1
|
Poenaru RC, Milanesi E, Niculae AM, Dobre AM, Vladut C, Ciocîrlan M, Balaban DV, Herlea V, Dobre M, Hinescu ME. Dysregulation of genes involved in the long-chain fatty acid transport in pancreatic ductal adenocarcinoma. World J Gastrointest Oncol 2025; 17:98409. [DOI: 10.4251/wjgo.v17.i1.98409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/17/2024] [Accepted: 10/22/2024] [Indexed: 12/12/2024] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is an aggressive lethal malignancy with limited options for treatment and a 5-year survival rate of 11% in the United States. As for other types of tumors, such as colorectal cancer, aberrant de novo lipid synthesis and reprogrammed lipid metabolism have been suggested to be associated with PDAC development and progression.
AIM To identify the possible involvement of lipid metabolism in PDAC by analyzing in tumoral and non-tumoral tissues the expression level of the most relevant genes involved in the long-chain fatty acid (FA) import into cell.
METHODS A gene expression analysis of FASN, CD36, SLC27A1, SLC27A2, SLC27A3, SLC27A4, SLC27A5, ACSL1, and ACSL3 was performed by qRT-PCR in 24 tumoral PDAC tissues and 11 samples from non-tumoral pancreatic tissues obtained via fine needle aspiration or via surgical resection. The genes were considered significantly dysregulated between the groups when the p value was < 0.05 and the fold change (FC) was ≤ 0.5 and ≥ 2.
RESULTS We found that three FA transporters and two long-chain acyl-CoA synthetases genes were significantly upregulated in the PDAC tissue compared to the non-tumoral tissue: SLC27A2 (FC = 5.66; P = 0.033), SLC27A3 (FC = 2.68; P = 0.040), SLC27A4 (FC = 3.13; P = 0.033), ACSL1 (FC = 4.10; P < 0.001), and ACSL3 (FC = 2.67; P = 0.012). We further investigated any possible association between the levels of the analyzed mRNAs and the specific characteristics of the tumors, including the anatomic location, the lymph node involvement, and the presence of metastasis. A significant difference in the expression of SLC27A3 (FC = 3.28; P = 0.040) was found comparing patients with and without lymph nodes involvement with an overexpression of this transcript in 17 patients presenting tumoral cells in the lymph nodes.
CONCLUSION Despite the low number of patients analyzed, these preliminary results seem to be promising. Addressing lipid metabolism through a broad strategy could be a beneficial way to treat this malignancy. Future in vitro and in vivo studies on these genes may offer important insights into the mechanisms linking PDAC with the long-chain FA import pathway.
Collapse
Affiliation(s)
- Radu Cristian Poenaru
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest 050474, Romania
| | - Elena Milanesi
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest 050474, Romania
- Department of Radiobiology, Victor Babes National Institute of Pathology, Bucharest 050096, Romania
| | - Andrei Marian Niculae
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest 050474, Romania
- Department of Pathology, Victor Babes National Institute of Pathology, Bucharest 050096, Romania
| | - Anastasia-Maria Dobre
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest 050474, Romania
| | - Catalina Vladut
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest 050474, Romania
- Department of Gastroenterology, Prof. Dr. Agrippa Ionescu Clinical Emergency Hospital, Bucharest 011356, Romania
| | - Mihai Ciocîrlan
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest 050474, Romania
- Department of Gastroenterology, Prof. Dr. Agrippa Ionescu Clinical Emergency Hospital, Bucharest 011356, Romania
| | - Daniel Vasile Balaban
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest 050474, Romania
| | - Vlad Herlea
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest 050474, Romania
- Department of Pathology, Fundeni Clinical Institute, Bucharest 022258, Romania
| | - Maria Dobre
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest 050474, Romania
- Department of Pathology, Victor Babes National Institute of Pathology, Bucharest 050096, Romania
| | - Mihail Eugen Hinescu
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest 050474, Romania
- Department of Pathology, Victor Babes National Institute of Pathology, Bucharest 050096, Romania
| |
Collapse
|
2
|
Ling L, Li R, Xu M, Zhou J, Hu M, Zhang X, Zhang XJ. Species differences of fatty liver diseases: comparisons between human and feline. Am J Physiol Endocrinol Metab 2025; 328:E46-E61. [PMID: 39636211 DOI: 10.1152/ajpendo.00014.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 11/25/2024] [Accepted: 11/25/2024] [Indexed: 12/07/2024]
Abstract
Nonalcoholic fatty liver disease (NAFLD) has emerged as the most widespread chronic liver disease that poses significant threats to public health due to changes in dietary habits and lifestyle patterns. The transition from simple steatosis to nonalcoholic steatohepatitis (NASH) markedly increases the risk of developing cirrhosis, hepatocellular carcinoma, and liver failure in patients. However, there is only one Food and Drug Administration-approved therapeutic drug in the world, and the clinical demand is huge. There is significant clinical heterogeneity among patients with NAFLD, and it is challenging to fully understand human NAFLD using only a single animal model. Interestingly, felines, like humans, are particularly prone to spontaneous fatty liver disease. This review summarized and compared the etiology, clinical features, pathological characteristics, and molecular pathogenesis between human fatty liver and feline hepatic lipidosis (FHL). We analyzed the key similarities and differences between those two species, aiming to provide theoretical foundations for developing effective strategies for the treatment of NAFLD in clinics.
Collapse
Affiliation(s)
- Like Ling
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China
| | - Ruilin Li
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China
| | - Mengqiong Xu
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China
| | - Junjie Zhou
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China
| | - Manli Hu
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China
| | - Xin Zhang
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China
| | - Xiao-Jing Zhang
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
3
|
Geng L, Yi X, Lin Y, Abulimiti X, Jin L, Yu J, Xu A. Site-specific analysis and functional characterization of N-linked glycosylation for β-Klotho protein. Int J Biol Macromol 2024; 289:138846. [PMID: 39701265 DOI: 10.1016/j.ijbiomac.2024.138846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/13/2024] [Accepted: 12/15/2024] [Indexed: 12/21/2024]
Abstract
β-Klotho (KLB), a type I transmembrane protein, serves as an obligate co-receptor determining the tissue-specific actions of endocrine fibroblast growth factors (FGFs). Despite accumulative evidence suggesting the occurrence of N-glycosylation in the KLB protein, the precise N-glycosites, glycoforms, and the impacts of N-glycosylation on the expression and function of the KLB protein remain unexplored. Employing a mass spectrometry-based approach, a total of 12 N-glycosites displaying heterogeneous site occupancy and glycoforms were identified within the extracellular region of the recombinant human KLB protein. Molecular simulation revealed negligible impact of these N-glycans on the overall structure of the KLB protein. However, both pharmacological inhibition of N-glycosylation and mutagenesis targeting N-glycosites reduced mature KLB protein content without impacting KLB mRNA synthesis in cells, underscoring the critical role of N-glycosylation in maintaining the stability of the KLB protein. Further studies revealed that the underglycosylated KLB mutant underwent rapid degradation via both lysosomal and proteasomal pathways and was unable to be efficiently trafficked to the plasma membrane, leading to impaired FGF21 signaling transduction. Collectively, multisite N-glycosylation is essential for the stability and cell surface localization of the KLB protein, representing a novel modulatory mechanism of endocrine FGF signaling.
Collapse
Affiliation(s)
- Leiluo Geng
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, 21 Sassoon Road, Pokfulam 999077, Hong Kong, China; Department of Medicine, School of Clinical Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam 999077, Hong Kong, China.
| | - Xinyao Yi
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, 21 Sassoon Road, Pokfulam 999077, Hong Kong, China; Department of Medicine, School of Clinical Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam 999077, Hong Kong, China
| | - Ying Lin
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, 21 Sassoon Road, Pokfulam 999077, Hong Kong, China; Department of Medicine, School of Clinical Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam 999077, Hong Kong, China
| | - Xiayidan Abulimiti
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, 21 Sassoon Road, Pokfulam 999077, Hong Kong, China; Department of Medicine, School of Clinical Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam 999077, Hong Kong, China
| | - Leigang Jin
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, 21 Sassoon Road, Pokfulam 999077, Hong Kong, China; Department of Medicine, School of Clinical Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam 999077, Hong Kong, China
| | - Jiasui Yu
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, 21 Sassoon Road, Pokfulam 999077, Hong Kong, China; Department of Medicine, School of Clinical Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam 999077, Hong Kong, China
| | - Aimin Xu
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, 21 Sassoon Road, Pokfulam 999077, Hong Kong, China; Department of Medicine, School of Clinical Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam 999077, Hong Kong, China; Department of Pharmacology and Pharmacy, The University of Hong Kong, 21 Sassoon Road, Pokfulam 999077, Hong Kong, China.
| |
Collapse
|
4
|
Meroni M, Dongiovanni P, Tiano F, Piciotti R, Alisi A, Panera N. β-Klotho as novel therapeutic target in Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD): A narrative review. Biomed Pharmacother 2024; 180:117608. [PMID: 39490050 DOI: 10.1016/j.biopha.2024.117608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/10/2024] [Accepted: 10/21/2024] [Indexed: 11/05/2024] Open
Abstract
Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD) represents the most frequent cause of hepatic disorder, and its progressive form defined as Metabolic Dysfunction-Associated Steatohepatitis (MASH) contributes to the development of fibrosis/cirrhosis and hepatocellular carcinoma (HCC). Today effective therapeutic strategies addressing MASH-related comorbidities, inflammation, and fibrosis are needed. The fibroblast growth factor (FGF) 19 and 21 and their fibroblast growth factor receptor/β-Klotho (KLB) complexes have recently emerged as promising druggable targets for MASLD. However, less is known regarding the causative association between KLB activity and advanced stages of liver disease. In the present narrative review, we aimed to provide an up-to-date picture of the role of the KLB co-receptor in MASLD development and progression. We performed a detailed analysis of recently published preclinical and clinical data to decipher the molecular mechanisms underlying KLB function and to correlate the presence of inherited or acquired KLB aberrancies with the predisposition towards MASLD. Moreover, we described ongoing clinical trials evaluating the therapeutic approaches targeting FGF19-21/FGFR/KLB in patients with MASLD and discussed the challenges related to their use. We furtherly described that KLB exhibits protective effects against metabolic disorders by acting in an FGF-dependent and independent manner thus triggering the hypothesis that KLB soluble forms may play a critical role in preserving liver health. Therefore, targeting KLB may provide promising strategies for treating MASLD, as supported by experimental evidence and ongoing clinical trials.
Collapse
Affiliation(s)
- Marica Meroni
- Medicine and Metabolic Diseases; Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Paola Dongiovanni
- Medicine and Metabolic Diseases; Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy.
| | - Francesca Tiano
- Research Unit of Genetics of Complex Phenotypes, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Roberto Piciotti
- Research Unit of Genetics of Complex Phenotypes, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy; Department of Pathophysiology and Transplantation, University of Milan, Milan 20122, Italy
| | - Anna Alisi
- Research Unit of Genetics of Complex Phenotypes, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.
| | - Nadia Panera
- Research Unit of Genetics of Complex Phenotypes, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| |
Collapse
|
5
|
Di Y, Wang Z, Xiao J, Zhang X, Ye L, Wen X, Qin J, Lu L, Wang X, He W. ACSL6-activated IL-18R1-NF-κB promotes IL-18-mediated tumor immune evasion and tumor progression. SCIENCE ADVANCES 2024; 10:eadp0719. [PMID: 39292786 PMCID: PMC11409972 DOI: 10.1126/sciadv.adp0719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 08/09/2024] [Indexed: 09/20/2024]
Abstract
Aberrant activation of IL-18 signaling regulates tumor immune evasion and progression. However, the underlying mechanism remains unclear. Here, we report that long-chain acyl-CoA synthase 6 (ACSL6) is highly expressed in liver cancer and correlated with poor prognosis. ACSL6 promotes tumor growth, metastasis, and immune evasion mediated by IL-18, independent of its metabolic enzyme activity. Mechanistically, upon IL-18 stimulation, ACSL6 is phosphorylated by ERK2 at S674 and recruits IL-18RAP to interact with IL-18R1, thereby reinforcing the IL-18R1-IL-18RAP heterodimer and triggering NF-κB-dependent gene expression to facilitate tumor development. Furthermore, the up-regulation of CXCL1 and CXCL5 by ACSL6 promotes tumor-associated neutrophil and tumor-associated macrophage recruitment, thereby inhibiting cytotoxic CD8+ T cell infiltration. Ablation or S674A mutation of ACSL6 potentiated anti-PD-1 therapeutic efficacy by increasing the effector activity of intertumoral CD8+ T cells. We revealed that ACSL6 is a potential adaptor that activates IL-18-NF-κB axis-mediated tumor immune evasion and provides valuable insights for developing effective immunotherapy strategies for cancer.
Collapse
Affiliation(s)
- Yuqin Di
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Ziyang Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Jing Xiao
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People’s Hospital (Zhuhai Clinical Medical College of Jinan University), Zhuhai, Guangdong 519000, China
| | - Xiang Zhang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Lvlan Ye
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Xiangqiong Wen
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Jiale Qin
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Ligong Lu
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People’s Hospital (Zhuhai Clinical Medical College of Jinan University), Zhuhai, Guangdong 519000, China
| | - Xiongjun Wang
- School of Life Sciences, Guangzhou University, Guangzhou, Guangdong 510006, China
| | - Weiling He
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
- Department of Gastrointestinal Surgery, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361000, China
| |
Collapse
|
6
|
Zhao X, Han D, Zhao C, Yang F, Wang Z, Gao Y, Jin M, Tao R. New insights into the role of Klotho in inflammation and fibrosis: molecular and cellular mechanisms. Front Immunol 2024; 15:1454142. [PMID: 39308872 PMCID: PMC11412887 DOI: 10.3389/fimmu.2024.1454142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 08/12/2024] [Indexed: 09/25/2024] Open
Abstract
As the body's defense mechanism against damage and infection, the inflammatory response is a pathological process that involves a range of inflammatory cells and cytokines. A healthy inflammatory response helps the body repair by eliminating dangerous irritants. However, tissue fibrosis can result from an overly intense or protracted inflammatory response. The anti-aging gene Klotho suppresses oxidation, delays aging, and fosters development of various organs. Numerous investigations conducted in the last few years have discovered that Klotho expression is changed in a variety of clinical diseases and is strongly linked to the course and outcome of a disease. Klotho functions as a co-receptor for FGF and as a humoral factor that mediates intracellular signaling pathways such as transforming growth factor β (TGF-β), toll-like receptors (TLRs), nuclear factor-kappaB (NF-κB), renin -angiotensin system (RAS), and mitogen-activated protein kinase (MAPK). It also interferes with the phenotype and function of inflammatory cells, such as monocytes, macrophages, T cells, and B cells. Additionally, it regulates the production of inflammatory factors. This article aims to examine Klotho's scientific advances in terms of tissue fibrosis and the inflammatory response in order to provide novel therapy concepts for fibrotic and inflammatory disorders.
Collapse
Affiliation(s)
- Xinyue Zhao
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, Liaoning, China
| | - Donghe Han
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, Liaoning, China
- Department of Anatomy, Medical College, Dalian University, Dalian, Liaoning, China
| | - Chun Zhao
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, Liaoning, China
| | - Fengfan Yang
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, Liaoning, China
| | - Zhimei Wang
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, Liaoning, China
| | - Yujiao Gao
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, Liaoning, China
| | - Meihua Jin
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, Liaoning, China
- Department of Immunology, Medical College, Dalian University, Dalian, Liaoning, China
| | - Ran Tao
- Department of Anatomy, Medical College, Dalian University, Dalian, Liaoning, China
| |
Collapse
|
7
|
Wang F, Colonnello E, Zhang H, Sansone A, Wang C, Dolci S, Guo J, Jannini EA. Comparing Western and traditional Chinese medicine for male sexual dysfunction: can Klotho represent a silk road? Andrology 2024; 12:1215-1223. [PMID: 38155398 DOI: 10.1111/andr.13580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/30/2023] [Accepted: 11/28/2023] [Indexed: 12/30/2023]
Abstract
Traditional Chinese medicine (TCM) and Western Medicine both have shown efficacy in treating male sexual dysfunction (MSD). The aim of this perspective paper is to discuss a possible link between Western medicine and TCM in the MSD field as represented by the entity of Klotho. Klotho is a recently discovered protein, mainly expressed in the kidney, encoded by the anti-aging gene klotho. Not only is Klotho significantly correlated with the development and progression of kidney diseases and their complications, but increasing evidence indicates that it is also closely related to MSD. A comprehensive search within PubMed database was performed to retrieve available evidence on Klotho's roles, particularly in kidney and in MSD. Indeed, in the TCM theory, the concept of the "kidney" is entirely different from the Western medicine: it is closely related to metabolism and to the reproductive, nervous, endocrine systems, being more than just a urinary organ. According to the "Kidney storing essence (jīng) and governing reproduction" (KSEGR) theory, a cornerstone in TCM, the treatment of MSD mainly consists of restoring the kidney's function. Signs of decreasing kidney essence show a consistent similarity to deficiencies of Klotho, also for what regards the male sexual function. Based on the current evidence, Klotho may represent a potential biological indicator for sexual desire and sexual function and a kind of new scientific Silk Road between TCM and Western medicine for MSD; nevertheless, there is a need to conduct further high-quality research to prove this hypothesis.
Collapse
Affiliation(s)
- Fu Wang
- Department of Andrology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Elena Colonnello
- Chair of Endocrinology and Medical Sexology (ENDOSEX), Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Hui Zhang
- Chair of Endocrinology and Medical Sexology (ENDOSEX), Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Andrea Sansone
- Chair of Endocrinology and Medical Sexology (ENDOSEX), Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Chunlin Wang
- Chair of Endocrinology and Medical Sexology (ENDOSEX), Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Susanna Dolci
- Chair of Anatomy, Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Jun Guo
- Department of Andrology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Emmanuele A Jannini
- Chair of Endocrinology and Medical Sexology (ENDOSEX), Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
8
|
Huang C, Guan Y, Chen L, Xu Y, Yang H. The association of platelet count, high-density lipoprotein cholesterol, and platelet/high-density lipoprotein cholesterol ratio with serum soluble Klotho. Lipids Health Dis 2024; 23:251. [PMID: 39153988 PMCID: PMC11330610 DOI: 10.1186/s12944-024-02242-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 08/07/2024] [Indexed: 08/19/2024] Open
Abstract
BACKGROUND AND OBJECTIVE Klotho is a protein that is closely related to human aging. Soluble Klotho (S-Klotho) is a circulating protein, and its level decreases in response to systemic inflammation. The relationship between the platelet/high-density lipoprotein cholesterol ratio (PHR), an emerging inflammatory index, and S-Klotho concentrations is still unclear. In addition, the mean platelet volume has been confirmed to have a significant negative association with S-Klotho concentrations, but the relationship between the platelet count (PC) and S-Klotho concentrations has not yet been reported. METHODS Data from individuals who participated in the National Health and Nutrition Examination Survey (NHANES) during the five cycles from 2007 to 2016 were retrieved for analysis. Linear regression, two-piecewise linear regression, and restricted cubic spline (RCS) methods were used to analyze the associations of the PHR index and its components with S-Klotho concentrations. In addition, subgroup analysis and effect modification tests were conducted. RESULTS A total of 11,123 participants (5463 men (48.17%)), with an average age of 56.2 years, were included. After full adjustment, the S-Klotho levels of participants in the highest quartile group of PHR (β: -51.19, 95% CI: -75.41 to -26.97, P < 0.001) and the highest quartile group of PC (β: -72.34, 95% CI: -93.32 to -51.37, P < 0.0001) were significantly lower than those in their respective lowest quartile groups, and a significant downward trend was presented among the four groups (P for trend < 0.05, respectively). However, high-density lipoprotein cholesterol (HDL-C) concentrations were not significantly associated with S-Klotho concentrations. RCS revealed that the PHR and PC were nonlinearly associated with S-Klotho concentrations; two-piecewise linear regression revealed that the inflection points were 175.269 and 152, respectively, and that these associations slightly weakened after the inflection point. According to the subgroup analysis, liver disease status enhanced the association between the PC and S-Klotho concentrations. CONCLUSIONS Both the PHR and PC were significantly negatively associated with S-Klotho concentrations, and these associations were nonlinear. There was no significant association between HDL-C and S-Klotho concentrations. Liver disease status enhances the negative association between the PC and S-Klotho concentrations, and the specific mechanism deserves further exploration.
Collapse
Affiliation(s)
- Caijuan Huang
- Department of Hematology, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, No.636 Guanlin Road, Luolong District, Luoyang City, Henan Province, China
| | - Yibing Guan
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zheng zhou, China
| | - Lele Chen
- General Surgery Department, Henan Provincial People's Hospital Southeast Yu Branch, Zhumadian, China
| | - Ying Xu
- Department of Hematology, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, No.636 Guanlin Road, Luolong District, Luoyang City, Henan Province, China
| | - Haiping Yang
- Department of Hematology, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, No.636 Guanlin Road, Luolong District, Luoyang City, Henan Province, China.
| |
Collapse
|
9
|
Ullah A, Singla RK, Batool Z, Cao D, Shen B. Pro- and anti-inflammatory cytokines are the game-changers in childhood obesity-associated metabolic disorders (diabetes and non-alcoholic fatty liver diseases). Rev Endocr Metab Disord 2024; 25:783-803. [PMID: 38709387 DOI: 10.1007/s11154-024-09884-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/01/2024] [Indexed: 05/07/2024]
Abstract
Childhood obesity is a chronic inflammatory epidemic that affects children worldwide. Obesity affects approximately 1 in 5 children worldwide. Obesity in children can worsen weight gain and raise the risk of obesity-related comorbidities like diabetes and non-alcoholic fatty liver disease (NAFLD). It can also negatively impact the quality of life for these children. Obesity disrupts immune system function, influencing cytokine (interleukins) balance and expression levels, adipokines, and innate and adaptive immune cells. The altered expression of immune system mediators, including interleukin-1 (IL-1), interleukin-6 (IL-6), interleukin-8 (IL-8), interleukin-17 (IL-17), interleukin-18 (IL-18), transforming growth factor (TGF), tumor necrosis factor (TNF), and others, caused inflammation, progression, and the development of pediatric obesity and linked illnesses such as diabetes and NAFLD. Furthermore, anti-inflammatory cytokines, including interleukin-2 (IL-2), have been shown to have anti-diabetes and IL-1 receptor antagonist (IL-1Ra) anti-diabetic and pro-NAFLFD properties, and interleukin-10 (IL-10) has been shown to have a dual role in managing diabetes and anti-NAFLD. In light of the substantial increase in childhood obesity-associated disorders such as diabetes and NAFLD and the absence of an effective pharmaceutical intervention to inhibit immune modulation factors, it is critical to consider the alteration of immune system components as a preventive and therapeutic approach. Thus, the current review focuses on the most recent information regarding the influence of pro- and anti-inflammatory cytokines (interleukins) and their molecular mechanisms on pediatric obesity-associated disorders (diabetes and NAFLD). Furthermore, we discussed the current therapeutic clinical trials in childhood obesity-associated diseases, diabetes, and NAFLD.
Collapse
Affiliation(s)
- Amin Ullah
- Department of Abdominal Oncology, Cancer Center of West China Hospital and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Rajeev K Singla
- Department of Abdominal Oncology, Cancer Center of West China Hospital and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- School of Pharmaceutical Sciences, Lovely Professional University, 144411, Phagwara, Punjab, India
| | - Zahra Batool
- Department of Abdominal Oncology, Cancer Center of West China Hospital and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Dan Cao
- Department of Abdominal Oncology, Cancer Center of West China Hospital and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Bairong Shen
- Department of Abdominal Oncology, Cancer Center of West China Hospital and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
10
|
Babu S, Ranajit SK, Pattnaik G, Ghosh G, Rath G, Kar B. An Insight into Different Experimental Models used for Hepatoprotective Studies: A Review. Curr Drug Discov Technol 2024; 21:e191223224660. [PMID: 39206705 DOI: 10.2174/0115701638278844231214115102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/13/2023] [Accepted: 11/22/2023] [Indexed: 09/04/2024]
Abstract
Numerous factors, including exposure to harmful substances, drinking too much alcohol, contracting certain hepatitis serotypes, and using specific medicines, contribute to the development of liver illnesses. Lipid peroxidation and other forms of oxidative stress are the main mechanisms by which hepatotoxic substances harm liver cells. Pathological changes in the liver include a rise in the levels of blood serum, a decrease in antioxidant enzymes, as well as the formation of free radical radicals. It is necessary to find pharmaceutical alternatives to treat liver diseases to increase their efficacy and decrease their toxicity. For the development of new therapeutic medications, a greater knowledge of primary mechanisms is required. In order to mimic human liver diseases, animal models are developed. Animal models have been used for several decades to study the pathogenesis of liver disorders and related toxicities. For many years, animal models have been utilized to investigate the pathophysiology of liver illness and associated toxicity. The animal models are created to imitate human hepatic disorders. This review enlisted numerous hepatic damage in vitro and in vivo models using various toxicants, their probable biochemical pathways and numerous metabolic pathways via oxidative stressors, different serum biomarkers enzymes are discussed, which will help to identify the most accurate and suitable model to test any plant preparations to check and evaluate their hepatoprotective properties.
Collapse
Affiliation(s)
- Sucharita Babu
- School of Pharmacy and Life Sciences, Centurion University of Technology and Management, Bhubaneswar, 751050, India
| | - Santosh K Ranajit
- School of Pharmacy and Life Sciences, Centurion University of Technology and Management, Bhubaneswar, 751050, India
| | - Gurudutta Pattnaik
- School of Pharmacy and Life Sciences, Centurion University of Technology and Management, Bhubaneswar, 751050, India
| | - Goutam Ghosh
- School of Pharmaceutical Sciences, Siksha O Anusandhan Deemed to be University, Bhubaneswar, 751030, India
| | - Goutam Rath
- School of Pharmaceutical Sciences, Siksha O Anusandhan Deemed to be University, Bhubaneswar, 751030, India
| | - Biswakanth Kar
- School of Pharmaceutical Sciences, Siksha O Anusandhan Deemed to be University, Bhubaneswar, 751030, India
| |
Collapse
|
11
|
Tzur Y, Winek K, Madrer N, Dubnov S, Bennett ER, Greenberg DS, Hanin G, Gammal A, Tam J, Arkin IT, Paldor I, Soreq H. Lysine tRNA fragments and miR-194-5p co-regulate hepatic steatosis via β-Klotho and perilipin 2. Mol Metab 2024; 79:101856. [PMID: 38141848 PMCID: PMC10805669 DOI: 10.1016/j.molmet.2023.101856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/20/2023] [Accepted: 12/17/2023] [Indexed: 12/25/2023] Open
Abstract
OBJECTIVE Non-alcoholic fatty liver disease (NAFLD) involves hepatic accumulation of intracellular lipid droplets via incompletely understood processes. Here, we report distinct and cooperative NAFLD roles of LysTTT-5'tRF transfer RNA fragments and microRNA miR-194-5p. METHODS Combined use of diet induced obese mice with human-derived oleic acid-exposed Hep G2 cells revealed new NAFLD roles of LysTTT-5'tRF and miR-194-5p. RESULTS Unlike lean animals, dietary-induced NAFLD mice showed concurrent hepatic decrease of both LysTTT-5'tRF and miR-194-5p levels, which were restored following miR-132 antisense oligonucleotide treatment which suppresses hepatic steatosis. Moreover, exposing human-derived Hep G2 cells to oleic acid for 7 days co-suppressed miR-194-5p and LysTTT-5'tRF levels while increasing lipid accumulation. Inversely, transfecting fattened cells with a synthetic LysTTT-5'tRF mimic elevated mRNA levels of the metabolic regulator β-Klotho while decreasing triglyceride amounts by 30% within 24 h. In contradistinction, antisense suppression of miR-194-5p induced accumulation of its novel target, the NAFLD-implicated lipid droplet-coating PLIN2 protein. Further, two out of 15 steatosis-alleviating screened drug-repurposing compounds, Danazol and Latanoprost, elevated miR-194-5p or LysTTT-5'tRF levels. CONCLUSION Our findings highlight the different yet complementary roles of miR-194-5p and LysTTT-5'tRF and offer new insights into the complex roles of small non-coding RNAs and the multiple pathways involved in NAFLD pathogenesis.
Collapse
Affiliation(s)
- Yonat Tzur
- The Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, Israel
| | - Katarzyna Winek
- The Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, Israel; The Edmond and Lily Safra Center of Brain Science, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, Israel
| | - Nimrod Madrer
- The Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, Israel
| | - Serafima Dubnov
- The Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, Israel; The Edmond and Lily Safra Center of Brain Science, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, Israel
| | - Estelle R Bennett
- The Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, Israel
| | - David S Greenberg
- The Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, Israel
| | - Geula Hanin
- The Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, Israel
| | - Asaad Gammal
- Obesity and Metabolism Laboratory, The Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Joseph Tam
- Obesity and Metabolism Laboratory, The Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Isaiah T Arkin
- The Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, Israel
| | - Iddo Paldor
- Shaare Zedek Medical Center, The Neurosurgery Department, Main Building, 10th Floor, 12 Shmu'el Bait Street, Jerusalem, 9103102 Israel
| | - Hermona Soreq
- The Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, Israel; The Edmond and Lily Safra Center of Brain Science, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, Israel.
| |
Collapse
|
12
|
Wang L, Mao Z, Shao F. Identification of toll-like receptor 5 and acyl-CoA synthetase long chain family member 1 as hub genes are correlated with the severe forms of COVID-19 by Weighted gene co-expression network analysis. IET Syst Biol 2023; 17:327-335. [PMID: 37823415 PMCID: PMC10725708 DOI: 10.1049/syb2.12079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 09/05/2023] [Accepted: 09/26/2023] [Indexed: 10/13/2023] Open
Abstract
Since a 25% mortality rate occurred in critical Coronavirus disease 2019 (COVID-19) patients, investigating the potential drivers remains to be important. Here, the authors applied Weighted Gene Co-expression Network Analysis to identify the potential drivers in the blood samples of multiple COVID-19 expression profiles. The authors found that the darkslateblue module was significantly correlated with critical COVID-19, and Gene Ontology analysis indicated terms associated with the inflammation pathway and apoptotic process. The authors intersected differentially expressed genes, Maximal Clique Centrality calculated hub genes, and COVID-19 related genes in the Genecards dataset, and two genes, toll-like receptor 5 (TLR5) and acyl-CoA synthetase long chain family member 1 (ACSL1), were screened out. The Gene Set Enrichment Analysis further supports their core role in the inflammatory pathway. Furthermore, the cell-type identification by estimating relative subsets of RNA transcript demonstrated that TLR5 and ACSL1 were associated with neutrophil enrichment in critical COVID-19 patients. Collectively, the aurthors identified two hub genes that were strongly correlated with critical COVID-19. These may help clarify the pathogenesis and assist the immunotherapy development.
Collapse
Affiliation(s)
- Luoyi Wang
- Department of NephrologyHenan Provincial Key Laboratory of Kidney Disease and ImmunologyHenan Provincial Clinical Research Center for Kidney DiseaseHenan Provincial People's Hospital and People's Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Zhaomin Mao
- Key Clinical Laboratory of Henan ProvinceDepartment of Clinical LaboratoryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Fengmin Shao
- Department of NephrologyHenan Provincial Key Laboratory of Kidney Disease and ImmunologyHenan Provincial Clinical Research Center for Kidney DiseaseHenan Provincial People's Hospital and People's Hospital of Zhengzhou UniversityZhengzhouHenanChina
| |
Collapse
|
13
|
Wang Y, Ran L, Lan Q, Liao W, Wang L, Wang Y, Xiong J, Li F, Yu W, Li Y, Huang Y, He T, Wang J, Zhao J, Yang K. Imbalanced lipid homeostasis caused by membrane αKlotho deficiency contributes to the acute kidney injury to chronic kidney disease transition. Kidney Int 2023; 104:956-974. [PMID: 37673285 DOI: 10.1016/j.kint.2023.08.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 07/28/2023] [Accepted: 08/11/2023] [Indexed: 09/08/2023]
Abstract
After acute kidney injury (AKI), renal tubular epithelial cells (RTECs) are pathologically characterized by intracellular lipid droplet (LD) accumulation, which are involved in RTEC injury and kidney fibrosis. However, its pathogenesis remains incompletely understood. The protein, αKlotho, primarily expressed in RTECs, is well known as an anti-aging hormone wielding versatile functions, and its membrane form predominantly acts as a co-receptor for fibroblast growth factor 23. Here, we discovered a connection between membrane αKlotho and intracellular LDs in RTECs. Fluorescent fatty acid (FA) pulse-chase assays showed that membrane αKlotho deficiency in RTECs, as seen in αKlotho homozygous mutated (kl/kl) mice or in mice with ischemia-reperfusion injury (IRI)-induced AKI, inhibited FA mobilization from LDs by impairing adipose triglyceride lipase (ATGL)-mediated lipolysis and lipophagy. This resulted in LD accumulation and FA underutilization. IRI-induced alterations were more striking in αKlotho deficiency. Mechanistically, membrane αKlotho deficiency promoted E3 ligase peroxin2 binding to ubiquitin-conjugating enzyme E2 D2, resulting in ubiquitin-mediated degradation of ATGL which is a common molecular basis for lipolysis and lipophagy. Overexpression of αKlotho rescued FA mobilization by preventing ATGL ubiquitination, thereby lessening LD accumulation and fibrosis after AKI. This suggests that membrane αKlotho is indispensable for the maintenance of lipid homeostasis in RTECs. Thus, our study identified αKlotho as a critical regulator of lipid turnover and homeostasis in AKI, providing a viable strategy for preventing tubular injury and the AKI-to-chronic kidney disease transition.
Collapse
Affiliation(s)
- Yue Wang
- Department of Nephrology, Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Li Ran
- Department of Nephrology, Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Qigang Lan
- Department of Nephrology, Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Weinian Liao
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Liting Wang
- Biomedical Analysis Center, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yaqin Wang
- Department of Nephrology, Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jiachuan Xiong
- Department of Nephrology, Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Fugang Li
- Department of Nephrology, Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Wenrui Yu
- Department of Nephrology, Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yan Li
- Department of Nephrology, Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yinghui Huang
- Department of Nephrology, Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Ting He
- Department of Nephrology, Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Junping Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jinghong Zhao
- Department of Nephrology, Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China.
| | - Ke Yang
- Department of Nephrology, Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China.
| |
Collapse
|
14
|
Chi Z, Teng Y, Liu Y, Gao L, Yang J, Zhang Z. Association between klotho and non-alcoholic fatty liver disease and liver fibrosis based on the NHANES 2007-2016. Ann Hepatol 2023; 28:101125. [PMID: 37286168 DOI: 10.1016/j.aohep.2023.101125] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/24/2023] [Accepted: 05/29/2023] [Indexed: 06/09/2023]
Abstract
INTRODUCTION AND OBJECTIVES This study aims to explore the association between Klotho and Non-Alcoholic Fatty Liver Disease (NAFLD), a condition affecting millions worldwide. Klotho may have a protective effect against NAFLD mechanisms like inflammation, oxidative stress, and fibrosis. The study will use FLI and FIB-4 score to diagnose NAFLD in a large population for investigating the link between Klotho and NAFLD. MATERIALS AND METHODS The study aimed to explore the association between Klotho and NAFLD by measuring the α-Klotho protein levels in the participants' blood using ELISA. Patients with underlying chronic liver diseases were excluded. The severity of NAFLD was evaluated using FLI and FIB-4, and logistic regression models were used to analyze the data obtained from NHANES. Subgroup analyses were conducted to study Klotho's effect on hepatic steatosis and fibrosis in diverse subpopulations. RESULTS The study found that low levels of α-Klotho were associated with NAFLD, with ORs ranging from 0.72 to 0.83. However, high levels of α-Klotho were associated with NAFLD-related fibrosis. The Q4 group showed significant results in individuals aged 51 years or younger and in females. Non-Hispanic White ethnicity, education level of high school or above, non-smoking, non-hypertension, and non-diabetic groups showed negative correlations. CONCLUSIONS Our study suggests a potential correlation between α-Klotho levels in the blood and NAFLD in adult patients, especially among younger individuals, females and Non-Hispanic Whites. Elevated α-Klotho levels may have therapeutic benefits in treating NAFLD. Further research is required to validate these findings, but they provide new insights for managing this condition.
Collapse
Affiliation(s)
- Zhenfei Chi
- Liaoning University of Traditional Chinese Medicine, PR China
| | - Yun Teng
- Liaoning University of Traditional Chinese Medicine, PR China
| | - Yuting Liu
- Liaoning University of Traditional Chinese Medicine, PR China
| | - Lu Gao
- Liaoning University of Traditional Chinese Medicine, PR China
| | - Junhan Yang
- Liaoning University of Traditional Chinese Medicine, PR China
| | - Zhe Zhang
- Liaoning University of Traditional Chinese Medicine, PR China.
| |
Collapse
|
15
|
Jiang S, Wang Y, Wang Z, Zhang L, Jin F, Li B. The association of serum Klotho concentrations with hyperlipidemia prevalence and lipid levels among US adults: a cross-sectional study. BMC Public Health 2023; 23:1645. [PMID: 37641103 PMCID: PMC10463308 DOI: 10.1186/s12889-023-16566-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 08/20/2023] [Indexed: 08/31/2023] Open
Abstract
BACKGROUND Klotho has anti-oxidative and anti-inflammatory properties. However, little is known about whether high Klotho concentrations were associated with reduced hyperlipidemia risk and improved plasma lipid levels. METHODS Participants with complete data on serum Klotho and plasma lipid concentrations from the 2007-2016 National Health and Nutrition Examination Survey were included. Weighted regression models were fitted to explore the association of Klotho concentrations with hyperlipidemia risk and plasma lipid levels while restricted cubic spline models were applied to explore the dose-response relationship. Additionally, we assessed the mediating effects of C-reaction protein (CRP) on the foregoing association. RESULTS Individuals in the fourth and fifth quintile of serum Klotho had an adjusted odds ratio (OR) of 0.77 (95%CI: 0.65, 0.93) and 0.67 (95%CI: 0.65, 0.93) for hyperlipidemia. Doubling of serum Klotho concentrations was associated with decreased hyperlipidemia risk (OR = 0.81; 95%CI: 0.68, 0.95) and triglyceride levels (13.25 mg/dL; 95%CI: 4.02, 22.47), with a monotonic dose-response relationship. Individuals in the fourth and fifth quintile of serum Klotho had a 0.07 (95%CI: 0.002, 0.13), 0.08 (95%CI: 0.02, 0.15) and 0.05 (95%CI: -0.03, 0.12) mg/dL decreased CRP levels, with a marginally significant trend (Ptrend = 0.05). CONCLUSIONS Higher Klotho concentrations were associated with reduced hyperlipidemia risk and triglyceride levels. Klotho supplementation maybe a promising method to intervene and prevent hyperlipidemia, but the underlying mechanism should be further explored.
Collapse
Affiliation(s)
- Shunli Jiang
- Department of Public Health, Jining Medical University, Rencheng District, #33 Jianshe RoadShan Dong, Jining, 272000, China.
| | - Yongxin Wang
- Department of Neurosurgery Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Zengliang Wang
- Department of Neurosurgery Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Lu Zhang
- Department of Neurosurgery, Affiliated Hospital of Jining Medical University, Jining, China
| | - Feng Jin
- Department of Neurosurgery, Affiliated Hospital of Jining Medical University, Jining, China.
| | - Bo Li
- Department of Neurosurgery, Affiliated Hospital of Jining Medical University, Jining, China.
| |
Collapse
|
16
|
Wu D, Wang S, Hai C, Wang L, Pei D, Bai C, Su G, Liu X, Zhao Y, Liu Z, Yang L, Li G. The Effect of MSTN Mutation on Bile Acid Metabolism and Lipid Metabolism in Cattle. Metabolites 2023; 13:836. [PMID: 37512543 PMCID: PMC10384915 DOI: 10.3390/metabo13070836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/29/2023] [Accepted: 07/08/2023] [Indexed: 07/30/2023] Open
Abstract
Myostatin (MSTN) is a negative regulator of skeletal muscle genesis during development. MSTN mutation leads to increased lean meat production and reduced fat deposition in livestock. However, the mechanism by which MSTN promotes myogenesis by regulating metabolism is not clear. In this study, we compared the metabolomics of the livers of wild-type (WT) and MSTN mutation cattle (MT), and found changes in the content and proportion of fatty acids and bile acids in MT cattle. The differential metabolites were enriched in sterol synthesis and primary bile acid synthesis. We further analyzed the expression of genes involved in the regulation of lipid and bile acid metabolism, and found that the loss of MSTN may alter lipid synthesis and bile acid metabolism. This study provides new basic data for MSTN mutations in beef cattle breeding.
Collapse
Affiliation(s)
- Di Wu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010021, China
| | - Song Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010021, China
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Chao Hai
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010021, China
| | - Linfeng Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010021, China
| | - Dongchao Pei
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010021, China
| | - Chunling Bai
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010021, China
| | - Guanghua Su
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010021, China
| | - Xuefei Liu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010021, China
| | - Yuefang Zhao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010021, China
| | - Zhonghua Liu
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Lei Yang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010021, China
| | - Guangpeng Li
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010021, China
| |
Collapse
|
17
|
Aaldijk AS, Verzijl CRC, Jonker JW, Struik D. Biological and pharmacological functions of the FGF19- and FGF21-coreceptor beta klotho. Front Endocrinol (Lausanne) 2023; 14:1150222. [PMID: 37260446 PMCID: PMC10229096 DOI: 10.3389/fendo.2023.1150222] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 04/13/2023] [Indexed: 06/02/2023] Open
Abstract
Beta klotho (KLB) is a fundamental component in fibroblast growth factor receptor (FGFR) signaling as it serves as an obligatory coreceptor for the endocrine hormones fibroblast growth factor 19 (FGF19) and fibroblast growth factor 21 (FGF21). Through the development of FGF19- and FGF21 mimetics, KLB has emerged as a promising drug target for treating various metabolic diseases, such as type 2 diabetes (T2D), non-alcoholic fatty liver disease (NAFLD), and cardiovascular disease. While rodent studies have significantly increased our understanding of KLB function, current clinical trials that test the safety and efficacy of KLB-targeting drugs raise many new scientific questions about human KLB biology. Although most KLB-targeting drugs can modulate disease activity in humans, individual patient responses differ substantially. In addition, species-specific differences in KLB tissue distribution may explain why the glucose-lowering effects that were observed in preclinical studies are not fully replicated in clinical trials. Besides, the long-term efficacy of KLB-targeting drugs might be limited by various pathophysiological conditions known to reduce the expression of KLB. Moreover, FGF19/FGF21 administration in humans is also associated with gastrointestinal side effects, which are currently unexplained. A better understanding of human KLB biology could help to improve the efficacy and safety of existing or novel KLB/FGFR-targeting drugs. In this review, we provide a comprehensive overview of the current understanding of KLB biology, including genetic variants and their phenotypic associations, transcriptional regulation, protein structure, tissue distribution, subcellular localization, and function. In addition, we will highlight recent developments regarding the safety and efficacy of KLB-targeting drugs in clinical trials. These insights may direct the development and testing of existing and future KLB-targeting drugs.
Collapse
|
18
|
Watanabe M, Shishido K, Kanehira N, Hiura K, Nakano K, Okamura T, Ando R, Sasaki H, Sasaki N. Molecular and Pathological Analyses of IARS1-Deficient Mice: An IARS Disorder Model. Int J Mol Sci 2023; 24:ijms24086955. [PMID: 37108118 PMCID: PMC10138339 DOI: 10.3390/ijms24086955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/05/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
Most mitochondrial diseases are hereditary and highly heterogeneous. Cattle born with the V79L mutation in the isoleucyl-tRNA synthetase 1 (IARS1) protein exhibit weak calf syndrome. Recent human genomic studies about pediatric mitochondrial diseases also identified mutations in the IARS1 gene. Although severe prenatal-onset growth retardation and infantile hepatopathy have been reported in such patients, the relationship between IARS mutations and the symptoms is unknown. In this study, we generated hypomorphic IARS1V79L mutant mice to develop an animal model of IARS mutation-related disorders. We found that compared to wild-type mice, IARSV79L mutant mice showed a significant increase in hepatic triglyceride and serum ornithine carbamoyltransferase levels, indicating that IARS1V79L mice suffer from mitochondrial hepatopathy. In addition, siRNA knockdown of the IARS1 gene decreased mitochondrial membrane potential and increased reactive oxygen species in the hepatocarcinoma-derived cell line HepG2. Furthermore, proteomic analysis revealed decreased levels of the mitochondrial function-associated protein NME4 (mitochondrial nucleoside diphosphate kinase). Concisely, our mutant mice model can be used to study IARS mutation-related disorders.
Collapse
Affiliation(s)
- Masaki Watanabe
- Laboratory of Laboratory Animal Science and Medicine, School of Veterinary Medicine, Kitasato University, 35-1 Higashi-23, Towada 034-8628, Japan
| | - Koya Shishido
- Laboratory of Laboratory Animal Science and Medicine, School of Veterinary Medicine, Kitasato University, 35-1 Higashi-23, Towada 034-8628, Japan
| | - Nao Kanehira
- Laboratory of Laboratory Animal Science and Medicine, School of Veterinary Medicine, Kitasato University, 35-1 Higashi-23, Towada 034-8628, Japan
| | - Koki Hiura
- Laboratory of Laboratory Animal Science and Medicine, School of Veterinary Medicine, Kitasato University, 35-1 Higashi-23, Towada 034-8628, Japan
| | - Kenta Nakano
- Department of Laboratory Animal Medicine, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
| | - Tadashi Okamura
- Department of Laboratory Animal Medicine, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
| | - Ryo Ando
- Laboratory of Veterinary Pathology, School of Veterinary Medicine, Kitasato University, 35-1 Higashi-23, Towada 034-8628, Japan
| | - Hayato Sasaki
- Laboratory of Laboratory Animal Science and Medicine, School of Veterinary Medicine, Kitasato University, 35-1 Higashi-23, Towada 034-8628, Japan
| | - Nobuya Sasaki
- Laboratory of Laboratory Animal Science and Medicine, School of Veterinary Medicine, Kitasato University, 35-1 Higashi-23, Towada 034-8628, Japan
| |
Collapse
|
19
|
Yu Q, Li C, Niu Q, Wang J, Che Z, Lei K, Ren H, Ma B, Ren Y, Luo P, Fan Z, Zhang H, Liu Z, Tipoe GL, Xiao J. Hepatic COX1 loss leads to impaired autophagic flux and exacerbates nonalcoholic steatohepatitis. Acta Pharm Sin B 2023. [DOI: 10.1016/j.apsb.2023.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023] Open
|
20
|
What do we know about nutrient-based strategies targeting molecular mechanisms associated with obesity-related fatty liver disease? Ann Hepatol 2023; 28:100874. [PMID: 36371078 DOI: 10.1016/j.aohep.2022.100874] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/20/2022] [Indexed: 11/11/2022]
Abstract
Obesity is a risk factor for developing nonalcoholic fatty liver disease (NAFLD), and the associated molecular mechanisms could be targeted with nutrient-based strategies. Therefore, it is necessary to review the current mechanisms to propose further treatments. Obesity facilitates the onset of insulin resistance, lipidic abnormalities, hepatic fat accumulation, lipid peroxidation, mitochondrial dysfunction, excessive reactive oxygen species (ROS) production, and inflammation, all related to further steatosis progression and fibrosis. Microbiota alterations can also influence liver disease by the translocation of pathogenic bacteria, energy extraction from short chain fatty acids (SCFAs), intestinal suppression of the expression of fasting-induced adipose factor (FIAF), reduction of bile acids, and altered choline metabolism. There are also genetic polymorphisms in metabolic proteins that predispose to a higher risk of liver diseases, such as those found in the patatin-like phospholipase domain-containing 3 (PNPLA3), transmembrane 6 superfamily member 2 (TM6SF2), membrane-bound O-acyltransferase domain-containing 7 (MBOAT7) or also known as lysophosphatidylinositol acyltransferase 1 (LPIAT1), transmembrane channel-like 4 genes (TMC4), fat mass and obesity-associated protein (FTO), the b Klotho (KLB) and carboxylesterase (CES1). No clear dietary guidelines target all mechanisms related to NAFLD development and progression. However, energy and carbohydrate intake restriction, regular physical exercise, supplementation of antioxidants, and restoration of gut microbiota seem to have beneficial effects on the new proposed features of NAFLD.
Collapse
|
21
|
Guo J, Shi CX, Zhang QQ, Deng W, Zhang LY, Chen Q, Zhang DM, Gong ZJ. Interventions for non-alcoholic liver disease: a gut microbial metabolites perspective. Therap Adv Gastroenterol 2022; 15:17562848221138676. [PMID: 36506748 PMCID: PMC9730013 DOI: 10.1177/17562848221138676] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 10/28/2022] [Indexed: 12/12/2022] Open
Abstract
Over the past two decades, non-alcoholic fatty liver disease (NAFLD) has become a leading burden of hepatocellular carcinoma and liver transplantation. Although the exact pathogenesis of NAFLD has not been fully elucidated, recent hypotheses placed more emphasis on the crucial role of the gut microbiome and its derivatives. Reportedly, microbial metabolites such as short-chain fatty acids, amino acid metabolites (indole and its derivatives), bile acids (BAs), trimethylamine N-oxide (TMAO), and endogenous ethanol exhibit sophisticated bioactive properties. These molecules regulate host lipid, glucose, and BAs metabolic homeostasis via modulating nutrient absorption, energy expenditure, inflammation, and the neuroendocrine axis. Consequently, a broad range of research has studied the therapeutic effects of microbiota-derived metabolites. In this review, we explore the interaction of microbial products and NAFLD. We also discuss the regulatory role of existing NAFLD therapies on metabolite levels and investigate the potential of targeting those metabolites to relieve NAFLD.
Collapse
Affiliation(s)
- Jin Guo
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | - Chun-Xia Shi
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qing-Qi Zhang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | - Wei Deng
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lu-Yi Zhang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qian Chen
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | - Dan-Mei Zhang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | | |
Collapse
|
22
|
Buzova D, Braghini MR, Bianco SD, Lo Re O, Raffaele M, Frohlich J, Kisheva A, Crudele A, Mosca A, Sartorelli MR, Balsano C, Cerveny J, Mazza T, Alisi A, Vinciguerra M. Profiling of cell-free DNA methylation and histone signatures in pediatric NAFLD: A pilot study. Hepatol Commun 2022; 6:3311-3323. [PMID: 36264206 PMCID: PMC9701487 DOI: 10.1002/hep4.2082] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/19/2022] [Accepted: 08/10/2022] [Indexed: 01/21/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) has become the most common chronic liver disease in children and adolescents, increasing the risk of its progression toward nonalcoholic steatohepatitis (NASH), cirrhosis, and cancer. There is an urgent need for noninvasive early diagnostic and prognostic tools such as epigenetic marks (epimarks), which would replace liver biopsy in the future. We used plasma samples from 67 children with biopsy-proven NAFLD, and as controls we used samples from 20 children negative for steatosis by ultrasound. All patients were genotyped for patatin-like phospholipase domain containing 3 (PNPLA3), transmembrane 6 superfamily member 2 (TM6SF2), membrane bound O-acyltransferase domain containing 7 (MBOAT7), and klotho-β (KLB) gene variants, and data on anthropometric and biochemical parameters were collected. Furthermore, plasma cell-free DNA (cfDNA) methylation was quantified using a commercially available kit, and ImageStream(X) was used for the detection of free circulating histone complexes and variants. We found a significant enrichment of the levels of histone macroH2A1.2 in the plasma of children with NAFLD compared to controls, and a strong correlation between cfDNA methylation levels and NASH. Receiver operating characteristic curve analysis demonstrated that combination of cfDNA methylation, PNPLA3 rs738409 variant, coupled with either high-density lipoprotein cholesterol or alanine aminotransferase levels can strongly predict the progression of pediatric NAFLD to NASH with area under the curve >0.87. Conclusion: Our pilot study combined epimarks and genetic and metabolic markers for a robust risk assessment of NAFLD development and progression in children, offering a promising noninvasive tool for the consistent diagnosis and prognosis of pediatric NAFLD. Further studies are necessary to identify their pathogenic origin and function.
Collapse
Affiliation(s)
- Diana Buzova
- Department of Adaptive BiotechnologiesGlobal Change Research Institute CASBrnoCzech Republic
| | - Maria Rita Braghini
- Unit of Molecular Genetics of Complex PhenotypesBambino Gesù Children's Hospital, IRCCSRomeItaly
| | - Salvatore Daniele Bianco
- Laboratory of BioinformaticsFondazione IRCCS Casa Sollievo della SofferenzaSan Giovanni Rotondo (FG)Italy
| | - Oriana Lo Re
- International Clinical Research CenterSt. Anne's University HospitalBrnoCzech Republic,Department of Translational Stem Cell BiologyResearch Institute of the Medical University of VarnaVarnaBulgaria
| | - Marco Raffaele
- International Clinical Research CenterSt. Anne's University HospitalBrnoCzech Republic
| | - Jan Frohlich
- International Clinical Research CenterSt. Anne's University HospitalBrnoCzech Republic
| | - Antoniya Kisheva
- Department of Internal Diseases IMedical University of VarnaVarnaBulgaria
| | - Annalisa Crudele
- Unit of Molecular Genetics of Complex PhenotypesBambino Gesù Children's Hospital, IRCCSRomeItaly
| | - Antonella Mosca
- Hepatology, Gastroenterology and Nutrition UnitBambino Gesù Children's Hospital, IRCCSRomeItaly
| | - Maria Rita Sartorelli
- Hepatology, Gastroenterology and Nutrition UnitBambino Gesù Children's Hospital, IRCCSRomeItaly
| | - Clara Balsano
- Department of LifeHealth & Environmental Sciences‐ MESVA‐School of Emergency and Urgency Medicine, University of L'AquilaL'AquilaItaly
| | - Jan Cerveny
- Department of Adaptive BiotechnologiesGlobal Change Research Institute CASBrnoCzech Republic
| | - Tommaso Mazza
- Laboratory of BioinformaticsFondazione IRCCS Casa Sollievo della SofferenzaSan Giovanni Rotondo (FG)Italy
| | - Anna Alisi
- Unit of Molecular Genetics of Complex PhenotypesBambino Gesù Children's Hospital, IRCCSRomeItaly
| | - Manlio Vinciguerra
- International Clinical Research CenterSt. Anne's University HospitalBrnoCzech Republic,Department of Translational Stem Cell BiologyResearch Institute of the Medical University of VarnaVarnaBulgaria,Liverpool Center for Cardiovascular ScienceLiverpool Johns Moore UniversityLiverpoolUK
| |
Collapse
|
23
|
Guo Z, Wang Y, Wen X, Xu X, Yan L. β-Klotho Promotes the Development of Intrauterine Adhesions via the PI3K/AKT Signaling Pathway. Int J Mol Sci 2022; 23:ijms231911294. [PMID: 36232594 PMCID: PMC9569898 DOI: 10.3390/ijms231911294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/06/2022] [Accepted: 09/12/2022] [Indexed: 11/16/2022] Open
Abstract
Intrauterine adhesion (IUA) refers to injury to the basal layer of the endometrium, which can be caused by various factors. It is often accompanied by clinical symptoms such as abnormal menstruation, infertility, recurrent abortion, and periodic abdominal pain. In recent years, a number of studies have reported the effects of β-Klotho (KLB) on the occurrence and development of human tumors and fibrotic diseases, but its relationship with endometrial fibroblasts and endometrial fibrosis has not been elucidated. In this study, we compared the expression of KLB in endometrial stromal cells (ESCs) from patients with IUA and normal controls. We constructed animal and cell models of IUA and conducted expression verification and functional experiments on KLB. We found that the expression of KLB was significantly increased in the ESCs of IUA patients and rat models compared with the controls. The overexpression of KLB could promote the proliferation and fibrosis of ESCs. In addition, the overexpression of KLB activated the PI3K/AKT signaling pathway in ESCs. Our study shows that KLB protein is highly expressed in the ESCs of patients with IUA and can enhance stromal cell proliferation and cell fibrosis by activating the PI3K/AKT pathway, thus promoting the development of IUA.
Collapse
Affiliation(s)
- Zizhen Guo
- Center for Reproductive Medicine, Shandong University, Jinan 250000, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan 250000, China
- Shandong Key Laboratory of Reproductive Medicine, Jinan 250000, China
- The First Clinical College, Shandong University of Traditional Chinese Medicine, Jinan 250000, China
- Reproductive and Genetic Center of Integrative Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250000, China
| | - Yuqing Wang
- Center for Reproductive Medicine, Shandong University, Jinan 250000, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan 250000, China
- Shandong Key Laboratory of Reproductive Medicine, Jinan 250000, China
| | - Xiaoyang Wen
- Center for Reproductive Medicine, Shandong University, Jinan 250000, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan 250000, China
- Shandong Key Laboratory of Reproductive Medicine, Jinan 250000, China
| | - Xinxin Xu
- Center for Reproductive Medicine, Shandong University, Jinan 250000, China
| | - Lei Yan
- Center for Reproductive Medicine, Shandong University, Jinan 250000, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan 250000, China
- Shandong Key Laboratory of Reproductive Medicine, Jinan 250000, China
- Correspondence:
| |
Collapse
|
24
|
Xu X, Poulsen KL, Wu L, Liu S, Miyata T, Song Q, Wei Q, Zhao C, Lin C, Yang J. Targeted therapeutics and novel signaling pathways in non-alcohol-associated fatty liver/steatohepatitis (NAFL/NASH). Signal Transduct Target Ther 2022; 7:287. [PMID: 35963848 PMCID: PMC9376100 DOI: 10.1038/s41392-022-01119-3] [Citation(s) in RCA: 142] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/15/2022] [Accepted: 07/08/2022] [Indexed: 11/24/2022] Open
Abstract
Non-alcohol-associated fatty liver/steatohepatitis (NAFL/NASH) has become the leading cause of liver disease worldwide. NASH, an advanced form of NAFL, can be progressive and more susceptible to developing cirrhosis and hepatocellular carcinoma. Currently, lifestyle interventions are the most essential and effective strategies for preventing and controlling NAFL without the development of fibrosis. While there are still limited appropriate drugs specifically to treat NAFL/NASH, growing progress is being seen in elucidating the pathogenesis and identifying therapeutic targets. In this review, we discussed recent developments in etiology and prospective therapeutic targets, as well as pharmacological candidates in pre/clinical trials and patents, with a focus on diabetes, hepatic lipid metabolism, inflammation, and fibrosis. Importantly, growing evidence elucidates that the disruption of the gut-liver axis and microbe-derived metabolites drive the pathogenesis of NAFL/NASH. Extracellular vesicles (EVs) act as a signaling mediator, resulting in lipid accumulation, macrophage and hepatic stellate cell activation, further promoting inflammation and liver fibrosis progression during the development of NAFL/NASH. Targeting gut microbiota or EVs may serve as new strategies for the treatment of NAFL/NASH. Finally, other mechanisms, such as cell therapy and genetic approaches, also have enormous therapeutic potential. Incorporating drugs with different mechanisms and personalized medicine may improve the efficacy to better benefit patients with NAFL/NASH.
Collapse
Affiliation(s)
- Xiaohan Xu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Kyle L Poulsen
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Lijuan Wu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Innovation Center of Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Shan Liu
- Innovation Center of Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Tatsunori Miyata
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Qiaoling Song
- Innovation Center of Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Qingda Wei
- School of Medicine, Zhengzhou University, Zhengzhou, China
| | - Chenyang Zhao
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Innovation Center of Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Chunhua Lin
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Jinbo Yang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China.
- Innovation Center of Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
25
|
Benefits of Physical Exercise as Approach to Prevention and Reversion of Non-Alcoholic Fatty Liver Disease in Children and Adolescents with Obesity. CHILDREN 2022; 9:children9081174. [PMID: 36010064 PMCID: PMC9406958 DOI: 10.3390/children9081174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 07/28/2022] [Accepted: 08/03/2022] [Indexed: 12/15/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is an important health concern during childhood; indeed, it is the most frequent cause of chronic liver diseases in obese children. No valid pharmacological therapies for children affected by this condition are available, and the recommended treatment is lifestyle modification, usually including nutrition and exercise interventions. In this narrative review, we summarized up-to-date information on the benefits of physical exercise on NAFLD in children and adolescents with obesity. The role of exercise as non-pharmacological treatment was emphasized in order to provide recent advances on this topic for clinicians not deeply involved in the field. Several studies on obese children and adults confirm the positive role of physical activity (PA) in the treatment of NAFLD, but to date, there are no pediatric randomized clinical trials on exercise versus usual care. Among the pathogenic mechanisms involved in the PA effects on NAFLD, the main players seem to be insulin resistance and related inflammation, oxidative stress, and gut dysbiosis, but further evaluations are necessary to deeply understand whether these factors are correlated and how they synergistically act. Thus, a deeper research on this theme is needed, and it would be extremely interesting.
Collapse
|
26
|
Hou Z, Ding Q, Li Y, Zhao Z, Yan F, Li Y, Wang X, Xu J, Chen W, Wu G, Ruan X, Zhao L. Intestinal epithelial β Klotho is a critical protective factor in alcohol-induced intestinal barrier dysfunction and liver injury. EBioMedicine 2022; 82:104181. [PMID: 35908416 PMCID: PMC9352463 DOI: 10.1016/j.ebiom.2022.104181] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/27/2022] [Accepted: 07/06/2022] [Indexed: 10/26/2022] Open
|
27
|
Porflitt-Rodríguez M, Guzmán-Arriagada V, Sandoval-Valderrama R, Tam CS, Pavicic F, Ehrenfeld P, Martínez-Huenchullán S. Effects of aerobic exercise on fibroblast growth factor 21 in overweight and obesity. A systematic review. Metabolism 2022; 129:155137. [PMID: 35038422 DOI: 10.1016/j.metabol.2022.155137] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 01/06/2022] [Accepted: 01/10/2022] [Indexed: 12/20/2022]
Abstract
Fibroblast growth factor 21 (FGF21) has been suggested to improve metabolism during aerobic exercise in obesity. However, the variability of exercise interventions gives rise to discrepancies in the field. Therefore, we aimed to systematically review the available literature regarding the effects of aerobic exercise on FGF21 in the context of overweight and obesity. Our search included original articles published between 2009 and November 2021 found in PubMed, Science Direct, and Medline. Clinical and preclinical studies were included. Studies, where subjects or animals presented with other conditions (e.g., cancer, stroke), were excluded. From an initial 43 studies, 19 (clinical studies = 9; preclinical studies = 10) were eligible for inclusion in this review. The main findings were that acute exercise tended to increase circulatory levels of FGF21. In contrast, chronic exercise programs (≥4 weeks) had the opposite effect along with inducing mRNA and protein increases of FGF receptors and β-klotho in adipose tissue, liver, and skeletal muscle. In conclusion, both clinical and preclinical studies showed that aerobic exercise exerts changes in circulatory and tissue FGF21, along with its receptors and co-receptor. Future research is needed to elucidate the mechanisms, along with the physiological and clinical implications of these changes.
Collapse
Affiliation(s)
| | | | | | - Charmaine S Tam
- Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Francisca Pavicic
- Laboratory of Cellular Pathology, Institute of Anatomy, Histology & Pathology, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile
| | - Pamela Ehrenfeld
- Laboratory of Cellular Pathology, Institute of Anatomy, Histology & Pathology, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile; Centro Interdisciplinario de Estudios del Sistema Nervioso (CISNe), Chile
| | - Sergio Martínez-Huenchullán
- Centro Interdisciplinario de Estudios del Sistema Nervioso (CISNe), Chile; Locomotor Apparatus and Rehabilitation Institute, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile; Cardiorespiratory and Metabolic Function Laboratory - Neyün, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile.
| |
Collapse
|
28
|
Rebollo-Hernanz M, Aguilera Y, Martín-Cabrejas MA, Gonzalez de Mejia E. Activating Effects of the Bioactive Compounds From Coffee By-Products on FGF21 Signaling Modulate Hepatic Mitochondrial Bioenergetics and Energy Metabolism in vitro. Front Nutr 2022; 9:866233. [PMID: 35392289 PMCID: PMC8981461 DOI: 10.3389/fnut.2022.866233] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 02/23/2022] [Indexed: 12/17/2022] Open
Abstract
Coffee by-products contain bioactive compounds that have been shown to have the capacity to modulate human metabolism. The goal of this study was to investigate the effects of the main bioactive compounds in coffee by-products and two aqueous extracts from the coffee husk and silverskin on the activation of fibroblast growth factor 21 (FGF21) signaling and the subsequent regulation of mitochondrial bioenergetics and lipid and glucose metabolism. HepG2 cells treated with palmitic acid (PA) were used in a non-alcoholic fatty liver disease (NAFLD) cell model. The bioactive compounds from coffee by-products (50 μmol L−1) and the aqueous extracts from the coffee silverskin and coffee husk (100 μg mL−1) increased ERK1/2 phosphorylation and the secretion of FGF21 (1.3 to 1.9-fold). Coffee by-products' bioactive compounds counteracted inflammation and PA-triggered lipotoxicity. Oxidative stress markers (ROS, mitochondrial superoxide, and NADPH oxidase) and the activity of antioxidant enzymes (superoxide dismutase and catalase) were modulated through the activation of Nrf2 signaling. Mitochondrial bioenergetics were regulated by enhancing respiration and ATP production via PGC-1α, and the expression of oxidative phosphorylation complexes increased. Coffee by-products' bioactive compounds decreased lipid accumulation (23–41%) and fatty acid synthase activity (32–65%) and triggered carnitine palmitoyltransferase-1 activity (1.3 to 1.7-fold) by activating AMPK and SREBP-1c pathways. The GLUT2 expression and glucose uptake were increased (58–111%), followed by a promoted glucokinase activity (55–122%), while glucose production and phosphoenolpyruvate carboxykinase activity were reduced due to IRS-1/Akt1 regulation. The bioactive compounds from coffee by-products, primarily chlorogenic and protocatechuic acids, could regulate hepatic mitochondrial function and lipid and glucose metabolism by activating FGF21 and related signaling cascades.
Collapse
Affiliation(s)
- Miguel Rebollo-Hernanz
- Department of Production and Characterization of Novel Foods, Institute of Food Science Research, CIAL (UAM-CSIC), Madrid, Spain
- Department of Agricultural Chemistry and Food Science, Universidad Autónoma de Madrid, Madrid, Spain
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Yolanda Aguilera
- Department of Production and Characterization of Novel Foods, Institute of Food Science Research, CIAL (UAM-CSIC), Madrid, Spain
- Department of Agricultural Chemistry and Food Science, Universidad Autónoma de Madrid, Madrid, Spain
| | - Maria A. Martín-Cabrejas
- Department of Production and Characterization of Novel Foods, Institute of Food Science Research, CIAL (UAM-CSIC), Madrid, Spain
- Department of Agricultural Chemistry and Food Science, Universidad Autónoma de Madrid, Madrid, Spain
| | - Elvira Gonzalez de Mejia
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- *Correspondence: Elvira Gonzalez de Mejia
| |
Collapse
|
29
|
Zhou F, Ding M, Gu Y, Fan G, Liu C, Li Y, Sun R, Wu J, Li J, Xue X, Li H, Li X. Aurantio-Obtusin Attenuates Non-Alcoholic Fatty Liver Disease Through AMPK-Mediated Autophagy and Fatty Acid Oxidation Pathways. Front Pharmacol 2022; 12:826628. [PMID: 35087411 PMCID: PMC8787202 DOI: 10.3389/fphar.2021.826628] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 12/21/2021] [Indexed: 12/18/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD), manifested as the aberrant accumulation of lipids in hepatocytes and inflammation, has become an important cause of advanced liver diseases and hepatic malignancies worldwide. However, no effective therapy has been approved yet. Aurantio-obtusin (AO) is a main bioactive compound isolated from Cassia semen that has been identified with multiple pharmacological activities, including improving adiposity and insulin resistance. However, the ameliorating effects of AO on diet-induced NAFLD and underlying mechanisms remained poorly elucidated. Our results demonstrated that AO significantly alleviated high-fat diet and glucose-fructose water (HFSW)-induced hepatic steatosis in mice and oleic acid and palmitic acid (OAPA)-induced lipid accumulation in hepatocytes. Remarkably, AO was found to distinctly promote autophagy flux and influence the degradation of lipid droplets by inducing AMPK phosphorylation. Additionally, the induction of AMPK triggered TFEB activation and promoted fatty acid oxidation (FAO) by activating PPARα and ACOX1 and decreasing the expression of genes involved in lipid biosynthesis. Meanwhile, the lipid-lowing effect of AO was significantly prevented by the pretreatment with inhibitors of autophagy, PPARα or ACOX1, respectively. Collectively, our study suggests that AO ameliorates hepatic steatosis via AMPK/autophagy- and AMPK/TFEB-mediated suppression of lipid accumulation, which opens new opportunities for pharmacological treatment of NAFLD and associated complications.
Collapse
Affiliation(s)
- Fei Zhou
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Mingning Ding
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Yiqing Gu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Guifang Fan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Chuanyang Liu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yijie Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Rong Sun
- The Second Hospital of University, Jinan, China.,Advanced Medical Research Institute, Shandong University, Jinan, China
| | - Jianzhi Wu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Jianchao Li
- The Second Hospital of University, Jinan, China.,Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaoyong Xue
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Hongjuan Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaojiaoyang Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
30
|
Rebollo-Hernanz M, Aguilera Y, Martin-Cabrejas MA, Gonzalez de Mejia E. Phytochemicals from the Cocoa Shell Modulate Mitochondrial Function, Lipid and Glucose Metabolism in Hepatocytes via Activation of FGF21/ERK, AKT, and mTOR Pathways. Antioxidants (Basel) 2022; 11:antiox11010136. [PMID: 35052640 PMCID: PMC8772970 DOI: 10.3390/antiox11010136] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 12/31/2021] [Accepted: 01/05/2022] [Indexed: 02/04/2023] Open
Abstract
The cocoa shell is a by-product that may be revalorized as a source of bioactive compounds to prevent chronic cardiometabolic diseases. This study aimed to investigate the phytochemicals from the cocoa shell as targeted compounds for activating fibroblast growth factor 21 (FGF21) signaling and regulating non-alcoholic fatty liver disease (NAFLD)-related biomarkers linked to oxidative stress, mitochondrial function, and metabolism in hepatocytes. HepG2 cells treated with palmitic acid (PA, 500 µmol L−1) were used in an NAFLD cell model. Phytochemicals from the cocoa shell (50 µmol L−1) and an aqueous extract (CAE, 100 µg mL−1) enhanced ERK1/2 phosphorylation (1.7- to 3.3-fold) and FGF21 release (1.4- to 3.4-fold) via PPARα activation. Oxidative stress markers were reduced though Nrf-2 regulation. Mitochondrial function (mitochondrial respiration and ATP production) was protected by the PGC-1α pathway modulation. Cocoa shell phytochemicals reduced lipid accumulation (53–115%) and fatty acid synthase activity (59–93%) and prompted CPT-1 activity. Glucose uptake and glucokinase activity were enhanced, whereas glucose production and phosphoenolpyruvate carboxykinase activity were diminished. The increase in the phosphorylation of the insulin receptor, AKT, AMPKα, mTOR, and ERK1/2 conduced to the regulation of hepatic mitochondrial function and energy metabolism. For the first time, the cocoa shell phytochemicals are proved to modulate FGF21 signaling. Results demonstrate the in vitro preventive effect of the phytochemicals from the cocoa shell on NAFLD.
Collapse
Affiliation(s)
- Miguel Rebollo-Hernanz
- Department of Agricultural Chemistry and Food Science, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (M.R.-H.); (Y.A.); (M.A.M.-C.)
- Institute of Food Science Research, CIAL (UAM-CSIC), 28049 Madrid, Spain
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Yolanda Aguilera
- Department of Agricultural Chemistry and Food Science, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (M.R.-H.); (Y.A.); (M.A.M.-C.)
- Institute of Food Science Research, CIAL (UAM-CSIC), 28049 Madrid, Spain
| | - Maria A. Martin-Cabrejas
- Department of Agricultural Chemistry and Food Science, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (M.R.-H.); (Y.A.); (M.A.M.-C.)
- Institute of Food Science Research, CIAL (UAM-CSIC), 28049 Madrid, Spain
| | - Elvira Gonzalez de Mejia
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Correspondence: ; Tel.: +1-217-244-3196
| |
Collapse
|
31
|
Meroni M, Longo M, Tria G, Dongiovanni P. Genetics Is of the Essence to Face NAFLD. Biomedicines 2021; 9:1359. [PMID: 34680476 PMCID: PMC8533437 DOI: 10.3390/biomedicines9101359] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 09/27/2021] [Indexed: 02/07/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the commonest cause of chronic liver disease worldwide. It is closely related to obesity, insulin resistance (IR) and dyslipidemia so much so it is considered the hepatic manifestation of the Metabolic Syndrome. The NAFLD spectrum extends from simple steatosis to nonalcoholic steatohepatitis (NASH), a clinical condition which may progress up to fibrosis, cirrhosis and hepatocellular carcinoma (HCC). NAFLD is a complex disease whose pathogenesis is shaped by both environmental and genetic factors. In the last two decades, several heritable modifications in genes influencing hepatic lipid remodeling, and mitochondrial oxidative status have been emerged as predictors of progressive hepatic damage. Among them, the patatin-like phospholipase domain-containing 3 (PNPLA3) p.I148M, the Transmembrane 6 superfamily member 2 (TM6SF2) p.E167K and the rs641738 membrane bound-o-acyltransferase domain-containing 7 (MBOAT7) polymorphisms are considered the most robust modifiers of NAFLD. However, a forefront frontier in the study of NAFLD heritability is to postulate score-based strategy, building polygenic risk scores (PRS), which aggregate the most relevant genetic determinants of NAFLD and biochemical parameters, with the purpose to foresee patients with greater risk of severe NAFLD, guaranteeing the most highly predictive value, the best diagnostic accuracy and the more precise individualized therapy.
Collapse
Affiliation(s)
- Marica Meroni
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Pad. Granelli, Via F Sforza 35, 20122 Milan, Italy; (M.M.); (M.L.); (G.T.)
| | - Miriam Longo
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Pad. Granelli, Via F Sforza 35, 20122 Milan, Italy; (M.M.); (M.L.); (G.T.)
- Department of Clinical Sciences and Community Health, Università Degli Studi di Milano, 20122 Milano, Italy
| | - Giada Tria
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Pad. Granelli, Via F Sforza 35, 20122 Milan, Italy; (M.M.); (M.L.); (G.T.)
| | - Paola Dongiovanni
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Pad. Granelli, Via F Sforza 35, 20122 Milan, Italy; (M.M.); (M.L.); (G.T.)
| |
Collapse
|
32
|
Quan J, Bode AM, Luo X. ACSL family: The regulatory mechanisms and therapeutic implications in cancer. Eur J Pharmacol 2021; 909:174397. [PMID: 34332918 DOI: 10.1016/j.ejphar.2021.174397] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/14/2021] [Accepted: 07/28/2021] [Indexed: 12/29/2022]
Abstract
Accumulating evidence shows that deregulation of fatty acid (FA) metabolism is associated with the development of cancer. Long-chain acyl-coenzyme A synthases (ACSLs) are responsible for activating long-chain FAs and are frequently deregulated in cancers. Among the five mammalian ACSL family members, ACSL1 is involved in the TNFα-mediated pro-inflammatory phenotype and mainly facilitates cancer progression. ACSL3 is an androgen-responsive gene. High ACSL3 expression has been detected in a variety of cancers, including melanoma, triple-negative breast cancer (TNBC) and high-grade non-small cell lung carcinoma (NSCLC), and correlates with worse prognosis of patients with these diseases. ACSL4 can exert opposing roles acting as a tumor suppressor or as an oncogene depending on the specific cancer type and tissue environment. Moreover, ACSL4 behaves as a crucial regulator in ferroptosis that is defined as a cell death process caused by iron-dependent peroxidation of lipids. ACSL5 is nuclear-coded and expressed in the mitochondria and physiologically participates in the pro-apoptotic sensing of cells. ACSL5 mainly acts as a tumor suppressor in cancers. ACSL6 downregulation has been observed in many forms of cancers, except in colorectal cancer (CRC). Here, we address the differential regulatory mechanisms of the ACSL family members as well as their functions in carcinogenesis. Moreover, we enumerate the clinical therapeutic implications of ACSLs, which might serve as valuable biomarkers and therapeutic targets for precision cancer treatment.
Collapse
Affiliation(s)
- Jing Quan
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan, 410078, PR China; Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan, 410078, PR China; Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha, Hunan, 410078, China
| | - Ann M Bode
- The Hormel Institute, University of Minnesota, Austin, MN, 55912, USA
| | - Xiangjian Luo
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan, 410078, PR China; Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan, 410078, PR China; Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha, Hunan, 410078, China; Molecular Imaging Research Center of Central South University, Changsha, Hunan, 410078, China.
| |
Collapse
|
33
|
Dallio M, Romeo M, Gravina AG, Masarone M, Larussa T, Abenavoli L, Persico M, Loguercio C, Federico A. Nutrigenomics and Nutrigenetics in Metabolic- (Dysfunction) Associated Fatty Liver Disease: Novel Insights and Future Perspectives. Nutrients 2021; 13:nu13051679. [PMID: 34063372 PMCID: PMC8156164 DOI: 10.3390/nu13051679] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 12/12/2022] Open
Abstract
Metabolic- (dysfunction) associated fatty liver disease (MAFLD) represents the predominant hepatopathy and one of the most important systemic, metabolic-related disorders all over the world associated with severe medical and socio-economic repercussions due to its growing prevalence, clinical course (steatohepatitis and/or hepatocellular-carcinoma), and related extra-hepatic comorbidities. To date, no specific medications for the treatment of this condition exist, and the most valid recommendation for patients remains lifestyle change. MAFLD has been associated with metabolic syndrome; its development and progression are widely influenced by the interplay between genetic, environmental, and nutritional factors. Nutrigenetics and nutrigenomics findings suggest nutrition’s capability, by acting on the individual genetic background and modifying the specific epigenetic expression as well, to influence patients’ clinical outcome. Besides, immunity response is emerging as pivotal in this multifactorial scenario, suggesting the interaction between diet, genetics, and immunity as another tangled network that needs to be explored. The present review describes the genetic background contribution to MAFLD onset and worsening, its possibility to be influenced by nutritional habits, and the interplay between nutrients and immunity as one of the most promising research fields of the future in this context.
Collapse
Affiliation(s)
- Marcello Dallio
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via S. Pansini 5, 80131 Naples, Italy; (M.R.); (A.G.G.); (C.L.); (A.F.)
- Correspondence: ; Tel.: +39-0815666740
| | - Mario Romeo
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via S. Pansini 5, 80131 Naples, Italy; (M.R.); (A.G.G.); (C.L.); (A.F.)
| | - Antonietta Gerarda Gravina
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via S. Pansini 5, 80131 Naples, Italy; (M.R.); (A.G.G.); (C.L.); (A.F.)
| | - Mario Masarone
- Department of Medicine and Surgery, University of Salerno, Via Allende, 84081 Baronissi, Italy; (M.M.); (M.P.)
| | - Tiziana Larussa
- Department of Health Sciences, University Magna Graecia, viale Europa, 88100 Catanzaro, Italy; (T.L.); (L.A.)
| | - Ludovico Abenavoli
- Department of Health Sciences, University Magna Graecia, viale Europa, 88100 Catanzaro, Italy; (T.L.); (L.A.)
| | - Marcello Persico
- Department of Medicine and Surgery, University of Salerno, Via Allende, 84081 Baronissi, Italy; (M.M.); (M.P.)
| | - Carmelina Loguercio
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via S. Pansini 5, 80131 Naples, Italy; (M.R.); (A.G.G.); (C.L.); (A.F.)
| | - Alessandro Federico
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via S. Pansini 5, 80131 Naples, Italy; (M.R.); (A.G.G.); (C.L.); (A.F.)
| |
Collapse
|
34
|
Khosravi F, Ahmadvand N, Bellusci S, Sauer H. The Multifunctional Contribution of FGF Signaling to Cardiac Development, Homeostasis, Disease and Repair. Front Cell Dev Biol 2021; 9:672935. [PMID: 34095143 PMCID: PMC8169986 DOI: 10.3389/fcell.2021.672935] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 04/20/2021] [Indexed: 12/13/2022] Open
Abstract
The current focus on cardiovascular research reflects society’s concerns regarding the alarming incidence of cardiac-related diseases and mortality in the industrialized world and, notably, an urgent need to combat them by more efficient therapies. To pursue these therapeutic approaches, a comprehensive understanding of the mechanism of action for multifunctional fibroblast growth factor (FGF) signaling in the biology of the heart is a matter of high importance. The roles of FGFs in heart development range from outflow tract formation to the proliferation of cardiomyocytes and the formation of heart chambers. In the context of cardiac regeneration, FGFs 1, 2, 9, 16, 19, and 21 mediate adaptive responses including restoration of cardiac contracting rate after myocardial infarction and reduction of myocardial infarct size. However, cardiac complications in human diseases are correlated with pathogenic effects of FGF ligands and/or FGF signaling impairment. FGFs 2 and 23 are involved in maladaptive responses such as cardiac hypertrophic, fibrotic responses and heart failure. Among FGFs with known causative (FGFs 2, 21, and 23) or protective (FGFs 2, 15/19, 16, and 21) roles in cardiac diseases, FGFs 15/19, 21, and 23 display diagnostic potential. The effective role of FGFs on the induction of progenitor stem cells to cardiac cells during development has been employed to boost the limited capacity of postnatal cardiac repair. To renew or replenish damaged cardiomyocytes, FGFs 1, 2, 10, and 16 were tested in (induced-) pluripotent stem cell-based approaches and for stimulation of cell cycle re-entry in adult cardiomyocytes. This review will shed light on the wide range of beneficiary and detrimental actions mediated by FGF ligands and their receptors in the heart, which may open new therapeutic avenues for ameliorating cardiac complications.
Collapse
Affiliation(s)
- Farhad Khosravi
- Department of Physiology, Justus Liebig University Giessen, Giessen, Germany
| | - Negah Ahmadvand
- Cardio-Pulmonary Institute, Justus Liebig University Giessen, Giessen, Germany
| | - Saverio Bellusci
- Cardio-Pulmonary Institute, Justus Liebig University Giessen, Giessen, Germany
| | - Heinrich Sauer
- Department of Physiology, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
35
|
Mitochondrial Mutations and Genetic Factors Determining NAFLD Risk. Int J Mol Sci 2021; 22:ijms22094459. [PMID: 33923295 PMCID: PMC8123173 DOI: 10.3390/ijms22094459] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 02/07/2023] Open
Abstract
NAFLD (non-alcoholic fatty liver disease) is a widespread liver disease that is often linked with other life-threatening ailments (metabolic syndrome, insulin resistance, diabetes, cardiovascular disease, atherosclerosis, obesity, and others) and canprogress to more severe forms, such as NASH (non-alcoholic steatohepatitis), cirrhosis, and HCC (hepatocellular carcinoma). In this review, we summarized and analyzed data about single nucleotide polymorphism sites, identified in genes related to NAFLD development and progression. Additionally, the causative role of mitochondrial mutations and mitophagy malfunctions in NAFLD is discussed. The role of mitochondria-related metabolites of the urea cycle as a new non-invasive NAFLD biomarker is discussed. While mitochondria DNA mutations and SNPs (single nucleotide polymorphisms) canbe used as effective diagnostic markers and target for treatments, age and ethnic specificity should be taken into account.
Collapse
|
36
|
Meng Q, Li N, Yuan L, Gao X. Analysis of common causes of liver damage among children 12 years and younger in Weifang. J Int Med Res 2021; 49:3000605211006661. [PMID: 33827321 PMCID: PMC8040568 DOI: 10.1177/03000605211006661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 03/10/2021] [Indexed: 11/16/2022] Open
Abstract
AIMS To explore the causes of liver damage among children 12 years and younger in Weifang and to provide a theoretical basis for early diagnosis of liver damage in children. METHODS Retrospective study of clinical data from pediatric patients (age ≤12 years) with liver damage in diagnosed at Weifang People's Hospital from June 2010 to May 2020. RESULTS A total of 2632 children (1572 boys, 1060 girls) aged ≤12 years were diagnosed with liver damage including infectious liver damage (2100 cases), non-infectious liver damage (446 cases) and liver damage of unknown etiology (86 cases). The most common causes of infectious liver damage were viral infection (1515 cases), Mycoplasma pneumoniae infection (343 cases), and bacterial infection (197 cases). The most common causes of viral liver damage were Epstein-Barr virus, cytomegalovirus, and enterovirus. The most common causes of non-infectious liver damage were drug-induced liver damage, Kawasaki disease, and genetic metabolic diseases. There were 31 cases of severe liver damage. CONCLUSION There were many causes of liver damage among children in Weifang. Infections, and especially viral infections such as Epstein-Barr virus, were the most common causes of liver damage. Severe liver damage was primarily caused by drugs or poisons.
Collapse
Affiliation(s)
- Qinghong Meng
- Department of Paediatrics, Weifang People’s Hospital, Weifang City, Shandong Province, China
| | - Na Li
- Department of Paediatrics, Weifang People’s Hospital, Weifang City, Shandong Province, China
| | - Lianmei Yuan
- Department of Medical Equipment, Weifang People’s Hospital, Weifang City, Shandong Province, China
| | - Xiaona Gao
- Department of Paediatrics, Weifang People’s Hospital, Weifang City, Shandong Province, China
| |
Collapse
|
37
|
Bianco C, Casirati E, Malvestiti F, Valenti L. Genetic predisposition similarities between NASH and ASH: Identification of new therapeutic targets. JHEP Rep 2021; 3:100284. [PMID: 34027340 PMCID: PMC8122117 DOI: 10.1016/j.jhepr.2021.100284] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 03/09/2021] [Accepted: 03/15/2021] [Indexed: 12/12/2022] Open
Abstract
Fatty liver disease can be triggered by a combination of excess alcohol, dysmetabolism and other environmental cues, which can lead to steatohepatitis and can evolve to acute/chronic liver failure and hepatocellular carcinoma, especially in the presence of shared inherited determinants. The recent identification of the genetic causes of steatohepatitis is revealing new avenues for more effective risk stratification. Discovery of the mechanisms underpinning the detrimental effect of causal mutations has led to some breakthroughs in the comprehension of the pathophysiology of steatohepatitis. Thanks to this approach, hepatocellular fat accumulation, altered lipid droplet remodelling and lipotoxicity have now taken centre stage, while the role of adiposity and gut-liver axis alterations have been independently validated. This process could ignite a virtuous research cycle that, starting from human genomics, through omics approaches, molecular genetics and disease models, may lead to the development of new therapeutics targeted to patients at higher risk. Herein, we also review how this knowledge has been applied to: a) the study of the main PNPLA3 I148M risk variant, up to the stage of the first in-human therapeutic trials; b) highlight a role of MBOAT7 downregulation and lysophosphatidyl-inositol in steatohepatitis; c) identify IL-32 as a candidate mediator linking lipotoxicity to inflammation and liver disease. Although this precision medicine drug discovery pipeline is mainly being applied to non-alcoholic steatohepatitis, there is hope that successful products could be repurposed to treat alcohol-related liver disease as well.
Collapse
Key Words
- AA, arachidonic acid
- ASH, alcoholic steatohepatitis
- DAG, diacylglycerol
- DNL, de novo lipogenesis
- ER, endoplasmic reticulum
- FFAs, free fatty acids
- FGF19, fibroblast growth factor 19
- FLD, fatty liver disease
- FXR, farnesoid X receptor
- GCKR, glucokinase regulator
- GPR55, G protein-coupled receptor 55
- HCC, hepatocellular carcinoma
- HFE, homeostatic iron regulator
- HSC, hepatic stellate cells
- HSD17B13, hydroxysteroid 17-beta dehydrogenase 13
- IL-, interleukin-
- IL32
- LDs, lipid droplets
- LPI, lysophosphatidyl-inositol
- MARC1, mitochondrial amidoxime reducing component 1
- MBOAT7
- MBOAT7, membrane bound O-acyltransferase domain-containing 7
- NASH, non-alcoholic steatohepatitis
- PNPLA3
- PNPLA3, patatin like phospholipase domain containing 3
- PPAR, peroxisome proliferator-activated receptor
- PRS, polygenic risk score
- PUFAs, polyunsaturated fatty acids
- SREBP, sterol response element binding protein
- TAG, triacylglycerol
- TNF-α, tumour necrosis factor-α
- alcoholic liver disease
- cirrhosis
- fatty liver disease
- genetics
- interleukin-32
- non-alcoholic fatty liver disease
- precision medicine
- steatohepatitis
- therapy
Collapse
Affiliation(s)
- Cristiana Bianco
- Precision Medicine - Department of Transfusion Medicine and Hematology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Elia Casirati
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Francesco Malvestiti
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Luca Valenti
- Precision Medicine - Department of Transfusion Medicine and Hematology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
38
|
Panera N, Meroni M, Longo M, Crudele A, Valenti L, Bellacchio E, Miele L, D'Oria V, Paolini E, Maggioni M, Fracanzani AL, Alisi A, Dongiovanni P. The KLB rs17618244 gene variant is associated with fibrosing MAFLD by promoting hepatic stellate cell activation. EBioMedicine 2021; 65:103249. [PMID: 33640795 PMCID: PMC7921469 DOI: 10.1016/j.ebiom.2021.103249] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 01/20/2021] [Accepted: 02/03/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The rs17618244 G>A β-Klotho (KLB) variant has been associated with increased risk of ballooning and inflammation in pediatric patients with metabolic associated fatty liver disease (MAFLD), by reducing KLB expression. In hepatocytes, KLB downregulation induced fat accumulation and the expression of inflammatory and lipotoxic genes. We aimed to examine firstly the impact of the KLB rs17618244 variation on liver damage in adult patients with MAFLD and secondly its effect on hepatic stellate cells (HSCs) activation. METHODS The impact of the KLB rs17618244 variant on histological liver damage was surveyed in a retrospective cohort of 1111 adult patients with MAFLD. Subgroup analysis was performed according to the presence of obesity (BMI>35; n = 708). Immortalized HSCs (LX-2) were transfected with the KLB wild type (LX-2_KLBwt), or with the mutant one carrying the rs17618244 (LX-2_KLBmut). FINDINGS At ordinal regression analysis the KLB rs17618244 variant was associated with hepatic fibrosis (OR 1.23, 95% C.I.1.004-1.51; p = 0.04), but not with steatosis, inflammation and ballooning. By stratifying patients according to the presence of obesity, the KLB A allele was further associated with lobular inflammation (OR 1.32, 95% C.I.1.02-1.72; p = 0.03) and cirrhosis (OR 2.51, 95% C.I.1.23-5.05; p = 0.01) Moreover, hepatic KLB expression correlated with that of fibrogenic genes. LX-2_KLBmut cells showed reduced KLB protein levels paralleled by an induction of pro-fibrogenic genes and enhanced proliferative rate. INTERPRETATION The KLB rs17618244 variant is associated with hepatic fibrosis, inflammation and cirrhosis mainly in obese patients with MAFLD and HSCs which carry this mutation are highly proliferative and acquire a myofibroblast-like phenotype. FUNDING Ricerca Finalizzata Ministero della Salute GR-2019-12,370,172 (NP), Ricerca Corrente Fondazione IRCCS Cà Granda (PD and ALF), Ricerca Finalizzata Ministero della Salute RF-2013-02,358,319 (ALF), and Ricerca Corrente and 5 × 1000 Ministero della Salute (AA).
Collapse
Affiliation(s)
- Nadia Panera
- Research Unit of Molecular Genetics of Complex Phenotypes, Bambino Gesù Children's Hospital, IRCCS, 4, Piazza Sant'Onofrio, Rome 00165, Italy
| | - Marica Meroni
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Pad. Granelli, via F Sforza 35, Milan 20122, Italy
| | - Miriam Longo
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Pad. Granelli, via F Sforza 35, Milan 20122, Italy; Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milano 20122, Italy
| | - Annalisa Crudele
- Research Unit of Molecular Genetics of Complex Phenotypes, Bambino Gesù Children's Hospital, IRCCS, 4, Piazza Sant'Onofrio, Rome 00165, Italy
| | - Luca Valenti
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milano 20122, Italy; Translational Medicine - Department of Transfusion Medicine and Hematology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Emanuele Bellacchio
- Genetics and Rare Diseases Research Division, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Luca Miele
- Area Medicina Interna, Gastroenterologia e Oncologia Medica, Fondazione Policlinico A. Gemelli IRCCS, Rome, Italy
| | - Valentina D'Oria
- Microscopy Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Erika Paolini
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Pad. Granelli, via F Sforza 35, Milan 20122, Italy; Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano 20133, Italy
| | - Marco Maggioni
- Deparment of Pathology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Pad. Granelli, via F Sforza 35 Milan 20122, Italy
| | - Anna Ludovica Fracanzani
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Pad. Granelli, via F Sforza 35, Milan 20122, Italy; Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milano 20122, Italy
| | - Anna Alisi
- Research Unit of Molecular Genetics of Complex Phenotypes, Bambino Gesù Children's Hospital, IRCCS, 4, Piazza Sant'Onofrio, Rome 00165, Italy.
| | - Paola Dongiovanni
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Pad. Granelli, via F Sforza 35, Milan 20122, Italy.
| |
Collapse
|
39
|
Crudele A, Panera N, Braghini MR, Balsano C, Alisi A. The pharmacological treatment of nonalcoholic fatty liver disease in children. Expert Rev Clin Pharmacol 2020; 13:1219-1227. [PMID: 32981386 DOI: 10.1080/17512433.2020.1829468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Nonalcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease in childhood/adolescence. It comprises a broad spectrum of liver disease severity ranging from simple steatosis to steatohepatitis and fibrosis. To date lifestyle modifications, diet and physical activity represent the main option for the management of pediatric NAFLD, but numerous treatments classified depending on the mechanism of action, have been introduced. In keeping with, bariatric surgery, insulin sensitizers, antioxidants, probiotic and dietary supplementations have been evaluated in pediatric clinical trials. AREAS COVERED This review describes, after a search in PubMed/MEDLINE database, the current pediatric NAFLD non-pharmacological and pharmacological treatments and their effects on biochemical and histological features. We report not only the efficacy of the diet coupled with regular exercise but also advantages of the pharmacological treatments used in combination with lifestyle interventions in pediatric NAFLD. EXPERT OPINION Since pharmacological and non-pharmacological interventions have demonstrated variable effects in pediatric NAFLD, it is clear that safe and specific and efficient therapeutic strategies have not yet been identified. Therefore, large and long-term clinical trials in children are needed to find a way to reverse the liver tissue damage and the NAFLD-related long-term morbidity and mortality.
Collapse
Affiliation(s)
- Annalisa Crudele
- Research Unit of Molecular Genetics of Complex Phenotypes, Bambino Gesù Children's Hospital, IRCCS , Rome, Italy
| | - Nadia Panera
- Research Unit of Molecular Genetics of Complex Phenotypes, Bambino Gesù Children's Hospital, IRCCS , Rome, Italy
| | - Maria Rita Braghini
- Research Unit of Molecular Genetics of Complex Phenotypes, Bambino Gesù Children's Hospital, IRCCS , Rome, Italy
| | - Clara Balsano
- Department of Clinical Medicine, Life, Health & Environmental Sciences-MESVA, University of L'Aquila , L'Aquila, Italy
| | - Anna Alisi
- Research Unit of Molecular Genetics of Complex Phenotypes, Bambino Gesù Children's Hospital, IRCCS , Rome, Italy
| |
Collapse
|
40
|
Valentini D, Mosca A, Di Camillo C, Crudele A, Sartorelli MR, Scoppola V, Tarani L, Villani A, Raponi M, Novelli A, Alisi A. PNPLA3 gene polymorphism is associated with liver steatosis in children with Down syndrome. Nutr Metab Cardiovasc Dis 2020; 30:1564-1572. [PMID: 32636123 DOI: 10.1016/j.numecd.2020.05.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 05/18/2020] [Accepted: 05/18/2020] [Indexed: 12/25/2022]
Abstract
BACKGROUND AND AIMS We previously demonstrated that children with Down syndrome (DS) exhibited a greater risk of steatosis than the general pediatric population. This trend was independent of obese phenotype, thus suggesting a role of genetic predisposition. Therefore, we investigated the prevalence of non-alcoholic fatty liver disease (NAFLD) and metabolic syndrome (MetS) in function of genetic susceptibility and adipocytokine levels in children with DS. METHODS AND RESULTS A total of 84 Caucasian children with DS (age range 5-17 years), were included in this study. For all children, we collected data on anthropometric and biochemical parameters, and liver ultrasound (US). We also measured adipocytokines circulating levels and specific polymorphisms closed to NAFLD. We found a prevalence of 64.3% of liver steatosis at US, with a severe steatosis of about 4% in children with DS. The presence of steatosis in children with DS was associated with the presence of patatin-like phospholipase domain-containing 3 (PNPLA3) rs738409 variant, which also correlated with interleukin (IL)-6 levels. Moreover, we found that the 52.4% had a waist circumference > 90th percentile, 21.4% were hypertensive, 7.14% had hyperglycemia, 9.5% had hypertriglyceridemia, and 17.9% showed high-density lipoprotein cholesterol ≤ 40 mg/dl. Finally, the IL-6 and adiponectin levels correlated with steatosis, and several adipocytokines correlated with single MetS traits in children with DS. CONCLUSION The present study explores for the first time potential pathomechanisms connecting pediatric NAFLD and MetS in DS. We found that the PNPLA3 variant is associated with steatosis, but not with MetS, in children with DS.
Collapse
Affiliation(s)
- Diletta Valentini
- Pediatric and Infectious Disease Unit, Bambino Gesù Children's Hospital-IRCCS, Rome, Italy.
| | - Antonella Mosca
- Hepato-Metabolic Disease Unit, Bambino Gesù Children's Hospital-IRCCS, Rome, Italy
| | - Chiara Di Camillo
- Pediatric and Infectious Disease Unit, Bambino Gesù Children's Hospital-IRCCS, Rome, Italy
| | - Annalisa Crudele
- Molecular Genetics of Complex Phenotypes Research Unit, Bambino Gesù Children's Hospital-IRCCS, Rome, Italy
| | | | - Vittorio Scoppola
- Pediatric and Infectious Disease Unit, Bambino Gesù Children's Hospital-IRCCS, Rome, Italy
| | - Luigi Tarani
- Department of Pediatrics, Sapienza University of Rome, Rome, Italy
| | - Alberto Villani
- Pediatric and Infectious Disease Unit, Bambino Gesù Children's Hospital-IRCCS, Rome, Italy
| | | | - Antonio Novelli
- Laboratory of Medical Genetics, Bambino Gesù Children's Hospital-IRCCS, Rome, Italy
| | - Anna Alisi
- Molecular Genetics of Complex Phenotypes Research Unit, Bambino Gesù Children's Hospital-IRCCS, Rome, Italy.
| |
Collapse
|
41
|
Meroni M, Longo M, Dongiovanni P. Genetic and metabolic factors: the perfect combination to treat metabolic associated fatty liver disease. EXPLORATION OF MEDICINE 2020; 1:218-243. [DOI: 10.37349/emed.2020.00015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 06/20/2020] [Indexed: 01/04/2025] Open
Abstract
The prevalence of nonalcoholic or more recently re-defined metabolic associated fatty liver disease (MAFLD) is rapidly growing worldwide. It is characterized by hepatic fat accumulation exceeding 5% of liver weight not attributable to alcohol consumption. MAFLD refers to an umbrella of conditions ranging from simple steatosis to nonalcoholic steatohepatitis which may finally progress to cirrhosis and hepatocellular carcinoma. MAFLD is closely related to components of the metabolic syndrome and to environmental factors. In addition to the latter, genetic predisposition plays a key role in MAFLD pathogenesis and strictly contributes to its progressive forms. The candidate genes which have been related to MAFLD hereditability are mainly involved in lipids remodeling, lipid droplets assembly, lipoprotein packaging and secretion, de novo lipogenesis, and mitochondrial redox status. In the recent years, it has emerged the opportunity to translate the genetics into clinics by aggregating the genetic variants mostly associated with MAFLD in polygenic risk scores. These scores might be used in combination with metabolic factors to identify those patients at higher risk to develop more severe liver disease and to schedule an individual therapeutic approach.
Collapse
Affiliation(s)
- Marica Meroni
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milano, Italy; Department of Pathophysiology and Transplantation, Università degli Studi di Milano, 20122 Milano, Italy
| | - Miriam Longo
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milano, Italy; Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milano, Italy
| | - Paola Dongiovanni
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milano, Italy
| |
Collapse
|
42
|
Gu H, Jiang W, You N, Huang X, Li Y, Peng X, Dong R, Wang Z, Zhu Y, Wu K, Li J, Zheng L. Soluble Klotho Improves Hepatic Glucose and Lipid Homeostasis in Type 2 Diabetes. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 18:811-823. [PMID: 32953932 PMCID: PMC7479259 DOI: 10.1016/j.omtm.2020.08.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 07/31/2020] [Indexed: 12/28/2022]
Abstract
Type 2 diabetes (T2D) is one of the most escalating global metabolic diseases, which is highly associated with insulin resistance (IR) and risk of combination with nonalcoholic fatty liver disease (NAFLD). Previous studies suggest that soluble klotho (sKL) could serve as a circulating hormone to mediate energy metabolism, but the detailed mechanism is poorly understood. In this study, we generated T2D models of wild-type (WT), sKL heterozygous (KL +/-), and sKL transgenic (TgKL) mice continuously fed a high-fat diet (HFD) and constructed L02 cell lines that stably overexpress sKL to investigate the effect of sKL on hepatic glucose and lipid metabolism. Surprisingly, we discovered that sKL deficiency resulted in exacerbated diabetic phenotypes and hepatic glucolipid metabolism disorders in HFD-fed KL +/- diabetic mice (KL +/- DM), whereas TgKL diabetic mice (TgKL DM) exhibited ameliorated diabetic phenotypes and decreased IR. Mechanistic studies in vitro and in vivo demonstrated that sKL could inhibit the PI3K/AKT/mTORC1 signaling to upregulate peroxisome proliferator-activated receptor α (PPARα) expression by directly interacting with type 1 insulin-like growth factor receptor (IGF1R) in HFD-fed T2D mice. Thus, sKL could improve hepatic glucolipid homeostasis to ameliorate diabetic phenotypes and lipid accumulation and may function as a potential therapeutic target for the treatment of T2D and reduce the risk of NAFLD.
Collapse
Affiliation(s)
- Huiying Gu
- Department of Hepatobiliary Surgery, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Wei Jiang
- Chongqing Key Laboratory of Child Infection and Immunity, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Nan You
- Department of Hepatobiliary Surgery, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Xiaobing Huang
- Department of Hepatobiliary Surgery, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Yuming Li
- Department of Hepatobiliary Surgery, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Xuehui Peng
- Department of Hepatobiliary Surgery, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Rui Dong
- Department of Hepatobiliary Surgery, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Zheng Wang
- Department of Hepatobiliary Surgery, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Yinan Zhu
- Department of Hepatobiliary Surgery, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Ke Wu
- Department of Hepatobiliary Surgery, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Jing Li
- Department of Hepatobiliary Surgery, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
- Corresponding author: Jing Li, MD, PhD, Department of Hepatobiliary Surgery, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China.
| | - Lu Zheng
- Department of Hepatobiliary Surgery, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
- Corresponding author: Lu Zheng, MD, PhD, Department of Hepatobiliary Surgery, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China.
| |
Collapse
|
43
|
Chen J, Vitetta L. Gut Microbiota Metabolites in NAFLD Pathogenesis and Therapeutic Implications. Int J Mol Sci 2020; 21:ijms21155214. [PMID: 32717871 PMCID: PMC7432372 DOI: 10.3390/ijms21155214] [Citation(s) in RCA: 156] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/20/2020] [Accepted: 07/20/2020] [Indexed: 02/06/2023] Open
Abstract
Gut microbiota dysregulation plays a key role in the pathogenesis of nonalcoholic fatty liver disease (NAFLD) through its metabolites. Therefore, the restoration of the gut microbiota and supplementation with commensal bacterial metabolites can be of therapeutic benefit against the disease. In this review, we summarize the roles of various bacterial metabolites in the pathogenesis of NAFLD and their therapeutic implications. The gut microbiota dysregulation is a feature of NAFLD, and the signatures of gut microbiota are associated with the severity of the disease through altered bacterial metabolites. Disturbance of bile acid metabolism leads to underactivation of bile acid receptors FXR and TGR5, causal for decreased energy expenditure, increased lipogenesis, increased bile acid synthesis and increased macrophage activity. Decreased production of butyrate results in increased intestinal inflammation, increased gut permeability, endotoxemia and systemic inflammation. Dysregulation of amino acids and choline also contributes to lipid accumulation and to a chronic inflammatory status. In some NAFLD patients, overproduction of ethanol produced by bacteria is responsible for hepatic inflammation. Many approaches including probiotics, prebiotics, synbiotics, faecal microbiome transplantation and a fasting-mimicking diet have been applied to restore the gut microbiota for the improvement of NAFLD.
Collapse
Affiliation(s)
- Jiezhong Chen
- Medlab Clinical, Sydney 2015, Australia
- Correspondence: (J.C.); (L.V.)
| | - Luis Vitetta
- Medlab Clinical, Sydney 2015, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney 2006, Australia
- Correspondence: (J.C.); (L.V.)
| |
Collapse
|
44
|
Fougerat A, Montagner A, Loiseau N, Guillou H, Wahli W. Peroxisome Proliferator-Activated Receptors and Their Novel Ligands as Candidates for the Treatment of Non-Alcoholic Fatty Liver Disease. Cells 2020; 9:E1638. [PMID: 32650421 PMCID: PMC7408116 DOI: 10.3390/cells9071638] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/26/2020] [Accepted: 07/04/2020] [Indexed: 12/11/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a major health issue worldwide, frequently associated with obesity and type 2 diabetes. Steatosis is the initial stage of the disease, which is characterized by lipid accumulation in hepatocytes, which can progress to non-alcoholic steatohepatitis (NASH) with inflammation and various levels of fibrosis that further increase the risk of developing cirrhosis and hepatocellular carcinoma. The pathogenesis of NAFLD is influenced by interactions between genetic and environmental factors and involves several biological processes in multiple organs. No effective therapy is currently available for the treatment of NAFLD. Peroxisome proliferator-activated receptors (PPARs) are nuclear receptors that regulate many functions that are disturbed in NAFLD, including glucose and lipid metabolism, as well as inflammation. Thus, they represent relevant clinical targets for NAFLD. In this review, we describe the determinants and mechanisms underlying the pathogenesis of NAFLD, its progression and complications, as well as the current therapeutic strategies that are employed. We also focus on the complementary and distinct roles of PPAR isotypes in many biological processes and on the effects of first-generation PPAR agonists. Finally, we review novel and safe PPAR agonists with improved efficacy and their potential use in the treatment of NAFLD.
Collapse
Affiliation(s)
- Anne Fougerat
- Institut National de la Recherche Agronomique (INRAE), ToxAlim, UMR1331 Toulouse, France; (A.M.); (N.L.); (H.G.)
| | - Alexandra Montagner
- Institut National de la Recherche Agronomique (INRAE), ToxAlim, UMR1331 Toulouse, France; (A.M.); (N.L.); (H.G.)
- Institut National de la Santé et de la Recherche Médicale (Inserm), Institute of Metabolic and Cardiovascular Diseases, UMR1048 Toulouse, France
- Institute of Metabolic and Cardiovascular Diseases, University of Toulouse, UMR1048 Toulouse, France
| | - Nicolas Loiseau
- Institut National de la Recherche Agronomique (INRAE), ToxAlim, UMR1331 Toulouse, France; (A.M.); (N.L.); (H.G.)
| | - Hervé Guillou
- Institut National de la Recherche Agronomique (INRAE), ToxAlim, UMR1331 Toulouse, France; (A.M.); (N.L.); (H.G.)
| | - Walter Wahli
- Institut National de la Recherche Agronomique (INRAE), ToxAlim, UMR1331 Toulouse, France; (A.M.); (N.L.); (H.G.)
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Clinical Sciences Building, 11 Mandalay Road, Singapore 308232, Singapore
- Center for Integrative Genomics, Université de Lausanne, Le Génopode, CH-1015 Lausanne, Switzerland
| |
Collapse
|
45
|
Xiong JW, Zhan JQ, Luo T, Chen HB, Wan QG, Wang Y, Wei B, Yang YJ. Increased Plasma Level of Longevity Protein Klotho as a Potential Indicator of Cognitive Function Preservation in Patients With Schizophrenia. Front Neurosci 2020; 14:610. [PMID: 32612508 PMCID: PMC7308714 DOI: 10.3389/fnins.2020.00610] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 05/18/2020] [Indexed: 01/02/2023] Open
Abstract
Cognitive impairments are a core feature of schizophrenia. Klotho is an anti-aging protein with demonstrated cognitive-enhancing effects on the brain. The purpose of this study was to investigate the differences in levels of plasma klotho between patients with schizophrenia and healthy controls, as well as the relationship between klotho level and cognitive function in patients. Forty patients with schizophrenia and 40 gender- and age-matched healthy individuals were recruited. Positive and Negative Syndrome Scale (PANSS) was used to assess the psychopathology of patients. A neuropsychological battery was performed to evaluate the cognitive function of participants. Plasma klotho was measured using enzyme-linked immunosorbent assay. We show that patients with schizophrenia performed worse in the neurocognitive tests than the healthy controls. The levels of plasma klotho were significantly higher in schizophrenia patients than in healthy controls (p < 0.001). In patients, plasma klotho levels were positively correlated with cognitive function with regard to attention (p = 0.010), working memory (p < 0.001), verbal memory (p = 0.044), executive function (p < 0.001), and composite cognitive score (p < 0.001). Stepwise linear regression analysis shows that executive function had the highest correlation with plasma klotho levels (β = 0.896, t = 8.290, p < 0.001). Collectively, these results indicate that anti-aging protein klotho may be implicated in the pathogenesis of schizophrenia, and increased klotho may act as a compensatory factor for the preservation of cognitive function in schizophrenia. Further studies are needed to investigate the dynamic changes of klotho and the mechanisms by which klotho modulates cognition in schizophrenia.
Collapse
Affiliation(s)
- Jian-wen Xiong
- Department of Psychiatry, Jiangxi Mental Hospital/Affiliated Mental Hospital of Nanchang University, Nanchang, China
| | - Jin-qiong Zhan
- Biological Psychiatry Laboratory, Jiangxi Mental Hospital/Affiliated Mental Hospital of Nanchang University, Nanchang, China
| | - Tao Luo
- Department of Psychiatry, Jiangxi Mental Hospital/Affiliated Mental Hospital of Nanchang University, Nanchang, China
| | - Hai-bo Chen
- Department of Psychiatry, Jiangxi Mental Hospital/Affiliated Mental Hospital of Nanchang University, Nanchang, China
| | - Qi-gen Wan
- Department of Psychiatry, Jiangxi Mental Hospital/Affiliated Mental Hospital of Nanchang University, Nanchang, China
| | - Yan Wang
- Department of Psychiatry, Jiangxi Mental Hospital/Affiliated Mental Hospital of Nanchang University, Nanchang, China
| | - Bo Wei
- Department of Psychiatry, Jiangxi Mental Hospital/Affiliated Mental Hospital of Nanchang University, Nanchang, China
- Biological Psychiatry Laboratory, Jiangxi Mental Hospital/Affiliated Mental Hospital of Nanchang University, Nanchang, China
| | - Yuan-jian Yang
- Department of Psychiatry, Jiangxi Mental Hospital/Affiliated Mental Hospital of Nanchang University, Nanchang, China
- Biological Psychiatry Laboratory, Jiangxi Mental Hospital/Affiliated Mental Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
46
|
Therapeutic implications of shared mechanisms in non-alcoholic fatty liver disease and chronic kidney disease. J Nephrol 2020; 34:649-659. [PMID: 32440840 DOI: 10.1007/s40620-020-00751-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 05/11/2020] [Indexed: 02/07/2023]
Abstract
The most common cause of liver disease worldwide is now non-alcoholic fatty liver disease (NAFLD). NAFLD refers to a spectrum of disease ranging from steatosis to non-alcoholic steatohepatitis, causing cirrhosis, and ultimately hepatocellular carcinoma. However, the impact of NAFLD is not limited to the liver. NAFLD has extra-hepatic consequences, most notably, cardiovascular and renal disease. NAFLD and chronic kidney disease share pathogenic mechanisms including insulin resistance, lipotoxicity, inflammation and oxidative stress. Not surprisingly, there has been a recent surge in efforts to manage NAFLD in an integrated way that not only protects the liver but also delays comorbidities such as chronic kidney disease. This concept of simultaneously addressing the main disease target and comorbidities is key to improve outcomes, as recently demonstrated by clinical trials of SGLT2 inhibitors and GLP1 receptor agonists in diabetes. HIF activators, already marketed in China, also have the potential to protect both liver and kidney, as suggested by preclinical data. This review concisely discusses efforts at identifying common pathogenic pathways between NAFLD and chronic kidney disease with an emphasis on potential paradigm shifts in diagnostic workup and therapeutic management.
Collapse
|
47
|
Meroni M, Longo M, Rustichelli A, Dongiovanni P. Nutrition and Genetics in NAFLD: The Perfect Binomium. Int J Mol Sci 2020; 21:ijms21082986. [PMID: 32340286 PMCID: PMC7215858 DOI: 10.3390/ijms21082986] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/19/2020] [Accepted: 04/21/2020] [Indexed: 02/06/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) represents a global healthcare burden since it is epidemiologically related to obesity, type 2 diabetes (T2D) and Metabolic Syndrome (MetS). It embraces a wide spectrum of hepatic injuries, which include simple steatosis, nonalcoholic steatohepatitis (NASH), fibrosis, cirrhosis and hepatocellular carcinoma (HCC). The susceptibility to develop NAFLD is highly variable and it is influenced by several cues including environmental (i.e., dietary habits and physical activity) and inherited (i.e., genetic/epigenetic) risk factors. Nonetheless, even intestinal microbiota and its by-products play a crucial role in NAFLD pathophysiology. The interaction of dietary exposure with the genome is referred to as 'nutritional genomics,' which encompasses both 'nutrigenetics' and 'nutriepigenomics.' It is focused on revealing the biological mechanisms that entail both the acute and persistent genome-nutrient interactions that influence health and it may represent a promising field of study to improve both clinical and health nutrition practices. Thus, the premise of this review is to discuss the relevance of personalized nutritional advices as a novel therapeutic approach in NAFLD tailored management.
Collapse
Affiliation(s)
- Marica Meroni
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Pad. Granelli, via F Sforza 35, 20122 Milan, Italy; (M.M.); (M.L.); (A.R.)
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, 20122 Milano, Italy
| | - Miriam Longo
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Pad. Granelli, via F Sforza 35, 20122 Milan, Italy; (M.M.); (M.L.); (A.R.)
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milano, Italy
| | - Alice Rustichelli
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Pad. Granelli, via F Sforza 35, 20122 Milan, Italy; (M.M.); (M.L.); (A.R.)
| | - Paola Dongiovanni
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Pad. Granelli, via F Sforza 35, 20122 Milan, Italy; (M.M.); (M.L.); (A.R.)
- Correspondence: ; Tel.: +39-02-5503-3467; Fax: +39-02-5503-4229
| |
Collapse
|
48
|
Hu J, Liu Z, Tong Y, Mei Z, Xu A, Zhou P, Chen X, Tang W, Zhou Z, Xiao Y. Fibroblast Growth Factor 19 Levels Predict Subclinical Atherosclerosis in Men With Type 2 Diabetes. Front Endocrinol (Lausanne) 2020; 11:282. [PMID: 32528406 PMCID: PMC7258879 DOI: 10.3389/fendo.2020.00282] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Accepted: 04/15/2020] [Indexed: 12/11/2022] Open
Abstract
Objective: Fibroblast growth factor 19 (FGF19) plays an indispensable role in regulating bile acid, glucose, and lipid metabolism, and alterations of its circulating concentration is associated with the development of type 2 diabetes (T2D). Atherosclerosis is directly related to the death-deriving diabetic macroangiopathy in T2D, yet relationships between FGF19 and atherosclerosis in T2D remain unclear. The aim of this study was to investigate the association of circulating FGF19 levels with the development of subclinical atherosclerosis (subAS) in patients with T2D in a 3-year prospective study. Methods: In the present study, 153 newly diagnosed T2D patients without subAS were recruited at baseline, and 137 of them completed a 3-year follow-up. FGF19 levels were measured in fasting serum samples collected at baseline and the third-year visits. Carotid, femoral, and iliac intima-media thickness (IMT) were detected by high-resolution B-mode ultrasound to determine the presence of subAS. Logistic regression analysis was applied to assess the relationship between serum FGF19 and subAS in patients with T2D. Results: At baseline, serum FGF19 levels were positively correlated with carotid IMT and iliac IMT in men (r = 0.239, P = 0.036; r = 0.309, P = 0.006). At the 3-year follow-up, 25 out of 153 patients developed subAS, and FGF19 levels in men were higher in the subAS group than in the non-subAS group [202.7 (177.9-373.6) vs. 133.4 (85.6-171.3) pg/ml, P = 0.028]. Furthermore, in men, higher baseline levels of FGF19 were independently associated with a greater risk of subAS at year 3 in patients with T2D with an odds ratio (OR) of 4.798 per 1 standard deviation (SD) of the FGF19 concentration [OR = 4.798 (95% CI, 1.680-13.706), P = 0.003]. Baseline FGF19 levels yielded an area under the receiver operating characteristic curve of 0.769 to predict the development of subAS at year 3 in men with T2D. Conclusions: Serum FGF19 levels could help in predicting the development of atherosclerosis in men with T2D.
Collapse
Affiliation(s)
- Jingyi Hu
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zhiwen Liu
- Department of Endocrinology, Xuhui District Central Hospital, Shanghai, China
| | - Yue Tong
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zubing Mei
- Department of Anorectal Surgery, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Anorectal Disease Institute of Shuguang Hospital, Shanghai, China
| | - Aimin Xu
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
- Department of Medicine, The University of Hong Kong, Hong Kong, China
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China
- Research Center of Heart, Brain, Hormone, and Healthy Aging, The University of Hong Kong, Hong Kong, China
| | - Pengcheng Zhou
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
- Department of Medicine, The University of Hong Kong, Hong Kong, China
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China
- Research Center of Heart, Brain, Hormone, and Healthy Aging, The University of Hong Kong, Hong Kong, China
| | - Xiaoyan Chen
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Weili Tang
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zhiguang Zhou
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Zhiguang Zhou
| | - Yang Xiao
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
- Yang Xiao
| |
Collapse
|
49
|
Henriksson E, Andersen B. FGF19 and FGF21 for the Treatment of NASH-Two Sides of the Same Coin? Differential and Overlapping Effects of FGF19 and FGF21 From Mice to Human. Front Endocrinol (Lausanne) 2020; 11:601349. [PMID: 33414764 PMCID: PMC7783467 DOI: 10.3389/fendo.2020.601349] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/10/2020] [Indexed: 12/17/2022] Open
Abstract
FGF19 and FGF21 analogues are currently in clinical development for the potential treatment of NASH. In Phase 2 clinical trials analogues of FGF19 and FGF21 decrease hepatic steatosis with up to 70% (MRI-PDFF) after 12 weeks and as early as 12-16 weeks of treatment an improvement in NASH resolution and fibrosis has been observed. Therefore, this class of compounds is currently of great interest in the field of NASH. FGF19 and FGF21 belong to the endocrine FGF19 subfamily and both require the co-receptor beta-klotho for binding and signalling through the FGF receptors. FGF19 is expressed in the ileal enterocytes and is released into the enterohepatic circulation in response to bile acids stimuli and in the liver FGF19 inhibits hepatic bile acids synthesis by transcriptional regulation of Cyp7A1, which is the rate limiting enzyme. FGF21 is, on the other hand, highly expressed in the liver and is released in response to high glucose, high free-fatty acids and low amino-acid supply and regulates energy, glucose and lipid homeostasis by actions in the CNS and in the adipose tissue. FGF19 and FGF21 are differentially expressed, have distinct target tissues and separate physiological functions. It is therefore of peculiar interest to understand why treatment with both FGF19 and FGF21 analogues have strong beneficial effects on NASH parameters in mice and human and whether the mode of action is overlapping This review will highlight the physiological and pharmacological effects of FGF19 and FGF21. The potential mode of action behind the anti-steatotic, anti-inflammatory and anti-fibrotic effects of FGF19 and FGF21 will be discussed. Finally, development of drugs is always a risk benefit analysis and the human relevance of adverse effects observed in pre-clinical species as well as findings in humans will be discussed. The aim is to provide a comprehensive overview of the current understanding of this drug class for the potential treatment of NASH.
Collapse
|
50
|
Lin YC, Wu CC, Ni YH. New Perspectives on Genetic Prediction for Pediatric Metabolic Associated Fatty Liver Disease. Front Pediatr 2020; 8:603654. [PMID: 33363067 PMCID: PMC7755886 DOI: 10.3389/fped.2020.603654] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 11/17/2020] [Indexed: 02/06/2023] Open
Abstract
Non-alcoholic or recently re-defined metabolic associated fatty liver disease (MAFLD), a spectrum of progressive hepatic disease, has become a public health issue in obese children and adolescents. MAFLD is a complex metabolic disease strongly associated with obesity and insulin resistance. It is not known why not every obese subject will develop MAFLD. Different ethnic/racial groups display differences in MAFLD prevalence, indicating genetic factor plays a role. In the past two decades, sequence variations in genetic loci, including PNPLA3, TM6SF2, GCKR, MBOAT7, HSD17B13, etc. have been shown to confer susceptibility to MAFLD in children and adults. This review article provides an updated viewpoint of genetic predictors related to pediatric MAFLD. We discuss whether these susceptible genes can be clinically used for risk stratification and personalized care. Understanding human genetics and molecular mechanisms can give important information not only for prediction of risk but also on how to design drugs. In view of current epidemic of MAFLD worldwide, it is necessary to identify which children with MAFLD progress rapidly and need earlier intervention. In the future, a comprehensive analysis of individualized genetic and environmental factors may help assess the risk of children with MAFLD and personalize their treatment.
Collapse
Affiliation(s)
- Yu-Cheng Lin
- Department of Pediatrics, Far Eastern Memorial Hospital, New Taipei City, Taiwan.,Department of Healthcare Administration, Oriental Institute of Technology, New Taipei City, Taiwan
| | - Chi-Chien Wu
- Department of Pediatrics, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Yen-Hsuan Ni
- Departments of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|