Mediterranean Ethnobotanical Conservatory, Sersale (CZ), Catanzaro, Italy
| | - Roberto Bava
- Department of Health Sciences, University of Catanzaro Magna Græcia, Catanzaro, Italy
| | - Ernesto Palma
- Department of Health Sciences, University of Catanzaro Magna Græcia, Catanzaro, Italy
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FISH), University of Catanzaro Magna Græcia, Catanzaro, Italy
| | - Valeria Morittu
- Department of Health Sciences, University of Catanzaro Magna Græcia, Catanzaro, Italy
| | - Antonella Spina
- Department of Health Sciences, University of Catanzaro Magna Græcia, Catanzaro, Italy
| | - Carlotta Ceniti
- Department of Health Sciences, University of Catanzaro Magna Græcia, Catanzaro, Italy
| | - Carmine Lupia
- Mediterranean Ethnobotanical Conservatory, Sersale (CZ), Catanzaro, Italy
- National Ethnobotanical Conservatory, Castelluccio Superiore, Potenza, Italy
| | - Giuseppe Cringoli
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, CREMOPAR, Naples, Italy
| | - Laura Rinaldi
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, CREMOPAR, Naples, Italy
| | - Antonio Bosco
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, CREMOPAR, Naples, Italy
| | - Stefano Ruga
- Department of Health Sciences, University of Catanzaro Magna Græcia, Catanzaro, Italy
| | - Domenico Britti
- Department of Health Sciences, University of Catanzaro Magna Græcia, Catanzaro, Italy
- Interdepartmental Center Veterinary Service for Human and Animal Health (CISVet-SUA), University of Catanzaro Magna Græcia, Catanzaro, Italy
| | - Vincenzo Musella
- Department of Health Sciences, University of Catanzaro Magna Græcia, Catanzaro, Italy
- Interdepartmental Center Veterinary Service for Human and Animal Health (CISVet-SUA), University of Catanzaro Magna Græcia, Catanzaro, Italy
| |
Collapse
|
13
|
Pafčo B, Nosková E, Ilík V, Anettová L, Červená B, Kreisinger J, Pšenková I, Václavek P, Vyhlídalová T, Ježková J, Malát K, Mihalca AD, Modrý D. First insight into strongylid nematode diversity and anthelmintic treatment effectiveness in beef cattle in the Czech Republic explored by HTS metagenomics. Vet Parasitol Reg Stud Reports 2024; 47:100961. [PMID: 38199682 DOI: 10.1016/j.vprsr.2023.100961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 10/25/2023] [Accepted: 11/20/2023] [Indexed: 01/12/2024]
Abstract
Parasitic diseases and mitigation of their effects play an important role in the health management of grazing livestock worldwide, with gastrointestinal strongylid nematodes being of prominent importance. These helminths typically occur in complex communities, often composed of species from numerous strongylid genera. Detecting the full diversity of strongylid species in non-invasively collected faecal samples is nearly impossible using conventional methods. In contrast, high-throughput amplicon sequencing (HTS) can effectively identify co-occurring species. During the four-year project, we collected and analysed faecal samples from beef cattle on >120 farms throughout the Czech Republic. Strongylids were the predominant nematodes, detected in 56% of the samples, but at a low level of infection. The apparent limitations in identifying strongylid taxa prompted this pilot study on a representative group of samples testing positive for strongylids using ITS-2 metabarcoding. The most widespread genera parasitizing Czech cattle were Ostertagia (O. ostertagi) and Oesophagostomum spp., followed by Trichostrongylus and Cooperia, while Bunostomum, Nematodirus and Chabertia were present only in a minority. As comparative material, 21 samples of cattle from the Danube Delta in Romania were used, which, in contrast, were dominated by Haemonchus placei. Finally, the effect of ivermectin treatment was tested at two Czech farms. After treatment with the anthelmintic, there was a shift in the strongylid communities, with a dominance of Cooperia and Ostertagia.
Collapse
Affiliation(s)
- Barbora Pafčo
- CEITEC VETUNI, University of Veterinary Sciences Brno, Palackého třída 1946/1, 612 00 Brno, Czech Republic; Institute of Vertebrate Biology, Czech Academy of Sciences, Květná 8, 603 00 Brno, Czech Republic.
| | - Eva Nosková
- CEITEC VETUNI, University of Veterinary Sciences Brno, Palackého třída 1946/1, 612 00 Brno, Czech Republic; Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Vladislav Ilík
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Lucia Anettová
- CEITEC VETUNI, University of Veterinary Sciences Brno, Palackého třída 1946/1, 612 00 Brno, Czech Republic; Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Barbora Červená
- CEITEC VETUNI, University of Veterinary Sciences Brno, Palackého třída 1946/1, 612 00 Brno, Czech Republic; Institute of Vertebrate Biology, Czech Academy of Sciences, Květná 8, 603 00 Brno, Czech Republic
| | - Jakub Kreisinger
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, 128 44 Prague, Czech Republic
| | - Ilona Pšenková
- CEITEC VETUNI, University of Veterinary Sciences Brno, Palackého třída 1946/1, 612 00 Brno, Czech Republic
| | - Petr Václavek
- State Veterinary Institute Jihlava, Rantířovská 93/20, 586 01 Jihlava, Czech Republic
| | - Tereza Vyhlídalová
- State Veterinary Institute Jihlava, Rantířovská 93/20, 586 01 Jihlava, Czech Republic
| | - Jana Ježková
- State Veterinary Institute Jihlava, Rantířovská 93/20, 586 01 Jihlava, Czech Republic
| | - Kamil Malát
- Czech Beef Breeders Association, Těšnov 65/17, 110 00 Prague, Czech Republic
| | - Andrei D Mihalca
- Department of Parasitology and Parasitic Diseases, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Calea Mănăștur 3-5, 400372 Cluj-Napoca, Romania
| | - David Modrý
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic; Department of Veterinary Sciences, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague, Czech Republic; Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 31, 370 05 České Budějovice, Czech Republic
| |
Collapse
|
14
|
Sauermann C, Waghorn T, Miller C, Leathwick D. Simultaneous resistance to multiple anthelmintic classes in nematode parasites of cattle in New Zealand. Vet Parasitol 2024; 325:110079. [PMID: 38029560 DOI: 10.1016/j.vetpar.2023.110079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 12/01/2023]
Abstract
Resistance to the benzimidazole and macrocyclic lactone anthelmintics is widespread in Cooperia spp. on cattle farms in New Zealand. Since this was first documented in 2006 little has changed in cattle farming systems except for the widespread use of levamisole to control Cooperia spp. in young cattle (i.e., parasite control has maintained an almost total reliance on use of anthelmintics). Here we report the emergence of simultaneous resistance to the benzimidazole, macrocyclic lactone and levamisole anthelmintics in Cooperia spp. and in Ostertagia spp. Anthelmintic efficacy against nematode parasites of cattle was investigated on four commercial farms following reports of poor animal growth rates and welfare, and positive faecal egg counts, despite routine treatment with combination anthelmintics, which included levamisole. Faecal egg count reduction tests involved 15 animals per treatment group, individual egg counts (paired samples) conducted pre- and post-treatment, with eggs counted to ≤ 15 eggs per g faeces and larval cultures for morphological identification. Actives tested varied between farms but always included levamisole alone and several combination products containing levamisole. Of the 20 tests conducted (i.e., 5 products on each of 4 farms) only 3 exceeded 90% efficacy against Cooperia spp. even though 8 of the products tested were combinations containing levamisole and at least one other broad-spectrum anthelmintic. Levamisole used alone achieved efficacies between 44% and 71% against Cooperia spp. across the four trials. The only product to exceed 95% efficacy against Cooperia spp. was a combination of monepantel + abamectin which was 100% effective against all parasites. Resistance to oxfendazole in Ostertagia spp. was indicated on 3 farms, while on one farm efficacy of all the tested products was ≤75% against this parasite. All the farms involved in this study were farming intensive cattle operations with an almost total reliance on anthelmintics to control parasitism. The results clearly demonstrate the emergence of simultaneous resistance to oxfendazole, levamisole and the macrocyclic lactone anthelmintics. Despite years of advice and recommendations to change farming practices away from intensive monocultures, many farmers have continued with the practice, and some are now faced with the very real possibility of being unable to control cattle parasites on their farms.
Collapse
Affiliation(s)
- Christian Sauermann
- AgResearch Grassland, Private Bag 11008, Tennent Drive, Palmerston North 4442, New Zealand.
| | - Tania Waghorn
- AgResearch Grassland, Private Bag 11008, Tennent Drive, Palmerston North 4442, New Zealand
| | - Chris Miller
- AgResearch Grassland, Private Bag 11008, Tennent Drive, Palmerston North 4442, New Zealand
| | - Dave Leathwick
- AgResearch Grassland, Private Bag 11008, Tennent Drive, Palmerston North 4442, New Zealand
| |
Collapse
|
15
|
Xiong L, Chen Y, Chen L, Hua R, Shen N, Yang G. Enhanced protective immunity against Baylisascaris schroederi infection in mice through a multi-antigen cocktail vaccine approach. Parasitol Res 2023; 123:20. [PMID: 38072876 DOI: 10.1007/s00436-023-08016-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 11/25/2023] [Indexed: 12/18/2023]
Abstract
Baylisascaris schroederi is among the most severe intestinal nematodes affecting giant pandas. Developing effective and secure vaccines can be used as a novel strategy for controlling repeated roundworm infection and addressing drug resistance. In our previous study, three recombinant antigens (rBsHP2, rBsGAL, and rBsUP) exhibited promising effects against B. schroederi infection in the mice model. This study extends the findings by formulating four-form cocktail vaccines (GAL+UP, HP2+UP, GAL+HP2, and GAL+HP2+UP) using three B. schroederi recombinant antigens to improve protection in mice further. Additionally, the protective differences after immunizing mice with different doses of cocktail antigens (150 μg, 100 μg, and 50 μg) were analyzed. Administration of rBs(GAL+UP), rBs(HP2+UP), rBs(GAL+HP2), and rBs(GAL+HP2+UP) significantly reduced liver and lung lesions, along with a decrease in L3 larvae by 83.7%, 82.1%, 76.4%, and 75.1%, respectively. These vaccines induced a Th1/Th2 mixed immunity, evidenced by elevated serum antibody levels (IgG, IgG1, IgG2a, IgE, and IgA) and splenocyte cytokines [interferon gamma (IFN-γ), interleukin (IL)-5, and IL-10]. Furthermore, varying cocktail vaccine dosages did not significantly affect protection. The results confirm that a 50 μg rBs(GAL+UP) dosage holds promise as a better candidate vaccine combination against B. schroederi infection, providing a basis for developing the B. schroederi vaccine.
Collapse
Affiliation(s)
- Lang Xiong
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Sichuan, China
| | - Yanxin Chen
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Sichuan, China
| | - Ling Chen
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Sichuan, China
| | - Ruiqi Hua
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Sichuan, China
| | - Nengxing Shen
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Sichuan, China
| | - Guangyou Yang
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Sichuan, China.
| |
Collapse
|
16
|
Mukherjee A, Kar I, Patra AK. Understanding anthelmintic resistance in livestock using "omics" approaches. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:125439-125463. [PMID: 38015400 DOI: 10.1007/s11356-023-31045-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/08/2023] [Indexed: 11/29/2023]
Abstract
Widespread and improper use of various anthelmintics, genetic, and epidemiological factors has resulted in anthelmintic-resistant (AR) helminth populations in livestock. This is currently quite common globally in different livestock animals including sheep, goats, and cattle to gastrointestinal nematode (GIN) infections. Therefore, the mechanisms underlying AR in parasitic worm species have been the subject of ample research to tackle this challenge. Current and emerging technologies in the disciplines of genomics, transcriptomics, metabolomics, and proteomics in livestock species have advanced the understanding of the intricate molecular AR mechanisms in many major parasites. The technologies have improved the identification of possible biomarkers of resistant parasites, the ability to find actual causative genes, regulatory networks, and pathways of parasites governing the AR development including the dynamics of helminth infection and host-parasite infections. In this review, various "omics"-driven technologies including genome scan, candidate gene, quantitative trait loci, transcriptomic, proteomic, and metabolomic approaches have been described to understand AR of parasites of veterinary importance. Also, challenges and future prospects of these "omics" approaches are also discussed.
Collapse
Affiliation(s)
- Ayan Mukherjee
- Department of Animal Biotechnology, West Bengal University of Animal and Fishery Sciences, Nadia, Mohanpur, West Bengal, India
| | - Indrajit Kar
- Department of Avian Sciences, West Bengal University of Animal and Fishery Sciences, Nadia, Mohanpur, West Bengal, India
| | - Amlan Kumar Patra
- American Institute for Goat Research, Langston University, Oklahoma, 73050, USA.
| |
Collapse
|
17
|
DeRosa AA, Holzmer S, Ball JJ, Watkins LP, Blanding M, Alley M, Short TH, Bechtol DT, Waite AR, Rigoni EJ, Tena JK. Comparative growth performance of backgrounded beef heifers treated with an injectable fixed-dose combination (0.2 mg/kg doramectin + 6.0 mg/kg levamisole hydrochloride) or single-active (0.2 mg/kg ivermectin) endectocide. Vet Parasitol 2023; 323S:110054. [PMID: 37879976 DOI: 10.1016/j.vetpar.2023.110054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/13/2023] [Accepted: 10/13/2023] [Indexed: 10/27/2023]
Abstract
Gastrointestinal nematodes (GINs) can negatively impact all production classes of cattle, particularly growing cattle. A global decline in efficacy of broad-spectrum single-active anthelmintics requires alternative GIN control methods without the aid of novel drug classes. Here, we present a new fixed-dose combination injectable (FDCI) endectocide for cattle that combines doramectin (5 mg/ml) and levamisole hydrochloride (150 mg/ml). A 56-day comparative performance confinement backgrounding trial was conducted in stocker beef heifers (n = 1548) with confirmed GIN infections to (1) compare the Day 14 post-treatment effectiveness of the new FDCI endectocide to pen mates treated with the injectable single-active endectocide ivermectin, as evidenced by fecal egg counts (FECs) conducted for a randomly selected subset (10%) of both treatment groups, and (2) determine if the greater GIN control by the FDCI evidenced in the subsample improved growth performance in all FDCI-treated heifers. Heifers were procured in four cohorts, with a 10-week timeframe between enrollment of the first and last cohort. Treatment groups were comingled within dirt-floor pens (n = 31; 7-8 per cohort) and offered a standard backgrounding diet ad libitum for the study duration. Heifers with enrollment FEC ≥ 30 eggs per gram (EPG) were randomly allocated to receive the FDCI (n = 773) or ivermectin (n = 775) on Day 0. Day 0 FECs conducted on 10% of enrolled heifers (FDCI, n = 78; ivermectin, n = 79) were not different between treatment groups (p = 0.491). Day 14 FECs for the same heifers were reduced compared to Day 0 within each treatment group. Heifers given the FDCI had lower Day 14 AM FECs and higher FEC reduction test (FECRT) result (0.07 EPG; 0.999) than ivermectin-treated heifers (21.58 EPG; FECRT = 0.850). Mean body weight (BW) was not different between treatment groups on Day 0 (p = 0.2762) and Day 14 (p = 0.2010) but was significantly greater (p = 0.0007) for FDCI-treated heifers compared to ivermectin-treated heifers on Day 56. Compared to ivermectin-treated heifers, overall average daily gain from all evaluation periods (Day 0-14, Day 14-56, and Day 0-56) was greater (p ≤ 0.0052) in FDCI-treated heifers, and FDCI-treated heifers had 4.223 kg greater total weight gain over the 56-day study. The FDCI (0.2 mg/kg doramectin + 6.0 mg/kg levamisole hydrochloride) was highly effective in reducing GIN infections and thus promoted improved growth performance in beef heifers over a 56-day backgrounding period.
Collapse
Affiliation(s)
| | - Susan Holzmer
- Zoetis, 333 Portage Street, Kalamazoo, MI 49007, USA
| | - Jase J Ball
- Zoetis, 333 Portage Street, Kalamazoo, MI 49007, USA
| | | | | | - Mark Alley
- Zoetis, 333 Portage Street, Kalamazoo, MI 49007, USA
| | | | | | - Audie R Waite
- Agri Research, LLC, 17001 Hope Road, Canyon, TX 79015, USA
| | | | | |
Collapse
|
18
|
Packianathan R, Hodge A, Wright J, Pearce M, DeRosa AA. Efficacy of a fixed-dose combination injectable (0.2 mg/kg doramectin + 6.0 mg/kg levamisole hydrochloride) in Australian cattle against naturally acquired gastrointestinal nematode infections. Vet Parasitol 2023; 323S:110025. [PMID: 37723000 DOI: 10.1016/j.vetpar.2023.110025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/10/2023] [Accepted: 09/08/2023] [Indexed: 09/20/2023]
Abstract
Australian producers have long used macrocyclic lactones (MLs) to successfully control cattle gastrointestinal nematodes (GINs) and consequently improve production parameters. However, the trajectory of ML resistance development in cattle GINs is following that of small ruminant nematode populations, highlighting a need for novel treatment options to provide efficacy in the current environment and interrupt the long-term establishment of ML-resistant GIN populations in Australian cattle. Here, we describe three field studies conducted in Australia to evaluate the efficacy of a single administration of a novel fixed-dose combination injectable (FDCI) endectocide against naturally acquired infections of cattle GINs. The FDCI is administered subcutaneously to deliver 0.2 mg/kg doramectin and 6 mg/kg levamisole hydrochloride (HCl). Study sites consisted of three farms in New South Wales (n = 2) and Victoria (n = 1). At each site, cattle were randomly allocated into one of three treatment groups: (1) untreated control (saline), (2) FDCI (0.2 mg/kg doramectin, 6 mg/kg levamisole HCl) or (3) positive control (0.2 mg/kg ivermectin). All treatments were administered on Day 0. Fecal samples were collected prior to treatment on Days -1 (Study 3) or 0 (Studies 1 and 2) and again on Day 14 (post-treatment) to evaluate efficacy via fecal egg count (FEC) and for coproculture. Adequacy of infection was confirmed at all three study sites, with Day 14 geometric mean (GM) FECs for saline-treated cattle ranging from 32.5 eggs per gram (EPG) to 623.7 EPG. FECs for FDCI-treated cattle were significantly reduced compared to saline-treated cattle (p ≤ 0.0001) on Day 14, with GM-based efficacy ≥ 99.7% at all three study sites. In contrast, ivermectin was 97.4% effective against cattle GINs in Study 1 but was only 47.2% and 39.8% effective at study site 2 and 3, respectively. Genus-specific efficacies suggest the presence of ivermectin-resistant Cooperia spp. (Study 1), Haemonchus spp. (Study 2) and Ostertagia spp. (Study 3) populations in the naturally infected cattle used in these studies. The post-treatment FEC and genus-specific efficacy estimations indicate the doramectin + levamisole HCl FDCI was highly efficacious against cattle GINs even in the face of ivermectin LOE at study sites 2 and 3. The efficacy of the new FDCI against both ML-susceptible and ML-resistant economically important cattle GINs in Australia affirms it is a valuable treatment option for producers operating in an environment of ML loss of efficacy.
Collapse
Affiliation(s)
- Raj Packianathan
- Zoetis, Veterinary Medicine Research and Development, Level 6, 5 Rider Boulevard, Rhodes, NSW 2138, Australia
| | - Andrew Hodge
- Zoetis, Veterinary Medicine Research and Development, Level 6, 5 Rider Boulevard, Rhodes, NSW 2138, Australia
| | - Jacqueline Wright
- Zoetis, Veterinary Medicine Research and Development, Level 6, 5 Rider Boulevard, Rhodes, NSW 2138, Australia
| | - Michael Pearce
- Zoetis, Veterinary Medicine Research and Development, Level 6, 5 Rider Boulevard, Rhodes, NSW 2138, Australia
| | - Andrew A DeRosa
- Zoetis, Veterinary Medicine Research and Development, 333 Portage St, Kalamazoo, MI 49007, USA.
| |
Collapse
|
19
|
DeRosa AA, Nadrasik AN, Tena JK. Dose confirmation of a novel fixed dose combination injectable (0.2 mg/kg doramectin + 6.0 mg/kg levamisole hydrochloride) against naturally acquired gastrointestinal nematodes in US cattle. Vet Parasitol 2023; 323S:110070. [PMID: 37935607 DOI: 10.1016/j.vetpar.2023.110070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 11/09/2023]
Abstract
Macrocyclic lactone (ML) resistance in cattle gastrointestinal nematodes (GINs) is an increasing problem. Concurrent combination anthelmintic therapy incorporating an existing ML with a second drug class has been proposed to control cattle GINs while slowing the development of ML resistance. Two dose confirmation studies were conducted to investigate the efficacy of a new fixed-dose combination injectable (FDCI) anthelmintic against common cattle GINs known to negatively impact production. The FDCI is formulated with 5 mg/ml doramectin and 150 mg/ml levamisole hydrochloride (HCl). Cattle enrolled in the two studies were sourced from either the Southern (Study 1, n = 30) or Midwest (Study 2, n = 36) United States. Animals with GIN infections confirmed by fecal egg count (FEC) were randomly allocated to one of three treatment groups. On Day 0, cattle with positive FECs on Day -5( ± 2) were weighed and administered a single subcutaneous injection of either saline (0.9% sodium chloride) at 0.04 ml/kg, 10 mg/ml doramectin at 0.02 ml/kg (to provide 0.2 mg/kg doramectin) or the FDCI at 0.04 ml/kg (to provide 0.2 mg/kg doramectin and 6.0 mg/kg levamisole HCl). On Day 14, fecal samples were collected, animals were euthanized, and worms were collected from the intestinal tract of each animal. Treatment efficacy was calculated using worm burdens and the fecal egg count reduction test (FECRT). Pre-treatment (Day -5, Study 1; Day -3, Study 2) mean FECs were 999.4-1136.2 eggs per gram (EPG) in Study 1 and 137.1-226.6 EPG in Study 2. The FDCI was active against cattle GIN populations in both studies, with FECRT ≥ 99.98% in both studies. Compared to saline-treated cattle, FDCI-treated cattle had significantly fewer adult and immature worms of all identified species on Day 14. In Study 1, Day 14 efficacy of the FDCI was 96.9% for Cooperia spp. (C. oncophora (99.7%) and C. punctata (95.9%)), 99.1% for Nematodirus helvetianus, and 99.8% for Ostertagia spp. In Study 2, the FDCI provided 100% efficacy against all adult GIN species identified, including all GINs identified in Study 1 and Trichostrongylus axei. The FDCI also provided 95.5% efficacy against immature Ostertagia spp. and 100% efficacy against immature Cooperia spp. (Study 2). Doramectin was effective against all adult cattle GINs (except N. helvetianus) in Study 2 but was only effective against adult Ostertagia spp. in Study 1. Additionally, doramectin was only effective against immature Cooperia spp. (and not immature Ostertagia spp.) in Study 2. A single administration of the doramectin + levamisole HCl FDCI provides a new and effective approach to the treatment and control of common cattle GINs, including those exhibiting decreased susceptibility to doramectin alone.
Collapse
|
20
|
Oehm AW, Leinmueller M, Zablotski Y, Campe A, Hoedemaker M, Springer A, Jordan D, Strube C, Knubben-Schweizer G. Multinomial logistic regression based on neural networks reveals inherent differences among dairy farms depending on the differential exposure to Fasciola hepatica and Ostertagia ostertagi. Int J Parasitol 2023; 53:687-697. [PMID: 37355196 DOI: 10.1016/j.ijpara.2023.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 06/26/2023]
Abstract
Fasciola hepatica and Ostertagia ostertagi are cattle parasites with worldwide relevance for economic outcome as well as animal health and welfare. The on-farm exposure of cattle to both parasites is a function of host-associated, intrinsic, as well as environmental and farm-specific, extrinsic, factors. Even though knowledge on the biology of both parasites exists, sophisticated and innovative modelling approaches can help to deepen our understanding of key aspects fostering the exposure of dairy cows to these pathogens. In the present study, multiple multinomial logistic regression models were fitted via neural networks to describe the differences among farms where cattle were not exposed to either F. hepatica or O. ostertagi, to one parasite, or to both, respectively. Farm-specific production and management characteristics were used as covariates to portray these differences. This elucidated inherent farm characteristics associated with parasite exposure. In both studied regions, pasture access for cows, farm-level milk yield, and lameness prevalence were identified as relevant factors. In region 'South', adherence to organic farming principles was a further covariate of importance. In region 'North', the prevalence of cows with a low body condition score, herd size, hock lesion prevalence, farm-level somatic cell count, and study year appeared to be of relevance. The present study broadens our understanding of the complex epidemiological scenarios that could predict differential farm-level parasite status. The analyses have revealed the importance of awareness of dissimilarities between farms in regard to the differential exposure to F. hepatica and O. ostertagi. This provides solid evidence that dynamics and relevant factors differ depending on whether or not cows are exposed to F. hepatica, O. ostertagi, or to both.
Collapse
Affiliation(s)
- Andreas W Oehm
- Institute of Parasitology, Vetsuisse Faculty of Zurich, University of Zurich, Zurich, Switzerland; Clinic for Ruminants with Ambulatory and Herd Health Services, Ludwig-Maximilians-Universität Munich, Oberschleissheim, Germany.
| | - Markus Leinmueller
- Clinic for Ruminants with Ambulatory and Herd Health Services, Ludwig-Maximilians-Universität Munich, Oberschleissheim, Germany
| | - Yury Zablotski
- Clinic for Ruminants with Ambulatory and Herd Health Services, Ludwig-Maximilians-Universität Munich, Oberschleissheim, Germany
| | - Amely Campe
- Department of Biometry, Epidemiology and Information Processing, WHO Collaborating Center for Research and Training for Health at the Human-Animal-Environment Interface, University of Veterinary Medicine, Foundation, Hannover, Germany
| | - Martina Hoedemaker
- Clinic for Cattle, University of Veterinary Medicine Hannover Foundation, Hannover, Germany
| | - Andrea Springer
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Daniela Jordan
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Christina Strube
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Gabriela Knubben-Schweizer
- Clinic for Ruminants with Ambulatory and Herd Health Services, Ludwig-Maximilians-Universität Munich, Oberschleissheim, Germany
| |
Collapse
|
21
|
De Seram EL, Uehlinger FD, de Queiroz C, Redman EM, Campbell JR, Nooyen D, Morisetti A, Pollock CM, Ekanayake S, Penner GB, Gilleard JS. Integration of ITS-2 rDNA nemabiome metabarcoding with Fecal Egg Count Reduction Testing (FECRT) reveals ivermectin resistance in multiple gastrointestinal nematode species, including hypobiotic Ostertagia ostertagi, in western Canadian beef cattle. Int J Parasitol Drugs Drug Resist 2023; 22:27-35. [PMID: 37119733 PMCID: PMC10165142 DOI: 10.1016/j.ijpddr.2023.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 05/01/2023]
Abstract
A large-scale Fecal Egg Count Reduction Test (FECRT) was integrated with ITS-2 rDNA nemabiome metabarcoding to investigate anthelmintic resistance in gastrointestinal nematode (GIN) parasites in western Canadian beef cattle. The study was designed to detect anthelmintic resistance with the low fecal egg counts that typically occur in cattle in northern temperate regions. Two hundred and thirty-four auction market-derived, fall-weaned steer calves coming off pasture were randomized into three groups in feedlot pens: an untreated control group, an injectable ivermectin treatment group, and an injectable ivermectin/oral fenbendazole combination treatment group. Each group was divided into six replicate pens with 13 calves per pen. Individual fecal samples were taken pre-treatment, day 14 post-treatment, and at monthly intervals for six months for strongyle egg counting and metabarcoding. Ivermectin treatment resulted in an 82.4% mean strongyle-type fecal egg count reduction (95% CI 67.8-90.4) at 14 days post-treatment, while the combination treatment was 100% effective, confirming the existence of ivermectin-resistant GIN. Nemabiome metabarcoding of third-stage larvae from coprocultures revealed an increase in the relative abundance of Cooperia oncophora, Cooperia punctata, and Haemonchus placei at 14 days post-ivermectin treatment indicating ivermectin resistance in adult worms. In contrast, Ostertagia ostertagi third-stage larvae were almost completely absent from day 14 coprocultures, indicating that adult worms of this species were not ivermectin resistant. However, there was a recrudescence of O. ostertagi third stage larvae in coprocultures at three to six months post-ivermectin treatment, which indicated ivermectin resistance in hypobiotic larvae. The calves were recruited from the auction market and, therefore, derived from multiple sources in western Canada, suggesting that ivermectin-resistant parasites, including hypobiotic O. ostertagi larvae, are likely widespread in western Canadian beef herds. This work demonstrates the value of integrating ITS-2 rDNA metabarcoding with the FECRT to enhance anthelmintic resistance detection and provide GIN species- and stage-specific information.
Collapse
Affiliation(s)
- Eranga L. De Seram
- Department of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, S7N 5B4, Canada
- Department of Farm Animal Production and Health, Faculty of Veterinary Medicine and Animal Science, University of Peradeniya, Peradeniya, 20400, Sri Lanka
| | - Fabienne D. Uehlinger
- Department of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, S7N 5B4, Canada
| | - Camila de Queiroz
- Faculty of Veterinary Medicine, Host-Parasite Interactions (HPI) Program, University of Calgary, Calgary, AB, T2N 4Z6, Canada
- Department of Pathobiology, School of Veterinary Medicine, Saint George's University, West Indies, Grenada
| | - Elizabeth M. Redman
- Faculty of Veterinary Medicine, Host-Parasite Interactions (HPI) Program, University of Calgary, Calgary, AB, T2N 4Z6, Canada
| | - John R. Campbell
- Department of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, S7N 5B4, Canada
| | - Drue Nooyen
- Faculty of Veterinary Medicine, Host-Parasite Interactions (HPI) Program, University of Calgary, Calgary, AB, T2N 4Z6, Canada
| | - Arianna Morisetti
- Faculty of Veterinary Medicine, Host-Parasite Interactions (HPI) Program, University of Calgary, Calgary, AB, T2N 4Z6, Canada
| | | | - Samantha Ekanayake
- Department of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, S7N 5B4, Canada
| | - Gregory B. Penner
- Department of Animal and Poultry Science, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, SK, S7N 5A8, Canada
| | - John S. Gilleard
- Faculty of Veterinary Medicine, Host-Parasite Interactions (HPI) Program, University of Calgary, Calgary, AB, T2N 4Z6, Canada
| |
Collapse
|
22
|
Strydom T, Lavan RP, Torres S, Heaney K. The Economic Impact of Parasitism from Nematodes, Trematodes and Ticks on Beef Cattle Production. Animals (Basel) 2023; 13:1599. [PMID: 37238028 PMCID: PMC10215612 DOI: 10.3390/ani13101599] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/01/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Global human population growth requires the consumption of more meat such as beef to meet human needs for protein intake. Cattle parasites are a constant and serious threat to the development of the beef cattle industry. Studies have shown that parasites not only reduce the performance of beef cattle, but also negatively affect the profitability of beef agriculture and have many other impacts, including contributing to the production of greenhouse gases. In addition, some zoonotic parasitic diseases may also threaten human health. Therefore, ongoing cattle parasite research is crucial for continual parasite control and the development of the beef cattle industry. Parasitism challenges profitable beef production by reducing feed efficiency, immune function, reproductive efficiency, liveweight, milk yield, calf yield and carcass weight, and leads to liver condemnations and disease transmission. Globally, beef cattle producers incur billions (US$) in losses due to parasitism annually, with gastrointestinal nematodes (GIN) and cattle ticks causing the greatest economic impact. The enormity of losses justifies parasitic control measures to protect profits and improve animal welfare. Geographical differences in production environment, management practices, climate, cattle age and genotype, parasite epidemiology and susceptibility to chemotherapies necessitate control methods customized for each farm. Appropriate use of anthelmintics, endectocides and acaricides have widely been shown to result in net positive return on investment. Implementing strategic parasite control measures, with thorough knowledge of parasite risk, prevalence, parasiticide resistance profiles and prices can result in positive economic returns for beef cattle farmers in all sectors.
Collapse
Affiliation(s)
- Tom Strydom
- MSD Animal Health, 20 Spartan Road, Isando, Kempton Park 1619, South Africa;
| | - Robert P. Lavan
- Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, NJ 07065, USA
| | - Siddhartha Torres
- Merck Animal Health, 2 Giralda Farms, Madison, NJ 07940, USA; (S.T.); (K.H.)
| | - Kathleen Heaney
- Merck Animal Health, 2 Giralda Farms, Madison, NJ 07940, USA; (S.T.); (K.H.)
- Heaney Veterinary Consulting, 303 Fletcher Lake Avenue, Bradley Beach, NJ 07720, USA
| |
Collapse
|
23
|
Qi H, Zhang CH, Zhang SY, Song WS, Xiang WS, Zhang LQ, Wang JD. A new β-class milbemycin derivative from a mutant of genetically engineered strain Streptomyces avermitilis AVE-H39. Nat Prod Res 2023; 37:1212-1216. [PMID: 34623207 DOI: 10.1080/14786419.2021.1986496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
A new β-class milbemycin, 13α-hydroxy milbemycin β6 (1), was isolated from the fermentation broth of a mutant of genetically engineered strain Streptomyces avermitilis AVE-H39. Its structure and absolute configuration were elucidated by extensive spectroscopic methods and confirmed by single crystal X-ray diffraction.
Collapse
Affiliation(s)
- Huan Qi
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Science, Huzhou University, Huzhou, China
| | - Cheng-Hong Zhang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Science, Huzhou University, Huzhou, China
| | - Shao-Yong Zhang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Science, Huzhou University, Huzhou, China
| | - Wen-Shuai Song
- Life Science and Biotechnology Research Center, School of Life Science, Northeast Agricultural University, Harbin, China
| | - Wen-Sheng Xiang
- Life Science and Biotechnology Research Center, School of Life Science, Northeast Agricultural University, Harbin, China
| | - Li-Qin Zhang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Science, Huzhou University, Huzhou, China
| | - Ji-Dong Wang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Science, Huzhou University, Huzhou, China
| |
Collapse
|
24
|
Nosková E, Modrý D, Baláž V, Červená B, Jirků-Pomajbíková K, Zechmeisterová K, Leowski C, Petrželková KJ, Pšenková I, Vodička R, Kessler SE, Ngoubangoye B, Setchell JM, Pafčo B. Identification of potentially zoonotic parasites in captive orangutans and semi-captive mandrills: Phylogeny and morphological comparison. Am J Primatol 2023; 85:e23475. [PMID: 36776131 DOI: 10.1002/ajp.23475] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 12/12/2022] [Accepted: 01/23/2023] [Indexed: 02/14/2023]
Abstract
Cysts and trophozoites of vestibuliferid ciliates and larvae of Strongyloides were found in fecal samples from captive orangutans Pongo pygmaeus and P. abelii from Czech and Slovak zoological gardens. As comparative material, ciliates from semi-captive mandrills Mandrillus sphinx from Gabon were included in the study. Phylogenetic analysis of the detected vestibuliferid ciliates using ITS1-5.8s-rRNA-ITS2 and partial 18S ribosomal deoxyribonucleic acid (rDNA) revealed that the ciliates from orangutans are conspecific with Balantioides coli lineage A, while the ciliates from mandrills clustered with Buxtonella-like ciliates from other primates. Morphological examination of the cysts and trophozoites using light microscopy did not reveal differences robust enough to identify the genera of the ciliates. Phylogenetic analysis of detected L1 larvae of Strongyloides using partial cox1 revealed Strongyloides stercoralis clustering within the cox1 lineage A infecting dogs, humans, and other primates. The sequences of 18S rDNA support these results. As both B. coli and S. stercoralis are zoonotic parasites and the conditions in captive and semi-captive settings may facilitate transmission to humans, prophylactic measures should reflect the findings.
Collapse
Affiliation(s)
- Eva Nosková
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
- Department of Pathology and Parasitology, Faculty of Veterinary Medicine, University of Veterinary Sciences, Brno, Czech Republic
| | - David Modrý
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
- Department of Veterinary Sciences, Faculty of Agrobiology, Food and Natural Resources/CINeZ, Czech University of Life Sciences , Prague, Czech Republic
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Vojtech Baláž
- Department of Ecology and Diseases of Zoo Animals, Game, Fish and Bees, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences, Brno, Czech Republic
| | - Barbora Červená
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
- Department of Pathology and Parasitology, Faculty of Veterinary Medicine, University of Veterinary Sciences, Brno, Czech Republic
| | | | | | - Clotilde Leowski
- Department of Pathology and Parasitology, Faculty of Veterinary Medicine, University of Veterinary Sciences, Brno, Czech Republic
| | - Klára J Petrželková
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
- Liberec Zoo, Liberec, Czech Republic
| | | | | | - Sharon E Kessler
- Department of Psychology, Faculty of Natural Sciences, University of Stirling, Stirling, Scotland
| | - Barthélémy Ngoubangoye
- Centre de Primatologie, Centre Interdisciplinaire de Recherches Médicales de Franceville (CIRMF), Franceville, Gabon
- Department of Anthropology, and Behaviour, Ecology and Evolution Research Centre, Durham University, Durham, UK
| | - Joanna M Setchell
- Centre de Primatologie, Centre Interdisciplinaire de Recherches Médicales de Franceville (CIRMF), Franceville, Gabon
- Department of Anthropology, and Behaviour, Ecology and Evolution Research Centre, Durham University, Durham, UK
| | - Barbora Pafčo
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
| |
Collapse
|
25
|
Takano K, de Hayr L, Carver S, Harvey RJ, Mounsey KE. Pharmacokinetic and pharmacodynamic considerations for treating sarcoptic mange with cross-relevance to Australian wildlife. Int J Parasitol Drugs Drug Resist 2023; 21:97-113. [PMID: 36906936 PMCID: PMC10023865 DOI: 10.1016/j.ijpddr.2023.02.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 02/15/2023] [Accepted: 02/20/2023] [Indexed: 03/07/2023]
Abstract
Sarcoptes scabiei is the microscopic burrowing mite responsible for sarcoptic mange, which is reported in approximately 150 mammalian species. In Australia, sarcoptic mange affects a number of native and introduced wildlife species, is particularly severe in bare-nosed wombats (Vombatus ursinus) and an emerging issue in koala and quenda. There are a variety of acaricides available for the treatment of sarcoptic mange which are generally effective in eliminating mites from humans and animals in captivity. In wild populations, effective treatment is challenging, and concerns exist regarding safety, efficacy and the potential emergence of acaricide resistance. There are risks where acaricides are used intensively or inadequately, which could adversely affect treatment success rates as well as animal welfare. While reviews on epidemiology, treatment strategies, and pathogenesis of sarcoptic mange in wildlife are available, there is currently no review evaluating the use of specific acaricides in the context of their pharmacokinetic and pharmacodynamic properties, and subsequent likelihood of emerging drug resistance, particularly for Australian wildlife. This review critically evaluates acaricides that have been utilised to treat sarcoptic mange in wildlife, including dosage forms and routes, pharmacokinetics, mode of action and efficacy. We also highlight the reports of resistance of S. scabiei to acaricides, including clinical and in vitro observations.
Collapse
Affiliation(s)
- Kotaro Takano
- School of Health, University of the Sunshine Coast, Maroochydore, Queensland, Australia; Sunshine Coast Health Institute, Birtinya, QLD, Australia
| | - Lachlan de Hayr
- School of Health, University of the Sunshine Coast, Maroochydore, Queensland, Australia; Sunshine Coast Health Institute, Birtinya, QLD, Australia
| | - Scott Carver
- Department of Biological Sciences, University of Tasmania, Hobart, Tasmania, Australia
| | - Robert J Harvey
- School of Health, University of the Sunshine Coast, Maroochydore, Queensland, Australia; Sunshine Coast Health Institute, Birtinya, QLD, Australia
| | - Kate E Mounsey
- School of Health, University of the Sunshine Coast, Maroochydore, Queensland, Australia; Sunshine Coast Health Institute, Birtinya, QLD, Australia.
| |
Collapse
|
26
|
Denwood MJ, Kaplan RM, McKendrick IJ, Thamsborg SM, Nielsen MK, Levecke B. A statistical framework for calculating prospective sample sizes and classifying efficacy results for faecal egg count reduction tests in ruminants, horses and swine. Vet Parasitol 2023; 314:109867. [PMID: 36621042 DOI: 10.1016/j.vetpar.2022.109867] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 09/19/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022]
Abstract
The faecal egg count reduction test (FECRT) is the primary diagnostic tool used for detecting anthelmintic resistance at the farm level. It is therefore extremely important that the experimental design of a FECRT and the susceptibility classification of the result use standardised and statistically rigorous methods. Several different approaches for improving the analysis of FECRT data have been proposed, but little work has been published on how to address the issue of prospective sample size calculations. Here, we provide a complete and detailed overview of the quantitative issues relevant to a FECRT starting from basic statistical principles. We then present a new approach for determining sample size requirements for the FECRT that is built on a solid statistical framework, and provide a rigorous anthelminthic drug efficacy classification system for use with FECRT in livestock. Our approach uses two separate statistical tests, a one-sided inferiority test for resistance and a one-sided non-inferiority test for susceptibility, and determines a classification of resistant, susceptible or inconclusive based on the combined result. Since this approach is based on two independent one-sided tests, we recommend that a 90 % CI be used in place of the historically used 95 % CI. This maintains the desired Type I error rate of 5 %, and simultaneously reduces the required sample size. We demonstrate the use of this framework to provide sample size calculations that are rooted in the well-understood concept of statistical power. Tailoring to specific host/parasite systems is possible using typical values for expected pre-treatment and post-treatment variability in egg counts as well as within-animal correlation in egg counts. We provide estimates for these parameters for ruminants, horses and swine based on a re-examination of datasets that were available to us from a combination of published data and other sources. An illustrative example is provided to demonstrate the use of the framework, and parameter estimates are presented to estimate the required sample size for a hypothetical FECRT using ivermectin in cattle. The sample size calculation method and classification framework presented here underpin the sample size recommendations provided in the upcoming FECRT WAAVP guidelines for detection of anthelmintic resistance in ruminants, horses, and swine, and have also been made freely available as open-source software via our website (https://www.fecrt.com).
Collapse
Affiliation(s)
- Matthew J Denwood
- Department of Veterinary and Animal Sciences, University of Copenhagen, Denmark.
| | - Ray M Kaplan
- Pathobiology Department, School of Veterinary Medicine, St. George's University, Grenada, West Indies
| | | | - Stig M Thamsborg
- Department of Veterinary and Animal Sciences, University of Copenhagen, Denmark
| | - Martin K Nielsen
- Maxwell H. Gluck Equine Research Center, University of Kentucky, KY, USA
| | - Bruno Levecke
- Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Belgium
| |
Collapse
|
27
|
Lu Y, Deng L, Peng Z, Zhou M, Wang C, Han L, Huang S, Wei M, Wei R, Tian L, Li D, Hou Z. Investigation of the Efficacy of Pyrantel Pamoate, Mebendazole, Albendazole, and Ivermectin against Baylisascaris schroederi in Captive Giant Pandas. Animals (Basel) 2022; 13:ani13010142. [PMID: 36611749 PMCID: PMC9817530 DOI: 10.3390/ani13010142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/13/2022] [Accepted: 12/21/2022] [Indexed: 12/31/2022] Open
Abstract
Baylisascaris schroederi is one of the main health risks threatening both wild and captive giant pandas. The administration of anthelmintics is a common method to effectively control B. schroederi infection, but there is a notable risk of anthelmintic resistance (AR) after long-term, constant use of anthelmintics. Four anthelmintics-pyrantel pamoate (PYR), mebendazole (MBZ), albendazole (ABZ), and ivermectin (IVM)-were each administered separately at intervals of 2 months to 22 enrolled giant pandas. The fecal egg count reduction (FECR) proportions were calculated by both the Markov chain Monte Carlo (MCMC) Bayesian mathematical model and the arithmetic mean. AR was assessed based on the criteria recommended by the World Association for the Advancement of Veterinary Parasitology (WAAVP). The estimated prevalence of B. schroederi infection was 34.1%. After treatment with PYR, MBZ, ABZ, and IVM, it was determined that MBZ, ABZ, and IVM were efficacious against B. schroederi, while nematodes were suspected to be resistant to PYR according to the fecal egg count reduction (FECR) proportions.
Collapse
Affiliation(s)
- Yaxian Lu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
| | - Linhua Deng
- China Conservation and Research Centre for the Giant Panda, Dujiangyan 611843, China
| | - Zhiwei Peng
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
| | - Mengchao Zhou
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
| | - Chengdong Wang
- China Conservation and Research Centre for the Giant Panda, Dujiangyan 611843, China
| | - Lei Han
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
| | - Shan Huang
- China Conservation and Research Centre for the Giant Panda, Dujiangyan 611843, China
| | - Ming Wei
- China Conservation and Research Centre for the Giant Panda, Dujiangyan 611843, China
| | - Rongping Wei
- China Conservation and Research Centre for the Giant Panda, Dujiangyan 611843, China
| | - Lihong Tian
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
| | - Desheng Li
- China Conservation and Research Centre for the Giant Panda, Dujiangyan 611843, China
- Correspondence:
| | - Zhijun Hou
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
28
|
Bioassay-Guided Isolation of Anthelmintic Components from Semen pharbitidis, and the Mechanism of Action of Pharbitin. Int J Mol Sci 2022; 23:ijms232415739. [PMID: 36555386 PMCID: PMC9779150 DOI: 10.3390/ijms232415739] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/27/2022] [Accepted: 12/02/2022] [Indexed: 12/14/2022] Open
Abstract
Parasitic helminths continue to pose problems in human and veterinary medicine, as well as in agriculture. Semen pharbitidis, the seeds of Pharbitis nil (Linn.) Choisy (Convolvulaceae), is a well-known traditional Chinese medicinal botanical preparation widely used for treating intestinal parasites in China owing to its desirable efficacy. However, the anthelmintic compounds in Semen pharbitidis and their mechanism of action have not been investigated yet. This study aimed to identify the compounds active against helminths from Semen pharbitidis, and to establish the mechanism of action of these active compounds. Bioassay-guided fractionation was used to identify the anthelmintic compounds from Semen pharbitidis. The anthelmintic assay was performed by monitoring Caenorhabditis elegans (C. elegans) motility with a WMicrotracker instrument. Active compounds were identified by high-resolution mass spectrometry. Several (analogues of) fragments of the anthelmintic compounds were purchased and tested to explore the structure-activity relationship, and to find more potent compounds. A panel of C. elegans mutant strains resistant to major currently used anthelmintic drugs was used to explore the mechanism of action of the active compounds. The bioassay-guided isolation from an ethanol extract of Semen pharbitidis led to a group of glycosides, namely pharbitin (IC50: 41.0 ± 9.4 μg/mL). Hit expansion for pharbitin fragments yielded two potent analogues: 2-bromohexadecanoic acid (IC50: 1.6 ± 0.7 μM) and myristoleic acid (IC50: 35.2 ± 7.6 μM). One drug-resistant mutant ZZ37 unc-63 (x37) demonstrated a ~17-fold increased resistance to pharbitin compared with wild-type worms. Collectively, we provide further experimental scientific evidence to support the traditional use of Semen pharbitidis for the treatment of intestinal parasites. The anthelmintic activity of Semen pharbitidis is due to pharbitin, whose target could be UNC-63 in C. elegans.
Collapse
|
29
|
Hernandez SR, Davis DB, Credille BC, Tucker JJ, Stewart RL. Assessment of effectiveness of deworming options in recently weaned beef cattle utilizing different anthelmintic programs in the southeast. Transl Anim Sci 2022; 6:txac148. [PMID: 36479383 PMCID: PMC9721382 DOI: 10.1093/tas/txac148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 11/01/2022] [Indexed: 11/05/2022] Open
Abstract
This study evaluated the effects of three different anthelmintic strategies on animal performance and anthelmintic effectiveness in weaned calves during a 42-d preconditioning period. The study was conducted at four locations over 2 yr and included a total of 797 recently weaned spring-born calves (initial BW 260 ± 37.7 kg). At the start of each year, at each location, calves were weaned and randomly assigned to one of four treatments: 1) oxfendazole (ORAL); 2) transdermal eprinomectin (POUR); 3) both anthelmintic treatments (BOTH); and 4) the control (CONT) group who did not receive treatment. Anthelmintic was applied per the manufacturer recommendation, the transdermal eprinomectin was administered at 1 mL per 10 kg and oxfendazole was administered orally at 1 mL per 50 kg. Weights were measured at the start of the study (day 0) and again at the end of the preconditioning phase (day 42). Fecal samples were collected at the start of the study prior to treatment application (day 0) and again on day 14. Rumen fluid was collected at the start of the study prior to treatment (day 0) and again on day 6. There were treatment effects for all performance metrics (P < 0.001). All treatments had greater weight gain and value of weight gained (P < 0.024), and all three strategies did not differ from each other (P > 0.420). On day 0, there were no (P = 0.795) treatment effects detected for fecal eggs per gram (EPG) counts. On day 14, there were (P < 0.001) treatment effects for EPG counts with feces from CONT calves containing greater (P < 0.014) EPG than feces from treated calves. EPG in feces from BOTH calves did not differ (P > 0.123) from the other two treated groups and feces from POUR calves tended (P = 0.052) to contain greater EPG counts than feces from ORAL calves. Volatile fatty acids were similar across treatments on days 0 and 6 (P > 0.115). Butyrate tended (P = 0.063) to be lower in ORAL on day 6. These results suggest that using eprinomectin and oxfendazole in combination was an effective strategy for reducing EPG and improving performance during a 42-d preconditioning phase.
Collapse
Affiliation(s)
- Shane R Hernandez
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602, USA
| | - Dylan B Davis
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602, USA
| | - Brent C Credille
- Department of Population Health, Food Animal Health and Management Program, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Jennifer J Tucker
- Department of Animal and Dairy Science, University of Georgia, Tifton, GA, 31793, USA
| | - Robert Lawton Stewart
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
30
|
Wang T, Vineer HR, Redman E, Morosetti A, Chen R, McFarland C, Colwell DD, Morgan ER, Gilleard JS. An improved model for the population dynamics of cattle gastrointestinal nematodes on pasture: parameterisation and field validation for Ostertagia ostertagi and Cooperia oncophora in northern temperate zones. Vet Parasitol 2022; 310:109777. [PMID: 35985170 DOI: 10.1016/j.vetpar.2022.109777] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/07/2022] [Accepted: 08/08/2022] [Indexed: 11/20/2022]
Abstract
Gastrointestinal nematodes (GIN) are amongst the most important pathogens of grazing ruminants worldwide, resulting in negative impacts on cattle health and production. The dynamics of infection are driven in large part by the influence of climate and weather on free-living stages on pasture, and computer models have been developed to predict infective larval abundance and guide management strategies. Significant uncertainties around key model parameters limits effective application of these models to GIN in cattle, however, and these parameters are difficult to estimate in natural populations of mixed GIN species. In this paper, recent advances in molecular biology, specifically ITS-2 rDNA 'nemabiome' metabarcoding, are synthesised with a modern population dynamic model, GLOWORM-FL, to overcome this limitation. Experiments under controlled conditions were used to estimate rainfall constraints on migration of infective L3 larvae out of faeces, and their survival in faeces and soil across a temperature gradient, with nemabiome metabarcoding data permitting species-specific estimates for Ostertagia ostertagi and Cooperia oncophora in mixed natural populations. Results showed that L3 of both species survived well in faeces and soil between 0 and 30 °C, and required at least 5 mm of rainfall daily to migrate out of faeces, with the proportion migrating increasing with the amount of rainfall. These estimates were applied within the model using weather and grazing data and use to predict patterns of larval availability on pasture on three commercial beef farms in western Canada. The model performed well overall in predicting the observed seasonal patterns but some discrepancies were evident which should guide further iterative improvements in model development and field methods. The model was also applied to illustrate its use in exploring differences in predicted seasonal transmission patterns in different regions. Such predictive modelling can help inform evidence-based parasite control strategies which are increasingly needed due climate change and drug resistance. The work presented here also illustrates the added value of combining molecular biology and population dynamics to advance predictive understanding of parasite infections.
Collapse
Affiliation(s)
- Tong Wang
- Department of Comparative Biology and Experimental Medicine, Host Parasite Interactions Program, Faculty of Veterinary Medicine, 3330, Hospital Drive, University of Calgary, Calgary, Alberta T2N 4N1 Canada.
| | - Hannah Rose Vineer
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Leahurst Campus, Neston, Wirral, Liverpool CH64 7TE, UK
| | - Elizabeth Redman
- Department of Comparative Biology and Experimental Medicine, Host Parasite Interactions Program, Faculty of Veterinary Medicine, 3330, Hospital Drive, University of Calgary, Calgary, Alberta T2N 4N1 Canada
| | - Arianna Morosetti
- Department of Comparative Biology and Experimental Medicine, Host Parasite Interactions Program, Faculty of Veterinary Medicine, 3330, Hospital Drive, University of Calgary, Calgary, Alberta T2N 4N1 Canada
| | - Rebecca Chen
- Department of Comparative Biology and Experimental Medicine, Host Parasite Interactions Program, Faculty of Veterinary Medicine, 3330, Hospital Drive, University of Calgary, Calgary, Alberta T2N 4N1 Canada
| | - Christopher McFarland
- School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, UK
| | - Douglas D Colwell
- Agriculture and Agri-Food Canada, 5403, 1 Ave S, Lethbridge, Alberta T1J 4B1, Canada
| | - Eric R Morgan
- School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, UK
| | - John S Gilleard
- Department of Comparative Biology and Experimental Medicine, Host Parasite Interactions Program, Faculty of Veterinary Medicine, 3330, Hospital Drive, University of Calgary, Calgary, Alberta T2N 4N1 Canada
| |
Collapse
|
31
|
Hassan NMF, Ghazy AA. Advances in diagnosis and control of anthelmintic resistant gastrointestinal helminths infecting ruminants. J Parasit Dis 2022; 46:901-915. [PMID: 36091263 PMCID: PMC9458815 DOI: 10.1007/s12639-021-01457-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 10/25/2021] [Indexed: 11/26/2022] Open
Abstract
Infection with gastrointestinal helminths is widely spread among ruminant causing severe losses and adversely affects the livestock husbandry. Synthetic chemotherapeutics have been utilized throughout years, as a means of combating helminthiasis. Anthelmintic resistance (AR) has a serious concern on livestock industry which, mainly arises as outcome of misuse, improper dosing and frequent utilization of the synthetic drugs.Various gastrointestinal helminths have the capability to survive the therapeutic dose of anthelmintics and become resistant to the major anthelmintic classes. Early diagnosis might delay or reduce the risk of AR. Conventional phenotyping methods were commonly used for detection of anthelmintic resistant helminths, but appeared to lack of sensitivity, especially when the frequency of resistant allele is very low. Several molecular assays were carried out to detect the AR with greater accuracy. Sustainable effective preventive and control measures for gastrointestinal helminths infection remain the corner stone to overcome AR. Rational use of anthelmintics with keeping unexposed proportion of worm populations, could have the potentiality to maintain and prolong the efficacy of anthelmintics. Several alternative anthelmintic treatments might offer valuable solutions either alone or adjunct to synthetic drugs to dilute the spread of resistance alleles among the helminths population. This article reviews current status of various diagnostic methods and control measures for anthelmintic resistant gastrointestinal helminths infecting ruminants and tries to present a practical protocol to avoid or delay the development of AR.
Collapse
Affiliation(s)
- Noha M. F. Hassan
- Department of Parasitology and Animal Diseases, National Research Centre, P.O. Box: 12622, Cairo, Egypt
| | - Alaa A. Ghazy
- Department of Parasitology and Animal Diseases, National Research Centre, P.O. Box: 12622, Cairo, Egypt
| |
Collapse
|
32
|
Haemonchus contortus Parasitism in Intensively Managed Cross-Limousin Beef Calves: Effects on Feed Conversion and Carcass Characteristics and Potential Associations with Climatic Conditions. Pathogens 2022; 11:pathogens11090955. [PMID: 36145388 PMCID: PMC9500760 DOI: 10.3390/pathogens11090955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/17/2022] [Accepted: 08/21/2022] [Indexed: 11/29/2022] Open
Abstract
The objectives of the study were: (a) to study the effect of Haemonchus spp. on the growth performance characteristics of fattening calves, (b) to assess any potential effects on carcass characteristics and (c) to investigate the potential role of climatic conditions in the process of the infection. The study was conducted for 201 days in an intensively managed cross-Limousin herd. The animals were divided into two equal groups: those receiving anthelmintic treatment (AT) and the untreated (C) controls. The same nutritional regime was applied to both groups and the feed consumption was calculated daily. Standard parasitological examinations were performed at weekly intervals. At slaughter, carcasses were weighed and assessed for conformation and fat cover classes. Climatic variables were obtained for the location of the farm and a temperature-humidity index was calculated. Before anthelmintic treatment with ivermectin, there was no difference in parasitic burdens between the two groups: 544 (AT) vs. 554 (C) epg, whilst after it, counts were 0 and 450–700 epg, respectively, with over 96% of larvae identified as Haemonchus spp. and, later, confirmed as Haemonchus contortus. It was concluded that treated animals had a higher average total bodyweight gain, higher feed conversion ratio and carcass yield of superior quality than controls. There was a difference between the two groups in the pattern of reduction of dry matter intake as the temperature-humidity index increased.
Collapse
|
33
|
Hayes S, Taki AC, Lum KY, Byrne JJ, White JM, Ekins MG, Gasser RB, Davis RA. Identification of Anthelmintic Bishomoscalarane Sesterterpenes from the Australian Marine Sponge Phyllospongia bergquistae and Structure Revision of Phyllolactones A-D. JOURNAL OF NATURAL PRODUCTS 2022; 85:1723-1729. [PMID: 35727327 DOI: 10.1021/acs.jnatprod.2c00229] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
High-throughput screening of the NatureBank marine extract library (7616 samples) identified an extract derived from the Australian marine sponge Phyllospongia bergquistae with activity against Hemonchus contortus (barber's pole worm), an economically important parasitic nematode. Bioassay-guided fractionation of the CH2Cl2/MeOH extract from P. bergquistae led to the purification of four known bishomoscalarane sesterterpenes, phyllolactones A-D (1-4). The absolute configurations of phyllolactones B (2) and C (3) were determined by single-crystal X-ray diffraction analysis; literature and data analyses revealed the need for these chemical structures to be revised. Compounds 2-4 induced a lethal, skinny (Ski) phenotype in larvae of H. contortus at concentrations between 5.3 and 10.1 μM. These data indicate that the bishomoscalarane sesterterpene structure class warrants further investigation for nematocidal or nematostatic activity.
Collapse
Affiliation(s)
- Sasha Hayes
- Griffith Institute for Drug Discovery, Griffith University, School of Environment and Science, Brisbane, QLD 4111, Australia
| | - Aya C Taki
- Department of Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Kah Yean Lum
- Griffith Institute for Drug Discovery, Griffith University, School of Environment and Science, Brisbane, QLD 4111, Australia
| | - Joseph J Byrne
- Department of Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Jonathan M White
- School of Chemistry and Bio21 Institute, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Merrick G Ekins
- Griffith Institute for Drug Discovery, Griffith University, School of Environment and Science, Brisbane, QLD 4111, Australia
- Biodiversity and Geosciences, Queensland Museum, South Brisbane BC, QLD 4101, Australia
| | - Robin B Gasser
- Department of Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Rohan A Davis
- Griffith Institute for Drug Discovery, Griffith University, School of Environment and Science, Brisbane, QLD 4111, Australia
| |
Collapse
|
34
|
Lopes LB, Kamchen SG, Gomes FJ, Natividade U, Magalhães LMD, de Paula Pimenta A, Araujo RN. Influence of silvopastoral systems on gastrointestinal nematode infection and immune response of Nellore heifers under tropical conditions. Vet Parasitol 2022; 309:109765. [PMID: 35870220 DOI: 10.1016/j.vetpar.2022.109765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 11/28/2022]
Abstract
Among the strategies for integrating crops, livestock, and forestry, silvopastoral systems must be highlighted due to their inherent microclimatic conditions, mainly in tropical countries such as Brazil, where cattle are frequently subjected to unfavorable thermal conditions. However, according to some studies, shading can potentially worsen herds´ parasitism due to better microclimatic condition for the parasites. This study aimed to assess fecal egg count in Nellore heifers reared in two silvopastoral arrangements (pasture with single or triple tree rows), in a crop-livestock system, and open pasture. In the silvopastoral treatment composed of triple rows, lesser parasite burden means were found, with a peak infection in February/March and another in October. Regarding the effect of seasons over the year, there was an environmental influence on the egg counts, with higher averages during the late rainy season and the beginning of the dry season. An immunological investigation of animals from each group showed that cattle kept on the silvopastoral arrangements with either single or triple rows have significantly higher lymphocyte proliferation when stimulated with specific antigens than those kept on open pastures. Based on our results, it can be concluded that both silvopastoral systems were not considered as a risk factor for nematode egg counts in Nellore heifers. Indeed, the shadiest system promoted milder parasitism and higher immunological lymphocyte responses in animals.
Collapse
Affiliation(s)
- Luciano Bastos Lopes
- Embrapa Agrosilvopastoral, Embaúbas Av, 567, PO Box 343, 78.550-970 Sinop, Mato Grosso, Brazil.
| | | | - Fagner Júnior Gomes
- São Paulo University, College of Agriculture Luiz de Queiroz, Department of Animal Science, Pádua Dias Av., 11, 13.418-900 Piracicaba, SP, Brazil
| | | | | | | | | |
Collapse
|
35
|
de Souza RB, Guimarães JR. Effects of Avermectins on the Environment Based on Its Toxicity to Plants and Soil Invertebrates-a Review. WATER, AIR, AND SOIL POLLUTION 2022; 233:259. [PMID: 35789787 PMCID: PMC9243718 DOI: 10.1007/s11270-022-05744-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 06/19/2022] [Indexed: 06/15/2023]
Abstract
Avermectins are pharmaceutical drugs widely used mainly in livestock to combat both ectoparasites and endoparasites. Drugs belonging to this family include ivermectin, abamectin, doramectin, selamectin, eprinomectin, and emamectin benzoate, and they share similar chemical characteristics. When administered to livestock, between 80 and 98% of the drug is estimated to leave the body without being metabolized in feces, thus reaching the soil. For this reason, concern for avermectin contamination in soil is increasing, and researchers are focused on estimating the effects on non-target organisms, such as plants and soil invertebrates. This review aimed to compile and discuss updated data of avermectin toxicity on non-target organisms to better comprehend its effect on the environment. Effects on plants are scarcely studied, since they were not believed to absorb these drugs. However, recent studies suggest that plants can be negatively affected. Regarding soil invertebrates, negative effects such as increased mortality and reduced reproduction are best known to dung-beetles. Recently, some studies have also suggested that earthworms, springtails, and enchytraeids can be adversely affected by avermectin exposure. Since ivermectin was the first avermectin marketed, most of the data refers to this product. According to new data on scientific literature, avermectins can now be considered harmful to non-target organisms, and its prudent use is recommended in order to reduce negative effects on the environment. For future investigations, inclusion of avermectins other than ivermectin, as well as field and "omics" studies is suggested.
Collapse
Affiliation(s)
- Raphael B. de Souza
- School of Civil Engineering, Architecture and Urban Design, University of Campinas, R. Saturnino de Brito, 224 - Cidade Universitária, Campinas, SP 13083-889 Brazil
| | - José Roberto Guimarães
- School of Civil Engineering, Architecture and Urban Design, University of Campinas, R. Saturnino de Brito, 224 - Cidade Universitária, Campinas, SP 13083-889 Brazil
| |
Collapse
|
36
|
Faber MN, Smith D, Price DRG, Steele P, Hildersley KA, Morrison LJ, Mabbott NA, Nisbet AJ, McNeilly TN. Development of Bovine Gastric Organoids as a Novel In Vitro Model to Study Host-Parasite Interactions in Gastrointestinal Nematode Infections. Front Cell Infect Microbiol 2022; 12:904606. [PMID: 35846775 PMCID: PMC9281477 DOI: 10.3389/fcimb.2022.904606] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/24/2022] [Indexed: 12/17/2022] Open
Abstract
Gastro-intestinal nematode (GIN) parasites are a major cause of production losses in grazing cattle, primarily through reduced growth rates in young animals. Control of these parasites relies heavily on anthelmintic drugs; however, with growing reports of resistance to currently available anthelmintics, alternative methods of control are required. A major hurdle in this work has been the lack of physiologically relevant in vitro infection models that has made studying precise interactions between the host and the GINs difficult. Such mechanistic insights into the infection process will be valuable for the development of novel targets for drugs, vaccines, or other interventions. Here we created bovine gastric epithelial organoids from abomasal gastric tissue and studied their application as in vitro models for understanding host invasion by GIN parasites. Transcriptomic analysis of gastric organoids across multiple passages and the corresponding abomasal tissue showed conserved expression of tissue-specific genes across samples, demonstrating that the organoids are representative of bovine gastric tissue from which they were derived. We also show that self-renewing and self-organising three-dimensional organoids can also be serially passaged, cryopreserved, and resuscitated. Using Ostertagia ostertagi, the most pathogenic gastric parasite in cattle in temperate regions, we show that cattle gastric organoids are biologically relevant models for studying GIN invasion in the bovine abomasum. Within 24 h of exposure, exsheathed larvae rapidly and repeatedly infiltrated the lumen of the organoids. Prior to invasion by the parasites, the abomasal organoids rapidly expanded, developing a ‘ballooning’ phenotype. Ballooning of the organoids could also be induced in response to exposure to parasite excretory/secretory products. In summary, we demonstrate the power of using abomasal organoids as a physiologically relevant in vitro model system to study interactions of O. ostertagi and other GIN with bovine gastrointestinal epithelium.
Collapse
Affiliation(s)
- Marc N. Faber
- Moredun Research Institute, Pentlands Science Park, Penicuik, United Kingdom
- *Correspondence: Marc N. Faber,
| | - David Smith
- Moredun Research Institute, Pentlands Science Park, Penicuik, United Kingdom
| | - Daniel R. G. Price
- Moredun Research Institute, Pentlands Science Park, Penicuik, United Kingdom
| | - Philip Steele
- Moredun Research Institute, Pentlands Science Park, Penicuik, United Kingdom
| | - Katie A. Hildersley
- Moredun Research Institute, Pentlands Science Park, Penicuik, United Kingdom
| | - Liam J. Morrison
- Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Penicuik, United Kingdom
| | - Neil A. Mabbott
- Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Penicuik, United Kingdom
| | - Alasdair J. Nisbet
- Moredun Research Institute, Pentlands Science Park, Penicuik, United Kingdom
| | - Tom N. McNeilly
- Moredun Research Institute, Pentlands Science Park, Penicuik, United Kingdom
| |
Collapse
|
37
|
Liang M, Lu M, Aleem MT, Zhang Y, Wang M, Wen Z, Song X, Xu L, Li X, Yan R. Identification of excretory and secretory proteins from Haemonchus contortus inducing a Th9 immune response in goats. Vet Res 2022; 53:36. [PMID: 35597967 PMCID: PMC9123704 DOI: 10.1186/s13567-022-01055-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 04/03/2022] [Indexed: 11/21/2022] Open
Abstract
Th9 cells have been shown to play crucial roles in anti-parasite immunity, pathogenic microbe infection, and allergy. Previous studies have demonstrated that Haemonchus contortus excretory and secretory proteins (HcESPs) induce the proliferation of Th9 cells and alter the transcriptional level of IL-9 as well as its related pathways in the Th9 immune response after infection. However, the exact molecule(s) in HcESPs inducing the Th9 immune response is not yet known. In this study, flow cytometry, co-immunoprecipitation (Co-IP) and shotgun liquid chromatography tandem-mass spectrometry (LC–MS/MS) were used, and a total of 218 proteins from HcESPs that might interact with goat Th9 cells were identified. By in vitro culture of Th9 cells with HcESPs, 40 binding proteins were identified. In vivo, 38, 47, 42 and 142 binding proteins were identified at 7, 15, 35 and 50 days post-infection (dpi), respectively. Furthermore, 2 of the 218 HcESPs, named DNA/RNA helicase domain containing protein (HcDR) and GATA transcription factor (HcGATA), were confirmed to induce the proliferation of Th9 cells and promote the expression of IL-9 when incubated with goat peripheral blood mononuclear cells (PBMCs). This study represents a proteomics-guided investigation of the interactions between Th9 cells and HcESPs. It provides a new way to explore immunostimulatory antigens among HcESPs and identifies candidates for immune-mediated prevention of H. contortus infection.
Collapse
Affiliation(s)
- Meng Liang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Mingmin Lu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Muhammad Tahir Aleem
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Yang Zhang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Mingyue Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Zhaohai Wen
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Xiaokai Song
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Lixin Xu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Xiangrui Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Ruofeng Yan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China.
| |
Collapse
|
38
|
Molento MB, Brandão YO. Macrocyclic lactone resistance in nematodes of cattle in Brazil: Blame it to the ticks! Parasitol Int 2022; 89:102588. [PMID: 35452796 DOI: 10.1016/j.parint.2022.102588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 02/17/2022] [Accepted: 04/14/2022] [Indexed: 11/30/2022]
Abstract
Strategic helminth control in adult cattle would hardly impose sufficient selection pressure to parasite populations but reports of resistance against macrocyclic lactone (ML) based-products have been confirmed worldwide. The objective of this study was to evaluate the scientific literature of ML resistance (< 90.0% efficiency) in helminths of cattle from 2001 (the first report) to 2020 in Brazil. Additional to the data, we studied the correlation of parasite control practices based on a questionnaire given to 32 farmers. The search returned 246 reports and 21 full articles were selected. From these, a Wordcloud and a Keyword Co-occurrence Network graph were created. The published data revealed that most of the studies (19/21) reported multi-species (Cooperia spp., Haemonchus sp., Oesophagostomum radiatum, Trichostrongylus sp.) resistance to ML. None of the reports described the treatment frequency in the tested farms. As for the questionnaire, the majority of farmers (> 70.0%) responded that they rotate products after treatment, animals are treated monthly or biweekly (58.0%), treatments are based on visual evaluation (coat condition, ectoparasite infestation), and that in 94.0% of the times farmers treat all animals. Moreover, farmers use ML in association with potent acaricides (cypermethrin, chlorpyriphos, fluazuron) in more than 90.0% of the times (15/16). It was observed that this regimen was used to prevent and control the cattle-tick Rhipicephalus microplus (90.0%) and the horn-fly, Haematobia irritans (30.0%) infestations. We conclude that the most important factor for nematode resistance was the high level of ML exposure of up to 16 times/year, in combination with acaricides to control ticks and to a lesser extent to control horn-flies. Therefore, selection of helminth populations in cattle in Brazil can be considered secondary to ectoparasite control. The present analysis is critical, as one the most widespread recommendations to avoid drug resistance is to reduce the use of long-acting compounds, due to their extended persistent periods, increasing parasite selection. Moreover, a more serious attitude must be taken regarding parasite control strategies for livestock, reinforcing that health protocols should be based on single acaricidal products whenever possible. Complementary, selective evaluations based on transient threshold population abundance must be enforced to reduce treatment frequency, reducing parasite selection and animal distress.
Collapse
Affiliation(s)
- Marcelo Beltrão Molento
- Laboratory of Veterinary Clinical Parasitology, Federal University of Parana. Curitiba, PR, Brazil; Graduate Program of Microbiology, Parasitology and Pathology, Federal University of Parana, UFPR, Curitiba, PR, Brazil.
| | - Yara O Brandão
- Laboratory of Veterinary Clinical Parasitology, Federal University of Parana. Curitiba, PR, Brazil; Graduate Program of Microbiology, Parasitology and Pathology, Federal University of Parana, UFPR, Curitiba, PR, Brazil
| |
Collapse
|
39
|
A journey through 50 years of research relevant to the control of gastrointestinal nematodes in ruminant livestock and thoughts on future directions. Int J Parasitol 2021; 51:1133-1151. [PMID: 34774857 DOI: 10.1016/j.ijpara.2021.10.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 11/20/2022]
Abstract
This review article provides an historical perspective on some of the major research advances of relevance to ruminant livestock gastrointestinal nematode control over the last 50 years. Over this period, gastrointestinal nematode control has been dominated by the use of broad-spectrum anthelmintic drugs. Whilst this has provided unprecedented levels of successful control for many years, this approach has been gradually breaking down for more than two decades and is increasingly unsustainable which is due, at least in part, to the emergence of anthelmintic drug resistance and a number of other factors discussed in this article. We first cover the remarkable success story of the discovery and development of broad-spectrum anthelmintic drugs, the changing face of anthelmintic drug discovery research and the emergence of anthelmintic resistance. This is followed by a review of some of the major advances in the increasingly important area of non-pharmaceutical gastrointestinal nematode control including immunology and vaccine development, epidemiological modelling and some of the alternative control strategies such as breeding for host resistance, refugia-based methods and biological control. The last 50 years have witnessed remarkable innovation and success in research aiming to improve ruminant livestock gastrointestinal nematode control, particularly given the relatively small size of the research community and limited funding. In spite of this, the growing global demand for livestock products, together with the need to maximise production efficiencies, reduce environmental impacts and safeguard animal welfare - as well as specific challenges such as anthelmintic drug resistance and climate change- mean that gastrointestinal nematode researchers will need to be as innovative in the next 50 years as in the last.
Collapse
|
40
|
Melo LRBD, Sousa LCD, de Menezes Oliveira CS, Alvares FBV, Ferreira LC, Bezerra RA, Athayde ACR, Feitosa TF, Vilela VLR. Resistance of bovine gastrointestinal nematodes to four classes of anthelmintics in the semiarid region of Paraíba state, Brazil. REVISTA BRASILEIRA DE PARASITOLOGIA VETERINARIA 2021; 30:e010921. [PMID: 34550213 DOI: 10.1590/s1984-29612021077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/19/2021] [Indexed: 11/22/2022]
Abstract
The effectiveness of four anthelmintic classes on cattle gastrointestinal nematodes in the semi-arid region of Paraiba State, Brazil, was evaluated. Twenty farms were used, testing 40 animals in each one, totaling 800 animals. Cattle were divided into four groups composed with ten animals: I, treated with albendazole sulfoxide 15%; II, treated with ivermectin 1%; III, treated with closantel 25%; IV, treated with levamisole hydrochloride 7.5%. All treatments were administered subcutaneously. For the Fecal Egg Count Reduction Test (FECRT), individual fecal samples were collected on days 0 and 14, and sent for analysis of egg count per gram of feces (EPG) and larval cultures. It was observed that multiresistance was present in 95% (19/20) of the farms. Resistance to ivermectin and albendazole was observed in 95% (19/20), to closantel in 75% (15/20) and to levamisole in 20% (4/20). The most used management system was semi-intensive (75%; 15/20) and the ivermectin was the most reported drug for controlling helminths (65%; 13/20). Haemonchus spp. was the most prevalent helminth genus. It was concluded that the anthelmintic resistance of bovine gastrointestinal nematodes is high in the semi-arid of Paraíba State, Brazil, with multiresistance observed mainly to ivermectin, albendazole and closantel.
Collapse
Affiliation(s)
- Lídio Ricardo Bezerra de Melo
- Programa de Pós-graduação em Ciência e Saúde Animal, Universidade Federal de Campina Grande - UFCG, Patos, PB, Brasil
| | - Luana Carneiro de Sousa
- Departamento de Medicina Veterinária, Instituto Federal de Educação, Ciência e Tecnologia da Paraíba - IFPB, Sousa, PB, Brasil
| | | | - Felipe Boniedj Ventura Alvares
- Departamento de Medicina Veterinária, Instituto Federal de Educação, Ciência e Tecnologia da Paraíba - IFPB, Sousa, PB, Brasil
| | - Larissa Claudino Ferreira
- Programa de Pós-graduação em Ciência e Saúde Animal, Universidade Federal de Campina Grande - UFCG, Patos, PB, Brasil
| | - Roberto Alves Bezerra
- Programa de Pós-graduação em Ciência e Saúde Animal, Universidade Federal de Campina Grande - UFCG, Patos, PB, Brasil
| | - Ana Célia Rodrigues Athayde
- Programa de Pós-graduação em Ciência e Saúde Animal, Universidade Federal de Campina Grande - UFCG, Patos, PB, Brasil
| | - Thais Ferreira Feitosa
- Departamento de Medicina Veterinária, Instituto Federal de Educação, Ciência e Tecnologia da Paraíba - IFPB, Sousa, PB, Brasil
| | - Vinícius Longo Ribeiro Vilela
- Programa de Pós-graduação em Ciência e Saúde Animal, Universidade Federal de Campina Grande - UFCG, Patos, PB, Brasil.,Departamento de Medicina Veterinária, Instituto Federal de Educação, Ciência e Tecnologia da Paraíba - IFPB, Sousa, PB, Brasil
| |
Collapse
|
41
|
Coffeng LE, Levecke B, Hattendorf J, Walker M, Denwood MJ. Survey Design to Monitor Drug Efficacy for the Control of Soil-Transmitted Helminthiasis and Schistosomiasis. Clin Infect Dis 2021; 72:S195-S202. [PMID: 33906226 PMCID: PMC8201552 DOI: 10.1093/cid/ciab196] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Background Control of soil-transmitted helminthiasis and schistosomiasis relies heavily on regular preventive chemotherapy. Monitoring drug efficacy is crucial to provide early warning of treatment failures. The World Health Organization (WHO) recommends a survey design in which only egg-positive individuals are retested after treatment. Although this practice makes more efficient use of resources, it may lead to biased drug efficacy estimates. Methods We performed a simulation study to assess the potential for bias when evaluating drug efficacy using the World Health Organization–recommended survey design, and to identify alternative designs for evaluating drug efficacy that are less affected by bias. These designs were also based on selection of egg-positive individuals, but involve retesting them a second time at baseline and up to 2 times at follow-up. The utility of the different designs was compared fairly by constraining them to the same budget. Results The standard procedure of selecting egg-positive individuals can introduce a substantial positive bias in drug efficacy due to regression toward the mean, particularly when infection levels or drug efficacy are low. This bias was completely eliminated by using a second baseline sample, conditionally on the first sample being excluded from analysis. Precision of estimates can be improved by increasing the number of thick smears and/or samples per person at follow-up, despite fewer individuals being tested within the same budget. Conclusions We present optimized survey designs to monitor drug efficacy in field settings, which are highly relevant for sustained control of soil-transmitted helminths and schistosomiasis, as well as onchocerciasis and lymphatic filariasis.
Collapse
Affiliation(s)
- Luc E Coffeng
- Department of Public Health, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Bruno Levecke
- Department of Virology, Parasitology and Immunology, Ghent University, Merelbeke, Belgium
| | - Jan Hattendorf
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Martin Walker
- Department of Pathobiology and Population Sciences and London Centre for Neglected Tropical Disease Research, Royal Veterinary College , Hatfield, United Kingdom
| | - Matthew J Denwood
- Department of Veterinary and Animal Sciences, University of Copenhagen, Denmark
| |
Collapse
|
42
|
Kasimanickam RK, Kasimanickam VR. Association of gastrointestinal parasite burden, serum cytokines and hormones concentrations, and pregnancy in Angus-cross beef cows. Vet Parasitol 2021; 295:109464. [PMID: 34051524 DOI: 10.1016/j.vetpar.2021.109464] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 05/08/2021] [Accepted: 05/11/2021] [Indexed: 12/18/2022]
Abstract
The objective was to elucidate the relationships among gastrointestinal (GI) parasite load, serum cytokines (Th 1 - Interleukin (IL) 2, Interferon (IFN) γ and Tumor necrosis factor (TNF) α; Th 2- IL4, IL6, and IL10) levels, hormones (progesterone, cortisol, 8-epi-prostaglandin F2 alpha (isoprostane), prolactin, substance-p, and prostaglandin F metabolites) concentrations, and pregnancy in beef cattle. Angus-cross beef cows (n = 700; age, 3-8 y) were blocked by age and body condition score (BCS, 1-9), and were randomly assigned to treatment (n = 350, TRT, 50 mg of eprinomectin/50 kg BW, im) or control (n = 350, CON, no treatment) on Day -30. Cows were synchronized using Controlled Internal Drug Release insert (CIDR) + CO-Synch protocol and artificially inseminated at a fixed time on Day 0 (66 h after CIDR removal). Fecal samples were collected to determine fecal egg count per gram (FEG, McMaster method) on Days -30, -23, -16, -7, 7, 0, 16 and 23, and blood samples were collected on Days -7, 0, 7, 16 and 23. Serum cytokines were determined on Days -7, 0, 7, 16 and 23, and circulating hormones were measured on Day 16. BCS were recorded on Day 16 following artificial insemination (AI), and pregnancy status was diagnosed on Day 30 and 60. Pregnancy/AI varied among treatment groups on Day 30 [TRT, 62.0% (217/350); CON, 54.9% (192/350) (P = 0.05)] and Day 60 [TRT, 60.9% (213/350); CON, 51.7% (181/350) (P < 0.05)]. Pregnancy loss between 30 and 60 days for TRT and CON groups were 1.8% (4/217) and 5.7% (11/192), respectively (P < 0.05). The BCS on Day 16 did not differ among treatment groups (P> 0.1). Four groups of 40 cows were selected based on their pregnancy status and treatment: pregnant, TRT; non-pregnant, TRT; pregnant, CON; and non-pregnant, CON to compare the mean FEG, cytokines, and hormones levels. The FEG and cytokine concentrations were significantly (P < 0.05) influenced by treatment, pregnancy status, day, treatment by pregnancy status, and treatment by day. Day 16 hormone concentrations were considerably influenced by treatment, pregnancy status, and treatment by pregnancy. Although FEG on Day -30 did not differ among the groups (P> 0.1), it was lower in treated, pregnant cows compared with cows in other three groups from Day -23 onwards (P < 0.05). Overall and pairwise comparisons showed that serum concentrations of Type 1 cytokines, IL2, IFNγ, and TNFα were lower (P < 0.05) from gestational Day 7 onwards in treated, pregnant cows compared with cows in other three groups. In contrast, serum concentrations of Type 2 cytokines, IL4, IL6 and IL10 were greater (P < 0.05) from gestational Day 7 onwards in treated, pregnant cows compared with cows in other groups. Serum concentrations of progesterone was greater and other hormones were lower for pregnant cows in TRT group compared to cows in other groups on gestational Day 16. In conclusion, GI parasite load was reduced; Th 1 cytokines levels were decreased; Th 2 cytokines concentrations were increased; progesterone level was increased; and cortisol, substance-P, prolactin, isoprostane, and PGFM were decreased in pregnant, TRT cows. These changes also resulted in an increase in P/AI. It is plausible that direct and bidirectional host-parasite interactions mediated by cytokines and hormones may have promoted maternal tolerance of an immunologically diverse conceptus and the establishment of pregnancy.
Collapse
Affiliation(s)
- Ramanathan K Kasimanickam
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, WA, 99164, USA.
| | - Vanmathy R Kasimanickam
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, WA, 99164, USA; AARVEE Animal Biotech LLC, Corvallis, OR, 97333, USA.
| |
Collapse
|
43
|
Sanabria R. Nanotechnological Improvement of Veterinary Anthelmintics. Pharm Nanotechnol 2021; 9:5-14. [PMID: 32448112 DOI: 10.2174/2211738508666200524233724] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/31/2020] [Accepted: 04/27/2020] [Indexed: 11/22/2022]
Abstract
Helminths infections are among the most important problems in animal health and husbandry. Moreover, zoonotic helminths endanger rural communities, particularly in developing countries. Helminthiasis are not only important in relation to the harmful effects of parasites; additional issues like anthelmintic resistance spread became more important over time. As new anthelmintic development takes many years and millions of dollars of investment, some strategies are currently focused on the modification of already available drugs, in order to improve their efficacy and overcome their limitations. In this field, nanotechnology has brought a novel approach, showing advantages like the regulation of the drug's delivery and kinetics, reaching of specific targets, and possibilities to avoid the systemic spread and side effects. Taking this into account, the present review aims to introduce some of the current knowledge in anthelmintic improvement based on nanotechnology, and how researchers could benefit from this technology in order to overcome the drugs limitations. Finally, some insights into potential field applications are discussed, based on the most important concerns of current anthelmintic therapy.
Collapse
Affiliation(s)
- Rodrigo Sanabria
- Instituto Tecnologico Chascomus (INTECH)-CONICET-UNSAM. Av. Marino KM 8.2, (7130), Chascomús, Argentina
| |
Collapse
|
44
|
Rose Vineer H, Morgan ER, Hertzberg H, Bartley DJ, Bosco A, Charlier J, Chartier C, Claerebout E, de Waal T, Hendrickx G, Hinney B, Höglund J, Ježek J, Kašný M, Keane OM, Martínez-Valladares M, Mateus TL, McIntyre J, Mickiewicz M, Munoz AM, Phythian CJ, Ploeger HW, Rataj AV, Skuce PJ, Simin S, Sotiraki S, Spinu M, Stuen S, Thamsborg SM, Vadlejch J, Varady M, von Samson-Himmelstjerna G, Rinaldi L. Increasing importance of anthelmintic resistance in European livestock: creation and meta-analysis of an open database. Parasite 2020; 27:69. [PMID: 33277891 PMCID: PMC7718593 DOI: 10.1051/parasite/2020062] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 11/02/2020] [Indexed: 11/15/2022] Open
Abstract
Helminth infections are ubiquitous in grazing ruminant production systems, and are responsible for significant costs and production losses. Anthelmintic Resistance (AR) in parasites is now widespread throughout Europe, although there are still gaps in our knowledge in some regions and countries. AR is a major threat to the sustainability of modern ruminant livestock production, resulting in reduced productivity, compromised animal health and welfare, and increased greenhouse gas emissions through increased parasitism and farm inputs. A better understanding of the extent of AR in Europe is needed to develop and advocate more sustainable parasite control approaches. A database of European published and unpublished AR research on gastrointestinal nematodes (GIN) and liver fluke (Fasciola hepatica) was collated by members of the European COST Action "COMBAR" (Combatting Anthelmintic Resistance in Ruminants), and combined with data from a previous systematic review of AR in GIN. A total of 197 publications on AR in GIN were available for analysis, representing 535 studies in 22 countries and spanning the period 1980-2020. Reports of AR were present throughout the European continent and some reports indicated high within-country prevalence. Heuristic sample size-weighted estimates of European AR prevalence over the whole study period, stratified by anthelmintic class, varied between 0 and 48%. Estimated regional (country) prevalence was highly heterogeneous, ranging between 0% and 100% depending on livestock sector and anthelmintic class, and generally increased with increasing research effort in a country. In the few countries with adequate longitudinal data, there was a tendency towards increasing AR over time for all anthelmintic classes in GIN: aggregated results in sheep and goats since 2010 reveal an average prevalence of resistance to benzimidazoles (BZ) of 86%, macrocyclic lactones except moxidectin (ML) 52%, levamisole (LEV) 48%, and moxidectin (MOX) 21%. All major GIN genera survived treatment in various studies. In cattle, prevalence of AR varied between anthelmintic classes from 0-100% (BZ and ML), 0-17% (LEV) and 0-73% (MOX), and both Cooperia and Ostertagia survived treatment. Suspected AR in F. hepatica was reported in 21 studies spanning 6 countries. For GIN and particularly F. hepatica, there was a bias towards preferential sampling of individual farms with suspected AR, and research effort was biased towards Western Europe and particularly the United Kingdom. Ongoing capture of future results in the live database, efforts to avoid bias in farm recruitment, more accurate tests for AR, and stronger appreciation of the importance of AR among the agricultural industry and policy makers, will support more sophisticated analyses of factors contributing to AR and effective strategies to slow its spread.
Collapse
Affiliation(s)
- Hannah Rose Vineer
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool Neston, Cheshire CH64 7TE UK
| | - Eric R. Morgan
- Institute for Global Food Security, Queen’s University Belfast, Biological Sciences 19 Chlorine Gardens Belfast BT9 5DL UK
| | | | - David J. Bartley
- Disease Control, Moredun Research Institute, Pentlands Science Park, Bush Loan Penicuik, Edinburgh EH26 0PZ UK
| | - Antonio Bosco
- University of Naples Federico II, Unit of Parasitology and Parasitic Diseases, Department of Veterinary Medicine and Animal Production, CREMOPAR Via Delpino, 1 80137 Napoli Italy
| | | | | | - Edwin Claerebout
- Laboratory for Parasitology, Faculty of Veterinary Medicine, Ghent University B9820 Merelbeke Belgium
| | - Theo de Waal
- School of Veterinary Medicine, University College Dublin Dublin D04 W6F6 Ireland
| | | | - Barbara Hinney
- Institute of Parasitology, Department of Pathobiology, Vetmeduni Vienna Veterinärplatz 1 1210 Vienna Austria
| | - Johan Höglund
- Swedish University of Agricultural Sciences, Department of Veterinary Public Health, Section for Parasitology P.O. Box 7036 Uppsala Sweden
| | - Jožica Ježek
- Clinic for Reproduction and Large Animals, Veterinary faculty, University of Ljubljana Gerbičeva 60 1000 Ljubljana Slovenia
| | - Martin Kašný
- Department of Botany and Zoology, Faculty of Science, Masaryk University Brno 611 37 Czech Republic
| | - Orla M. Keane
- Animal Bioscience Department, Teagasc Grange, Dunsany, Co. Meath C15 PW93 Ireland
| | | | - Teresa Letra Mateus
- CISAS – Centre for Research and Development in Agrifood Systems and Sustainability, Escola Superior Agrária, Instituto Politécnico de Viana do Castelo, Rua Escola Industrial e Comercial de Nun’Àlvares 4900-347 Viana do Castelo Portugal
- EpiUnit – Instituto de Saúde Pública da Universidade do Porto Rua das Taipas, nº 135 4050-091 Porto Portugal
| | - Jennifer McIntyre
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Garscube Estate Glasgow G61 1QH UK
| | - Marcin Mickiewicz
- Division of Veterinary Epidemiology and Economics, Institute of Veterinary Medicine, Warsaw University of Life Sciences Nowoursynowska 159c 02-776 Warsaw Poland
| | - Ana Maria Munoz
- Faculdade de Medicina Veterinária – Universidade Lusófona de Humanidades e Tecnologias Av. Campo Grande 376 1749-024 Lisbon Portugal
| | - Clare Joan Phythian
- Institute for Production Animal Clinical Science, Faculty of Veterinary Medicine, Norwegian University of Life Sciences Sandnes 4325 Norway
| | - Harm W. Ploeger
- Department of Biomolecular Health Sciences, Division Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University Yalelaan 1 3584 CL Utrecht The Netherlands
| | - Aleksandra Vergles Rataj
- Institute for Microbiology and Parasitology, Veterinary Faculty, University of Ljubljana Gerbičeva 60 1000 Ljubljana Slovenia
| | - Philip J. Skuce
- Disease Control, Moredun Research Institute, Pentlands Science Park, Bush Loan Penicuik, Edinburgh EH26 0PZ UK
| | - Stanislav Simin
- Department of Veterinary Medicine, Faculty of Agriculture, University of Novi Sad 21101 Novi Sad Republic of Serbia
| | - Smaragda Sotiraki
- Veterinary Research Institute, Section for Parasitology, HAO-DEMETER, Thermi 57001 Thessaloniki Greece
| | - Marina Spinu
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca 400372 Romania
| | - Snorre Stuen
- Institute for Production Animal Clinical Science, Faculty of Veterinary Medicine, Norwegian University of Life Sciences Sandnes 4325 Norway
| | - Stig Milan Thamsborg
- Section for Parasitology and Aquatic Pathobiology, Department of Veterinary and Animal Sciences, University of Copenhagen DK-1870 Frederiksberg C Denmark
| | - Jaroslav Vadlejch
- Department of Zoology and Fisheries, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague Kamycka 129 165 00 Prague Suchdol Czech Republic
| | - Marian Varady
- Institute of Parasitology of the Slovak Academy of Sciences Kosice 040 01 Slovakia
| | - Georg von Samson-Himmelstjerna
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin Robert-von-Ostertag-Str. 7–13 14163 Berlin Germany
| | - Laura Rinaldi
- University of Naples Federico II, Unit of Parasitology and Parasitic Diseases, Department of Veterinary Medicine and Animal Production, CREMOPAR Via Delpino, 1 80137 Napoli Italy
| |
Collapse
|
45
|
Kotze AC, Gilleard JS, Doyle SR, Prichard RK. Challenges and opportunities for the adoption of molecular diagnostics for anthelmintic resistance. Int J Parasitol Drugs Drug Resist 2020; 14:264-273. [PMID: 33307336 PMCID: PMC7726450 DOI: 10.1016/j.ijpddr.2020.11.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 11/22/2020] [Accepted: 11/26/2020] [Indexed: 02/06/2023]
Abstract
Anthelmintic resistance is a significant threat to livestock production systems worldwide and is emerging as an important issue in companion animal parasite management. It is also an emerging concern for the control of human soil-transmitted helminths and filaria. An important aspect of managing anthelmintic resistance is the ability to utilise diagnostic tests to detect its emergence at an early stage. In host-parasite systems where resistance is already widespread, diagnostics have a potentially important role in determining those drugs that remain the most effective. The development of molecular diagnostics for anthelmintic resistance is one focus of the Consortium for Anthelmintic Resistance and Susceptibility (CARS) group. The present paper reflects discussions of this issue that occurred at the most recent meeting of the group in Wisconsin, USA, in July 2019. We compare molecular resistance diagnostics with in vivo and in vitro phenotypic methods, and highlight the advantages and disadvantages of each. We assess whether our knowledge on the identity of molecular markers for resistance towards the different drug classes is sufficient to provide some expectation that molecular tests for field use may be available in the short-to-medium term. We describe some practical aspects of such tests and how our current capabilities compare to the requirements of an 'ideal' test. Finally, we describe examples of drug class/parasite species interactions that provide the best opportunity for commercial use of molecular tests in the near future. We argue that while such prototype tests may not satisfy the requirements of an 'ideal' test, their potential to provide significant advances over currently-used phenotypic methods warrants their development as field diagnostics.
Collapse
Affiliation(s)
- Andrew C. Kotze
- CSIRO Agriculture and Food, St. Lucia, Brisbane, 4072, QLD, Australia,Corresponding author. , CSIRO Agriculture and Food, St. Lucia, Brisbane, 4072, QLD, Australia.
| | - John S. Gilleard
- Department of Comparative Biology and Experimental Medicine, Host-Parasite Interactions Program, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
| | - Stephen R. Doyle
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Roger K. Prichard
- Institute of Parasitology, McGill University, Sainte Anne-de-Bellevue, QC, H9X 3V9, Canada
| |
Collapse
|
46
|
Nixon SA, Welz C, Woods DJ, Costa-Junior L, Zamanian M, Martin RJ. Where are all the anthelmintics? Challenges and opportunities on the path to new anthelmintics. Int J Parasitol Drugs Drug Resist 2020; 14:8-16. [PMID: 32814269 PMCID: PMC7452592 DOI: 10.1016/j.ijpddr.2020.07.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/07/2020] [Accepted: 07/10/2020] [Indexed: 01/03/2023]
Abstract
Control of helminth parasites is a key challenge for human and veterinary medicine. In the absence of effective vaccines and adequate sanitation, prophylaxis and treatment commonly rely upon anthelmintics. There are concerns about the development of drug resistance, side-effects, lack of efficacy and cost-effectiveness that drive the need for new classes of anthelmintics. Despite this need, only three new drug classes have reached the animal market since 2000 and no new classes of anthelmintic have been approved for human use. So where are all the anthelmintics? What are the barriers to anthelmintic discovery, and what emerging opportunities can be used to address this? This was a discussion group focus at the 2019 8th Consortium for Anthelmintic Resistance and Susceptibility (CARS) in Wisconsin, USA. Here we report the findings of the group in the broader context of the human and veterinary anthelmintic discovery pipeline, highlighting challenges unique to antiparasitic drug discovery. We comment on why the development of novel anthelmintics has been so rare. Further, we discuss potential opportunities for drug development moving into the 21st Century.
Collapse
Affiliation(s)
- Samantha A Nixon
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Australia; CSIRO Agriculture and Food, Queensland Bioscience Precinct, St Lucia, Australia
| | | | - Debra J Woods
- Zoetis, Veterinary Medicine Research and Development, Kalamazoo, MI, USA
| | - Livio Costa-Junior
- Federal University of Maranhão, Pathology Department, São Luís, Maranhão, Brazil
| | - Mostafa Zamanian
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Richard J Martin
- Department of Biomedical Sciences, Iowa State University, Ames, IA, USA.
| |
Collapse
|
47
|
Herzig V, Cristofori-Armstrong B, Israel MR, Nixon SA, Vetter I, King GF. Animal toxins - Nature's evolutionary-refined toolkit for basic research and drug discovery. Biochem Pharmacol 2020; 181:114096. [PMID: 32535105 PMCID: PMC7290223 DOI: 10.1016/j.bcp.2020.114096] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/06/2020] [Accepted: 06/09/2020] [Indexed: 12/27/2022]
Abstract
Venomous animals have evolved toxins that interfere with specific components of their victim's core physiological systems, thereby causing biological dysfunction that aids in prey capture, defense against predators, or other roles such as intraspecific competition. Many animal lineages evolved venom systems independently, highlighting the success of this strategy. Over the course of evolution, toxins with exceptional specificity and high potency for their intended molecular targets have prevailed, making venoms an invaluable and almost inexhaustible source of bioactive molecules, some of which have found use as pharmacological tools, human therapeutics, and bioinsecticides. Current biomedically-focused research on venoms is directed towards their use in delineating the physiological role of toxin molecular targets such as ion channels and receptors, studying or treating human diseases, targeting vectors of human diseases, and treating microbial and parasitic infections. We provide examples of each of these areas of venom research, highlighting the potential that venom molecules hold for basic research and drug development.
Collapse
Affiliation(s)
- Volker Herzig
- School of Science & Engineering, University of the Sunshine Coast, Sippy Downs, QLD, Australia; Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, Australia.
| | | | - Mathilde R Israel
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, Australia
| | - Samantha A Nixon
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, Australia
| | - Irina Vetter
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, Australia
| | - Glenn F King
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, Australia.
| |
Collapse
|
48
|
Leathwick DM, Miller CM, Waghorn TS, Schwendel H, Lifschitz A. Route of administration influences the concentration of ivermectin reaching nematode parasites in the gastrointestinal tract of cattle. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2020; 14:152-158. [PMID: 33120249 PMCID: PMC7591328 DOI: 10.1016/j.ijpddr.2020.10.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 10/18/2020] [Accepted: 10/19/2020] [Indexed: 11/19/2022]
Abstract
An animal trial was conducted to measure the concentrations of ivermectin occurring in abomasal and small intestinal contents and mucosa, and in the target parasites (Ostertagia ostertagi and Cooperia oncophora) following administration by subcutaneous, oral and pour-on routes. Twenty-five steers were infected with ivermectin-resistant isolates of O. ostertagi and C. oncophora and following patency randomly allocated to 3 treatment groups of 7 and 1 untreated control group of four. On day 0, animals in the treatment groups were administered ivermectin via the oral, injectable or pour-on routes. On days 1, 2, 3, 4, 5, 6 and 8, blood samples were collected from all live animals, one animal from each treatment group was euthanised and the abomasum and small intestine recovered. Control animals were euthanised on each of days 4, 5, 6 and 8. Samples of gastrointestinal tract organs, their contents, mucosa and parasites were collected and assayed for ivermectin concentration using HPLC. The highest plasma concentrations occurred following subcutaneous administration. In the gastrointestinal contents the highest levels occurred following oral administration, although one high value occurred following pour-on administration, which was attributed to self-licking by the treated animal. The lowest GI content levels followed subcutaneous injection. Ivermectin concentrations in the gastrointestinal mucosa were highest following subcutaneous injection. Drug levels in the abomasal parasite O. ostertagi were most closely correlated with levels in the abomasal mucosa whereas levels in the intestinal C. oncophora were most closely correlated with those in the intestinal contents. Thus, the maximun levels of drug reached C. oncophora in the small intestine following oral administration. In contrast, the highest levels of ivermectin in O. ostertagi followed subcutaneous injection. Therefore, route of administration is likely to influence the exposure to ivermectin for different parasite species.
Collapse
Affiliation(s)
- D M Leathwick
- AgResearch Grassland, Private Bag 11008, Tennent Drive, Palmerston North, 4442, New Zealand.
| | - C M Miller
- AgResearch Grassland, Private Bag 11008, Tennent Drive, Palmerston North, 4442, New Zealand
| | - T S Waghorn
- AgResearch Grassland, Private Bag 11008, Tennent Drive, Palmerston North, 4442, New Zealand
| | - H Schwendel
- AgResearch Grassland, Private Bag 11008, Tennent Drive, Palmerston North, 4442, New Zealand
| | - A Lifschitz
- Laboratorio de Farmacología, Centro de Investigación Veterinaria de Tandil (UNCPBA-CICPBA-CONICET), Facultad de Cs. Veterinarias, UNCPBA, Campus Universitario (7000), Tandil, Argentina
| |
Collapse
|
49
|
Hennessey M, Whatford L, Payne-Gifford S, Johnson KF, Van Winden S, Barling D, Häsler B. Antimicrobial & antiparasitic use and resistance in British sheep and cattle: a systematic review. Prev Vet Med 2020; 185:105174. [PMID: 33189057 DOI: 10.1016/j.prevetmed.2020.105174] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 09/07/2020] [Accepted: 10/01/2020] [Indexed: 10/23/2022]
Abstract
A variety of antimicrobials and antiparasitics are used to treat British cattle and sheep to ensure animal welfare, a safe food supply, and maintain farm incomes. However, with increasing global concern about antimicrobial resistance in human and animal populations, there is increased scrutiny of the use of antimicrobials in food-producing animals. This systematic review sought to identify and describe peer and non-peer reviewed sources, published over the last ten years, detailing the usage of, and resistance to, antimicrobials and antiparasitics in sheep and cattle farming systems in Britain as well as identify knowledge gaps. Applying the PRISMA review protocol and guidelines for including grey literature; Scopus, Web of Science, Medline, and government repositories were searched for relevant articles and reports. Seven hundred and seventy titles and abstracts and 126 full-text records were assessed, of which 40 scholarly articles and five government reports were included for data extraction. Antibiotic usage in sheep and cattle in Britain appear to be below the UK average for all livestock and tetracyclines and beta-lactam antibiotics were found to be the most commonly used. However, the poor level of coverage afforded to these species compared to other livestock reduced the certainty of these findings. Although resistance to some antibiotics (using Escherichia coli as a marker) appeared to have decreased in sheep and cattle in England and Wales over a five-year period (2013-2018), levels of resistance remain high to commonly used antibiotics. The small number and fragmented nature of studies identified by this review describing anthelmintic usage, and the lack of available national sales data, prevented the identification of trends in either sheep or cattle. We recommend that additional efforts are taken to collect farm or veterinary level data and argue that extraction of this data is imperative to the development of antimicrobial and antiparasitic resistance strategies in Britain, both of which are needed to reduce usage of these anti-infective agents, curb the development of resistance, and safeguard national agricultural production. Finally, metrics produced by this data should be generated in a way to allow for maximum comparability across species, sectors, and countries.
Collapse
Affiliation(s)
- Mathew Hennessey
- Veterinary Epidemiology, Economics and Public Health Group, Department of Pathobiology and Population Sciences, Royal Veterinary College, London, UK.
| | - Louise Whatford
- Veterinary Epidemiology, Economics and Public Health Group, Department of Pathobiology and Population Sciences, Royal Veterinary College, London, UK
| | - Sophie Payne-Gifford
- Centre for Agriculture, Food and Environmental Management Research, School of Life and Medical Sciences, University of Hertfordshire, UK
| | - Kate F Johnson
- Centre for Agriculture, Food and Environmental Management Research, School of Life and Medical Sciences, University of Hertfordshire, UK
| | - Steven Van Winden
- Veterinary Epidemiology, Economics and Public Health Group, Department of Pathobiology and Population Sciences, Royal Veterinary College, London, UK
| | - David Barling
- Centre for Agriculture, Food and Environmental Management Research, School of Life and Medical Sciences, University of Hertfordshire, UK
| | - Barbara Häsler
- Veterinary Epidemiology, Economics and Public Health Group, Department of Pathobiology and Population Sciences, Royal Veterinary College, London, UK
| |
Collapse
|
50
|
Bosco A, Kießler J, Amadesi A, Varady M, Hinney B, Ianniello D, Maurelli MP, Cringoli G, Rinaldi L. The threat of reduced efficacy of anthelmintics against gastrointestinal nematodes in sheep from an area considered anthelmintic resistance-free. Parasit Vectors 2020; 13:457. [PMID: 32907633 PMCID: PMC7487796 DOI: 10.1186/s13071-020-04329-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 08/30/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The worldwide increased difficulty to combat gastrointestinal nematode (GIN) infection in sheep, due to progressing anthelmintic resistance (AR), calls for an enhanced and standardized implementation of early detection of AR. This study provides a snapshot of the current AR status against benzimidazoles and macrocyclic lactones in southern Italy, generated with standardized techniques. METHODS On 10 sheep farms, the efficacy of albendazole (ALB) and either eprinomectin (EPR) or ivermectin (IVM) was evaluated based on the faecal egg count reduction test (FECRT) performed with the Mini-FLOTAC. For each tested drug, 40 sheep were rectally sampled at D0 and sampled again 14 days after the treatment (D14). The FECRT was calculated from individual samples and pooled samples which consist of 5 individual samples. Efficacy was classified as 'reduced, 'suspected' and 'normal'. Coprocultures were set for D0 and D14 faecal samples of each group. From farms with FECR < 95%, an in vitro egg hatch test (EHT) and a follow-up FECRT using fenbendazole (FBZ) were conducted. RESULTS Based on the FECR, high efficacy (from 95.7% to 100%) was observed for ALB and IVM in eight farms (Farms 3-10). On Farm 1 and Farm 2, the efficacy for the macrocyclic lactones was classified as 'normal', but 'reduced' efficacy was observed for ALB on Farm 1 (FECR = 75%) and 'suspected' efficacy on Farm 2 (FECR = 93.3%) with the predominant GIN genus Trichostrongylus followed by Haemonchus at D14. The FEC results of pooled samples strongly correlated with those of individual samples, for FEC at D0 (rs = 0.984; P < 0.0001) and at D14 (rs = 0.913; P < 0.0001). The classifications of efficacy in Farm 1 (FECR = 86.0%) and Farm 2 (FECR = 93.0%) in the follow-up FECRT with FBZ coincide with the main FECRT trial. The in vitro EHT confirmed AR in both farms (Farm 1: 89%; Farm 2: 74%). CONCLUSIONS In regions like southern Italy, where the negative impacts from AR have played a minor role, efficient monitoring of AR is important in order to evaluate potential risks and being able to promptly respond with countermeasures.
Collapse
Affiliation(s)
- Antonio Bosco
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, CREMOPAR, Naples, Italy
| | - Jan Kießler
- Institute of Parasitology, Department of Pathobiology, University of Veterinary Medicine Vienna, 1210, Vienna, Austria
| | - Alessandra Amadesi
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, CREMOPAR, Naples, Italy
| | - Marian Varady
- Institute of Parasitology of Slovak Academy of Sciences, 040 01, Košice, Slovakia
| | - Barbara Hinney
- Institute of Parasitology, Department of Pathobiology, University of Veterinary Medicine Vienna, 1210, Vienna, Austria
| | - Davide Ianniello
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, CREMOPAR, Naples, Italy
| | - Maria Paola Maurelli
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, CREMOPAR, Naples, Italy
| | - Giuseppe Cringoli
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, CREMOPAR, Naples, Italy
| | - Laura Rinaldi
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, CREMOPAR, Naples, Italy.
| |
Collapse
|