1
|
Fu T, Li Y, Chu H, Zou M, Liang S, Zhang Y, Zhang X, Li G, Wang R. Molecular interaction study of flavonols with human serum albumin by theoretical simulations. J Biomol Struct Dyn 2025:1-13. [PMID: 39985807 DOI: 10.1080/07391102.2025.2467192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 05/04/2024] [Indexed: 02/24/2025]
Abstract
The human serum albumin (HSA)-drug binding characteristic is directly related to the pharmacokinetic, pharmacodynamic profile and side effect properties of drug. Though much is known about the protein binding characteristics of flavonol, the influence of molecular structure of flavonol and dynamic behaviour of protein conformations have received little attention. Here, we studied the interactions of HSA with flavonols by using molecular docking, molecular dynamics simulations coupled with molecular mechanics- Poisson Boltzmann/generalized Born surface area (MM-PB/GBSA) method. The results demonstrated the probable flavonol-binding position of HSA exist near the large hydrophobic cavity of Sudlow's site 1; and the predicted binding free energies of HSA-flavonol complexes were consistent with the trend of the experimental data that the binding affinity increased with the growth in number of hydroxyl groups on B-ring, and the van der Waals contribution is the dominated component for the binding; and Quercetin and Myricetin with one or two adjacent hydroxyl groups can exist stably in the binding pocket by strong hydrophobic interactions and extensive hydrogen bond interactions. The present work provides further information on the dynamical behaviors of binding pocket and reasonable binding models for HSA to five flavonols, and the adjacent hydroxyl groups introduced to B-ring might be beneficial to HSA-binding.
Collapse
Affiliation(s)
- Ting Fu
- Key Laboratory of Biomarker High Throughput Screening and Target Translation of Breast and Gastrointestinal Tumor, Liaoning Province, Affiliated Zhongshan Hospital of Dalian University, Dalian, PR China
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, PR China
- Pharmacy Department of Affiliated, Zhongshan Hospital of Dalian University, Dalian, PR China
| | - Yan Li
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, PR China
| | - Huiying Chu
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, PR China
| | - Ming Zou
- Pharmacy Department of Affiliated, Zhongshan Hospital of Dalian University, Dalian, PR China
| | - Shanshan Liang
- Key Laboratory of Biomarker High Throughput Screening and Target Translation of Breast and Gastrointestinal Tumor, Liaoning Province, Affiliated Zhongshan Hospital of Dalian University, Dalian, PR China
| | - Yuebin Zhang
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, PR China
| | - Xuan Zhang
- Pharmacy Department of Affiliated, Zhongshan Hospital of Dalian University, Dalian, PR China
| | - Guohui Li
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, PR China
| | - Ruoyu Wang
- Key Laboratory of Biomarker High Throughput Screening and Target Translation of Breast and Gastrointestinal Tumor, Liaoning Province, Affiliated Zhongshan Hospital of Dalian University, Dalian, PR China
| |
Collapse
|
2
|
NEMETOVA U, ÖNEM AN, ER A, ÇELİK S, ÖZEL AE, AKYÜZ S, ÖZYÜREK M, ŞAHİNLER AYLA S. A fast and responsive turn-on fluorescent probe based on a quinone conjugated alkoxy derivative for biothiols and a cellular imaging study. Turk J Chem 2024; 48:830-842. [PMID: 39780844 PMCID: PMC11706294 DOI: 10.55730/1300-0527.3702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 12/19/2024] [Accepted: 11/11/2024] [Indexed: 01/11/2025] Open
Abstract
The detection of intracellular biothiols (cysteine, N-acetyl cysteine, and glutathione) with high selectivity and sensitivity is important to reveal biological functions. In this study, a 2-(2-methoxy-4-methylphenoxy)-3-chloro-5,8-dihydroxynaphthalene-1,4-dione (DDN-O) compound (3) was newly synthesized and used as a fluorogenic probe (detector molecule) in the fluorometric method for the rapid, highly selective, and sensitive determination of biothiols. The intensity values (λex = 260 nm, λem = 620 nm) of the product were measured by adding biothiols to the reaction medium at varying concentrations and the glutathione equivalent thiol content values of each biothiol were calculated. Using compound 3, glutathione as the reference biothiol was detected in the linear concentration range of 10-70 μM and the LOD value was found to be 0.11 μM. Biothiol detection with structurally simple compound 3 was performed at the cellular level within 1 min and the probe was also successfully used in bioimaging with low cytotoxicity. It was concluded that this probe can serve as an alternative to existing fluorescence-based biothiol probes with applications in rapid biothiol detection at the cellular level for biological functions. To evaluate the molecular structure of 3, conformational analysis was performed using the PM3 semiempirical method. The most stable obtained molecular geometry was then optimized at the DFT/wb97xd/6-311++G(d,p) level of theory. Frontier molecular orbitals (HOMO and LUMO) and molecular electrostatic potential map analyses were performed for the optimized structure. Molecular docking studies demonstrated the interactions of 3 with HAS (1AO6) and FhGST (2FHE) target proteins.
Collapse
Affiliation(s)
- Ulviyye NEMETOVA
- Division of Organic Chemistry, Department of Chemistry, Faculty of Engineering, İstanbul University-Cerrahpaşa, İstanbul,
Turkiye
| | - Ayşe Nur ÖNEM
- Division of Analytical Chemistry, Department of Chemistry, Faculty of Engineering, İstanbul University-Cerrahpaşa, İstanbul,
Turkiye
| | - Alev ER
- Department of Physics, Faculty of Science, İstanbul University, İstanbul,
Turkiye
| | - Sefa ÇELİK
- Department of Physics, Faculty of Science, İstanbul University, İstanbul,
Turkiye
| | - Ayşen E. ÖZEL
- Department of Physics, Faculty of Science, İstanbul University, İstanbul,
Turkiye
| | - Sevim AKYÜZ
- Department of Physics, Faculty of Science and Letters, İstanbul Kültür University, İstanbul,
Turkiye
| | - Mustafa ÖZYÜREK
- Division of Analytical Chemistry, Department of Chemistry, Faculty of Engineering, İstanbul University-Cerrahpaşa, İstanbul,
Turkiye
| | - Sibel ŞAHİNLER AYLA
- Division of Organic Chemistry, Department of Chemistry, Faculty of Engineering, İstanbul University-Cerrahpaşa, İstanbul,
Turkiye
| |
Collapse
|
3
|
Zhou X, Wang M, Wang Y, Liu J, Zhang C, Pan J, Peng Q. Albumin as a functional carrier solubilizing and facilitating fusidic acid transmembrane delivery into Gram-negative bacteria. Int J Biol Macromol 2024; 277:134019. [PMID: 39059524 DOI: 10.1016/j.ijbiomac.2024.134019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/12/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024]
Abstract
Reversing the bacterial resistance is of great significance and importance. Fusidic acid (FA) is commonly effective against Gram-positive bacterial infections, but most Gram-negative bacteria have intrinsic resistance to FA, primarily due to the strong cell membrane-FA interactions, which highly inhibit the intracellular transport of FA. Herein, we use albumin (bovine serum albumin, BSA) as a bifunctional carrier to solubilize FA and facilitate its transmembrane delivery into Gram-negative bacterial cells. The water solubility of FA is significantly enhanced from 11.87 to 442.20 μg/mL by 5 mg/mL BSA after forming FA-BSA complex. Furthermore, FA-BSA (200 μg/mL) causes 99.96 % viability loss to the model pathogen E. coli upon incubation for 3 h, while free FA or BSA alone shows little activity. Elongation of E. coli cells after treated by FA-BSA is demonstrated by SEM, and the transmembrane transport of FA-BSA is demonstrated by CLSM. Interestingly, increasing the BSA amount substantially reduce the antibacterial activity of FA-BSA, implying an albumin-based transmembrane delivery mechanism may exist. This is the first report regarding successfully reversing the intrinsic resistance of Gram-negative bacteria to FA in the form of FA-BSA. The ready availability of albumin and the simple preparation allows FA-BSA to have great potentials for clinical use.
Collapse
Affiliation(s)
- Xueer Zhou
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Meng Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yue Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Jianhong Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Chaoliang Zhang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Jian Pan
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Qiang Peng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| |
Collapse
|
4
|
Belinskaia DA, Shestakova NN, Samodurova KV, Goncharov NV. Computational Study of Molecular Mechanism for the Involvement of Human Serum Albumin in the Renin-Angiotensin-Aldosterone System. Int J Mol Sci 2024; 25:10260. [PMID: 39408590 PMCID: PMC11476573 DOI: 10.3390/ijms251910260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/20/2024] [Accepted: 09/22/2024] [Indexed: 10/19/2024] Open
Abstract
Human serum albumin (HSA) is an endogenous inhibitor of angiotensin I-converting enzyme (ACE) and, thus, plays a key role in the renin-angiotensin-aldosterone system (RAAS). However, little is known about the mechanism of interaction between these proteins, and the structure of the HSA-ACE complex has not yet been obtained experimentally. The purpose of the presented work is to apply computer modeling methods to study the interaction of HSA with ACE in order to obtain preliminary details about the mechanism of their interaction. Ten possible HSA-ACE complexes were obtained by the procedure of macromolecular docking. Based on the number of steric and polar contacts between the proteins, three leading complexes were selected, the stabilities of which were then tested by molecular dynamics (MD) simulation. Based on the results of MD simulation, the two most probable conformations of the HSA-ACE complex were selected. The analysis of these conformations revealed that the processes of oxidation of the thiol group of Cys34 of HSA and the binding of albumin to ACE can reciprocally affect each other. Known point mutations in the albumin molecules Glu82Lys, Arg114Gly, Glu505Lys, Glu565Lys and Lys573Glu can also affect the interaction with ACE. According to the result of MD simulation, the known ACE mutations, albeit associated with various diseases, do not affect the HSA-ACE interaction. A comparative analysis was performed of the resulting HSA-ACE complexes with those obtained by AlphaFold 3 as well as with the crystal structure of the HSA and the neonatal Fc receptor (FcRn) complex. It was found that domains DI and DIII of albumin are involved in binding both ACE and FcRn. The obtained results of molecular modeling outline the direction for further study of the mechanisms of HSA-ACE interaction in vitro. Information about these mechanisms will help in the design and improvement of pharmacotherapy aimed at modulation of the physiological activity of ACE.
Collapse
Affiliation(s)
| | | | | | - Nikolay V. Goncharov
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, 194223 St. Petersburg, Russia; (D.A.B.); (N.N.S.); (K.V.S.)
| |
Collapse
|
5
|
Singh Chauhan S, Mohan Murari B. Fluorescence Spectroscopic Studies to Evaluate Binding Interaction between Hoechst 33258 and Bilirubin. J Fluoresc 2024; 34:2229-2237. [PMID: 37728846 DOI: 10.1007/s10895-023-03440-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 09/12/2023] [Indexed: 09/21/2023]
Abstract
A detailed spectroscopic study (fluorescence, absorption, and lifetime) was conducted to gain insight into the nature of the binding interaction between fluorophore Hoechst33258 (H258) and jaundice marker Bilirubin (Br). The fluorescence emission of the H258 (Ex/Em = 340-502nm) showed a conc. dependent quenching in the presence of Br (1.25 μ M to 10 μ M). The Stern-Volmer constant demonstrated an upward curve depicting the occurrence of both static and dynamic quenching with an acquired value of KSV = 3.1x 103 M- 1 and biomolecular quenching rate constant Kq = 8.6 x 1011 M- 1 S- 1 . The static quenching was evaluated using the sphere of action model and a sphere radius of 0.3nm indicated the presence of a static component in the quenching. The FRET analysis with overlap integral (J) = 1.4x1014 M- 1 cm- 1 nm4 and Foster Radius(R0 ) = 26.82 Å with 59% efficiency suggested occurrence of dynamic quenching. Further studies with the time-resolved fluorescence also indicated the presence of dynamic quenching. The lifetime values of H258 reduced from 3.9ns to 0.5ns. Molecular docking studies further support both static and dynamic components in quenching. A non-covalent interaction of H258 with Br in the presence of HSA is predominantly characterized by H-bonding with residues Lys, Asn, Glu, Gln, and Br. The H258 and Br interaction was within the distance of 3.04 Å, which is in coherence with the sphere of action model (0.3nm) and Van-der-Waals along with hydrophobic interactions, which suggested both static and dynamic quenching. Thus, H258 can serve as an efficient fluorophore to monitor binding interactions and can be further exploited as a suitable probe for investigating conformational changes and detection of Br in subsequent studies.
Collapse
Affiliation(s)
- Srishti Singh Chauhan
- Department of Sensor and Biomedical Technology, School of Electronics Engineering, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - Bhaskar Mohan Murari
- Department of Sensor and Biomedical Technology, School of Electronics Engineering, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India.
| |
Collapse
|
6
|
Malik NA, Nazir N, Manzoor M, Gull F. Fungicide-albumin interactions: unraveling the complex relationship-a comprehensive review. Biophys Rev 2024; 16:417-439. [PMID: 39309131 PMCID: PMC11415336 DOI: 10.1007/s12551-024-01190-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 04/03/2024] [Indexed: 09/25/2024] Open
Abstract
This review will give an insight into the interactions of serum albumins, which are proteins found in the blood, with fungicides. There are molecular interactions between several fungicides and two serum albumin proteins: human serum albumin (HSA) and bovine serum albumin (BSA). The main objective of this review is to through some light on the interactions of the fungicides with serum albumins and to highlight their toxicity level. The interactions of serum albumins with fungicides are complex and can be affected by the properties of the proteins themselves. This review provides valuable insight into the interactions between serum albumins and fungicides, which can help to know the efficacy and mechanism of fungicides and may help in designing new fungicides with low or no toxicity.
Collapse
Affiliation(s)
- Nisar Ahmad Malik
- Department of Chemistry, Islamic University of Science and Technology, Awantipora, Pulwama, Jammu and Kashmir India
| | - Nighat Nazir
- Department of Chemistry, Islamic University of Science and Technology, Awantipora, Pulwama, Jammu and Kashmir India
| | - Mehak Manzoor
- Department of Chemistry, Islamic University of Science and Technology, Awantipora, Pulwama, Jammu and Kashmir India
| | - Faizan Gull
- Department of Chemistry, Islamic University of Science and Technology, Awantipora, Pulwama, Jammu and Kashmir India
| |
Collapse
|
7
|
Pomyalov S, Minetti CA, Remeta DP, Bonala R, Johnson F, Zaitseva I, Iden C, Golebiewska U, Breslauer KJ, Shoham G, Sidorenko VS, Grollman AP. Structural and mechanistic insights into the transport of aristolochic acids and their active metabolites by human serum albumin. J Biol Chem 2024; 300:107358. [PMID: 38782206 PMCID: PMC11253539 DOI: 10.1016/j.jbc.2024.107358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 04/08/2024] [Accepted: 04/17/2024] [Indexed: 05/25/2024] Open
Abstract
Aristolochic acids I and II (AA-I/II) are carcinogenic principles of Aristolochia plants, which have been employed in traditional medicinal practices and discovered as food contaminants. While the deleterious effects of AAs are broadly acknowledged, there is a dearth of information to define the mechanisms underlying their carcinogenicity. Following bioactivation in the liver, N-hydroxyaristolactam and N-sulfonyloxyaristolactam metabolites are transported via circulation and elicit carcinogenic effects by reacting with cellular DNA. In this study, we apply DNA adduct analysis, X-ray crystallography, isothermal titration calorimetry, and fluorescence quenching to investigate the role of human serum albumin (HSA) in modulating AA carcinogenicity. We find that HSA extends the half-life and reactivity of N-sulfonyloxyaristolactam-I with DNA, thereby protecting activated AAs from heterolysis. Applying novel pooled plasma HSA crystallization methods, we report high-resolution structures of myristic acid-enriched HSA (HSAMYR) and its AA complexes (HSAMYR/AA-I and HSAMYR/AA-II) at 1.9 Å resolution. While AA-I is located within HSA subdomain IB, AA-II occupies subdomains IIA and IB. ITC binding profiles reveal two distinct AA sites in both complexes with association constants of 1.5 and 0.5 · 106 M-1 for HSA/AA-I versus 8.4 and 9.0 · 105 M-1 for HSA/AA-II. Fluorescence quenching of the HSA Trp214 suggests variable impacts of fatty acids on ligand binding affinities. Collectively, our structural and thermodynamic characterizations yield significant insights into AA binding, transport, toxicity, and potential allostery, critical determinants for elucidating the mechanistic roles of HSA in modulating AA carcinogenicity.
Collapse
Affiliation(s)
- Sergei Pomyalov
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Conceição A Minetti
- Department of Chemistry and Chemical Biology, Rutgers - The State University of New Jersey, Piscataway, New Jersey, USA
| | - David P Remeta
- Department of Chemistry and Chemical Biology, Rutgers - The State University of New Jersey, Piscataway, New Jersey, USA
| | - Radha Bonala
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York, USA
| | - Francis Johnson
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York, USA; Department of Chemistry, Stony Brook University, Stony Brook, New York, USA
| | - Irina Zaitseva
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York, USA
| | - Charles Iden
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York, USA
| | - Urszula Golebiewska
- Department of Physiology, Stony Brook University, Stony Brook, New York, USA; Department of Biological Sciences, Queensborough Community College, Bayside, New York, USA
| | - Kenneth J Breslauer
- Department of Chemistry and Chemical Biology, Rutgers - The State University of New Jersey, Piscataway, New Jersey, USA; Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, USA.
| | - Gil Shoham
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel.
| | - Viktoriya S Sidorenko
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York, USA.
| | - Arthur P Grollman
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York, USA.
| |
Collapse
|
8
|
Ohanyan N, Abelyan N, Manukyan A, Hayrapetyan V, Chailyan S, Tiratsuyan S, Danielyan K. Tannin-albumin particles as stable carriers of medicines. Nanomedicine (Lond) 2024; 19:689-708. [PMID: 38348681 DOI: 10.2217/nnm-2023-0275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2024] Open
Abstract
Background: The effectiveness of a drug is dependent on its accumulation at the site of therapeutic action, as well as its time in circulation. The aim of the research was the creation of stable albumin/tannin (punicalagin, punicalin) particles, which might serve for the delivery of medicines. Methods: Numerous chromatographic and analytical methods, docking analyses and in vivo testing were applied and used. Results: Stable tannin-albumin/medicine particles with a diameter of ∼100 nm were obtained. The results of in vivo experiments proved that tannin-albumin particles are more stable than albumin particles. Conclusion: Based on the experiments and docking analyses, these stable particles can carry an extended number of medicines, with diverse chemical structures.
Collapse
Affiliation(s)
- Nelli Ohanyan
- Institute of Biochemistry named after H Buniatian, NAS RA, Yerevan 0014, Armenia
| | | | - Arpi Manukyan
- Institute of Biochemistry named after H Buniatian, NAS RA, Yerevan 0014, Armenia
| | - Vardan Hayrapetyan
- Institute of Chemical Physics named after A.B. Nalbandyan, NAS RA, Yerevan 0014, Armenia
| | - Samvel Chailyan
- Institute of Biochemistry named after H Buniatian, NAS RA, Yerevan 0014, Armenia
| | | | - Kristine Danielyan
- Institute of Biochemistry named after H Buniatian, NAS RA, Yerevan 0014, Armenia
- Pharmacy Department, Eurasia International University, Yerevan 0014, Armenia
| |
Collapse
|
9
|
Sookai S, Akerman MP, Munro OQ. Chiral Au(III) chelates exhibit unique NCI-60 cytotoxicity profiles and interactions with human serum albumin. Dalton Trans 2024; 53:5089-5104. [PMID: 38375922 DOI: 10.1039/d3dt04024k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Au(III) bis(pyrrolide-imine) chelates are emerging as a class of versatile, efficacious metallodrug candidates. Here, we synthesised two enantiopure chiral ligands H2L1 and H2L2 (tetradentate cyclohexane-1,2-diamine-bridged bis(pyrrole-imine) derivatives). Metallation of the ligands with Au(III) afforded the chiral cationic complexes AuL1 and AuL2. The in vitro cytotoxicities of AuL1 and AuL2 determined in the NCI-60 single-dose drug screen were 56.5% and 89.1%, respectively. AuL1 was subsequently selected for a five-dose NCI-60 screen, attaining GI50, IC50, and LC50 values of 4.7, 9.3 and 39.8 μM, respectively. Hierarchical cluster analysis of the NCI-60 data indicated that the profile for AuL1 was similar to that of vinblastine sulfate, a microtubule-targeting vinca alkaloid. Reactions of AuL1 with glutathione (GSH) in vitro confirmed its susceptibility to reduction, Au(III) → Au(I), by intracellular thiols. Because human serum albumin (HSA) is responsible for transporting clinically deployed and investigational drugs, we studied the uptake of AuL1 and AuL2 by HSA to delineate how chirality impacts their protein-binding affinity. Steady-state fluorescence quenching data acquired on the native protein and data from site-specific probes showed that the compounds bind at sites close enough to Trp-214 (subdomain IIA) of HSA to quench the fluorophore. The bimolecular quenching rate constants, Kq, were ca. 102 times higher than the maximum diffusion-controlled collision constant of a biomolecule in water (1010 M-1 s-1), confirming that static fluorescence quenching was the dominant mechanism. The Stern-Volmer constants, KSV, were ∼104 M-1 at 37 °C, while the affinity constants, Ka (37 °C), measured ∼2.1 × 104 M-1 (AuL1) and ∼1.2 × 104 M-1 (AuL2) for enthalpy-driven ligand uptake targeting Sudlow's site I. Although far- and near-UV CD spectroscopy indicated that both complexes minimally perturb the secondary and tertiary structure of HSA, substantial shifts in the CD spectra were recorded for both protein-bound ligands. This study highlights the role of chirality in determining the cytotoxicity profiles and protein binding behaviour of enantiomeric Au(III) chelates.
Collapse
Affiliation(s)
- Sheldon Sookai
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, PO WITS 2050, Johannesburg, South Africa.
| | - Matthew P Akerman
- School of Chemistry and Physics, University of KwaZulu-Natal, Pietermaritzburg, 3201, South Africa
| | - Orde Q Munro
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, PO WITS 2050, Johannesburg, South Africa.
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, UK
| |
Collapse
|
10
|
Hadad A, França VLB, Crisostomo MW, Brunaldi K, Carvalho HF, Freire VN. Unveiling fructose and glucose binding to human serum albumin: fluorescence measurements and docking, molecular dynamics and quantum biochemistry computations. J Biomol Struct Dyn 2024:1-21. [PMID: 38288929 DOI: 10.1080/07391102.2024.2310211] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 01/19/2024] [Indexed: 02/28/2025]
Abstract
This research examines the interaction between human serum albumin (HSA) and various sugar forms (β-D-fructofuranose (FRC), α-D-glucopyranose (GLC), Keto-D-fructose (FRO), Aldehydo-D-glucose (GLO), and modified Aldehydo-D-glucose (GLOm)) using fluorescent spectroscopy, molecular docking simulations, molecular dynamics, protein conformational clusters (EnGens), molecular fractionation with conjugate caps (MFCC) and quantum biochemistry analysis. We analyze molecular and quantum aspects, uncovering interaction energies between sugar atoms and amino acids. Total interaction energy considers protein fragmentation, energetic decomposition, and interaction energy from a bottom-up perspective. Molecular dynamics reveal that unmodified Aldehydo-D-glucose (GLO) escapes HSA binding sites, explaining gradual glycation. We pioneer studying HSA's binding mechanism with glucose and fructose in a 1:1 ratio using long molecular dynamics simulations. Results suggest the transitional GLOm form has a higher Sudlow I site propensity than unmodified glucose, crucial for K195 glycation. FRO and GLOm interaction tendencies move toward a deeper FA7 cavity, near its center. This approach effectively elucidates small molecule binding mechanisms, consistent with previous experimental results.
Collapse
Affiliation(s)
- André Hadad
- Department of Physics, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Victor L B França
- Department of Physics, Federal University of Ceará, Fortaleza, Ceará, Brazil
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | | | - Kellen Brunaldi
- Department of Physiological Sciences, State University of Maringá, Maringá, Paraná, Brazil
| | - Hernandes F Carvalho
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas, Campinas, São Paulo, Brazil
| | - Valder N Freire
- Department of Physics, Federal University of Ceará, Fortaleza, Ceará, Brazil
| |
Collapse
|
11
|
Moura FDS, Sobrinho YS, Stellet C, Serna JDP, Ligiero CBP, Yoguim MI, Cukierman DS, Diniz R, Alves OC, Morgon NH, de Souza AR, Rey NA. Copper(II) complexes of a furan-containing aroylhydrazonic ligand: syntheses, structural studies, solution chemistry and interaction with HSA. Dalton Trans 2023; 52:17731-17746. [PMID: 37916692 DOI: 10.1039/d3dt02597g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Copper(II) complexes have become a potential alternative to the use of platinum drugs in cancer therapy due to their multi-target mode of action. In this context, we report the syntheses of new mononuclear and dinuclear coordination compounds of this element, 1 and 2, derived from the ligand 5-methylsalicylaldehyde 2-furoyl hydrazone (H2L). All three compounds were structurally and spectroscopically characterized, both in the solid state and in solution. In 1, Cu is coordinated by three donor-atoms from the hydrazonic ligand and one chloride ion. H2L is deprotonated at the phenol oxygen. The dinuclear complex 2 is, on the other hand, a dimeric form of 1 in which the chloride ions of a pair of mononuclear units are lost and phenoxo bridges take their places, double-connecting the metal centres and resulting in a single species with the ligand fully deprotonated. The compounds were fairly stable in aqueous medium at room temperature. An experimental-theoretical combined approach demonstrated that all of them are able to bind human serum albumin (HSA), although at different sites and with diverse stoichiometries and affinities (as concluded by the calculated binding energies). In view of this, and due to the well-known antiproliferative activity of hydrazone-containing copper complexes, we consider the compounds presented in here promising, and believe that they deserve more profound studies regarding the assessment of their potential against tumour cell lines.
Collapse
Affiliation(s)
- Fagner da Silva Moura
- Department of Chemistry, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Ygor S Sobrinho
- Department of Chemistry, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Carolina Stellet
- Department of Chemistry, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil.
| | | | | | - Maurício I Yoguim
- Department of Chemistry, Paulista State University Júlio de Mesquita Filho, Bauru, Brazil
| | - Daphne S Cukierman
- Department of Chemistry, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil.
- Chemistry Institute, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Renata Diniz
- Department of Chemistry, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Odivaldo C Alves
- Chemistry Institute, Fluminense Federal University, Niterói, Brazil
| | - Nelson H Morgon
- Chemistry Institute, Campinas State University, Campinas, Brazil
| | - Aguinaldo R de Souza
- Department of Chemistry, Paulista State University Júlio de Mesquita Filho, Bauru, Brazil
| | - Nicolás A Rey
- Department of Chemistry, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
12
|
Ashraf S, Qaiser H, Tariq S, Khalid A, Makeen HA, Alhazmi HA, Ul-Haq Z. Unraveling the versatility of human serum albumin - A comprehensive review of its biological significance and therapeutic potential. Curr Res Struct Biol 2023; 6:100114. [PMID: 38111902 PMCID: PMC10726258 DOI: 10.1016/j.crstbi.2023.100114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 12/20/2023] Open
Abstract
Human serum albumin (HSA) is a multi-domain macromolecule with diverse ligand binding capability because of its ability to allow allosteric modulation despite being a monomeric protein. Physiologically, HSA act as the primary carrier for various exogenous and endogenous compounds and fatty acids, and alter the pharmacokinetic properties of several drugs. It has antioxidant properties and is utilized therapeutically to improve the drug delivery of pharmacological agents for the treatment of several disorders. The flexibility of albumin in holding various types of drugs coupled with a variety of modifications makes this protein a versatile drug carrier with incalculable potential in therapeutics. This review provides a brief outline of the different structural properties of HSA, and its various binding sites, moreover, an overview of the genetic, biomedical, and allosteric modulation of drugs and drug delivery aspects of HSA is also included, which may be helpful in guiding advanced clinical applications and further research on the therapeutic potential of this extraordinary protein.
Collapse
Affiliation(s)
- Sajda Ashraf
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75210, Pakistan
| | - Hina Qaiser
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75210, Pakistan
| | - Sumayya Tariq
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75210, Pakistan
| | - Asaad Khalid
- Substance Abuse and Toxicology Research Center, Jazan University, P.O. Box: 114, Jazan, Saudi Arabia
- Medicinal and Aromatic Plants Research Institute, National Center for Research, P.O. Box: 2424, Khartoum, 11111, Sudan
| | - Hafiz A. Makeen
- Pharmacy Practice Research Unit, Clinical Pharmacy Department, Faculty of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Hassan A. Alhazmi
- Substance Abuse and Toxicology Research Center, Jazan University, P.O. Box: 114, Jazan, Saudi Arabia
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, P.O. Box 114, 45142, Jazan, Saudi Arabia
| | - Zaheer Ul-Haq
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75210, Pakistan
| |
Collapse
|
13
|
Wang Y, Luo Z, Morelli X, Xu P, Jiang L, Shi X, Huang M. Crystal structures of human serum albumin in complex with lysophosphatidylcholine. Biophys J 2023; 122:4135-4143. [PMID: 37731243 PMCID: PMC10645546 DOI: 10.1016/j.bpj.2023.09.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/04/2023] [Accepted: 09/14/2023] [Indexed: 09/22/2023] Open
Abstract
Lysophospholipids (lysoPLs) are crucial metabolites involved in various physiological and pathological cellular processes. Understanding their binding interactions, particularly with human serum albumin (HSA), is essential due to their role in regulating lysoPLs-induced cytotoxicity. However, the precise mechanism of lysoPLs binding to HSA remains elusive. In this study, we employed fluorescence quenching and optical interferometry assays to demonstrate direct binding between lysophosphatidylcholine (LPC) and HSA (KD = 25 μM). Furthermore, we determined crystal structures of HSA in complex with LPC, both in the absence and the presence of the endogenous fatty acid myristate (14:0). The crystal structure of binary HSA:LPC revealed that six LPC molecules are bound to HSA at the primary fatty acid binding sites. Interestingly, the ternary HSA:Myr:LPC structure demonstrated the continued binding of three LPC molecules to HSA at binding sites 1, 3, and 5 in the presence of myristate. These findings support HSA's role as a carrier protein for lysoPLs in blood plasma and provide valuable insights into the structural basis of their binding mechanisms.
Collapse
Affiliation(s)
- Yu Wang
- College of Chemistry, Fuzhou University, Fuzhou, China; Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | | | - Xavier Morelli
- CRCM, CNRS, INSERM, Institut Paoli-Calmettes, University Aix-Marseill1715e, Marseille, France
| | - Peng Xu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| | | | - Xiaoli Shi
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, China.
| | | |
Collapse
|
14
|
Chen HY, Teng CS, Lin PH, Liu CP, Liu WM, Chu LK. Noncovalent Association Thermodynamics of Turn-On Fluorescent Probes with Human Serum Albumin: Dual-Concentration Ratio Method. Chembiochem 2023; 24:e202300370. [PMID: 37387480 DOI: 10.1002/cbic.202300370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/17/2023] [Accepted: 06/28/2023] [Indexed: 07/01/2023]
Abstract
Efficient quantification of the affinity of a drug and the targeted protein is critical for strategic drug design. Among the various molecules, turn-on fluorescent probes are the most promising signal transducers to reveal the binding strength and site-specificity of designed drugs. However, the conventional method of measuring the binding ability of turn-on fluorescent probes by using the fractional occupancy under the law of mass action is time-consuming and a massive sample is required. Here, we report a new method, called dual-concentration ratio method, for quantifying the binding affinity of fluorescent probes and human serum albumin (HSA). Temperature-dependent fluorescence intensity ratios of a one-to-one complex (L ⋅ HSA) for a turn-on fluorescent probe (L), e. g., ThT (thioflavin T) or DG (dansylglycine), with HSA at two different values of [L]0 /[HSA]0 under the constraint [HSA]0 >[L]0 were collected. The van't Hoff analysis on these association constants further resulted in the thermodynamic properties. Since only two samples at different [L]0 /[HSA]0 are required without the need of [L]0 /[HSA]0 at a wide range, the dual-concentration ratio method is an easy way to greatly reduce the amounts of fluorescent probes and proteins, as well as the acquisition time.
Collapse
Affiliation(s)
- Han-Yu Chen
- Department of Chemistry, National Tsing Hua University, 101, Sec. 2, Kuang-Fu Rd, Hsinchu, 300044, Taiwan
| | - Chung-Siang Teng
- Department of Chemistry, Fu Jen Catholic University, 510, Zhongzheng Rd., New Taipei City, 242062, Taiwan
| | - Pin-Han Lin
- Department of Chemistry, Fu Jen Catholic University, 510, Zhongzheng Rd., New Taipei City, 242062, Taiwan
| | - Ching-Ping Liu
- Department of Chemistry, Fu Jen Catholic University, 510, Zhongzheng Rd., New Taipei City, 242062, Taiwan
| | - Wei-Min Liu
- Department of Chemistry, Fu Jen Catholic University, 510, Zhongzheng Rd., New Taipei City, 242062, Taiwan
| | - Li-Kang Chu
- Department of Chemistry, National Tsing Hua University, 101, Sec. 2, Kuang-Fu Rd, Hsinchu, 300044, Taiwan
| |
Collapse
|
15
|
Belinskaia DA, Koryagina NL, Goncharov NV, Savelieva EI. Structure-Dependent Mechanism of Organophosphate Release from Albumin and Butyrylcholinesterase Adducts When Exposed to Fluoride Ion: A Comprehensive In Silico Study. Int J Mol Sci 2023; 24:14819. [PMID: 37834267 PMCID: PMC10573431 DOI: 10.3390/ijms241914819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 09/28/2023] [Accepted: 09/29/2023] [Indexed: 10/15/2023] Open
Abstract
The most favorable targets for retrospectively determining human exposure to organophosphorus pesticides, insecticides, retardants, and other industrial organophosphates (OPs) are adducts of OPs with blood plasma butyrylcholinesterase (BChE) and human serum albumin (HSA). One of the methods for determining OP exposure is the reactivation of modified BChE using a concentrated solution of KF in an acidic medium. It is known that under the action of fluoride ion, OPs or their fluoroanhydrides can be released not only from BChE adducts but also from the adducts with albumin; however, the contribution of albumin to the total pool of released OPs after plasma treatment with KF has not yet been studied. The efficiency of OP release can be affected by many factors associated with the experimental technique, but first, the structure of the adduct must be taken into account. We report a comparative analysis of the structure and conformation of organophosphorus adducts on HSA and BChE using molecular modeling methods and the mechanism of OP release after fluoride ion exposure. The conformational analysis of the organophosphorus adducts on HSA and BChE was performed, and the interaction of fluoride ions with modified proteins was studied by molecular dynamics simulation. The geometric and energy characteristics of the studied adducts and their complexes with fluoride ion were calculated using molecular mechanics and semiempirical approaches. The structural features of modified HSA and BChE that can affect the efficiency of OP release after fluoride ion exposure were revealed. Using the proposed approach, the expediency of using KF for establishing exposure to different OPs, depending on their structure, can be assessed.
Collapse
Affiliation(s)
- Daria A. Belinskaia
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Thorez 44, 194223 St. Petersburg, Russia
| | - Nadezhda L. Koryagina
- Research Institute of Hygiene, Occupational Pathology and Human Ecology, Bld.93 p.o. Kuz’molovsky, 188663 St. Petersburg, Russia
| | - Nikolay V. Goncharov
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Thorez 44, 194223 St. Petersburg, Russia
| | - Elena I. Savelieva
- Research Institute of Hygiene, Occupational Pathology and Human Ecology, Bld.93 p.o. Kuz’molovsky, 188663 St. Petersburg, Russia
| |
Collapse
|
16
|
Mathay M, Keller A, Bruce JE. Studying Protein-Ligand Interactions by Protein Denaturation and Quantitative Cross-Linking Mass Spectrometry. Anal Chem 2023; 95:9432-9436. [PMID: 37307416 PMCID: PMC10848897 DOI: 10.1021/acs.analchem.2c04501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Recently, several mass spectrometry methods have utilized protein structural stability for the quantitative study of protein-ligand engagement. These protein-denaturation approaches, which include thermal proteome profiling (TPP) and stability of proteins from rates of oxidation (SPROX), evaluate ligand-induced denaturation susceptibility changes with a MS-based readout. The different techniques of bottom-up protein-denaturation methods each have their own advantages and challenges. Here, we report the combination of protein-denaturation principles with quantitative cross-linking mass spectrometry using isobaric quantitative protein interaction reporter technologies. This method enables the evaluation of ligand-induced protein engagement through analysis of cross-link relative ratios across chemical denaturation. As a proof of concept, we found ligand-stabilized cross-linked lysine pairs in well-studied bovine serum albumin and ligand bilirubin. These links map to the known binding sites Sudlow Site I and subdomain IB. We propose that protein denaturation and qXL-MS can be combined with similar peptide-level quantification approaches, like SPROX, to increase the coverage information profiled for facilitating protein-ligand engagement efforts.
Collapse
Affiliation(s)
- Martin Mathay
- Department of Genome Sciences, University of Washington, Seattle, Washington 98109, United States
| | - Andrew Keller
- Department of Genome Sciences, University of Washington, Seattle, Washington 98109, United States
| | - James E Bruce
- Department of Genome Sciences, University of Washington, Seattle, Washington 98109, United States
| |
Collapse
|
17
|
Das J, Ta S, Salam N, Das S, Ghosh S, Das D. Polymeric copper(ii) and dimeric oxovanadium(v) complexes of amide-imine conjugate: bilirubin recognition and green catalysis. RSC Adv 2023; 13:13195-13205. [PMID: 37124003 PMCID: PMC10141293 DOI: 10.1039/d3ra00702b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/13/2023] [Indexed: 05/02/2023] Open
Abstract
An exceptionally simple amide-imine conjugate, (E)-N'-(4-(diethylamino)-2-hydroxybenzylidene)-4-methylbenzohydrazide (L), derived by the condensation of 4-methyl-benzoic acid hydrazide (PTA) with 4-(diethylamino)-2-hydroxybenzaldehyde was utilized to prepare a dimeric oxo-vanadium (V1) and a one-dimensional (1D) copper(ii) coordination polymer (C1). The structures of L, V1 and C1 were confirmed by single crystal X-ray diffraction analysis. The experimental results indicate that V1 is a promising green catalyst for the oxidation of sulfide, whereas C1 has potential for a C-S cross-coupling reaction in a greener way. Most importantly, C1 is an efficient 'turn-on' fluorescence sensor for bilirubin that functions via a ligand displacement approach. The displacement equilibrium constant is 7.78 × 105 M-1. The detection limit for bilirubin is 1.15 nM in aqueous chloroform (chloroform/water, 1/4, v/v, PBS buffer, and pH 8.0).
Collapse
Affiliation(s)
- Jayanta Das
- Department of Chemistry, The University of Burdwan Burdwan 713104 WB India +91-342-2530452 +91-342-2533913, ext. 424
| | - Sabyasachi Ta
- Department of Chemistry, The University of Burdwan Burdwan 713104 WB India +91-342-2530452 +91-342-2533913, ext. 424
| | - Noor Salam
- Department of Chemistry, The University of Burdwan Burdwan 713104 WB India +91-342-2530452 +91-342-2533913, ext. 424
- Department of Chemistry, Surendranath College 24/2 MG Road Kolkata 700009 WB India
| | - Sudipta Das
- Raina Swami Bholananda Vidyayatan Burdwan 713421 WB India
| | - Subhasis Ghosh
- Department of Chemistry, The University of Burdwan Burdwan 713104 WB India +91-342-2530452 +91-342-2533913, ext. 424
| | - Debasis Das
- Department of Chemistry, The University of Burdwan Burdwan 713104 WB India +91-342-2530452 +91-342-2533913, ext. 424
| |
Collapse
|
18
|
Insights into the Structures of Bilirubin and Biliverdin from Vibrational and Electronic Circular Dichroism: History and Perspectives. Molecules 2023; 28:molecules28062564. [PMID: 36985535 PMCID: PMC10054127 DOI: 10.3390/molecules28062564] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023] Open
Abstract
In this work we review research activities on a few of the most relevant structural aspects of bilirubin (BR) and biliverdin (BV). Special attention is paid to the exocyclic C=C bonds being in mostly Z rather than E configurations, and to the overall conformation being essentially different for BR and BV due to the presence or absence of the double C=C bond at C-10. In both cases, racemic mixtures of each compound of either M or P configuration are present in achiral solutions; however, imbalance between the two configurations may be easily achieved. In particular, results based on chiroptical spectroscopies, both electronic and vibrational circular dichroism (ECD and VCD) methods, are presented for chirally derivatized BR and BV molecules. Finally, we review deracemization experiments monitored with ECD data from our lab for BR in the presence of serum albumin and anesthetic compounds.
Collapse
|
19
|
Danilov SM, Jain MS, A. Petukhov P, Kurilova OV, Ilinsky VV, Trakhtman PE, Dadali EL, Samokhodskaya LM, Kamalov AA, Kost OA. Blood ACE Phenotyping for Personalized Medicine: Revelation of Patients with Conformationally Altered ACE. Biomedicines 2023; 11:biomedicines11020534. [PMID: 36831070 PMCID: PMC9953529 DOI: 10.3390/biomedicines11020534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/04/2023] [Accepted: 02/08/2023] [Indexed: 02/16/2023] Open
Abstract
Background: The angiotensin-converting enzyme (ACE) metabolizes a number of important peptides participating in blood pressure regulation and vascular remodeling. Elevated blood ACE is a marker for granulomatous diseases and elevated ACE expression in tissues is associated with increased risk of cardiovascular diseases. Objective and Methodology: We applied a novel approach -ACE phenotyping-to find a reason for conformationally impaired ACE in the blood of one particular donor. Similar conformationally altered ACEs were detected previously in 2-4% of the healthy population and in up to 20% of patients with uremia, and were characterized by significant increase in the rate of angiotensin I hydrolysis. Principal findings: This donor has (1) significantly increased level of endogenous ACE inhibitor in plasma with MW less than 1000; (2) increased activity toward angiotensin I; (3) M71V mutation in ABCG2 (membrane transporter for more than 200 compounds, including bilirubin). We hypothesize that this patient may also have the decreased level of free bilirubin in plasma, which normally binds to the N domain of ACE. Analysis of the local conformation of ACE in plasma of patients with Gilbert and Crigler-Najjar syndromes allowed us to speculate that binding of mAbs 1G12 and 6A12 to plasma ACE could be a natural sensor for estimation of free bilirubin level in plasma. Totally, 235 human plasma/sera samples were screened for conformational changes in soluble ACE. Conclusions/Significance: ACE phenotyping of plasma samples allows us to identify individuals with conformationally altered ACE. This type of screening has clinical significance because this conformationally altered ACE could not only result in the enhancement of the level of angiotensin II but could also serve as an indicator of free bilirubin levels.
Collapse
Affiliation(s)
- Sergei M. Danilov
- Department of Medicine, Division of Pulmonary, Critical Care, Sleep and Allergy, University of Illinois, Chicago, IL 60607, USA
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ 85721, USA
- Medical Center, Lomonosov Moscow State University, 119992 Moscow, Russia
- Correspondence:
| | - Mark S. Jain
- Medical Center, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Pavel A. Petukhov
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois, Chicago, IL 60612, USA
| | - Olga V. Kurilova
- Medical Center, Lomonosov Moscow State University, 119992 Moscow, Russia
| | | | - Pavel E. Trakhtman
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, 117997 Moscow, Russia
| | | | | | - Armais A. Kamalov
- Medical Center, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Olga A. Kost
- Chemistry Faculty, Lomonosov Moscow State University, 119991 Moscow, Russia
| |
Collapse
|
20
|
Itoh S, Okada H, Koyano K, Nakamura S, Konishi Y, Iwase T, Kusaka T. Fetal and neonatal bilirubin metabolism. Front Pediatr 2023; 10:1002408. [PMID: 36824297 PMCID: PMC9941200 DOI: 10.3389/fped.2022.1002408] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 12/30/2022] [Indexed: 02/10/2023] Open
Abstract
Human fetal and neonatal bilirubin metabolism is centered on 4Z,15Z-bilirubin IXα (BR) due to the extremely low BR conjugating capacity of the liver. BR is a unique, highly lipophilic substance with physiological and toxic effects in the cell membranes of organs and body tissues. The fetus excretes BR through the placenta to the maternal circulation. After birth, BR is thought to act as an antioxidant against the increase in reactive oxygen species caused by the rapid increase in oxygen concentration during the adaptation process from in amniotic fluid to in air. However, bilirubin encephalopathy is a toxic effect of bilirubin. Due to the lipophilic nature of BR, it must be bound to a carrier to be distributed to various parts of the body by hydrophilic blood. This carrier of BR is human serum albumin (HSA). In humans, BR can be excreted efficiently after undergoing photochemical reactions upon high affinity binding to HSA. HSA also plays an important role in the prevention of bilirubin encephalopathy. This review focuses on the developmental and physiological role of bilirubin metabolism during the fetal and neonatal periods.
Collapse
Affiliation(s)
- Susumu Itoh
- Department of Pediatrics, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Hitoshi Okada
- Division of Analytical Technology, Department of Medical Technology, Kagawa Prefectural University of Health Sciences, Kagawa, Japan
| | - Kosuke Koyano
- Maternal Perinatal Center, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Shinji Nakamura
- Department of Pediatrics, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Yukihiko Konishi
- Department of Pediatrics, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Takashi Iwase
- Department of Pediatrics, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Takashi Kusaka
- Department of Pediatrics, Faculty of Medicine, Kagawa University, Kagawa, Japan
| |
Collapse
|
21
|
Interactions of fentanyl with blood platelets and plasma proteins: platelet sensitivity to prasugrel metabolite is not affected by fentanyl under in vitro conditions. Pharmacol Rep 2023; 75:423-441. [PMID: 36646965 DOI: 10.1007/s43440-023-00447-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/18/2023]
Abstract
BACKGROUND Clinical trials indicate that fentanyl, like morphine, may impair intestinal absorption and thus decrease the efficacy of oral P2Y12 inhibitors, such as clopidogrel, ticagrelor, and prasugrel. However, the ability of fentanyl to directly negate or reduce the inhibitory effect of P2Y12 receptor antagonists on platelet function has not been established. A series of in vitro experiments was performed to investigate the ability of fentanyl to activate platelets, potentiate platelet response to ADP, and/or diminish platelet sensitivity to prasugrel metabolite (R-138727) in agonist-stimulated platelets. The selectivity and specificity of fentanyl toward major carrier proteins has been also studied. METHODS Blood was obtained from healthy volunteers (19 women and 12 men; mean age 40 ± 13 years). Platelet function was measured in whole blood, platelet-rich plasma and in suspensions of isolated platelets by flow cytometry, impedance and optical aggregometry. Surface plasmon resonance and molecular docking were employed to determine the binding kinetics of fentanyl to human albumin, α1-acid glycoprotein, apolipoprotein A-1 and apolipoprotein B-100. RESULTS When applied at therapeutic and supratherapeutic concentrations under various experimental conditions, fentanyl had no potential to stimulate platelet activation and aggregation, or potentiate platelet response to ADP, nor did it affect platelet susceptibility to prasugrel metabolite in ADP-stimulated platelets. In addition, fentanyl was found to interact with all the examined carrier proteins with dissociation constants in the order of 10-4 to 10-9 M. CONCLUSIONS It does not seem that the delayed platelet responsiveness to oral P2Y12 inhibitors, such as prasugrel, in patients undergoing percutaneous coronary intervention, results from direct interactions between fentanyl and blood platelets. Apolipoproteins, similarly to albumin and α1-acid glycoprotein, appear to be important carriers of fentanyl in blood.
Collapse
|
22
|
Jena AB, Samal RR, Dandapat J, Subudhi U. Thermodynamics of benzoquinone-induced conformational changes in nucleic acids and human serum albumin. Chem Biol Interact 2023; 369:110281. [PMID: 36436547 DOI: 10.1016/j.cbi.2022.110281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/06/2022] [Accepted: 11/21/2022] [Indexed: 11/26/2022]
Abstract
Biological macromolecules such as proteins, nucleic acids, carbohydrates and lipids, play a crucial role in biochemical and molecular processes. Thus, the study of the structure-function relationship of biomolecules in presence of ligands is an important aspect of structural biology. The current communication describes the chemico-biological interaction between benzene metabolite para-benzoquinone (BQ) with B-form of nucleic acids (B-DNA) and human serum albumin (HSA). The binding ability of HSA towards bromocresol green (BCG) was significantly suppressed when exposed to increasing concentrations of BQ in the presence of various physiological buffers. Further, the native fluorescence of HSA was drastically reduced and the secondary structures of HSA were significantly compromised with increasing concentrations of BQ. In vitro and in silico studies also revealed that BQ binds to domains I and II of HSA and thus altering the conformation of HSA which may potentially affect plasma osmotic pressure, as well as the binding and transport of numerous endogenous and exogenous molecules. Similarly, BQ interacts directly to the GC region of B-DNA particularly in the minor groove which was also assessed by computational docking studies. Isothermal titration calorimetry data suggest higher binding affinity of BQ towards DNA than HSA. Various spectroscopic observations also suggest that BQ binds to DNA preferably in the minor grooves. Thus, the results revealed that BQ may play a key role in inducing mutagenicity, either by formation of adducts on GC regions or by accelerating oxidative damage to biomacromolecules through chemico-biological interactions.
Collapse
Affiliation(s)
- Atala B Jena
- Department of Biotechnology, Utkal University, Bhubaneswar, 751004, Odisha, India; Centre of Excellence in Integrated Omics & Computational Biology, Utkal University, Bhubaneswar, 751004, Odisha, India
| | - Rashmi R Samal
- Biochemistry & Biophysics Laboratory, CSIR-Institute of Minerals & Materials Technology, Bhubaneswar, 751013, Odisha, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Jagneshwar Dandapat
- Department of Biotechnology, Utkal University, Bhubaneswar, 751004, Odisha, India; Centre of Excellence in Integrated Omics & Computational Biology, Utkal University, Bhubaneswar, 751004, Odisha, India.
| | - Umakanta Subudhi
- Biochemistry & Biophysics Laboratory, CSIR-Institute of Minerals & Materials Technology, Bhubaneswar, 751013, Odisha, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India.
| |
Collapse
|
23
|
Nocentini A, Bonardi A, Pratesi S, Gratteri P, Dani C, Supuran CT. Pharmaceutical strategies for preventing toxicity and promoting antioxidant and anti-inflammatory actions of bilirubin. J Enzyme Inhib Med Chem 2022; 37:487-501. [PMID: 34986721 PMCID: PMC8741241 DOI: 10.1080/14756366.2021.2020773] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 12/25/2022] Open
Abstract
Bilirubin (BR) is the final product of haem catabolism. Disruptions along BR metabolic/transport pathways resulting from inherited disorders can increase plasma BR concentration (hyperbilirubinaemia). Unconjugated hyperbilirubinemia may induce BR accumulation in brain, potentially causing irreversible neurological damage, a condition known as BR encephalopathy or kernicterus, to which newborns are especially vulnerable. Numerous pharmaceutical strategies, mostly based on hemoperfusion, have been proposed over the last decades to identify new valid, low-risk alternatives for BR removal from plasma. On the other hand, accumulating evidence indicates that BR produces health benefits due to its potent antioxidant, anti-inflammatory and immunomodulatory action with a significant potential for the treatment of a multitude of diseases. The present manuscript reviews both such aspects of BR pharmacology, gathering literature data on applied pharmaceutical strategies adopted to: (i) reduce the plasma BR concentration for preventing neurotoxicity; (ii) produce a therapeutic effect based on BR efficacy in the treatment of many disorders.
Collapse
Affiliation(s)
- Alessio Nocentini
- Department of Neurosciences, Psychology, Drug Research and Child Health, Pharmaceutical and Nutraceutical Section, University of Florence, Florence, Italy
| | - Alessandro Bonardi
- Department of Neurosciences, Psychology, Drug Research and Child Health, Pharmaceutical and Nutraceutical Section, University of Florence, Florence, Italy
| | - Simone Pratesi
- Department of Neurosciences, Psychology, Drug Research and Child Health, Careggi University, Hospital of Florence, Florence, Italy
| | - Paola Gratteri
- Department of Neurosciences, Psychology, Drug Research and Child Health, Pharmaceutical and Nutraceutical Section, Laboratory of Molecular Modelling Cheminformatics & QSAR, University of Florence, Florence, Italy
| | - Carlo Dani
- Department of Neurosciences, Psychology, Drug Research and Child Health, Careggi University, Hospital of Florence, Florence, Italy
| | - Claudiu T. Supuran
- Department of Neurosciences, Psychology, Drug Research and Child Health, Pharmaceutical and Nutraceutical Section, University of Florence, Florence, Italy
| |
Collapse
|
24
|
Copper(II) complexes with 4-(diethylamino)salicylaldehyde and α-diimines: Anticancer, antioxidant, antigenotoxic effects and interaction with DNA and albumins. J Inorg Biochem 2022; 235:111942. [DOI: 10.1016/j.jinorgbio.2022.111942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 06/26/2022] [Accepted: 07/20/2022] [Indexed: 11/23/2022]
|
25
|
França VLB, Amaral JL, Martins YA, Caetano EWS, Brunaldi K, Freire VN. Characterization of the binding interaction between atrazine and human serum albumin: Fluorescence spectroscopy, molecular dynamics and quantum biochemistry. Chem Biol Interact 2022; 366:110130. [PMID: 36037875 DOI: 10.1016/j.cbi.2022.110130] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/18/2022] [Accepted: 08/20/2022] [Indexed: 11/03/2022]
Abstract
Atrazine (ATR), one of the most used herbicides worldwide, causes persistent contamination of water and soil due to its high resistance to degradation. ATR is associated with low fertility and increased risk of prostate cancer in humans, as well as birth defects, low birth weight and premature delivery. Describing ATR binding to human serum albumin (HSA) is clinically relevant to future studies about pharmacokinetics, pharmacodynamics and toxicity of ATR, as albumin is the most abundant carrier protein in plasma and binds important small biological molecules. In this work we characterize, for the first time, the binding of ATR to HSA by using fluorescence spectroscopy and performing simulations using molecular docking, classical molecular dynamics and quantum biochemistry based on density functional theory (DFT). We determine the most likely binding sites of ATR to HSA, highlighting the fatty acid binding site FA8 (located between subdomains IA-IB-IIA and IIB-IIIA-IIIB) as the most important one, and evaluate each nearby amino acid residue contribution to the binding interactions explaining the fluorescence quenching due to ATR complexation with HSA. The stabilization of the ATR/FA8 complex was also aided by the interaction between the atrazine ring and SER454 (hydrogen bond) and LEU481(alkyl interaction).
Collapse
Affiliation(s)
- Victor L B França
- Departament of Physics, Federal University of Ceará, Fortaleza, 60440-900, Brazil
| | - Jackson L Amaral
- Departament of Physics, Federal University of Ceará, Fortaleza, 60440-900, Brazil
| | - Yandara A Martins
- Departament of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, 05508-000, Brazil
| | - Ewerton W S Caetano
- Federal Institute of Education, Science and Technology of Ceará, Fortaleza, 60040-531, Brazil
| | - Kellen Brunaldi
- Departament of Physiological Sciences, State University of Maringá, Maringá, 87020-900, Brazil.
| | - Valder N Freire
- Departament of Physics, Federal University of Ceará, Fortaleza, 60440-900, Brazil.
| |
Collapse
|
26
|
Ultrasensitive electrochemical sensor based on molecular imprinted polymer and ferromagnetic nanocomposite for bilirubin analysis in the saliva and serum of newborns. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
27
|
Belal F, Mabrouk M, Hammad S, Barseem A, Ahmed H. Multi-Spectroscopic, thermodynamic and molecular docking studies to investigate the interaction of eplerenone with human serum albumin. LUMINESCENCE 2022; 37:1162-1173. [PMID: 35489089 DOI: 10.1002/bio.4270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 04/20/2022] [Accepted: 04/26/2022] [Indexed: 11/07/2022]
Abstract
The binding of small molecular drugs with human serum albumin (HSA) has a crucial influence on their pharmacokinetics. The binding interaction between the antihypertensive Eplerenone (EPL)and HSA was investigated using multi-spectroscopic techniques for the first time. These techniques include UV-Vis spectroscopy, Fourier Transform Infrared (FT-IR), native fluorescence spectroscopy, synchronous fluorescence spectroscopy and molecular docking approach. The fluorescence spectroscopic study showed that EPL quenched HSA inherent fluorescence. The mechanism for quenching of HSA by EPL has been determined to be static in nature and confirmed by UV absorption and fluorescence spectroscopy. The modified Stern-Volmer equation was used to estimate the binding constant (Kb ) as well as the number of bindings (n). The results indicated that the binding occurs at a single site (Kb;2.238 x 103 L mol-1 at 298 K). The enthalpy and entropy changes (∆H and ∆S) were 58.061 and 0.258 K J mol-1 , respectively, illustrating that the principal intermolecular interactions stabilizing the EPL-HSA system are hydrophobic forces. Synchronous fluorescence spectroscopy revealed that EPL binding to HSA occurred around the tyrosine residue (Tyr) and this agreed with the molecular docking study. The FRET analysis confirmed the static quenching mechanism. The esterase enzyme activity of HSA was also evaluated showing its decrease in the presence of EPL. Furthermore, docking analysis and site-specific markers experiment revealed that EPL binds with HSA at subdomain IB (site III).
Collapse
Affiliation(s)
- Fathalla Belal
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Mokhtar Mabrouk
- Department of pharmaceutical analytical Chemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Sherin Hammad
- Department of pharmaceutical analytical Chemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Aya Barseem
- Pharmaceutical Analysis Department, Faculty of Pharmacy, Menoufia University, Egypt
| | - Hytham Ahmed
- Pharmaceutical Analysis Department, Faculty of Pharmacy, Menoufia University, Egypt
| |
Collapse
|
28
|
Obernikhina NV, Kobzar OL, Kachaeva MV, Kachkovsky OD, Brovarets VS. In silico and in vitro Estimation of Structure and Biological Affinity of 1,3-
Oxazoles: Fragment-to-fragment Approach. Curr Comput Aided Drug Des 2022; 18:95-109. [DOI: 10.2174/1573409918666220404100022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 02/02/2022] [Accepted: 02/18/2022] [Indexed: 11/22/2022]
Abstract
Background:
The fragment-to-fragment approach for the estimation of the biological af-finity of the pharmacophores with biologically active molecules has been proposed. It is the next step in the elaboration of molecular docking and using the quantum-chemical methods for the complex modeling of pharmacophores with biomolecule fragments.
Methods:
The parameter 0 was used to estimate the contribution of -electron interactions in bio-logical affinity. It is directly related to the position of the frontier levels and reflects the donor-accep-tor properties of the pharmacophores and stabilization energy of the [Pharm꞉BioM] complex.
Results:
By using quantum-chemical calculations, it was found that the stacking interaction of oxa-zoles with phenylalanine is 7-11 kcal/mol, while the energy of hydrogen bonding of oxazoles with the amino group of lysine is 5-9 kcal/mol. The fragment-to-fragment approach can be applied for the investigation of the dependence of biological affinity on the electronic structure of pharmacophores.
Conclusion:
The founded quantum-chemical regularities are confirmed with the structure-activity relationships of substituted oxazoles.
Collapse
Affiliation(s)
- Nataliya V. Obernikhina
- Department of Bioorganic and Biological Chemistry, O.O. Bogomolets National Medical University, 13 T. Shevchenko
boul., 01601, Kyiv, Ukraine
| | - Olexandr L. Kobzar
- Department of Chemistry of Bioactive Nitrogen-Containing Heterocyclic Bases, V.P. Kukhar
Institute of Bioorganic Chemistry and Petrochemistry NAS of Ukraine, 1 Murmanskaya Str., 02094, Kyiv, Ukraine
| | - Marina V. Kachaeva
- Department of Chemistry of Bioactive Nitrogen-Containing Heterocyclic Bases, V.P. Kukhar
Institute of Bioorganic Chemistry and Petrochemistry NAS of Ukraine, 1 Murmanskaya Str., 02094, Kyiv, Ukraine
| | - Oleksiy D. Kachkovsky
- Department of Chemistry of Bioactive Nitrogen-Containing Heterocyclic Bases, V.P. Kukhar
Institute of Bioorganic Chemistry and Petrochemistry NAS of Ukraine, 1 Murmanskaya Str., 02094, Kyiv, Ukraine
| | - Volodymyr S. Brovarets
- Department of Chemistry of Bioactive Nitrogen-Containing Heterocyclic Bases, V.P. Kukhar
Institute of Bioorganic Chemistry and Petrochemistry NAS of Ukraine, 1 Murmanskaya Str., 02094, Kyiv, Ukraine
| |
Collapse
|
29
|
Hirata K, Kawai A, Chuang VTG, Sakurama K, Nishi K, Yamasaki K, Otagiri M. Effects of Myristate on the Induced Circular Dichroism Spectra of Aripiprazole Bound to Human Serum Albumin: A Structural-Chemical Investigation. ACS OMEGA 2022; 7:4413-4419. [PMID: 35155934 PMCID: PMC8829929 DOI: 10.1021/acsomega.1c06220] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/19/2022] [Indexed: 06/14/2023]
Abstract
The effects of myristate on the induced circular dichroism spectra of aripiprazole (ARP) bound to human serum albumin (HSA) were investigated. High concentrations of myristate reversed the Cotton effects induced in the ARP-HSA system. The observed ellipticities increased with increasing drug concentration up to an ARP-to-HSA molar ratio of 1:1 and then decreased, indicating that the extrinsic Cotton effects were generated by the binding of ARP molecules to the high- and low-affinity sites in HSA. The data for the concentration of free ARP show that myristate displaces ARP molecules from HSA. Moreover, the free fractions of ARP in the ARP-HSA-myristate system increased significantly when adding fusidic acid, a subdomain IB ligand. In the crystal structure of the ARP-HSA-myristate ternary complex, one ARP molecule is bound to subdomain IB, and the interaction between the carbonyl group of ARP and the aromatic ring of Tyr138 in subdomain IB is essential for binding to occur. Meanwhile, the ARP molecule in the ARP-HSA binary complex structure is bound only to subdomain IIIA. Consequently, the inversion in the extrinsic Cotton effects in the ARP-HSA system can be attributed to the modification of the geometry within the binding pocket, in addition to the transfer of ARP from subdomain IIIA to subdomain IB through the displacement as a result of the binding of myristate to subdomain IIIA.
Collapse
Affiliation(s)
- Kenshiro Hirata
- Faculty
of Pharmaceutical Sciences, Sojo University, Ikeda 4-22-1, Nishi-ku, Kumamoto 860-0082, Japan
| | - Akito Kawai
- Fujita
Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan
| | - Victor Tuan Giam Chuang
- Discipline
of Pharmacy, Curtin Medical School, Faculty of Health Sciences, Curtin University, GPO
Box U1987, Perth, Western Australia 6845, Australia
| | - Keiki Sakurama
- Faculty
of Pharmaceutical Sciences, Sojo University, Ikeda 4-22-1, Nishi-ku, Kumamoto 860-0082, Japan
| | - Koji Nishi
- Faculty
of Pharmaceutical Sciences, Sojo University, Ikeda 4-22-1, Nishi-ku, Kumamoto 860-0082, Japan
| | - Keishi Yamasaki
- Faculty
of Pharmaceutical Sciences, Sojo University, Ikeda 4-22-1, Nishi-ku, Kumamoto 860-0082, Japan
- DDS
Research Institute, Sojo University, Ikeda 4-22-1, Nishi-ku, Kumamoto 860-0082, Japan
| | - Masaki Otagiri
- Faculty
of Pharmaceutical Sciences, Sojo University, Ikeda 4-22-1, Nishi-ku, Kumamoto 860-0082, Japan
- DDS
Research Institute, Sojo University, Ikeda 4-22-1, Nishi-ku, Kumamoto 860-0082, Japan
| |
Collapse
|
30
|
Mondal S, Pan N, Ghosh R, Bera A, Mukherjee D, Maji TK, Adhikari A, Ghosh S, Bhattacharya C, Pal SK. Interaction of a Jaundice Marker Molecule with Redox Modulatory Nano Hybrid: A Combined Electrochemical and Spectroscopic Study towards the Development of a Theranostics Tool. ChemMedChem 2022; 17:e202100660. [DOI: 10.1002/cmdc.202100660] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Indexed: 11/10/2022]
Affiliation(s)
- Susmita Mondal
- S N Bose National Centre for Basic Sciences CBMS Block JD, Sector III, Salt Lake 700106 Kolkata INDIA
| | - Nivedita Pan
- S N Bose National Centre for Basic Sciences Department of Chemical, Biological, Macromolecular Sciences Block JD, Sector III, Salt Lake 700106 kolkata INDIA
| | - Ria Ghosh
- S N Bose National Centre for Basic Sciences Department of Chemical, Biological and Macromolecular Sciences Block JD, Sector III, Salt Lake 700106 Kolkata INDIA
| | - Arpan Bera
- S N Bose National Centre for Basic Sciences Department of Chemical, Biological and Macromolecular Sciences Block JD, Sector III, Salt Lake 700106 Kolkata INDIA
| | - Dipanjan Mukherjee
- S N Bose National Centre for Basic Sciences Department of Chemical, Biological and Macromolecular Sciences Block JD, Sector III, Salt Lake 700106 Kolkata INDIA
| | - Tuhin Kumar Maji
- S N Bose National Centre for Basic Sciences Department of Chemical, Biological and Macromolecular Sciences Block JD, Sector III, Salt Lake 700106 Kolkata INDIA
| | - Anirudddha Adhikari
- S N Bose National Centre for Basic Sciences Department of Chemical, Biological and Macromolecular Sciences Block JD, Sector III, Salt Lake 700106 Kolkata INDIA
| | - Sangeeta Ghosh
- IIEST Shibpur: Indian Institute of Engineering Science and Technology Department of Chemistry Howrah-711103, West Bengal, INDIA 711103 Howrah INDIA
| | - Chinmoy Bhattacharya
- IISET Department of Chemistry Howrah-711103, West Bengal, INDIA 711103 Howrah INDIA
| | - Samir Kumar Pal
- SNBNCBS CBMS Block JD, Sector IIISalt Lake City 700098 Kolkata INDIA
| |
Collapse
|
31
|
Belinskaia DA, Voronina PA, Goncharov NV. Integrative Role of Albumin: Evolutionary, Biochemical and Pathophysiological Aspects. J EVOL BIOCHEM PHYS+ 2021; 57:1419-1448. [PMID: 34955553 PMCID: PMC8685822 DOI: 10.1134/s002209302106020x] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/02/2021] [Accepted: 04/02/2021] [Indexed: 12/12/2022]
Abstract
Being one of the main proteins in the human body and many
animal species, albumin plays a crucial role in the transport of
various ions, electrically neutral molecules and in maintaining
the colloidal osmotic pressure of the blood. Albumin is able to
bind almost all known drugs, many nutraceuticals and toxic substances,
determining their pharmaco- and toxicokinetics. However, albumin
is not only the passive but also the active participant of the pharmacokinetic
and toxicokinetic processes possessing a number of enzymatic activities.
Due to the thiol group of Cys34, albumin can serve as a trap for
reactive oxygen and nitrogen species, thus participating in redox
processes. The interaction of the protein with blood cells, blood
vessels, and also with tissue cells outside the vascular bed is
of great importance. The interaction of albumin with endothelial glycocalyx
and vascular endothelial cells largely determines its integrative
role. This review provides information of a historical nature, information
on evolutionary changes, inflammatory and antioxidant properties
of albumin, on its structural and functional modifications and their significance
in the pathogenesis of some diseases.
Collapse
Affiliation(s)
- D. A. Belinskaia
- Sechenov Institute of Evolutionary
Physiology and Biochemistry of the Russian Academy of Sciences, St. Petersburg, Russia
| | - P. A. Voronina
- Sechenov Institute of Evolutionary
Physiology and Biochemistry of the Russian Academy of Sciences, St. Petersburg, Russia
| | - N. V. Goncharov
- Sechenov Institute of Evolutionary
Physiology and Biochemistry of the Russian Academy of Sciences, St. Petersburg, Russia
- Research Institute of Hygiene,
Occupational Pathology and Human Ecology, p/o Kuzmolovsky, Vsevolozhsky District, Leningrad
Region, Russia
| |
Collapse
|
32
|
Delva-Wiley J, Jahan I, Newman RH, Zhang L, Dong M. Computational Analysis of the Binding Mechanism of GenX and HSA. ACS OMEGA 2021; 6:29166-29170. [PMID: 34746605 PMCID: PMC8567346 DOI: 10.1021/acsomega.1c04592] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 10/06/2021] [Indexed: 05/19/2023]
Abstract
One PFOS alternative, ammonium 2,3,3,3-tetrafluoro-2-(heptafluoropropoxy) propanoate, known as GenX, was created to replace one of the original PFAS. This small and tough molecule has been found in surface water, groundwater, drinking water, rainwater, and air emissions in some areas in the United States. Recently, GenX has been shown to have an impact on several disease-related proteins in humans, and just like PFOS, it binds to human protein human serum albumin (HSA). In this paper, we reported four binding sites of GenX on HSA protein via docking and molecular dynamics simulation.
Collapse
Affiliation(s)
- Jeannette Delva-Wiley
- Department
of Chemistry, North Carolina Agricultural
and Technical State University, Greensboro, North Carolina 27411, United States
- Department
of Biology, North Carolina Agricultural
and Technical State University, Greensboro, North Carolina 27411, United States
| | - Israt Jahan
- Department
of Nanoengineering, North Carolina Agricultural
and Technical State University, Greensboro, North Carolina 27411, United States
| | - Robert H. Newman
- Department
of Biology, North Carolina Agricultural
and Technical State University, Greensboro, North Carolina 27411, United States
| | - Lifeng Zhang
- Department
of Nanoengineering, North Carolina Agricultural
and Technical State University, Greensboro, North Carolina 27411, United States
- . Phone: 336-285-2875
| | - Ming Dong
- Department
of Chemistry, North Carolina Agricultural
and Technical State University, Greensboro, North Carolina 27411, United States
- . Phone: 336-285-2234
| |
Collapse
|
33
|
Belinskaia DA, Voronina PA, Vovk MA, Shmurak VI, Batalova AA, Jenkins RO, Goncharov NV. Esterase Activity of Serum Albumin Studied by 1H NMR Spectroscopy and Molecular Modelling. Int J Mol Sci 2021; 22:10593. [PMID: 34638934 PMCID: PMC8508922 DOI: 10.3390/ijms221910593] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 09/26/2021] [Accepted: 09/27/2021] [Indexed: 11/17/2022] Open
Abstract
Serum albumin possesses esterase and pseudo-esterase activities towards a number of endogenous and exogenous substrates, but the mechanism of interaction of various esters and other compounds with albumin is still unclear. In the present study, proton nuclear magnetic resonance (1H NMR) has been applied to the study of true esterase activity of albumin, using the example of bovine serum albumin (BSA) and p-nitrophenyl acetate (NPA). The site of BSA esterase activity was then determined using molecular modelling methods. According to the data obtained, the accumulation of acetate in the presence of BSA in the reaction mixture is much more intense as compared with the spontaneous hydrolysis of NPA, which indicates true esterase activity of albumin towards NPA. Similar results were obtained for p-nitophenyl propionate (NPP) as substrate. The rate of acetate and propionate release confirms the assumption that there is a site of true esterase activity in the albumin molecule, which is different from the site of the pseudo-esterase activity Sudlow II. The results of molecular modelling of BSA and NPA interaction make it possible to postulate that Sudlow site I is the site of true esterase activity of albumin.
Collapse
Affiliation(s)
- Daria A. Belinskaia
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, pr. Torez 44, 194223 St. Petersburg, Russia; (P.A.V.); (V.I.S.); (A.A.B.); (N.V.G.)
| | - Polina A. Voronina
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, pr. Torez 44, 194223 St. Petersburg, Russia; (P.A.V.); (V.I.S.); (A.A.B.); (N.V.G.)
| | - Mikhail A. Vovk
- Centre for Magnetic Resonance, St. Petersburg State University, Universitetskij pr., 26, Peterhof, 198504 St. Petersburg, Russia;
| | - Vladimir I. Shmurak
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, pr. Torez 44, 194223 St. Petersburg, Russia; (P.A.V.); (V.I.S.); (A.A.B.); (N.V.G.)
| | - Anastasia A. Batalova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, pr. Torez 44, 194223 St. Petersburg, Russia; (P.A.V.); (V.I.S.); (A.A.B.); (N.V.G.)
| | - Richard O. Jenkins
- Leicester School of Allied Health Sciences, De Montfort University, The Gateway, Leicester LE1 9BH, UK;
| | - Nikolay V. Goncharov
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, pr. Torez 44, 194223 St. Petersburg, Russia; (P.A.V.); (V.I.S.); (A.A.B.); (N.V.G.)
| |
Collapse
|
34
|
Tikhonov D, Kulikova L, Kopylov AT, Rudnev V, Stepanov A, Malsagova K, Izotov A, Kulikov D, Zulkarnaev A, Enikeev D, Potoldykova N, Kaysheva AL. Proteomic and molecular dynamic investigations of PTM-induced structural fluctuations in breast and ovarian cancer. Sci Rep 2021; 11:19318. [PMID: 34588485 PMCID: PMC8481388 DOI: 10.1038/s41598-021-98201-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 09/06/2021] [Indexed: 11/16/2022] Open
Abstract
Post-translational processing leads to conformational changes in protein structure that modulate molecular functions and change the signature of metabolic transformations and immune responses. Some post-translational modifications (PTMs), such as phosphorylation and acetylation, are strongly related to oncogenic processes and malignancy. This study investigated a PTM pattern in patients with gender-specific ovarian or breast cancer. Proteomic profiling and analysis of cancer-specific PTM patterns were performed using high-resolution UPLC-MS/MS. Structural analysis, topology, and stability of PTMs associated with sex-specific cancers were analyzed using molecular dynamics modeling. We identified highly specific PTMs, of which 12 modified peptides from eight distinct proteins derived from patients with ovarian cancer and 6 peptides of three proteins favored patients from the group with breast cancer. We found that all defined PTMs were localized in the compact and stable structural motifs exposed outside the solvent environment. PTMs increase the solvent-accessible surface area of the modified moiety and its active environment. The observed conformational fluctuations are still inadequate to activate the structural degradation and enhance protein elimination/clearance; however, it is sufficient for the significant modulation of protein activity.
Collapse
Affiliation(s)
- Dmitry Tikhonov
- Institute of Mathematical Problems of Biology RAS-the Branch of Keldysh Institute of Applied Mathematics of Russian Academy of Sciences, 142290, Pushchino, Moscow Region, Russia.,Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290, Pushchino, Moscow Region, Russia
| | - Liudmila Kulikova
- Institute of Mathematical Problems of Biology RAS-the Branch of Keldysh Institute of Applied Mathematics of Russian Academy of Sciences, 142290, Pushchino, Moscow Region, Russia.,Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290, Pushchino, Moscow Region, Russia
| | - Arthur T Kopylov
- V.N. Orekhovich Institute of Biomedical Chemistry, 119121, Moscow, Russia.
| | - Vladimir Rudnev
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290, Pushchino, Moscow Region, Russia.,V.N. Orekhovich Institute of Biomedical Chemistry, 119121, Moscow, Russia
| | - Alexander Stepanov
- V.N. Orekhovich Institute of Biomedical Chemistry, 119121, Moscow, Russia
| | - Kristina Malsagova
- V.N. Orekhovich Institute of Biomedical Chemistry, 119121, Moscow, Russia
| | - Alexander Izotov
- V.N. Orekhovich Institute of Biomedical Chemistry, 119121, Moscow, Russia
| | - Dmitry Kulikov
- Moscow Regional Research and Clinical Institute, Russian Federation, 129110, Moscow, Russia
| | - Alexey Zulkarnaev
- Moscow Regional Research and Clinical Institute, Russian Federation, 129110, Moscow, Russia
| | - Dmitry Enikeev
- Institute of Urology and Reproductive Health, Sechenov University, 119121, Moscow, Russia
| | - Natalia Potoldykova
- Institute of Urology and Reproductive Health, Sechenov University, 119121, Moscow, Russia
| | - Anna L Kaysheva
- V.N. Orekhovich Institute of Biomedical Chemistry, 119121, Moscow, Russia
| |
Collapse
|
35
|
Serum Albumin in Health and Disease: Esterase, Antioxidant, Transporting and Signaling Properties. Int J Mol Sci 2021; 22:ijms221910318. [PMID: 34638659 PMCID: PMC8508759 DOI: 10.3390/ijms221910318] [Citation(s) in RCA: 145] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/16/2021] [Accepted: 09/21/2021] [Indexed: 12/11/2022] Open
Abstract
Being one of the main proteins in the human body and many animal species, albumin plays a decisive role in the transport of various ions-electrically neutral and charged molecules-and in maintaining the colloidal osmotic pressure of the blood. Albumin is able to bind to almost all known drugs, as well as many nutraceuticals and toxic substances, largely determining their pharmaco- and toxicokinetics. Albumin of humans and respective representatives in cattle and rodents have their own structural features that determine species differences in functional properties. However, albumin is not only passive, but also an active participant of pharmacokinetic and toxicokinetic processes, possessing a number of enzymatic activities. Numerous experiments have shown esterase or pseudoesterase activity of albumin towards a number of endogeneous and exogeneous esters. Due to the free thiol group of Cys34, albumin can serve as a trap for reactive oxygen and nitrogen species, thus participating in redox processes. Glycated albumin makes a significant contribution to the pathogenesis of diabetes and other diseases. The interaction of albumin with blood cells, blood vessels and tissue cells outside the vascular bed is of great importance. Interactions with endothelial glycocalyx and vascular endothelial cells largely determine the integrative role of albumin. This review considers the esterase, antioxidant, transporting and signaling properties of albumin, as well as its structural and functional modifications and their significance in the pathogenesis of certain diseases.
Collapse
|
36
|
Serum Albumin: A Multifaced Enzyme. Int J Mol Sci 2021; 22:ijms221810086. [PMID: 34576249 PMCID: PMC8466385 DOI: 10.3390/ijms221810086] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 02/06/2023] Open
Abstract
Human serum albumin (HSA) is the most abundant protein in plasma, contributing actively to oncotic pressure maintenance and fluid distribution between body compartments. HSA acts as the main carrier of fatty acids, recognizes metal ions, affects pharmacokinetics of many drugs, provides the metabolic modification of some ligands, renders potential toxins harmless, accounts for most of the anti-oxidant capacity of human plasma, and displays esterase, enolase, glucuronidase, and peroxidase (pseudo)-enzymatic activities. HSA-based catalysis is physiologically relevant, affecting the metabolism of endogenous and exogenous compounds including proteins, lipids, cholesterol, reactive oxygen species (ROS), and drugs. Catalytic properties of HSA are modulated by allosteric effectors, competitive inhibitors, chemical modifications, pathological conditions, and aging. HSA displays anti-oxidant properties and is critical for plasma detoxification from toxic agents and for pro-drugs activation. The enzymatic properties of HSA can be also exploited by chemical industries as a scaffold to produce libraries of catalysts with improved proficiency and stereoselectivity for water decontamination from poisonous agents and environmental contaminants, in the so called “green chemistry” field. Here, an overview of the intrinsic and metal dependent (pseudo-)enzymatic properties of HSA is reported to highlight the roles played by this multifaced protein.
Collapse
|
37
|
Ribeiro AG, Alves JEF, Soares JCS, dos Santos KL, Jacob ÍTT, da Silva Ferreira CJ, dos Santos JC, de Azevedo RDS, de Almeida SMV, de Lima MDCA. Albumin roles in developing anticancer compounds. Med Chem Res 2021. [DOI: 10.1007/s00044-021-02748-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
38
|
Sergio LM, Martins YA, Amaral JL, França VLB, de Freitas CF, Neto AM, Hioka N, Ravanelli MI, Mareze-Costa C, Claudio da Costa S, Freire VN, Brunaldi K. Molecular insight on the binding of stevia glycosides to bovine serum albumin. Chem Biol Interact 2021; 344:109526. [PMID: 34023281 DOI: 10.1016/j.cbi.2021.109526] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/09/2021] [Accepted: 05/16/2021] [Indexed: 10/21/2022]
Abstract
The interaction of the steviol and its glycosides (SG), steviolbioside, and rebaudioside A, with bovine serum albumin (BSA) was studied by absorption and fluorescence spectroscopy techniques alongside molecular docking. The stevia derivatives quenched the fluorescence of BSA by a dynamic quenching mechanism, indicating the interaction between the stevia derivatives and BSA. The binding constant (Kb) of steviol was 100-1000-fold higher than those of SG. The stevia derivative/BSA binding reaction was spontaneous and involved the formation of hydrogen bonds and van der Waals interactions between steviol and steviolbioside with BSA, and water reorganization around the rebaudioside A/BSA complex. Molecular docking pointed out the FA1 and FA9 binding sites of BSA as the probable binding sites of steviol and SG, respectively. In conclusion, steviol enhanced hydrophobicity and small size compared to SG may favor its binding to BSA. As steviol and its glycosides share binding sites on BSA with free fatty acids and drugs, they may be competitively displaced from plasma albumin under various physiological states or disease conditions. These findings are clinically relevant and provide an insight into the pharmacokinetics and pharmacodynamics of the stevia glycosides.
Collapse
Affiliation(s)
- Luciana M Sergio
- Departamento de Ciências Fisiológicas, Universidade Estadual de Maringá, Maringá, 87020-900, Brazil
| | - Yandara A Martins
- Departamento de Ciências Fisiológicas, Universidade Estadual de Maringá, Maringá, 87020-900, Brazil
| | - Jackson L Amaral
- Departamento de Física, Universidade Federal Do Ceará, Fortaleza, 60440-900, Brazil
| | - Victor L B França
- Departamento de Física, Universidade Federal Do Ceará, Fortaleza, 60440-900, Brazil
| | - Camila F de Freitas
- Departamento de Química, Universidade Estadual de Maringá, Maringá, 87020-900, Brazil
| | - Antônio Medina Neto
- Departamento de Física, Universidade Estadual de Maringá, Maringá, 87020-900, Brazil
| | - Noboru Hioka
- Departamento de Química, Universidade Estadual de Maringá, Maringá, 87020-900, Brazil
| | - Maria I Ravanelli
- Departamento de Ciências Fisiológicas, Universidade Estadual de Maringá, Maringá, 87020-900, Brazil
| | - Cecília Mareze-Costa
- Departamento de Ciências Fisiológicas, Universidade Estadual de Maringá, Maringá, 87020-900, Brazil
| | | | - Valder N Freire
- Departamento de Física, Universidade Federal Do Ceará, Fortaleza, 60440-900, Brazil
| | - Kellen Brunaldi
- Departamento de Ciências Fisiológicas, Universidade Estadual de Maringá, Maringá, 87020-900, Brazil.
| |
Collapse
|
39
|
Bis-Pyrene Photo-Switch Open- and Closed-Form Differently Bind to ds-DNA, ds-RNA and Serum Albumin and Reveal Light-Induced Bioactivity. Int J Mol Sci 2021; 22:ijms22094916. [PMID: 34066402 PMCID: PMC8125568 DOI: 10.3390/ijms22094916] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/27/2021] [Accepted: 04/30/2021] [Indexed: 12/18/2022] Open
Abstract
Newly designed and synthesized diarylethene (DAE) derivatives with aliphatic amine sidearms and one with two pyrenes, revealed excellent photo-switching property of central DAE core in MeOH and water. The only exception was bis-pyrene analogue, its DAE core very readily photochemically closed, but reversible opening completely hampered by aromatic stacking interaction of pyrene(s) with cyclic DAE. In this process, pyrene fluorescence showed to be a reliable monitoring method, an open form characterized by strong emission at 480 nm (typical for pyrene-aggregate), while closed form emitted weakly at 400 nm (typical for pyrene-DAE quenching). Only open DAE-bis-pyrene form interacted measurably with ds-DNA/RNA by flexible insertion in polynucleotide grooves, while self-stacked closed form did not bind to DNA/RNA. For the same steric reasons, flexible open DAE-bis-pyrene form was bound to at least three different binding sites at bovine serum albumin (BSA), while rigid, self-stacked closed form interacted dominantly with only one BSA site. Preliminary screening of antiproliferative activity against human lung carcinoma cell line A549 revealed that all DAE-derivatives are non-toxic. However, bis-pyrene analogue efficiently entered cells and located in the cytoplasm, whereby irradiation by light (315–400 nm) resulted in a strong, photo-induced cytotoxic effect, typical for pyrene-related singlet oxygen species production.
Collapse
|
40
|
Lei C, Liu XR, Chen QB, Li Y, Zhou JL, Zhou LY, Zou T. Hyaluronic acid and albumin based nanoparticles for drug delivery. J Control Release 2021; 331:416-433. [DOI: 10.1016/j.jconrel.2021.01.033] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 12/22/2022]
|
41
|
Revealing the structural dynamics of feline serum albumin. Struct Chem 2021. [DOI: 10.1007/s11224-020-01619-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
42
|
Yamasaki K, Kawai A, Sakurama K, Udo N, Yoshino Y, Saito Y, Tsukigawa K, Nishi K, Otagiri M. Interaction of Benzbromarone with Subdomains IIIA and IB/IIA on Human Serum Albumin as the Primary and Secondary Binding Regions. Mol Pharm 2021; 18:1061-1070. [PMID: 33478218 DOI: 10.1021/acs.molpharmaceut.0c01004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Benzbromarone has been used for the treatment of gout for more than 30 years. Although it shows a high level of binding to plasma proteins (>99%), our knowledge of this binding is not sufficiently extensive to permit us to understand its pharmacokinetics and pharmacodynamics. To address this issue in more detail, we characterized the binding of benzbromarone to human serum albumin (HSA), the most abundant protein in plasma. Equilibrium dialysis and circular dichroism findings indicated that benzbromarone binds strongly to one primary as well as to multiple secondary sites on HSA and that the bromine atoms of benzbromarone play important roles in this high affinity binding. An X-ray crystallographic study revealed that benzbromarone molecules bind to hydrophobic pockets within subdomains IB, IIA, and IIIA. Inhibition experiments using site specific ligands (subdomain IB; fusidic acid, IIA; warfarin, IIIA; diazepam) indicated that the primary and secondary binding sites that benzbromarone binds to are within subdomains IIIA and IB/IIA, respectively. Lastly, a study of the effect of fatty acids on the benzbromarone-HSA interaction suggested that benzbromarone, when displaced from subdomain IIIA by sodium oleate, could transfer to subdomains IB or IIA. Thus, these data will permit more relevant assessments of the displacement interactions of benzbromarone especially in cases of co-administered drugs or endogenous compounds that also bind to subdomain IIIA. In addition, the findings presented herein will also be useful for designing drug combination therapy in which pharmacokinetic and pharmacodynamic performance need to be controlled.
Collapse
Affiliation(s)
- Keishi Yamasaki
- Faculty of Pharmaceutical Sciences, Sojo University, Kumamoto 860-0082, Japan.,DDS Research Institute, Sojo University, Kumamoto 860-0082, Japan
| | - Akito Kawai
- Department of Microbiology, Fujita Health University School of Medicine, Toyoake 470-1192, Aichi, Japan
| | - Keiki Sakurama
- Faculty of Pharmaceutical Sciences, Sojo University, Kumamoto 860-0082, Japan
| | - Nagiko Udo
- Faculty of Pharmaceutical Sciences, Sojo University, Kumamoto 860-0082, Japan
| | - Yuta Yoshino
- Faculty of Pharmaceutical Sciences, Sojo University, Kumamoto 860-0082, Japan
| | - Yuki Saito
- Faculty of Pharmaceutical Sciences, Sojo University, Kumamoto 860-0082, Japan
| | - Kenji Tsukigawa
- Faculty of Pharmaceutical Sciences, Sojo University, Kumamoto 860-0082, Japan.,DDS Research Institute, Sojo University, Kumamoto 860-0082, Japan
| | - Koji Nishi
- Faculty of Pharmaceutical Sciences, Sojo University, Kumamoto 860-0082, Japan.,DDS Research Institute, Sojo University, Kumamoto 860-0082, Japan
| | - Masaki Otagiri
- Faculty of Pharmaceutical Sciences, Sojo University, Kumamoto 860-0082, Japan.,DDS Research Institute, Sojo University, Kumamoto 860-0082, Japan
| |
Collapse
|
43
|
Gao Y, Chen Y, Cao Y, Mo A, Peng Q. Potentials of nanotechnology in treatment of methicillin-resistant Staphylococcus aureus. Eur J Med Chem 2020; 213:113056. [PMID: 33280899 DOI: 10.1016/j.ejmech.2020.113056] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/24/2020] [Accepted: 11/24/2020] [Indexed: 02/05/2023]
Abstract
Abuse of antibiotics has led to the emergence of drug-resistant pathogens. Methicillin-resistant Staphylococcus aureus (MRSA) was reported just two years after the clinical use of methicillin, which can cause severe infections with high morbidity and mortality in both community and hospital. The treatment of MRSA infection is greatly challenging since it has developed the resistance to almost all types of antibiotics. As such, it is of great significance and importance to develop novel therapeutic approaches. The fast development of nanotechnology provides a promising solution to this dilemma. Functional nanomaterials and nanoparticles can act either as drug carriers or as antibacterial agents for antibacterial therapy. Herein, we aim to provide a comprehensive understanding of the drug resistance mechanisms of MRSA and discuss the potential applications of some functionalized nanomaterials in anti-MRSA therapy. Also, the concerns and possible solutions for the nanomaterials-based anti-MRSA therapy are discussed.
Collapse
Affiliation(s)
- Yujie Gao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China; Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Yuan Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China; Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Yubin Cao
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Anchun Mo
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Qiang Peng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
44
|
Tong Y, Guo B, Zhang B, Hou X, Geng F, Tian M. Efficient synthesis of hollow solid phase extraction adsorbent using L-lysine modified polydopamine as coating shell for the selective recognition of bilirubin. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105175] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
45
|
The Universal Soldier: Enzymatic and Non-Enzymatic Antioxidant Functions of Serum Albumin. Antioxidants (Basel) 2020; 9:antiox9100966. [PMID: 33050223 PMCID: PMC7601824 DOI: 10.3390/antiox9100966] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/06/2020] [Accepted: 10/07/2020] [Indexed: 12/14/2022] Open
Abstract
As a carrier of many biologically active compounds, blood is exposed to oxidants to a greater extent than the intracellular environment. Serum albumin plays a key role in antioxidant defence under both normal and oxidative stress conditions. This review evaluates data published in the literature and from our own research on the mechanisms of the enzymatic and non-enzymatic activities of albumin that determine its participation in redox modulation of plasma and intercellular fluid. For the first time, the results of numerous clinical, biochemical, spectroscopic and computational experiments devoted to the study of allosteric modulation of the functional properties of the protein associated with its participation in antioxidant defence are analysed. It has been concluded that it is fundamentally possible to regulate the antioxidant properties of albumin with various ligands, and the binding and/or enzymatic features of the protein by changing its redox status. The perspectives for using the antioxidant properties of albumin in practice are discussed.
Collapse
|
46
|
Madea D, Mahvidi S, Chalupa D, Mujawar T, Dvořák A, Muchová L, Janoš J, Slavíček P, Švenda J, Vítek L, Klán P. Wavelength-Dependent Photochemistry and Biological Relevance of a Bilirubin Dipyrrinone Subunit. J Org Chem 2020; 85:13015-13028. [DOI: 10.1021/acs.joc.0c01673] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Dominik Madea
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
- RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Sadegh Mahvidi
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
- RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - David Chalupa
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
- RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Taufiqueahmed Mujawar
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Aleš Dvořák
- Institute of Medical Biochemistry and Laboratory Diagnostics, 4th Department of Internal Medicine, Faculty General Hospital and 1st Faculty of Medicine, Charles University, Na Bojišti 3, 121 08 Prague 2, Czech Republic
| | - Lucie Muchová
- Institute of Medical Biochemistry and Laboratory Diagnostics, 4th Department of Internal Medicine, Faculty General Hospital and 1st Faculty of Medicine, Charles University, Na Bojišti 3, 121 08 Prague 2, Czech Republic
| | - Jiří Janoš
- Department of Physical Chemistry, University of Chemistry and Technology, Technická 5, 16628 Prague 6, Czech Republic
| | - Petr Slavíček
- Department of Physical Chemistry, University of Chemistry and Technology, Technická 5, 16628 Prague 6, Czech Republic
| | - Jakub Švenda
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Libor Vítek
- Institute of Medical Biochemistry and Laboratory Diagnostics, 4th Department of Internal Medicine, Faculty General Hospital and 1st Faculty of Medicine, Charles University, Na Bojišti 3, 121 08 Prague 2, Czech Republic
| | - Petr Klán
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
- RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| |
Collapse
|
47
|
Screen-Printed Sensor Based on Potentiometric Transduction for Free Bilirubin Detection as a Biomarker for Hyperbilirubinemia Diagnosis. CHEMOSENSORS 2020. [DOI: 10.3390/chemosensors8030086] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Novel reliable and cost-effective potentiometric screen-printed sensors for free bilirubin (BR) detection were presented. The sensors were fabricated using ordered mesoporous carbon (OMC) as an ion-to-electron transducer. The ion-association complex [Ni(bphen)3]2+[BR]2− was utilized as a sensory recognition material in the plasticized Polyvinyl Chloride (PVC) membrane. The membrane was drop-casted on the OMC layer, which is attached on a carbon conductor (2-mm diameter). In a 50 mM phosphate solution of pH 8.5, the electrodes offered a Nernstian slope of −26.8 ± 1.1 (r2 = 0.9997) mV/decade with a range of linearity 1.0 × 10−6–1 × 10−2 M towards free bilirubin with a detection limit 8.8 × 10−7 M (0.52 µg/mL). The presented sensors offered good features in terms of reliability, ease of design, high potential stability, high specificity and good accuracy and precision. Chronopotentiometric and electrochemical impedance spectrometric measurements were used for short-term potential stability and interfacial capacitance calculations. The sensors were used for the determination of free bilirubin in biological fluids. The data obtained are fairly well consistent with those obtained by the reference spectophotometric method. Based on the interaction of free BR with albumin (1:1), the sensors were also utilized for the assessment of albumin in human serum.
Collapse
|
48
|
Leboffe L, di Masi A, Polticelli F, Trezza V, Ascenzi P. Structural Basis of Drug Recognition by Human Serum Albumin. Curr Med Chem 2020; 27:4907-4931. [DOI: 10.2174/0929867326666190320105316] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 02/12/2019] [Accepted: 03/06/2019] [Indexed: 12/18/2022]
Abstract
Background:
Human serum albumin (HSA), the most abundant protein in plasma,
is a monomeric multi-domain macromolecule with at least nine binding sites for endogenous
and exogenous ligands. HSA displays an extraordinary ligand binding capacity as a depot and
carrier for many compounds including most acidic drugs. Consequently, HSA has the potential
to influence the pharmacokinetics and pharmacodynamics of drugs.
Objective:
In this review, the structural determinants of drug binding to the multiple sites of
HSA are analyzed and discussed in detail. Moreover, insight into the allosteric and competitive
mechanisms underpinning drug recognition, delivery, and efficacy are analyzed and discussed.
Conclusion:
As several factors can modulate drug binding to HSA (e.g., concurrent administration
of drugs competing for the same binding site, ligand binding to allosteric-coupled
clefts, genetic inherited diseases, and post-translational modifications), ligand binding to HSA
is relevant not only under physiological conditions, but also in the pharmacological therapy
management.
Collapse
Affiliation(s)
- Loris Leboffe
- Department of Sciences, University Roma Tre, Viale Guglielmo Marconi 446, I-00146 Roma, Italy
| | - Alessandra di Masi
- Department of Sciences, University Roma Tre, Viale Guglielmo Marconi 446, I-00146 Roma, Italy
| | - Fabio Polticelli
- Department of Sciences, University Roma Tre, Viale Guglielmo Marconi 446, I-00146 Roma, Italy
| | - Viviana Trezza
- Department of Sciences, University Roma Tre, Viale Guglielmo Marconi 446, I-00146 Roma, Italy
| | - Paolo Ascenzi
- Interdepartmental Laboratory for Electron Microscopy, Roma Tre University, Via della Vasca Navale 79, I- 00146 Roma, Italy
| |
Collapse
|
49
|
Hansen TWR, Wong RJ, Stevenson DK. Molecular Physiology and Pathophysiology of Bilirubin Handling by the Blood, Liver, Intestine, and Brain in the Newborn. Physiol Rev 2020; 100:1291-1346. [PMID: 32401177 DOI: 10.1152/physrev.00004.2019] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Bilirubin is the end product of heme catabolism formed during a process that involves oxidation-reduction reactions and conserves iron body stores. Unconjugated hyperbilirubinemia is common in newborn infants, but rare later in life. The basic physiology of bilirubin metabolism, such as production, transport, and excretion, has been well described. However, in the neonate, numerous variables related to nutrition, ethnicity, and genetic variants at several metabolic steps may be superimposed on the normal physiological hyperbilirubinemia that occurs in the first week of life and results in bilirubin levels that may be toxic to the brain. Bilirubin exists in several isomeric forms that differ in their polarities and is considered a physiologically important antioxidant. Here we review the chemistry of the bilirubin molecule and its metabolism in the body with a particular focus on the processes that impact the newborn infant, and how differences relative to older children and adults contribute to the risk of developing both acute and long-term neurological sequelae in the newborn infant. The final section deals with the interplay between the brain and bilirubin and its entry, clearance, and accumulation. We conclude with a discussion of the current state of knowledge regarding the mechanism(s) of bilirubin neurotoxicity.
Collapse
Affiliation(s)
- Thor W R Hansen
- Division of Paediatric and Adolescent Medicine, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway; and Department of Pediatrics, Stanford University School of Medicine, Stanford, California
| | - Ronald J Wong
- Division of Paediatric and Adolescent Medicine, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway; and Department of Pediatrics, Stanford University School of Medicine, Stanford, California
| | - David K Stevenson
- Division of Paediatric and Adolescent Medicine, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway; and Department of Pediatrics, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
50
|
Salih M, Walvekar P, Omolo CA, Elrashedy AA, Devnarain N, Fasiku V, Waddad AY, Mocktar C, Govender T. A self-assembled polymer therapeutic for simultaneously enhancing solubility and antimicrobial activity and lowering serum albumin binding of fusidic acid. J Biomol Struct Dyn 2020; 39:6567-6584. [PMID: 32772814 DOI: 10.1080/07391102.2020.1803140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The global antimicrobial resistance crisis has prompted worldwide efforts to develop new and more efficient antimicrobial compounds, as well as to develop new drug delivery strategies and targeting mechanisms. This study aimed to synthesize a novel polyethylene glycol-fusidic acid (PEG-FA) conjugate for self-assembly into nano-sized structures and explore its potential for simultaneously enhancing aqueous solubility and antibacterial activity of FA. In addition, the ability of PEG-FA to bind to HSA with lower affinity than FA is also investigated. Haemolysis and in vitro cytotoxicity studies confirmed superior biosafety of the novel PEG-FA compared to FA. The water solubility of FA after PEG conjugation was increased by 25-fold compared to the bare drug. PEG-FA nanoparticles displayed particle size, polydispersity index and zeta potential of 149.3 ± 0.21 nm, 0.267 ± 0.01 and 5.97 ± 1.03 mV, respectively. Morphology studies using high-resolution transmission electron microscope revealed a homogenous spherical shape of the PEG-FA nanoparticles. In silico studies showed that Van der Waals forces facilitated PEG-FA self-assembly. HSA binding studies showed that PEG-FA had very weak or no interaction with HSA using in silico molecular docking (-2.93 kcal/mol) and microscale thermophoresis (Kd=14999 ± 1.36 µM), which may prevent bilirubin displacement. Conjugation with PEG did not inhibit the antibacterial activity of FA but rather enhanced it by 2.5-fold against Staphylococcus aureus and methicillin-resistant Staphylococcus aureus, compared to the bare FA. These results show that PEG-FA can simultaneously enhance solubility and antibacterial activity of FA, whilst also reducing binding of HSA to decrease its side effects.
Collapse
Affiliation(s)
- Mohammed Salih
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Pavan Walvekar
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Calvin A Omolo
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa.,Department of Chemistry of Natural and Microbial Products, Division of Pharmaceutical and Drug Industries, National Research Centre, Cairo, Egypt
| | - Ahmed A Elrashedy
- School of Pharmacy and Health Sciences, United States International University, Nairobi, Kenya
| | - Nikita Devnarain
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Victoria Fasiku
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Ayman Y Waddad
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Chunderika Mocktar
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Thirumala Govender
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|