1
|
Yutani R, Venketaraman V, Sheren N. Treatment of Acute and Long-COVID, Diabetes, Myocardial Infarction, and Alzheimer's Disease: The Potential Role of a Novel Nano-Compound-The Transdermal Glutathione-Cyclodextrin Complex. Antioxidants (Basel) 2024; 13:1106. [PMID: 39334765 PMCID: PMC11429141 DOI: 10.3390/antiox13091106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/21/2024] [Accepted: 08/26/2024] [Indexed: 09/30/2024] Open
Abstract
Oxidative stress (OS) occurs from excessive reactive oxygen species or a deficiency of antioxidants-primarily endogenous glutathione (GSH). There are many illnesses, from acute and post-COVID-19, diabetes, myocardial infarction to Alzheimer's disease, that are associated with OS. These dissimilar illnesses are, in order, viral infections, metabolic disorders, ischemic events, and neurodegenerative disorders. Evidence is presented that in many illnesses, (1) OS is an early initiator and significant promotor of their progressive pathophysiologic processes, (2) early reduction of OS may prevent later serious and irreversible complications, (3) GSH deficiency is associated with OS, (4) GSH can likely reduce OS and restore adaptive physiology, (5) effective administration of GSH can be accomplished with a novel nano-product, the GSH/cyclodextrin (GC) complex. OS is an overlooked pathological process of many illnesses. Significantly, with the GSH/cyclodextrin (GC) complex, therapeutic administration of GSH is now available to reduce OS. Finally, rigorous prospective studies are needed to confirm the efficacy of this therapeutic approach.
Collapse
Affiliation(s)
- Ray Yutani
- Department of Family Medicine, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Vishwanath Venketaraman
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Nisar Sheren
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| |
Collapse
|
2
|
Zhang N, Liao H, Lin Z, Tang Q. Insights into the Role of Glutathione Peroxidase 3 in Non-Neoplastic Diseases. Biomolecules 2024; 14:689. [PMID: 38927092 PMCID: PMC11202029 DOI: 10.3390/biom14060689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/03/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
Reactive oxygen species (ROSs) are byproducts of normal cellular metabolism and play pivotal roles in various physiological processes. Disruptions in the balance between ROS levels and the body's antioxidant defenses can lead to the development of numerous diseases. Glutathione peroxidase 3 (GPX3), a key component of the body's antioxidant system, is an oxidoreductase enzyme. GPX3 mitigates oxidative damage by catalyzing the conversion of hydrogen peroxide into water. Beyond its antioxidant function, GPX3 is vital in regulating metabolism, modulating cell growth, inducing apoptosis and facilitating signal transduction. It also serves as a significant tumor suppressor in various cancers. Recent studies have revealed aberrant expression of GPX3 in several non-neoplastic diseases, associating it with multiple pathological processes. This review synthesizes the current understanding of GPX3 expression and regulation, highlighting its extensive roles in noncancerous diseases. Additionally, this paper evaluates the potential of GPX3 as a diagnostic biomarker and explores emerging therapeutic strategies targeting this enzyme, offering potential avenues for future clinical treatment of non-neoplastic conditions.
Collapse
Affiliation(s)
- Nan Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; (N.Z.); (H.L.)
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, China
| | - Haihan Liao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; (N.Z.); (H.L.)
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, China
| | - Zheng Lin
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; (N.Z.); (H.L.)
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, China
| | - Qizhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; (N.Z.); (H.L.)
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, China
| |
Collapse
|
3
|
Afzal S, Sattar MA, Albokhadaim I, Attiq A, Kandeel M, Manap ASA, Alhojaily SM. Interaction between Nuclear Receptor and Alpha-Adrenergic Agonist Subtypes in Metabolism and Systemic Hemodynamics of Spontaneously Hypertensive Rats. PPAR Res 2024; 2024:5868010. [PMID: 38899161 PMCID: PMC11186691 DOI: 10.1155/2024/5868010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/22/2023] [Accepted: 05/03/2024] [Indexed: 06/21/2024] Open
Abstract
Partial and full PPAR-γ agonists have shown promising effects and antihypertensive and antidiabetic agents through increased plasma adiponectin concentration. This study is aimed at examining the role of PPAR-γ, alpha-adrenoceptors, and adiponectin receptors in the modulation of vasopressor responses to angiotensin II (Ang II) and adrenergic agonists, after a subset treatment of partial and full PPAR-γ agonists, each individually, and also when coupled with adiponectin in SHRs. The antioxidant potential and metabolic indices for these animals were also determined. Group I (WKY) and group II (SHR) were designated as normotensive control and hypertensive control, respectively. Groups III (SHR) and IV (SHR) received irbesartan (30 mg/kg) and pioglitazone (10 mg/kg) orally for 28 days, and groups V (SHR), VI (SHR), and VII (SHR) were treated with adiponectin (2.5 μg/kg) intraperitoneally alone, in combination with irbesartan, and in combination with pioglitazone, respectively, from days 21 to 28 only. On day 29, sodium pentobarbitone (60 mg/kg) was used to anesthetize all test animals, and systemic hemodynamic and plasma adiponectin concentrations and in vitro and in vivo antioxidant potential were measured. As compared to the WKY control, the SHR control group's noninvasive blood pressure and basal mean arterial pressure were significantly greater, along with increased arterial stiffness, lower plasma nitric oxide, adiponectin concentration, and antioxidant enzyme levels (all P < 0.05). However, they were gradually normalized by single drug treatments in all groups, and to a greater extent in the SHR + Irb + Adp group (P < 0.05). In the acute study, the dose dependant mean arterial pressure responses to intravenously administered adrenergic agonists and angiotensin-II were significantly larger in SHRs as compared to WKY by 20-25%. Adiponectin alone and in combination significantly blunted vasopressor responses to these alpha-adrenergic agonists in the SHR + Pio + Adp group by 63%, whereas attenuated responses to ANG-II administration to 70% in SHR + Irb + Adp. In conclusion, the combined treatment of adiponectin with PPAR-agonists reduced the systemic vascular responses to adrenergic agonists and improved arterial stiffness. This an evidence of the interaction of adiponectin receptors, PPAR-γ, alpha-adrenoceptors, and ANG-II in the systemic vasculature of SHRs. A significant level of synergism has also been proved among full PPAR-γ agonists and adiponectin receptors.
Collapse
Affiliation(s)
- Sheryar Afzal
- Department of Biomedical ScienceCollege of Veterinary MedicineKing Faisal University, Al Hofuf, Saudi Arabia
- Discipline of PharmacologySchool of Pharmaceutical SciencesUniversiti Sains Malaysia, Gelugor 11800, Penang, Malaysia
| | - Munavvar Abdul Sattar
- Discipline of PharmacologySchool of Pharmaceutical SciencesUniversiti Sains Malaysia, Gelugor 11800, Penang, Malaysia
| | - Ibrahim Albokhadaim
- Department of Biomedical ScienceCollege of Veterinary MedicineKing Faisal University, Al Hofuf, Saudi Arabia
| | - Ali Attiq
- Discipline of PharmacologySchool of Pharmaceutical SciencesUniversiti Sains Malaysia, Gelugor 11800, Penang, Malaysia
| | - Mahmoud Kandeel
- Department of Biomedical ScienceCollege of Veterinary MedicineKing Faisal University, Al Hofuf, Saudi Arabia
| | - Aimi Syamima Abdul Manap
- Department of Biomedical ScienceCollege of Veterinary MedicineKing Faisal University, Al Hofuf, Saudi Arabia
| | - Sameer M. Alhojaily
- Department of Biomedical ScienceCollege of Veterinary MedicineKing Faisal University, Al Hofuf, Saudi Arabia
| |
Collapse
|
4
|
Amnuaylojaroen T, Parasin N. Pathogenesis of PM 2.5-Related Disorders in Different Age Groups: Children, Adults, and the Elderly. EPIGENOMES 2024; 8:13. [PMID: 38651366 PMCID: PMC11036283 DOI: 10.3390/epigenomes8020013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/07/2024] [Accepted: 03/08/2024] [Indexed: 04/25/2024] Open
Abstract
The effects of PM2.5 on human health fluctuate greatly among various age groups, influenced by a range of physiological and immunological reactions. This paper compares the pathogenesis of the disease caused by PM2.5 in people of different ages, focusing on how children, adults, and the elderly are each susceptible to it because of differences in their bodies. Regarding children, exposure to PM2.5 is linked to many negative consequences. These factors consist of inflammation, oxidative stress, and respiratory problems, which might worsen pre-existing conditions and potentially cause neurotoxicity and developmental issues. Epigenetic changes can affect the immune system and make people more likely to get respiratory diseases. On the other hand, exposures during pregnancy can change how the cardiovascular and central nervous systems develop. In adults, the inhalation of PM2.5 is associated with a wide range of health problems. These include respiratory difficulties, reduced pulmonary function, and an increased susceptibility to illnesses such as asthma, chronic obstructive pulmonary disease (COPD), and lung cancer. In addition, exposure to PM2.5 induces systemic inflammation, cardiovascular diseases, insulin resistance, and neurotoxic consequences. Evident disturbances in the immune system and cognitive function demonstrate the broad impact of PM2.5. The elderly population is prone to developing respiratory and cardiovascular difficulties, which worsen their pre-existing health issues and raise the risk of cognitive decline and neurological illnesses. Having additional medical conditions, such as peptic ulcer disease, significantly increases the likelihood of being admitted to hospital.
Collapse
Affiliation(s)
- Teerachai Amnuaylojaroen
- School of Energy and Environment, University of Phayao, Phayao 56000, Thailand
- Atmospheric Pollution and Climate Research Unit, School of Energy and Environment, University of Phayao, Phayao 56000, Thailand
| | - Nichapa Parasin
- School of Allied Health Science, University of Phayao, Phayao 56000, Thailand;
| |
Collapse
|
5
|
Mohyeldin RH, Abdelzaher WY, Sharata EE, Mohamed HMA, Ahmed MYM, Attia JZ, Atta M, Saleh RK, Ghallab EA, Marey H, Elrehany MA, Rofaeil RR. Aprepitant boasted a protective effect against olanzapine-induced metabolic syndrome and its subsequent hepatic, renal, and ovarian dysfunction; Role of IGF 1/p-AKT/FOXO 1 and NFκB/IL-1β/TNF-α signaling pathways in female Wistar albino rats. Biochem Pharmacol 2024; 221:116020. [PMID: 38237301 DOI: 10.1016/j.bcp.2024.116020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/28/2023] [Accepted: 01/11/2024] [Indexed: 03/03/2024]
Abstract
Olanzapine-induced metabolic syndrome (MS) is a primary risk factor for insulin resistance, hepatorenal damage, and polycystic ovarian syndrome. The objective of the current study was to assess the protective effects of aprepitant (AP) against MS caused by olanzapine and the associated ovarian, renal, and liver dysfunction via modulation of IGF1/p-AKT/FOXO1 and NFκB/IL-1β/TNF-α signaling pathways. AP mitigated all biochemical and histopathological abnormalities induced by olanzapine and resulted in a significant reduction of serum HOMA-IR, lipid profile parameters, and a substantial decrease in hepatic, renal, and ovarian MDA, IL-6, IL-1β, TNF-α, NFκB, and caspase 3. Serum AST, ALT, urea, creatinine, FSH, LH, and testosterone also decreased significantly by AP administration. The FOXO 1 signaling pathway was downregulated in the AP-treated group, while GSH, SOD, and HDL cholesterol levels were elevated.
Collapse
Affiliation(s)
- Reham H Mohyeldin
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Deraya University, Minia 61111, Egypt.
| | - Walaa Yehia Abdelzaher
- Department of Medical Pharmacology, Faculty of Medicine, Minia University, Minia 61519, Egypt.
| | - Ehab E Sharata
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Deraya University, Minia 61111, Egypt.
| | - Hamza M A Mohamed
- Department of Obstetrics and Gynecology, Faculty of Medicine, Minia University, Minia 61519, Egypt
| | - Mohamed Y M Ahmed
- Department of Obstetrics and Gynecology, Faculty of Medicine, Minia University, Minia 61519, Egypt
| | - Josef Zekry Attia
- Department of Anesthesia and I.C.U, Faculty of Medicine, Minia University, Minia 61519, Egypt
| | - Medhat Atta
- Department of Anatomy, Faculty of Medicine, Minia University, Minia 61519, Egypt
| | - Rabeh Khairy Saleh
- Department of Pathology, Faculty of Medicine, Minia University, Minia 61519, Egypt.
| | - Elshimaa A Ghallab
- Department of Biochemistry, Faculty of Pharmacy, Deraya University, Minia 61111, Egypt.
| | - Heba Marey
- Department of Biochemistry, Faculty of Medicine, Minia University, Minia 61519, Egypt.
| | - Mahmoud A Elrehany
- Department of Biochemistry, Faculty of Pharmacy, Deraya University, Minia 61111, Egypt.
| | - Remon Roshdy Rofaeil
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Deraya University, Minia 61111, Egypt; Department of Medical Pharmacology, Faculty of Medicine, Minia University, Minia 61519, Egypt.
| |
Collapse
|
6
|
Wu Q, Qin B, Wu X, Zhang M, Gan Z, Lan Y, Ma C, Fu W. Allograft inflammatory factor-1 enhances inflammation and oxidative stress via the NF-κB pathway of bladder urothelium in diabetic rat model. Cytokine 2024; 173:156438. [PMID: 37976702 DOI: 10.1016/j.cyto.2023.156438] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/30/2023] [Accepted: 11/09/2023] [Indexed: 11/19/2023]
Abstract
OBJECTIVES To explore the role of allograft inflammatory factor-1 (AIF-1) both in diabetic rat bladder urothelium and in high-glucose-treated human urothelial cell line (SV-HUC-1). METHODS Inflammation and oxidative stress (OS) promote diabetic cystopathy (DCP), but the mechanisms are not fully understood. The expression level of AIF-1 in diabetic rat bladder urothelium and in the SV-HUC-1 cells treated with high glucose was detected using tissue immunofluorescence, immunohistochemistry and western blot assays. AIF-1 was knocked down and NF-κB was suppressed with the specific inhibitor BAY 11-7082 in high-glucose-treated SV-HUC-1 cells. RESULTS High-glucose condition induced AIF-1 upregulation in vivo and in vitro. The up-regulated AIF-1 induced the production of inflammatory factors IL-6 and TNF-α and elevation of ROS. Informatics analysis suggested that NF-κB pathway is implicated in DCP. Through knockdown of AIF-1, we confirmed that AIF-1 simulated NF-κB pathway by enhancing the phosphorylation of IκB (p-IκB) and promoting the translocation of NF-κB p65 from cytoplasm into nucleus. Additionally, High-glucose-induced inflammation in SV-HUC-1 cells was attenuated by the addition of NF-κB inhibitor. CONCLUSIONS This study provides novel information to understand the molecular regulation mechanisms of AIF-1 in DCP.
Collapse
Affiliation(s)
- Qinguo Wu
- Department of Urology of GuiGang City People Hospital, GuiGang 537199, China; Department of Urology, The First Affiliated Hospital of GuangXi Medical University, Nanning 530022, China.
| | - Bin Qin
- Department of Urology of GuiGang City People Hospital, GuiGang 537199, China.
| | - Xiaoyun Wu
- Department of Nursing, Guangxi Medical College, Nanning 530023, China.
| | - Mingjin Zhang
- Department of Urology, The First Affiliated Hospital of GuangXi Medical University, Nanning 530022, China.
| | - Zhaokai Gan
- Department of Urology of GuiGang City People Hospital, GuiGang 537199, China.
| | - Yibi Lan
- Department of Urology, The First Affiliated Hospital of GuangXi Medical University, Nanning 530022, China.
| | - Chunlei Ma
- Department of Urology, The First Affiliated Hospital of GuangXi Medical University, Nanning 530022, China.
| | - Weijin Fu
- Department of Urology, The First Affiliated Hospital of GuangXi Medical University, Nanning 530022, China.
| |
Collapse
|
7
|
Tang Y, Liu J, Yang J, Xu Y, Sun Z, Tang H, Yang Y, Xuan J, Zhang Y. Free radical-mediated extraction of polysaccharides from Gelidium amansii and their modulation on abnormal glycometabolism in Caenorhabditis elegans. Int J Biol Macromol 2023; 252:126402. [PMID: 37597639 DOI: 10.1016/j.ijbiomac.2023.126402] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/15/2023] [Accepted: 08/16/2023] [Indexed: 08/21/2023]
Abstract
An improved Fenton-microwave synergistic method was employed to extract polysaccharides from Gelidium amansii (GAPs), which were subsequently purified through alcohol precipitation, deproteinization, and gel chromatography. The effects of GAPs on oxidative stress resistance and abnormal glycometabolism were investigated using Caenorhabditis elegans. The polysaccharide yield reached 54.17 % ± 0.27 % under the following conditions: solid-liquid ratio of 1:102 g/mL, temperature of 80 °C, H2O2 concentration of 1.0 %, microwave power of 700 W, and 33 min. The purified GAPs were heteropolysaccharides primarily composed of mannose, ribose, glucuronic acid, glucose, galactose, xylose, and arabinose, with a molar ratio of 0.287:0.524:0.634:2.646:89.649:5.416:0.463. The weight-average and numerical-average molecular weights of the GAPs were determined to be 142.800 kDa and 75.255 kDa, respectively. Treatment of C. elegans with GAPs at 2.0 mg/mL resulted in a significant extension of the mean lifespan by 53.85 % compared to the negative control (p < 0.05). Furthermore, GAPs exhibited notable enhancements in the antioxidant system, including SOD by 56.90 % and CAT by 96.83 % (p < 0.05). Additionally, GAPs led to reductions in glucose-related metabolites, including glucose levels by 34.54 % and pyruvic acid levels by 149.54 % (p < 0.05). These findings demonstrate the excellent performance of GAPs in enhancing the antioxidant system and regulating abnormal glycometabolism.
Collapse
Affiliation(s)
- Yuxuan Tang
- College of Life Sciences, Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, China Jiliang University, Hangzhou, Zhejiang Province 310018, China
| | - Jiaqi Liu
- College of Life Sciences, Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, China Jiliang University, Hangzhou, Zhejiang Province 310018, China
| | - Jun Yang
- College of Life Sciences, Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, China Jiliang University, Hangzhou, Zhejiang Province 310018, China
| | - Yuting Xu
- College of Life Sciences, Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, China Jiliang University, Hangzhou, Zhejiang Province 310018, China
| | - Zhuoyan Sun
- College of Life Sciences, Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, China Jiliang University, Hangzhou, Zhejiang Province 310018, China
| | - Huinan Tang
- College of Life Sciences, Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, China Jiliang University, Hangzhou, Zhejiang Province 310018, China
| | - Yiwei Yang
- College of Life Sciences, Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, China Jiliang University, Hangzhou, Zhejiang Province 310018, China
| | - Jinjie Xuan
- College of Life Sciences, Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, China Jiliang University, Hangzhou, Zhejiang Province 310018, China
| | - Yongjun Zhang
- College of Life Sciences, Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, China Jiliang University, Hangzhou, Zhejiang Province 310018, China.
| |
Collapse
|
8
|
Zinellu A, Sedda S, Mangoni AA. Paraoxonase/Arylesterase Activity of Serum Paraoxonase-1 and Schizophrenia: A Systematic Review and Meta-Analysis. Antioxidants (Basel) 2023; 12:1484. [PMID: 37627479 PMCID: PMC10451270 DOI: 10.3390/antiox12081484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 08/27/2023] Open
Abstract
The presence of a pro-oxidant state in patients with schizophrenia may account for the increased risk of atherosclerosis and cardiovascular disease in this group and supports the potential utility of circulating biomarkers of oxidative stress for risk stratification and management. We investigated this issue by conducting a systematic review and meta-analysis of the association between the circulating concentrations of paraoxonase-1, an antioxidant calcium-dependent high-density lipoprotein (HDL)-associated esterase, with paraoxonase and arylesterase activity in schizophrenia. We searched electronic databases from inception to 31 May 2023 for studies investigating paraoxonase-1 in patients with schizophrenia and healthy controls and assessed the risk of bias and the certainty of evidence (PROSPERO registration number: CRD42023435442). Thirteen studies were identified for analysis. There were no significant between-group differences in paraoxonase (standard mean difference, SMD = 0.12, 95% CI -0.23 to 0.48, p = 0.50; extremely low certainty of evidence) or arylesterase activity (SMD = -0.08, 95% CI -0.39 to 0.23, p = 0.61; very low certainty of evidence). However, in meta-regression and subgroup analysis we observed significant associations between the SMD of paraoxonase and age (p = 0.003), HDL-cholesterol (p = 0.029), and study country (p = 0.04), and the SMD of arylesterase and age (p = 0.007), body mass index (p = 0.012), HDL-cholesterol (p = 0.002), and pharmacological treatment for schizophrenia (p < 0.001). In the absence of overall between-group differences, our systematic review and meta-analysis suggests that alterations in paraoxonase-1 may reflect a pro-oxidant state in specific subgroups of patients with schizophrenia that require further assessment in appropriately designed studies.
Collapse
Affiliation(s)
- Angelo Zinellu
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (A.Z.); (S.S.)
| | - Stefania Sedda
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (A.Z.); (S.S.)
| | - Arduino A. Mangoni
- Discipline of Clinical Pharmacology, College of Medicine and Public Health, Flinders University, Bedford Park, SA 5042, Australia
- Department of Clinical Pharmacology, Flinders Medical Centre, Southern Adelaide Local Health Network, Bedford Park, SA 5042, Australia
| |
Collapse
|
9
|
Bungau AF, Radu AF, Bungau SG, Vesa CM, Tit DM, Endres LM. Oxidative stress and metabolic syndrome in acne vulgaris: Pathogenetic connections and potential role of dietary supplements and phytochemicals. Biomed Pharmacother 2023; 164:115003. [PMID: 37315434 DOI: 10.1016/j.biopha.2023.115003] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 06/16/2023] Open
Abstract
Acne vulgaris is a highly prevalent skin condition caused by androgen-induced elevated sebum secretion, abnormal keratinization, bacterial colonization, and inflammation. Current research indicates a link between acne vulgaris and the metabolic syndrome, a group of disorders that includes obesity, insulin resistance, hypertension, and dyslipidemia. This link is thought to be modulated by excessive concentrations of oxidative stress markers and chronic inflammation, which are included in the pathophysiological mechanisms shared by both conditions. Excessive generation of reactive oxygen species damages cellular components and initiates an inflammatory response, hence promoting the development of both disorders. The current narrative review focuses on the molecular implications of inflammatory, hormonal, and environmental factors in the acne-metabolic syndrome correlation. Furthermore, it outlines the current state of knowledge related to the phyto-therapeutic approach to these conditions as an adjuvant strategy to allopathic treatment, but future multicenter and larger-scale research studies are needed establish new algorithms to be included in the future management of patients with these conditions.
Collapse
Affiliation(s)
- Alexa Florina Bungau
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087 Oradea, Romania
| | - Andrei Flavius Radu
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087 Oradea, Romania; Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania.
| | - Simona Gabriela Bungau
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087 Oradea, Romania; Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania.
| | - Cosmin Mihai Vesa
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087 Oradea, Romania; Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
| | - Delia Mirela Tit
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087 Oradea, Romania; Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania
| | - Laura Maria Endres
- Department of Psycho-Neurosciences and Recovery, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
| |
Collapse
|
10
|
Schiavo B, Meza-Figueroa D, Vizuete-Jaramillo E, Robles-Morua A, Angulo-Molina A, Reyes-Castro PA, Inguaggiato C, Gonzalez-Grijalva B, Pedroza-Montero M. Oxidative potential of metal-polluted urban dust as a potential environmental stressor for chronic diseases. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:3229-3250. [PMID: 36197533 DOI: 10.1007/s10653-022-01403-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 09/21/2022] [Indexed: 06/01/2023]
Abstract
Oxidative stress (OS) associated with metals in urban dust has become a public health concern. Chronic diseases linked to general inflammation are particularly affected by OS. This research analyzes the spatial distribution of metals associated with OS, the urban dust´s oxidative potential (OP), and the occurrence of diseases whose treatments are affected by OS. We collected 70 urban dust samples during pre- and post-monsoon seasons to achieve this. We analyzed particle size distribution and morphology by scanning electron microscopy, as well as metal(loid)s by portable X-ray fluorescence, and OP of dust in artificial lysosomal fluid by using an ascorbic acid depletion assay. Our results show that the mean concentration of Fe, Pb, As, Cr, Cu, and V in pre-monsoon was 83,984.6, 98.4, 23.5, 165.8, 301.3, and 141.9 mg kg-1, while during post-monsoon was 50,638.8, 73.9, 16.7, 124.3, 178.9, and 133.5 mg kg-1, respectively. Impoverished areas with the highest presence of cardiovascular, cancer, diabetes, and respiratory diseases coincide with contaminated areas where young adults live. We identified significant differences in the OP between seasons. OP increases during the pre-monsoon (from 7.8 to 237.5 nmol AA min-1) compared to the post-monsoon season (from 1.6 to 163.2 nmol AA min-1). OP values are much higher than measured standards corresponding to contaminated soil and urban particulate matter, which means that additional sources beside metals cause the elevated OP. The results show no risk from chronic exposure to metals; however, our results highlight the importance of studying dust as an environmental factor that may potentially increase oxidative stress.
Collapse
Affiliation(s)
- Benedetto Schiavo
- Instituto de Geofísica, Universidad Nacional Autónoma de México, 04150, Mexico City, Mexico.
| | - Diana Meza-Figueroa
- Departamento de Geología, Universidad de Sonora, Rosales y Encinas, 83000, Hermosillo, Sonora, Mexico.
| | - Efrain Vizuete-Jaramillo
- Departamento de Ciencias del Agua y del Medio Ambiente, Instituto Tecnológico de Sonora, Ciudad Obregón, Mexico
| | - Agustin Robles-Morua
- Departamento de Ciencias del Agua y del Medio Ambiente, Instituto Tecnológico de Sonora, Ciudad Obregón, Mexico
| | - Aracely Angulo-Molina
- Departamento de Ciencias Químico Biológicas, Universidad de Sonora, Rosales y Encinas, 83000, Hermosillo, Sonora, Mexico
| | - Pablo A Reyes-Castro
- Centro de Estudios en Salud y Sociedad, El Colegio de Sonora, Hermosillo, Mexico
| | - Claudio Inguaggiato
- Departamento de Geología, Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California (CICESE), Ensenada, Mexico
| | - Belem Gonzalez-Grijalva
- Departamento de Geología, Universidad de Sonora, Rosales y Encinas, 83000, Hermosillo, Sonora, Mexico
| | - Martin Pedroza-Montero
- Departamento de Investigación en Física, Universidad de Sonora, Rosales y Encinas, 83000, Hermosillo, Sonora, Mexico
| |
Collapse
|
11
|
Mautone Gomes H, Silveira AK, Gasparotto J, Bortolin RC, Terra SR, Brum PO, Gelain DP, Fonseca Moreira JC. Effects of coconut oil long-term supplementation in Wistar rats during metabolic syndrome - regulation of metabolic conditions involving glucose homeostasis, inflammatory signals, and oxidative stress. J Nutr Biochem 2023; 114:109272. [PMID: 36681309 DOI: 10.1016/j.jnutbio.2023.109272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 11/22/2022] [Accepted: 01/13/2023] [Indexed: 01/20/2023]
Abstract
This study was designed to evaluate the long-term effects of Fructose (20%) feeding in rats, simulating metabolic syndrome (MetS), and the effects of coconut oil (C.O.) supplementation when administered in a MetS context. MetS is a cluster of systemic conditions that represent an increased chance of developing cardiovascular diseases and type 2 diabetes in the future. C.O. has been the target of media speculation, and recent studies report inconsistent results. C.O. improved glucose homeostasis and reduced fat accumulation in Fructose-fed rats while decreasing the levels of triglycerides (TGs) in the liver. C.O. supplementation also increased TGs levels and fructosamine in serum during MetS, possibly due to white adipose tissue breakdown and high fructose feeding. Pro-inflammatory cytokines IL-1β and TNF-α were also increased in rats treated with Fructose and C.O. Oxidative stress marker nitrotyrosine is increased in fructose-fed animals, and C.O. treatment did not prevent this damage. No significant changes were observed in lipoperoxidation marker 4-Hydroxynonenal; however, fructose feeding increased total conjugated dienes and caused conjugated dienes to switch their conformation from cis-trans to trans-trans, which was not prevented by C.O. treatment. Potential benefits of C.O. have been reported with inconsistent results, and indeed we observed some benefits of C.O. supplementation in aiding weight loss, fat accumulation, and improving glucose homeostasis. Nonetheless, we also demonstrated that long-term C.O. supplementation could present some problematic effects with higher risk for individuals suffering MetS, including increased TGs and fructosamine levels and conformational changes in dienes.
Collapse
Affiliation(s)
- Henrique Mautone Gomes
- Center of Oxidative Stress Studies, Department of Biochemistry, Institute of Basic Health Sciences - Federal University of Rio Grande do Sul - UFRGS, Brazil.
| | - Alexandre K Silveira
- Center of Oxidative Stress Studies, Department of Biochemistry, Institute of Basic Health Sciences - Federal University of Rio Grande do Sul - UFRGS, Brazil
| | - Juciano Gasparotto
- Institute of Biomedical Sciences, Departament of Biochemistry, Federal University of Alfenas - UNIFAL, Minas Gerais, Brazil
| | - Rafael Calixto Bortolin
- Departamento de Ingeniería Civil y Ambiental, Universidad de La Costa - Barranquilla, Atlántico, Colombia
| | - Silvia R Terra
- Hospital Veterinário UNISUL, Universidade do Sul de Santa Catarina, Avenida José Acácio Moreira, 787, Dehon, Tubarão, Santa Catarina, Brasil
| | - Pedro O Brum
- Dr Bohr-Gasse 9, Universität Wien, department of microbiology, immunology and genetics, Max Perutz Labs, 1030, Vienna, Austria
| | - Daniel P Gelain
- Center of Oxidative Stress Studies, Department of Biochemistry, Institute of Basic Health Sciences - Federal University of Rio Grande do Sul - UFRGS, Brazil
| | - José C Fonseca Moreira
- Center of Oxidative Stress Studies, Department of Biochemistry, Institute of Basic Health Sciences - Federal University of Rio Grande do Sul - UFRGS, Brazil
| |
Collapse
|
12
|
Sanli Esme O, Savas HB, Sozen ME, Dinc E. The protective role of selenium in an experimental high fructose corn syrup exposure. JOURNAL OF CLINICAL AND EXPERIMENTAL INVESTIGATIONS 2023. [DOI: 10.29333/jcei/12998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023] Open
Abstract
<b>Objective:</b> Nowadays, fructose is recognized as a significant health threat. Prepared foods containing fructose are consumed more because they do not create a feeling of satiety. Selenium is an essential trace element with antioxidant and cell protective properties. In this study, the effect of high fructose corn syrup, which is used as a sweetener in many foods and beverages and consumed during pregnancy, and the possible protective role of selenium in this effect were investigated and examined.<br />
<b>Methods:</b> Fertilized specific pathogen-free eggs were used in our study. These eggs were divided equally into four groups. Each group was allocated 10 eggs containing viable embryos. These groups are pre-process control, post-process control, high fructose corn syrup (HFCS-55), and high fructose corn syrup and selenium (HFCS-55+Se 10<sup>-6</sup>) groups. Pellets containing and containing no active substance (HFCS-55, HFCS-55+Se 10<sup>-6</sup>) were carefully placed on the chorioallantoic membrane (CAM) of each egg in these groups. Oxidative stress status in all groups was determined by total oxidative stress (TOS) and total antioxidant capacity (TAC) methods.<br />
<b>Results:</b> In our study, a significant increase in TOS levels and a significant decrease in TAC levels were observed in egg groups given HFCS compared to other groups (p<0.05). The OSI value was shown to be lower in the group given HFCS+Se.<br />
<b>Conclusion:</b> As a result, HFCS was shown to increase oxidative stress. In line with our data, it has been shown that Se, plays a protective role against oxidative stress.
Collapse
Affiliation(s)
- Ozlem Sanli Esme
- Alanya Alaaddin Keykubat University, Graduate Education Institute, Department of Molecular Medicine, Antalya, Turkey
| | - Hasan Basri Savas
- Mardin Artuklu University, Faculty of Medicine, Department of Medical Biochemistry, Mardin, Turkey
| | - Mehmet Enes Sozen
- Alanya Alaaddin Keykubat University, Medical Faculty, Department of Histology and Embryology, Antalya, Turkey
| | - Elina Dinc
- Alanya Alaaddin Keykubat University, Graduate Education Institute, Department of Molecular Medicine, Antalya, Turkey
| |
Collapse
|
13
|
Tang Y, Zhang X, Lin Y, Sun J, Chen S, Wang W, Li J. Insights into the Oxidative Stress Alleviation Potential of Enzymatically Prepared Dendrobium officinale Polysaccharides. Molecules 2023; 28:molecules28073071. [PMID: 37049834 PMCID: PMC10095697 DOI: 10.3390/molecules28073071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 03/23/2023] [Accepted: 03/27/2023] [Indexed: 04/14/2023] Open
Abstract
(1) Background: The extraction parameters can dramatically alter the extraction rate and biological activity of polysaccharides. (2) Methods: Here, an enzyme-assisted extraction (EAE) was employed to extract D. officinale polysaccharides (DOPs), and its optimal extraction conditions were established by single-factor and Box-Behnken design (BBD) experiments. Further, on the basis of in vitro antioxidant capacity, the paraquat (PQ)-induced oxidative stress of Caenorhabditis elegans (C. elegans) was chosen as a research model to explore the antioxidant activity of DOPs. (3) Results: The results showed that the extraction yield of DOPs reached 48.66% ± 1.04% under the optimal condition. In vitro experiments had shown that DOPs have considerable ABTS+ radical scavenging capacity (EC50 = 7.27 mg/mL), hydroxyl radical scavenging capacity (EC50 = 1.61 mg/mL), and metal chelating power (EC50 = 8.31 mg/mL). Furthermore, in vivo experiments indicated that DOPs (0.25 mg/mL) significantly prolonged the lifespan, increased antioxidant enzyme activity, and upregulated the expression of daf-16 (>5.6-fold), skn-1 (>5.2-fold), and sir-2.1 (>2.3-fold) of C. elegans. (4) Conclusions: DOPs can be efficiently extracted by EAE and are effective in the reduction of oxidative stress levels in C. elegans.
Collapse
Affiliation(s)
- Yingqi Tang
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Xiong Zhang
- Hangzhou Zaoxianyibu Food Technology Co., Ltd., Hangzhou 310018, China
| | - Yudan Lin
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Jiehan Sun
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Shihao Chen
- Hangzhou Jiuxian Biotechnology Co., Ltd., Hangzhou 311618, China
| | - Weimin Wang
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Jia Li
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China
- Key Laboratory of Specialty Agri-Product Quality and Hazard Controlling Technology of Zhejiang Province, Hangzhou 310018, China
| |
Collapse
|
14
|
Chai J, Wang Y, Sun Z, Zhou Q, Xu J. Evaluation among trace elements, clinical parameters and type 1 diabetes according to sex: A new sight of auxiliary prediction in negative insulin auto-antibodies population. J Trace Elem Med Biol 2023; 75:127100. [PMID: 36410305 DOI: 10.1016/j.jtemb.2022.127100] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 10/13/2022] [Accepted: 11/04/2022] [Indexed: 11/10/2022]
Abstract
BACKGROUND Type 1 diabetes (T1D) exhibited sex-specific metabolic status including oxidative stress with dynamic change of trace elements, which emphasized the importance of the evaluation of trace elements according to sex. Besides, the most significant characteristic, insulin auto-antibodies, could not be found in all T1D patients, which needed the auxiliary prediction of clinical parameters. And it would benefit the early detection and treatment if some high-risk groups of T1D could predict and prevent the occurrence of disease through common clinical parameters. Hence, there was an urgent need to construct more effective and scientific statistical prediction models to serve clinic better. This study aimed to evaluate the sex-specific levels of trace elements and the relationship between trace elements and clinical parameters in T1D, and construct sex-specific auxiliary prediction model combined with trace elements and clinical parameters. METHODS A total of 105 T1D patients with negative insulin auto-antibodies and 105 age/sex-matched healthy individuals were enrolled in First Hospital of Jilin University. Inductively Coupled Plasma Mass Spectrometry was performed for the measurement of calcium (Ca), magnesium (Mg), zinc (Zn), copper (Cu), iron (Fe), selenium (Se) in the serum, and the data of clinical parameters were received from medical record system. The lambda-mu-sigma method was used to evaluate the relationship between abnormal clinical parameters and trace elements. Training set and validation set were divided for the construction of predictable models in males and females: clinical parameters model, trace element model and the combined model (clinical parameters and trace elements). Goodness fit test, decision curve analysis and other related statistical methods were used to perform data analysis. RESULTS Lower levels of Mg, Ca, Fe in the serum were found in T1D population in females compared with healthy population, while levels of Fe, Zn and Cu of serum in T1D individuals were higher than those of healthy population in males. Levels of serum Mg, Fe and Cu in T1D group were found with significant sex difference for (P < 0.05), and the levels of Fe and Cu in serum of males were higher than those of females, level of serum Mg in males was lower than those of females. Levels of serum Mg and Zn showed fluctuation trend with increased numbers of abnormal clinical parameters (NACP) in males. Serum Zn in females showed consistent elevated trend with NACP; serum Se increased first and then decreased with NACP in males and females. The auxiliary prediction model (Triglyceride, Total protein, serum Mg) was found with the highest predicted efficiency in males (AUC=0.993), while the model in females (Apolipoprotein A, Creatinine, Fe, Se, Zn/Cu ratio) showed the best predicted efficiency (AUC=0.951). The models had passed the verification in validation set, and Chi-square goodness-of-fit test, DCA results both confirmed their satisfactory clinical applicability. CONCLUSION Sex-specific difference were found in serum Mg, Fe and Cu in T1D. The combination of triglyceride, total protein and serum Mg for males, and apolipoprotein A, creatinine, Fe, Se, Zn/Cu ratio for females could effectively predict T1D in patients with negative anti-bodies, which would provide alarm for the population with high-risk of T1D and serve the T1D prediction in patients with negative anti-bodies.
Collapse
Affiliation(s)
- Jiatong Chai
- Department of Laboratory Medicine, The First Hospital of Jilin University, Changchun, China
| | - Yiting Wang
- Department of Laboratory Medicine, The First Hospital of Jilin University, Changchun, China
| | - Zeyu Sun
- Department of Laboratory Medicine, The First Hospital of Jilin University, Changchun, China
| | - Qi Zhou
- Department of Laboratory Medicine, The First Hospital of Jilin University, Changchun, China
| | - Jiancheng Xu
- Department of Laboratory Medicine, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
15
|
Pathophysiology of obesity and its associated diseases. Acta Pharm Sin B 2023. [DOI: 10.1016/j.apsb.2023.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
16
|
Potential Properties of Natural Nutraceuticals and Antioxidants in Age-Related Eye Disorders. LIFE (BASEL, SWITZERLAND) 2022; 13:life13010077. [PMID: 36676026 PMCID: PMC9863869 DOI: 10.3390/life13010077] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 12/23/2022] [Accepted: 12/25/2022] [Indexed: 12/29/2022]
Abstract
Eye health is crucial, and the onset of diseases can reduce vision and affect the quality of life of patients. The main causes of progressive and irreversible vision loss include various pathologies, such as cataracts, ocular atrophy, corneal opacity, age-related macular degeneration, uncorrected refractive error, posterior capsular opacification, uveitis, glaucoma, diabetic retinopathy, retinal detachment, undetermined disease and other disorders involving oxidative stress and inflammation. The eyes are constantly exposed to the external environment and, for this reason, must be protected from damage from the outside. Many drugs, including cortisonics and antinflammatory drugs have widely been used to counteract eye disorders. However, recent advances have been obtained via supplementation with natural antioxidants and nutraceuticals for patients. In particular, evidence has accumulated that polyphenols (mostly deriving from Citrus Bergamia) represent a reliable source of antioxidants able to counteract oxidative stress accompanying early stages of eye diseases. Luteolin in particular has been found to protect photoreceptors, thereby improving vision in many disease states. Moreover, a consistent anti-inflammatory response was found to occur when curcumin is used alone or in combination with other nutraceuticals. Additionally, Coenzyme Q10 has been demonstrated to produce a consistent effect in reducing ocular pressure, thereby leading to protection in patients undergoing glaucoma. Finally, both grape seed extract, rich in anthocyanosides, and polynsatured fatty acids seem to contribute to the prevention of retinal disorders. Thus, a combination of nutraceuticals and antioxidants may represent the right solution for a multi-action activity in eye protection, in association with current drug therapies, and this will be of potential interest in early stages of eye disorders.
Collapse
|
17
|
Duan G, Li J, Duan Y, Zheng C, Guo Q, Li F, Zheng J, Yu J, Zhang P, Wan M, Long C. Mitochondrial Iron Metabolism: The Crucial Actors in Diseases. Molecules 2022; 28:29. [PMID: 36615225 PMCID: PMC9822237 DOI: 10.3390/molecules28010029] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
Iron is a trace element necessary for cell growth, development, and cellular homeostasis, but insufficient or excessive level of iron is toxic. Intracellularly, sufficient amounts of iron are required for mitochondria (the center of iron utilization) to maintain their normal physiologic function. Iron deficiency impairs mitochondrial metabolism and respiratory activity, while mitochondrial iron overload promotes ROS production during mitochondrial electron transport, thus promoting potential disease development. This review provides an overview of iron homeostasis, mitochondrial iron metabolism, and how mitochondrial iron imbalances-induced mitochondrial dysfunction contribute to diseases.
Collapse
Affiliation(s)
- Geyan Duan
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianjun Li
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yehui Duan
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Changbing Zheng
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Qiuping Guo
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fengna Li
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Zheng
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiayi Yu
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peiwen Zhang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Mengliao Wan
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Cimin Long
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
18
|
Mert H, İrak K, Çibuk S, Yıldırım S, Mert N. The effect of evening primrose oil ( Oenothera biennis) on the level of adiponectin and some biochemical parameters in rats with fructose induced metabolic syndrome. Arch Physiol Biochem 2022; 128:1539-1547. [PMID: 32594769 DOI: 10.1080/13813455.2020.1781900] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The effect of evening primrose oil on adiponectin level and some biochemical parameters in model of fructose-induced metabolic syndrome were investigated. The rats were divided into 4 groups: control, evening primrose oil, fructose, fructose + evening primrose oil. Body weight, daily feed and water consumptions and systolic blood pressures of animals were measured. At the end of trial, blood samples were taken, livers were excised and histopathological examination was performed. Glucose, uric acid, triglyceride, T.cholesterol, LDL, HDL, VLDL, ALT, AST, ALP, LDH, adiponectin, insulin, IL-6, TNF-α, TAC, and TOS levels were analysed. Some analysed parameters and systolic blood pressure of fructose + evening primrose oil group decreased significantly compared to fructose group and adiponectin, TAC, and HDL levels were significantly increased. As conclusion, evening primrose oil can be considered as antioxidant agent by reducing oxidative stress, increasing adiponectin levels and insulin sensitivity, anti-inflammatory properties, exhibiting anti-atherogenic effect by regulating dyslipidemia and systolic blood pressure.
Collapse
Affiliation(s)
- Handan Mert
- Faculty of Veterinary Medicine, Department of Biochemistry, Van Yuzuncu Yil University, Van, Turkey
| | - Kıvanç İrak
- Faculty of Veterinary Medicine, Department of Biochemistry, Siirt University, Siirt, Turkey
| | - Salih Çibuk
- Vocational School of Health Services, Van Yuzuncu Yil University, Van, Turkey
| | - Serkan Yıldırım
- Faculty of Veterinary Medicine, Department of Pathology, Atatürk University, Erzurum, Turkey
| | - Nihat Mert
- Faculty of Veterinary Medicine, Department of Biochemistry, Van Yuzuncu Yil University, Van, Turkey
| |
Collapse
|
19
|
Caudet J, Trelis M, Cifre S, Tapia G, Soriano JM, Rodrigo R, Merino-Torres JF. Do Intestinal Unicellular Parasites Have a Role in the Inflammatory and Redox Status among the Severely Obese? Antioxidants (Basel) 2022; 11:2090. [PMID: 36358463 PMCID: PMC9686585 DOI: 10.3390/antiox11112090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/16/2022] [Accepted: 10/18/2022] [Indexed: 09/08/2024] Open
Abstract
The diagnosis of obesity comprises subjects with totally different phenotypes and metabolic profiles. Systemic inflammation and oxidative stress derived from the white adipose tissue are suggested as the link between this disease and the development of insulin resistance and metabolic comorbidities. The presence of unicellular eukaryotic parasites colonizing the human gut ecosystem is a common circumstance, and yet their influence on the inflammatory and redox status of the obese host has not been assessed. Herein, a set of inflammatory and redox biomarkers were assessed together with a parasitological analysis of 97 severely obese subjects. Information was also collected on insulin resistance and on the antioxidant composition of the diet. The global prevalence of intestinal unicellular parasites was 49.5%, with Blastocystis sp. the most prevalent protozoan found (42.3%). Colonized subjects displayed a higher total antioxidant capacity and a trend towards higher extracellular superoxide dismutase activity, regardless of their insulin resistance status, along with lower reduced glutathione/oxidized glutathione (GSH/GSSG) ratios in plasma in the insulin-resistant subgroup. No changes in malondialdehyde levels, or in inflammatory cytokines in plasma, were found in regard to the colonization status. In conclusion, enteric eukaryotic unicellular parasites may play an important role in modulating the antioxidant defenses of an obese host, thus could have beneficial effects with respect to the development of systemic metabolic disorders.
Collapse
Affiliation(s)
- Jana Caudet
- Department of Endocrinology and Nutrition, University and Polytechnic Hospital La Fe, 46026 Valencia, Spain
- Joint Research Unit on Endocrinology, Nutrition and Clinical Dietetics, Health Research Institute Hospital La Fe-University of Valencia, 46026 Valencia, Spain
| | - María Trelis
- Joint Research Unit on Endocrinology, Nutrition and Clinical Dietetics, Health Research Institute Hospital La Fe-University of Valencia, 46026 Valencia, Spain
- Parasite & Health Research Group, Area of Parasitology, Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, 46010 Valencia, Spain
| | - Susana Cifre
- Joint Research Unit on Endocrinology, Nutrition and Clinical Dietetics, Health Research Institute Hospital La Fe-University of Valencia, 46026 Valencia, Spain
| | - Gabriela Tapia
- Parasite & Health Research Group, Area of Parasitology, Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, 46010 Valencia, Spain
| | - José M. Soriano
- Joint Research Unit on Endocrinology, Nutrition and Clinical Dietetics, Health Research Institute Hospital La Fe-University of Valencia, 46026 Valencia, Spain
- Food & Health Lab, Institute of Materials Science, University of Valencia, 46980 Valencia, Spain
| | - Regina Rodrigo
- Joint Research Unit on Endocrinology, Nutrition and Clinical Dietetics, Health Research Institute Hospital La Fe-University of Valencia, 46026 Valencia, Spain
- Pathophysiology and Therapies for Vision Disorders, Principe Felipe Research Center (CIPF), 46012 Valencia, Spain
- Joint Research Unit on Rare Diseases, CIPF-Health Research Institute Hospital La Fe, 46012 Valencia, Spain
- Centre for Biomedical Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Physiology, University of Valencia, 46010 Valencia, Spain
| | - Juan F. Merino-Torres
- Department of Endocrinology and Nutrition, University and Polytechnic Hospital La Fe, 46026 Valencia, Spain
- Joint Research Unit on Endocrinology, Nutrition and Clinical Dietetics, Health Research Institute Hospital La Fe-University of Valencia, 46026 Valencia, Spain
- Department of Medicine, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain
| |
Collapse
|
20
|
Tasić D, Opačić M, Kovačević S, Nikolić Kokić A, Dimitrijević M, Nikolić D, Vojnović Milutinović D, Blagojević D, Djordjevic A, Brkljačić J. Effects of Fructose and Stress on Rat Renal Copper Metabolism and Antioxidant Enzymes Function. Int J Mol Sci 2022; 23:ijms23169023. [PMID: 36012287 PMCID: PMC9409054 DOI: 10.3390/ijms23169023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/02/2022] [Accepted: 08/10/2022] [Indexed: 12/22/2022] Open
Abstract
The effects of a fructose-rich diet and chronic stress on copper metabolism in the kidneys are still understudied. We investigated whether fructose and/or chronic unpredictable stress modulate copper metabolism in a way that affects redox homeostasis, thus contributing to progression of metabolic disturbances in the kidney. We determined protein level of copper transporters, chaperones, and cuproenzymes including cytochrome c oxidase, as well as antioxidant enzymes function in the kidneys of male Wistar rats subjected to 20% liquid fructose supplementation and/or chronic stress. Liquid fructose supplementation increased level of copper chaperone of superoxide dismutase and decreased metallothionein level, while rendering the level of copper importer and copper chaperones involved in copper delivery to mitochondria and trans Golgi network unaffected. Stress had no effect on renal copper metabolism. The activity and expression of renal antioxidant enzymes remained unaltered in all experimental groups. In conclusion, fructose, independently of stress, decreased renal copper level, and modulated renal copper metabolism as to preserve vital cellular function including mitochondrial energy production and antioxidative defense, at the expense of intracellular copper storage.
Collapse
Affiliation(s)
- Danica Tasić
- Department of Biochemistry, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, 142 Despot Stefan Blvd, 11060 Belgrade, Serbia
| | - Miloš Opačić
- Department of Life Sciences, Institute for Multidisciplinary Research, University of Belgrade, 142 Despot Stefan Blvd, 11060 Belgrade, Serbia
| | - Sanja Kovačević
- Department of Biochemistry, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, 142 Despot Stefan Blvd, 11060 Belgrade, Serbia
| | - Aleksandra Nikolić Kokić
- Department of Physiology, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, 142 Despot Stefan Blvd, 11060 Belgrade, Serbia
| | - Milena Dimitrijević
- Department of Life Sciences, Institute for Multidisciplinary Research, University of Belgrade, 142 Despot Stefan Blvd, 11060 Belgrade, Serbia
| | - Dušan Nikolić
- Department of Biology and Inland Waters Protection, Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11030 Belgrade, Serbia
| | - Danijela Vojnović Milutinović
- Department of Biochemistry, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, 142 Despot Stefan Blvd, 11060 Belgrade, Serbia
| | - Duško Blagojević
- Department of Physiology, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, 142 Despot Stefan Blvd, 11060 Belgrade, Serbia
| | - Ana Djordjevic
- Department of Biochemistry, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, 142 Despot Stefan Blvd, 11060 Belgrade, Serbia
| | - Jelena Brkljačić
- Department of Biochemistry, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, 142 Despot Stefan Blvd, 11060 Belgrade, Serbia
- Correspondence: ; Tel.: +381-11-2078318
| |
Collapse
|
21
|
Bungau SG, Tit DM, Vesa CM, Abid A, Szilagyi DV, Radu AF, Bungau AF, Tarce AG, Behl T, Stoicescu M, Brisc CM, Gitea D, Nechifor AC, Endres L. Non-conventional therapeutical approaches to acne vulgaris related to its association with metabolic disorders. Eur J Pharmacol 2022; 923:174936. [PMID: 35378101 DOI: 10.1016/j.ejphar.2022.174936] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/12/2022] [Accepted: 03/30/2022] [Indexed: 12/31/2022]
Abstract
The ever-increasing frequency of metabolic syndrome (MetS) is still a major challenge of the public health care system, worldwide. In recent years, researchers have been drawn to the uncommon (at first look) link between skin illnesses and MetS. Because of the pro-inflammatory mechanisms and insulin resistance (IR) that are upregulated in metabolic syndrome, many skin disorders are correlated to metabolic dysfunctions, including acne vulgaris. A comprehensive understanding of the link between MetS and acne vulgaris may contribute to the development of new treatment strategies. The current review focuses on dietary and therapeutic interventions and assesses the effect of various approaches such as improving diet by avoiding certain food products (i.e., milk and chocolate) or increasing the intake of others (i.e., food products rich in omega-3 fatty acids), metformin administration, therapy with plant extracts, plant essential oils, and probiotic supplementation on the improvement of certain acne vulgaris severity parameters. These therapeutic approaches, when combined with allopathic treatment, can improve the patients' quality of life.
Collapse
Affiliation(s)
- Simona Gabriela Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028, Oradea, Romania; Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087, Oradea, Romania.
| | - Delia Mirela Tit
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028, Oradea, Romania; Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087, Oradea, Romania.
| | - Cosmin Mihai Vesa
- Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073, Oradea, Romania.
| | - Areha Abid
- Department of Food and Bioproduct Science, College of Agriculture and Bioresources, University of Saskatchewan, Canada.
| | - Denisa-Viola Szilagyi
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087, Oradea, Romania.
| | - Andrei-Flavius Radu
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087, Oradea, Romania.
| | - Alexa Florina Bungau
- Faculty of Medicine and Pharmacy, University of Oradea, 410073, Oradea, Romania.
| | | | - Tapan Behl
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, India.
| | - Manuela Stoicescu
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073, Oradea, Romania.
| | - Cristina Mihaela Brisc
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073, Oradea, Romania.
| | - Daniela Gitea
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028, Oradea, Romania.
| | - Aurelia Cristina Nechifor
- Analytical Chemistry and Environmental Engineering Department, University Politehnica of Bucharest, 011061, Bucharest, Romania.
| | - Laura Endres
- Department of Psycho-neurosciences and Recovery, Faculty of Medicine and Pharmacy, University of Oradea, 410073, Oradea, Romania.
| |
Collapse
|
22
|
Haidara MA, Al-Ani B, Bin-Jaliah I, Shams Eldeen AM, Morsy MD. Vanadyl sulphate ameliorates biomarkers of endothelial injury and coagulation and thrombosis in a rat model of hyperglycaemia. Arch Physiol Biochem 2022; 128:447-454. [PMID: 31774317 DOI: 10.1080/13813455.2019.1691602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
BACKGROUND We sought to determine whether the insulin mimicking agent, vanadyl sulphate (Van) can inhibit biomarkers of endothelial injury and coagulation and thrombosis induced by a moderate level of hyperglycaemia. MATERIAL AND METHODS Hyperglycaemia was induced in rats by a single injection of streptozotocin (STZ, 50 mg/kg) two weeks after being fed on a high-fat diet (model group). The treatment group started Van (20 mg/kg/day) treatment one-week post STZ injection and continued on Van until being sacrificed at week 10. RESULTS Administration of Van to the model group significantly (p < .05) ameliorated dyslipidemia and biomarkers of inflammation (TNF-α, IL-6, and hsCRP) and endothelial injury (E-selectin, P-selectin, sICAM-1, sVCAM-1, and ET-1). Van also significantly inhibited hyperglycaemia-induced blood levels of coagulation (vWF) and thrombosis (PAI-1 and fibrinogen) biomarkers. CONCLUSIONS Vanadyl sulphate effectively suppresses hyperglycaemia-induced endothelial injury, coagulation and thrombosis, which is associated with the inhibition of inflammation and dyslipidemia.
Collapse
Affiliation(s)
- Mohamed A Haidara
- Department of Physiology, College of Medicine, King Khalid University, Abha, Saudi Arabia
- Department of Physiology, Kasr Al-Aini Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Bahjat Al-Ani
- Department of Physiology, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Ismaeel Bin-Jaliah
- Department of Physiology, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Asmaa M Shams Eldeen
- Department of Physiology, Kasr Al-Aini Faculty of Medicine, Cairo University, Cairo, Egypt
| | - M D Morsy
- Department of Physiology, College of Medicine, King Khalid University, Abha, Saudi Arabia
- Department of Physiology, College of Medicine, Menoufia University, Shibin el Kom, Egypt
| |
Collapse
|
23
|
Di Renzo L, De Lorenzo A, Fontanari M, Gualtieri P, Monsignore D, Schifano G, Alfano V, Marchetti M. Immunonutrients involved in the regulation of the inflammatory and oxidative processes: implication for gamete competence. J Assist Reprod Genet 2022; 39:817-846. [PMID: 35353297 PMCID: PMC9050992 DOI: 10.1007/s10815-022-02472-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 03/16/2022] [Indexed: 11/30/2022] Open
Abstract
Purpose The purpose of this umbrella review is to bring together the most recent reviews concerning the role of immunonutrients for male and female infertility. Methods Regarding immunonutrients and fertility, the authors have analyzed reviews, systematic reviews, and meta-analyses published between 2011 and June 2021. All reviews on animal or in vitro studies were excluded. Relevant keywords to term micronutrients were analyzed alone or in association with other terms such as “gamete competence,” “male OR female fertility,” “male OR female infertility,” “fertile, “folliculogenesis,” “spermatogenesis,” “immunomodulation,” “immune system,” “oxidative stress.” Results The primary research has included 108 results, and after screening by title, abstract. and not topic-related, 41 studies have been included by full texts. The results show the molecular mechanisms and the immunonutrients related impact on gamete formation, development. and competence. In particular, this review focused on arginine, glutamine, vitamin C, vitamin D, vitamin E, omega-3, selenium, and zinc. Conclusions Inflammation and oxidative stress significantly impact human reproduction. For this reason, immunonutrients may play an important role in the treatment of infertile patients. However, due to the lack of consistent clinical trials, their application is limited. Therefore, the development of clinical trials is necessary to define the correct supplementation, in case of deficiency.
Collapse
Affiliation(s)
- Laura Di Renzo
- Section of Clinical Nutrition and Nutrigenomic, Department of Biomedicine and Prevention, University of Tor Vergata, Via Montpellier 1, 00133, Rome, Italy.,School of Specialization in Food Sciences, University of Rome Tor Vergata, Via Montpellier 1, 00133, Rome, Italy.,Italian University Network for Sustainable Development (RUS), Food Working Group, University of Tor Vergata, Via Cracovia, 00133, Rome, Italy
| | - Antonino De Lorenzo
- Section of Clinical Nutrition and Nutrigenomic, Department of Biomedicine and Prevention, University of Tor Vergata, Via Montpellier 1, 00133, Rome, Italy
| | - Marco Fontanari
- School of Specialization in Food Sciences, University of Rome Tor Vergata, Via Montpellier 1, 00133, Rome, Italy
| | - Paola Gualtieri
- Section of Clinical Nutrition and Nutrigenomic, Department of Biomedicine and Prevention, University of Tor Vergata, Via Montpellier 1, 00133, Rome, Italy.
| | - Diego Monsignore
- School of Specialization in Food Sciences, University of Rome Tor Vergata, Via Montpellier 1, 00133, Rome, Italy
| | - Giulia Schifano
- School of Specialization in Food Sciences, University of Rome Tor Vergata, Via Montpellier 1, 00133, Rome, Italy
| | - Valentina Alfano
- School of Specialization in Food Sciences, University of Rome Tor Vergata, Via Montpellier 1, 00133, Rome, Italy
| | - Marco Marchetti
- PhD School of Applied Medical-Surgical Sciences, University of Rome Tor Vergata, Via Montpellier 1, 00133, Rome, Italy
| | | |
Collapse
|
24
|
Zhang Y, Shi Q, Jiang W, Yao J, Zeng J, Wang W, Zhang Y. Comparison of the chemical composition and antioxidant stress ability of polysaccharides from Auricularia auricula under different drying methods. Food Funct 2022; 13:2938-2951. [PMID: 35191914 DOI: 10.1039/d1fo03956c] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Auricularia auricula fruiting body-derived polysaccharides (AAPs) were dried using different drying procedures, including hot air-, far infrared-, freeze-, and microwave-drying. The influences of different drying procedures on the chemical compositions and antioxidant activity in vitro and in vivo of AAPs were investigated. The results indicated that freeze-dried AAPs (AAPs-F) possessed the highest uronic acid content (33.53%) and the lowest molecular weight (406.77 kDa). Moreover, AAPs-F exhibited the most potent antioxidant abilities in vitro, including ABTS+ and DPPH˙ scavenging abilities, ferric reducing power, and metal ion chelating capacity. Besides, AAPs-F could significantly prolong the lifespan of wild-type C. elegans under oxidative stress induced by H2O2 and methyl viologen (p < 0.05) and upregulate the mRNA expression levels of daf-16 (>2.7 fold), sod-3 (>9.2 fold), skn-1 (>4.5 fold) and sir-2.1 (>1.9 fold), and play a significant role in protecting C. elegans against apoptosis (p < 0.05). Hence, freeze-drying was determined as the preferred procedure for obtaining high-quality AAPs.
Collapse
Affiliation(s)
- Yakun Zhang
- College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang Province, 310018, China.
| | - Qianwen Shi
- College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang Province, 310018, China.
| | - Wen Jiang
- College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang Province, 310018, China.
| | - Jing Yao
- Liang Xin College, China Jiliang University, Hangzhou, Zhejiang Province, 310018, China
| | - Jiangying Zeng
- College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang Province, 310018, China.
| | - Weimin Wang
- College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang Province, 310018, China.
| | - Yongjun Zhang
- College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang Province, 310018, China.
| |
Collapse
|
25
|
Vaccines, Microbiota and Immunonutrition: Food for Thought. Vaccines (Basel) 2022; 10:vaccines10020294. [PMID: 35214752 PMCID: PMC8874781 DOI: 10.3390/vaccines10020294] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/04/2022] [Accepted: 02/08/2022] [Indexed: 12/14/2022] Open
Abstract
Vaccines are among the most effective health measures and have contributed to eradicating some diseases. Despite being very effective, response rates are low in some individuals. Different factors have been proposed to explain why some people are not as responsive as others, but what appears to be of critical importance is the presence of a healthy functioning immune system. In this respect, a key factor in modulating the immune system, both in its adaptive and innate components, is the microbiota. While microbiota can be modulated in different ways (i.e., antibiotics, probiotics, prebiotics), an effective and somewhat obvious mechanism is via nutrition. The science of nutrients and their therapeutic application is called immunonutrition, and it is increasingly being considered in several conditions. Our review will focus on the importance of nutrition and microbiota modulation in promoting a healthy immune system while also discussing the overall impact on vaccination response.
Collapse
|
26
|
Dlamini BS, Hernandez CE, Chen CR, Shih WL, Hsu JL, Chang CI. In vitro antioxidant, antiglycation, and enzymatic inhibitory activity against α-glucosidase, α-amylase, lipase and HMG-CoA reductase of Terminalia boivinii Tul. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2021.102235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
27
|
Micoogullari U, Cakici MC, Kilic FU, Kisa E, Ozcift B, Caglayan A, Neselioglu S, Karatas OF, Erel O. Evaluation of the role of thiol / disulfide homeostasis in the etiology of idiopathic male infertility with a novel and automated assay. Syst Biol Reprod Med 2021; 68:162-168. [PMID: 34893004 DOI: 10.1080/19396368.2021.2003481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Idiopathic male infertility (IMI) is the absence of a reason to explain a patient's infertility, and it occurs at a frequency of %31. In this study we aimed to investigate the oxidant/antioxidant status of patients with IMI and compare their results to those of healthy controls.A total of 79 patients with IMI (group 1) and 90 healthy individuals (group 2) were included in the study. We used Erel & Neşelioğlu's thiol/disulfide homeostasis test. Collective and individual measurements of oxidative/antioxidative balance components were carried out by this novel thiol/disulfide homeostasis test. Serum antioxidant (total thiol (toSH), native thiol (SH)) and oxidant (disulfide (SS)) levels of all study participants were measured. The results from both groups were compared and analyzed statistically. After toSH, SH, and SS levels were determined, SS/toSH% and SS/SH% levels for each group were analyzed separately and compared statistically.The toSH, SH levels, and SS/SH%, SS/toSH% ratios were significantly different between the groups (p < 0.05).While antioxidant parameters (toSH and SH values) decreased in group1, oxidant parameters (SS/SH%, SS/toSH%) increased significantly. Although SS values were higher in group 1, the difference was not significant (p = 0.214). The SH cutoff value of 507.15 µmol/L predicted the probability of IMI development with 72.2% sensitivity and 74.4% specificity and toSH cutoff value of 545.45 µmol/L predicted IMI development with 70.9% sensitivity and 73.3 specificity (p < 0.001). Multivariate logistic regression analysis showed that the only independent risk factor for the development of IMI is SH. Patients with IMI had a significant change in their thiol/disulfide homeostasis, which suggests the involvement of this imbalance in the pathophysiology of IMI. Furthermore, these results also support the notion of the involvement of oxidative stress in sperm dysfunction. It also points to the possibility of using antioxidants in IMI treatment.Abbreviations: IMI: idiopathic male infertility; toSH: total thiol; SH: native thiol; SS: disulfide; OS: oxidative stress; ROS: reactive oxygen species; DCF: dichlorofluorescein; MiOXSYS: male infertility oxidative system; MOSI: male oxidative stress infertility; LC: L-carnitine; LAC: L-acetylcarnitine; Vit: vitamin; OAT: oligoasthenozoospermia; TMSC: total motile sperm count; WHO: World Health Organization; BMI: body mass index; DTNB: 5,5'-dithiobis-2-nitrobenzoic acid; CV: coefficient variation; ROC: receiver operating characteristic; PR: progressive, NP: non-progressive.
Collapse
Affiliation(s)
- Uygar Micoogullari
- Department of Urology, University of Health Sciences, Tepecik Education and Research Hospital, İzmir, Turkey
| | - Mehmet Caglar Cakici
- School of Medicine, Department of Urology, Istanbul Medeniyet University, İstanbul, Turkey
| | - Furkan Umut Kilic
- School of Medicine, Department of Urology, Ankara Yildirim Beyazit University, Ankara, Turkey
| | - Erdem Kisa
- Department of Urology, University of Health Sciences, Tepecik Education and Research Hospital, İzmir, Turkey
| | - Burak Ozcift
- Department of Pediatric Urology, Dr.Behcet Uz Children Hospital, İzmir, Turkey
| | - Alper Caglayan
- Department of Urology, Cigli Region Training Hospital, İzmir, Turkey
| | - Salim Neselioglu
- School of Medicine, Department of Biochemistry, Ankara Yildirim Beyazit University, Ankara, Turkey
| | | | - Ozcan Erel
- School of Medicine, Department of Biochemistry, Ankara Yildirim Beyazit University, Ankara, Turkey
| |
Collapse
|
28
|
Kovačević S, Brkljačić J, Vojnović Milutinović D, Gligorovska L, Bursać B, Elaković I, Djordjevic A. Fructose Induces Visceral Adipose Tissue Inflammation and Insulin Resistance Even Without Development of Obesity in Adult Female but Not in Male Rats. Front Nutr 2021; 8:749328. [PMID: 34869524 PMCID: PMC8632624 DOI: 10.3389/fnut.2021.749328] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/08/2021] [Indexed: 12/15/2022] Open
Abstract
Introduction: Obesity and related metabolic disturbances are frequently related to modern lifestyle and are characterized by excessive fructose intake. Visceral adipose tissue (VAT) inflammation has a central role in the development of insulin resistance, type 2 diabetes (T2D), and metabolic syndrome. Since sex-related differences in susceptibility and progression of metabolic disorders are not yet fully understood, our aim was to examine inflammation and insulin signaling in VAT of fructose-fed female and male adult rats. Methods: We analyzed effects of 9-week 10% fructose-enriched diet on energy intake, VAT mass and histology, and systemic insulin sensitivity. VAT insulin signaling and markers of VAT inflammation, and antioxidative defense status were also evaluated. Results: The fructose diet had no effect on VAT mass and systemic insulin signaling in the female and male rats, while it raised plasma uric acid, increased PPARγ level in the VAT, and initiated the development of a distinctive population of small adipocytes in the females. Also, adipose tissue insulin resistance, evidenced by increased PTP1B and insulin receptor substrate 1 (IRS1) inhibitory phosphorylation and decreased Akt activity, was detected. In addition, fructose stimulated the nuclear accumulation of NFκB, increased expression of proinflammatory cytokines (IL-1β, IL-6, and TNFα), and protein level of macrophage marker F4/80, superoxide dismutase 1, and glutathione reductase. In contrast to the females, the fructose diet had no effect on plasma uric acid and VAT inflammation in the male rats, but less prominent alterations in VAT insulin signaling were observed. Conclusion: Even though dietary fructose did not elicit changes in energy intake and led to obesity in the females, it initiated the proliferation of small-sized adipocytes capable of storing fats further. In contrast to the males, this state of VAT was accompanied with enhanced inflammation, which most likely contributed to the development of insulin resistance. The observed distinction could possibly originate from sex-related differences in uric acid metabolism. Our results suggest that VAT inflammation could precede obesity and start even before the measurable increase in VAT mass, making it a silent risk factor for the development of T2D. Our results emphasize that adipose tissue dysfunction, rather than its simple enlargement, could significantly contribute to the onset and development of obesity and related metabolic disorders.
Collapse
Affiliation(s)
- Sanja Kovačević
- Department of Biochemistry, Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Jelena Brkljačić
- Department of Biochemistry, Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Danijela Vojnović Milutinović
- Department of Biochemistry, Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Ljupka Gligorovska
- Department of Biochemistry, Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Biljana Bursać
- Department of Biochemistry, Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Ivana Elaković
- Department of Biochemistry, Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Ana Djordjevic
- Department of Biochemistry, Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
29
|
Kovačević S, Elaković I, Vojnović Milutinović D, Nikolić-Kokić A, Blagojević D, Matić G, Tappy L, Djordjevic A, Brkljačić J. Fructose-Rich Diet Attenuates Stress-Induced Metabolic Disturbances in the Liver of Adult Female Rats. J Nutr 2021; 151:3661-3670. [PMID: 34510217 DOI: 10.1093/jn/nxab294] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 06/22/2021] [Accepted: 08/09/2021] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Both fructose consumption and chronic stress contribute to the development of metabolic disorders. The consequences of such combination are not fully understood. OBJECTIVE We investigated whether fructose supplementation and chronic stress synergistically disturb hepatic lipid and glucose metabolism. The role of energy sensing, redox, and inflammatory status during development of metabolic disturbances was investigated. METHODS Female Wistar rats, aged 2.5 mo, were divided into 4 experimental groups: control (C) fed a standard diet (commercial food and drinking water); fructose (F) fed the same food and 10% fructose solution; stress (S) fed the standard diet and subjected to chronic unpredictable stress and, stress + fructose (SF) combining conditions F and S as above. Stress included daily stressors: cold water forced swimming, physical restraint, cold room, wet bedding, rocking, switching, or tilting cages. After 9 wk, hepatic enzymes and transcription factors involved in gluconeogenesis, lipogenesis, fatty acid oxidation, antioxidative defence, energy sensing, and cytokines were assessed by qPCR, Western blotting, and spectrophotometry and analyzed by 2-factor ANOVA. RESULTS Fructose increased AMP-activated protein kinase (AMPK) phosphorylation (40%; P < 0.05) and the ratio of inhibitory phosphorylation to total acetyl-CoA carboxylase (46%; P < 0.01), and decreased sterol regulatory element binding protein 1c nuclear translocation by 30% (P < 0.05) in F and SF compared with C rats. Increased phosPck (phoenolpyruvate carboxykinase) (85%) and G6pase(glucose-6-phosphatase) (55%) was observed in S rats (P < 0.05). A 40% decrease in Apob (apolipoprotein B-100) and an increase in hepatic lipids (P < 0.05), together with a double increase in TNF-α (P < 0.001), were observed in S rats, but without liver histopathological changes. These stress effects on lipid accumulation and TNF-α were abolished in SF rats (P < 0.05). CONCLUSIONS Fructose does not enhance stress effects on hepatic lipid and glucose metabolism but attenuates its effects on hepatic lipid accumulation and inflammation, suggesting that, in female rats, AMPK activation prevails over stress-induced effects.
Collapse
Affiliation(s)
- Sanja Kovačević
- Department of Biochemistry, Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Ivana Elaković
- Department of Biochemistry, Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Danijela Vojnović Milutinović
- Department of Biochemistry, Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Aleksandra Nikolić-Kokić
- Department of Physiology, Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Duško Blagojević
- Department of Physiology, Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Gordana Matić
- Department of Biochemistry, Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Luc Tappy
- Department of Physiology, University of Lausanne, UNIL-CHUV, Lausanne, Switzerland
| | - Ana Djordjevic
- Department of Biochemistry, Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Jelena Brkljačić
- Department of Biochemistry, Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
30
|
Antioxidant Potential of Adiponectin and Full PPAR- γ Agonist in Correcting Streptozotocin-Induced Vascular Abnormality in Spontaneously Hypertensive Rats. PPAR Res 2021; 2021:6661181. [PMID: 34691163 PMCID: PMC8531825 DOI: 10.1155/2021/6661181] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 07/15/2021] [Accepted: 08/12/2021] [Indexed: 02/07/2023] Open
Abstract
Oxidative stress, which is associated with metabolic and anthropometric perturbations, leads to reactive oxygen species production and decrease in plasma adiponectin concentration. We investigated pharmacodynamically the pathophysiological role and potential implication of exogenously administered adiponectin with full and partial peroxisome proliferator-activated receptor-gamma (PPAR-γ) agonists on modulation of oxidative stress, metabolic dysregulation, and antioxidant potential in streptozotocin-induced spontaneously hypertensive rats (SHR). Group I (WKY) serves as the normotensive control, whereas 42 male SHRs were randomized equally into 7 groups (n = 6); group II serves as the SHR control, group III serves as the SHR diabetic control, and groups IV, V, and VI are treated with irbesartan (30 mg/kg), pioglitazone (10 mg/kg), and adiponectin (2.5 μg/kg), whereas groups VII and VIII received cotreatments as irbesartan+adiponectin and pioglitazone+adiponectin, respectively. Diabetes was induced using an intraperitoneal injection of streptozotocin (40 mg/kg). Plasma adiponectin, lipid contents, and arterial stiffness with oxidative stress biomarkers were measured using an in vitro and in vivo analysis. Diabetic SHRs exhibited hyperglycemia, hypertriglyceridemia, hypercholesterolemia, and increased arterial stiffness with reduced plasma adiponectin and antioxidant enzymatic levels (P < 0.05). Diabetic SHRs pretreated with pioglitazone and adiponectin separately exerted improvements in antioxidant enzyme activities, abrogated arterial stiffness, and offset the increased production of reactive oxygen species and dyslipidemic effects of STZ, whereas the blood pressure values were significantly reduced in the irbesartan-treated groups (all P < 0.05). The combined treatment of exogenously administered adiponectin with full PPAR-γ agonist augmented the improvement in lipid contents and adiponectin concentration and restored arterial stiffness with antioxidant potential effects, indicating the degree of synergism between adiponectin and full PPAR-γ agonists (pioglitazone).
Collapse
|
31
|
Afzal S, Sattar MA, Johns EJ, Eseyin OA. Peroxisome proliferator-activated receptor agonist (pioglitazone) with exogenous adiponectin ameliorates arterial stiffness and oxidative stress in diabetic Wistar Kyoto rats. Eur J Pharmacol 2021; 907:174218. [PMID: 34111396 DOI: 10.1016/j.ejphar.2021.174218] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 04/30/2021] [Accepted: 05/27/2021] [Indexed: 11/17/2022]
Abstract
Oxidative stress causes hypoadiponectemia and reactive oxygen species production. This study investigates the pathophysiological role and potential effects of adiponectin with partial and full peroxisome proliferator-activated receptor-gamma agonists on modulation of metabolic dysregulation and oxidative stress in diabetic model of Wistar Kyoto rats (WKY). Forty two male WKY rats were randomized equally into 7 groups (n = 6), Group I serve as control, group II as WKY diabetic control, groups III, IV and V treated with irbesartan (30 mg/kg), pioglitazone (10 mg/kg) and adiponectin (2.5 μg/kg), groups VI and VII were co-treated as: irbesartan + adiponectin, pioglitazone + adiponectin, respectively. Streptozotocin @ 40 mg/kg was administered intraperitoneally to induce diabetes. Plasma adiponectin, metabolic indices, pulse wave velocity, oxidative stress and antioxidant enzymatic activities were measured. Streptozotocin induced WKYs expressed hyperglycaemia, hypertriglyceridemia, hypercholesterolemia, hypoadiponectemia, increased arterial stiffness and decreased antioxidant enzymatic levels (P<0.05). Treatment with adiponectin or pioglitazone alone showed improvements in metabolic indices, antioxidant enzymes, and abrogated arterial stiffness, attenuated generation of reactive oxygen species and dyslipidaemic effects of streptozotocin better as compared to irbesartan sets of treatment (all P<0.05). Co-treatment of adiponectin with pioglitazone significantly amplified the improvement in plasma triglycerides, adiponectin concentration, pulse wave velocity and antioxidant enzymatic activities indicating synergistic effects of adiponectin with full PPAR-γ agonist.
Collapse
Affiliation(s)
- Sheryar Afzal
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang, Malaysia; Faculty of Pharmacy, MAHSA University, Selangor, Malaysia.
| | | | | | - Olorunfemi A Eseyin
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang, Malaysia; Faculty of Pharmacy, University of Uyo, Uyo, Akwa Ibom State, Nigeria
| |
Collapse
|
32
|
Xiao B, Chen S, Huang Q, Tan J, Zeng J, Yao J, Feng T, Wang G, Zhang Y. The lipid lowering and antioxidative stress potential of polysaccharide from Auricularia auricula prepared by enzymatic method. Int J Biol Macromol 2021; 187:651-663. [PMID: 34303740 DOI: 10.1016/j.ijbiomac.2021.07.138] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/12/2021] [Accepted: 07/20/2021] [Indexed: 01/05/2023]
Abstract
An efficient extraction method of Auricularia auricula polysaccharides (AAPs) by neutral protease was developed and optimized by response surface methodology. AAPs were graded by stepwise ethanol precipitation, the fraction with high recovery rate and strong radical scavenging rate were obtained, then its antioxidant and lipid lowering effect were studied using Caenorhabditis elegans as model organism. The extract yield and ABTS+ scavenging rates of AAPs could reach 14.90% and 86.0% at 50 °C, 75 mL/g of liquid-to-material ratio and pH 9.0. AAP3 obtained by 15% ethanol was a heteropolysaccharide comprised of mannose, glucose, glucuronic acid, xylose, galactose and glucosamine. AAP3 could significantly prolong the lifespan of C. elegans and enhance the activity of antioxidant enzymes including superoxide dismutase (SOD), catalases (CAT) at 0.25 mg/mL (p < 0.05). The qRT-PCR results showed that AAP3 could up regulate mRNA expression levels of daf-16 and skn-1 (>1.6 fold) at 0.25 mg/mL. Besides, AAP3 could significantly reduce the level of body fat and triglyceride in C. elegans (p < 0.05). These studies demonstrated that A. auricula polysaccharides prepared by neutral protease had a prominent protective effect to the damage induced by the intracellular free radical generating agents.
Collapse
Affiliation(s)
- Bin Xiao
- Liang Xin College, China Jiliang University, Hangzhou, Zhejiang 310018, China
| | - Shuang Chen
- College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, China
| | - Qiqi Huang
- College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, China
| | - Jingjing Tan
- Liang Xin College, China Jiliang University, Hangzhou, Zhejiang 310018, China
| | - Jiangying Zeng
- College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, China
| | - Jing Yao
- Liang Xin College, China Jiliang University, Hangzhou, Zhejiang 310018, China
| | - Tao Feng
- College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, China
| | - Ge Wang
- College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, China
| | - Yongjun Zhang
- College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, China.
| |
Collapse
|
33
|
Duan X, Zhang X, Chen J, Xiao M, Zhao W, Liu S, Sui G. Association of PM 2.5 with Insulin Resistance Signaling Pathways on a Microfluidic Liver-Kidney Microphysiological System (LK-MPS) Device. Anal Chem 2021; 93:9835-9844. [PMID: 34232631 DOI: 10.1021/acs.analchem.1c01384] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Insulin resistance (IR) is a typical sign of metabolic dysregulation caused by fine particulate matter (PM2.5), but the underlying signaling has not been clearly determined. Herein, a microfluidic liver-kidney microphysiological system (LK-MPS) is presented to assess the signaling pathways of IR generated by PM2.5 at 200 μg/mL for 24 h. The LK-MPS device consisted of a biomimetic liver-kidney architecture and reconstructed two circulation paths: the liver metabolism-kidney excretion (LM-KE) and kidney excretion-liver metabolism (KE-LM), by which PM2.5 is feasibly distributed in the two organs. Transmission electron microscopy (TEM) analysis revealed that PM2.5 can embed in the cytoplasm and nuclei, undergo transport by vesicles, and lead to the destruction of mitochondria. Further comprehensive immunofluorescence, enzyme-linked immunosorbent assays (ELISAs) and untargeted metabolomic analyses confirmed that PM2.5 disturbed the classic IRS-1/AKT signaling pathway (INSR, IRS-1, PI3K, AKT, GLUT2, GLUT4, and FOXO1 downregulated) and IR-related metabolic pathways: UDP-hexosamine (UDP-GlcNAc), gluconeogenesis (β-d-glucose 6-phosphate), and lipid biosynthesis (ceramide (Cer) and triacylglycerol (TG)) pathways, leading to the disorder of glucose levels. Collectively, these disorders aggravate hepatic and renal IR. Pearson's correlation coefficient test showed that elemental carbon (EC), polycyclic aromatic hydrocarbons (PAHs), and metals (Ca, Co, and V) were negatively correlated to the dysregulated proteins (INSR, IRS-1, AKT, FOXO1, GLUT2, and GLUT4). These findings may partially explain IR-related signaling pathways triggered by PM2.5.
Collapse
Affiliation(s)
- Xiaoxiao Duan
- Shanghai Key Laboratory of Atmospheric Particle Pollution Prevention (LAP3), Department of Environmental Science & Engineering, Fudan University, 2005 Songhu Road, Shanghai 200438, P. R. China
| | - Xinlian Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution Prevention (LAP3), Department of Environmental Science & Engineering, Fudan University, 2005 Songhu Road, Shanghai 200438, P. R. China
| | - Jianmin Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution Prevention (LAP3), Department of Environmental Science & Engineering, Fudan University, 2005 Songhu Road, Shanghai 200438, P. R. China
| | - Mingming Xiao
- Shanghai Key Laboratory of Atmospheric Particle Pollution Prevention (LAP3), Department of Environmental Science & Engineering, Fudan University, 2005 Songhu Road, Shanghai 200438, P. R. China
| | - Wang Zhao
- Shanghai Key Laboratory of Atmospheric Particle Pollution Prevention (LAP3), Department of Environmental Science & Engineering, Fudan University, 2005 Songhu Road, Shanghai 200438, P. R. China
| | - Sixiu Liu
- Shanghai Key Laboratory of Atmospheric Particle Pollution Prevention (LAP3), Department of Environmental Science & Engineering, Fudan University, 2005 Songhu Road, Shanghai 200438, P. R. China
| | - Guodong Sui
- Shanghai Key Laboratory of Atmospheric Particle Pollution Prevention (LAP3), Department of Environmental Science & Engineering, Fudan University, 2005 Songhu Road, Shanghai 200438, P. R. China
| |
Collapse
|
34
|
Seong E, Bose S, Han SY, Song EJ, Lee M, Nam YD, Kim H. Positive influence of gut microbiota on the effects of Korean red ginseng in metabolic syndrome: a randomized, double-blind, placebo-controlled clinical trial. EPMA J 2021; 12:177-197. [PMID: 34194584 DOI: 10.1007/s13167-021-00243-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 04/29/2021] [Indexed: 12/19/2022]
Abstract
Background Ginseng, a traditional herbal medicine, has been used for thousands of years to treat various diseases including metabolic syndrome (MS). However, the underlying mechanism(s) of such beneficial actions of ginseng against MS is poorly understood. Emerging evidence indicates a close association of the host gut microbiota with MS. The present study was conducted to examine, whether the beneficial effects of Korean red ginseng (KRG) against MS could be influenced by gut microbial population and whether gut microbial profile could be considered a valuable biomarker for targeted treatment strategy for MS in compliance with the predictive, preventive, and personalized medicine (PPPM / 3PM). Methods This clinical study was a randomized, double-blind, placebo-controlled trial evaluating the effects of KRG treatment for 8 weeks on patients with MS. The anthropometric parameters, vital signs, metabolic biomarkers, and gut microbial composition through 16S rRNA gene sequencing were assessed at the baseline and endpoint. The impact of KRG was also evaluated after categorizing the subjects into responders and non-responders, as well as enterotypes 1 and 2 based on their gut microbial profile at the baseline. Results Fifty out of 60 subjects who meet the MS criteria completed the trial without showing adverse reactions. The KRG treatment caused a significant decrease in systolic blood pressure (SBP). Microbial analysis revealed a decrease in Firmicutes, Proteobacteria, and an increase in Bacteroidetes in response to KRG. In patient stratification analysis, the responders showing marked improvement in the serum levels of lipid metabolic biomarkers TC and LDL due to the KRG treatment exhibited higher population of both the family Lachnospiraceae and order Clostridiales compared to the non-responders. The homeostasis model assessment-insulin resistance (HOMA-IR) and insulin level were decreased in enterotype 1 (Bacteroides-abundant group) and increased in enterotype 2 (prevotella-abundant group) following the KRG treatment. Conclusion In this study, the effects of KRG on the glucose metabolism in MS patients were influenced by the relative abundances of gut microbial population and differed according to the individual enterotype. Therefore, the analysis of enterotype categories is considered to be helpful in predicting the effectiveness of KRG on glucose homeostasis of MS patients individually. This will further help to decide on the appropriate treatment strategy for MS, in compliance with the perspective of PPPM.
Collapse
Affiliation(s)
- Eunhak Seong
- Department of Rehabilitation Medicine of Korean Medicine, Dongguk University, Gyeonggi-do 10326, Republic of Korea
| | - Shambhunath Bose
- Department of Rehabilitation Medicine of Korean Medicine, Dongguk University, Gyeonggi-do 10326, Republic of Korea
| | - Song-Yi Han
- Department of Rehabilitation Medicine of Korean Medicine, Dongguk University, Gyeonggi-do 10326, Republic of Korea
| | - Eun-Ji Song
- Research Group of Healthcare, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea
| | - Myeongjong Lee
- Department of Rehabilitation Medicine of Korean Medicine, Dongguk University, Gyeonggi-do 10326, Republic of Korea
| | - Young-Do Nam
- Research Group of Healthcare, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea
| | - Hojun Kim
- Department of Rehabilitation Medicine of Korean Medicine, Dongguk University, Gyeonggi-do 10326, Republic of Korea
| |
Collapse
|
35
|
Pavlov VA. The evolving obesity challenge: targeting the vagus nerve and the inflammatory reflex in the response. Pharmacol Ther 2021; 222:107794. [PMID: 33310156 PMCID: PMC8027699 DOI: 10.1016/j.pharmthera.2020.107794] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 12/04/2020] [Indexed: 02/06/2023]
Abstract
Obesity and the metabolic syndrome (MetS), which have reached pandemic proportions significantly increase the risk for type 2 diabetes, cardiovascular disease, and other serious conditions. Recent data with COVID-19 patients indicate that obesity also is a significant risk factor for this novel viral disease and poor outcome of associated critical illness. These findings considerably change the view of obesity as a driver of serious, but slowly-progressing chronic diseases, and emphasize the urgency to explore new therapeutic approaches. Inflammation is a recognized driver of metabolic derangements in obesity and MetS, and a core feature of COVID-19 pathobiology. Recent advances in our understanding of inflammatory regulation have highlighted the role of the nervous system and the vagus nerve-based inflammatory reflex. Current bioelectronic and pharmacological therapeutic explorations centered on the inflammatory reflex offer new approaches for conditions characterized by immune and metabolic dysregulation and for ameliorating the escalating burden of obesity, MetS, and COVID-19.
Collapse
Affiliation(s)
- Valentin A Pavlov
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA; Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA.
| |
Collapse
|
36
|
Iskender H, Yenice G, Terim Kapakin KA, Dokumacioglu E, Sevim C, Hayirli A, Altun S. Effects of high fructose diet on lipid metabolism and the hepatic NF-κB/ SIRT-1 pathway. Biotech Histochem 2021; 97:30-38. [PMID: 33629622 DOI: 10.1080/10520295.2021.1890214] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The liver is the primary site for fructose metabolism; therefore, the liver is susceptible to fructose related metabolic disturbances including metabolic insulin dysfunction, dyslipidemia and inflammation. We investigated whether astaxanthin (ASX) can modify hepatic nuclear factor-kappa B (NF-κB)/sirtuin-1 (SIRT-1) expression to alter oxidative stress caused by ingestion of excess fructose in rats. The animals were divided randomly into two x two factorially arranged groups: two regimens were given either water (W) or 30% fructose in drinking water (F). These two groups were divided further into two subgroups each: two treatments, either orally with 0.2 ml olive oil (OO) or 1 mg ASX/kg/day in 0.2 ml olive oil (ASX). Fructose administration increased serum glucose, triglycerides and very low density lipoproteins, and decreased serum concentration of high density lipoproteins; fructose did not alter serum total cholesterol. Excess fructose decreased hepatic superoxide dismutase (SOD) and increased hepatic NF-κB and MDA levels. ASX treatment increased hepatic SIRT-1 and decreased hepatic NF-κB and malondialdehyde (MDA) levels. ASX treatment decreased hepatic NF-κB and increased SOD levels, but did not alter MDA level in rats fed high fructose. ASX administration ameliorated oxidative stress caused by excess fructose by increasing hepatic NF-κB and SIRT-1 expression.
Collapse
Affiliation(s)
- Hatice Iskender
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Artvin Coruh University, Artvin, Turkey
| | - Guler Yenice
- Department of Animal Nutrition and Nutritional Disorders, Faculty of Veterinary Medicine, Ataturk University, Erzurum, Turkey
| | | | - Eda Dokumacioglu
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Artvin Coruh University, Artvin, Turkey
| | - Cigdem Sevim
- Department of Pharmacology, Faculty of Veterinary Medicine, Ataturk University, Erzurum, Turkey
| | - Armagan Hayirli
- Department of Animal Nutrition and Nutritional Disorders, Faculty of Veterinary Medicine, Ataturk University, Erzurum, Turkey
| | - Serdar Altun
- Department of Pathology, Faculty of Veterinary Medicine, Ataturk University, Erzurum, Turkey
| |
Collapse
|
37
|
Al-Ani B, Alzamil NM, Hewett PW, Al-Hashem F, Bin-Jaliah I, Shatoor AS, Kamar SS, Latif NSA, Haidara MA, Dawood AF. Metformin ameliorates ROS-p53-collagen axis of fibrosis and dyslipidemia in type 2 diabetes mellitus-induced left ventricular injury. Arch Physiol Biochem 2021; 129:734-740. [PMID: 33439743 DOI: 10.1080/13813455.2020.1869265] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
BACKGROUND The link between oxidative stress (ROS), apoptosis (p53) and fibrosis (collagen) in type 2 diabetes mellitus (T2DM)-induced cardiac injury in the presence and absence of the antidiabetic drug, metformin has not been investigated before. MATERIAL AND METHODS T2DM was induced in rats by a combination of high carbohydrate and fat diets (HCFD) and streptozotocin (50 mg/kg) injection. The protection group started metformin (200 mg/kg) treatment 14 days prior to the induction of diabetes and continued on metformin and HCFD until being sacrificed at week 12. RESULTS Diabetes significantly induced blood levels of ROS and left ventricular p53 and collagen expression that was inhibited by metformin. Metformin also significantly reduced glycated haemoglobin and dyslipidemia induced by diabetes. In addition, a significant correlation between ROS-p53-collagen axis and glycaemia and hyperlipidaemia was observed. CONCLUSIONS These findings show that metformin provides substantial protection against diabetic cardiomyopathy-induced ROS-p53 mediated fibrosis and dyslipidemia.
Collapse
Affiliation(s)
- Bahjat Al-Ani
- Department of Physiology, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Norah M Alzamil
- Department of Clinical Science, Family Medicine, College of Medicine, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Peter W Hewett
- Institute of Cardiovascular Sciences, College of Medicine and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Fahaid Al-Hashem
- Department of Physiology, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Ismaeel Bin-Jaliah
- Department of Physiology, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Abdullah S Shatoor
- Department of Internal Medicine, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Samaa S Kamar
- Departments of Medical Histology, Kasr al-Aini Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Noha S Abdel Latif
- Department of Medical Pharmacology, Kasr al-Aini Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mohamed A Haidara
- Department of Physiology, Kasr al-Aini Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Amal F Dawood
- Department of Physiology, Kasr al-Aini Faculty of Medicine, Cairo University, Cairo, Egypt
- Department of Basic Medical Sciences, College of Medicine, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| |
Collapse
|
38
|
EGLP-1 lowers body weight better than exendin-4 by reducing food intake and increasing basal energy expenditure in diet-induced obese mice. Exp Cell Res 2020; 399:112454. [PMID: 33359447 DOI: 10.1016/j.yexcr.2020.112454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 11/07/2020] [Accepted: 12/18/2020] [Indexed: 12/17/2022]
Abstract
It is well known that GLP-1 activates GLP-1R to reduce body weight by inhibiting eating. GLP-1 is cleaved by the neutral endopeptidase (NEP) 24.11 into a pentapeptide GLP-1 (32-36) amide, which increases basal energy expenditure and inhibits weight gain in obese mice. It is well known that GLP-1 analogs can reduce weight by suppressing eating. However, there are few reports of reducing weight through the dual effects of inhibiting eating and increasing basic energy. Here, we report the peptide EGLP-1, a GLP-1 analogue, which can reduce food intake and increase basal energy expenditure. In C2C12 myotubes, EGLP-1 can increase both phosphorylation of acetyl CoA carboxylase (ACC) and the ratio between phosphorylation of ACC and the total expression of ACC (pACC/ACC). In diet-induced obese mice, EGLP-1 is more effective than exendin-4 in reducing body weight, reducing fat mass and improving hepatic steatosis. At the same time, EGLP-1 can improve hyperglycemia, reduce food intake, and improve insulin resistance, just like exendin-4. In addition, EGLP-1, not exendin-4, can improve physiological parameters associated with lipid metabolism and increase oxygen consumption by increasing uncoupling proteins 3 (UCP3) expression and pACC/ACC ratio in skeletal muscle. Taken together, this data showed that EGLP-1 is able to reduce body weight by reducing food intake and increasing basal energy expenditure, suggesting it may be more effective in treating diabetic and non-diabetic overweight or obese people than pure GLP-1R agonist exendin-4.
Collapse
|
39
|
Qorbani M, Sanginabadi M, Mohajeri-Tehrani MR, Karimi S, Gerami H, Mahdavi-Gorabi A, Shirzad N, Samadi M, Baygi F, Hosseini S, Mansour A. The Effect of Oligopin Supplementation on Hormonal and Metabolic Profiles in the Polycystic Ovary Syndrome: A Randomized Controlled Trial. Front Endocrinol (Lausanne) 2020; 11:590392. [PMID: 33408691 PMCID: PMC7779998 DOI: 10.3389/fendo.2020.590392] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 11/16/2020] [Indexed: 11/13/2022] Open
Abstract
Background A double blind clinical trial was performed to evaluate whether the polycystic ovary syndrome (PCOS)-specific serum markers and metabolic parameters would change in the women with PCOS during the three-month administration of oligopin. Methods In this double-blind multicenter trial, we randomly assigned 80 PCOS women, based on a 1:1 ratio, to receive oligopin (n= 40) or maltodextrin as placebo (n = 40) for up to 3 months. As PCOS-specific outcomes, we investigated the changes in testosterone, sex hormone binding globulin (SHBG), free androgen index (FAI), dehydroepiandrosterone (DHEA), follicle-stimulating hormone (FSH) and luteinizing hormone (LH). Secondary end points were metabolic (fasting glycaemia, hemoglobin A1c (HbA1c), lipids, insulin resistance (HOMA-IR)), anthropometrics parameters and blood pressure from the baseline to the end of treatment. We investigated serum transaminase, alkaline phosphatase (ALP), creatinine (Cr) and blood urea nitrogen (BUN) levels as hepatic and kidney outcomes, respectively. Results The first participant was enrolled on April 18, 2018, and the last study visit took place on May 14, 2019. PCOS-specific serum parameters did not change during the three-month administration of oligopin (p > 0.05), except for a small increase in the FSH levels (p=0.03). Oligopin neither changed the metabolic profile nor the anthropometric parameters or blood pressure. ALP levels was significantly increased in placebo group, as compared with oligopin (p=0.01). Conclusion Oligopin supplementation does not seem to be exerting a beneficial effect on both hormonal and metabolic parameters in the women with PCOS. Clinical Trial Registration www.irct.ir, identifier IRCT20140406017139N3.
Collapse
Affiliation(s)
- Mostafa Qorbani
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Milad Sanginabadi
- Radiology Department, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Mohajeri-Tehrani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Sara Karimi
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Hadis Gerami
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Armita Mahdavi-Gorabi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
- Social Determinants of Health Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Nooshin Shirzad
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Endocrinology, Vali-Asr Hospital, Endocrinology and Metabolism Research Center, Imam Khomeini Complex Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Majid Samadi
- Radiology Department, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Fereshteh Baygi
- Centre of Maritime Health and Society, Department of Public Health, University of Southern Denmark, Esbjerg, Denmark
| | - Saeed Hosseini
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Asieh Mansour
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Science, Tehran, Iran
| |
Collapse
|
40
|
Fructose Consumption Affects Glucocorticoid Signaling in the Liver of Young Female Rats. Nutrients 2020; 12:nu12113470. [PMID: 33198224 PMCID: PMC7698302 DOI: 10.3390/nu12113470] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/28/2020] [Accepted: 11/04/2020] [Indexed: 02/06/2023] Open
Abstract
The effects of early-life fructose consumption on hepatic signaling pathways and their relation to the development of metabolic disorders in later life are not fully understood. To investigate whether fructose overconsumption at a young age induces alterations in glucocorticoid signaling that might contribute to development of metabolic disturbances, we analysed glucocorticoid receptor hormone-binding parameters and expression of its target genes involved in gluconeogenesis (phosphoenolpyruvate carboxykinase and glucose-6-phosphatase) and lipid metabolism (lipin-1), as well as redox and inflammatory status in the liver of female rats subjected to a fructose-rich diet immediately after weaning. The fructose diet increased hepatic corticosterone concentration, 11β-hydroxysteroid dehydrogenase type 1 level, glucocorticoid receptor protein level and hormone-binding activity, as well as lipin-1 level. The expression of glucose-6-phosphatase was reduced in fructose-fed rats, while phosphoenolpyruvate carboxykinase remained unaltered. The fructose-rich diet increased the level of fructose transporter GLUT2, while the expression of fructolytic enzymes fructokinase and aldolase B remained unaltered. The diet also affected pro-inflammatory pathways, but had no effect on the antioxidant defence system. In conclusion, a fructose-rich diet applied immediately after weaning promoted lipogenesis and enhanced hepatic glucocorticoid signaling, possibly to protect against inflammatory damage, but without an effect on gluconeogenesis and antioxidant enzymes. Yet, prolonged treatment might ultimately lead to more pronounced metabolic disturbances.
Collapse
|
41
|
Checkouri E, Reignier F, Robert-Da Silva C, Meilhac O. Evaluation of Polyphenol Content and Antioxidant Capacity of Aqueous Extracts from Eight Medicinal Plants from Reunion Island: Protection against Oxidative Stress in Red Blood Cells and Preadipocytes. Antioxidants (Basel) 2020; 9:antiox9100959. [PMID: 33036442 PMCID: PMC7650546 DOI: 10.3390/antiox9100959] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/29/2020] [Accepted: 09/30/2020] [Indexed: 12/16/2022] Open
Abstract
Background—Medicinal plants are traditionally used as infusions or decoctions for their antioxidant, anti-inflammatory, hypolipidemic and anti-diabetic properties. Purpose—The aim of the study was to define the polyphenol composition and to assess the antioxidant capacity of eight medicinal plants from Reunion Island referred to in the French Pharmacopeia, namely Aphloia theiformis, Ayapana triplinervis, Dodonaea viscosa, Hubertia ambavilla, Hypericum lanceolatum, Pelargonium x graveolens, Psiloxylon mauritianum and Syzygium cumini. Methods—Polyphenol content was assessed by biochemical assay and liquid chromatography coupled to mass spectrometry. Antioxidant capacity was assessed by measuring DPPH reduction and studying the protective effects of herbal preparation on red blood cells or preadipocytes exposed to oxidative stress. Results—Polyphenol content ranged from 25 to 143 mg gallic acid equivalent (GAE)/L for infusions and 35 to 205 mg GAE/L for decoctions. Liquid chromatography coupled to mass spectrometry analysis showed the presence of major bioactive polyphenols, such as quercetin, chlorogenic acid, procyanidin and mangiferin. Antioxidant capacity assessed by different tests, including DPPH and Human red blood cell (RBC) hemolysis of herbal preparations, demonstrated a dose-dependent effect whatever the extraction procedure. Our data suggest that decoction slightly improved polyphenol extraction as well as antioxidant capacity relative to the infusion mode of extraction (DPPH test). However, infusions displayed a better protective effect against oxidative stress-induced RBC hemolysis. Conclusion—Traditional preparations of medicinal plant aqueous extracts (infusions and decoctions) display antioxidant properties that limit oxidative stress in preadipocytes and red blood cells, supporting their use in the context of metabolic disease prevention and treatment.
Collapse
Affiliation(s)
- Eloïse Checkouri
- INSERM, UMR 1188 Diabète athérothombose Réunion Océan Indien (DéTROI), Université de La Réunion, 97490 Sainte-Clotilde, La Réunion, France; (E.C.); (C.R.-D.S.)
- Habemus Papam, Food Industry, 97470 Saint-Benoit, La Réunion, France;
| | - Franck Reignier
- Habemus Papam, Food Industry, 97470 Saint-Benoit, La Réunion, France;
| | - Christine Robert-Da Silva
- INSERM, UMR 1188 Diabète athérothombose Réunion Océan Indien (DéTROI), Université de La Réunion, 97490 Sainte-Clotilde, La Réunion, France; (E.C.); (C.R.-D.S.)
| | - Olivier Meilhac
- INSERM, UMR 1188 Diabète athérothombose Réunion Océan Indien (DéTROI), Université de La Réunion, 97490 Sainte-Clotilde, La Réunion, France; (E.C.); (C.R.-D.S.)
- CHU de La Réunion, CIC 1410, 97410 Saint-Pierre, La Réunion, France
- Correspondence: ; Tel.: +262-0262-938-811
| |
Collapse
|
42
|
Matsumoto AK, Maes M, Michelin AP, Soares AE, Semeão LDO, Godeny P, Venturini D, Barbosa DS, Delfino VDA. Vitamin D deficiency is not associated with increased oxidative stress in chronic kidney disease pre-dialysis patients. J Bras Nefrol 2020; 42:420-428. [PMID: 32406474 PMCID: PMC7860644 DOI: 10.1590/2175-8239-jbn-2019-0156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 03/04/2020] [Indexed: 12/02/2022] Open
Abstract
INTRODUCTION The progressive decline in 25-hydroxyvitamin D [25(OH)D] in chronic kidney disease (CKD) limits the kidney ability of synthesizing the vitamin. Vitamin D deficiency as defined by KDIGO (25(OH)D <20 ng/mL) is prevalent in CKD patients and associated to oxidative stress (OS). We studied a possible association between vitamin D deficiency and OS in pre-dialysis patients. METHODS A cross-sectional study with 206 CKD patients was carried out. Laboratory tests for 25(OH)D, 1,25(OH)2D, inflammatory markers, and OS were added to routine tests including creatinine, albumin, calcium, phosphorus, alkaline phosphatase, iPTH, glucose, hemoglobin, uric acid, total cholesterol, LDL, HDL, and triglycerides. RESULTS Vitamin D deficiency was present in 55 CKD patients and normal vitamin D levels were seen in 149 patients. There was a significant association between vitamin D and estimated glomerular filtration rate (eGRF). Homocysteine levels were best predicted by eGRF, sex, and age; high sensitivity C-reactive protein (hsCRP) by staging and BMI; nitric oxide metabolites (NOx) were increased in late disease; leptin was influenced by BMI and higher in women than man; and adiponectin levels were higher in women. CONCLUSIONS OS biomarkers were not correlated with vitamin D deficiency but increased NOx were seen in stages 4-5 CKD patients. Even though a relatively large number of CKD patients was included and a broad number of OS and inflammatory biomarkers were used in this studied we failed to find an association between vitamin D levels and eGRF. More studies are needed to evaluate the influence of vitamin D status in OS in pre-dialysis CKD patients.
Collapse
Affiliation(s)
- Andressa Keiko Matsumoto
- Universidade Estadual de Londrina, Departamento de Patologia, Análises Clínicas e Toxicológicas, Londrina, PR, Brasil
| | - Michael Maes
- Deakin University, IMPACT Research Center, Geelong, Australia
- Chulalongkorn University, Faculty of Medicine, Department of Psychiatry, Bangkok, Thailand
- Universidade Estadual de Londrina, Centro de Ciências da Saúde, Programa de Pós-Graduação em Ciências da Saúde, Londrina, PR, Brasil
| | - Ana Paula Michelin
- Universidade Estadual de Londrina, Departamento de Patologia, Análises Clínicas e Toxicológicas, Londrina, PR, Brasil
| | - Abel Esteves Soares
- Universidade Estadual de Londrina, Departamento de Medicina Interna, Seção de Nefrologia, Londrina, PR, Brasil
| | - Laura de Oliveira Semeão
- Universidade Estadual de Londrina, Departamento de Patologia, Análises Clínicas e Toxicológicas, Londrina, PR, Brasil
| | - Paula Godeny
- Universidade Estadual de Londrina, Departamento de Patologia, Análises Clínicas e Toxicológicas, Londrina, PR, Brasil
| | - Danielle Venturini
- Universidade Estadual de Londrina, Departamento de Patologia, Análises Clínicas e Toxicológicas, Londrina, PR, Brasil
| | - Décio Sabbatini Barbosa
- Universidade Estadual de Londrina, Departamento de Patologia, Análises Clínicas e Toxicológicas, Londrina, PR, Brasil
| | | |
Collapse
|
43
|
Dallak MA, Al-Ani B, El Karib AO, Abd Ellatif M, Eid RA, Al-Ani R, Mahmoud HM, Haidara MA. Exercise augments the modulatory effects of vitamin E on pre-diabetes-induced aortopathy: a potential role of adiponectin. Arch Physiol Biochem 2020; 126:356-362. [PMID: 30465443 DOI: 10.1080/13813455.2018.1538250] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Background: We tested the hypothesis that vitamin E may protect against pre-diabetes-induced aortic injury (aortopathy), and exercise can augment the action of vitamin E.Material and methods: Rats were either fed with a high fat and fructose diet (HFD) (model group) or a standard laboratory chow (control group) for 15 weeks before being sacrificed. The three protective groups were treated with vitamin E (HFD + Vit E), swimming exercises (HFD + Ex), and vitamin E plus swimming exercises (HFD + VitE + Ex), respectively.Results: Aortopathy was developed in the model group as demonstrated by substantial tissue ultrastructural alterations, which were partially protected by vitamin E and effectively protected with vitamin E plus swim exercise. Also, swimming exercises significantly (p < .05) increased the modulatory effects of vitamin E on dyslipidemia, insulin resistance, blood pressure, oxidative stress, inflammation, leptin, and adiponectin, except coagulation and thrombosis.Conclusions: Swim exercise augments the protective effects of vitamin E in a pre-diabetic animal model.
Collapse
Affiliation(s)
- Mohammad A Dallak
- Department of Physiology, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Bahjat Al-Ani
- Department of Physiology, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Abbas O El Karib
- Department of Physiology, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Mohamed Abd Ellatif
- Department of Clinical Biochemistry, College of Medicine, King Khalid University, Abha, Saudi Arabia
- Department of Medical Biochemistry, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Refaat A Eid
- Department of Pathology, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Rihab Al-Ani
- Department of Microbiology, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Hesham M Mahmoud
- Department of Medical Pharmacology, Kasr Al-Aini Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mohamed A Haidara
- Department of Physiology, College of Medicine, King Khalid University, Abha, Saudi Arabia
- Department of Physiology, Kasr Al-Aini Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
44
|
Thiol/Disulfide Homeostasis in Patients With Erectile Dysfunction. J Sex Med 2020; 17:1934-1941. [PMID: 32788052 DOI: 10.1016/j.jsxm.2020.07.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 07/09/2020] [Accepted: 07/15/2020] [Indexed: 11/23/2022]
Abstract
BACKGROUND Although there are no sufficient data on association between oxidative stress and erectile dysfunction (ED), numerous studies have reported that imbalance between the formation of reactive oxygen species and body's antioxidant defenses may play a role in the pathogenesis of ED. AIM The aim of this study was to determine and compare the oxidant and antioxidant status in patients with ED and healthy controls with a novel automated assay for thiol/disulphide homeostasis test. METHODS Our study included 123 patients with ED and 90 healthy individuals. ED was evaluated by asking questions 1-5 and 15 of the International Index of Erectile Function form. In this study, we used Erel and Neselioglu's thiol/disulfide homeostasis test, which is one of the novel methods that can measure both variables of the oxidative/antioxidative balance individually and collectively. OUTCOMES This method measured serum antioxidant (total thiol [toSH], native thiol [SH]) and oxidant (disulfide [SS]) levels. The statistical comparisons were performed between patients with ED (ED+ group) and without ED (ED- group) first and then within the ED+ group. After toSH, SH, and SS levels were determined; SS/toSH%, SS/SH%, and SH/toSH% levels were analyzed separately and compared statistically. RESULTS We found a significant difference between ED- and ED+ groups in terms of toSH, SH, SS/toSH%, and SS/SH% ratios. SS parameters were increased in patients with ED, but there was no significant difference in terms of SS and SH/toSH% values. CLINICAL IMPLICATIONS Clarification of the factors involved in the etiology of ED such as oxidative/antioxidative balance may open new grounds in the early diagnosis and treatment of the disease. STRENGTHS & LIMITATIONS It is a prospective, randomized clinical study with the use of a novel, reliable, and fully automated technique. The limitations of the study are use of a subjective tool such as the International Index of Erectile Function, obtaining blood samples from the peripheral vein instead of penile cavernosal tissue, and relatively small sample size. CONCLUSION The results of this study showed that thiol/disulfide homeostasis is altered in ED, and this imbalance may be a factor in its pathophysiology. We determined that as ED gets more severe, toSH and SH parameters decrease, whereas SS parameter increases. Micoogullari U, Karatas OF, Kisa E, et al. Thiol/Disulfide Homeostasis in Patients With Erectile Dysfunction. J Sex Med 2020;17:1934-1941.
Collapse
|
45
|
Giannaccare G, Pellegrini M, Senni C, Bernabei F, Scorcia V, Cicero AFG. Clinical Applications of Astaxanthin in the Treatment of Ocular Diseases: Emerging Insights. Mar Drugs 2020; 18:md18050239. [PMID: 32370045 PMCID: PMC7281326 DOI: 10.3390/md18050239] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 04/27/2020] [Accepted: 04/29/2020] [Indexed: 12/12/2022] Open
Abstract
Astaxanthin is a naturally occurring red carotenoid pigment belonging to the family of xanthophylls, and is typically found in marine environments, especially in microalgae and seafood such as salmonids, shrimps and lobsters. Due to its unique molecular structure, astaxanthin features some important biologic properties, mostly represented by strong antioxidant, anti-inflammatory and antiapoptotic activities. A growing body of evidence suggests that astaxanthin is efficacious in the prevention and treatment of several ocular diseases, ranging from the anterior to the posterior pole of the eye. Therefore, the present review aimed at providing a comprehensive evaluation of current clinical applications of astaxanthin in the management of ocular diseases. The efficacy of this carotenoid in the setting of retinal diseases, ocular surface disorders, uveitis, cataract and asthenopia is reported in numerous animal and human studies, which highlight its ability of modulating several metabolic pathways, subsequently restoring the cellular homeostatic balance. To maximize its multitarget therapeutic effects, further long-term clinical trials are warranted in order to define appropriate dosage, route of administration and exact composition of the final product.
Collapse
Affiliation(s)
- Giuseppe Giannaccare
- Department of Ophthalmology, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (G.G.); (V.S.)
| | - Marco Pellegrini
- Ophthalmology Unit, S.Orsola-Malpighi Hospital, University of Bologna, 40138 Bologna, Italy; (M.P.); (C.S.); (F.B.)
| | - Carlotta Senni
- Ophthalmology Unit, S.Orsola-Malpighi Hospital, University of Bologna, 40138 Bologna, Italy; (M.P.); (C.S.); (F.B.)
| | - Federico Bernabei
- Ophthalmology Unit, S.Orsola-Malpighi Hospital, University of Bologna, 40138 Bologna, Italy; (M.P.); (C.S.); (F.B.)
| | - Vincenzo Scorcia
- Department of Ophthalmology, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (G.G.); (V.S.)
| | | |
Collapse
|
46
|
de Oliveira M, Mathias LS, Rodrigues BM, Mariani BG, Graceli JB, De Sibio MT, Castro Olimpio RM, Fontes Moretto FC, Deprá IC, Nogueira CR. The roles of triiodothyronine and irisin in improving the lipid profile and directing the browning of human adipose subcutaneous cells. Mol Cell Endocrinol 2020; 506:110744. [PMID: 32027943 DOI: 10.1016/j.mce.2020.110744] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 01/28/2020] [Accepted: 01/28/2020] [Indexed: 02/07/2023]
Abstract
Triiodothyronine (T3) and irisin (I) can modulate metabolic status, increase heat production, and promote differentiation of white adipose tissue (WAT) into brown adipose tissue (BAT). Herein, human subcutaneous white adipocytes were treated with 10 nM T3 or 20 nM I for 24 h to evaluate intracellular lipid accumulation, triglyceride, and glycerol levels, oxidative stress, DNA damage, and protein levels of uncoupling protein 1 (UCP1), adiponectin, leptin, peroxisome proliferator-activated receptor gamma (PPARγ), and fibronectin type III domain-containing protein 5 (FNDC5). T3 and irisin improved UCP1 production, lipid profile, oxidative stress, and DNA damage. T3 elevated adiponectin and leptin levels with a concomitant decrease in PPARy and FNDC5 levels. However, irisin did not alter adipokine, PPARy, and FNDC5 levels. The results indicate that T3 may be used to increase leptin and adiponectin levels to improve insulin sensitivity, and irisin may be used to prevent obesity or maintain weight due to its impact on the lipid profile without altering adipokine levels.
Collapse
Affiliation(s)
- Miriane de Oliveira
- Department of Internal Clinic, Botucatu Medicine School, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil.
| | - Lucas Solla Mathias
- Department of Internal Clinic, Botucatu Medicine School, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Bruna Moretto Rodrigues
- Department of Internal Clinic, Botucatu Medicine School, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Bianca Gonçalves Mariani
- Department of Internal Clinic, Botucatu Medicine School, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | | | - Maria Teresa De Sibio
- Department of Internal Clinic, Botucatu Medicine School, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Regiane Marques Castro Olimpio
- Department of Internal Clinic, Botucatu Medicine School, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | | | - Igor Carvalho Deprá
- Department of Internal Clinic, Botucatu Medicine School, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Célia Regina Nogueira
- Department of Internal Clinic, Botucatu Medicine School, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| |
Collapse
|
47
|
Fernandes MSDS, Silva LDLDSE, Kubrusly MS, Lima TRLDA, Muller CR, Américo ALV, Fernandes MP, Cogliati B, Stefano JT, Lagranha CJ, Evangelista FS, Oliveira CP. Aerobic Exercise Training Exerts Beneficial Effects Upon Oxidative Metabolism and Non-Enzymatic Antioxidant Defense in the Liver of Leptin Deficiency Mice. Front Endocrinol (Lausanne) 2020; 11:588502. [PMID: 33329394 PMCID: PMC7732625 DOI: 10.3389/fendo.2020.588502] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 10/22/2020] [Indexed: 12/11/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is one of the most common forms of liver disease, which is associated with several etiological factors, including stress and dysfunction in oxidative metabolism. However, studies showed that aerobic exercise training (AET) can combat the oxidative stress (OS) and improves mitochondrial functionality in the NAFLD. To test the hypothesis that AET improves oxidative metabolism and antioxidant defense in the liver of ob/ob mice. Male ob/ob mice with eight weeks old were separated into two groups: the sedentary group (S), n=7, and the trained group (T), n=7. The T mice were submitted to an 8-week protocol of AET at 60% of the maximum velocity achieved in the running capacity test. Before AET, no difference was observed in running test between the groups (S=10.4 ± 0.7 min vs. T= 13 ± 0.47 min). However, after AET, the running capacity was increased in the T group (12.8 ± 0.87 min) compared to the S group (7.2 ± 0.63 min). In skeletal muscle, the T group (26.91 ± 1.12 U/mg of protein) showed higher citrate synthase activity compared with the S group (19.28 ± 0.88 U/mg of protein) (p =0.006). In the analysis of BW evolution, significant reductions were seen in the T group as of the fourth week when compared to the S group. In addition, food intake was not significant different between the groups. Significant increases were observed in the activity of enzymes citrate synthase (p=0.004) and β-HAD (p=0.01) as well as in PGC-1α gene expression (p=0.002) in the liver of T group. The levels of TBARs and carbonyls, as well as SOD, CAT and GST were not different between the groups. However, in the nonenzymatic antioxidant system, we found that the T group had higher sulfhydryl (p = 0.02), GSH (p=0.001) and GSH/GSSG (p=0.02) activity. In conclusion, the AET improved body weight evolution and the aerobic capacity, increased the response of oxidative metabolism markers in the liver such as PGC-1α gene expression and citrate synthase and β-HAD enzyme activities in ob/ob mice. In addition, AET improved the non-enzymatic antioxidant defense and did not change the enzymatic defense.
Collapse
Affiliation(s)
- Matheus Santos de Sousa Fernandes
- Laboratório de Gastroenterologia Clínica e Experimental LIM-07, Division of Clinical Gastroenterology and Hepatology, Hospital das Clínicas HCFMUSP, Department of Gastroenterology, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Lucas de Lucena de Simões e Silva
- Laboratório de Gastroenterologia Clínica e Experimental LIM-07, Division of Clinical Gastroenterology and Hepatology, Hospital das Clínicas HCFMUSP, Department of Gastroenterology, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Márcia Saldanha Kubrusly
- Laboratório de Transplante e Cirurgia do Fígado (LIM-37), Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | | | - Cynthia Rodrigues Muller
- Department of Experimental Pathophysiology, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Anna Laura Viacava Américo
- Department of Experimental Pathophysiology, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | | | - Bruno Cogliati
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - José Tadeu Stefano
- Laboratório de Gastroenterologia Clínica e Experimental LIM-07, Division of Clinical Gastroenterology and Hepatology, Hospital das Clínicas HCFMUSP, Department of Gastroenterology, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | | | | | - Claudia P. Oliveira
- Laboratório de Gastroenterologia Clínica e Experimental LIM-07, Division of Clinical Gastroenterology and Hepatology, Hospital das Clínicas HCFMUSP, Department of Gastroenterology, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
- *Correspondence: Claudia P. Oliveira,
| |
Collapse
|
48
|
Stratev V, Dimitrova V, Petkova D. COPD and Comorbidities: Relating Mechanisms and Treatment. CURRENT RESPIRATORY MEDICINE REVIEWS 2019. [DOI: 10.2174/1573398x14666181018101021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Despite being a disease with the constantly rising social burden and mortality, COPD is
also associated with a number of other conditions known as comorbidities. COPD and other diseases
often share similar risk factors, such as smoking and aging, which leads to increased prevalence of
comorbidities. The key pathogenic mechanisms of COPD are chronic inflammation and oxidative
stress and they also contribute significantly to the development of accompanying diseases. Through
complex interactions, COPD increases the risk for certain comorbidities and they, in turn, have a
negative impact on health status and contribute to mortality in COPD patients. Proper treatment of
comorbidities may have a beneficial effect on COPD natural course and progression. Here we review
the prevalence of the most common comorbidities of COPD; their interrelating mechanism and the
current advances of the treatment in terms of co-existence.
Collapse
Affiliation(s)
- Velin Stratev
- Clinic of Pulmonary Diseases, University Hospital “St. Marina”, Varna, Bulgaria
| | - Valentina Dimitrova
- Clinic of Pulmonary Diseases, University Hospital “St. Marina”, Varna, Bulgaria
| | - Diana Petkova
- Clinic of Pulmonary Diseases, University Hospital “St. Marina”, Varna, Bulgaria
| |
Collapse
|
49
|
Celik H, Kilic T, Kaplan DS, Eren MA, Erel O, Karakilcik AZ, Bagci C. The effect of newly initiated exercise training on dynamic thiol / disulphide homeostasis in sedentary obese adults. AN ACAD BRAS CIENC 2019; 91:e20180930. [PMID: 31800697 DOI: 10.1590/0001-3765201920180930] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 12/04/2018] [Indexed: 02/05/2023] Open
Abstract
We studied dynamic thiol/disulphide homeostasis, an indicator of oxidative stress, to investigate the effects of newly initiated exercise training on sedentary obese adults. Seventeen sedentary obese adults and 15 normal-weight controls were included in the sample for this study. The obese adults were given a physical exercise training program that lasted twelve weeks. Before and after the exercise training program, blood samples were collected, and serum thiol/disulphide parameters were measured by using a novel technique. Before the start of the exercise training, it was observed that thiol/disulphide homeostasis was impaired, and this impairment was positively correlated with body mass index in sedentary obese adults because of the higher reactive oxygen species production in adipose tissue. However, while the obese participants' body mass index significantly decreased, the thiol/disulphide homeostasis parameters in the obese adults did not change over time as calculated at the baseline and compared to the calculation after the twelve weeks of exercise training. Despite a decrease in body mass index that occurred after the twelve weeks of exercise training, there was a lack of improvement in the obesity-induced impairment of thiol/disulphide homeostasis, which suggests that a newly initiated exercise training program may lead to oxidative stress.
Collapse
Affiliation(s)
- Hakim Celik
- Department of Physiology, Medical Faculty, Harran University, 63000 Sanliurfa, Turkey
| | - Tugba Kilic
- Department of Physiology, Medical Faculty, Gaziantep University, 27000 Gaziantep, Turkey
| | - Davut S Kaplan
- Department of Physiology, Medical Faculty, Gaziantep University, 27000 Gaziantep, Turkey
| | - Mehmet A Eren
- Department of Endocrinology, Medical Faculty, Harran University, 63000 Sanliurfa, Turkey
| | - Ozcan Erel
- Department of Clinical Biochemistry, Medical Faculty, Yildirim Beyazit University, 6000 Ankara, Turkey
| | - Ali Z Karakilcik
- Department of Physiology, Medical Faculty, Harran University, 63000 Sanliurfa, Turkey
| | - Cahit Bagci
- Department of Physiology, Medical Faculty, Sakarya University, 54050 Sakarya, Turkey
| |
Collapse
|
50
|
Darroudi S, Fereydouni N, Tayefi M, Esmaily H, Sadabadi F, Khashyarmanesh Z, Tayefi B, Haghighi HM, Timar A, Mohammadpour AH, Gonoodi K, Ferns GA, Hoseini SJ, Ghayour-Mobarhan M. Altered serum Zinc and Copper in Iranian Adults who were of normal weight but metabolically obese. Sci Rep 2019; 9:14874. [PMID: 31619721 PMCID: PMC6795855 DOI: 10.1038/s41598-019-51365-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 09/16/2019] [Indexed: 12/18/2022] Open
Abstract
Metabolically obese normal weight (MONW) individuals are potentially at increased risk of developing metabolic syndrome. Serum zinc and copper concentrations were assessed in individuals with MONW to determine whether MONW is associated with altered serum zinc and/or copper status. Normal weight subjects (total n = 2419; 1298 men and 1121 women), were recruited as part of Mashhad Stroke and Heart Association Disorder (MASHAD) Study cohort. They were divided into two groups according to the presence or absence of MetS, defined using IDF criteria. Serum zinc and copper concentrations were determined by atomic absorption. Of the 2419 normal weight adults, 377 had MetS. Of this group, 53.7% and 49.7% had a serum zinc <70 µg/dl (Q1) (p = 0.001) or a serum copper <79 µg/dl (Q1) respectively. Furthermore, 27.3% had a serum copper >131 µg/dl (Q4) (p = 0.034), and 18.8% had a serum zinc >95 µg/dl (Q4). Logistic regression analysis was performed to determine the odds ratio (OR) for an association of serum zinc, copper and zinc to copper ratio with MetS in normal weight subjects. The subjects with a serum zinc >95 µg/dl (Q4) had 0.386 [OR: 0.614(95%CI 0.457–0.823)] lower chance of MetS (p = 0.001) and the subjects with a serum copper >131 (Q4) had OR 1.423 (95% CI: 1.09–1.857) higher chance of MetS (p = 0.009). These data remained significant after adjustment for age and sex, for serum zinc and copper, respectively. Furthermore, our results strongly suggested that zinc and copper were the independent risk factor for metabolic syndrome in normal weight subjects. There is an imbalance between serum copper and zinc concentrations among individuals with MONW when compared with normal BMI individuals without MetS. This may increase the risk of individuals with MONW developing conditions associated with this imbalance, such as diabetes and cardiovascular disease.
Collapse
Affiliation(s)
- Susan Darroudi
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Narges Fereydouni
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Tayefi
- Norwegian Center for e-health Research, University hospital of North Norway, Tromsø, Norway
| | - Habibollah Esmaily
- Department of Biostatistics, School of Health, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Sadabadi
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Khashyarmanesh
- Department of Medicinal chemistry, School of pharmacology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Batool Tayefi
- Preventive Medicine and Public Health Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Hamideh Moalemzadeh Haghighi
- Department of Medicinal chemistry, School of pharmacology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ameneh Timar
- Faculty of Basic Science, Hakim Sabzevary University Sabzevar, Sabzevar, Iran
| | - Amir Hooshang Mohammadpour
- Pharmaceutical Research Center, Pharmaceutical Institute Technology, Mashhad University of Medical Sciences, Mashhad, Iran. .,Department of Clinical Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Kayhan Gonoodi
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Brighton & Sussex Medical School, Department of Medical Education, Falmer, Brighton, Sussex, BN1 9PH, UK
| | - Seyed Javad Hoseini
- Department of Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Ghayour-Mobarhan
- Metabolic Syndrome Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|