1
|
Haraguchi T, Yamazaki Y, Kuwata H, Usui R, Hamamoto Y, Seino Y, Yabe D, Yamada Y. Glucagon Stimulation Test and Insulin Secretory Capacity in the Clinical Assessment of Incretin-Based Therapy for Diabetes. Diabetes 2024; 73:2078-2083. [PMID: 39196369 DOI: 10.2337/db24-0518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 08/26/2024] [Indexed: 08/29/2024]
Abstract
Evaluation of insulin secretory capacity is essential to understand the pathophysiologic condition of individuals with diabetes and assess the efficacy of drugs used in the treatment of this disease. The 1-mg i.v. glucagon stimulation test (GST) is widely used to evaluate residual β-cell function; we previously reported that GST assessment of insulin secretory capacity is useful in assessing the efficacy of glucagon-like peptide 1 (GLP-1) receptor agonists (GLP-1RAs). However, recent reports have indicated that pharmacologic concentrations of glucagon stimulate insulin secretion through GLP-1 receptors, confounding the issue. The current studies were undertaken to reassess the reliability of the GST for evaluation of insulin secretory capacity under GLP-1RAs and dipeptidyl peptidase 4 inhibitors (DPP-4is). Our first study included individuals receiving GLP-1RA treatment, evaluated by the GST before and after treatment. Although the fasting C-peptide response (CPR) levels were elevated after treatment, the induction of insulin secretion by glucagon was significantly reduced. Our second study compared glucagon-induced insulin secretion between DPP-4i users and nonusers, assessed by the GST after propensity score matching. Although the fasting CPR levels were similar in the two investigations, glucagon-induced insulin secretion was significantly lower with DPP-4i use. These results suggest that the GST might underestimate insulin secretory capacity under incretin-based therapy. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Takuya Haraguchi
- Center for Diabetes, Endocrinology and Metabolism, Kansai Electric Power Hospital, Osaka, Japan
- Yutaka Seino Distinguished Center for Diabetes Research, Kansai Electric Power Medical Research Institute, Kyoto, Japan
- Department of Diabetes, Endocrinology and Metabolism/Department of Rheumatology and Clinical Immunology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Yuji Yamazaki
- Center for Diabetes, Endocrinology and Metabolism, Kansai Electric Power Hospital, Osaka, Japan
- Yutaka Seino Distinguished Center for Diabetes Research, Kansai Electric Power Medical Research Institute, Kyoto, Japan
| | - Hitoshi Kuwata
- Center for Diabetes, Endocrinology and Metabolism, Kansai Electric Power Hospital, Osaka, Japan
- Yutaka Seino Distinguished Center for Diabetes Research, Kansai Electric Power Medical Research Institute, Kyoto, Japan
| | - Ryota Usui
- Center for Diabetes, Endocrinology and Metabolism, Kansai Electric Power Hospital, Osaka, Japan
- Yutaka Seino Distinguished Center for Diabetes Research, Kansai Electric Power Medical Research Institute, Kyoto, Japan
| | - Yoshiyuki Hamamoto
- Center for Diabetes, Endocrinology and Metabolism, Kansai Electric Power Hospital, Osaka, Japan
- Yutaka Seino Distinguished Center for Diabetes Research, Kansai Electric Power Medical Research Institute, Kyoto, Japan
| | - Yutaka Seino
- Center for Diabetes, Endocrinology and Metabolism, Kansai Electric Power Hospital, Osaka, Japan
- Yutaka Seino Distinguished Center for Diabetes Research, Kansai Electric Power Medical Research Institute, Kyoto, Japan
| | - Daisuke Yabe
- Yutaka Seino Distinguished Center for Diabetes Research, Kansai Electric Power Medical Research Institute, Kyoto, Japan
- Department of Diabetes, Endocrinology and Metabolism/Department of Rheumatology and Clinical Immunology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Yuichiro Yamada
- Center for Diabetes, Endocrinology and Metabolism, Kansai Electric Power Hospital, Osaka, Japan
- Yutaka Seino Distinguished Center for Diabetes Research, Kansai Electric Power Medical Research Institute, Kyoto, Japan
| |
Collapse
|
2
|
Jiang Y, Zhu H, Gong F. Why does GLP-1 agonist combined with GIP and/or GCG agonist have greater weight loss effect than GLP-1 agonist alone in obese adults without type 2 diabetes? Diabetes Obes Metab 2024. [PMID: 39592891 DOI: 10.1111/dom.16106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/21/2024] [Accepted: 10/29/2024] [Indexed: 11/28/2024]
Abstract
Obesity is a chronic condition demanding effective treatment strategies, among which pharmacotherapy plays a critical role. As glucagon-like peptide-1 (GLP-1) agonist approved by the Food and Drug Administration (FDA) for long-term weight management in adults with obesity, liraglutide and semaglutide have great weight loss effect through reducing food intake and delaying gastric emptying. The emergence of unimolecular polypharmacology, which utilizes single molecules to simultaneously target multiple receptors or pathways, marked a revolutionary improvement in GLP-1-based obesity pharmacotherapy. The dual agonist tirzepatide activates both GLP-1 and glucose-dependent insulinotropic polypeptide (GIP) receptors and has shown enhanced potency for weight loss compared to conventional GLP-1 mono agonist. Furthermore, emerging data suggests that unimolecular GLP-1/glucagon (GCG) dual agonist, as well as GLP-1/GIP/GCG triple agonist, may offer superior weight loss efficacy over GLP-1 agonist. This review summarizes the comprehensive mechanisms underlying the pronounced advantages of GLP-1/GIP dual agonist, GLP-1/GCG dual agonist and GLP-1/GIP/GCG triple agonist over GLP-1 mono agonist in weight reduction in obese adults without type 2 diabetes. A deeper understanding of these unimolecular multitargeting GLP-1-based agonists will provide insights for their clinical application and guide the development of new drugs for obesity treatment.
Collapse
Affiliation(s)
- Yuchen Jiang
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Huijuan Zhu
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Fengying Gong
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| |
Collapse
|
3
|
Gharib SA, Vemireddy R, Castillo JJ, Fountaine BS, Bammler TK, MacDonald JW, Hull-Meichle RL, Zraika S. Cystic fibrosis-related diabetes is associated with reduced islet protein expression of GLP-1 receptor and perturbation of cell-specific transcriptional programs. Sci Rep 2024; 14:25689. [PMID: 39463434 PMCID: PMC11514218 DOI: 10.1038/s41598-024-76722-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 10/16/2024] [Indexed: 10/29/2024] Open
Abstract
Insulin secretion is impaired in individuals with cystic fibrosis (CF), contributing to high rates of CF-related diabetes (CFRD) and substantially increasing disease burden. To develop improved therapies for CFRD, better knowledge of pancreatic pathology in CF is needed. Glucagon like peptide-1 (GLP-1) from islet α cells potentiates insulin secretion by binding GLP-1 receptors (GLP-1Rs) on β cells. We determined whether expression of GLP-1 and/or its signaling components are reduced in CFRD, thereby contributing to impaired insulin secretion. Immunohistochemistry of pancreas from humans with CFRD versus no-CF/no-diabetes revealed no difference in GLP-1 immunoreactivity per islet area, whereas GLP-1R immunoreactivity per islet area or per insulin-positive islet area was reduced in CFRD. Using spatial transcriptomics, we observed several differentially expressed α- and/or β-cell genes between CFRD and control pancreas. In CFRD, we found upregulation of α-cell PCSK1 which encodes the enzyme (PC1/3) that generates GLP-1, and downregulation of α-cell PCSK1N which inhibits PC1/3. Gene set enrichment analysis also revealed α and β cell-specific pathway dysregulation in CFRD. Together, our data suggest intra-islet GLP-1 is not limiting in CFRD, but its action may be restricted due to reduced GLP-1R protein levels. Thus, restoring β-cell GLP-1R protein expression may improve β-cell function in CFRD.
Collapse
Affiliation(s)
- Sina A Gharib
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, Seattle, WA, USA
- Computational Medicine Core at Center for Lung Biology, University of Washington, Seattle, Washington, USA
| | - Rachna Vemireddy
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Joseph J Castillo
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, Seattle, WA, USA
- Research and Development Service, Veterans Affairs Puget Sound Health Care System, Seattle, Washington, USA
| | - Brendy S Fountaine
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Theo K Bammler
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA
| | - James W MacDonald
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA
| | - Rebecca L Hull-Meichle
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, Seattle, WA, USA
- Research and Development Service, Veterans Affairs Puget Sound Health Care System, Seattle, Washington, USA
- Alberta Diabetes Institute, Department of Cell Biology, University of Alberta, Edmonton, AB, Canada
| | - Sakeneh Zraika
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, Seattle, WA, USA.
- Research and Development Service, Veterans Affairs Puget Sound Health Care System, Seattle, Washington, USA.
- Veterans Affairs Puget Sound Health Care System, 1660 South Columbian Way (151), Seattle, WA, 98108, USA.
| |
Collapse
|
4
|
Lewandowski SL, El K, Campbell JE. Evaluating glucose-dependent insulinotropic polypeptide and glucagon as key regulators of insulin secretion in the pancreatic islet. Am J Physiol Endocrinol Metab 2024; 327:E103-E110. [PMID: 38775725 PMCID: PMC11390117 DOI: 10.1152/ajpendo.00360.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/27/2024] [Accepted: 05/09/2024] [Indexed: 06/04/2024]
Abstract
The incretin axis is an essential component of postprandial insulin secretion and glucose homeostasis. There are two incretin hormones, glucagon-like peptide 1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP), which exert multiple actions throughout the body. A key cellular target for the incretins are pancreatic β-cells, where they potentiate nutrient-stimulated insulin secretion. This feature of incretins has made this system an attractive target for therapeutic interventions aimed at controlling glycemia. Here, we discuss the role of GIP in both β-cells and α-cells within the islet, to stimulate insulin and glucagon secretion, respectively. Moreover, we discuss how glucagon secretion from α-cells has important insulinotropic actions in β-cells through an axis termed α- to β-cell communication. These recent advances have elevated the potential of GIP and glucagon as a therapeutic targets, coinciding with emerging compounds that pharmacologically leverage the actions of these two peptides in the context of diabetes and obesity.
Collapse
Affiliation(s)
- Sophie L Lewandowski
- Duke Molecular Physiology Institute, Duke University, Durham, North Carolina, United States
| | - Kimberley El
- Duke Molecular Physiology Institute, Duke University, Durham, North Carolina, United States
| | - Jonathan E Campbell
- Duke Molecular Physiology Institute, Duke University, Durham, North Carolina, United States
- Division of Endocrinology, Department of Medicine, Duke University, Durham, North Carolina, United States
- Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina, United States
| |
Collapse
|
5
|
Suba K, Patel Y, Martin-Alonso A, Hansen B, Xu X, Roberts A, Norton M, Chung P, Shrewsbury J, Kwok R, Kalogianni V, Chen S, Liu X, Kalyviotis K, Rutter GA, Jones B, Minnion J, Owen BM, Pantazis P, Distaso W, Drucker DJ, Tan TM, Bloom SR, Murphy KG, Salem V. Intra-islet glucagon signalling regulates beta-cell connectivity, first-phase insulin secretion and glucose homoeostasis. Mol Metab 2024; 85:101947. [PMID: 38677509 PMCID: PMC11177084 DOI: 10.1016/j.molmet.2024.101947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/26/2024] [Accepted: 04/19/2024] [Indexed: 04/29/2024] Open
Abstract
OBJECTIVE Type 2 diabetes (T2D) is characterised by the loss of first-phase insulin secretion. We studied mice with β-cell selective loss of the glucagon receptor (Gcgrfl/fl X Ins-1Cre), to investigate the role of intra-islet glucagon receptor (GCGR) signalling on pan-islet [Ca2+]I activity and insulin secretion. METHODS Metabolic profiling was conducted on Gcgrβ-cell-/- and littermate controls. Crossing with GCaMP6f (STOP flox) animals further allowed for β-cell specific expression of a fluorescent calcium indicator. These islets were functionally imaged in vitro and in vivo. Wild-type mice were transplanted with islets expressing GCaMP6f in β-cells into the anterior eye chamber and placed on a high fat diet. Part of the cohort received a glucagon analogue (GCG-analogue) for 40 days and the control group were fed to achieve weight matching. Calcium imaging was performed regularly during the development of hyperglycaemia and in response to GCG-analogue treatment. RESULTS Gcgrβ-cell-/- mice exhibited higher glucose levels following intraperitoneal glucose challenge (control 12.7 mmol/L ± 0.6 vs. Gcgrβ-cell-/- 15.4 mmol/L ± 0.0 at 15 min, p = 0.002); fasting glycaemia was not different to controls. In vitro, Gcgrβ-cell-/- islets showed profound loss of pan-islet [Ca2+]I waves in response to glucose which was only partially rescued in vivo. Diet induced obesity and hyperglycaemia also resulted in a loss of co-ordinated [Ca2+]I waves in transplanted islets. This was reversed with GCG-analogue treatment, independently of weight-loss (n = 8). CONCLUSION These data provide novel evidence for the role of intra-islet GCGR signalling in sustaining synchronised [Ca2+]I waves and support a possible therapeutic role for glucagonergic agents to restore the insulin secretory capacity lost in T2D.
Collapse
Affiliation(s)
- K Suba
- Department of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom; Section of Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London W12 0NN, United Kingdom
| | - Y Patel
- Section of Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London W12 0NN, United Kingdom
| | - A Martin-Alonso
- Section of Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London W12 0NN, United Kingdom
| | - B Hansen
- Department of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - X Xu
- Department of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - A Roberts
- Section of Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London W12 0NN, United Kingdom
| | - M Norton
- Section of Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London W12 0NN, United Kingdom
| | - P Chung
- Section of Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London W12 0NN, United Kingdom
| | - J Shrewsbury
- Section of Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London W12 0NN, United Kingdom
| | - R Kwok
- Section of Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London W12 0NN, United Kingdom
| | - V Kalogianni
- Section of Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London W12 0NN, United Kingdom
| | - S Chen
- Section of Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London W12 0NN, United Kingdom
| | - X Liu
- Section of Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London W12 0NN, United Kingdom
| | - K Kalyviotis
- Department of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - G A Rutter
- CHUM Research Center, University of Montreal, QC, Canada; Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London W12 0NN, United Kingdom; Lee Kong Chian Imperial Medical School, Nanyang Technological University, Singapore
| | - B Jones
- Section of Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London W12 0NN, United Kingdom
| | - J Minnion
- Section of Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London W12 0NN, United Kingdom
| | - B M Owen
- Section of Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London W12 0NN, United Kingdom
| | - P Pantazis
- Department of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - W Distaso
- Imperial College Business School, Imperial College London, London SW7 2AZ, United Kingdom
| | - D J Drucker
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, Canada
| | - T M Tan
- Section of Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London W12 0NN, United Kingdom
| | - S R Bloom
- Section of Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London W12 0NN, United Kingdom
| | - K G Murphy
- Section of Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London W12 0NN, United Kingdom
| | - V Salem
- Department of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom; Section of Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London W12 0NN, United Kingdom; Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London W12 0NN, United Kingdom.
| |
Collapse
|
6
|
Liu L, El K, Dattaroy D, Barella LF, Cui Y, Gray SM, Guedikian C, Chen M, Weinstein LS, Knuth E, Jin E, Merrins MJ, Roman J, Kaestner KH, Doliba N, Campbell JE, Wess J. Intra-islet α-cell Gs signaling promotes glucagon release. Nat Commun 2024; 15:5129. [PMID: 38879678 PMCID: PMC11180188 DOI: 10.1038/s41467-024-49537-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 06/07/2024] [Indexed: 06/19/2024] Open
Abstract
Glucagon, a hormone released from pancreatic α-cells, is critical for maintaining euglycemia and plays a key role in the pathophysiology of diabetes. To stimulate the development of new classes of therapeutic agents targeting glucagon release, key α-cell signaling pathways that regulate glucagon secretion need to be identified. Here, we focused on the potential importance of α-cell Gs signaling on modulating α-cell function. Studies with α-cell-specific mouse models showed that activation of α-cell Gs signaling causes a marked increase in glucagon secretion. We also found that intra-islet adenosine plays an unexpected autocrine/paracrine role in promoting glucagon release via activation of α-cell Gs-coupled A2A adenosine receptors. Studies with α-cell-specific Gαs knockout mice showed that α-cell Gs also plays an essential role in stimulating the activity of the Gcg gene, thus ensuring proper islet glucagon content. Our data suggest that α-cell enriched Gs-coupled receptors represent potential targets for modulating α-cell function for therapeutic purposes.
Collapse
Affiliation(s)
- Liu Liu
- Molecular Signaling Section, LBC, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, 20892, USA.
| | - Kimberley El
- Duke Molecular Physiology Institute, Duke University, Durham, NC, 27701, USA
| | - Diptadip Dattaroy
- Molecular Signaling Section, LBC, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, 20892, USA
| | - Luiz F Barella
- Molecular Signaling Section, LBC, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, 20892, USA
| | - Yinghong Cui
- Molecular Signaling Section, LBC, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, 20892, USA
| | - Sarah M Gray
- Duke Molecular Physiology Institute, Duke University, Durham, NC, 27701, USA
| | - Carla Guedikian
- Duke Molecular Physiology Institute, Duke University, Durham, NC, 27701, USA
| | - Min Chen
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, 20892, USA
| | - Lee S Weinstein
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, 20892, USA
| | - Emily Knuth
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Erli Jin
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Matthew J Merrins
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Jeffrey Roman
- Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Klaus H Kaestner
- Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Nicolai Doliba
- Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jonathan E Campbell
- Duke Molecular Physiology Institute, Duke University, Durham, NC, 27701, USA
| | - Jürgen Wess
- Molecular Signaling Section, LBC, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, 20892, USA.
| |
Collapse
|
7
|
Yin X, Ni G, Zhang X, Fu S, Li H, Gao Z. Tyrosine nitration of glucagon impairs its function: Extending the role of heme in T2D pathogenesis. J Inorg Biochem 2024; 255:112519. [PMID: 38507994 DOI: 10.1016/j.jinorgbio.2024.112519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 02/24/2024] [Accepted: 03/04/2024] [Indexed: 03/22/2024]
Abstract
New studies raise the possibility that the higher glucagon (GCG) level present in type 2 diabetes (T2D) is a compensatory mechanism to enhance β-cell function, rather than induce dysregulated glucose homeostasis, due to an important role for GCG that acts directly within the pancreas on insulin secretion by intra-islet GCG signaling. However, in states of poorly controlled T2D, pancreatic α cell mass increases (overproduced GCG) in response to insufficient insulin secretion, indicating decreased local GCG activity. The reason for this decrease is not clear. Recent evidence has uncovered a new role of heme in cellular signal transduction, and its mechanism involves reversible binding of heme to proteins. Considering that protein tyrosine nitration in diabetic islets increases and glucose-stimulated insulin secretion (GSIS) decreases, we speculated that heme modulates GSIS by transient interaction with GCG and catalyzing its tyrosine nitration, and the tyrosine nitration may impair GCG activity, leading to loss of intra-islet GCG signaling and markedly impaired insulin secretion. Data presented here elucidate a novel role for heme in disrupting local GCG signaling in diabetes. Heme bound to GCG and induced GCG tyrosine nitration. Two tyrosine residues in GCG were both sensitive to the nitrating species. Further, GCG was also demonstrated to be a preferred target peptide for tyrosine nitration by co-incubation with BSA. Tyrosine nitration impaired GCG stimulated cAMP-dependent signaling in islet β cells and decreased insulin release. Our results provided a new role of heme for impaired GSIS in the pathological process of diabetes.
Collapse
Affiliation(s)
- Xiaoying Yin
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Wuhan 430074, PR China; School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan 430074, PR China
| | - Guoqi Ni
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Wuhan 430074, PR China; School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan 430074, PR China
| | - Xuan Zhang
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Wuhan 430074, PR China; School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan 430074, PR China
| | - Shitao Fu
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Wuhan 430074, PR China; School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan 430074, PR China
| | - Hailing Li
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Wuhan 430074, PR China; School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan 430074, PR China.
| | - Zhonghong Gao
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Wuhan 430074, PR China; School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan 430074, PR China.
| |
Collapse
|
8
|
Villaca CBP, Mastracci TL. Pancreatic Crosstalk in the Disease Setting: Understanding the Impact of Exocrine Disease on Endocrine Function. Compr Physiol 2024; 14:5371-5387. [PMID: 39109973 PMCID: PMC11425433 DOI: 10.1002/cphy.c230008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
The exocrine and endocrine are functionally distinct compartments of the pancreas that have traditionally been studied as separate entities. However, studies of embryonic development, adult physiology, and disease pathogenesis suggest there may be critical communication between exocrine and endocrine cells. In fact, the incidence of the endocrine disease diabetes secondary to exocrine disease/dysfunction ranges from 25% to 80%, depending on the type and severity of the exocrine pathology. Therefore, it is necessary to investigate how exocrine-endocrine "crosstalk" may impact pancreatic function. In this article, we discuss common exocrine diseases, including cystic fibrosis, acute, hereditary, and chronic pancreatitis, and the impact of these exocrine diseases on endocrine function. Additionally, we review how obesity and fatty pancreas influence exocrine function and the impact on cellular communication between the exocrine and endocrine compartments. Interestingly, in all pathologies, there is evidence that signals from the exocrine disease contribute to endocrine dysfunction and the progression to diabetes. Continued research efforts to identify the mechanisms that underlie the crosstalk between various cell types in the pancreas are critical to understanding normal pancreatic physiology as well as disease states. © 2024 American Physiological Society. Compr Physiol 14:5371-5387, 2024.
Collapse
Affiliation(s)
| | - Teresa L Mastracci
- Department of Biology, Indiana University Indianapolis, Indianapolis, Indiana, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
9
|
Gray SM, Goonatilleke E, Emrick MA, Becker JO, Hoofnagle AN, Stefanovski D, He W, Zhang G, Tong J, Campbell J, D’Alessio DA. High Doses of Exogenous Glucagon Stimulate Insulin Secretion and Reduce Insulin Clearance in Healthy Humans. Diabetes 2024; 73:412-425. [PMID: 38015721 PMCID: PMC10882148 DOI: 10.2337/db23-0201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 11/20/2023] [Indexed: 11/30/2023]
Abstract
Glucagon is generally defined as a counterregulatory hormone with a primary role to raise blood glucose concentrations by increasing endogenous glucose production (EGP) in response to hypoglycemia. However, glucagon has long been known to stimulate insulin release, and recent preclinical findings have supported a paracrine action of glucagon directly on islet β-cells that augments their secretion. In mice, the insulinotropic effect of glucagon is glucose dependent and not present during basal euglycemia. To test the hypothesis that the relative effects of glucagon on hepatic and islet function also vary with blood glucose, a group of healthy subjects received glucagon (100 ng/kg) during fasting glycemia or experimental hyperglycemia (∼150 mg/dL) on 2 separate days. During fasting euglycemia, administration of glucagon caused blood glucose to rise due to increased EGP, with a delayed increase of insulin secretion. When given during experimental hyperglycemia, glucagon caused a rapid, threefold increase in insulin secretion, as well as a more gradual increase in EGP. Under both conditions, insulin clearance was decreased in response to glucagon infusion. The insulinotropic action of glucagon, which is proportional to the degree of blood glucose elevation, suggests distinct physiologic roles in the fasting and prandial states. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Sarah M. Gray
- Duke Molecular Physiology Institute, Duke University, Durham, NC
| | - Elisha Goonatilleke
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA
| | - Michelle A. Emrick
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA
| | - Jessica O. Becker
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA
| | - Andrew N. Hoofnagle
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, Seattle, WA
| | - Darko Stefanovski
- Department of Clinical Studies–New Bolton Center, School of Veterinary Medicine, University of Pennsylvania, Kennett Square
| | - Wentao He
- Duke Molecular Physiology Institute, Duke University, Durham, NC
| | - Guofang Zhang
- Duke Molecular Physiology Institute, Duke University, Durham, NC
| | - Jenny Tong
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, Seattle, WA
- Endocrine Section, VA Puget Sound Health Care System, Seattle
| | - Jonathan Campbell
- Duke Molecular Physiology Institute, Duke University, Durham, NC
- Division of Endocrinology, Department of Medicine, Duke University, Durham, NC
| | - David A. D’Alessio
- Duke Molecular Physiology Institute, Duke University, Durham, NC
- Division of Endocrinology, Department of Medicine, Duke University, Durham, NC
| |
Collapse
|
10
|
Paradiž Leitgeb E, Kerčmar J, Križančić Bombek L, Pohorec V, Skelin Klemen M, Slak Rupnik M, Gosak M, Dolenšek J, Stožer A. Exendin-4 affects calcium signalling predominantly during activation and activity of beta cell networks in acute mouse pancreas tissue slices. Front Endocrinol (Lausanne) 2024; 14:1315520. [PMID: 38292770 PMCID: PMC10826511 DOI: 10.3389/fendo.2023.1315520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/22/2023] [Indexed: 02/01/2024] Open
Abstract
Tight control of beta cell stimulus-secretion coupling is crucial for maintaining homeostasis of energy-rich nutrients. While glucose serves as a primary regulator of this process, incretins augment beta cell function, partly by enhancing cytosolic [Ca2+] dynamics. However, the details of how precisely they affect beta cell recruitment during activation, their active time, and functional connectivity during plateau activity, and how they influence beta cell deactivation remain to be described. Performing functional multicellular Ca2+ imaging in acute mouse pancreas tissue slices enabled us to systematically assess the effects of the GLP-1 receptor agonist exendin-4 (Ex-4) simultaneously in many coupled beta cells with high resolution. In otherwise substimulatory glucose, Ex-4 was able to recruit approximately a quarter of beta cells into an active state. Costimulation with Ex-4 and stimulatory glucose shortened the activation delays and accelerated beta cell activation dynamics. More specifically, active time increased faster, and the time required to reach half-maximal activation was effectively halved in the presence of Ex-4. Moreover, the active time and regularity of [Ca2+]IC oscillations increased, especially during the first part of beta cell response. In contrast, subsequent addition of Ex-4 to already active cells did not significantly enhance beta cell activity. Network analyses further confirmed increased connectivity during activation and activity in the presence of Ex-4, with hub cell roles remaining rather stable in both control experiments and experiments with Ex-4. Interestingly, Ex-4 demonstrated a biphasic effect on deactivation, slightly prolonging beta cell activity at physiological concentrations and shortening deactivation delays at supraphysiological concentrations. In sum, costimulation by Ex-4 and glucose increases [Ca2+]IC during beta cell activation and activity, indicating that the effect of incretins may, to an important extent, be explained by enhanced [Ca2+]IC signals. During deactivation, previous incretin stimulation does not critically prolong cellular activity, which corroborates their low risk of hypoglycemia.
Collapse
Affiliation(s)
- Eva Paradiž Leitgeb
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Jasmina Kerčmar
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | | | - Vilijem Pohorec
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Maša Skelin Klemen
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Marjan Slak Rupnik
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
- Alma Mater Europaea-European Center Maribor, Maribor, Slovenia
| | - Marko Gosak
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
- Alma Mater Europaea-European Center Maribor, Maribor, Slovenia
- Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
| | - Jurij Dolenšek
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
- Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
| | - Andraž Stožer
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| |
Collapse
|
11
|
Félix-Martínez GJ, Godínez-Fernández JR. A primer on modelling pancreatic islets: from models of coupled β-cells to multicellular islet models. Islets 2023; 15:2231609. [PMID: 37415423 PMCID: PMC10332213 DOI: 10.1080/19382014.2023.2231609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 06/27/2023] [Indexed: 07/08/2023] Open
Abstract
Pancreatic islets are mini-organs composed of hundreds or thousands of ɑ, β and δ-cells, which, respectively, secrete glucagon, insulin and somatostatin, key hormones for the regulation of blood glucose. In pancreatic islets, hormone secretion is tightly regulated by both internal and external mechanisms, including electrical communication and paracrine signaling between islet cells. Given its complexity, the experimental study of pancreatic islets has been complemented with computational modeling as a tool to gain a better understanding about how all the mechanisms involved at different levels of organization interact. In this review, we describe how multicellular models of pancreatic cells have evolved from the early models of electrically coupled β-cells to models in which experimentally derived architectures and both electrical and paracrine signals have been considered.
Collapse
Affiliation(s)
- Gerardo J. Félix-Martínez
- Investigador por México CONAHCYT-Department of Electrical Engineering, Universidad Autónoma Metropolitana, Mexico, Mexico
- Department of Electrical Engineering, Universidad Autónoma Metropolitana, Mexico, Mexico
| | | |
Collapse
|
12
|
Weir GC, Bonner-Weir S. Conflicting Views About Interactions Between Pancreatic α-Cells and β-Cells. Diabetes 2023; 72:1741-1747. [PMID: 37983524 PMCID: PMC10658062 DOI: 10.2337/db23-0292] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 08/16/2023] [Indexed: 11/22/2023]
Abstract
In type 1 diabetes, the reduced glucagon response to insulin-induced hypoglycemia has been used to argue that β-cell secretion of insulin is required for the full glucagon counterregulatory response. For years, the concept has been that insulin from the β-cell core flows downstream to suppress glucagon secretion from the α-cells in the islet mantle. This core-mantle relationship has been supported by perfused pancreas studies that show marked increases in glucagon secretion when insulin was neutralized with antisera. Additional support comes from a growing number of studies focused on vascular anatomy and blood flow. However, in recent years this core-mantle view has generated less interest than the argument that optimal insulin secretion is due to paracrine release of glucagon from α-cells stimulating adjacent β-cells. This mechanism has been evaluated by knockout of β-cell receptors and impairment of α-cell function by inhibition of Gi designer receptors exclusively activated by designer drugs. Other studies that support this mechanism have been obtained by pharmacological blocking of glucagon-like peptide 1 receptor in humans. While glucagon has potent effects on β-cells, there are concerns with the suggested paracrine mechanism, since some of the supporting data are from isolated islets. The study of islets in static incubation or perifusion systems can be informative, but the normal paracrine relationships are disrupted by the isolation process. While this complicates interpretation of data, arguments supporting paracrine interactions between α-cells and β-cells have growing appeal. We discuss these conflicting views of the relationship between pancreatic α-cells and β-cells and seek to understand how communication depends on blood flow and/or paracrine mechanisms.
Collapse
Affiliation(s)
- Gordon C. Weir
- Joslin Diabetes Center, Harvard Medical School, Boston, MA
| | | |
Collapse
|
13
|
Blanchi B, Taurand M, Colace C, Thomaidou S, Audeoud C, Fantuzzi F, Sawatani T, Gheibi S, Sabadell-Basallote J, Boot FWJ, Chantier T, Piet A, Cavanihac C, Pilette M, Balguerie A, Olleik H, Carlotti F, Ejarque M, Fex M, Mulder H, Cnop M, Eizirik DL, Jouannot O, Gaffuri AL, Czernichow P, Zaldumbide A, Scharfmann R, Ravassard P. EndoC-βH5 cells are storable and ready-to-use human pancreatic beta cells with physiological insulin secretion. Mol Metab 2023; 76:101772. [PMID: 37442376 PMCID: PMC10407753 DOI: 10.1016/j.molmet.2023.101772] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/20/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
OBJECTIVES Readily accessible human pancreatic beta cells that are functionally close to primary adult beta cells are a crucial model to better understand human beta cell physiology and develop new treatments for diabetes. We here report the characterization of EndoC-βH5 cells, the latest in the EndoC-βH cell family. METHODS EndoC-βH5 cells were generated by integrative gene transfer of immortalizing transgenes hTERT and SV40 large T along with Herpes Simplex Virus-1 thymidine kinase into human fetal pancreas. Immortalizing transgenes were removed after amplification using CRE activation and remaining non-excized cells eliminated using ganciclovir. Resulting cells were distributed as ready to use EndoC-βH5 cells. We performed transcriptome, immunological and extensive functional assays. RESULTS Ready to use EndoC-βH5 cells display highly efficient glucose dependent insulin secretion. A robust 10-fold insulin secretion index was observed and reproduced in four independent laboratories across Europe. EndoC-βH5 cells secrete insulin in a dynamic manner in response to glucose and secretion is further potentiated by GIP and GLP-1 analogs. RNA-seq confirmed abundant expression of beta cell transcription factors and functional markers, including incretin receptors. Cytokines induce a gene expression signature of inflammatory pathways and antigen processing and presentation. Finally, modified HLA-A2 expressing EndoC-βH5 cells elicit specific A2-alloreactive CD8 T cell activation. CONCLUSIONS EndoC-βH5 cells represent a unique storable and ready to use human pancreatic beta cell model with highly robust and reproducible features. Such cells are thus relevant for the study of beta cell function, screening and validation of new drugs, and development of disease models.
Collapse
Affiliation(s)
| | | | - Claire Colace
- Paris Brain Institute, Sorbonne Université, Inserm U1127, CNRS UMR 7225, Paris, France
| | - Sofia Thomaidou
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | | | - Federica Fantuzzi
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels, Belgium; Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Toshiaki Sawatani
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels, Belgium
| | - Sevda Gheibi
- Department of Clinical Sciences, Unit of Molecular Metabolism, Lund University Diabetes Centre, Malmö, Sweden
| | - Joan Sabadell-Basallote
- Unitat de Recerca, Hospital Universitari de Tarragona Joan XXIII, Institut d'Investigació Sanitària Pere Virgili, Tarragona, Spain; Islet Cell and Regenerative Biology, Joslin Diabetes Center, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Fransje W J Boot
- Department of Internal Medicine, Leiden University Medical Center, Leiden, Netherlands
| | | | - Aline Piet
- Human Cell Design, Canceropole, Toulouse, France
| | | | | | | | - Hamza Olleik
- Human Cell Design, Canceropole, Toulouse, France
| | - Françoise Carlotti
- Department of Internal Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Miriam Ejarque
- Unitat de Recerca, Hospital Universitari de Tarragona Joan XXIII, Institut d'Investigació Sanitària Pere Virgili, Tarragona, Spain
| | - Malin Fex
- Department of Clinical Sciences, Unit of Molecular Metabolism, Lund University Diabetes Centre, Malmö, Sweden
| | - Hindrik Mulder
- Department of Clinical Sciences, Unit of Molecular Metabolism, Lund University Diabetes Centre, Malmö, Sweden
| | - Miriam Cnop
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels, Belgium; Division of Endocrinology, Erasmus Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Decio L Eizirik
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels, Belgium
| | | | | | | | - Arnaud Zaldumbide
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | - Raphaël Scharfmann
- Université Paris Cité, Institut Cochin, CNRS, INSERM U1016, Paris, 75014, France
| | - Philippe Ravassard
- Paris Brain Institute, Sorbonne Université, Inserm U1127, CNRS UMR 7225, Paris, France.
| |
Collapse
|
14
|
Peterson SM, Juliana CA, Hu CF, Chai J, Holliday C, Chan KY, Lujan Hernandez AG, Challocombe Z, Wang L, Han Z, Haas N, Stafford R, Axelrod F, Yuan TZ, De León DD, Sato AK. Optimization of a Glucagon-Like Peptide 1 Receptor Antagonist Antibody for Treatment of Hyperinsulinism. Diabetes 2023; 72:1320-1329. [PMID: 37358194 PMCID: PMC10450825 DOI: 10.2337/db22-1039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 06/13/2023] [Indexed: 06/27/2023]
Abstract
Congenital hyperinsulinism (HI) is a genetic disorder in which pancreatic β-cell insulin secretion is excessive and results in hypoglycemia that, without treatment, can cause brain damage or death. Most patients with loss-of-function mutations in ABCC8 and KCNJ11, the genes encoding the β-cell ATP-sensitive potassium channel (KATP), are unresponsive to diazoxide, the only U.S. Food and Drug Administration-approved medical therapy and require pancreatectomy. The glucagon-like peptide 1 receptor (GLP-1R) antagonist exendin-(9-39) is an effective therapeutic agent that inhibits insulin secretion in both HI and acquired hyperinsulinism. Previously, we identified a highly potent antagonist antibody, TB-001-003, which was derived from our synthetic antibody libraries that were designed to target G protein-coupled receptors. Here, we designed a combinatorial variant antibody library to optimize the activity of TB-001-003 against GLP-1R and performed phage display on cells overexpressing GLP-1R. One antagonist, TB-222-023, is more potent than exendin-(9-39), also known as avexitide. TB-222-023 effectively decreased insulin secretion in primary isolated pancreatic islets from a mouse model of hyperinsulinism, Sur1-/- mice, and in islets from an infant with HI, and increased plasma glucose levels and decreased the insulin to glucose ratio in Sur1-/- mice. These findings demonstrate that targeting GLP-1R with an antibody antagonist is an effective and innovative strategy for treatment of hyperinsulinism. ARTICLE HIGHLIGHTS Patients with the most common and severe form of diazoxide-unresponsive congenital hyperinsulinism (HI) require a pancreatectomy. Other second-line therapies are limited in their use because of severe side effects and short half-lives. Therefore, there is a critical need for better therapies. Studies with the glucagon-like peptide 1 receptor (GLP-1R) antagonist, avexitide (exendin-(9-39)), have demonstrated that GLP-1R antagonism is effective at lowering insulin secretion and increasing plasma glucose levels. We have optimized a GLP-1R antagonist antibody with more potent blocking of GLP-1R than avexitide. This antibody therapy is a potential novel and effective treatment for HI.
Collapse
Affiliation(s)
| | - Christine A. Juliana
- Division of Endocrinology and Diabetes, The Children’s Hospital of Philadelphia, Philadelphia, PA
| | | | - Jinghua Chai
- Division of Endocrinology and Diabetes, The Children’s Hospital of Philadelphia, Philadelphia, PA
| | | | | | | | | | - Linya Wang
- Twist Bioscience, South San Francisco, CA
| | - Zhen Han
- Twist Bioscience, South San Francisco, CA
| | | | | | | | | | - Diva D. De León
- Division of Endocrinology and Diabetes, The Children’s Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | | |
Collapse
|
15
|
Schuit F, Campbell JE. GPCR Promiscuity Reshapes Islet Physiology. Diabetes 2023; 72:1180-1183. [PMID: 37603722 DOI: 10.2337/dbi23-0014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 06/18/2023] [Indexed: 08/23/2023]
Abstract
The family of proglucagon peptides Includes glucagon and glucagon-like peptide 1 (GLP-1), two unique peptides derived from the same prohormone. Despite numerous similarities between the peptides, these have long been viewed as having opposing actions on metabolism. GLP-1 is described as a postprandial hormone that stimulates anabolic actions via insulin, while glucagon is viewed as a fasting hormone that drives catabolic actions to maintain euglycemia. Here, we revisit a classic article in Diabetes that first established that glucagon and GLP-1 have more in common than previously appreciated, including actions at the same receptor. Furthermore, we discuss how the impact of this observation has guided research decades later that has reshaped the view of how proglucagon hormones regulate metabolism.
Collapse
Affiliation(s)
- Frans Schuit
- Gene Expression Unit, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | | |
Collapse
|
16
|
Brown A, Tzanakakis ES. Mathematical modeling clarifies the paracrine roles of insulin and glucagon on the glucose-stimulated hormonal secretion of pancreatic alpha- and beta-cells. Front Endocrinol (Lausanne) 2023; 14:1212749. [PMID: 37645413 PMCID: PMC10461634 DOI: 10.3389/fendo.2023.1212749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 07/21/2023] [Indexed: 08/31/2023] Open
Abstract
Introduction Blood sugar homeostasis relies largely on the action of pancreatic islet hormones, particularly insulin and glucagon. In a prototypical fashion, glucagon is released upon hypoglycemia to elevate glucose by acting on the liver while elevated glucose induces the secretion of insulin which leads to sugar uptake by peripheral tissues. This simplified view of glucagon and insulin does not consider the paracrine roles of the two hormones modulating the response to glucose of α- and β-cells. In particular, glucose-stimulated glucagon secretion by isolated α-cells exhibits a Hill-function pattern, while experiments with intact pancreatic islets suggest a 'U'-shaped response. Methods To this end, a framework was developed based on first principles and coupled to experimental studies capturing the glucose-induced response of pancreatic α- and β-cells influenced by the two hormones. The model predicts both the transient and steady-state profiles of secreted insulin and glucagon, including the typical biphasic response of normal β-cells to hyperglycemia. Results and discussion The results underscore insulin activity as a differentiating factor of the glucagon secretion from whole islets vs. isolated α-cells, and highlight the importance of experimental conditions in interpreting the behavior of islet cells in vitro. The model also reproduces the hyperglucagonemia, which is experienced by diabetes patients, and it is linked to a failure of insulin to inhibit α-cell activity. The framework described here is amenable to the inclusion of additional islet cell types and extrapancreatic tissue cells simulating multi-organ systems. The study expands our understanding of the interplay of insulin and glucagon for pancreas function in normal and pathological conditions.
Collapse
Affiliation(s)
- Aedan Brown
- Department of Chemical and Biological Engineering, Tufts University, Medford, MA, United States
| | - Emmanuel S. Tzanakakis
- Department of Chemical and Biological Engineering, Tufts University, Medford, MA, United States
- Genetics, Molecular and Cellular Biology, Tufts University, Boston, MA, United States
- Pharmacology and Drug Development, Tufts University, Boston, MA, United States
- Clinical and Translational Science Institute, Tufts University, Boston, MA, United States
| |
Collapse
|
17
|
Xu HM, Wu MY, Shi XC, Liu KL, Zhang YC, Zhang YF, Li HM. Preliminary Study on the Protective Effects and Molecular Mechanism of Procyanidins against PFOS-Induced Glucose-Stimulated Insulin Secretion Impairment in INS-1 Cells. TOXICS 2023; 11:174. [PMID: 36851050 PMCID: PMC9966006 DOI: 10.3390/toxics11020174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/10/2023] [Accepted: 02/11/2023] [Indexed: 06/18/2023]
Abstract
This study aimed to investigate the effects of perfluorooctanesulfonic acid (PFOS) exposure on glucose-stimulated insulin secretion (GSIS) of rat insulinoma (INS-1) cells and the potential protective effects of procyanidins (PC). The effects of PFOS and/or PC on GSIS of INS-1 cells were investigated after 48 h of exposure (protein level: insulin; gene level: glucose transporter 2 (Glut2), glucokinase (Gck), and insulin). Subsequently, the effects of exposure on the intracellular reactive oxygen species (ROS) activity were measured. Compared to the control group, PFOS exposure (12.5, 25, and 50 μM) for 48 h had no significant effect on the viability of INS-1 cells. PFOS exposure (50 μM) could reduce the level of insulin secretion and reduce the relative mRNA expression levels of Glut2, Gck, and insulin. It is worth noting that PC could partially reverse the damaging effect caused by PFOS. Significantly, there was an increase in ROS after exposure to PFOS and a decline after PC intervention. PFOS could affect the normal physiological function of GSIS in INS-1 cells. PC, a plant natural product, could effectively alleviate the damage caused by PFOS by inhibiting ROS activity.
Collapse
Affiliation(s)
- Hai-Ming Xu
- School of Public Health and Management, Ningxia Medical University, Yinchuan 750004, China
- The Key Laboratory of Environmental Factors and Chronic Disease Control of Ningxia, No. 1160, Shengli Street, Xingqing District, Yinchuan 750004, China
| | - Meng-Yu Wu
- School of Public Health and Management, Ningxia Medical University, Yinchuan 750004, China
- The Key Laboratory of Environmental Factors and Chronic Disease Control of Ningxia, No. 1160, Shengli Street, Xingqing District, Yinchuan 750004, China
| | - Xin-Chen Shi
- School of Public Health and Management, Ningxia Medical University, Yinchuan 750004, China
- The Key Laboratory of Environmental Factors and Chronic Disease Control of Ningxia, No. 1160, Shengli Street, Xingqing District, Yinchuan 750004, China
| | - Ke-Liang Liu
- School of Public Health and Management, Ningxia Medical University, Yinchuan 750004, China
- The Key Laboratory of Environmental Factors and Chronic Disease Control of Ningxia, No. 1160, Shengli Street, Xingqing District, Yinchuan 750004, China
| | - Ying-Chi Zhang
- School of Public Health and Management, Ningxia Medical University, Yinchuan 750004, China
- The Key Laboratory of Environmental Factors and Chronic Disease Control of Ningxia, No. 1160, Shengli Street, Xingqing District, Yinchuan 750004, China
| | - Yin-Feng Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Hong-Mei Li
- School of Public Health and Management, Ningxia Medical University, Yinchuan 750004, China
- The Key Laboratory of Environmental Factors and Chronic Disease Control of Ningxia, No. 1160, Shengli Street, Xingqing District, Yinchuan 750004, China
- The Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan 750004, China
| |
Collapse
|
18
|
Andreozzi F, Di Fatta C, Spiga R, Mannino GC, Mancuso E, Averta C, De Caro C, Tallarico M, Leo A, Citraro R, Russo E, De Sarro G, Sesti G. Glucagon induces the hepatic expression of inflammatory markers in vitro and in vivo. Diabetes Obes Metab 2023; 25:556-569. [PMID: 36305474 DOI: 10.1111/dom.14902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 10/12/2022] [Accepted: 10/24/2022] [Indexed: 02/02/2023]
Abstract
Glucagon exerts multiple hepatic actions, including stimulation of glycogenolysis/gluconeogenesis. The liver plays a crucial role in chronic inflammation by synthesizing proinflammatory molecules, which are thought to contribute to insulin resistance and hyperglycaemia. Whether glucagon affects hepatic expression of proinflammatory cytokines and acute-phase reactants is unknown. Herein, we report a positive relationship between fasting glucagon levels and circulating interleukin (IL)-1β (r = 0.252, p = .042), IL-6 (r = 0.230, p = .026), fibrinogen (r = 0.193, p = .031), complement component 3 (r = 0.227, p = .024) and high sensitivity C-reactive protein (r = 0.230, p = .012) in individuals without diabetes. In CD1 mice, 4-week continuous treatment with glucagon induced a significant increase in circulating IL-1β (p = .02), and IL-6 (p = .001), which was countered by the contingent administration of the glucagon receptor antagonist, GRA-II. Consistent with these results, we detected a significant increase in the hepatic activation of inflammatory pathways, such as expression of NLRP3 (p < .02), and the phosphorylation of nuclear factor kappaB (NF-κB; p < .02) and STAT3 (p < .01). In HepG2 cells, we found that glucagon dose-dependently stimulated the expression of IL-1β (p < .002), IL-6 (p < .002), fibrinogen (p < .01), complement component 3 (p < .01) and C-reactive protein (p < .01), stimulated the activation of NLRP3 inflammasome (p < .01) and caspase-1 (p < .05), induced the phosphorylation of TRAF2 (p < .01), NF-κB (p < .01) and STAT3 (p < .01). Preincubating cells with GRA-II inhibited the ability of glucagon to induce an inflammatory response. Using HepaRG cells, we confirmed the dose-dependent ability of glucagon to stimulate the expression of NLRP3, the phosphorylation of NF-κB and STAT3, in the absence of GRA-II. These results suggest that glucagon has proinflammatory effects that may participate in the pathogenesis of hyperglycaemia and unfavourable cardiometabolic risk profile.
Collapse
Affiliation(s)
- Francesco Andreozzi
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
- Research Center for the Prevention and Treatment of Metabolic Diseases (CR METDIS), University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Concetta Di Fatta
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Rosangela Spiga
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Gaia Chiara Mannino
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Elettra Mancuso
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Carolina Averta
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Carmen De Caro
- Department of Science of Health, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Martina Tallarico
- Department of Science of Health, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Antonio Leo
- Department of Science of Health, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Rita Citraro
- Department of Science of Health, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Emilio Russo
- Department of Science of Health, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | | | - Giorgio Sesti
- Department of Clinical and Molecular Medicine, University of Rome-Sapienza, Rome, Italy
| |
Collapse
|
19
|
Meng Q, Chepurny OG, Leech CA, Pruekprasert N, Molnar ME, Collier JJ, Cooney RN, Holz GG. The alpha-7 nicotinic acetylcholine receptor agonist GTS-21 engages the glucagon-like peptide-1 incretin hormone axis to lower levels of blood glucose in db/db mice. Diabetes Obes Metab 2022; 24:1255-1266. [PMID: 35293666 PMCID: PMC9177741 DOI: 10.1111/dom.14693] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/01/2022] [Accepted: 03/12/2022] [Indexed: 12/24/2022]
Abstract
AIM To establish if alpha-7 nicotinic acetylcholine receptor (α7nAChR) agonist GTS-21 exerts a blood glucose-lowering action in db/db mice, and to test if this action requires coordinate α7nAChR and GLP-1 receptor (GLP-1R) stimulation by GTS-21 and endogenous GLP-1, respectively. MATERIALS AND METHODS Blood glucose levels were measured during an oral glucose tolerance test (OGTT) using db/db mice administered intraperitoneal GTS-21. Plasma GLP-1, peptide tyrosine tyrosine 1-36 (PYY1-36), glucose-dependent insulinotropic peptide (GIP), glucagon, and insulin levels were measured by ELISA. A GLP-1R-mediated action of GTS-21 that is secondary to α7nAChR stimulation was evaluated using α7nAChR and GLP-1R knockout (KO) mice, or by co-administration of GTS-21 with the dipeptidyl peptidase-4 inhibitor, sitagliptin, or the GLP-1R antagonist, exendin (9-39). Insulin sensitivity was assessed in an insulin tolerance test. RESULTS Single or multiple dose GTS-21 (0.5-8.0 mg/kg) acted in a dose-dependent manner to lower levels of blood glucose in the OGTT using 10-14 week-old male and female db/db mice. This action of GTS-21 was reproduced by the α7nAChR agonist, PNU-282987, was enhanced by sitagliptin, was counteracted by exendin (9-39), and was absent in α7nAChR and GLP-1R KO mice. Plasma GLP-1, PYY1-36, GIP, glucagon, and insulin levels increased in response to GTS-21, but insulin sensitivity, body weight, and food intake were unchanged. CONCLUSIONS α7nAChR agonists improve oral glucose tolerance in db/db mice. This action is contingent to coordinate α7nAChR and GLP-1R stimulation. Thus α7nAChR agonists administered in combination with sitagliptin might serve as a new treatment for type 2 diabetes.
Collapse
Affiliation(s)
- Qinghe Meng
- Department of Surgery, State University of New York (SUNY), Upstate Medical University, Syracuse, New York, USA
| | - Oleg G. Chepurny
- Department of Medicine, State University of New York (SUNY), Upstate Medical University, Syracuse, New York, USA
| | - Colin A. Leech
- Department of Medicine, State University of New York (SUNY), Upstate Medical University, Syracuse, New York, USA
| | - Napat Pruekprasert
- Department of Surgery, State University of New York (SUNY), Upstate Medical University, Syracuse, New York, USA
| | - Megan E. Molnar
- Department of Surgery, State University of New York (SUNY), Upstate Medical University, Syracuse, New York, USA
| | - J. Jason Collier
- Laboratory of Islet Biology and Inflammation, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - Robert N. Cooney
- Department of Surgery, State University of New York (SUNY), Upstate Medical University, Syracuse, New York, USA
- Co-corresponding Authors: Robert N. Cooney, M.D., Department of Surgery, SUNY Upstate Medical University, 750 E. Adams St., Suite 8141, Syracuse, NY 13210 USA, Tel. +1 315-464-5549, Fax +1 315-464-6250, , George G. Holz, Ph.D., Department of Medicine, SUNY Upstate Medical University, 505 Irving Avenue, IHP4310, Syracuse, NY 13210 USA, Tel. +1 315-464-9841,
| | - George G. Holz
- Department of Medicine, State University of New York (SUNY), Upstate Medical University, Syracuse, New York, USA
- Department of Pharmacology, State University of New York (SUNY), Upstate Medical University, Syracuse, New York, USA
- Co-corresponding Authors: Robert N. Cooney, M.D., Department of Surgery, SUNY Upstate Medical University, 750 E. Adams St., Suite 8141, Syracuse, NY 13210 USA, Tel. +1 315-464-5549, Fax +1 315-464-6250, , George G. Holz, Ph.D., Department of Medicine, SUNY Upstate Medical University, 505 Irving Avenue, IHP4310, Syracuse, NY 13210 USA, Tel. +1 315-464-9841,
| |
Collapse
|
20
|
Kimura T, Kaku K. Clinical relevance of dual agonist of glucagon and GLP-1 receptors to achieve functional restoration of first and second phase insulin secretion. J Diabetes Investig 2022; 13:1300-1302. [PMID: 35543083 PMCID: PMC9340864 DOI: 10.1111/jdi.13831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 04/26/2022] [Accepted: 05/08/2022] [Indexed: 11/28/2022] Open
Affiliation(s)
- Tomohiko Kimura
- Department of Diabetes, Endocrinology and Metabolism, Kawasaki Medical School, Kurashiki, Japan
| | - Kohei Kaku
- Department of Diabetes, Endocrinology and Metabolism, Kawasaki Medical School, Kurashiki, Japan
| |
Collapse
|
21
|
Jia Y, Liu Y, Feng L, Sun S, Sun G. Role of Glucagon and Its Receptor in the Pathogenesis of Diabetes. Front Endocrinol (Lausanne) 2022; 13:928016. [PMID: 35784565 PMCID: PMC9243425 DOI: 10.3389/fendo.2022.928016] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 05/13/2022] [Indexed: 11/24/2022] Open
Abstract
Various theories for the hormonal basis of diabetes have been proposed and debated over the past few decades. Insulin insufficiency was previously regarded as the only hormone deficiency directly leading to metabolic disorders associated with diabetes. Although glucagon and its receptor are ignored in this framework, an increasing number of studies have shown that they play essential roles in the development and progression of diabetes. However, the molecular mechanisms underlying the effects of glucagon are still not clear. In this review, recent research on the mechanisms by which glucagon and its receptor contribute to the pathogenesis of diabetes as well as correlations between GCGR mutation rates in populations and the occurrence of diabetes are summarized. Furthermore, we summarize how recent research clearly establishes glucagon as a potential therapeutic target for diabetes.
Collapse
Affiliation(s)
- Yunbo Jia
- Innovative Engineering Technology Research Center for Cell Therapy, Shengjing Hospital of China Medical University, Shenyang, China
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yang Liu
- Innovative Engineering Technology Research Center for Cell Therapy, Shengjing Hospital of China Medical University, Shenyang, China
| | - Linlin Feng
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Siyu Sun
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, China
- *Correspondence: Siyu Sun, ; Guangwei Sun,
| | - Guangwei Sun
- Innovative Engineering Technology Research Center for Cell Therapy, Shengjing Hospital of China Medical University, Shenyang, China
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, China
- *Correspondence: Siyu Sun, ; Guangwei Sun,
| |
Collapse
|