1
|
Zhou Y, Wang L, Sui J, Chen F, Wang T, Yang J, Chen SH, Cui X, Yang Y, Zhang W. Pathway Elucidation and Key Enzymatic Processes in the Biodegradation of Difenoconazole by Pseudomonas putida A-3. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025. [PMID: 39844663 DOI: 10.1021/acs.jafc.4c10387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
The extensive agricultural use of the fungicide difenoconazole (DIF) and its associated toxicity increasingly damage ecosystems and human health. Thus, an urgent need is to develop environmentally friendly technological approaches capable of effectively removing DIF residues. In this study, strain Pseudomonas putida A-3 was isolated for the first time which can degrade DIF efficiently. After optimization of the degradation conditions, the degradation rate reached 75.98%. Moreover, a new DIF degradation pathway, including hydroxylation, hydrolysis, dechlorination, and ether bond breaking. The acute and chronic toxicity of DIF degradation products assessed using ECOSAR software showed lower toxicity than the parent compound. Furthermore, strain A-3 remarkably accelerated the degradation of DIF in contaminated water-sediment systems. We successfully predicted six potential key enzymes for DIF degradation based on the results of whole genome sequencing, RT-qPCR, and molecular docking. Overall, the results revealed novel pathways for DIF biodegradation and provide a strong candidate for bioremediation of DIF residue-polluted environments.
Collapse
Affiliation(s)
- Yi Zhou
- Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Liping Wang
- Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Jingyi Sui
- Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Feiyu Chen
- Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Tianyue Wang
- Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Jia Yang
- Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Shao-Hua Chen
- State Key Laboratory of Green Pesticide, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Xiuming Cui
- Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Ye Yang
- Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Wenping Zhang
- Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| |
Collapse
|
2
|
Kuyukina MS, Bayandina EA, Kostrikina NA, Sorokin VV, Mulyukin AL, Ivshina IB. Adaptations of Rhodococcus rhodochrous Biofilms to Oxidative Stress Induced by Copper(II) Oxide Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:1356-1367. [PMID: 39761365 DOI: 10.1021/acs.langmuir.4c03987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Copper(II) oxide nanoparticles (CuO NPs) are used in different industries and agriculture, thus leading to their release to the environment, which raises concerns about their ecotoxicity and biosafety. The main toxicity mechanism of nanometals is oxidative stress as a result of the formation of reactive oxygen species caused by metal ions released from nanoparticles. Bacterial biofilms are more resistant to physical and chemical factors than are planktonic cells due to the extracellular polymeric matrix (EPM), which performs a protective function. Hydrocarbon-oxidizing bacteria of the genus Rhodococcus, well-known biodegraders of toxic organic pollutants and bioremediation agents, are capable of producing biofilms, which, as we proposed, are more resistant to metal nanoparticles, while the particular adaptation mechanisms have not yet been clarified. In this study, we study the adaptation mechanisms of Rhodococcus rhodochrous IEGM 1363 biofilms to CuO NPs in a wide range of concentrations (0.001-0.1 g/L), including morphological and ultrastructural cell alterations. The results obtained on the long-term dynamics (≤72 h) and localization of EPM structural components, in particular, lipids, polysaccharides, and proteins, indicated their important role in the complex adaptive response of alkanotrophic Rhodococcus to oxidative stress caused by copper nanooxide. The observed changes in the ultrastructure and element composition included binding of CuO nanoparticles by the cell wall to prevent their penetration inside cells and intracellular accumulation of potassium, magnesium, phosphorus, and sulfur in electron-dense inclusions, which may be associated with a metabolic stress reaction. Understanding the mechanisms of interaction between nanometals and Rhodococcus biofilms will contribute to the development of biocatalysts based on immobilized bacterial cells and bioremediation methods.
Collapse
Affiliation(s)
- Maria S Kuyukina
- Perm State University, 15 Bukirev strasse, Perm 614068, Russia
- Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center, Ural Branch of the Russian Academy of Sciences, 13 Golev strasse, Perm 614081, Russia
| | | | - Nadezhda A Kostrikina
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, build. 2, 33, Leninsky prospect, Moscow 119071, Russia
| | - Vladimir V Sorokin
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, build. 2, 33, Leninsky prospect, Moscow 119071, Russia
| | - Andrey L Mulyukin
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, build. 2, 33, Leninsky prospect, Moscow 119071, Russia
| | - Irena B Ivshina
- Perm State University, 15 Bukirev strasse, Perm 614068, Russia
- Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center, Ural Branch of the Russian Academy of Sciences, 13 Golev strasse, Perm 614081, Russia
| |
Collapse
|
3
|
Gupta K, Sharma VK. Cutting-edge perspectives on biosurfactants: implications for antimicrobial and biomedical applications. 3 Biotech 2024; 14:297. [PMID: 39539528 PMCID: PMC11554964 DOI: 10.1007/s13205-024-04146-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Biosurfactants, naturally produced by plants and microorganisms, closely mimic synthetic surfactants in physiochemical properties, making them valuable alternatives in various applications. They serve as antimicrobial agents and play a crucial role in immune regulations. These compounds find wide use in industries like food processing, biodegradation, pharmaceuticals, and naturally present in the skin, brain, lungs, and gut, maintaining membrane permeability for organ health. This review outlines the basic characteristics and classes of biosurfactants (glycolipids, lipopeptides, phospholipids, and glycoproteins) and explores their biomedical importance, emphasizing their anti-adhesive, antimicrobial, and immune-modulating properties. This review aimed to provide outline the fundamental characteristics of biosurfactants and deliver a brief overview of their different classes, including glycolipids, lipopeptides, phospholipids, and glycoproteins. Furthermore, this review also explore their biomedical significance, highlighting their anti-adhesive, antimicrobial, and immune-modulating properties.
Collapse
Affiliation(s)
- Kashish Gupta
- Department of Biotechnology & Microbiology, School of Sciences, Noida International University-NIU, Sector-17 A, Yamuna Expressway, Gautam Budh Nagar, Uttar Pradesh 201308 India
| | - Varun Kumar Sharma
- Department of Biotechnology & Microbiology, School of Sciences, Noida International University-NIU, Sector-17 A, Yamuna Expressway, Gautam Budh Nagar, Uttar Pradesh 201308 India
| |
Collapse
|
4
|
Su R, Chen F, Zhang X, Qin Y, Zhang Y, Zhang W. Immune defense adaptation of Strauchbufo raddei population in heavy metal polluted area: Insights from developmental and environmental perspectives. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 371:123126. [PMID: 39500166 DOI: 10.1016/j.jenvman.2024.123126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 10/14/2024] [Accepted: 10/27/2024] [Indexed: 11/28/2024]
Abstract
The adjustment of immune defense mechanisms is a crucial aspect of biological adaptation to stressful environments. Amphibians, with their unique metamorphic process, experience distinct life stages and exhibit diverse immune defense components. While previous studies have focused on specific immune changes during particular life stages under stress, this research addresses a critical gap by exploring the adaptive immune defense strategies of Strauchbufo raddei in heavy metal-polluted environments. We conducted laboratory experiments, exposing offspring from both polluted and unpolluted areas to control and heavy metal treatments, while continuously monitoring changes in immune components during key metamorphic stages. Notably, we examined the role of the skin microbiome, a crucial but often overlooked barrier against pathogens. The results indicated that individuals from polluted areas exhibited some tolerance to heavy metal exposure, though overall immune function remained diminished. During metamorphosis, when immune defenses are most vulnerable, the skin microbiome rapidly enriched beneficial bacteria, preventing pathogenic colonization and playing a pivotal role in maintaining immune defense in contaminated environments. Moreover, our research highlights energy allocation strategies involving corticosterone and body fat content, enabling populations to maintain development despite immune compromise. The immune adaptations observed may be fixed through genetic assimilation, suggesting a rapid evolutionary response to environmental stress. However, this reduces phenotypic plasticity, making populations more vulnerable to future environmental changes. This study provides key insights into the survival strategies of amphibian populations in heavy metal-contaminated areas, laying the foundation for future research on molecular and evolutionary adaptations.
Collapse
Affiliation(s)
- Rui Su
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.
| | - Fanrui Chen
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.
| | - Xueying Zhang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.
| | - Yuting Qin
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.
| | - Yingmei Zhang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.
| | - Wenya Zhang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
5
|
Yoshioka S, Ohta A, Rahman S, Imaizumi M, Ni S, Mizuishi T, Sawai H, Wong KH, Mashio AS, Hasegawa H. Enhanced fluoride extraction from contaminated soil combining chelator and surfactant: Insights into adsorptive controlment of soil surface charge. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 372:123421. [PMID: 39581010 DOI: 10.1016/j.jenvman.2024.123421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 11/07/2024] [Accepted: 11/18/2024] [Indexed: 11/26/2024]
Abstract
Biodegradable chelators and surfactants are promising alternatives to conventional washing agents for remediating soil contaminated with toxic elements, owing to their excellent extractability and environmental compatibility. Most previous studies have primarily aimed at maximizing removal efficiency. However, understanding their underlying extraction mechanism is essential to expand the application potential of chelator- or surfactant-assisted washing systems. This study evaluated the effectiveness of chelators and surfactants in remediating fluoride (F)-contaminated soil and explored their associated extraction mechanisms. Our findings highlight a biodegradable chelator, HIDS (3-hydroxy-2,2'-imino disuccinic acid) as uniquely effective in F extraction with minimal F-bearing minerals dissolution (Ca, Fe, and Al). Chelator recovery rates and zeta potential measurements in post-washed solutions suggests that HIDS adsorbs onto soil surfaces, displacing the originally adsorbed F and enhancing the negative surface charge to inhibit F re-adsorption. Additionally, applying an anionic surfactant to enhance F extraction from soil showed promising results. Notably, a binary blend of HIDS and in-lab designed anionic surfactant, SDT (sodium N-dodecanoyl-taurinate), achieved the highest F removal rate (132 mg kg-1) under optimized washing conditions (HIDS: 10 mmol L-1, SDT: 10 mmol L-1, solution pH: 3, and washing time: 1 h), enhancing F extraction by 22% compared to HIDS-only washing (108 mg kg-1; washing time: 3 h). The FT-IR and zeta potential measurements suggested that SDT adsorbed onto the soil surface. The action of the HIDS-SDT blend towards F extraction involves the complexation and acid dissolution of F-bearing soil minerals, followed by F replacement through chelator and surfactant adsorption. This process mitigated F back-adsorption and enhanced F extraction by generating a negatively charged soil surface.
Collapse
Affiliation(s)
- Shoji Yoshioka
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa, Ishikawa, 920-1192, Japan.
| | - Akio Ohta
- Institute of Science and Engineering, Kanazawa University, Kakuma, Kanazawa, Ishikawa, 920-1192, Japan.
| | - Shafiqur Rahman
- Institute of Science and Engineering, Kanazawa University, Kakuma, Kanazawa, Ishikawa, 920-1192, Japan
| | - Minami Imaizumi
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa, Ishikawa, 920-1192, Japan
| | - Shengbin Ni
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa, Ishikawa, 920-1192, Japan
| | - Tomoya Mizuishi
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa, Ishikawa, 920-1192, Japan; Daikyo Construction, 235-2, Kaya, Yonago, Tottori 689-3543, Japan
| | - Hikaru Sawai
- Department of Industrial Engineering, National Institute of Technology, Ibaraki College, 866 Nakane, Hitachinaka, Ibaraki, 312-8508, Japan
| | - Kuo H Wong
- Institute of Science and Engineering, Kanazawa University, Kakuma, Kanazawa, Ishikawa, 920-1192, Japan
| | - Asami S Mashio
- Institute of Science and Engineering, Kanazawa University, Kakuma, Kanazawa, Ishikawa, 920-1192, Japan
| | - Hiroshi Hasegawa
- Institute of Science and Engineering, Kanazawa University, Kakuma, Kanazawa, Ishikawa, 920-1192, Japan.
| |
Collapse
|
6
|
Mordecai J, Al-Thukair A, Musa MM, Ahmad I, Nzila A. Bacterial Degradation of Petroleum Hydrocarbons in Saudi Arabia. TOXICS 2024; 12:800. [PMID: 39590980 PMCID: PMC11598553 DOI: 10.3390/toxics12110800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 10/23/2024] [Accepted: 10/29/2024] [Indexed: 11/28/2024]
Abstract
The Kingdom of Saudi Arabia (KSA) is the leading oil-exploring and -exploiting country in the world. As a result, contamination of the environment by petroleum products (mainly hydrocarbons) is common, necessitating strategies for their removal from the environment. Much work has been conducted on bacterial degradation of hydrocarbons in the KSA. This review comprehensively analyzed 43 research investigation articles on bacterial hydrocarbon degradation, mainly polyaromatic hydrocarbons (PAHs) within the KSA. More than 30 different bacterial genera were identified that were capable of degrading simple and complex PAHs, including benzo[a]pyrene and coronene. Different strategies for selecting and isolating these bacterial strains and their advantages and disadvantages were highlighted. The review also discussed the origins of sample inocula and the contributions of various research groups to this field. PAH metabolites produced by these bacteria were presented, and biochemical pathways of PAH degradation were proposed. More importantly, research gaps that could enrich our understanding of petroleum product biodegradation mechanisms were highlighted. Overall, the information presented in this paper will serve as a baseline for further research on optimizing bioremediation strategies in all petroleum-contaminated environments.
Collapse
Affiliation(s)
- James Mordecai
- Department of Bioengineering, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia (A.A.-T.); (I.A.)
| | - Assad Al-Thukair
- Department of Bioengineering, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia (A.A.-T.); (I.A.)
| | - Musa M. Musa
- Department of Chemistry, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia;
- Interdisciplinary Research Center for Refining and Advanced Chemicals, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Irshad Ahmad
- Department of Bioengineering, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia (A.A.-T.); (I.A.)
- Interdisciplinary Research Center for Membranes and Water Security, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Alexis Nzila
- Department of Bioengineering, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia (A.A.-T.); (I.A.)
- Interdisciplinary Research Center for Membranes and Water Security, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| |
Collapse
|
7
|
Shehzad K, Tu S, Majeed MZ, Lei B, Zhang J. Arthropods in soil reclamation and bioremediation: Functional roles, mechanisms and future perspective. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122820. [PMID: 39393333 DOI: 10.1016/j.jenvman.2024.122820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 09/13/2024] [Accepted: 10/02/2024] [Indexed: 10/13/2024]
Abstract
Soil arthropods are a diverse group of invertebrates that play pivotal roles in nutrient cycling, decomposition, soil structure formation, and regulation of soil biodiversity. Understanding the ecological significance of soil arthropods and their interactions with other soil organisms is crucial. This review paper examines the potential of arthropods in improving soil health and quality, with a specific focus on their relevance in acidic, saline/alkaline, and contaminated soils. The paper investigates the interactions between arthropods and their associated microbiomes, their contributions to soil physical and chemical properties, their influence on nutrient cycling and organic matter mineralization, as well as their role as indicators of soil health due to their sensitivity to environmental changes. Furthermore, the review explores how arthropods enhance the activities of microorganisms, such as bacteria, fungi, and yeast, which employ molecular mechanisms to remediate heavy metal contamination in soils. Lastly, the paper addresses key challenges and future directions for utilizing soil arthropods in the restoration of environmentally friendly soils.
Collapse
Affiliation(s)
- Khurram Shehzad
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shuxin Tu
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Muhammad Zeeshan Majeed
- Department of Entomology, College of Agriculture, University of Sargodha, Sargodha, 40100, Pakistan
| | - Bo Lei
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jie Zhang
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
8
|
Das SK. Agro-waste based biomass residues valorization for effective adsorption of heavy metal. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:1058. [PMID: 39412536 DOI: 10.1007/s10661-024-13258-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 10/10/2024] [Indexed: 11/14/2024]
Abstract
In this experiment four agro-waste based biomass residues (soybean stover-SSb, buckwheat stover-BWb, Artemisia vulgaris- AVb and Chromolaena odorata-COb) was valorized into low cost amendment called biochar followed by compositional characterization for their application in heavy metal removal. Investigation was carried out on the removal of the most common heavy metal ions including arsenic, cadmium, lead, nickel, zinc, and copper through adsorption on four types of biomass valorised biochar. According to preliminary testing, all the biochar was effective to eliminate a mixture of six heavy metals from the aqueous phase, with the removal of arsenic being the most removed and nickel being the least. In comparison to no biochar treatment, the average removal rate of heavy metal from aqueous solution using four distinct types of biochar was 45.75-62.42% (Cd), 43.64-56.33% (Pb), 41.85-59.73% (Ni), 42.87-60.28% (Zn), 45.64-59.51% (Cu), and 49.02-60.53% (As). The percent decrease of cadmium heavy metal adsorption with increase in maximum contaminant level (MCL) from 1- to fivefold was 20.0 (SSb), 20.7 (COb), 21.6 (BWb), and 22.9 (AVb). The results of the dosage study indicated that As adsorption was the most beneficial on all four types of biochar, whereas Ni adsorption was the least effective. With increase in application rate of biochar the heavy metals adsorption (%) was also increased. Four different agro-waste valorized biochar were used to treat the wastewater, and the physical and chemical changes that occurred both before and after the biochar treatment were noted. There was a drop in the wastewater CODT, CODD, TSS, ammonia, TKN, TP and pH values of 79.7-103.5%, 57.7-81.5, 52.3-68.4%, 1.23-2.23%, 14.1-20.6%, and 1.23-3.03%, respectively. Furthermore, after being passed through a biochar, the wastewater's Zn, Pb, Cd, As, Cr and Cu levels decreased by 3.26-6.15%, 0.06-0.34%, 0.01-0.08%, 2.37-3.65%, 3.95-5.53%, and 2.24-3.34%, respectively at 2.5 and 5.0 g/litre of wastewater. Thus, in order to comply with regulations for the disposal of wastewater effluent, the process of valorizing biomass into biochar offered enormous potential for the removal of heavy metals in addition to wastewater treatment.
Collapse
Affiliation(s)
- Shaon Kumar Das
- ICAR Research Complex for NEH Region, Sikkim Centre, Gangtok, Sikkim, 737102, India.
| |
Collapse
|
9
|
Pal S, Chatterjee N, Sinha Roy S, Chattopadhyay B, Acharya K, Datta S, Dhar P. Valorization of oil refinery by-products: production of sophorolipids utilizing fatty acid distillates and their potential antibacterial, anti-biofilm, and antifungal activities. World J Microbiol Biotechnol 2024; 40:344. [PMID: 39384621 DOI: 10.1007/s11274-024-04144-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 09/14/2024] [Indexed: 10/11/2024]
Abstract
Starmerella bombicola is a native yeast strain producing sophorolipids as secondary metabolites. This study explores the production, characterization, and biological activities of sophorolipids and investigates the antimicrobial, anti-biofilm, and antifungal properties of sophorolipids produced from oil refinery wastes by the yeast Starmerella bombicola. The present work demonstrated that S. bombicola MTCC 1910 when grown in oil refinery wastes namely palm fatty acid distillates and soy fatty acid distillates enhanced the rate of sophorolipids production drastically in comparison to vegetable oil, sunflower oil used as hydrophobic feedstock. Sophorolipid yields were 18.14, 37.21, and 46.1 g/L with sunflower oil, palm, and soy fatty acid distillates respectively. The crude biosurfactants were characterized using TLC, FTIR, and HPLC revealing to be acetylated sophorolipids containing both the acidic and lactonic isomeric forms. The surface lowering and emulsifying properties of the sophorolipids from refinery wastes were significantly higher than the sunflower oil-derived sophorolipids. Also, all the sophorolipids exhibited strong antibacterial properties (minimum inhibitory concentrations were between 50 and 200 µg mL-1) against Salmonella typhimurium, Bacillus cereus, and Staphylococcus epidermidis and were validated with morphological analysis by Scanning electron microscopy. All the sophorolipids were potent biofilm inhibitors and eradicators (minimum biofilm inhibitory and eradication concentrations were between 12.5 to 1000 µg mL-1) for all the tested organisms. Furthermore, antifungal activities were also found to exhibit about 16-56% inhibition at 1 mg mL-1 for fungal mycelial growth. Therefore, this endeavour of sophorolipids production using palm and soy fatty acid distillates not only opens up a window for the bioconversion of industrial wastes into productive biosurfactants but also concludes that sophorolipids from oil refinery wastes are potent antimicrobial, anti-biofilm, and antifungal agents, highlighting their potential in biotechnological and medical applications.
Collapse
Affiliation(s)
- Srija Pal
- Laboratory of Food Science and Technology, Food and Nutrition Division, University of Calcutta, 20B Judges Court Road, Alipore, Kolkata, 700027, West Bengal, India
- Department of Chemical Technology, University of Calcutta, 92, Acharya Prafulla Chandra Road, Rajabazar, Machuabazar, Kolkata, 700009, West Bengal, India
| | - Niloy Chatterjee
- Laboratory of Food Science and Technology, Food and Nutrition Division, University of Calcutta, 20B Judges Court Road, Alipore, Kolkata, 700027, West Bengal, India
- Centre for Research in Nanoscience & Nanotechnology, University of Calcutta, JD 2, Sector III, Salt Lake City, Kolkata, 700 098, West Bengal, India
| | - Sagnik Sinha Roy
- Department of Physics, Jadavpur University, 188, Raja S.C. Mallick Rd, Kolkata, 700032, West Bengal, India
| | - Brajadulal Chattopadhyay
- Department of Physics, Jadavpur University, 188, Raja S.C. Mallick Rd, Kolkata, 700032, West Bengal, India
| | - Krishnendu Acharya
- Department of Botany, University of Calcutta, 35, Ballygunge Circular Rd, Ballygunge, Kolkata, 700019, West Bengal, India
| | - Sriparna Datta
- Department of Chemical Technology, University of Calcutta, 92, Acharya Prafulla Chandra Road, Rajabazar, Machuabazar, Kolkata, 700009, West Bengal, India
| | - Pubali Dhar
- Laboratory of Food Science and Technology, Food and Nutrition Division, University of Calcutta, 20B Judges Court Road, Alipore, Kolkata, 700027, West Bengal, India.
- Centre for Research in Nanoscience & Nanotechnology, University of Calcutta, JD 2, Sector III, Salt Lake City, Kolkata, 700 098, West Bengal, India.
| |
Collapse
|
10
|
Lourenço M, Duarte N, Ribeiro IAC. Exploring Biosurfactants as Antimicrobial Approaches. Pharmaceuticals (Basel) 2024; 17:1239. [PMID: 39338401 PMCID: PMC11434949 DOI: 10.3390/ph17091239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/12/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
Antibacterial resistance is one of the most important global threats to human health. Several studies have been performed to overcome this problem and infection-preventive approaches appear as promising solutions. Novel antimicrobial preventive molecules are needed and microbial biosurfactants have been explored in that scope. Considering their structure, these biomolecules can be divided into different classes, glycolipids and lipopeptides being the most studied. Besides their antimicrobial activity, biosurfactants have the advantage of being biocompatible, biodegradable, and non-toxic, which favor their application in several areas, including the health sector. Often, the most difficult infections to fight are associated with biofilm formation, particularly in medical devices. Strategies to overcome micro-organism attachment are thus emergent, and it is possible to take advantage of the antimicrobial/antibiofilm properties of biosurfactants to produce surfaces that are more resistant to the deposition/attachment of bacteria. Approaches such as the covalent bond of biosurfactants to the medical device surface leading to repulsive physical-chemical interactions or contact killing can be selected. Simpler strategies such as the absorption of biosurfactants on surfaces are also possible, eliminating micro-organisms in the vicinity. This review will focus on the physical and chemical characteristics of biosurfactants, their antimicrobial activity, antimicrobial/antibiofilm approaches, and finally on their structure-activity relationship.
Collapse
Affiliation(s)
| | - Noélia Duarte
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Avenida Prof. Gama Pinto, 1649-003 Lisboa, Portugal;
| | - Isabel A. C. Ribeiro
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Avenida Prof. Gama Pinto, 1649-003 Lisboa, Portugal;
| |
Collapse
|
11
|
Song H, Chen SF, Si G, Bhatt K, Chen SH, Chen WJ. Removal of environmental pollutants using biochar: current status and emerging opportunities. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:384. [PMID: 39167116 DOI: 10.1007/s10653-024-02142-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 07/22/2024] [Indexed: 08/23/2024]
Abstract
In recent times, biochar has emerged as a novel approach for environmental remediation due to its exceptional adsorption capacity, attributed to its porous structure formed by the pyrolysis of biomass at elevated temperatures in oxygen-restricted conditions. This characteristic has driven its widespread use in environmental remediation to remove pollutants. When biochar is introduced into ecosystems, it usually changes the makeup of microbial communities by offering a favorable habitat. Its porous structure creates a protective environment that shields them from external pressures. Consequently, microorganisms adhering to biochar surfaces exhibit increased resilience to environmental conditions, thereby enhancing their capacity to degrade pollutants. During this process, pollutants are broken down into smaller molecules through the collaborative efforts of biochar surface groups and microorganisms. Biochar is also often used in conjunction with composting techniques to enhance compost quality by improving aeration and serving as a carrier for slow-release fertilizers. The utilization of biochar to support sustainable agricultural practices and combat environmental contamination is a prominent area of current research. This study aims to examine the beneficial impacts of biochar application on the absorption and breakdown of contaminants in environmental and agricultural settings, offering insights into its optimization for enhanced efficacy.
Collapse
Affiliation(s)
- Haoran Song
- Integrative Microbiology Research Centre, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Shao-Fang Chen
- Integrative Microbiology Research Centre, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Guiling Si
- Integrative Microbiology Research Centre, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Kalpana Bhatt
- Integrative Microbiology Research Centre, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Shao-Hua Chen
- Integrative Microbiology Research Centre, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Wen-Juan Chen
- Integrative Microbiology Research Centre, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
12
|
Li J, Yang X, Zhang X, Zhang L. Effects and mechanisms of microbial ecology and diversity on phytoremediation of cadmium-contaminated soil under the influence of biodegradable organic acids. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2024; 26:2392-2403. [PMID: 39150230 DOI: 10.1080/15226514.2024.2391025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
In recent years, heavy metal pollution has become a global environmental problem and poses a great threat to the health of people and ecosystems. Therefore, strategies for the effective remediation of Cd from contaminated soil are urgently needed. In this study, ryegrass was utilized as a remediation plant, and its remediation potential was enhanced through the application of Citric Acid (CA) in conjunction with Bacillus megaterium (B. megaterium). The P3 treatment (CA + Bacillus megaterium) exhibited a significantly higher efficiency in promoting cadmium extraction by ryegrass, resulting in a 1.79-fold increase in shoot cadmium accumulation compared to the control group (CK) with no Bacillus megaterium or CA. Moreover, the P3 treatment led to an increased abundance of Actinobacteriota, Acidobacteriota, and Patescibacteria in the rhizosphere. The concentration of amino derivatives (such as betaine, sulfolithocholylglycine, N-alpha-acetyl-lysine, glycocholic acid, arginyl-threonine) showed significant upregulation following the P3 treatment. In summary, this study proposes a viable approach for phytoremediation of soil contaminated with cadmium by harnessing the mobilizing abilities of soil bacteria.
Collapse
Affiliation(s)
- Jiapeng Li
- College of Resources and Environment, Qingdao Agricultural University Qingdao, PR China
| | - Xiaoqian Yang
- College of Resources and Environment, Qingdao Agricultural University Qingdao, PR China
| | - Xiaoxiao Zhang
- College of Resources and Environment, Qingdao Agricultural University Qingdao, PR China
| | - Lei Zhang
- College of Resources and Environment, Qingdao Agricultural University Qingdao, PR China
| |
Collapse
|
13
|
Sun Z, Geng J, Zhang C, Du Q. Electrokinetic Remediation of Cu- and Zn-Contaminated Soft Clay with Electrolytes Situated above Soil Surfaces. TOXICS 2024; 12:563. [PMID: 39195665 PMCID: PMC11360250 DOI: 10.3390/toxics12080563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 08/29/2024]
Abstract
Electrokinetic remediation (EKR) has shown great potential for the remediation of in situ contaminated soils. For heavy metal-contaminated soft clay with high moisture content and low permeability, an electrokinetic remediation method with electrolytes placed above the ground surface is used to avoid issues such as electrolyte leakage and secondary contamination that may arise from directly injecting electrolytes into the soil. In this context, using this novel experimental device, a set of citric acid (CA)-enhanced EKR tests were conducted to investigate the optimal design parameters for Cu- and Zn-contaminated soft clay. The average removal rates of heavy metals Cu and Zn in these tests were in the range of 27.9-85.5% and 63.9-83.5%, respectively. The results indicate that the Zn removal was efficient. This was determined by the migration intensity of the electro-osmotic flow, particularly the volume reduction of the anolyte. The main factors affecting the Cu removal efficiency in sequence were the effective electric potential of the contaminated soft clay and the electrolyte concentration. Designing experimental parameters based on these parameters will help remove Cu and Zn. Moreover, the shear strength of the contaminated soil was improved; however, the degree of improvement was limited. Low-concentration CA can effectively control the contact resistance between the anode and soil, the contact resistance between the cathode and soil, and the soil resistance by increasing the amount of electrolyte and the contact area between the electrolyte and soil.
Collapse
Affiliation(s)
- Zhaohua Sun
- School of Transportation and Civil Engineering, Nantong University, Nantong 226019, China; (J.G.); (C.Z.); (Q.D.)
- Key Laboratory of New Technology for Construction of Cities in Mountain Area, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Jingxian Geng
- School of Transportation and Civil Engineering, Nantong University, Nantong 226019, China; (J.G.); (C.Z.); (Q.D.)
| | - Cheng Zhang
- School of Transportation and Civil Engineering, Nantong University, Nantong 226019, China; (J.G.); (C.Z.); (Q.D.)
| | - Qiu Du
- School of Transportation and Civil Engineering, Nantong University, Nantong 226019, China; (J.G.); (C.Z.); (Q.D.)
| |
Collapse
|
14
|
Chen WJ, Chen SF, Song H, Li Z, Luo X, Zhang X, Zhou X. Current insights into environmental acetochlor toxicity and remediation strategies. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:356. [PMID: 39083106 DOI: 10.1007/s10653-024-02136-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 07/16/2024] [Indexed: 09/07/2024]
Abstract
Acetochlor is a selective pre-emergent herbicide that is widely used to control annual grass and broadleaf weeds. However, due to its stable chemical structure, only a small portion of acetochlor exerts herbicidal activity in agricultural applications, while most of the excess remains on the surfaces of plants or enters ecosystems, such as soil and water bodies, causing harm to the environment and human health. In recent years, researchers have become increasingly focused on the repair of acetochlor residues. Compared with traditional physical and chemical remediation methods, microorganisms are the most effective way to remediate chemical pesticide pollution, such as acetochlor, because of their rich species, wide distribution, and diverse metabolic pathways. To date, researchers have isolated and identified many high-efficiency acetochlor-degrading strains, such as Pseudomonas oleovorans, Klebsiella variicola, Bacillus subtilus, Rhodococcus, and Methylobacillus, among others. The microbial degradation pathways of acetochlor include dechlorination, hydroxylation, N-dealkylation, C-dealkylation, and dehydrogenation. In addition, the microbial enzymes, including hydrolase (ChlH), debutoxylase (Dbo), and monooxygenase (MeaXY), responsible for acetochlor biodegradation are also being investigated. In this paper, we review the migration law of acetochlor in the environment, its toxicity to nontarget organisms, and the main metabolic methods. Moreover, we summarize the latest progress in the research on the microbial catabolism of acetochlor, including the efficient degradation of microbial resources, biodegradation metabolic pathways, and key enzymes for acetochlor degradation. At the end of the article, we highlight the existing problems in the current research on acetochlor biodegradation, provide new ideas for the remediation of acetochlor pollution in the environment, and propose future research directions.
Collapse
Affiliation(s)
- Wen-Juan Chen
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Shao-Fang Chen
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Haoran Song
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Zeren Li
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaofang Luo
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Xidong Zhang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaofan Zhou
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
15
|
Yeheyo HA, Ealias AM, George G, Jagannathan U. Bioremediation potential of microalgae for sustainable soil treatment in India: A comprehensive review on heavy metal and pesticide contaminant removal. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 363:121409. [PMID: 38861884 DOI: 10.1016/j.jenvman.2024.121409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/26/2024] [Accepted: 06/05/2024] [Indexed: 06/13/2024]
Abstract
The escalating environmental concerns arising from soils contamination with heavy metals (HMs) and pesticides (PSTs) necessitate the development of sustainable and effective remediation strategies. These contaminants, known for their carcinogenic properties and toxicity even at small amounts, pose significant threats to both environmental ecology and human health. While various chemical and physical treatments are employed globally, their acceptance is often hindered by prolonged remediation times, high costs, and inefficacy in areas with exceptionally high pollutant concentrations. A promising emerging trend in addressing this issue is the utilization of microalgae for bioremediation. Bioremediation, particularly through microalgae, presents numerous benefits such as high efficiency, low cost, easy accessibility and an eco-friendly nature. This approach has gained widespread use in remediating HM and PST pollution, especially in large areas. This comprehensive review systematically explores the bioremediation potential of microalgae, shedding light on their application in mitigating soil pollutants. The paper summarizes the mechanisms by which microalgae remediate HMs and PSTs and considers various factors influencing the process, such as pH, temperature, pollutant concentration, co-existing pollutants, time of exposure, nutrient availability, and light intensity. Additionally, the review delves into the response and tolerance of various microalgae strains to these contaminants, along with their bioaccumulation capabilities. Challenges and future prospects in the microalgal bioremediation of pollutants are also discussed. Overall, the aim is to offer valuable insights to facilitate the future development of commercially viable and efficient microalgae-based solutions for pollutant bioremediation.
Collapse
Affiliation(s)
- Hillary Agaba Yeheyo
- Department of Civil Engineering, Koneru Lakshmaiah Education Foundation, Green Fields, Vaddeswaram, A.P, 522302, India.
| | - Anu Mary Ealias
- Department of Civil Engineering, Koneru Lakshmaiah Education Foundation, Green Fields, Vaddeswaram, A.P, 522302, India.
| | - Giphin George
- Department of Mechanical Engineering, Koneru Lakshmaiah Education Foundation, Green Fields, Vaddeswaram, A.P, 522302, India.
| | - Umamaheswari Jagannathan
- Department of Civil Engineering, Priyadarshini Engineering College, Vaniyambadi, Tirupattur, TN, 635751, India.
| |
Collapse
|
16
|
Shah V, Dani P, Daverey A. Phytoremediation of Heavy Metal Contaminated Soil Using Bidens pilosa: Effect of Varying Concentrations of Sophorolipids. Appl Biochem Biotechnol 2024; 196:2399-2413. [PMID: 37733106 DOI: 10.1007/s12010-023-04684-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2023] [Indexed: 09/22/2023]
Abstract
The current study investigates the impact of biosurfactant (sophorolipids, SL) concentrations (0.1 to 1 g kg-1) on the removal of cadmium (29 mg kg-1) from soil using Bidens pilosa. The results showed that increasing concentrations of SL increased the plant biomass. The dry weight of plants was 0.87 g, 0.77 g, 0.65 g, 0.85 g, 0.91 g, 0.92 g, 1.06 g in control, SL0 (No SL), SL1 (0.1 g kg-1), SL2 (0.25 g kg-1), SL3 (0.5 g kg-1), SL4 (0.75 g kg-1), and SL5 (1 g kg-1), respectively. It was observed that root length was higher in SL augmented soil in comparison to treatments without SL. It was also found that, with increasing the SL concentration, total chlorophyll and proline concentrations increased as well. The SL2 treatment had the highest Cd accumulation (76.33 µg pot-1) in the plant. Therefore, SL at 0.25 g kg-1 was considered the most effective concentration for the phytoextraction of Cd from soil. Soil enzyme activities, i.e., alkaline phosphatase, dehydrogenase, and urease activity, increased with the increase in SL concentration. The results of this study concluded that SL promotes the removal of Cd from soil and supports plant growth as well as enzymatic activities in soil.
Collapse
Affiliation(s)
- Vijendra Shah
- School of Environment and Natural Resources, Doon University, Dehradun, 248012, Uttarakhand, India
| | - Pooja Dani
- School of Environment and Natural Resources, Doon University, Dehradun, 248012, Uttarakhand, India
| | - Achlesh Daverey
- School of Environment and Natural Resources, Doon University, Dehradun, 248012, Uttarakhand, India.
- School of Biological Sciences, Doon University, Dehradun, 248012, Uttarakhand, India.
| |
Collapse
|
17
|
Ge S, Yang H, Li Y, Chen X, Yang R, Dong X. Mitigation of biofouling in membrane bioreactors by quorum-quenching bacteria during the treatment of metal-containing wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:32126-32135. [PMID: 38649608 DOI: 10.1007/s11356-024-33336-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 04/11/2024] [Indexed: 04/25/2024]
Abstract
Quorum quenching (QQ) is an efficient way to mitigate membrane biofouling in a membrane bioreactor (MBR) during wastewater treatment. A QQ bacterium, Lysinibacillus sp. A4, was isolated and used to mitigate biofouling in an MBR during the treatment of wastewater containing metals. A QQ enzyme (named AilY) was cloned from A4 and identified as a metallo-β-lactamase-like lactonase. The QQ activity of A4 and that of Escherichia coli BL21 (DE3) overexpressing AilY could be promoted by Fe2+, Mn2+, and Zn2+ while remaining unaffected by other metals tested. The two bacteria effectively mitigated biofouling by reducing the transmembrane pressure from around 30 to 20 kPa without negative influence on the COD, NH4+-N, or total phosphorus of the effluent. The relative abundance of Lysinibacillus sp. A4 increased greatly from 0.04 to 8.29% in the MBR with metal-containing wastewater, suggesting that Lysinibacillus sp. A4 could multiply quickly and adapt to this environment. Taken together, the findings suggested that A4 could tolerate metal to a certain degree, and this property could allow A4 to adapt well to metal-containing wastewater, making it a valuable strain for mitigating biofouling in MBR during the treatment of metal-containing wastewater.
Collapse
Affiliation(s)
- Shimei Ge
- College of Life and Environmental Science, Wenzhou University, Ou-Hai District, Cha-Shan Town, Wenzhou, Zhejiang Province, 325035, People's Republic of China
- National & Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, Wenzhou University, Wenzhou, 325035, China
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, 325035, China
| | - Huiting Yang
- College of Life and Environmental Science, Wenzhou University, Ou-Hai District, Cha-Shan Town, Wenzhou, Zhejiang Province, 325035, People's Republic of China
| | - Yaru Li
- College of Life and Environmental Science, Wenzhou University, Ou-Hai District, Cha-Shan Town, Wenzhou, Zhejiang Province, 325035, People's Republic of China
- National & Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, Wenzhou University, Wenzhou, 325035, China
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, 325035, China
| | - Xiaohui Chen
- College of Life and Environmental Science, Wenzhou University, Ou-Hai District, Cha-Shan Town, Wenzhou, Zhejiang Province, 325035, People's Republic of China
| | - Ruixue Yang
- College of Life and Environmental Science, Wenzhou University, Ou-Hai District, Cha-Shan Town, Wenzhou, Zhejiang Province, 325035, People's Republic of China
| | - Xinjiao Dong
- College of Life and Environmental Science, Wenzhou University, Ou-Hai District, Cha-Shan Town, Wenzhou, Zhejiang Province, 325035, People's Republic of China.
- National & Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, Wenzhou University, Wenzhou, 325035, China.
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, 325035, China.
| |
Collapse
|
18
|
Maumela P, Magida S, Serepa-Dlamini MH. Bioremediation of Pb contaminated water using a novel Bacillus sp. strain MHSD_36 isolated from Solanum nigrum. PLoS One 2024; 19:e0302460. [PMID: 38683768 PMCID: PMC11057764 DOI: 10.1371/journal.pone.0302460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 04/03/2024] [Indexed: 05/02/2024] Open
Abstract
The Pb bioremediation mechanism of a multi-metal resistant endophytic bacteria Bacillus sp. strain MHSD_36, isolated from Solanum nigrum, was characterised. The strain tested positive for the presence of plant growth promoters such as indoleacetic acid, 1-aminocyclopropane-1-carboxylate deaminase, siderophores, and phosphate solubilization. The experimental data illustrated that exopolysaccharides and cell hydrophobicity played a role in Pb uptake. The data further showed that the cell wall biosorbed a significant amount (71%) of the total Pb (equivalent to 4 mg/L) removed from contaminated water, compared to the cell membrane (11%). As much as 11% of the Pb was recovered from the cytoplasmic fraction, demonstrating the ability of the strain to control the influx of toxic heavy metals into the cell and minimize their negative impacts. Pb biosorption was significantly influenced by the pH and the initial concentration of the toxic ions. Furthermore, the presence of siderophores and biosurfactants, when the strain was growing under Pb stress, was detected through liquid chromatography mass spectrometry. The strain demonstrated a multi-component based Pb biosorption mechanism and thus, has a great potential for application in heavy metal bioremediation.
Collapse
Affiliation(s)
- Pfariso Maumela
- Faculty of Science, Department of Biotechnology and Food Technology, University of Johannesburg, Doornfontein Campus, Doornfontein, Johannesburg, South Africa
| | - Sinomncedi Magida
- Faculty of Science, Department of Biotechnology and Food Technology, University of Johannesburg, Doornfontein Campus, Doornfontein, Johannesburg, South Africa
| | - Mahloro Hope Serepa-Dlamini
- Faculty of Science, Department of Biotechnology and Food Technology, University of Johannesburg, Doornfontein Campus, Doornfontein, Johannesburg, South Africa
| |
Collapse
|
19
|
Santos BLP, Vieira IMM, Ruzene DS, Silva DP. Unlocking the potential of biosurfactants: Production, applications, market challenges, and opportunities for agro-industrial waste valorization. ENVIRONMENTAL RESEARCH 2024; 244:117879. [PMID: 38086503 DOI: 10.1016/j.envres.2023.117879] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 12/19/2023]
Abstract
Biosurfactants are eco-friendly compounds with unique properties and promising potential as sustainable alternatives to chemical surfactants. The current review explores the multifaceted nature of biosurfactant production and applications, highlighting key fermentative parameters and microorganisms able to convert carbon-containing sources into biosurfactants. A spotlight is given on biosurfactants' obstacles in the global market, focusing on production costs and the challenges of large-scale synthesis. Innovative approaches to valorizing agro-industrial waste were discussed, documenting the utilization of lignocellulosic waste, food waste, oily waste, and agro-industrial wastewater in the segment. This strategy strongly contributes to large-scale, cost-effective, and environmentally friendly biosurfactant production, while the recent advances in waste valorization pave the way for a sustainable society.
Collapse
Affiliation(s)
| | | | - Denise Santos Ruzene
- Northeastern Biotechnology Network, Federal University of Sergipe, 49100-000, São Cristóvão, SE, Brazil; Center for Exact Sciences and Technology, Federal University of Sergipe, 49100-000, São Cristóvão, SE, Brazil; Graduate Program in Biotechnology, Federal University of Sergipe, 49100-000, São Cristóvão, SE, Brazil
| | - Daniel Pereira Silva
- Northeastern Biotechnology Network, Federal University of Sergipe, 49100-000, São Cristóvão, SE, Brazil; Center for Exact Sciences and Technology, Federal University of Sergipe, 49100-000, São Cristóvão, SE, Brazil; Graduate Program in Biotechnology, Federal University of Sergipe, 49100-000, São Cristóvão, SE, Brazil; Graduate Program in Intellectual Property Science, Federal University of Sergipe, 49100-000, São Cristóvão, SE, Brazil.
| |
Collapse
|
20
|
Chen J, Chen X, Zhu Y, Yan S, Xie S. New insights into bioaugmented removal of sulfamethoxazole in sediment microcosms: degradation efficiency, ecological risk and microbial mechanisms. MICROBIOME 2024; 12:43. [PMID: 38424602 PMCID: PMC10903153 DOI: 10.1186/s40168-023-01741-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 12/18/2023] [Indexed: 03/02/2024]
Abstract
BACKGROUND Bioaugmentation has the potential to enhance the ability of ecological technology to treat sulfonamide-containing wastewater, but the low viability of the exogenous degraders limits their practical application. Understanding the mechanism is important to enhance and optimize performance of the bioaugmentation, which requires a multifaceted analysis of the microbial communities. Here, DNA-stable isotope probing (DNA-SIP) and metagenomic analysis were conducted to decipher the bioaugmentation mechanisms in stabilization pond sediment microcosms inoculated with sulfamethoxazole (SMX)-degrading bacteria (Pseudomonas sp. M2 or Paenarthrobacter sp. R1). RESULTS The bioaugmentation with both strains M2 and R1, especially strain R1, significantly improved the biodegradation rate of SMX, and its biodegradation capacity was sustainable within a certain cycle (subjected to three repeated SMX additions). The removal strategy using exogenous degrading bacteria also significantly abated the accumulation and transmission risk of antibiotic resistance genes (ARGs). Strain M2 inoculation significantly lowered bacterial diversity and altered the sediment bacterial community, while strain R1 inoculation had a slight effect on the bacterial community and was closely associated with indigenous microorganisms. Paenarthrobacter was identified as the primary SMX-assimilating bacteria in both bioaugmentation systems based on DNA-SIP analysis. Combining genomic information with pure culture evidence, strain R1 enhanced SMX removal by directly participating in SMX degradation, while strain M2 did it by both participating in SMX degradation and stimulating SMX-degrading activity of indigenous microorganisms (Paenarthrobacter) in the community. CONCLUSIONS Our findings demonstrate that bioaugmentation using SMX-degrading bacteria was a feasible strategy for SMX clean-up in terms of the degradation efficiency of SMX, the risk of ARG transmission, as well as the impact on the bacterial community, and the advantage of bioaugmentation with Paenarthrobacter sp. R1 was also highlighted. Video Abstract.
Collapse
Affiliation(s)
- Jianfei Chen
- Fujian Key Laboratory of Pollution Control & Resource Reuse, College of Environmental and Resource Sciences, Fujian Normal University, Fuzhou, 350007, China
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Xiuli Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Ying Zhu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Shuang Yan
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Shuguang Xie
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China.
| |
Collapse
|
21
|
Wang H, Guo S, He F, Li X, Wang Y, Wang T, Tian G, Liu R. The combined effects of polystyrene nanoplastics with nickel on oxidative stress and related toxic effects to earthworms from individual and cellular perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168819. [PMID: 38043826 DOI: 10.1016/j.scitotenv.2023.168819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/19/2023] [Accepted: 11/21/2023] [Indexed: 12/05/2023]
Abstract
Nanoplastics may adsorb other pollutants in the environment due to their high specific surface area and small size. We used earthworms as experimental organisms to evaluate the ecotoxicity of NPs and Ni combined pollution at the individual and cellular levels. The results showed that when only 20 mg/L Ni2+ was added to the combined pollution system, the antioxidant system of earthworm coelomocytes was destroyed to a certain extent, the ROS level increased, the cell viability decreased significantly, and the redox balance was destroyed. With the introduction of PS-NPs and the increase of concentration, the oxidative damage in the coelomocytes of earthworms gradually increased, and finally tended to be stable when the maximum concentration of 50 mg/L PS-NPs and Ni were exposed together. At the animal level, the activities of CAT and SOD decreased within 28 days of exposure, and the combined pollution showed a synergistic effect. At the same time, it promoted the synthesis of GST in earthworms, improved their detoxification ability and reduced oxidative damage. The changes of T-AOC and MDA showed that the combined pollution caused the accumulation of ROS and caused more serious toxicological effects. With the increase of exposure time, the antioxidant system of earthworms was continuously destroyed, and the oxidative damage was serious, which induced more serious lipid peroxidation and caused the damage of earthworm body wall structure.
Collapse
Affiliation(s)
- Hao Wang
- School of Environmental Science and Engineering, China - America CRC for Environment & Health, Shandong University, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Shuqi Guo
- School of Environmental Science and Engineering, China - America CRC for Environment & Health, Shandong University, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Falin He
- School of Environmental Science and Engineering, China - America CRC for Environment & Health, Shandong University, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Xiangxiang Li
- School of Environmental Science and Engineering, China - America CRC for Environment & Health, Shandong University, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Yaoyue Wang
- School of Environmental Science and Engineering, China - America CRC for Environment & Health, Shandong University, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Tingting Wang
- School of Environmental Science and Engineering, China - America CRC for Environment & Health, Shandong University, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Guang Tian
- School of Environmental Science and Engineering, China - America CRC for Environment & Health, Shandong University, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Rutao Liu
- School of Environmental Science and Engineering, China - America CRC for Environment & Health, Shandong University, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China.
| |
Collapse
|
22
|
Datta D, Ghosh S, Kumar S, Gangola S, Majumdar B, Saha R, Mazumdar SP, Singh SV, Kar G. Microbial biosurfactants: Multifarious applications in sustainable agriculture. Microbiol Res 2024; 279:127551. [PMID: 38016380 DOI: 10.1016/j.micres.2023.127551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/02/2023] [Accepted: 11/14/2023] [Indexed: 11/30/2023]
Abstract
Agriculture in the 21st century faces grave challenges to meet the unprecedented food demand of the burgeoning population as well as reduce the ecological footprint for achieving sustainable development goals. The extensive use of harsh synthetic surfactants in pesticides and the agrochemical industry has substantial adverse impacts on the soil and environment due to their toxic and non-biodegradable nature. Biosurfactants derived from plant, animal, and microbial sources can be an eco-friendly alternative to chemical surfactants. Microbes producing biosurfactants play a noteworthy role in biofilm formation, plant pathogen elimination, biodegradation, bioremediation, improving nutrient bioavailability, and can thrive well under stressful environments. Microbial biosurfactants are well suited for heavy metal and organic contaminants remediation in agricultural soil due to their low toxicity, high activity at fluctuating temperatures, biodegradability, and stability over a wide array of environmental conditions. This green technology will improve the agricultural soil quality by increasing the soil flushing efficiency, mobilization, and solubilization of nutrients by forming metal-biosurfactant complexes, and through the dissemination of complex nutrients. Such characteristics help it to play a pivotal role in environmental sustainability in the foreseeable future, which is required to increase the viability of biosurfactants for extensive commercial uses, making them accessible, affordable, and economically sustainable.
Collapse
Affiliation(s)
- Debarati Datta
- ICAR-Central Research Institute for Jute and Allied Fibres, Barrackpore, Kolkata 700 121, India
| | - Sourav Ghosh
- ICAR-Central Research Institute for Jute and Allied Fibres, Barrackpore, Kolkata 700 121, India.
| | - Saurabh Kumar
- ICAR-Research Complex for Eastern Region, Patna 800014, Bihar, India
| | - Saurabh Gangola
- Graphic Era Hill University, Bhimtal 263 156, Uttarakhand, India
| | - Bijan Majumdar
- ICAR-Central Research Institute for Jute and Allied Fibres, Barrackpore, Kolkata 700 121, India
| | - Ritesh Saha
- ICAR-Central Research Institute for Jute and Allied Fibres, Barrackpore, Kolkata 700 121, India
| | - Sonali Paul Mazumdar
- ICAR-Central Research Institute for Jute and Allied Fibres, Barrackpore, Kolkata 700 121, India
| | - Shiv Vendra Singh
- College of Agriculture, Rani Lakshmi Bai Central Agricultural University, Jhansi 238004, Uttar Pradesh, India
| | - Gouranga Kar
- ICAR-Central Research Institute for Jute and Allied Fibres, Barrackpore, Kolkata 700 121, India
| |
Collapse
|
23
|
Shen C, Li Y, Lu G, Meng Q. Electrodialysis treatment of rhamnolipids hydrolysate and its waste water for use as water-soluble fertilizer. BIORESOURCE TECHNOLOGY 2024; 393:130080. [PMID: 37993068 DOI: 10.1016/j.biortech.2023.130080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/03/2023] [Accepted: 11/18/2023] [Indexed: 11/24/2023]
Abstract
Rhamnolipids can serve as a precursor for rhamnose production, but using ion exchange resin in purifying rhamnolipids hydrolysate results in excessive high-salinity wastewater, making the process environmentally and economically unfeasible. This study introduced electrodialysis technology as an alternative for purifying rhamnolipids hydrolysate, significantly reducing wastewater to less than 5 % compared to the resin method. To achieve zero wastewater discharge, the electrodialysis-treated wastewater was repurposed into a water-soluble fertilizer containing 7.1 g/L of rhamnolipids, 11.4 g/L of fatty acid, 2.4 g/L of amino acid, and 8.2 g/L of potassium. Unlike traditional fertilizers, the nutritional components with rhamnolipids showed remarkable potential in enhancing tomato plant growth, flowering, and fruit quality. Taken together, the electrodialysis treatment of rhamnolipids hydrolysate largely reduced the water volume, the economic cost, and took a full use of the final wastewater as efficient water-soluble fertilizers, making it applicable for large-scale rhamnose production.
Collapse
Affiliation(s)
- Chong Shen
- Key Laboratory of Biomass Chemical Engineering (Education Ministry), College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China; Center for Membrane and Water Science & Technology, Institute of Oceanic and Environmental Chemical Engineering, State Key Lab Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yizeng Li
- Key Laboratory of Biomass Chemical Engineering (Education Ministry), College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Gang Lu
- Department of Horticulture, Zhejiang University, Hangzhou 310058, China
| | - Qin Meng
- Key Laboratory of Biomass Chemical Engineering (Education Ministry), College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
24
|
Li JY, Liu YF, Zhou L, Gang HZ, Liu JF, Sun GZ, Wang WD, Yang SZ, Mu BZ. Structural and compositional diversity of biosurfactants produced by a novel strain of Sporosarcina luteola ME44 from oil reservoir. JOURNAL OF ENVIRONMENTAL QUALITY 2024; 53:57-65. [PMID: 37830264 DOI: 10.1002/jeq2.20523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/17/2023] [Accepted: 09/30/2023] [Indexed: 10/14/2023]
Abstract
The urealytically active microorganism Sporosarcina luteola induces the precipitation of metals, which has attracted attention in biomineralization, bioremediation, and industrial waste recycling. Herein, we report a novel biosurfactant-producing strain of S. luteola ME44 isolated from Chinese Oilfield. The structure, composition, and surface activity of the biosurfactants produced by S. luteola ME44 were investigated by using a combination of the high-performance liquid chromatography, time-of-flight mass spectrometry, and surface tensiometer. The biosurfactant extracted by strain ME44 was identified as surfactin with five variants and the yield was 1010 ± 60 mg⋅L-1 . This is the first report on the structural composition and surface activity of biosurfactants isolated from the S. luteola. It extended our knowledge about the role of the species S. luteola in the ecosystem of extreme natural environments such as oil reservoir. In addition, S. luteola ME44 showed bioprecipitation properties for metal ions Cd(II), Cu(II), Zn(II), and Ag(I), which indicated the application potential of S. luteola in the field of bioremediation.
Collapse
Affiliation(s)
- Jia-Yi Li
- State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China
| | - Yi-Fan Liu
- State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China
- Engineering Research Center of MEOR, East China University of Science and Technology, Shanghai, China
| | - Lei Zhou
- State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China
- Engineering Research Center of MEOR, East China University of Science and Technology, Shanghai, China
| | - Hong-Ze Gang
- State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China
- Engineering Research Center of MEOR, East China University of Science and Technology, Shanghai, China
| | - Jin-Feng Liu
- State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China
- Daqing Huali Biotechnology Co., Ltd, Daqing, China
| | - Gang-Zheng Sun
- Research Institute of Petroleum Engineering and Technology, Shengli Oilfield Company, Sinopec, China
| | - Wei-Dong Wang
- Research Institute of Petroleum Engineering and Technology, Shengli Oilfield Company, Sinopec, China
| | - Shi-Zhong Yang
- State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China
- Engineering Research Center of MEOR, East China University of Science and Technology, Shanghai, China
| | - Bo-Zhong Mu
- State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China
- Engineering Research Center of MEOR, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
25
|
Ma Z, Zuo P, Sheng J, Liu Q, Qin X, Ke C. Characterization and Production of a Biosurfactant Viscosin from Pseudomonas sp. HN11 and its Application on Enhanced oil Recovery During oily Sludge Cleaning. Appl Biochem Biotechnol 2023; 195:7668-7684. [PMID: 37084032 DOI: 10.1007/s12010-023-04503-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2023] [Indexed: 04/22/2023]
Abstract
Biosurfactants are renewable resources with versatile applications on environmental bioremediation and industrial processes. Pseudomonas species are one of the promising biosurfactant producers. However, besides rhamnolipids, little is known about Pseudomonas-derived biosurfactants on solubilization of polycyclic aromatic hydrocarbons (PAHs) and oily sludge treatment. In this study, Pseudomonas sp. HN11-derived biosurfactant was purified by chromatographic methods and was characterized as viscosin via bioinformatic analysis, spectrometric and spectroscopic analyses, Marfey's method and (C-H)α NMR fingerprint matching approach. Viscosin is a potent biosurfactant with critical micelle concentration of 5.79 mg/L and is stable under various stresses. Moreover, viscosin was produced at 0.42 g/L at 48 h of liquid fermentation. Further data have shown that emulsifying agent viscosin is capable of promoting the solubilization of PAHs and displays enhanced oil recovery during oily sludge treatment. More specifically, viscosin has shown significantly enhanced solubilization on fluoranthene compared with control (0.04 mg/L), 2.21 mg/L and 1.27 mg/L fluoranthene was recovered from 100 mg/L and 200 mg/L viscosin treatment, respectively. However, only 200 mg/L viscosin has significantly enhanced the solubilization of phenanthrene (0.75 mg/L) and benzo[a]pyrene (0.51 mg/L) compared to each control (0.23 mg/L for phenanthrene and 0.09 mg/L for benzo[a]pyrene). Viscosin treatment of oily sludge (recovering of 0.58 g oil) has shown a significant oil recovery compared to that of control (recovering of 0.42 g oil). This study shows the great potential of viscosin-type biosurfactant on oily sludge treatment.
Collapse
Affiliation(s)
- Zongwang Ma
- College of Life Science, Northwest Normal University, Lanzhou, 730070, China.
| | - Pingcheng Zuo
- School of Mechanical Engineering, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Jun Sheng
- College of Life Science, Northwest Normal University, Lanzhou, 730070, China
| | - Qian Liu
- College of Life Science, Northwest Normal University, Lanzhou, 730070, China
| | - Xiao Qin
- College of Life Science, Northwest Normal University, Lanzhou, 730070, China
| | - Congyu Ke
- Shaanxi Province Key Laboratory of Environmental Pollution Control and Reservoir Protection Technology of Oilfields, Xi'an Shiyou University, Xi'an, 710065, China
| |
Collapse
|
26
|
da Silva RR, Santos JCV, Meira HM, Almeida SM, Sarubbo LA, Luna JM. Microbial Biosurfactant: Candida bombicola as a Potential Remediator of Environments Contaminated by Heavy Metals. Microorganisms 2023; 11:2772. [PMID: 38004783 PMCID: PMC10673205 DOI: 10.3390/microorganisms11112772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/01/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Industrial interest in surfactants of microbial origin has intensified recently due to the characteristics of these compounds, such as biodegradability and reduced toxicity, and their efficiency in removing heavy metals and hydrophobic organic compounds from soils and waters. The aim of this study was to produce a biosurfactant using Candida bombicola URM 3712 in a low-cost medium containing 5.0% molasses, 3.0% corn steep liquor and 2.5% residual frying oil for 144 h at 200 rmp. Measurements of engine oil tension and emulsification were made under extreme conditions of temperature (0 °C, 5 °C, 70 °C, 100 °C and 120 °C), pH (2-12) and NaCl concentrations (2-12), demonstrating the stability of the biosurfactant. The isolated biosurfactant was characterized as an anionic molecule with the ability to reduce the surface tension of water from 72 to 29 mN/m, with a critical micellar concentration of 0.5%. The biosurfactant had no toxic effect on vegetable seeds or on Eisenia fetida as a bioindicator. Applications in the removal of heavy metals from contaminated soils under dynamic conditions demonstrated the potential of the crude and isolated biosurfactant in the removal of Fe, Zn and Pb with percentages between 70 and 88%, with the highest removal of Pb being 48%. The highest percentage of removal was obtained using the cell-free metabolic liquid, which was able to remove 48, 71 and 88% of lead, zinc and iron from the soil, respectively. Tests in packed columns also confirmed the biosurfactant's ability to remove Fe, Zn and Pb between 40 and 65%. The removal kinetics demonstrated an increasing percentage, reaching removal of 50, 70 and 85% for Pb, Zn and Fe, respectively, reaching a greater removal efficiency at the end of 24 h. The biosurfactant was also able to significantly reduce the electrical conductivity of solutions containing heavy metals. The biosurfactant produced by Candida bombicola has potential as an adjuvant in industrial processes for remediating soils and effluents polluted by inorganic contaminants.
Collapse
Affiliation(s)
- Renata Raianny da Silva
- Northeast Biotechnology Network (Renorbio), Federal Rural University of Pernambuco, Rua Dom Manuel de Medeiros, Recife 52171-900, PE, Brazil;
| | - Júlio C. V. Santos
- Environmental Process Development (PPGDPA), Catholic University of Pernambuco, Rua do Príncipe, n. 526, Boa Vista, Recife 50050-900, PE, Brazil;
| | - Hugo M. Meira
- Advanced Institute of Technology and Innovation (IATI), Rua Potira de Brito, n.216, Boa Vista, Recife 50050-900, PE, Brazil
| | - Sérgio M. Almeida
- School of Health and Life Sciences, Catholic University of Pernambuco, Rua do Príncipe, n. 526, Recife 50050-900, PE, Brazil;
| | - Leonie A. Sarubbo
- Advanced Institute of Technology and Innovation (IATI), Rua Potira de Brito, n.216, Boa Vista, Recife 50050-900, PE, Brazil
- Icam Tech School, Catholic University of Pernambuco, Rua do Príncipe, n. 526, Boa Vista, Recife 50050-900, PE, Brazil
| | - Juliana M. Luna
- School of Health and Life Sciences, Catholic University of Pernambuco, Rua do Príncipe, n. 526, Recife 50050-900, PE, Brazil;
| |
Collapse
|
27
|
Sar P, Kundu S, Ghosh A, Saha B. Natural surfactant mediated bioremediation approaches for contaminated soil. RSC Adv 2023; 13:30586-30605. [PMID: 37859781 PMCID: PMC10583161 DOI: 10.1039/d3ra05062a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/07/2023] [Indexed: 10/21/2023] Open
Abstract
The treatment of environmental pollution by employing microorganisms is a promising technology, termed bioremediation, which has several advantages over the other established conventional remediation techniques. Consequently, there is an urgent inevitability to develop pragmatic techniques for bioremediation, accompanied by the potency of detoxifying soil environments completely. The bioremediation of contaminated soils has been shown to be an alternative that could be an economically viable way to restore polluted soil. The soil environments have long been extremely polluted by a number of contaminants, like agrochemicals, polyaromatic hydrocarbons, heavy metals, emerging pollutants, etc. In order to achieve a quick remediation overcoming several difficulties the utility of biosurfactants became an excellent advancement and that is why, nowadays, the biosurfactant mediated recovery of soil is a focus of interest to the researcher of the environmental science field specifically. This review provides an outline of the present scenario of soil bioremediation by employing a microbial biosurfactant. In addition to this, a brief account of the pollutants is highlighted along with how they contaminate the soil. Finally, we address the future outlook for bioremediation technologies that can be executed with a superior efficiency to restore a polluted area, even though its practical applicability has been cultivated tremendously over the few decades.
Collapse
Affiliation(s)
- Pintu Sar
- Department of Chemistry, The University of Burdwan Golapbag Burdwan 713104 WB India
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata Mohanpur - 741246 West Bengal India
| | - Sandip Kundu
- Department of Chemistry, The University of Burdwan Golapbag Burdwan 713104 WB India
| | - Aniruddha Ghosh
- Department of Chemistry, The University of Burdwan Golapbag Burdwan 713104 WB India
| | - Bidyut Saha
- Department of Chemistry, The University of Burdwan Golapbag Burdwan 713104 WB India
| |
Collapse
|
28
|
Chou LC, Tsai CC. Assessing the Effectiveness of Fermented Banana Peel Extracts for the Biosorption and Removal of Cadmium to Mitigate Inflammation and Oxidative Stress. Foods 2023; 12:2632. [PMID: 37444370 DOI: 10.3390/foods12132632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/27/2023] [Accepted: 07/06/2023] [Indexed: 07/15/2023] Open
Abstract
This study identified 11 lactic acid bacteria (LAB) strains that exhibited tolerance to heavy metal cadmium concentrations above 50 ppm for 48 h. Among these strains, T126-1 and T40-1 displayed the highest tolerance, enduring cadmium concentrations up to 500 ppm while still inhibiting bacterial growth by 50%. Moreover, the fermentation of banana peel using LAB significantly enhanced the clearance rate of cadmium (p < 0.05) compared to nonfermented banana peel. Additionally, the LAB-fermented banana peel exhibited higher 1,1-diphenyl-2-picryl-hydrazyl (DPPH) and reduced power values. Strain T40-1 exhibited a significant improvement in its ability to chelate ferrous ions (p < 0.05). Regarding antibiotic resistance, both the T40-1 and TH3 strains demonstrated high resistance with a third-level inhibition rate against ampicillin and tetracycline. Cell viability tests revealed that incubation with the T40-1 and TH3 strains for a duration of 24 h did not result in any cellular damage. Moreover, these LAB strains effectively mitigated oxidative stress markers, such as reactive oxygen species (ROS), glutathione (GSH), and lactate dehydrogenase (LDH), caused by 2 ppm cadmium on cells. Furthermore, the LAB strains were able to reduce the inflammatory response, as evidenced by a decrease in interleukin-8 (IL-8) levels (p < 0.05). The use of Fourier transform infrared (FT-IR) spectroscopy analysis provided valuable insight into the interaction between metal ions and the organic functional groups present on the cell wall of fermented banana peel. In summary, this study highlights the potential of the LAB strains T40-1 and TH3 in terms of their tolerance to the cadmium, ability to enhance cadmium clearance rates, and their beneficial effects on oxidative stress, inflammation, and cell viability.
Collapse
Affiliation(s)
- Lan-Chun Chou
- Department of Food Science and Technology, HungKuang University, Shalu District, Taichung City 43302, Taiwan
| | - Cheng-Chih Tsai
- Department of Food Science and Technology, HungKuang University, Shalu District, Taichung City 43302, Taiwan
| |
Collapse
|
29
|
Dasgupta A, Saha S, Ganguli P, Das I, De D, Chaudhuri S. Characterization of pumilacidin, a lipopeptide biosurfactant produced from Bacillus pumilus NITDID1 and its prospect in bioremediation of hazardous pollutants. Arch Microbiol 2023; 205:274. [PMID: 37401995 DOI: 10.1007/s00203-023-03619-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 06/27/2023] [Indexed: 07/05/2023]
Abstract
Highly hydrophobic compounds like petroleum and their byproducts, once released into the environment, can persist indefinitely by virtue of their ability to resist microbial degradation, ultimately paving the path to severe environmental pollution. Likewise, the accumulation of toxic heavy metals like lead, cadmium, chromium, etc., in the surroundings poses an alarming threat to various living organisms. To remediate the matter in question, the applicability of a biosurfactant produced from the mangrove bacterium Bacillus pumilus NITDID1 (Accession No. KY678446.1) is reported here. The structural characterization of the produced biosurfactant revealed it to be a lipopeptide and has been identified as pumilacidin through FTIR, NMR, and MALDI-TOF MS. The critical micelle concentration of pumilacidin was 120 mg/L, and it showed a wide range of stability in surface tension reduction experiments under various environmental conditions and exhibited a high emulsification index of as much as 90%. In a simulated setup of engine oil-contaminated sand, considerable oil recovery (39.78%) by this biosurfactant was observed, and upon being added to a microbial consortium, there was an appreciable enhancement in the degradation of the used engine oil. As far as the heavy metal removal potential of biosurfactant is concerned, as much as 100% and 82% removal was observed for lead and cadmium, respectively. Thus, in a nutshell, the pumilacidin produced from Bacillus pumilus NITDID1 holds promise for multifaceted applications in the field of environmental remediation.
Collapse
Affiliation(s)
- Arpan Dasgupta
- Department of Biotechnology, National Institute of Technology, Mahatma Gandhi Avenue, Durgapur, West Bengal, 713209, India
- Department of Microbiology, Michael Madhusudan Memorial College, Durgapur, West Bengal, 713216, India
| | - Sourav Saha
- Department of Biotechnology, National Institute of Technology, Mahatma Gandhi Avenue, Durgapur, West Bengal, 713209, India
| | - Parna Ganguli
- Department of Biotechnology, National Institute of Technology, Mahatma Gandhi Avenue, Durgapur, West Bengal, 713209, India
| | - Ishita Das
- Department of Biotechnology, National Institute of Technology, Mahatma Gandhi Avenue, Durgapur, West Bengal, 713209, India
| | - Debojyoti De
- Department of Biotechnology, National Institute of Technology, Mahatma Gandhi Avenue, Durgapur, West Bengal, 713209, India
| | - Surabhi Chaudhuri
- Department of Biotechnology, National Institute of Technology, Mahatma Gandhi Avenue, Durgapur, West Bengal, 713209, India.
| |
Collapse
|
30
|
Rajasekaran M, Kandasamy R. High-throughput bioamphiphile production by ethyl methane sulphonate induced mutant of hydrocarbonoclastic Enterobacter xiangfangensis STP-3: In depth structural elucidation and application to petroleum refinery oil sludge bioremediation. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131961. [PMID: 37393827 DOI: 10.1016/j.jhazmat.2023.131961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 06/08/2023] [Accepted: 06/27/2023] [Indexed: 07/04/2023]
Abstract
The environmental release of noxious petroleum hydrocarbons (PHCs) from the petroleum refining industries is an intractable global challenge. Indigenous PHCs degrading microbes produce insufficient yield of amphiphilic biomolecules with trivial efficiency makes the bioremediation process ineffective. In this concern, the present study is focused on the production of high yield multi-functional amphiphilic biomolecule through the genetic modification of Enterobacter xiangfangensis STP-3 strain using Ethyl methane sulphonate (EMS) induced mutagenesis. Mutant M9E.xiangfangensis showed 2.32-fold increased yield of bioamphiphile than wild-type strain. Novel bioamphiphile produced by M9E.xiangfangensis exhibited improved surface and emulsification activities which ensure the maximum degradation of petroleum oil sludge (POS) by 86% than wild-type (72%). SARA, FT-IR, and GC-MS analyses confirmed the expedited degradation of POS and ICP-MS analysis indicated the enhanced removal of heavy metals in connection with the ample production of functionally improved bioamphiphile. FT-IR NMR, MALDI-TOF, GC-MS and LC-MS/MS analyses portrayed the lipoprotein nature of bioamphiphile comprising pentameric fatty acid moiety conjugated with the catalytic esterase moiety. Further, homology modelling and molecular docking revealed the stronger interaction of hydrophobic amino acids, leucine and isoleucine with the PHCs in the case of wild-type esterase moiety, whereas in the mutant, aromatic amino acids were majorly interacted with the long chain and branched chain alkanes, thereby exhibited better efficiency. This is the first report on the adoption of EMS induced mutagenesis strategy to ameliorate the amphiphilic biomolecules for their sustainable applications in diverse biotechnological, environmental and industrial arenas.
Collapse
Affiliation(s)
- Muneeswari Rajasekaran
- Industrial and Environmental Sustainability Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Chengalpattu District, Kattankulathur 603203, Tamil Nadu, India
| | - Ramani Kandasamy
- Industrial and Environmental Sustainability Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Chengalpattu District, Kattankulathur 603203, Tamil Nadu, India.
| |
Collapse
|
31
|
Baccile N, Poirier A, Perez J, Pernot P, Hermida-Merino D, Le Griel P, Blesken CC, Müller C, Blank LM, Tiso T. Self-Assembly of Rhamnolipid Bioamphiphiles: Understanding the Structure-Property Relationship Using Small-Angle X-ray Scattering. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 37379248 DOI: 10.1021/acs.langmuir.3c00336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Abstract
The structure-property relationship of rhamnolipids, RLs, well-known microbial bioamphiphiles (biosurfactants), is explored in detail by coupling cryogenic transmission electron microscopy (cryo-TEM) and both ex situ and in situ small-angle X-ray scattering (SAXS). The self-assembly of three RLs with reasoned variation of their molecular structure (RhaC10, RhaC10C10, and RhaRhaC10C10) and a rhamnose-free C10C10 fatty acid is studied in water as a function of pH. It is found that RhaC10 and RhaRhaC10C10 form micelles in a broad pH range and RhaC10C10 undergoes a micelle-to-vesicle transition from basic to acid pH occurring at pH 6.5. Modeling coupled to fitting SAXS data allows a good estimation of the hydrophobic core radius (or length), the hydrophilic shell thickness, the aggregation number, and the surface area per RL. The essentially micellar morphology found for RhaC10 and RhaRhaC10C10 and the micelle-to-vesicle transition found for RhaC10C10 are reasonably well explained by employing the packing parameter (PP) model, provided a good estimation of the surface area per RL. On the contrary, the PP model fails to explain the lamellar phase found for the protonated RhaRhaC10C10 at acidic pH. The lamellar phase can only be explained by values of the surface area per RL being counterintuitively small for a di-rhamnose group and folding of the C10C10 chain. These structural features are only possible for a change in the conformation of the di-rhamnose group between the alkaline and acidic pH.
Collapse
Affiliation(s)
- Niki Baccile
- Sorbonne Université, Centre National de la Recherche Scientifique, Laboratoire de Chimie de la Matière Condensée de Paris, LCMCP, F-75005 Paris, France
| | - Alexandre Poirier
- Sorbonne Université, Centre National de la Recherche Scientifique, Laboratoire de Chimie de la Matière Condensée de Paris, LCMCP, F-75005 Paris, France
| | - Javier Perez
- Synchrotron Soleil, L'Orme des Merisiers, Saint-Aubin, Gif-sur-Yvette 91190, France
| | - Petra Pernot
- ESRF - The European Synchrotron, CS40220, 38043 Grenoble, France
| | - Daniel Hermida-Merino
- Netherlands Organisation for Scientific Research (NWO), DUBBLE@ESRF BP CS40220, 38043 Grenoble, France
- Departamento de Física Aplicada, CINBIO, Universidade de Vigo, Campus Lagoas-Marcosende, 36310 Vigo, Spain
| | - Patrick Le Griel
- Sorbonne Université, Centre National de la Recherche Scientifique, Laboratoire de Chimie de la Matière Condensée de Paris, LCMCP, F-75005 Paris, France
| | - Christian C Blesken
- iAMB - Institute ofApplied Microbiology, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, 52062 Aachen, Germany
| | - Conrad Müller
- iAMB - Institute ofApplied Microbiology, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, 52062 Aachen, Germany
| | - Lars M Blank
- iAMB - Institute ofApplied Microbiology, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, 52062 Aachen, Germany
| | - Till Tiso
- iAMB - Institute ofApplied Microbiology, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, 52062 Aachen, Germany
| |
Collapse
|
32
|
Mehmood N, Saeed M, Zafarullah S, Hyder S, Rizvi ZF, Gondal AS, Jamil N, Iqbal R, Ali B, Ercisli S, Kupe M. Multifaceted Impacts of Plant-Beneficial Pseudomonas spp. in Managing Various Plant Diseases and Crop Yield Improvement. ACS OMEGA 2023; 8:22296-22315. [PMID: 37396244 PMCID: PMC10308577 DOI: 10.1021/acsomega.3c00870] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 05/18/2023] [Indexed: 07/04/2023]
Abstract
The modern agricultural system has issues with the reduction of agricultural productivity due to a wide range of abiotic and biotic stresses. It is also expected that in the future the entire world population may rapidly increase and will surely demand more food. Farmers now utilize a massive quantity of synthetic fertilizers and pesticides for disease management and to increase food production. These synthetic fertilizers badly affect the environment, the texture of the soil, plant productivity, and human health. However, agricultural safety and sustainability depend on an ecofriendly and inexpensive biological application. In contrast to synthetic fertilizers, soil inoculation with plant-growth-promoting rhizobacteria (PGPR) is one of the excellent alternative options. In this regard, we focused on the best PGPR genera, Pseudomonas, which exists in the rhizosphere as well as inside the plant's body and plays a role in sustainable agriculture. Many Pseudomonas spp. control plant pathogens and play an effective role in disease management through direct and indirect mechanisms. Pseudomonas spp. fix the amount of atmospheric nitrogen, solubilize phosphorus and potassium, and also produce phytohormones, lytic enzymes, volatile organic compounds, antibiotics, and secondary metabolites during stress conditions. These compounds stimulate plant growth by inducing systemic resistance and by inhibiting the growth of pathogens. Furthermore, pseudomonads also protect plants during different stress conditions like heavy metal pollution, osmosis, temperature, oxidative stress, etc. Now, several Pseudomonas-based commercial biological control products have been promoted and marketed, but there are a few limitations that hinder the development of this technology for extensive usage in agricultural systems. The variability among the members of Pseudomonas spp. draws attention to the huge research interest in this genus. There is a need to explore the potential of native Pseudomonas spp. as biocontrol agents and to use them in biopesticide development to support sustainable agriculture.
Collapse
Affiliation(s)
- Najaf Mehmood
- Department
of Botany, Government College Women University
Sialkot, Sialkot 51310, Pakistan
| | - Mahnoor Saeed
- Department
of Botany, Government College Women University
Sialkot, Sialkot 51310, Pakistan
| | - Sana Zafarullah
- Department
of Botany, Government College Women University
Sialkot, Sialkot 51310, Pakistan
| | - Sajjad Hyder
- Department
of Botany, Government College Women University
Sialkot, Sialkot 51310, Pakistan
| | - Zarrin Fatima Rizvi
- Department
of Botany, Government College Women University
Sialkot, Sialkot 51310, Pakistan
| | - Amjad Shahzad Gondal
- Department
of Plant Pathology, Bahauddin Zakariya University, Multan 60000, Pakistan
| | - Nuzhat Jamil
- Department
of Botany, University of the Punjab, Quaid-i-Azam Campus, Lahore 54590, Pakistan
| | - Rashid Iqbal
- Department
of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur Pakistan, Bahawalpur 63100, Pakistan
| | - Baber Ali
- Department
of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Sezai Ercisli
- Department
of Horticulture, Faculty of Agriculture, Ataturk University, Erzurum 25240, Türkiye
- HGF
Agro, Ata Teknokent, Erzurum TR-25240, Türkiye
| | - Muhammed Kupe
- Department
of Horticulture, Faculty of Agriculture, Ataturk University, Erzurum 25240, Türkiye
| |
Collapse
|
33
|
Chuah LF, Nawaz A, Dailin DJ, Oloruntobi O, Habila MA, Tong WY, Misson M. Investigating the crude oil biodegradation performance in membrane bioreactor by using a consortium of symbiotic bacteria. CHEMOSPHERE 2023:139293. [PMID: 37369285 DOI: 10.1016/j.chemosphere.2023.139293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/11/2023] [Accepted: 06/19/2023] [Indexed: 06/29/2023]
Abstract
Crude oil pollution is one of the most serious environmental issues today, and the clean-up procedure is perhaps the most difficult. Within one to three weeks, the vast majority of oil bacteria may degrade approximately 60% of the crude oil, leaving approximately 40% intact. The by-product metabolites produced during the breakdown of oil are essentially organic molecules in nature. These metabolites inhibit its enzymes, preventing the oil bacteria from further degrading the oil. By combining a variety of different oils with heterotrophic bacteria in a bioreactor, the rate of crude oil biodegradation was accelerated. In this study, two strains of oil-resistant, heterotrophic bacteria (OG1 and OG2-Erythrobacter citreus) and a bacterium that uses hydrocarbons (AR3-Pseudomonas pseudoalcaligenes) were used. Gas chromatography-mass spectroscopy was used to investigate the effectiveness of this consortium of symbiotic bacteria in the biodegradation of crude oil. According to gravimetric and gas chromatography analyses, the consortium bacteria digested 69.6% of the crude oil in the bioreactor, while the AR3 single strain was only able to destroy 61.9% of it. Under the same experimental conditions, consortium bacteria degraded approximately 84550.851 ppb (96.3%) of 16 aliphatic hydrocarbons and 9333.178 ppb (70.5%) of 16 aromatic hydrocarbons in the bioreactor. It may be inferred that the novel consortium of symbiotic bacteria accelerated the biodegradation process and had great potential for use in increasing the bioremediation of hydrocarbon-contaminated locations.
Collapse
Affiliation(s)
- Lai Fatt Chuah
- Faculty of Maritime Studies, Universiti Malaysia Terengganu, Terengganu, Malaysia.
| | - Alam Nawaz
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 712-749, Republic of Korea.
| | - Daniel Joe Dailin
- Institute of Bioproduct Development, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia; Department of Bioprocess and Polymer Engineering, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Olakunle Oloruntobi
- Faculty of Maritime Studies, Universiti Malaysia Terengganu, Terengganu, Malaysia
| | - Mohamed A Habila
- Department of Chemistry, College of Science, King Saud University, P. O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Woei Yenn Tong
- Universiti Kuala Lumpur, Institute of Medical Science Technology, A1, 1, Jalan TKS 1, Taman Kajang Sentral, 43000, Kajang, Selangor, Malaysia
| | - Mailin Misson
- Biotechnology Research Institute, Universiti Malaysia Sabah, Jln UMS, 88400, Kota Kinabalu, Sabah, Malaysia
| |
Collapse
|
34
|
Zdziennicka A, González-Martín ML, Rekiel E, Szymczyk K, Zdziennicki W, Jańczuk B. Thermodynamic Characterization of Rhamnolipid, Triton X-165 and Ethanol as well as Their Mixture Behaviour at the Water-Air Interface. Molecules 2023; 28:4987. [PMID: 37446649 DOI: 10.3390/molecules28134987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/16/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
In many industrial fields, in medicine or pharmacy, there are used multi-component mixtures of surfactants as well as more and more often mixtures containing biosurfactants. Thus, in our study the mixtures of rhamnolipid (RL), ethanol (ET) and Triton X-165 (TX165) were applied. For these mixtures the surface tension of aqueous solutions with constant concentration and composition of ET and RL as well as the variable concentration of TX165 was measured. Based on the obtained results and the literature data, thermodynamic analyses of the adsorption process of ET, RL, TX165, binary mixtures of ET + RL, ET + TX165 and RL + TX165 as well as the ternary mixtures of RL + ET + TX165 at the water-air interface were made. This analysis allows to propose a new equation for calculation of the total ethanol concentration at the water-air interface using the Guggenheim-Adam adsorption isotherm. The constants in the Langmuir and Szyszkowski equations for each component of the studied mixtures as well as the composition of the mixed monolayer at the water-air interface were also successfully analysed based on the contribution of particular surface active compounds to the water surface tension reduction as well as based on the Frumkin isotherm of adsorption.
Collapse
Affiliation(s)
- Anna Zdziennicka
- Department of Interfacial Phenomena, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University in Lublin, Maria Curie-Skłodowska Sq. 3, 20-031 Lublin, Poland
| | - Maria Luisa González-Martín
- Department of Applied Physics, University Institute of Extremadura Sanity Research (INUBE), Extremadura University, Avda. de Elvas, s/n, 06006 Badajoz, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 06006 Badajoz, Spain
| | - Edyta Rekiel
- Department of Interfacial Phenomena, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University in Lublin, Maria Curie-Skłodowska Sq. 3, 20-031 Lublin, Poland
| | - Katarzyna Szymczyk
- Department of Interfacial Phenomena, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University in Lublin, Maria Curie-Skłodowska Sq. 3, 20-031 Lublin, Poland
| | - Wojciech Zdziennicki
- University Clinical Hospital in Poznań, Przybyszewskiego 49, 60-355 Poznań, Poland
| | - Bronisław Jańczuk
- Department of Interfacial Phenomena, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University in Lublin, Maria Curie-Skłodowska Sq. 3, 20-031 Lublin, Poland
| |
Collapse
|
35
|
Ridene S, Werfelli N, Mansouri A, Landoulsi A, Abbes C. Bioremediation potential of consortium Pseudomonas Stutzeri LBR and Cupriavidus Metallidurans LBJ in soil polluted by lead. PLoS One 2023; 18:e0284120. [PMID: 37319245 PMCID: PMC10270627 DOI: 10.1371/journal.pone.0284120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 03/23/2023] [Indexed: 06/17/2023] Open
Abstract
Pollution by lead (Pb) is an environmental and health threat due to the severity of its toxicity. Microbial bioremediation is an eco-friendly technique used to remediate contaminated soils. This present study was used to evaluate the effect of two bacterial strains isolated and identified from Bizerte lagoon: Cupriavidus metallidurans LBJ (C. metallidurans LBJ) and Pseudomonas stutzeri LBR (P. stutzeri LBR) on the rate of depollution of soil contaminated with Pb from Tunisia. To determine this effect, sterile and non-sterile soil was bioaugmented by P. stutzeri LBR and C. metallidurans LBJ strains individually and in a mixture for 25 days at 30°C. Results showed that the bioaugmentation of the non-sterile soil by the mixture of P. stutzeri LBR and C. metallidurans LBJ strains gave the best rate of reduction of Pb of 71.02%, compared to a rate of 58.07% and 46.47% respectively for bioaugmentation by the bacterial strains individually. In the case of the sterile soil, results showed that the reduction rate of lead was in the order of 66.96% in the case of the mixture of the two bacterial strains compared with 55.66% and 41.86% respectively for the addition of the two strains individually. These results are confirmed by analysis of the leachate from the sterile and non-sterile soil which showed an increase in the mobility and bioavailability of Pb in soil. These promising results offer another perspective for a soil bioremediation bioprocess applying bacterial bioremediation.
Collapse
Affiliation(s)
- Sirine Ridene
- University of Carthage, Biochemistry and Molecular Biology Laboratory of Faculty of Sciences of Bizerte, Risks Related to Environmental Stress, Struggle and Prevention (UR17ES20), Bizerte, Zarzouna, Tunisia
| | - Naima Werfelli
- International Center For Environmental Technologies, Boulevard Leader Yasser Arafat, Tunis, Tunisia
| | - Ahlem Mansouri
- University of Carthage, Biochemistry and Molecular Biology Laboratory of Faculty of Sciences of Bizerte, Risks Related to Environmental Stress, Struggle and Prevention (UR17ES20), Bizerte, Zarzouna, Tunisia
| | - Ahmed Landoulsi
- University of Carthage, Biochemistry and Molecular Biology Laboratory of Faculty of Sciences of Bizerte, Risks Related to Environmental Stress, Struggle and Prevention (UR17ES20), Bizerte, Zarzouna, Tunisia
| | - Chiraz Abbes
- University of Carthage, Biochemistry and Molecular Biology Laboratory of Faculty of Sciences of Bizerte, Risks Related to Environmental Stress, Struggle and Prevention (UR17ES20), Bizerte, Zarzouna, Tunisia
| |
Collapse
|
36
|
Gautam K, Sharma P, Dwivedi S, Singh A, Gaur VK, Varjani S, Srivastava JK, Pandey A, Chang JS, Ngo HH. A review on control and abatement of soil pollution by heavy metals: Emphasis on artificial intelligence in recovery of contaminated soil. ENVIRONMENTAL RESEARCH 2023; 225:115592. [PMID: 36863654 DOI: 10.1016/j.envres.2023.115592] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 02/10/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
"Save Soil Save Earth" is not just a catchphrase; it is a necessity to protect soil ecosystem from the unwanted and unregulated level of xenobiotic contamination. Numerous challenges such as type, lifespan, nature of pollutants and high cost of treatment has been associated with the treatment or remediation of contaminated soil, whether it be either on-site or off-site. Due to the food chain, the health of non-target soil species as well as human health were impacted by soil contaminants, both organic and inorganic. In this review, the use of microbial omics approaches and artificial intelligence or machine learning has been comprehensively explored with recent advancements in order to identify the sources, characterize, quantify, and mitigate soil pollutants from the environment for increased sustainability. This will generate novel insights into methods for soil remediation that will reduce the time and expense of soil treatment.
Collapse
Affiliation(s)
- Krishna Gautam
- Centre for Energy and Environmental Sustainability, Lucknow, India
| | - Poonam Sharma
- Department of Bioengineering, Integral University, Lucknow, India
| | - Shreya Dwivedi
- Institute for Industrial Research & Toxicology, Ghaziabad, Lucknow, India
| | - Amarnath Singh
- Comprehensive Cancer Center, The Ohio State University and James Cancer Hospital, Columbus, OH, USA
| | - Vivek Kumar Gaur
- Centre for Energy and Environmental Sustainability, Lucknow, India; Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Lucknow, India; School of Energy and Chemical Engineering, UNIST, Ulsan, 44919, Republic of Korea.
| | - Sunita Varjani
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong; Sustainability Cluster, School of Engineering, University of Petroleum and Energy Studies, Dehradun, 248 007, India.
| | | | - Ashok Pandey
- Centre for Energy and Environmental Sustainability, Lucknow, India; Centre for Innovation and Translational Research, CSIR-Indian Institute of Toxicology Research, Lucknow, 226 001, India; Sustainability Cluster, School of Engineering, University of Petroleum and Energy Studies, Dehradun, 248 007, India
| | - Jo-Shu Chang
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Huu Hao Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental, Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
| |
Collapse
|
37
|
Sarker A, Al Masud MA, Deepo DM, Das K, Nandi R, Ansary MWR, Islam ARMT, Islam T. Biological and green remediation of heavy metal contaminated water and soils: A state-of-the-art review. CHEMOSPHERE 2023; 332:138861. [PMID: 37150456 DOI: 10.1016/j.chemosphere.2023.138861] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 04/29/2023] [Accepted: 05/05/2023] [Indexed: 05/09/2023]
Abstract
Contamination of the natural ecosystem by heavy metals, organic pollutants, and hazardous waste severely impacts on health and survival of humans, animals, plants, and microorganisms. Diverse chemical and physical treatments are employed in many countries, however, the acceptance of these treatments are usually poor because of taking longer time, high cost, and ineffectiveness in contaminated areas with a very high level of metal contents. Bioremediation is an eco-friendly and efficient method of reclaiming contaminated soils and waters with heavy metals through biological mechanisms using potential microorganisms and plant species. Considering the high efficacy, low cost, and abundant availability of biological materials, particularly bacteria, algae, yeasts, and fungi, either in natural or genetically engineered (GE) form, bioremediation is receiving high attention for heavy metal removal. This report comprehensively reviews and critically discusses the biological and green remediation tactics, contemporary technological advances, and their principal applications either in-situ or ex-situ for the remediation of heavy metal contamination in soil and water. A modified PRISMA review protocol is adapted to critically assess the existing research gaps in heavy metals remediation using green and biological drivers. This study pioneers a schematic illustration of the underlying mechanisms of heavy metal bioremediation. Precisely, it pinpoints the research bottleneck during its real-world application as a low-cost and sustainable technology.
Collapse
Affiliation(s)
- Aniruddha Sarker
- Residual Chemical Assessment Division, National Institute of Agricultural Sciences, Rural Development Administration, Jeollabuk-do, 55365, Republic of Korea
| | - Md Abdullah Al Masud
- School of Architecture, Civil, Environmental and Energy Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Deen Mohammad Deepo
- Department of Horticultural Science, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Kallol Das
- College of Agriculture and Life Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Rakhi Nandi
- Bangladesh Academy for Rural Development (BARD), Kotbari, Cumilla, Bangladesh
| | - Most Waheda Rahman Ansary
- Institute of Biotechnology and Genetic Engineering (IBGE), Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | | | - Tofazzal Islam
- Institute of Biotechnology and Genetic Engineering (IBGE), Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh.
| |
Collapse
|
38
|
Li Y, Ye Z, Yu Y, Li Y, Jiang J, Wang L, Wang G, Zhang H, Li N, Xie X, Cheng X, Liu K, Liu M. A combined method for human health risk area identification of heavy metals in urban environments. JOURNAL OF HAZARDOUS MATERIALS 2023; 449:131067. [PMID: 36827727 DOI: 10.1016/j.jhazmat.2023.131067] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/02/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Multi-medium heavy metals pollution is a crucial pathway to destroy the urban environmental resources cycle. In this study, Nanjing of China, a typical mega city, was taken as the study area. Compared with other cities or countries, Cr, Cu and Zn in human nails and hair in the study area have higher concentration characteristics, while Cd and Pb have lower concentration characteristics. By combining the health risk status of heavy metals in soil and dustfall, the spatial clustering characteristics of heavy metals in soil dustfall and the concentration information of heavy metals in humans in the study area, a potential toxic risk area identification method based on soil-dustfall-human (SDB-HR) was established. Through Monte Carlo analysis, it's found that the risk of Zn and Cr in soil-dustfall to human health is relatively high, with the probability of carcinogenesis reaching 51.2 % and 50.2 %, respectively. By the proposed method, different levels of heavy metal risk areas in urban environments can be more reasonably and effectively identified, which will provide important technical and theoretical support for the precise management of heavy metals in urban environments.
Collapse
Affiliation(s)
- Yan Li
- Collaborative Innovation Center of Sustainable Forestry, College of forestry, Nanjing Forestry University, Nanjing, Jiangsu, China; Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security,Zhejiang Normal University, Jinhua, Zhejiang, China.
| | - Zi Ye
- Collaborative Innovation Center of Sustainable Forestry, College of forestry, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Ye Yu
- Collaborative Innovation Center of Sustainable Forestry, College of forestry, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Ye Li
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai, China.
| | - Jiang Jiang
- Collaborative Innovation Center of Sustainable Forestry, College of forestry, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Liangjie Wang
- Collaborative Innovation Center of Sustainable Forestry, College of forestry, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Genmei Wang
- Collaborative Innovation Center of Sustainable Forestry, College of forestry, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Huanchao Zhang
- Collaborative Innovation Center of Sustainable Forestry, College of forestry, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Ning Li
- Collaborative Innovation Center of Sustainable Forestry, College of forestry, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Xuefeng Xie
- Key Laboratory of Watershed Earth Surface Processes and Ecological Security,Zhejiang Normal University, Jinhua, Zhejiang, China
| | - Xinyu Cheng
- Collaborative Innovation Center of Sustainable Forestry, College of forestry, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Ke Liu
- School of Oceanography, Shanghai Jiao Tong University, Shanghai, China; School of Geography and Ocean Science, Nanjing University, Nanjing, Jiangsu, China
| | - Min Liu
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai, China.
| |
Collapse
|
39
|
Yalcin IE, Altay V. Investigation of water-soil-plant relationships based on hazardous and macro-micro element concentrations on Orontes River, Türkiye. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2023; 25:1859-1880. [PMID: 37118908 DOI: 10.1080/15226514.2023.2202241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Arundo donax and Phragmites australis were examined in 4 different periods (June and October for 2 years), heavy metal and mineral element accumulations in plants were evaluated, and water-soil-plant relationships were revealed. Element distributions, bioaccumulation factors (BAF) and translocation factors (TF) in different parts of the investigated plant species were also determined. BAFs of elements calculated by using the concentration values in underground parts and sediment samples were between 1.02 and 4.96. While the highest TF was determined as 8.07 for Zn between washed leaf and stem in A. donax, the lowest TF was determined as 0.05 for Fe between stem and underground part. Corresponding highest and lowest TFs for P. australis were 11.80 for Cu between washed leaf and stem, and 0.02 for Fe between stem and underground part, respectively. The results were supported by MANOVA statistical analyzes. Additionally, the macro-micro elements and heavy metal accumulation levels in the parts of the Orontes River ecosystem were significantly higher in the fall periods compared to the spring periods. Our research revealed that the versatile accumulation properties and high accumulation ability of A. donax for Cd, Cr, and Ni and of P. australis for Cd, Co, Cu, Ni, Pb, and Zn.
Collapse
Affiliation(s)
- Ibrahim Ertugrul Yalcin
- Faculty of Engineering and Natural Sciences, Department of Civil Engineering, Bahcesehir University, Istanbul, Türkiye
- Natural and Applied Sciences, Biology Program, Hatay Mustafa Kemal University, Hatay, Türkiye
| | - Volkan Altay
- Faculty of Arts & Sciences, Department of Biology, Hatay Mustafa Kemal University, Hatay, Türkiye
| |
Collapse
|
40
|
Khanna A, Handa S, Rana S, Suttee A, Puri S, Chatterjee M. Biosurfactant from Candida: sources, classification, and emerging applications. Arch Microbiol 2023; 205:149. [PMID: 36995448 DOI: 10.1007/s00203-023-03495-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 03/13/2023] [Accepted: 03/19/2023] [Indexed: 03/31/2023]
Abstract
Biosurfactants are surface-active molecules that are synthesized by many microorganisms like fungi, bacteria, and yeast. These molecules are amphiphilic in nature, possessing emulsifying ability, detergency, foaming, and surface-activity like characteristics. Yeast species belongs to the genus Candida has gained globally enormous interest because of the diverse properties of biosurfactants produced by theme. In contrast to synthetic surfactants, biosurfactants are claimed to be biodegradable and non-toxic which labels them as a potent industrial compound. Biosurfactants produced by this genus are reported to possess certain biological activities, such as anticancer and antiviral activities. They also have potential industrial applications in bioremediation, oil recovery, agricultural, pharmaceutical, biomedical, food, and cosmetic industries. Various species of Candida have been recognized as biosurfactant producers, including Candida petrophilum, Candida bogoriensis, Candida antarctica, Candida lipolytica, Candida albicans, Candida batistae, Candida albicans, Candida sphaerica, etc. These species produce various forms of biosurfactants, such as glycolipids, lipopeptides, fatty acids, and polymeric biosurfactants, which are distinct according to their molecular weights. Herein, we provide a detailed overview of various types of biosurfactants produced by Candida sp., process optimization for better production, and the latest updates on the applications of these biosurfactants.
Collapse
Affiliation(s)
- Archna Khanna
- Biotechnology Engineering, University Institute of Engineering and Technology, Panjab University, Sector 25, South Campus, Chandigarh, 160014, India
| | - Shristi Handa
- Biotechnology Engineering, University Institute of Engineering and Technology, Panjab University, Sector 25, South Campus, Chandigarh, 160014, India
| | - Samriti Rana
- Biotechnology Engineering, University Institute of Engineering and Technology, Panjab University, Sector 25, South Campus, Chandigarh, 160014, India
| | - Ashish Suttee
- Department of Pharmacognosy, School of Pharmaceutical Sciences, Lovely Professional University, Punjab, India
| | - Sanjeev Puri
- Biotechnology Engineering, University Institute of Engineering and Technology, Panjab University, Sector 25, South Campus, Chandigarh, 160014, India
| | - Mary Chatterjee
- Biotechnology Engineering, University Institute of Engineering and Technology, Panjab University, Sector 25, South Campus, Chandigarh, 160014, India.
| |
Collapse
|
41
|
Chunyan X, Qaria MA, Qi X, Daochen Z. The role of microorganisms in petroleum degradation: Current development and prospects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 865:161112. [PMID: 36586680 DOI: 10.1016/j.scitotenv.2022.161112] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/04/2022] [Accepted: 12/18/2022] [Indexed: 06/17/2023]
Abstract
Petroleum hydrocarbon compounds are persistent organic pollutants, which can cause permanent damage to ecosystems due to their biomagnification. Bioremediation of oil is currently the main solution for the remediation of petroleum hydrocarbon pollutants in ecosystems. Despite several lab studies on oil microbial biodegradation efficiency, still there are various challenges for microorganisms to perform efficiently in outside environments. Herewith, investigating efficient biodegradation technologies through discovering new microorganisms, biodegradation pathways modification, and new bioremediations technologies are in great demand. The degradation of petroleum pollutants by microorganisms and the remediation of contaminated soils are achieved through their key enzymes and metabolic pathways. Although, several challenges hinder the effective biodegradation processes such as the toxic environment, long chains and versatility of petroleum hydrocarbons and the existence of the full metabolism pathways in a single microorganism. There are several developed oil biodegradation strategies by microorganisms such as synthetic biology, biofilm, recombinant technology and microbial consortia. Herewith, the application of multi-omics technology to discover oil-contaminated environments microbial communities, synthetic biology, microbial consortia, and other technologies would help improve the efficiency of microbial remediation.
Collapse
Affiliation(s)
- Xu Chunyan
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Majjid A Qaria
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Xu Qi
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Zhu Daochen
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China.
| |
Collapse
|
42
|
Nicula NO, Lungulescu EM, Rîmbu GA, Marinescu V, Corbu VM, Csutak O. Bioremediation of Wastewater Using Yeast Strains: An Assessment of Contaminant Removal Efficiency. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:4795. [PMID: 36981703 PMCID: PMC10048942 DOI: 10.3390/ijerph20064795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 06/18/2023]
Abstract
The main goal of wastewater treatment is to significantly reduce organic compounds, micronutrients (nitrogen and phosphorus) and heavy metals and other contaminants (pathogens, pharmaceuticals and industrial chemicals). In this work, the efficiency of removing different contaminants (COD, NO3-, NO2-, NH4+, PO43-, SO42-, Pb2+, Cd2+) from synthetic wastewater was tested using five different yeast strains: Kluyveromyces marxianus CMGBP16 (P1), Saccharomyces cerevisiae S228C (P2), Saccharomyces cerevisiae CM6B70 (P3), Saccharomyces cerevisiae CMGB234 (P4) and Pichia anomala CMGB88 (P5). The results showed a removal efficiency of up to 70% of COD, 97% of nitrate, 80% of nitrite, 93% of phosphate and 70% of sulfate ions for synthetic wastewater contaminated with Pb2+ (43 mg/L) and Cd2+ ions (39 mg/L). In contrast, the results showed an increase in ammonium ions, especially in the presence of Pb2+ ions. The yeast strains showed a high capacity to reduce Pb2+ (up to 96%) and Cd2+ (up to 40%) ions compared to the initial concentrations. In presence of a crude biosurfactant, the removal efficiency increased up to 99% for Pb2+ and 56% for Cd2+ simultaneously with an increase in yeast biomass of up to 11 times. The results, which were obtained in the absence of aeration and in neutral pH conditions, proved a high potential for practical applications in the biotreatment of the wastewater and the recovery of Pb and Cd ions, with a high benefit-cost ratio.
Collapse
Affiliation(s)
- Nicoleta-Oana Nicula
- National R&D Institute for Electrical Engineering ICPE-CA, Splaiul Unirii 313, 030138 Bucharest, Romania
- Faculty of Biology, University of Bucharest, Splaiul Independentei 91-95, 050095 Bucharest, Romania
| | - Eduard-Marius Lungulescu
- National R&D Institute for Electrical Engineering ICPE-CA, Splaiul Unirii 313, 030138 Bucharest, Romania
| | - Gimi A. Rîmbu
- National R&D Institute for Electrical Engineering ICPE-CA, Splaiul Unirii 313, 030138 Bucharest, Romania
| | - Virgil Marinescu
- National R&D Institute for Electrical Engineering ICPE-CA, Splaiul Unirii 313, 030138 Bucharest, Romania
| | - Viorica Maria Corbu
- Faculty of Biology, University of Bucharest, 1-3 Aleea Portocalelor, 060101 Bucharest, Romania
| | - Ortansa Csutak
- Faculty of Biology, University of Bucharest, 1-3 Aleea Portocalelor, 060101 Bucharest, Romania
| |
Collapse
|
43
|
Deng R, Zhan X. High performance self-assembled nano-chlorapatite in the presence of lactonic sophorolipid for the immobilization of cadmium in polluted sediment. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130484. [PMID: 36455326 DOI: 10.1016/j.jhazmat.2022.130484] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/19/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
A novel lactonic sophorolipid (LS) self-assembled nano-chlorapatite (LS-nClAP) was prepared for the immobilization of severe cadmium (Cd) in sediment. The experimental results indicated that the introduction of LS not only improved the dispersed performance of chlorapatite, but also brought massive hydroxyl and carboxyl groups, which significantly improved the immobilization efficiency of Cd and reduced its eco-toxicity in sediment. LS can significantly increase the effective utilization rate of phosphorus in chlorapatite, and reduce the content of available phosphorus (AP) by half after remediation compared with ClAP. Additionally, the participation of LS possessed a significant impact on the enzyme activities in the sediment, especially for urease, which was closely related to the effective stability of Cd and the introduction of LS. All experimental results of this study provided new insights into the possible effects of Cd immobilization by chlorapatite in contaminated sediments, demonstrating great application potential for sediment remediation in the future.
Collapse
Affiliation(s)
- Rui Deng
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, Anhui 230009, PR China; Key Laboratory of Nanominerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, Anhui 230009, PR China
| | - Xinyuan Zhan
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, Anhui 230009, PR China; Key Laboratory of Nanominerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, Anhui 230009, PR China.
| |
Collapse
|
44
|
Fungal bioproducts for petroleum hydrocarbons and toxic metals remediation: recent advances and emerging technologies. Bioprocess Biosyst Eng 2023; 46:393-428. [PMID: 35943595 DOI: 10.1007/s00449-022-02763-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/22/2022] [Indexed: 11/02/2022]
Abstract
Petroleum hydrocarbons and toxic metals are sources of environmental contamination and are harmful to all ecosystems. Fungi have metabolic and morphological plasticity that turn them into potential prototypes for technological development in biological remediation of these contaminants due to their ability to interact with a specific contaminant and/or produced metabolites. Although fungal bioinoculants producing enzymes, biosurfactants, polymers, pigments and organic acids have potential to be protagonists in mycoremediation of hydrocarbons and toxic metals, they can still be only adjuvants together with bacteria, microalgae, plants or animals in such processes. However, the sudden accelerated development of emerging technologies related to the use of potential fungal bioproducts such as bioinoculants, enzymes and biosurfactants in the remediation of these contaminants, has boosted fungal bioprocesses to achieve higher performance and possible real application. In this review, we explore scientific and technological advances in bioprocesses related to the production and/or application of these potential fungal bioproducts when used in remediation of hydrocarbons and toxic metals from an integral perspective of biotechnological process development. In turn, it sheds light to overcome existing technological limitations or enable new experimental designs in the remediation of these and other emerging contaminants.
Collapse
|
45
|
Liaqat I, Muhammad N, Ara C, Hanif U, Andleeb S, Arshad M, Aftab MN, Raza C, Mubin M. Bioremediation of heavy metals polluted environment and decolourization of black liquor using microbial biofilms. Mol Biol Rep 2023; 50:3985-3997. [PMID: 36840848 DOI: 10.1007/s11033-023-08334-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 02/14/2023] [Indexed: 02/26/2023]
Abstract
BACKGROUND With increased urbanization and industrialization, modern life has led to an anthropogenic impact on the biosphere. Heavy metals pollution and pollutants from black liquor (BL) have caused severe effects on environment and living organisms. Bacterial biofilm has potential to remediate heavy metals and remove BL from the environment. Hence, this study was planned to investigate the potential of microbial biofilms for the bioremediation of heavy metals and BL polluted environments. METHODS AND RESULTS Eleven biofilm forming bacterial strains (SB1, SB2, SC1, AF1, 5A, BC-1, BC-2, BC-3, BC-4, BC-5 and BC-6) were isolated and identified upto species level via 16S rRNA gene sequencing. Biofilm strains belonging to Bacillus and Lysinibacillus sphaericus were used to remediate heavy metals (Pb, Ni, Mn, Zn, Cu, and Co). Atomic absorption spectroscopy showed significantly high (P ≤ 0.05) bioremediation potential by L. sphaericus biofilm (1462.0 ± 0.67 µgmL-1) against zinc (Zn). Similarly, Pseudomonas putida biofilm significantly (P ≤ 0.05) decolourized (65.1%) BL. Fourier transform infrared (FTIR) analysis of treated heavy metals showed the shifting of major peaks (1637 & 1629-1647, 1633 & 1635-1643, and 1638-1633 cm-1) corresponding to specific amide groups due to C = O stretching. CONCLUSION The study suggested that biofilm of the microbial flora from tanneries and pulp paper effluents possesses a strong potential for heavy metals bioremediation and BL decolourization. To our knowledge, this is the first report showing promising biofilm remediation potential of bacterial flora of tanneries and pulp-paper effluent from Kasur and Sheikhupura, Punjab, Pakistan, against heavy metals and BL.
Collapse
Affiliation(s)
- Iram Liaqat
- Microbiology Lab, Department of Zoology, Government College University, Lahore, 54000, Pakistan.
| | - Noor Muhammad
- Microbiology Lab, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| | - Chaman Ara
- Department of Zoology, University of the Punjab, Lahore, Pakistan
| | - Uzma Hanif
- Department of Botany, Government College University, Lahore, Pakistan
| | - Saiqa Andleeb
- Department of Zoology, University of Azad Jammu and Kashmir, Muzaffarabad, Pakistan
| | - Muhammad Arshad
- University of Veterinary and Animal Sciences Lahore, CVAS, Jhang Campus, Jhang, Pakistan
| | - Muhammad Nauman Aftab
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000, Pakistan
| | - Chand Raza
- Microbiology Lab, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| | - Muhammad Mubin
- Centre of Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
46
|
Biodegradation of Selected Hydrocarbons by Fusarium Species Isolated from Contaminated Soil Samples in Riyadh, Saudi Arabia. J Fungi (Basel) 2023; 9:jof9020216. [PMID: 36836330 PMCID: PMC9966121 DOI: 10.3390/jof9020216] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
BACKGROUND Microbial biodegradation of oil-hydrocarbons is one of the sustainable and cost-effective methods to remove petroleum spills from contaminated environments. The current study aimed to investigate the biodegradation abilities of three Fusarium isolates from oil reservoirs in Saudi Arabia. The novelty of the current work is that the biodegradation ability of these isolates was never tested against some natural hydrocarbons of variable compositions, such as Crude oil, and those of known components such as kerosene and diesel oils. METHODS The isolates were treated with five selected hydrocarbons. The hydrocarbon tolerance test in solid and liquid media was performed. The scanning electron microscope (SEM) investigated the morphological changes of treated fungi. 2, 6-Dichlorophenol Indophenol (DCPIP), drop collapse, emulsification activity, and oil Spreading assays investigated the biodegradation ability. The amount of produced biosurfactants was measured, and their safety profile was estimated by the germination assay of tomato seeds. RESULTS The tolerance test showed enhanced fungal growth of all isolates, whereas the highest dose inhibition response (DIR) was 77% for Fusarium proliferatum treated with the used oil (p < 0.05). SEM showed morphological changes in all isolates. DCPIP results showed that used oil had the highest biodegradation by Fusarium verticillioides and Fusarium oxysporum. Mixed oil induced the highest effect in oil spreading, drop collapse, and emulsification assay caused by F. proliferatum. The highest recovery of biosurfactants was obtained by the solvent extraction method for F. verticillioides (4.6 g/L), F. proliferatum (4.22 g/L), and F. oxysporum (3.73 g/L). The biosurfactants produced by the three isolates stimulated tomato seeds' germination more than in control experiments. CONCLUSION The current study suggested the possible oil-biodegradation activities induced by three Fusarium isolates from Riyadh, Saudi Arabia. The produced biosurfactants are not toxic against tomato seed germination, emphasizing their environmental sustainability. Further studies are required to investigate the mechanism of biodegradation activities and the chemical composition of the biosurfactants produced by these species.
Collapse
|
47
|
Parus A, Ciesielski T, Woźniak-Karczewska M, Ślachciński M, Owsianiak M, Ławniczak Ł, Loibner AP, Heipieper HJ, Chrzanowski Ł. Basic principles for biosurfactant-assisted (bio)remediation of soils contaminated by heavy metals and petroleum hydrocarbons - A critical evaluation of the performance of rhamnolipids. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130171. [PMID: 36367467 DOI: 10.1016/j.jhazmat.2022.130171] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 10/06/2022] [Accepted: 10/08/2022] [Indexed: 06/16/2023]
Abstract
Despite the fact that rhamnolipids are among the most studied biosurfactants, there are still several gaps which must be filled. The aim of this review is to emphasize and to indicate which issues should be taken into account in order to achieve efficient rhamnolipids-assisted biodegradation or phytoextraction of soils contaminated by heavy metals and petroleum hydrocarbons without harmful side effects. Four main topics have been elucidated in the review: effective concentration of rhamnolipids in soil, their potential phytotoxicity, susceptibility to biodegradation and interaction with soil microorganisms. The discussed elements are often closely associated and often overlap, thus making the interpretation of research results all the more challenging. Each dedicated section of this review includes a description of potential issues and questions, an explanation of the background and rationale for each problem, analysis of relevant literature reports and a short summary with possible application guidelines. The main conclusion is that there is a necessity to establish regulations regarding effective concentrations for rhamnolipids-assisted remediation of soil. The use of an improper concentration is the direct cause of all the other discussed phenomena.
Collapse
Affiliation(s)
- Anna Parus
- Poznan University of Technology, Institute of Chemical Technology and Engineering, Berdychowo 4, 60-965 Poznan, Poland
| | - Tomasz Ciesielski
- Poznan University of Technology, Institute of Chemical Technology and Engineering, Berdychowo 4, 60-965 Poznan, Poland
| | - Marta Woźniak-Karczewska
- Poznan University of Technology, Institute of Chemical Technology and Engineering, Berdychowo 4, 60-965 Poznan, Poland
| | - Mariusz Ślachciński
- Poznan University of Technology, Institute of Chemistry and Technical Electrochemistry, Berdychowo 4, 60-965 Poznan, Poland
| | - Mikołaj Owsianiak
- Quantitative Sustainability Assessment Division, Department of Environmental and Resources Engineering, Technical University of Denmark, Produktionstorvet 424, 2800 Kgs. Lyngby, Denmark
| | - Łukasz Ławniczak
- Poznan University of Technology, Institute of Chemical Technology and Engineering, Berdychowo 4, 60-965 Poznan, Poland
| | - Andreas P Loibner
- Department IFA-Tulln, Institute of Environmental Biotechnology, BOKU - University of Natural Resources and Life Sciences, Vienna, Konrad-Lorenz-Straße 20, 3430 Tulln, Austria
| | - Hermann J Heipieper
- Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| | - Łukasz Chrzanowski
- Poznan University of Technology, Institute of Chemical Technology and Engineering, Berdychowo 4, 60-965 Poznan, Poland; Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318 Leipzig, Germany.
| |
Collapse
|
48
|
Upadhyay SK, Devi P, Kumar V, Pathak HK, Kumar P, Rajput VD, Dwivedi P. Efficient removal of total arsenic (As 3+/5+) from contaminated water by novel strategies mediated iron and plant extract activated waste flowers of marigold. CHEMOSPHERE 2023; 313:137551. [PMID: 36521746 DOI: 10.1016/j.chemosphere.2022.137551] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 10/31/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
In this investigation, marigold flower-waste was activated with iron salts (MG-Fe), subsequently marigold plant extract (MG-Fe-Ex) for the adsorptive elimination of As3+ and As5+ from contaminated water. The governing factor such as medium pH, temperature, pollutant concentration, reaction time, adsorbent dose were considered for the study. The complete elimination of As3+/5+ was recorded with MG-Fe-Ex at pH 8.0, 90 min, 30 °C, dose 4 g/L, 20 mg/L of As3+/5+ and shaking rate 120 rpm, while under the identical experimental condition, MG-Fe exhibited 98.4% and 73.3% removal for As5+ and As3+, respectively. The MG-Fe-Ex contains iron oxides (Fe2O3 and Fe3O4) as a result of iron ions reaction with plant bioactive molecules as evident from x-ray diffraction analysis (XRD), energy dispersive x-ray spectroscopic (EDS) and Fourier transform infrared (FTIR) spectroscopic study. The adsorption data of As3+/5+ on MG-Fe and MG-Fe-Ex was best fitted by pseudo-first order kinetic and freundlich isotherm except As5+ adsorption on MG-Fe-Ex that can be described by langmuir isotherm model. The prevailing mechanism in adsorption of As3+/5+ on both adsorbent might be hydrogen bonding, electrostatic attraction and complexation. From the above, it is confirmed that MG-Fe-Ex adsorbent has high potential and can be used for the adsorptive elimination of As3+/5+ from contaminated water in sustainable and environmentally friendly way.
Collapse
Affiliation(s)
- Sudhir K Upadhyay
- Department of Environmental Science, V.B.S. Purvanchal University, Jaunpur, 222003, India.
| | - Priyanka Devi
- School of Agriculture, Lovely Professional University, Phagwara, India
| | - Vinay Kumar
- Departement of Environmental Science, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Himanshu K Pathak
- Department of Environmental Science, V.B.S. Purvanchal University, Jaunpur, 222003, India
| | - Prasann Kumar
- School of Agriculture, Lovely Professional University, Phagwara, India
| | - Vishnu D Rajput
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Padmanabh Dwivedi
- Department of Plant Physiology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India.
| |
Collapse
|
49
|
Dias MAM, Nitschke M. Bacterial-derived surfactants: an update on general aspects and forthcoming applications. Braz J Microbiol 2023; 54:103-123. [PMID: 36662441 PMCID: PMC9857925 DOI: 10.1007/s42770-023-00905-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 01/10/2023] [Indexed: 01/21/2023] Open
Abstract
The search for sustainable alternatives to the production of chemicals using renewable substrates and natural processes has been widely encouraged. Microbial surfactants or biosurfactants are surface-active compounds synthesized by fungi, yeasts, and bacteria. Due to their great metabolic versatility, bacteria are the most traditional and well-known microbial surfactant producers, being Bacillus and Pseudomonas species their typical representatives. To be successfully applied in industry, surfactants need to maintain stability under the harsh environmental conditions present in manufacturing processes; thus, the prospection of biosurfactants derived from extremophiles is a promising strategy to the discovery of novel and useful molecules. Bacterial surfactants show interesting properties suitable for a range of applications in the oil industry, food, agriculture, pharmaceuticals, cosmetics, bioremediation, and more recently, nanotechnology. In addition, they can be synthesized using renewable resources as substrates, contributing to the circular economy and sustainability. The article presents a general and updated review of bacterial-derived biosurfactants, focusing on the potential of some groups that are still underexploited, as well as, recent trends and contributions of these versatile biomolecules to circular bioeconomy and nanotechnology.
Collapse
Affiliation(s)
- Marcos André Moura Dias
- grid.11899.380000 0004 1937 0722Departamento de Físico-Química, Instituto de Química de São Carlos, Universidade de São Paulo-USP, Av Trabalhador São Carlense 400, CP 780, CEP 13560-970 São Carlos, SP Brasil
| | - Marcia Nitschke
- Departamento de Físico-Química, Instituto de Química de São Carlos, Universidade de São Paulo-USP, Av Trabalhador São Carlense 400, CP 780, CEP 13560-970, São Carlos, SP, Brasil.
| |
Collapse
|
50
|
Manikandan SK, Pallavi P, Shetty K, Bhattacharjee D, Giannakoudakis DA, Katsoyiannis IA, Nair V. Effective Usage of Biochar and Microorganisms for the Removal of Heavy Metal Ions and Pesticides. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020719. [PMID: 36677777 PMCID: PMC9862088 DOI: 10.3390/molecules28020719] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/03/2023] [Accepted: 01/06/2023] [Indexed: 01/12/2023]
Abstract
The bioremediation of heavy metal ions and pesticides is both cost-effective and environmentally friendly. Microbial remediation is considered superior to conventional abiotic remediation processes, due to its cost-effectiveness, decrement of biological and chemical sludge, selectivity toward specific metal ions, and high removal efficiency in dilute effluents. Immobilization technology using biochar as a carrier is one important approach for advancing microbial remediation. This article provides an overview of biochar-based materials, including their design and production strategies, physicochemical properties, and applications as adsorbents and support for microorganisms. Microorganisms that can cope with the various heavy metal ions and/or pesticides that enter the environment are also outlined in this review. Pesticide and heavy metal bioremediation can be influenced by microbial activity, pollutant bioavailability, and environmental factors, such as pH and temperature. Furthermore, by elucidating the interaction mechanisms, this paper summarizes the microbe-mediated remediation of heavy metals and pesticides. In this review, we also compile and discuss those works focusing on the study of various bioremediation strategies utilizing biochar and microorganisms and how the immobilized bacteria on biochar contribute to the improvement of bioremediation strategies. There is also a summary of the sources and harmful effects of pesticides and heavy metals. Finally, based on the research described above, this study outlines the future scope of this field.
Collapse
Affiliation(s)
- Soumya K. Manikandan
- Department of Chemical Engineering, National Institute of Technology Karnataka (NITK), Mangalore 575025, India
| | - Pratyasha Pallavi
- Department of Chemical Engineering, National Institute of Technology Karnataka (NITK), Mangalore 575025, India
| | - Krishan Shetty
- Department of Chemical Engineering, National Institute of Technology Karnataka (NITK), Mangalore 575025, India
| | | | - Dimitrios A. Giannakoudakis
- Laboratory of Chemical and Environmental Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- Correspondence: (D.A.G.); (V.N.)
| | - Ioannis A. Katsoyiannis
- Laboratory of Chemical and Environmental Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Vaishakh Nair
- Department of Chemical Engineering, National Institute of Technology Karnataka (NITK), Mangalore 575025, India
- Correspondence: (D.A.G.); (V.N.)
| |
Collapse
|