1
|
Zhang S, Yin Z, Li ZF, Zhang WJ, Sui YG, Xu YL, Zhang HT, Liu XN, Qiu H, Zhao JL, Li JJ, Dou KF, Qian J, Wu NQ. The Effects of Sacubitril/Valsartan Compared to Olmesartan on the Blood Pressure and Glucolipid Metabolism in DM Patients with Primary Hypertension. Cardiovasc Drugs Ther 2024; 38:1349-1358. [PMID: 37828149 DOI: 10.1007/s10557-023-07509-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/12/2023] [Indexed: 10/14/2023]
Abstract
PURPOSE Given the beneficial effects of sacubitril/valsartan on blood pressure generally, this study investigates its antihypertension effects in diabetes mellitus (DM) patients with primary hypertension specifically, and the effect of sacubitril/valsartan on glycolipid metabolism. METHODS We conducted a randomized, open-label, active-controlled study to compare the antihypertension effects of sacubitril/valsartan in DM individuals with primary hypertension. The primary end point was reduction in mean systolic blood pressure (SBP) from baseline with sacubitril/valsartan vs. olmesartan at week 8. The secondary endpoints included the changes in diastolic blood pressure (DBP), daytime SBP/DBP, nighttime SBP/DBP, BP achievement (office sitting BP < 130/80 mmHg), and lipid profile. The trial was registered with chictr.org.cn (ChiCTR2200066428) on Dec 22, 2022. RESULTS A total of 124 patients were included in the final analysis. SBP decreased to a greater extent in the sacubitril/valsartan group from baseline to 8 weeks [between-treatment difference: 3.51 mm Hg, 95% confidence interval (95% CI) 0.41 to 6.62 mm Hg, P = 0.03]. Furthermore, more patients achieved the blood pressure goal with sacubitril/valasartan (74.60% vs. 54.70%, P = 0.03). Multiple logistical regression analysis showed that sacubitril/valsartan was associated with BP achievement [odds ratio (OR) 0.33, 95% CI 0.14-0.73, P = 0.007], but the difference in SBP, DBP, day time SBP/DBP, and night time SBP/DBP reduction did not approach statistical significance. HbA1C1, total cholesterol, and low-density lipoprotein-cholesterol were lower than baseline in both groups (P < 0.05); however, there was no difference in the effects on glucose and lipid metabolism from sacubitril/valsartan compared to olmesartan. CONCLUSIONS Sacubitril/valsartan not only provided superior BP reduction compared to olmesartan, it did so without adverse effects on glycemic control and lipid parameters in DM patients with primary hypertension.
Collapse
Affiliation(s)
- Shuang Zhang
- Cardiometabolic Center, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Science and Peking Union Medical College, No 167 BeiLiShi Road, XiCheng District, Beijing, 100037, China
| | - Zheng Yin
- Cardiometabolic Center, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Science and Peking Union Medical College, No 167 BeiLiShi Road, XiCheng District, Beijing, 100037, China
| | - Zhi-Fan Li
- Cardiometabolic Center, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Science and Peking Union Medical College, No 167 BeiLiShi Road, XiCheng District, Beijing, 100037, China
| | - Wen-Jia Zhang
- Cardiometabolic Center, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Science and Peking Union Medical College, No 167 BeiLiShi Road, XiCheng District, Beijing, 100037, China
| | - Yong-Gang Sui
- Cardiometabolic Center, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Science and Peking Union Medical College, No 167 BeiLiShi Road, XiCheng District, Beijing, 100037, China
| | - Yan-Lu Xu
- Cardiometabolic Center, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Science and Peking Union Medical College, No 167 BeiLiShi Road, XiCheng District, Beijing, 100037, China
| | - Hai-Tao Zhang
- Cardiometabolic Center, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Science and Peking Union Medical College, No 167 BeiLiShi Road, XiCheng District, Beijing, 100037, China
| | - Xiao-Ning Liu
- Cardiometabolic Center, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Science and Peking Union Medical College, No 167 BeiLiShi Road, XiCheng District, Beijing, 100037, China
| | - Hong Qiu
- Cardiometabolic Center, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Science and Peking Union Medical College, No 167 BeiLiShi Road, XiCheng District, Beijing, 100037, China
| | - Jing-Lin Zhao
- Cardiometabolic Center, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Science and Peking Union Medical College, No 167 BeiLiShi Road, XiCheng District, Beijing, 100037, China
| | - Jian-Jun Li
- Cardiometabolic Center, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Science and Peking Union Medical College, No 167 BeiLiShi Road, XiCheng District, Beijing, 100037, China
| | - Ke-Fei Dou
- Cardiometabolic Center, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Science and Peking Union Medical College, No 167 BeiLiShi Road, XiCheng District, Beijing, 100037, China
| | - Jie Qian
- Cardiometabolic Center, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Science and Peking Union Medical College, No 167 BeiLiShi Road, XiCheng District, Beijing, 100037, China
| | - Na-Qiong Wu
- Cardiometabolic Center, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Science and Peking Union Medical College, No 167 BeiLiShi Road, XiCheng District, Beijing, 100037, China.
| |
Collapse
|
2
|
Santos DCD, Alves FHF, Veríssimo LF, Raquel HA, Volpini VL, Marques LADC, Martins-Pinge MC, Fernandes KBP, Andrade KC, Michelini LC, Pelosi GG. Enalapril induces muscle epigenetic changes and contributes to prevent a decline in running capacity in spontaneously hypertensive rats. Arch Gerontol Geriatr 2024; 129:105699. [PMID: 39581157 DOI: 10.1016/j.archger.2024.105699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 10/31/2024] [Accepted: 11/11/2024] [Indexed: 11/26/2024]
Abstract
Drugs such as angiotensin-converting enzyme inhibitors and angiotensin receptor blockers can improve muscle function and exercise capacity, as well as preventing, attenuating or reversing age-related losses in muscle mass, however, the exact mechanisms by which these drugs affect muscle cells, are not yet fully elucidated. Moreover, the potential epigenetic alterations induced in skeletal muscle tissue are also largely unexplored. The aim of this study was to evaluate if enalapril or losartan can change the physical performance and epigenetic profile of skeletal muscle in spontaneously hypertensive rats (SHRs). Male SHRs were treated with water, enalapril (10/mg/kg/day) or losartan (10/mg/kg/day) for 28 consecutive days and submitted to progressive testing on a treadmill. Body weight, perigonadal and retroperitoneal fat, mean arterial pressure, heart rate, running distance and global DNA methylation in the gastrocnemius and soleus muscles were evaluated. Enalapril reduced the rate of weight gain, as well as reducing retroperitoneal fat (p < 0.05) and MAP (p < 0.05) and avoiding the decline in running distance when compared to the other groups (p > 0.05), even 7 days after the end of treatment (p > 0.05). Moreover, enalapril increased global DNA methylation in gastrocnemius muscle cells (p < 0.01). No effects were observed in the losartan-treated group. Our data showed that enalapril prevented the decline in physical function in SHR, as well as reduced the rate of weight gain of the animals. In addition, the results showed, alterations in the global DNA methylation of skeletal muscle cells skeletal structures of the gastrocnemius muscle.
Collapse
Affiliation(s)
- Denis Carlos Dos Santos
- Department of Physiological Sciences, Biological Sciences Center, State University of Londrina (UEL), Londrina, Paraná, Brazil
| | - Fernando Henrique Ferrari Alves
- Department of Health Sciences Faculty of Medicine Federal University of Lavras (UFLA), Lavras, Minas Gerais, Brazil; Institute of Science, Technology and Innovation - Federal University of Lavras, São Sebastião do Paraíso, MG, Brazil.
| | - Luiz Fernando Veríssimo
- Department of Physiological Sciences, Biological Sciences Center, State University of Londrina (UEL), Londrina, Paraná, Brazil
| | - Hiviny Ataides Raquel
- Department of Physiological Sciences, Biological Sciences Center, State University of Londrina (UEL), Londrina, Paraná, Brazil
| | - Vinicius Lucca Volpini
- Department of Physiological Sciences, Biological Sciences Center, State University of Londrina (UEL), Londrina, Paraná, Brazil
| | - Leonardo André da Costa Marques
- Department of Physiological Sciences, Biological Sciences Center, State University of Londrina (UEL), Londrina, Paraná, Brazil
| | - Marli Cardoso Martins-Pinge
- Department of Physiological Sciences, Biological Sciences Center, State University of Londrina (UEL), Londrina, Paraná, Brazil
| | - Karen Barros Parron Fernandes
- School of Medicine, Graduate Program in Health Sciences, Pontifícia Universidade Católica do Paraná (PUCPR), Londrina, Paraná, Brazil
| | - Karoliny Coelho Andrade
- Department of Health Sciences Faculty of Medicine Federal University of Lavras (UFLA), Lavras, Minas Gerais, Brazil
| | - Lisete Compagno Michelini
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, São Paulo, Brazil
| | - Gislaine Garcia Pelosi
- Department of Physiological Sciences, Biological Sciences Center, State University of Londrina (UEL), Londrina, Paraná, Brazil
| |
Collapse
|
3
|
Lin L, Pan X, Feng Y, Yang J. Chronic kidney disease combined with metabolic syndrome is a non-negligible risk factor. Ther Adv Endocrinol Metab 2024; 15:20420188241252309. [PMID: 39071115 PMCID: PMC11273817 DOI: 10.1177/20420188241252309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 04/10/2024] [Indexed: 07/30/2024] Open
Abstract
Metabolic syndrome (MetS) is a group of conditions characterized by hypertension (HTN), hyperglycaemia or insulin resistance (IR), hyperlipidaemia, and abdominal obesity. MetS is associated with a high incidence of cardiovascular events and mortality and is an independent risk factor for chronic kidney disease (CKD). MetS can cause CKD or accelerate the progression of kidney disease. Recent studies have found that MetS and kidney disease have a cause-and-effect relationship. Patients with CKD, those undergoing kidney transplantation, or kidney donors have a significantly higher risk of developing MetS than normal people. The present study reviewed the possible mechanisms of MetS in patients with CKD, including the disorders of glucose and fat metabolism after kidney injury, IR, HTN and the administration of glucocorticoid and calcineurin inhibitors. In addition, this study reviewed the effect of MetS in patients with CKD on important target organs such as the kidney, heart, brain and blood vessels, and the treatment and prevention of CKD combined with MetS. The study aims to provide strategies for the diagnosis, treatment and prevention of CKD in patients with MetS.
Collapse
Affiliation(s)
- Lirong Lin
- Department of Nephrology, The Third Affiliated Hospital of Chongqing Medical University (General Hospital), Chongqing, China
| | - Xianfeng Pan
- Department of Nephrology, Chongqing Kaizhou District People’s Hospital of Chongqing, Chongqing, China
| | - Yuanjun Feng
- Department of Nephrology, Guizhou Aerospace Hospital, Guizhou 563000, China
| | - Jurong Yang
- Department of Nephrology, The Third Affiliated Hospital of Chongqing Medical University (General Hospital), Chongqing 401120, China
| |
Collapse
|
4
|
Rolland Y, Dray C, Vellas B, Barreto PDS. Current and investigational medications for the treatment of sarcopenia. Metabolism 2023; 149:155597. [PMID: 37348598 DOI: 10.1016/j.metabol.2023.155597] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/20/2023] [Accepted: 05/25/2023] [Indexed: 06/24/2023]
Abstract
Sarcopenia, defined as the loss of muscle mass and function, is a widely prevalent and severe condition in older adults. Since 2016, it is recognized as a disease. Strength exercise training and nutritional support are the frontline treatment of sarcopenia, with no drug currently approved for this indication. However, new therapeutic options are emerging. In this review, we evidenced that only very few trials have focused on sarcopenia/sarcopenic patients. Most drug trials were performed in different clinical older populations (e.g., men with hypogonadism, post-menopausal women at risk for osteoporosis), and their efficacy were tested separately on the components of sarcopenia (muscle mass, muscle strength and physical performances). Results from trials testing the effects of Testosterone, Selective Androgen Receptor Modulators (SARMs), Estrogen, Dehydroepiandrosterone (DHEA), Insulin-like Growth Factor-1 (IGF-1), Growth Hormone (GH), GH Secretagogue (GHS), drug targeting Myostatin and Activin receptor pathway, Vitamin D, Angiotensin Converting Enzyme inhibitors (ACEi) and Angiotensin Receptor Blockers (ARBs), or β-blockers, were compiled. Although some drugs have been effective in improving muscle mass and/or strength, this was not translated into clinically relevant improvements on physical performance. Finally, some promising molecules investigated in on-going clinical trials and in pre-clinical phase were summarized, including apelin and irisin.
Collapse
Affiliation(s)
- Yves Rolland
- Gérontopôle de Toulouse, IHU HealthAge, Institut du Vieillissement, Centre Hospitalo-Universitaire de Toulouse, France; CERPOP UMR 1295, University of Toulouse III, Inserm, UPS, Toulouse, France.
| | - Cedric Dray
- Université de Toulouse III Université Paul Sabatier, Toulouse, France; Restore, a geroscience and rejuvenation research center, UMR 1301-Inserm, 5070-CNRS EFS, France
| | - Bruno Vellas
- Gérontopôle de Toulouse, IHU HealthAge, Institut du Vieillissement, Centre Hospitalo-Universitaire de Toulouse, France; CERPOP UMR 1295, University of Toulouse III, Inserm, UPS, Toulouse, France
| | - Philipe De Souto Barreto
- Gérontopôle de Toulouse, IHU HealthAge, Institut du Vieillissement, Centre Hospitalo-Universitaire de Toulouse, France; CERPOP UMR 1295, University of Toulouse III, Inserm, UPS, Toulouse, France
| |
Collapse
|
5
|
Tarfeen N, Nisa KU, Ahmad MB, Waza AA, Ganai BA. Metabolic and Genetic Association of Vitamin D with Calcium Signaling and Insulin Resistance. Indian J Clin Biochem 2023; 38:407-417. [PMID: 37746541 PMCID: PMC10516840 DOI: 10.1007/s12291-022-01105-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 11/29/2022] [Indexed: 12/14/2022]
Abstract
Various evidences have unveiled the significance of Vitamin D in diverse processes which include its action in prevention of immune dysfunction, cancer and cardiometabolic disorders. Studies have confirmed the function of VD in controlling the expression of approximately nine hundred genes including gene expression of insulin. VD insufficiency may be linked with the pathogenesis of diseases that are associated with insulin resistance (IR) including diabetes as well as obesity. Thus, VD lowers IR-related disorders such as inflammation and oxidative stress. This review provides an insight regarding the molecular mechanism manifesting, how insufficiency of VD may be connected with the IR and diabetes. It also discusses the effect of VD in maintaining the Ca2+ levels in beta cells of the pancreas and in the tissues that are responsive to insulin.
Collapse
Affiliation(s)
- Najeebul Tarfeen
- Centre of Research for Development, University of Kashmir, Srinagar, India
| | - Khair Ul Nisa
- Department of Environmental Science, University of Kashmir, Srinagar, India
| | - Mir Bilal Ahmad
- Department of Biochemistry, University of Kashmir, Srinagar, India
| | - Ajaz Ahmad Waza
- Multidisciplinary Research Unit (MRU), Government Medical Collage (GMC) Srinagar, Srinagar, J & K 190010 India
| | - Bashir Ahmad Ganai
- Centre of Research for Development, University of Kashmir, Srinagar, India
| |
Collapse
|
6
|
Batista JPT, Faria AOVD, Ribeiro TFS, Simões E Silva AC. The Role of Renin-Angiotensin System in Diabetic Cardiomyopathy: A Narrative Review. Life (Basel) 2023; 13:1598. [PMID: 37511973 PMCID: PMC10381689 DOI: 10.3390/life13071598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/17/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
Diabetic cardiomyopathy refers to myocardial dysfunction in type 2 diabetes, but without the traditional cardiovascular risk factors or overt clinical atherosclerosis and valvular disease. The activation of the renin-angiotensin system (RAS), oxidative stress, lipotoxicity, maladaptive immune responses, imbalanced mitochondrial dynamics, impaired myocyte autophagy, increased myocyte apoptosis, and fibrosis contribute to diabetic cardiomyopathy. This review summarizes the studies that address the link between cardiomyopathy and the RAS in humans and presents proposed pathophysiological mechanisms underlying this association. The RAS plays an important role in the development and progression of diabetic cardiomyopathy. The over-activation of the classical RAS axis in diabetes leads to the increased production of angiotensin (Ang) II, angiotensin type 1 receptor activation, and aldosterone release, contributing to increased oxidative stress, fibrosis, and cardiac remodeling. In contrast, Ang-(1-7) suppresses oxidative stress, inhibits tissue fibrosis, and prevents extensive cardiac remodeling. Angiotensin-converting-enzyme (ACE) inhibitors and angiotensin receptor blockers improve heart functioning and reduce the occurrence of diabetic cardiomyopathy. Experimental studies also show beneficial effects for Ang-(1-7) and angiotensin-converting enzyme 2 infusion in improving heart functioning and tissue injury. Further research is necessary to fully understand the pathophysiology of diabetic cardiomyopathy and to translate experimental findings into clinical practice.
Collapse
Affiliation(s)
- João Pedro Thimotheo Batista
- Laboratório Interdisciplinar de Investigação Médica, Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 30130-100, MG, Brazil
| | - André Oliveira Vilela de Faria
- Laboratório Interdisciplinar de Investigação Médica, Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 30130-100, MG, Brazil
| | - Thomas Felipe Silva Ribeiro
- Laboratório Interdisciplinar de Investigação Médica, Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 30130-100, MG, Brazil
| | - Ana Cristina Simões E Silva
- Laboratório Interdisciplinar de Investigação Médica, Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 30130-100, MG, Brazil
- Departamento de Pediatria, Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 30130-100, MG, Brazil
| |
Collapse
|
7
|
Lee JW, Gu HO, Jung Y, Jung Y, Seo SY, Hong JH, Hong IS, Lee DH, Kim OH, Oh BC. Candesartan, an angiotensin-II receptor blocker, ameliorates insulin resistance and hepatosteatosis by reducing intracellular calcium overload and lipid accumulation. Exp Mol Med 2023:10.1038/s12276-023-00982-6. [PMID: 37121975 DOI: 10.1038/s12276-023-00982-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 01/17/2023] [Accepted: 01/30/2023] [Indexed: 05/02/2023] Open
Abstract
Insulin resistance is a major contributor to the pathogenesis of several human diseases, including type 2 diabetes, hypertension, and hyperlipidemia. Notably, insulin resistance and hypertension share common abnormalities, including increased oxidative stress, inflammation, and organelle dysfunction. Recently, we showed that excess intracellular Ca2+, a known pathogenic factor in hypertension, acts as a critical negative regulator of insulin signaling by forming Ca2+-phosphoinositides that prevent the membrane localization of AKT, a key serine/threonine kinase signaling molecule. Whether preventing intracellular Ca2+ overload improves insulin sensitivity, however, has not yet been investigated. Here, we show that the antihypertensive agent candesartan, compared with other angiotensin-II receptor blockers, has previously unrecognized beneficial effects on attenuating insulin resistance. We found that candesartan markedly reduced palmitic acid (PA)-induced intracellular Ca2+ overload and lipid accumulation by normalizing dysregulated store-operated channel (SOC)-mediated Ca2+ entry into cells, which alleviated PA-induced insulin resistance by promoting insulin-stimulated AKT membrane localization and increased the phosphorylation of AKT and its downstream substrates. As pharmacological approaches to attenuate intracellular Ca2+ overload in vivo, administering candesartan to obese mice successfully decreased insulin resistance, hepatic steatosis, dyslipidemia, and tissue inflammation by inhibiting dysregulated SOC-mediated Ca2+ entry and ectopic lipid accumulation. The resulting alterations in the phosphorylation of key signaling molecules consequently alleviate impaired insulin signaling by increasing the postprandial membrane localization and phosphorylation of AKT. Thus, our findings provide robust evidence for the pleiotropic contribution of intracellular Ca2+ overload in the pathogenesis of insulin resistance and suggest that there are viable approved drugs that can be repurposed for the treatment of insulin resistance and hypertension.
Collapse
Affiliation(s)
- Jin Wook Lee
- Department of Physiology, Lee Gil Ya Cancer and Diabetes Institute, Gachon College of Medicine, Incheon, 21999, Republic of Korea
- Department of Health Sciences and Technology (GAIHST), Gachon University, Incheon, 21999, Republic of Korea
| | - Hyun-Oh Gu
- Department of Physiology, Lee Gil Ya Cancer and Diabetes Institute, Gachon College of Medicine, Incheon, 21999, Republic of Korea
- Department of Health Sciences and Technology (GAIHST), Gachon University, Incheon, 21999, Republic of Korea
| | - Yunshin Jung
- Department of Health Sciences and Technology (GAIHST), Gachon University, Incheon, 21999, Republic of Korea
| | - YunJae Jung
- Department of Health Sciences and Technology (GAIHST), Gachon University, Incheon, 21999, Republic of Korea
- Department of Microbiology, Lee Gil Ya Cancer and Diabetes Institute, Gachon University College of Medicine, Incheon, 21999, Republic of Korea
| | - Seung-Yong Seo
- College of Pharmacy, Gachon University, Incheon, 21936, Republic of Korea
| | - Jeong-Hee Hong
- Department of Physiology, Lee Gil Ya Cancer and Diabetes Institute, Gachon College of Medicine, Incheon, 21999, Republic of Korea
| | - In-Sun Hong
- Department of Molecular Medicine, Lee Gil Ya Cancer and Diabetes Institute, Gachon University College of Medicine, Incheon, 21999, Republic of Korea
| | - Dae Ho Lee
- Department of Internal Medicine, Gachon University Gil Medical Center, Incheon, 21565, Republic of Korea
| | - Ok-Hee Kim
- Department of Physiology, Lee Gil Ya Cancer and Diabetes Institute, Gachon College of Medicine, Incheon, 21999, Republic of Korea.
| | - Byung-Chul Oh
- Department of Physiology, Lee Gil Ya Cancer and Diabetes Institute, Gachon College of Medicine, Incheon, 21999, Republic of Korea.
- Department of Health Sciences and Technology (GAIHST), Gachon University, Incheon, 21999, Republic of Korea.
| |
Collapse
|
8
|
Fernández-Puente E, Martín-Prieto E, Márquez CM, Palomero J. Effect of RONS-Induced Intracellular Redox Homeostasis in 6-NBDG/Glucose Uptake in C2C12 Myotubes and Single Isolated Skeletal Muscle Fibres. Int J Mol Sci 2023; 24:ijms24098082. [PMID: 37175789 PMCID: PMC10179233 DOI: 10.3390/ijms24098082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
The glucose uptake in skeletal muscle is essential to produce energy through ATP, which is needed by this organ to maintain vital functions. The impairment of glucose uptake compromises the metabolism and function of skeletal muscle and other organs and is a feature of diabetes, obesity, and ageing. There is a need for research to uncover the mechanisms involved in the impairment of glucose uptake in skeletal muscle. In this study, we adapted, developed, optimised, and validated a methodology based on the fluorescence glucose analogue 6-NBDG, combined with a quantitative fluorescence microscopy image analysis, to determine the glucose uptake in two models of skeletal muscle cells: C2C12 myotubes and single fibres isolated from muscle. It was proposed that reactive oxygen and nitrogen species (RONS) and redox homeostasis play an important role in the modulation of intracellular redox signalling pathways associated with glucose uptake. In this study, we prove that the prooxidative intracellular redox environment under oxidative eustress produced by RONS such as hydrogen peroxide and nitric oxide improves glucose uptake in skeletal muscle cells. However, when oxidation is excessive, oxidative distress occurs, and cellular viability is compromised, although there might be an increase in the glucose uptake. Based on the results of this study, the determination of 6-NBDG/glucose uptake in myotubes and skeletal muscle cells is feasible, validated, and will contribute to improve future research.
Collapse
Affiliation(s)
- Escarlata Fernández-Puente
- Department of Physiology and Pharmacology, University of Salamanca, 37007 Salamanca, Spain
- Institute of Neurosciences of Castilla y León (INCyL), 37007 Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Eva Martín-Prieto
- Department of Physiology and Pharmacology, University of Salamanca, 37007 Salamanca, Spain
- Institute of Neurosciences of Castilla y León (INCyL), 37007 Salamanca, Spain
| | - Carlos Manuel Márquez
- Department of Physiology and Pharmacology, University of Salamanca, 37007 Salamanca, Spain
| | - Jesús Palomero
- Department of Physiology and Pharmacology, University of Salamanca, 37007 Salamanca, Spain
- Institute of Neurosciences of Castilla y León (INCyL), 37007 Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
| |
Collapse
|
9
|
Fajloun Z, Abi Khattar Z, Kovacic H, Legros C, Sabatier JM. Understanding and Relieving of Neuropathic Disorders in the Long COVID. Infect Disord Drug Targets 2023; 23:e270223214061. [PMID: 36843369 DOI: 10.2174/1871526523666230227113205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 02/06/2023] [Indexed: 02/28/2023]
Affiliation(s)
- Ziad Fajloun
- Department of Biology, Faculty of Sciences 3, Lebanese University, Campus Michel Slayman Ras Maska, Tripoli 1352, Lebanon
- Laboratory of Applied Biotechnology (LBA3B), Azm Center for Research in Biotechnology and its Applications, EDST, Lebanese University, Tripoli 1300, Lebanon
| | - Ziad Abi Khattar
- Laboratory of Georesources, Geosciences and Environment (L2GE), Microbiology/Tox-Ecotoxicology Team, Faculty of Sciences 2, Lebanese University, Campus Fanar, Jdeidet El-Matn, Beirut, P.O. Box 90656, Lebanon
| | - Hervé Kovacic
- CNRS, INP, Inst Neurophysiopathol, Aix- Marseille Univ, Marseille 13385, France
| | - Christian Legros
- Univ Angers, INSERM, CNRS, MITOVASC, Team 2 CarMe, SFR ICAT, Angers 49000, France
| | - Jean-Marc Sabatier
- CNRS, INP, Inst Neurophysiopathol, Aix- Marseille Univ, Marseille 13385, France
| |
Collapse
|
10
|
Shi M, Mathai ML, Xu G, Su XQ, McAinch AJ. The effect of dietary supplementation with blueberry, cyanidin-3-O-β-glucoside, yoghurt and its peptides on gene expression associated with glucose metabolism in skeletal muscle obtained from a high-fat-high-carbohydrate diet induced obesity model. PLoS One 2022; 17:e0270306. [PMID: 36112580 PMCID: PMC9481010 DOI: 10.1371/journal.pone.0270306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 06/07/2022] [Indexed: 11/18/2022] Open
Abstract
Obesity is a leading global health problem contributing to various chronic diseases, including type II diabetes mellitus (T2DM). The aim of this study was to investigate whether blueberries, yoghurt, and their respective bioactive components, Cyanidin-3-O-β-glucoside (C3G) and peptides alone or in combinations, alter the expression of genes related to glucose metabolism in skeletal muscles from diet-induced obese mice. In extensor digitorum longus (EDL), yoghurt up-regulated the expression of activation of 5’adenosine monophosphate-activated protein kinase (AMPK), insulin receptor substrate-1 (IRS-1), phosphatidylinositol-3 kinase (PI3K) and glucose transporter 4 (GLUT4), and down-regulated the expression of angiotensin II receptor type 1 (AGTR-1). The combination of blueberries and yoghurt down-regulated the mRNA expression of AGTR-1 and Forkhead box protein O1 (FoxO1) in the EDL. Whereas the combination of C3G and peptides down-regulated AGTR-1 and up-regulated GLUT4 mRNA expression in the EDL. In the soleus, blueberries and yoghurt alone, and their combination down-regulated AGTR-1 and up-regulated GLUT4 mRNA expression. In summary blueberries and yoghurt, regulated multiple genes associated with glucose metabolism in skeletal muscles, and therefore may play a role in the management and prevention of T2DM.
Collapse
Affiliation(s)
- Min Shi
- Institute for Health and Sport, Victoria University, Melbourne, Australia
- Australian Institute for Musculoskeletal Science (AIMSS), Victoria University, Melbourne, Australia
| | - Michael L. Mathai
- Institute for Health and Sport, Victoria University, Melbourne, Australia
| | - Guoqin Xu
- Institute for Health and Sport, Victoria University, Melbourne, Australia
- Department of Sports and Health, Guangzhou Sport University, Guangzhou, China
| | - Xiao Q. Su
- Institute for Health and Sport, Victoria University, Melbourne, Australia
| | - Andrew J. McAinch
- Institute for Health and Sport, Victoria University, Melbourne, Australia
- Australian Institute for Musculoskeletal Science (AIMSS), Victoria University, Melbourne, Australia
- * E-mail:
| |
Collapse
|
11
|
Vargas Vargas RA, Varela Millán JM, Fajardo Bonilla E. Renin-angiotensin system: Basic and clinical aspects-A general perspective. ENDOCRINOLOGIA, DIABETES Y NUTRICION 2022; 69:52-62. [PMID: 35232560 PMCID: PMC8882059 DOI: 10.1016/j.endien.2022.01.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 05/10/2021] [Indexed: 12/21/2022]
Abstract
The renin–angiotensin system (RAS) is one of the most complex hormonal regulatory systems, involving several organs that interact to regulate multiple body functions. The study of this system initially focused on investigating its role in the regulation of both cardiovascular function and related pathologies. From this approach, pharmacological strategies were developed for the treatment of cardiovascular diseases. However, new findings in recent decades have suggested that the RAS is much more complex and comprises two subsystems, the classic RAS and an alternative RAS, with antagonistic effects that are usually in equilibrium. The classic system is involved in pathologies where inflammatory, hypertrophic and fibrotic phenomena are common and is related to the development of chronic diseases that affect various body systems. This understanding has been reinforced by the evidence that local renin–angiotensin systems exist in many tissue types and by the role of the RAS in the spread and severity of COVID-19 infection, where it was discovered that viral entry into cells of the respiratory system is accomplished through binding to angiotensin-converting enzyme 2, which is present in the alveolar epithelium and is overexpressed in patients with chronic cardiometabolic diseases. In this narrative review, preclinical and clinical aspects of the RAS are presented and topics for future research are discussed some aspects are raised that should be clarified in the future and that call for further investigation of this system.
Collapse
Affiliation(s)
- Rafael Antonio Vargas Vargas
- Universidad Militar Nueva Granada, Facultad de medicina, Bogotá, Colombia; Universidad Santo Tomás, Maestría en actividad física para la salud, Bogotá, Colombia.
| | - Jesús María Varela Millán
- Universidad Militar Nueva Granada, Facultad de medicina, Bogotá, Colombia; Universidad Santo Tomás, Maestría en actividad física para la salud, Bogotá, Colombia
| | | |
Collapse
|
12
|
Mu ZJ, Fu JL, Sun LN, Chan P, Xiu SL. Associations between homocysteine, inflammatory cytokines and sarcopenia in Chinese older adults with type 2 diabetes. BMC Geriatr 2021; 21:692. [PMID: 34911470 PMCID: PMC8672561 DOI: 10.1186/s12877-021-02622-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 11/08/2021] [Indexed: 01/06/2023] Open
Abstract
Background Sarcopenia, an age-related disease, has been implicated as both a cause and consequence of type 2 diabetes mellitus (T2DM) and a symbol of poor prognosis in older adults with T2DM. Therefore, early detection and effective treatment of sarcopenia are particularly important in older adults with T2DM. We aimed to investigate the prevalence of sarcopenia in Chinese older T2DM patients and explore whether homocysteine and inflammatory indexes could serve as biomarkers and participate in the development process of sarcopenia. Methods T2DM patients aged over 60 years were consecutively recruited from the ward of department of Endocrinology, Xuanwu Hospital between April 2017 and April 2019. Sarcopenia was defined based on the standard of the Asian Working Group of Sarcopenia, including muscle mass, grip strength and gait speed. Logistic regression was used to explore the association between biochemical indicators and sarcopenia. Receiver operating characteristic (ROC) curves were applied to determine the diagnostic effect of these clinical indicators. Results Totally 582 older adults with T2DM were characterized and analyzed in the study. Approximately 8.9% of the older T2DM patients had sarcopenia. After adjusting for age, sex, body mass index (BMI) and hemoglobin A1c (HbA1c), increased concentrations of homocysteine [odds ratio (OR): 2.829; 95% confidence interval (CI), 1.064–7.525] and high-sensitive C-reactive protein (hs-CRP) (OR: 1.021; 95% CI, 1.001–1.042) were independent predictors of sarcopenia; but not interleukin-6. The combination of age, sex, BMI and HbA1c provided a discriminatory effect of sarcopenia with an area under the curve (AUC) of 0.856, when homocysteine was added to the model, the value of the ROC curve was further improved, with an AUC of 0.861. Conclusion In the current study, we demonstrated a positive correlation of homocysteine, hs-CRP with sarcopenia in older adults with T2DM and the relationship remained significant even after adjustment for HbA1c. These biomarkers (homocysteine and hs-CRP) may play important roles in the pathological process of sarcopenia.
Collapse
Affiliation(s)
- Zhi-Jing Mu
- Department of Endocrinology, Beijing Institute of Geriatrics, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Jun-Ling Fu
- Department of Endocrinology, Beijing Institute of Geriatrics, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Li-Na Sun
- Department of Endocrinology, Beijing Institute of Geriatrics, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Piu Chan
- Department of Neurobiology, Neurology and Geriatrics, Xuanwu Hospital of Capital Medical University, Beijing Institute of Geriatrics, Beijing, 100053, China. .,Clinical Center for Parkinson's Disease, Capital Medical University, Beijing, China. .,Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Beijing Key Laboratory for Parkinson's Disease, Parkinson Disease Center of Beijing Institute for Brain Disorders, Beijing, China. .,National Clinical Research Center for Geriatric Disorders, Beijing, China. .,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China.
| | - Shuang-Ling Xiu
- Department of Endocrinology, Beijing Institute of Geriatrics, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
| |
Collapse
|
13
|
Rodriguez R, Lee AY, Godoy-Lugo JA, Martinez B, Ohsaki H, Nakano D, Parkes DG, Nishiyama A, Vázquez-Medina JP, Ortiz RM. Chronic AT 1 blockade improves hyperglycemia by decreasing adipocyte inflammation and decreasing hepatic PCK1 and G6PC1 expression in obese rats. Am J Physiol Endocrinol Metab 2021; 321:E714-E727. [PMID: 34658252 PMCID: PMC8782654 DOI: 10.1152/ajpendo.00584.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 10/04/2021] [Accepted: 10/07/2021] [Indexed: 11/22/2022]
Abstract
Inappropriate activation of the renin-angiotensin system decreases glucose uptake in peripheral tissues. Chronic angiotensin receptor type 1 (AT1) blockade (ARB) increases glucose uptake in skeletal muscle and decreases the abundance of large adipocytes and macrophage infiltration in adipose. However, the contributions of each tissue to the improvement in hyperglycemia in response to AT1 blockade are not known. Therefore, we determined the static and dynamic responses of soleus muscle, liver, and adipose to an acute glucose challenge following the chronic blockade of AT1. We measured adipocyte morphology along with TNF-α expression, F4/80- and CD11c-positive cells in adipose and measured insulin receptor (IR) phosphorylation and AKT phosphorylation in soleus muscle, liver, and retroperitoneal fat before (T0), 60 (T60) and 120 (T120) min after an acute glucose challenge in the following groups of male rats: 1) Long-Evans Tokushima Otsuka (LETO; lean control; n = 5/time point), 2) obese Otsuka Long Evans Tokushima Fatty (OLETF; n = 7 or 8/time point), and 3) OLETF + ARB (ARB; 10 mg olmesartan/kg/day; n = 7 or 8/time point). AT1 blockade decreased adipocyte TNF-α expression and F4/80- and CD11c-positive cells. In retroperitoneal fat at T60, IR phosphorylation was 155% greater in ARB than in OLETF. Furthermore, in retroperitoneal fat AT1 blockade increased glucose transporter-4 (GLUT4) protein expression in ARB compared with OLETF. IR phosphorylation and AKT phosphorylation were not altered in the liver of OLETF, but AT1 blockade decreased hepatic Pck1 and G6pc1 mRNA expressions. Collectively, these results suggest that chronic AT1 blockade improves obesity-associated hyperglycemia in OLETF rats by improving adipocyte function and by decreasing hepatic glucose production via gluconeogenesis.NEW & NOTEWORTHY Inappropriate activation of the renin-angiotensin system increases adipocyte inflammation contributing to the impairment in adipocyte function and increases hepatic Pck1 and G6pc1 mRNA expression in response to a glucose challenge. Ultimately, these effects may contribute to the development of glucose intolerance.
Collapse
Affiliation(s)
- Ruben Rodriguez
- Department of Molecular & Cellular Biology, University of California, Merced, California
| | - Andrew Y Lee
- Department of Molecular & Cellular Biology, University of California, Merced, California
| | - Jose A Godoy-Lugo
- Department of Molecular & Cellular Biology, University of California, Merced, California
| | - Bridget Martinez
- Department of Molecular & Cellular Biology, University of California, Merced, California
| | - Hiroyuki Ohsaki
- Department of Medical Biophysics, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Daisuke Nakano
- Department of Pharmacology, Kagawa University Medical School, Kagawa, Japan
| | | | - Akira Nishiyama
- Department of Pharmacology, Kagawa University Medical School, Kagawa, Japan
| | | | - Rudy M Ortiz
- Department of Molecular & Cellular Biology, University of California, Merced, California
| |
Collapse
|
14
|
Brandão SCS, Godoi ETAM, de Oliveira Cordeiro LH, Bezerra CS, de Oliveira Xavier Ramos J, de Arruda GFA, Lins EM. COVID-19 and obesity: the meeting of two pandemics. ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2021; 65:3-13. [PMID: 33320454 PMCID: PMC10528705 DOI: 10.20945/2359-3997000000318] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 10/21/2020] [Indexed: 01/08/2023]
Abstract
COVID-19 and obesity are two pandemic diseases that the world is currently facing. Both activate the immune system and mediate inflammation. A sequence of disease phases in patients with severe COVID-19 results in a cytokine storm, which amplifies the subclinical inflammation that already exists in patients with obesity. Pro-inflammatory cytokines and chemotactic factors increase insulin resistance in obesity. Therefore, a greater systemic inflammatory response is establishe, along with an increased risk of thrombotic phenomena and hyperglycemic conditions. These changes further impair pulmonary, cardiac, hepatic, and renal functions, in addition to hindering glycemic control in people with diabetes and pre-diabetes. This review explains the pathophysiological mechanisms of these two pandemic diseases, provides a deeper understanding of this harmful interaction and lists possible therapeutic strategies for this risk group.
Collapse
Affiliation(s)
- Simone Cristina Soares Brandão
- Departamento de Clínica Médica, Universidade Federal de Pernambuco (UFPE), Recife, PE, Brasil
- Programa de Pós-Graduação em Cirurgia, Universidade Federal de Pernambuco, Recife, PE, Brasil
| | - Emmanuelle Temório Albuquerque Madruga Godoi
- Departamento de Clínica Médica, Universidade Federal de Pernambuco (UFPE), Recife, PE, Brasil
- Programa de Pós-Graduação em Cirurgia, Universidade Federal de Pernambuco, Recife, PE, Brasil
| | | | - Camila Silva Bezerra
- Programa de Pós-Graduação em Cirurgia, Universidade Federal de Pernambuco, Recife, PE, Brasil
| | | | | | - Esdras Marques Lins
- Programa de Pós-Graduação em Cirurgia, Universidade Federal de Pernambuco, Recife, PE, Brasil
| |
Collapse
|
15
|
Vargas Vargas RA, Varela Millán JM, Fajardo Bonilla E. Renin-angiotensin system: Basic and clinical aspects-A general perspective. ACTA ACUST UNITED AC 2021; 69:52-62. [PMID: 34723133 PMCID: PMC8547789 DOI: 10.1016/j.endinu.2021.05.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 05/10/2021] [Indexed: 12/22/2022]
Abstract
The renin–angiotensin system (RAS) is one of the most complex hormonal regulatory systems, involving several organs that interact to regulate multiple body functions. The study of this system initially focused on investigating its role in the regulation of both cardiovascular function and related pathologies. From this approach, pharmacological strategies were developed for the treatment of cardiovascular diseases. However, new findings in recent decades have suggested that the RAS is much more complex and comprises two subsystems, the classic RAS and an alternative RAS, with antagonistic effects that are usually in equilibrium. The classic system is involved in pathologies where inflammatory, hypertrophic and fibrotic phenomena are common and is related to the development of chronic diseases that affect various body systems. This understanding has been reinforced by the evidence that local renin–angiotensin systems exist in many tissue types and by the role of the RAS in the spread and severity of COVID-19 infection, where it was discovered that viral entry into cells of the respiratory system is accomplished through binding to angiotensin-converting enzyme 2, which is present in the alveolar epithelium and is overexpressed in patients with chronic cardiometabolic diseases. In this narrative review, preclinical and clinical aspects of the RAS are presented and topics for future research are discussed some aspects are raised that should be clarified in the future and that call for further investigation of this system.
Collapse
Affiliation(s)
- Rafael Antonio Vargas Vargas
- Universidad Militar Nueva Granada, Facultad de medicina, Bogotá, Colombia.,Universidad Santo Tomás, Maestría en actividad física para la salud, Bogotá, Colombia
| | - Jesús María Varela Millán
- Universidad Militar Nueva Granada, Facultad de medicina, Bogotá, Colombia.,Universidad Santo Tomás, Maestría en actividad física para la salud, Bogotá, Colombia
| | | |
Collapse
|
16
|
Ali MY, Zaib S, Jannat S, Khan I. Inhibition of Angiotensin-I Converting Enzyme by Ginsenosides: Structure-Activity Relationships and Inhibitory Mechanism. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:6073-6086. [PMID: 34014666 DOI: 10.1021/acs.jafc.1c01231] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Ginseng (Panax ginseng C. A. Meyer) extract has been reported to inhibit the angiotensin converting enzyme (ACE); however, the possible inhibitory action of most of its constituents (ginsenosides) against ACE remains unknown. Thus, in this study, we investigated ginsenoside derivatives' inhibitory effect on ACE. We assessed the activities of 22 ginsenosides, most of which inhibited ACE significantly. Notably, protopanaxatriol, protopanaxadiol, and ginsenoside Rh2 exhibited the most potent ACE inhibitory potential, with IC50 values of 1.57, 2.22, and 5.60 μM, respectively. Further, a kinetic study revealed different modes of inhibition against ACE. Molecular docking studies have confirmed that ginsenosides inhibit ACE via many hydrogen bonds and hydrophobic interactions with catalytic residues and zinc ion of C- and N-domain ACE that block the catalytic activity of ACE. In addition, we found that the active ginsenosides stimulated glucose uptake in insulin-resistant C2C12 skeletal muscle cells in a dose-dependent manner. Moreover, the most active ginsenosides' reactive oxygen species (ROS) and peroxynitrite (ONOO-) scavenging properties were evaluated, in which IC50 values ranged from 1.44-43.83 to 2.36-39.56 μM in ONOO- and ROS, respectively. The results derived from these computational and in vitro experiments provide additional scientific support for the anecdotal use of ginseng in traditional medicine to treat cardiovascular diseases such as hypertension.
Collapse
Affiliation(s)
- Md Yousof Ali
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Sumera Zaib
- Department of Biochemistry, Faculty of Life Sciences, University of Central Punjab, Lahore 54590, Pakistan
| | - Susoma Jannat
- Department of Biochemistry and Molecular Biology, University of Calgary, T2N 1N4 Alberta, Canada
| | - Imtiaz Khan
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| |
Collapse
|
17
|
Katsimardou A, Imprialos K, Stavropoulos K, Sachinidis A, Doumas M, Athyros V. Hypertension in Metabolic Syndrome: Novel Insights. Curr Hypertens Rev 2020; 16:12-18. [PMID: 30987573 DOI: 10.2174/1573402115666190415161813] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 03/26/2019] [Accepted: 04/01/2019] [Indexed: 12/27/2022]
Abstract
BACKGROUND Metabolic syndrome (MetS) is characterized by the simultaneous presence of obesity, hypertension, dyslipidemia and hyperglycemia in an individual, leading to increased cardiovascular disease (CVD) risk. It affects almost 35% of the US adult population, while its prevalence increases with age. Elevated blood pressure is the most frequent component of the syndrome; however, until now, the optimal antihypertensive regiment has not been defined. OBJECTIVE The purpose of this review is to present the proposed definitions for the metabolic syndrome, as well as the prevalence of hypertension in this condition. Moreover, evidence regarding the metabolic properties of the different antihypertensive drug classes and their effect on MetS will be displayed. METHODS A comprehensive review of the literature was performed to identify data from clinical studies for the prevalence, pathophysiology and treatment of hypertension in the metabolic syndrome. RESULTS Hypertension is present in almost 80% of patients with metabolic syndrome. The use of thiazide diuretics and b-blockers has been discouraged in this population; however, new evidence suggests their use under specific conditions. Calcium channel blockers seem to exert a neutral effect on MetS, while renin-angiotensin system inhibitors are believed to be of the most benefit, although differences exist between the different agents of this category. CONCLUSION Controversy still exists regarding the optimal antihypertensive treatment for hypertension in MetS. Due to the high prevalence of hypertension in this population, more data from clinical trials are needed in the future.
Collapse
Affiliation(s)
- Alexandra Katsimardou
- 2nd Prop Department of Internal Medicine, Aristotle University, Thessaloniki, Greece
| | | | | | - Alexandros Sachinidis
- 2nd Prop Department of Internal Medicine, Aristotle University, Thessaloniki, Greece
| | - Michalis Doumas
- 2nd Prop Department of Internal Medicine, Aristotle University, Thessaloniki, Greece
| | - Vasilios Athyros
- 2nd Prop Department of Internal Medicine, Aristotle University, Thessaloniki, Greece
| |
Collapse
|
18
|
ACE2, angiotensin 1-7 and skeletal muscle: review in the era of COVID-19. Clin Sci (Lond) 2020; 134:3047-3062. [PMID: 33231620 PMCID: PMC7687025 DOI: 10.1042/cs20200486] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 10/30/2020] [Accepted: 11/03/2020] [Indexed: 12/12/2022]
Abstract
Angiotensin converting enzyme-2 (ACE2) is a multifunctional transmembrane protein recently recognised as the entry receptor of the virus causing COVID-19. In the renin–angiotensin system (RAS), ACE2 cleaves angiotensin II (Ang II) into angiotensin 1-7 (Ang 1-7), which is considered to exert cellular responses to counteract the activation of the RAS primarily through a receptor, Mas, in multiple organs including skeletal muscle. Previous studies have provided abundant evidence suggesting that Ang 1-7 modulates multiple signalling pathways leading to protection from pathological muscle remodelling and muscle insulin resistance. In contrast, there is relatively little evidence to support the protective role of ACE2 in skeletal muscle. The potential contribution of endogenous ACE2 to the regulation of Ang 1-7-mediated protection of these muscle pathologies is discussed in this review. Recent studies have suggested that ACE2 protects against ageing-associated muscle wasting (sarcopenia) through its function to modulate molecules outside of the RAS. Thus, the potential association of sarcopenia with ACE2 and the associated molecules outside of RAS is also presented herein. Further, we introduce the transcriptional regulation of muscle ACE2 by drugs or exercise, and briefly discuss the potential role of ACE2 in the development of COVID-19.
Collapse
|
19
|
Hoevenaar M, Goossens D, Roorda J. Angiotensin-converting enzyme 2, the complement system, the kallikrein-kinin system, type-2 diabetes, interleukin-6, and their interactions regarding the complex COVID-19 pathophysiological crossroads. J Renin Angiotensin Aldosterone Syst 2020; 21:1470320320979097. [PMID: 33283602 PMCID: PMC7724427 DOI: 10.1177/1470320320979097] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 11/11/2020] [Indexed: 12/15/2022] Open
Abstract
Because of the current COVID-19-pandemic, the world is currently being held hostage in various lockdowns. ACE2 facilitates SARS-CoV-2 cell-entry, and is at the very center of several pathophysiological pathways regarding the RAAS, CS, KKS, T2DM, and IL-6. Their interactions with severe COVID-19 complications (e.g. ARDS and thrombosis), and potential therapeutic targets for pharmacological intervention, will be reviewed.
Collapse
Affiliation(s)
| | | | - Janne Roorda
- Medical Doctor, General Practice
van Dijk, Oisterwijk, The Netherlands
| |
Collapse
|
20
|
Effect of Angiotensin System Inhibitors on Physical Performance in Older People - A Systematic Review and Meta-Analysis. J Am Med Dir Assoc 2020; 22:1215-1221.e2. [PMID: 32859513 PMCID: PMC8189253 DOI: 10.1016/j.jamda.2020.07.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/22/2020] [Accepted: 07/09/2020] [Indexed: 01/08/2023]
Abstract
Objective Preclinical and observational data suggest that angiotensin converting enzyme inhibitors (ACEi) and angiotensin receptor blockers (ARBs) may be able to improve physical performance in older people via direct and indirect effects on skeletal muscle. We aimed to summarize current evidence from randomised controlled trials in this area. Design Systematic review and meta-analysis. Setting and Participants Randomized controlled trials enrolling older people, comparing ACEi or ARB to placebo, usual care or another antihypertensive agent, with outcome data on measures of physical performance. Methods We searched multiple electronic databases without language restriction between inception and the end of February 2020. Trials were excluded if the mean age of participants was <65 years or treatment was targeting specific diseases known to affect muscle function (for example heart failure). Data were sought on measures of endurance and strength. Standardized mean difference (SMD) treatment effects were calculated using random-effects models with RevMan software. Results Eight trials (952 participants) were included. Six trials tested ACEi, 2 trials tested ARBs. The mean age of participants ranged from 66 to 79 years, and the duration of treatment ranged from 2 months to 1 year. Trials recruited healthy older people and people with functional impairment; no trials specifically targeted older people with sarcopenia. Risk of bias for all trials was low to moderate. No significant effect was seen on endurance outcomes [6 trials, SMD 0.04 (95% CI –0.22 to 0.29); P = .77; I2 = 53%], strength outcomes [6 trials, SMD –0.02 (95% CI –0.18 to 0.14), P = .83, I2 = 21%] or the short physical performance battery [3 trials, SMD –0.04 (95% CI –0.19 to 0.11), P = .60, I2 = 0%]. No evidence of publication bias was evident on inspection of funnel plots. Conclusions and Implications Existing evidence does not support the use of ACE inhibitors or angiotensin receptor blockers as a single intervention to improve physical performance in older people.
Collapse
|
21
|
Yao J, Gong X, Shi X, Fan S, Chen J, Chen Q. The efficacy of angiotensin converting enzyme inhibitors versus angiotensin II receptor blockers on insulin resistance in hypertensive patients: A protocol for a systematic review and meta-analysis. Medicine (Baltimore) 2020; 99:e20674. [PMID: 32541513 PMCID: PMC7302663 DOI: 10.1097/md.0000000000020674] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Previous studies have shown inconsistent outcomes in the efficacy of angiotensin-converting enzyme inhibitors (ACE inhibitors) and angiotensin receptor blockers (ARBs) on insulin resistance (IR). Hence, we aim to compare the efficacy of ACE inhibitors with ARBs on IR in hypertensive patients. METHODS Five electronic databases (included The Cochrane Library, MEDLINE, Embase, Web of Science, and Cochrane Central Register of Controlled Trials) will be searched. Randomized controlled trials (RCTs) will be included if they recruited hypertensive participants for assessing the effect of ACE inhibitors on IR versus ARBs. The primary outcome will be IR (using recognized methods such as homeostasis model assessment of insulin resistance), secondary outcomes will be blood pressure, fasting plasma glucose, fasting plasma insulin. Relevant literature search, data extraction, and quality assessment will be performed by 2 researchers independently, and the third researcher will be involved in a discussion for any disagreements. All analyses will be performed based on the Cochrane Handbook for Systematic Reviews of Interventions. Stata 12.0 software will be used for statistical analysis. The effect size of dichotomous data will be measured using the odds ratio (OR), and the effect size of continuous data will be measured using the standardized mean difference. And 95% confidence intervals will be calculated. Heterogeneity will be tested by χ-based Cochran Q statistic and I statistic. Sensitivity analysis and subgroup analysis will be used to observe changes in the pooled effect size and heterogeneity between included studies, to assess the reliability and stability of the pooled results. The funnel plot and Egger's and Begg's tests will be used to judge publication bias, and the trim and fill method will be used to correct the funnel asymmetry caused by publication bias. P < 0.05 will be considered to indicate a statistically significant result. RESULTS This systematic review and meta-analysis will assess the efficacy of ACE inhibitors versus ARBs on IR in hypertensive patients. CONCLUSIONS Our study will show the efficacy of ACE inhibitors versus ARBs on IR in hypertensive patients. And it may find a more beneficial therapeutic option to assist clinicians in making clinical decisions. ETHICS AND DISSEMINATION This study is a protocol for systematic review and meta-analysis of the efficacy of ACE inhibitors and ARBs on IR in hypertensive patients. This systematic review and meta-analysis will be published in a journal and disseminated in print by peer-review. INPLASY REGISTRATION NUMBER INPLASY202050032.
Collapse
|
22
|
Finucane FM, Davenport C. Coronavirus and Obesity: Could Insulin Resistance Mediate the Severity of Covid-19 Infection? Front Public Health 2020; 8:184. [PMID: 32574288 PMCID: PMC7247836 DOI: 10.3389/fpubh.2020.00184] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 04/24/2020] [Indexed: 01/08/2023] Open
Affiliation(s)
- Francis M Finucane
- HRB Clinical Research Facility, National University of Ireland Galway, Galway, Ireland.,Bariatric Medicine Service, Centre for Diabetes, Endocrinology and Metabolism, Galway University Hospitals, Galway, Ireland
| | - Colin Davenport
- HRB Clinical Research Facility, National University of Ireland Galway, Galway, Ireland.,Bariatric Medicine Service, Centre for Diabetes, Endocrinology and Metabolism, Galway University Hospitals, Galway, Ireland
| |
Collapse
|
23
|
Dalan R, Bornstein SR, El-Armouche A, Rodionov RN, Markov A, Wielockx B, Beuschlein F, Boehm BO. The ACE-2 in COVID-19: Foe or Friend? Horm Metab Res 2020; 52:257-263. [PMID: 32340044 PMCID: PMC7339082 DOI: 10.1055/a-1155-0501] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 04/07/2020] [Indexed: 01/08/2023]
Abstract
COVID-19 is a rapidly spreading outbreak globally. Emerging evidence demonstrates that older individuals and people with underlying metabolic conditions of diabetes mellitus, hypertension, and hyperlipidemia are at higher risk of morbidity and mortality. The SARS-CoV-2 infects humans through the angiotensin converting enzyme (ACE-2) receptor. The ACE-2 receptor is a part of the dual system renin-angiotensin-system (RAS) consisting of ACE-Ang-II-AT1R axis and ACE-2-Ang-(1-7)-Mas axis. In metabolic disorders and with increased age, it is known that there is an upregulation of ACE-Ang-II-AT1R axis with a downregulation of ACE-2-Ang-(1-7)-Mas axis. The activated ACE-Ang-II-AT1R axis leads to pro-inflammatory and pro-fibrotic effects in respiratory system, vascular dysfunction, myocardial fibrosis, nephropathy, and insulin secretory defects with increased insulin resistance. On the other hand, the ACE-2-Ang-(1-7)-Mas axis has anti-inflammatory and antifibrotic effects on the respiratory system and anti-inflammatory, antioxidative stress, and protective effects on vascular function, protects against myocardial fibrosis, nephropathy, pancreatitis, and insulin resistance. In effect, the balance between these two axes may determine the prognosis. The already strained ACE-2-Ang-(1-7)-Mas in metabolic disorders is further stressed due to the use of the ACE-2 by the virus for entry, which affects the prognosis in terms of respiratory compromise. Further evidence needs to be gathered on whether modulation of the renin angiotensin system would be advantageous due to upregulation of Mas activation or harmful due to the concomitant ACE-2 receptor upregulation in the acute management of COVID-19.
Collapse
Affiliation(s)
- Rinkoo Dalan
- Tan Tock Seng Hospital, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University
Singapore, Singapore
| | - Stefan R. Bornstein
- Lee Kong Chian School of Medicine, Nanyang Technological University
Singapore, Singapore
- Department of Medicine III, University Hospital Carl Gustav Carus,
Dresden, Germany
- Division of Diabetes & Nutritional Sciences, Faculty of Life
Sciences & Medicine, King's College London, London,
UK
- Klinik für Endokrinologie, Diabetologie und Klinische
Ernährung, University Hospital, Zürich,
Switzerland
| | - Ali El-Armouche
- Department of Pharmacology and Toxicology, Medical Faculty Carl Gustav
Carus, Technische Universität Dresden, Dresden, Germany
| | - Roman N Rodionov
- Division of Angiology, Department of Internal Medicine III, University
Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden,
Germany
| | - Alexander Markov
- Department of General Physiology, Saint-Petersburg State University,
Saint-Petersburg, Russia
| | - Ben Wielockx
- Institute of Clinical Chemistry, University Hospital Carl Gustav Carus,
Technische Universität Dresden, Dresden, Germany
| | - Felix Beuschlein
- Klinik für Endokrinologie, Diabetologie und Klinische
Ernährung, University Hospital, Zürich,
Switzerland
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität
München, Munich, Germany
| | - Bernhard O. Boehm
- Tan Tock Seng Hospital, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University
Singapore, Singapore
| |
Collapse
|
24
|
Jahandideh F, Wu J. Perspectives on the Potential Benefits of Antihypertensive Peptides towards Metabolic Syndrome. Int J Mol Sci 2020; 21:E2192. [PMID: 32235782 PMCID: PMC7139547 DOI: 10.3390/ijms21062192] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/18/2020] [Accepted: 03/20/2020] [Indexed: 12/12/2022] Open
Abstract
In addition to the regulation of blood pressure, the renin-angiotensin system (RAS) also plays a key role in the onset and development of insulin resistance, which is central to metabolic syndrome (MetS). Due to the interplay between RAS and insulin resistance, antihypertensive compounds may exert beneficial effects in the management of MetS. Food-derived bioactive peptides with RAS blocking properties can potentially improve adipose tissue dysfunction, glucose intolerance, and insulin resistance involved in the pathogenesis of MetS. This review discusses the pathophysiology of hypertension and the association between RAS and pathogenesis of the MetS. The effects of bioactive peptides with RAS modulating effects on other components of the MetS are discussed. While the in vivo reports on the effectiveness of antihypertensive peptides against MetS are encouraging, the exact mechanism by which these peptides infer their effects on glucose and lipid handling is mostly unknown. Therefore, careful design of experiments along with standardized physiological models to study the effect of antihypertensive peptides on insulin resistance and obesity could help to clarify this relationship.
Collapse
Affiliation(s)
- Forough Jahandideh
- Department of Agricultural, Food and Nutritional Science, Faculty of Agricultural, Life and Environmental Sciences, University of Alberta, Edmonton, AB T6G 2P5, Canada
- Cardiovascular Research Centre, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB T6G 2S2, Canada
| | - Jianping Wu
- Department of Agricultural, Food and Nutritional Science, Faculty of Agricultural, Life and Environmental Sciences, University of Alberta, Edmonton, AB T6G 2P5, Canada
- Cardiovascular Research Centre, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB T6G 2S2, Canada
| |
Collapse
|
25
|
Wang T, Wang Y, Liu L, Jiang Z, Li X, Tong R, He J, Shi J. Research progress on sirtuins family members and cell senescence. Eur J Med Chem 2020; 193:112207. [PMID: 32222662 DOI: 10.1016/j.ejmech.2020.112207] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 02/13/2020] [Accepted: 03/04/2020] [Indexed: 02/05/2023]
Abstract
Human aging is a phenomenon of gradual decline and loss of cell, tissue, organ and other functions under the action of external environment and internal factors. It is mainly related to genomic instability, telomere wear, mitochondrial dysfunction, protein balance disorder, antioxidant damage, microRNA expression disorder and so on. Sirtuins protein is a kind of deacetylase which can regulate cell metabolism and participate in a variety of cell physiological functions. It has been found that sirtuins family can prolong the lifespan of yeast. Sirtuins can inhibit human aging through many signaling pathways, including apoptosis signaling pathway, mTOR signaling pathway, sirtuins signaling pathway, AMPK signaling pathway, phosphatidylinositol 3 kinase (PI3K) signaling pathway and so on. Based on this, this paper reviews the action principle of anti-aging star members of sirtuins family Sirt1, Sirt3 and Sirt6 on anti-aging related signaling pathways and typical compounds, in order to provide ideas for the screening of anti-aging compounds of sirtuins family members.
Collapse
Affiliation(s)
- Ting Wang
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Yujue Wang
- Department of Obstetrics and Gynecology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, 610072, China
| | - Li Liu
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Zhongliang Jiang
- Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Xingxing Li
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Rongsheng Tong
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Jun He
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu, 610041, China.
| | - Jianyou Shi
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| |
Collapse
|
26
|
AVE0991, a Nonpeptide Angiotensin 1-7 Receptor Agonist, Improves Glucose Metabolism in the Skeletal Muscle of Obese Zucker Rats: Possible Involvement of Prooxidant/Antioxidant Mechanisms. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:6372935. [PMID: 32089774 PMCID: PMC7008284 DOI: 10.1155/2020/6372935] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 12/22/2019] [Accepted: 12/26/2019] [Indexed: 02/07/2023]
Abstract
Angiotensin 1-7 (Ang 1-7) enhances insulin signaling and glucose transport activity in the skeletal muscle. The aim of our study was to evaluate the effect of AVE0991, a nonpeptide Mas receptor agonist, on the metabolic parameters, expression of RAS components and markers of oxidative stress, and insulin signaling in the skeletal morbidly obese rats. 33-week-old male obese Zucker rats were treated with vehicle and AVE0991 (0.5 mg/kg BW/day) via osmotic minipumps for two weeks. Gene expressions were determined by qPCR and/or Western blot analysis in musculus quadriceps. The enzymatic activities were detected flourometrically (aminopeptidase A) or by colorimetric assay kit (protein tyrosine phosphatase 1B). Administration of AVE0991 enhanced insulin signaling cascade in the skeletal muscle, reflected by improved whole-body glucose tolerance. It has been shown that reactive oxygen species (ROS) have insulin-mimetic action in muscle. The expression of renin receptor, transcription factor PLZF, and prooxidant genes was upregulated by AVE0991 accompanied by elevated expression of genes coding enzymes with antioxidant action. Our results show that AVE0991 administration activates genes involved in both ROS generation and clearance establishing a new prooxidant/antioxidant balance on a higher level, which might contribute to the improved insulin signaling pathway and glucose tolerance of obese Zucker rats.
Collapse
|
27
|
Shou J, Chen PJ, Xiao WH. Mechanism of increased risk of insulin resistance in aging skeletal muscle. Diabetol Metab Syndr 2020; 12:14. [PMID: 32082422 PMCID: PMC7014712 DOI: 10.1186/s13098-020-0523-x] [Citation(s) in RCA: 146] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 02/04/2020] [Indexed: 12/17/2022] Open
Abstract
As age increases, the risk of developing type 2 diabetes increases, which is associated with senile skeletal muscle dysfunction. During skeletal muscle aging, mitochondrial dysfunction, intramyocellular lipid accumulation, increased inflammation, oxidative stress, modified activity of insulin sensitivity regulatory enzymes, endoplasmic reticulum stress, decreased autophagy, sarcopenia and over-activated renin-angiotensin system may occur. These changes can impair skeletal muscle insulin sensitivity and increase the risk of insulin resistance and type 2 diabetes during skeletal muscle aging. This review of the mechanism of the increased risk of insulin resistance during skeletal muscle aging will provide a more comprehensive explanation for the increased incidence of type 2 diabetes in elderly individuals, and will also provide a more comprehensive perspective for the prevention and treatment of type 2 diabetes in elderly populations.
Collapse
Affiliation(s)
- Jian Shou
- School of Kinesiology, Shanghai University of Sport, 200 Hengren Road, Yangpu District, Shanghai, 200438 China
| | - Pei-Jie Chen
- School of Kinesiology, Shanghai University of Sport, 200 Hengren Road, Yangpu District, Shanghai, 200438 China
| | - Wei-Hua Xiao
- School of Kinesiology, Shanghai University of Sport, 200 Hengren Road, Yangpu District, Shanghai, 200438 China
| |
Collapse
|
28
|
Liu J, Li X, Lu Q, Ren D, Sun X, Rousselle T, Li J, Leng J. AMPK: a balancer of the renin-angiotensin system. Biosci Rep 2019; 39:BSR20181994. [PMID: 31413168 PMCID: PMC6722492 DOI: 10.1042/bsr20181994] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 07/24/2019] [Accepted: 08/12/2019] [Indexed: 02/07/2023] Open
Abstract
The renin-angiotensin system (RAS) is undisputedly well-studied as one of the oldest and most critical regulators for arterial blood pressure, fluid volume, as well as renal function. In recent studies, RAS has also been implicated in the development of obesity, diabetes, hyperlipidemia, and other diseases, and also involved in the regulation of several signaling pathways such as proliferation, apoptosis and autophagy, and insulin resistance. AMP-activated protein kinase (AMPK), an essential cellular energy sensor, has also been discovered to be involved in these diseases and cellular pathways. This would imply a connection between the RAS and AMPK. Therefore, this review serves to draw attention to the cross-talk between RAS and AMPK, then summering the most recent literature which highlights AMPK as a point of balance between physiological and pathological functions of the RAS.
Collapse
Affiliation(s)
- Jia Liu
- Department of Geriatrics, The First Hospital of Jilin University, Changchun 130021, China
- Department of Surgery, University of South Florida, Tampa, FL 33612, U.S.A
| | - Xuan Li
- Mississippi Center for Heart Research, Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216, U.S.A
| | - Qingguo Lu
- Mississippi Center for Heart Research, Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216, U.S.A
| | - Di Ren
- Department of Surgery, University of South Florida, Tampa, FL 33612, U.S.A
| | - Xiaodong Sun
- Mississippi Center for Heart Research, Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216, U.S.A
| | - Thomas Rousselle
- Mississippi Center for Heart Research, Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216, U.S.A
| | - Ji Li
- Department of Surgery, University of South Florida, Tampa, FL 33612, U.S.A
| | - Jiyan Leng
- Department of Geriatrics, The First Hospital of Jilin University, Changchun 130021, China
| |
Collapse
|
29
|
Pereira LX, Alves da Silva LC, de Oliveira Feitosa A, Santos Ferreira RJ, Fernandes Duarte AK, da Conceição V, de Sales Marques C, Barros Ferreira Rodrigues AK, Del Vechio Koike B, Cavalcante de Queiroz A, Guimaraes TA, Freire de Souza CD, Alberto de Carvalho Fraga C. Correlation between renin-angiotensin system (RAS) related genes, type 2 diabetes, and cancer: Insights from metanalysis of transcriptomics data. Mol Cell Endocrinol 2019; 493:110455. [PMID: 31145933 DOI: 10.1016/j.mce.2019.110455] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/21/2019] [Accepted: 05/22/2019] [Indexed: 12/26/2022]
Abstract
Although studies have provided significant evidence about the role of RAS in mediating cancer risk in type 2 diabetes mellitus (DM), conclusions about the central molecular mechanisms underlying this disease remain to be reached, because this type of information requires an integrative multi-omics approach. In the current study, meta-analysis was performed on type 2 diabetes and breast, bladder, liver, pancreas, colon and rectum cancer-associated transcriptome data, and reporter biomolecules were identified at RNA, protein, and metabolite levels using the integration of gene expression profiles with genome-scale biomolecular networks in diabetes samples. This approach revealed that RAS biomarkers could be associated with cancer initiation and progression, which include metabolites (particularly, aminoacyl-tRNA biosynthesis and ABC transporters) as novel biomarker candidates and potential therapeutic targets. We detected downregulation and upregulation of differentially expressed genes (DEGs) in blood, pancreatic islets, liver and skeletal muscle from normal and diabetic patients. DEGs were combined with 211 renin-angiotensin-system related genes. Upregulated genes were enriched using Pathway analysis of cancer in pancreatic islets, blood and skeletal muscle samples. It seems that the changes in mRNA are contributing to the phenotypic changes in carcinogenesis, or that they are as a result of the phenotypic changes associated with the malignant transformation. Our analyses showed that Ctsg and Ednrb are downregulated in cancer samples. However, by immunohistochemistry experiments we observed that EDNRB protein showed increased expression in tumor samples. It is true that alterations in mRNA expression do not always reflect alterations in protein expression, since post-translational changes can occur in proteins. In this study, we report valuable data for further experimental and clinical analysis, because the proposed biomolecules have significant potential as systems biomarkers for screening or for therapeutic purposes in type 2 diabetes and cancer-associated pathways.
Collapse
Affiliation(s)
- Luciana Xavier Pereira
- Federal University of Alagoas, Campus Arapiraca. Av. Manoel Severino Barbosa, Bom Sucesso, Arapiraca, AL, 57309-005, Brazil
| | | | - Alexya de Oliveira Feitosa
- Federal University of Alagoas, Campus Arapiraca. Av. Manoel Severino Barbosa, Bom Sucesso, Arapiraca, AL, 57309-005, Brazil
| | - Ricardo Jansen Santos Ferreira
- Federal University of Alagoas, Campus Arapiraca. Av. Manoel Severino Barbosa, Bom Sucesso, Arapiraca, AL, 57309-005, Brazil
| | - Ana Kelly Fernandes Duarte
- Federal University of Alagoas, Campus Arapiraca. Av. Manoel Severino Barbosa, Bom Sucesso, Arapiraca, AL, 57309-005, Brazil
| | - Valdemir da Conceição
- Federal University of Alagoas, Campus Arapiraca. Av. Manoel Severino Barbosa, Bom Sucesso, Arapiraca, AL, 57309-005, Brazil
| | - Carolinne de Sales Marques
- Federal University of Alagoas, Campus Arapiraca. Av. Manoel Severino Barbosa, Bom Sucesso, Arapiraca, AL, 57309-005, Brazil
| | | | - Bruna Del Vechio Koike
- Federal University of Alagoas, Campus Arapiraca. Av. Manoel Severino Barbosa, Bom Sucesso, Arapiraca, AL, 57309-005, Brazil
| | - Aline Cavalcante de Queiroz
- Federal University of Alagoas, Campus Arapiraca. Av. Manoel Severino Barbosa, Bom Sucesso, Arapiraca, AL, 57309-005, Brazil
| | - Talita Antunes Guimaraes
- Federal University of Alagoas, Campus Arapiraca. Av. Manoel Severino Barbosa, Bom Sucesso, Arapiraca, AL, 57309-005, Brazil
| | - Carlos Dornels Freire de Souza
- Federal University of Alagoas, Campus Arapiraca. Av. Manoel Severino Barbosa, Bom Sucesso, Arapiraca, AL, 57309-005, Brazil
| | | |
Collapse
|
30
|
Baranowska-Bik A, Bik W. Vascular Dysfunction and Insulin Resistance in Aging. Curr Vasc Pharmacol 2019; 17:465-475. [PMID: 30488797 DOI: 10.2174/1570161117666181129113611] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 09/10/2018] [Accepted: 11/13/2018] [Indexed: 12/17/2022]
Abstract
:
Insulin was discovered in 1922 by Banting and Best. Since that time, extensive research on
the mechanisms of insulin activity and action has continued. Currently, it is known that the role of insulin
is much greater than simply regulating carbohydrate metabolism. Insulin in physiological concentration
is also necessary to maintain normal vascular function.
:
Insulin resistance is defined as a pathological condition characterized by reduced sensitivity of skeletal
muscles, liver, and adipose tissue, to insulin and its downstream metabolic effects under normal serum
glucose concentrations. There are also selective forms of insulin resistance with unique features, including
vascular insulin resistance. Insulin resistance, both classical and vascular, contributes to vascular
impairment resulting in increased risk of cardiovascular disease. Furthermore, in the elderly population,
additional factors including redistribution of fat concentrations, low-grade inflammation, and decreased
self-repair capacity [or cell senescence] amplify the vascular abnormalities related to insulin resistance.
Collapse
Affiliation(s)
| | - Wojciech Bik
- Department of Neuroendocrinology, Centre of Postgraduate Medical Education, Warsaw, Poland
| |
Collapse
|
31
|
White MC, Miller AJ, Loloi J, Bingaman SS, Shen B, Wang M, Silberman Y, Lindsey SH, Arnold AC. Sex differences in metabolic effects of angiotensin-(1-7) treatment in obese mice. Biol Sex Differ 2019; 10:36. [PMID: 31315689 PMCID: PMC6637512 DOI: 10.1186/s13293-019-0251-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 07/09/2019] [Indexed: 12/19/2022] Open
Abstract
Background Angiotensin-(1-7) is a beneficial hormone of the renin-angiotensin system known to play a positive role in regulation of blood pressure and glucose homeostasis. Previous studies have shown that in high-fat diet (HFD)-induced obese male mice, circulating angiotensin-(1-7) levels are reduced and chronic restoration of this hormone reverses diet-induced insulin resistance; however, this has yet to be examined in female mice. We hypothesized angiotensin-(1-7) would improve insulin sensitivity and glucose tolerance in obese female mice, to a similar extent as previously observed in male mice. Methods Five-week-old male and female C57BL/6J mice (8–12/group) were placed on control diet or HFD (16% or 59% kcal from fat, respectively) for 11 weeks. After 8 weeks of diet, mice were implanted with an osmotic pump for 3-week subcutaneous delivery of angiotensin-(1-7) (400 ng/kg/min) or saline vehicle. During the last week of treatment, body mass and composition were measured and intraperitoneal insulin and glucose tolerance tests were performed to assess insulin sensitivity and glucose tolerance, respectively. Mice were euthanized at the end of the study for blood and tissue collection. Results HFD increased body mass and adiposity in both sexes. Chronic angiotensin-(1-7) infusion significantly decreased body mass and adiposity and increased lean mass in obese mice of both sexes. While both sexes tended to develop mild hyperglycemia in response to HFD, female mice developed less marked hyperinsulinemia. There was no effect of angiotensin-(1-7) on fasting glucose or insulin levels among diet and sex groups. Male and female mice similarly developed insulin resistance and glucose intolerance in response to HFD feeding. Angiotensin-(1-7) improved insulin sensitivity in both sexes but corrected glucose intolerance only in obese female mice. There were no effects of sex or angiotensin-(1-7) treatment on any of the study outcomes in control diet-fed mice. Conclusions This study provides new evidence for sex differences in the impact of chronic angiotensin-(1-7) in obese mice, with females having greater changes in glucose tolerance with treatment. These findings improve understanding of sex differences in renin-angiotensin mechanisms in obesity and illustrate the potential for targeting angiotensin-(1-7) for treatment of this condition.
Collapse
Affiliation(s)
- Melissa C White
- Department of Comparative Medicine, Penn State College of Medicine, 500 University Drive, Hershey, PA, USA
| | - Amanda J Miller
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, 500 University Drive Mail Code H109, Hershey, PA, 17033, USA
| | - Justin Loloi
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, 500 University Drive Mail Code H109, Hershey, PA, 17033, USA
| | - Sarah S Bingaman
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, 500 University Drive Mail Code H109, Hershey, PA, 17033, USA
| | - Biyi Shen
- Department of Public Health Sciences, Penn State College of Medicine, 500 University Drive, Hershey, PA, USA
| | - Ming Wang
- Department of Public Health Sciences, Penn State College of Medicine, 500 University Drive, Hershey, PA, USA
| | - Yuval Silberman
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, 500 University Drive Mail Code H109, Hershey, PA, 17033, USA
| | - Sarah H Lindsey
- Department of Pharmacology, Tulane University, 1430 Tulane Avenue, New Orleans, LA, #8683, USA
| | - Amy C Arnold
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, 500 University Drive Mail Code H109, Hershey, PA, 17033, USA.
| |
Collapse
|
32
|
White MC, Fleeman R, Arnold AC. Sex differences in the metabolic effects of the renin-angiotensin system. Biol Sex Differ 2019; 10:31. [PMID: 31262355 PMCID: PMC6604144 DOI: 10.1186/s13293-019-0247-5] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 06/18/2019] [Indexed: 02/07/2023] Open
Abstract
Obesity is a global epidemic that greatly increases risk for developing cardiovascular disease and type II diabetes. Sex differences in the obese phenotype are well established in experimental animal models and clinical populations. While having higher adiposity and obesity prevalence, females are generally protected from obesity-related metabolic and cardiovascular complications. This protection is, at least in part, attributed to sex differences in metabolic effects of hormonal mediators such as the renin-angiotensin system (RAS). Previous literature has predominantly focused on the vasoconstrictor arm of the RAS and shown that, in contrast to male rodent models of obesity and diabetes, females are protected from metabolic and cardiovascular derangements produced by angiotensinogen, renin, and angiotensin II. A vasodilator arm of the RAS has more recently emerged which includes angiotensin-(1-7), angiotensin-converting enzyme 2 (ACE2), mas receptors, and alamandine. While accumulating evidence suggests that activation of components of this counter-regulatory axis produces positive effects on glucose homeostasis, lipid metabolism, and energy balance in male animal models, female comparison studies and clinical data related to metabolic outcomes are lacking. This review will summarize current knowledge of sex differences in metabolic effects of the RAS, focusing on interactions with gonadal hormones and potential clinical implications.
Collapse
Affiliation(s)
- Melissa C White
- Department of Comparative Medicine, Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA, USA
| | - Rebecca Fleeman
- Department of Neural and Behavioral Sciences, Pennsylvania State University College of Medicine, 500 University Drive, Mail Code H109, Hershey, PA, 17033, USA
| | - Amy C Arnold
- Department of Neural and Behavioral Sciences, Pennsylvania State University College of Medicine, 500 University Drive, Mail Code H109, Hershey, PA, 17033, USA.
| |
Collapse
|
33
|
Lóry V, Balážová L, Kršková K, Horváthová Ľ, Olszanecki R, Suski M, Zórad Š. Obesity and aging affects skeletal muscle renin-angiotensin system and myosin heavy chain proportions in pre-diabetic Zucker rats. J Physiol Biochem 2019; 75:351-365. [PMID: 31197649 DOI: 10.1007/s13105-019-00689-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 05/26/2019] [Indexed: 10/26/2022]
Abstract
There is a gap in the knowledge regarding regulation of local renin-angiotensin system (RAS) in skeletal muscle during development of obesity and insulin resistance in vivo. This study evaluates the obesity- and age-related changes in the expression of local RAS components. Since RAS affects skeletal muscle remodelling, we also evaluated the muscle fibre type composition, defined by myosin heavy chain (MyHC) mRNAs and protein content. Gene expressions were determined by qPCR and/or Western blot analysis in musculus quadriceps of 3- and 8-month-old male obese Zucker rats and their lean controls. The enzymatic activity of aminopeptidase A (APA) was determined flourometrically. Activation of renin receptor (ReR)/promyelocytic leukaemia zinc finger (PLZF) negative feedback mechanism was observed in obesity. The expression of angiotensinogen and AT1 was downregulated by obesity, while neutral endopeptidase and AT2 expressions were upregulated in obese rats with aging. Skeletal muscle APA activity was decreased by obesity, which negatively correlated with the increased plasma APA activity and plasma cholesterol. The expression of angiotensin-converting enzyme (ACE) positively correlated with MyHC mRNAs characteristic for fast-twitch muscle fibres. The obesity- and age-related alterations in the expression of both classical and alternative RAS components suggest an onset of a new equilibrium between ACE/AngII/AT1 and ACE2/Ang1-7/Mas at lower level accompanied by increased renin/ReR/PLZF activation. Increased APA release from the skeletal muscle in obesity might contribute to increased plasma APA activity. There is a link between reduced ACE expression and altered muscle MyHC proportion in obesity and aging.
Collapse
Affiliation(s)
- Viktória Lóry
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Dúbravská cesta 9, 845 05, Bratislava 4, Slovakia.
| | - Lucia Balážová
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Dúbravská cesta 9, 845 05, Bratislava 4, Slovakia
| | - Katarína Kršková
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Dúbravská cesta 9, 845 05, Bratislava 4, Slovakia
| | - Ľubica Horváthová
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Dúbravská cesta 9, 845 05, Bratislava 4, Slovakia
| | - Rafal Olszanecki
- Chair of Pharmacology, Jagiellonian University Medical College, 31-531, Krakow, Poland
| | - Maciej Suski
- Chair of Pharmacology, Jagiellonian University Medical College, 31-531, Krakow, Poland
| | - Štefan Zórad
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Dúbravská cesta 9, 845 05, Bratislava 4, Slovakia
| |
Collapse
|
34
|
Zambelli V, Sigurtà A, Rizzi L, Zucca L, Delvecchio P, Bresciani E, Torsello A, Bellani G. Angiotensin-(1-7) exerts a protective action in a rat model of ventilator-induced diaphragmatic dysfunction. Intensive Care Med Exp 2019; 7:8. [PMID: 30659381 PMCID: PMC6338614 DOI: 10.1186/s40635-018-0218-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 12/25/2018] [Indexed: 12/11/2022] Open
Abstract
Background Ventilator-induced diaphragmatic dysfunction (VIDD) is a common event during mechanical ventilation (MV) leading to rapid muscular atrophy and contractile dysfunction. Recent data show that renin-angiotensin system is involved in diaphragmatic skeletal muscle atrophy after MV. In particular, angiotensin-II can induce marked diaphragm muscle wasting, whereas angiotensin-(1–7) (Ang-(1–7)) could counteract this activity. This study was designed to evaluate the effects of the treatment with Ang-(1–7) in a rat model of VIDD with neuromuscular blocking agent infusion. Moreover, we studied whether the administration of A-779, an antagonist of Ang-(1–7) receptor (Mas), alone or in combination with PD123319, an antagonist of AT2 receptor, could antagonize the effects of Ang-(1–7). Methods Sprague-Dawley rats underwent prolonged MV (8 h), while receiving an iv infusion of sterile saline 0.9% (vehicle) or Ang-(1–7) or Ang-(1–7) + A-779 or Ang-(1–7) + A-779 + PD123319. Diaphragms were collected for ex vivo contractility measurement (with electric stimulation), histological analysis, quantitative real-time PCR, and Western blot analysis. Results MV resulted in a significant reduction of diaphragmatic contractility in all groups of treatment. Ang-(1–7)-treated rats showed higher muscular fibers cross-sectional area and lower atrogin-1 and myogenin mRNA levels, compared to vehicle treatment. Treatment with the antagonists of Mas and Ang-II receptor 2 (AT2R) caused a significant reduction of muscular contractility and an increase of atrogin-1 and MuRF-1 mRNA levels, not affecting the cross-sectional fiber area and myogenin mRNA levels. Conclusions Systemic Ang-(1–7) administration during MV exerts a protective role on the muscular fibers of the diaphragm preserving muscular fibers anatomy, and reducing atrophy. The involvement of Mas and AT2R in the mechanism of action of Ang-(1–7) still remains controversial.
Collapse
Affiliation(s)
- Vanessa Zambelli
- Department of Medicine, University of Milano-Bicocca, Monza, Italy
| | - Anna Sigurtà
- Anesthesia and Critical Care, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Laura Rizzi
- Department of Medicine, University of Milano-Bicocca, Monza, Italy
| | - Letizia Zucca
- Department of Medicine, University of Milano-Bicocca, Monza, Italy
| | - Paolo Delvecchio
- Department of Medicine, University of Milano-Bicocca, Monza, Italy
| | - Elena Bresciani
- Department of Medicine, University of Milano-Bicocca, Monza, Italy
| | - Antonio Torsello
- Department of Medicine, University of Milano-Bicocca, Monza, Italy
| | - Giacomo Bellani
- Department of Medicine, University of Milano-Bicocca, Monza, Italy.
| |
Collapse
|
35
|
Forrester SJ, Booz GW, Sigmund CD, Coffman TM, Kawai T, Rizzo V, Scalia R, Eguchi S. Angiotensin II Signal Transduction: An Update on Mechanisms of Physiology and Pathophysiology. Physiol Rev 2018; 98:1627-1738. [PMID: 29873596 DOI: 10.1152/physrev.00038.2017] [Citation(s) in RCA: 693] [Impact Index Per Article: 99.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The renin-angiotensin-aldosterone system plays crucial roles in cardiovascular physiology and pathophysiology. However, many of the signaling mechanisms have been unclear. The angiotensin II (ANG II) type 1 receptor (AT1R) is believed to mediate most functions of ANG II in the system. AT1R utilizes various signal transduction cascades causing hypertension, cardiovascular remodeling, and end organ damage. Moreover, functional cross-talk between AT1R signaling pathways and other signaling pathways have been recognized. Accumulating evidence reveals the complexity of ANG II signal transduction in pathophysiology of the vasculature, heart, kidney, and brain, as well as several pathophysiological features, including inflammation, metabolic dysfunction, and aging. In this review, we provide a comprehensive update of the ANG II receptor signaling events and their functional significances for potential translation into therapeutic strategies. AT1R remains central to the system in mediating physiological and pathophysiological functions of ANG II, and participation of specific signaling pathways becomes much clearer. There are still certain limitations and many controversies, and several noteworthy new concepts require further support. However, it is expected that rigorous translational research of the ANG II signaling pathways including those in large animals and humans will contribute to establishing effective new therapies against various diseases.
Collapse
Affiliation(s)
- Steven J Forrester
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - George W Booz
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Curt D Sigmund
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Thomas M Coffman
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Tatsuo Kawai
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Victor Rizzo
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Rosario Scalia
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Satoru Eguchi
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| |
Collapse
|
36
|
Modulation of the renin-angiotensin system in white adipose tissue and skeletal muscle: focus on exercise training. Clin Sci (Lond) 2018; 132:1487-1507. [PMID: 30037837 DOI: 10.1042/cs20180276] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 06/13/2018] [Accepted: 06/27/2018] [Indexed: 12/11/2022]
Abstract
Overactivation of the renin-angiotensin (Ang) system (RAS) increases the classical arm (Ang-converting enzyme (ACE)/Ang II/Ang type 1 receptor (AT1R)) to the detriment of the protective arm (ACE2/Ang 1-7/Mas receptor (MasR)). The components of the RAS are present locally in white adipose tissue (WAT) and skeletal muscle, which act co-operatively, through specific mediators, in response to pathophysiological changes. In WAT, up-regulation of the classical arm promotes lipogenesis and reduces lipolysis and adipogenesis, leading to adipocyte hypertrophy and lipid storage, which are related to insulin resistance and increased inflammation. In skeletal muscle, the classical arm promotes protein degradation and increases the inflammatory status and oxidative stress, leading to muscle wasting. Conversely, the protective arm plays a counter-regulatory role by opposing the effect of Ang II. The accumulation of adipose tissue and muscle mass loss is associated with a higher risk of morbidity and mortality, which could be related, in part, to overactivation of the RAS. On the other hand, exercise training (ExT) shifts the balance of the RAS towards the protective arm, promoting the inhibition of the classical arm in parallel with the stimulation of the protective arm. Thus, fat mobilization and maintenance of muscle mass and function are facilitated. However, the mechanisms underlying exercise-induced changes in the RAS remain unclear. In this review, we present the RAS as a key mechanism of WAT and skeletal muscle metabolic dysfunction. Furthermore, we discuss the interaction between the RAS and exercise and the possible underlying mechanisms of the health-related aspects of ExT.
Collapse
|
37
|
Gerena Y, Lozada JG, Collazo BJ, Méndez-Álvarez J, Méndez-Estrada J, De Mello WC. Losartan counteracts the effects of cardiomyocyte swelling on glucose uptake and insulin receptor substrate-1 levels. Peptides 2017; 96:38-43. [PMID: 28889965 PMCID: PMC5618797 DOI: 10.1016/j.peptides.2017.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 09/01/2017] [Accepted: 09/05/2017] [Indexed: 11/20/2022]
Abstract
A growing body of evidence demonstrates an association between Angiotensin II (Ang II) receptor blockers (ARBs) and enhanced glucose metabolism during ischemic heart disease. Despite these encouraging results, the mechanisms responsible for these effects during ischemia remain poorly understood. In this study we investigated the influence of losartan, an AT1 receptor blocker, and secreted Ang II (sAng II) on glucose uptake and insulin receptor substrate (IRS-1) levels during cardiomyocyte swelling. H9c2 cells were differentiated to cardiac muscle and the levels of myogenin, Myosin Light Chain (MLC), and membrane AT1 receptors were measured using flow cytometry. Intracellular Ang II (iAng II) was overexpressed in differentiated cardiomyocytes and swelling was induced after incubation with hypotonic solution for 40min. Glucose uptake and IRS-1 levels were monitored by flow cytometry using 2-NBDG fluorescent glucose (10μM) or an anti-IRS-1 monoclonal antibody in the presence or absence of losartan (10-7M). Secreted Angiotensin II was quantified from the medium using a specific Ang II-EIA kit. To evaluate the relationship between sAng II and losartan effects on glucose uptake, transfected cells were pretreated with the drug for 24h and then exposed to hypotonic solution in the presence or absence of the secreted peptide. The results indicate that: (1) swelling of transfected cardiomyocytes decreased glucose uptake and induced the secretion of Ang II to the extracellular medium; (2) losartan antagonized the effects of swelling on glucose uptake and IRS-1 levels in transfected cardiomyocytes; (3) the effects of losartan on glucose uptake were observed during swelling only in the presence of sAng II in the culture medium. Our study demonstrates that both losartan and sAng II have essential roles in glucose metabolism during cardiomyocyte swelling.
Collapse
Affiliation(s)
- Yamil Gerena
- Department of Pharmacology and Toxicology, School of Medicine, University of Puerto Rico, Medical Sciences Campus, P.O. Box 365067, San Juan 00936-5067, Puerto Rico.
| | - Janice Griselle Lozada
- Department of Pharmacology and Toxicology, School of Medicine, University of Puerto Rico, Medical Sciences Campus, P.O. Box 365067, San Juan 00936-5067, Puerto Rico.
| | - Bryan Jael Collazo
- Department of Pharmacology and Toxicology, School of Medicine, University of Puerto Rico, Medical Sciences Campus, P.O. Box 365067, San Juan 00936-5067, Puerto Rico.
| | - Jarold Méndez-Álvarez
- Department of Pharmacology and Toxicology, School of Medicine, University of Puerto Rico, Medical Sciences Campus, P.O. Box 365067, San Juan 00936-5067, Puerto Rico.
| | - Jennifer Méndez-Estrada
- Department of Pharmacology and Toxicology, School of Medicine, University of Puerto Rico, Medical Sciences Campus, P.O. Box 365067, San Juan 00936-5067, Puerto Rico.
| | - Walmor C De Mello
- Department of Pharmacology and Toxicology, School of Medicine, University of Puerto Rico, Medical Sciences Campus, P.O. Box 365067, San Juan 00936-5067, Puerto Rico.
| |
Collapse
|
38
|
Karnik SS, Singh KD, Tirupula K, Unal H. Significance of angiotensin 1-7 coupling with MAS1 receptor and other GPCRs to the renin-angiotensin system: IUPHAR Review 22. Br J Pharmacol 2017; 174:737-753. [PMID: 28194766 PMCID: PMC5387002 DOI: 10.1111/bph.13742] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 01/31/2017] [Accepted: 02/06/2017] [Indexed: 12/14/2022] Open
Abstract
Angiotensins are a group of hormonal peptides and include angiotensin II and angiotensin 1-7 produced by the renin angiotensin system. The biology, pharmacology and biochemistry of the receptors for angiotensins were extensively reviewed recently. In the review, the receptor nomenclature committee was not emphatic on designating MAS1 as the angiotensin 1-7 receptor on the basis of lack of classical G protein signalling and desensitization in response to angiotensin 1-7, as well as a lack of consensus on confirmatory ligand pharmacological analyses. A review of recent publications (2013-2016) on the rapidly progressing research on angiotensin 1-7 revealed that MAS1 and two additional receptors can function as 'angiotensin 1-7 receptors', and this deserves further consideration. In this review we have summarized the information on angiotensin 1-7 receptors and their crosstalk with classical angiotensin II receptors in the context of the functions of the renin angiotensin system. It was concluded that the receptors for angiotensin II and angiotensin 1-7 make up a sophisticated cross-regulated signalling network that modulates the endogenous protective and pathogenic facets of the renin angiotensin system.
Collapse
Affiliation(s)
- Sadashiva S Karnik
- Department of Molecular Cardiology, Lerner Research InstituteCleveland Clinic FoundationClevelandOhioUSA
| | | | - Kalyan Tirupula
- Department of Molecular Cardiology, Lerner Research InstituteCleveland Clinic FoundationClevelandOhioUSA
- Biological E Limited, ShamirpetHyderabadIndia
| | - Hamiyet Unal
- Department of Molecular Cardiology, Lerner Research InstituteCleveland Clinic FoundationClevelandOhioUSA
- Department of Basic Sciences, Faculty of Pharmacy and Betul Ziya Eren Genome and Stem Cell CenterErciyes UniversityKayseriTurkey
| |
Collapse
|
39
|
Olatunji LA, Usman TO, Seok YM, Kim IK. Activation of cardiac renin-angiotensin system and plasminogen activator inhibitor-1 gene expressions in oral contraceptive-induced cardiometabolic disorder. Arch Physiol Biochem 2017; 123:1-8. [PMID: 26934364 DOI: 10.3109/13813455.2016.1160935] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
CONTEXT Clinical studies have shown that combined oral contraceptive (COC) use is associated with cardiometabolic disturbances. Elevated renin-angiotensin system (RAS) and plasminogen activator inhibitor-1 (PAI-1) have also been implicated in the development of cardiometabolic events. OBJECTIVE To determine the effect of COC treatment on cardiac RAS and PAI-1 gene expressions, and whether the effect is circulating aldosterone or corticosterone dependent. METHODS Female rats were treated (p.o.) with olive oil (vehicle) or COC (1.0 µg ethinylestradiol and 10.0 µg norgestrel) daily for six weeks. RESULTS COC treatment led to increases in blood pressure, HOMA-IR, Ace1 mRNA, Atr1 mRNA, Pai1 mRNA, cardiac PAI-1, plasma PAI-1, C-reactive protein, uric acid, insulin and corticosterone. COC treatment also led to dyslipidemia, decreased glucose tolerance and plasma 17β-estradiol. CONCLUSION These results demonstrates that hypertension and insulin resistance induced by COC is associated with increased cardiac RAS and PAI-1 gene expression, which is likely to be through corticosterone-dependent but not aldosterone-dependent mechanism.
Collapse
Affiliation(s)
- Lawrence A Olatunji
- a Department of Physiology , Cardiovascular and Molecular Physiology Unit, College of Health Sciences University of Ilorin , P.M.B. 1515 , Ilorin , Nigeria
- b Cardiovascular Research Institute, Kyungpook National University School of Medicine , Daegu , Republic of Korea
| | - Taofeek O Usman
- a Department of Physiology , Cardiovascular and Molecular Physiology Unit, College of Health Sciences University of Ilorin , P.M.B. 1515 , Ilorin , Nigeria
| | - Young-Mi Seok
- b Cardiovascular Research Institute, Kyungpook National University School of Medicine , Daegu , Republic of Korea
- c Korea Promotion Institute for Traditional Medicine Industry , Gyeongsan , Gyeongbuk , Republic of Korea , and
| | - In-Kyeom Kim
- b Cardiovascular Research Institute, Kyungpook National University School of Medicine , Daegu , Republic of Korea
- d Department of Pharmacology , Kyungpook National University School of Medicine , Daegu , Republic of Korea
| |
Collapse
|
40
|
Borghi C, Omboni S, Novo S, Vinereanu D, Ambrosio G, Ambrosioni E. Zofenopril and Ramipril in Combination with Acetyl Salicylic Acid in Postmyocardial Infarction Patients with Left Ventricular Systolic Dysfunction: A Retrospective Analysis of the SMILE-4 Randomized, Double-Blind Study in Diabetic Patients. Cardiovasc Ther 2017; 34:76-84. [PMID: 26789425 DOI: 10.1111/1755-5922.12175] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVE In the SMILE-4 study, zofenopril + acetyl salicylic acid (ASA) was more effective than ramipril + ASA on 1-year prevention of major cardiovascular events (MACE) in patients with acute myocardial infarction complicated by left ventricular dysfunction. In this retrospective analysis, we evaluated drug efficacy in subgroups of patients, according to a history of diabetes mellitus. METHODS The primary study endpoint was 1-year combined occurrence of death or hospitalization for cardiovascular causes. Diabetes was defined according to medical history (previous known diagnosis). RESULTS A total of 562 of 693 (81.0%) patients were classified as nondiabetics and 131 (18.9%) as diabetics. The adjusted rate of MACE was lower under zofenopril than under ramipril in both nondiabetics [27.9% vs. 34.9% ramipril; odds ratio, OR and 95% confidence interval: 0.55 (0.35, 0.86)] and diabetics [30.9% vs. 41.3%; 0.56 (0.18, 1.73)], although the difference was statistically significant only for the nondiabetic group (P = 0.013). Zofenopril was superior to ramipril as regards to the primary study endpoint in the subgroup of 157 patients with uncontrolled blood glucose (≥ 126 mg/dL), regardless of a previous diagnosis of diabetes [0.31 (0.10, 0.90), P = 0.030]. Zofenopril significantly reduced the risk of hospitalization for cardiovascular causes in both nondiabetics [0.64 (0.43, 0.96), P = 0.030] and diabetics [0.38 (0.15, 0.95), P = 0.038], whereas it was not better than ramipril in terms of prevention of cardiovascular deaths. CONCLUSIONS This retrospective analysis of the SMILE-4 study confirmed the good efficacy of zofenopril plus ASA in the prevention of long-term MACE also in the subgroup of patients with diabetes mellitus.
Collapse
Affiliation(s)
- Claudio Borghi
- Unit of Internal Medicine, Policlinico S. Orsola, University of Bologna, Bologna, Italy
| | - Stefano Omboni
- Clinical Research Unit, Italian Institute of Telemedicine, Varese, Italy
| | - Salvatore Novo
- Division of Cardiology, University of Palermo, Palermo, Italy
| | | | | | - Ettore Ambrosioni
- Unit of Internal Medicine, Policlinico S. Orsola, University of Bologna, Bologna, Italy
| | | |
Collapse
|
41
|
Wu H, Ballantyne CM. Skeletal muscle inflammation and insulin resistance in obesity. J Clin Invest 2017; 127:43-54. [PMID: 28045398 DOI: 10.1172/jci88880] [Citation(s) in RCA: 424] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Obesity is associated with chronic inflammation, which contributes to insulin resistance and type 2 diabetes mellitus. Under normal conditions, skeletal muscle is responsible for the majority of insulin-stimulated whole-body glucose disposal; thus, dysregulation of skeletal muscle metabolism can strongly influence whole-body glucose homeostasis and insulin sensitivity. Increasing evidence suggests that inflammation occurs in skeletal muscle in obesity and is mainly manifested by increased immune cell infiltration and proinflammatory activation in intermyocellular and perimuscular adipose tissue. By secreting proinflammatory molecules, immune cells may induce myocyte inflammation, adversely regulate myocyte metabolism, and contribute to insulin resistance via paracrine effects. Increased influx of fatty acids and inflammatory molecules from other tissues, particularly visceral adipose tissue, can also induce muscle inflammation and negatively regulate myocyte metabolism, leading to insulin resistance.
Collapse
|
42
|
Rattanavichit Y, Chukijrungroat N, Saengsirisuwan V. Sex differences in the metabolic dysfunction and insulin resistance of skeletal muscle glucose transport following high fructose ingestion. Am J Physiol Regul Integr Comp Physiol 2016; 311:R1200-R1212. [PMID: 27834291 DOI: 10.1152/ajpregu.00230.2016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 10/20/2016] [Accepted: 11/04/2016] [Indexed: 01/20/2023]
Abstract
The role of high fructose ingestion (HFI) in the development of conditions mimicking human metabolic syndrome has mostly been demonstrated in male animals; however, the extent of HFI-induced metabolic alterations in females remains unclear. The present study investigated whether HFI-induced metabolic perturbations differ between sexes and whether HFI aggravates the metabolic disturbances under ovarian hormone deprivation. Male, female, and ovariectomized (OVX) Sprague-Dawley rats were given either water or liquid fructose (10% wt/vol) for 6 wk. Blood pressure, glucose tolerance, insulin-stimulated glucose transport activity and signaling proteins, including insulin receptor (IR), insulin receptor substrate 1 (IRS-1), Akt, Akt substrate of 160 kDa (AS160), AMPKα, JNK, p38 MAPK, angiotensin-converting enzyme (ACE), ANG II type 1 receptor (AT1R), ACE2, and Mas receptor (MasR) in skeletal muscle, were evaluated. We found that HFI led to glucose intolerance and hypertension in male and OVX rats but not in female rats with intact ovaries. Moreover, HFI did not induce insulin resistance in the skeletal muscle of female and OVX rats but impaired the insulin-stimulated glucose transport activity in the skeletal muscle of male rats, which was accompanied by lower insulin-stimulated IRS-1 Tyr989 (44%), Akt Ser473 (30%), and AS160 Ser588 (43%), and increases in insulin-stimulated IRS-1 Ser307 (78%), JNK Thr183/Tyr185 (69%), and p38 MAPK Thr180/Tyr182 (81%). The results from the present study show sex differences in the development of metabolic syndrome-like conditions and indicate the protective role of female sex hormones against HFI-induced cardiometabolic abnormalities.
Collapse
Affiliation(s)
- Yupaporn Rattanavichit
- Exercise Physiology Laboratory, Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Natsasi Chukijrungroat
- Exercise Physiology Laboratory, Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Vitoon Saengsirisuwan
- Exercise Physiology Laboratory, Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| |
Collapse
|
43
|
Benigni A, Perico L, Macconi D. Mitochondrial Dynamics Is Linked to Longevity and Protects from End-Organ Injury: The Emerging Role of Sirtuin 3. Antioxid Redox Signal 2016; 25:185-99. [PMID: 26972664 DOI: 10.1089/ars.2016.6682] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
SIGNIFICANCE Mitochondrial integrity is instrumental in protecting against damage associated with aging and a variety of chronic disease conditions. Mitochondrial silent information regulator 3 (Sirt3) plays pivotal roles in maintaining mitochondrial homeostasis by regulating different aspects of the organelle processes. RECENT ADVANCES Mitochondria are highly dynamic organelles that constantly fuse and divide to maintain normal cell function, and perturbation in mitochondrial dynamics is responsible for mitochondrial dysfunction. Improved knowledge of mitochondrial physiology has disclosed the pleiotropic role of Sirt3 in mitochondria and shows how alterations in protein expression and/or activity may have an important impact on aging-associated organ dysfunction. CRITICAL ISSUES This review describes updated experimental evidence on the role of mitochondrial dysfunction during aging and renal diseases and highlights the emerging role of Sirt3 as a crucial regulator of mitochondrial dynamics. FUTURE DIRECTIONS Strategies that activate Sirt3 may offer attractive therapies to achieve healthy longevity and preserve functional integrity of multiple organs. Antioxid. Redox Signal. 25, 185-199.
Collapse
Affiliation(s)
- Ariela Benigni
- IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy
| | - Luca Perico
- IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy
| | - Daniela Macconi
- IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy
| |
Collapse
|
44
|
Williams IM, Otero YF, Bracy DP, Wasserman DH, Biaggioni I, Arnold AC. Chronic Angiotensin-(1-7) Improves Insulin Sensitivity in High-Fat Fed Mice Independent of Blood Pressure. Hypertension 2016; 67:983-91. [PMID: 26975707 DOI: 10.1161/hypertensionaha.115.06935] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 02/12/2016] [Indexed: 12/25/2022]
Abstract
Angiotensin-(1-7) improves glycemic control in animal models of cardiometabolic syndrome. The tissue-specific sites of action and blood pressure dependence of these metabolic effects, however, remain unclear. We hypothesized that Ang-(1-7) improves insulin sensitivity by enhancing peripheral glucose delivery. Adult male C57BL/6J mice were placed on standard chow or 60% high-fat diet for 11 weeks. Ang-(1-7) (400 ng/kg per minute) or saline was infused subcutaneously during the last 3 weeks of diet, and hyperinsulinemic-euglycemic clamps were performed at the end of treatment. High-fat fed mice exhibited modest hypertension (systolic blood pressure: 137 ± 3 high fat versus 123 ± 5 mm Hg chow;P=0.001), which was not altered by Ang-(1-7) (141 ± 4 mm Hg;P=0.574). Ang-(1-7) did not alter body weight or fasting glucose and insulin in chow or high-fat fed mice. Ang-(1-7) increased the steady-state glucose infusion rate needed to maintain euglycemia in high-fat fed mice (31 ± 5 Ang-(1-7) versus 16 ± 1 mg/kg per minute vehicle;P=0.017) reflecting increased whole-body insulin sensitivity, with no effect in chow-fed mice. The improved insulin sensitivity in high-fat fed mice was because of an enhanced rate of glucose disappearance (34 ± 5 Ang-(1-7) versus 20 ± 2 mg/kg per minute vehicle;P=0.049). Ang-(1-7) enhanced glucose uptake specifically into skeletal muscle by increasing translocation of glucose transporter 4 to the sarcolemma. Our data suggest that Ang-(1-7) has direct insulin-sensitizing effects on skeletal muscle, independent of changes in blood pressure. These findings provide new insight into mechanisms by which Ang-(1-7) improves insulin action, and provide further support for targeting this peptide in cardiometabolic disease.
Collapse
Affiliation(s)
- Ian M Williams
- From the Department of Molecular Physiology and Biophysics (I.M.W., Y.F.O., D.P.B., D.H.W.) and Division of Clinical Pharmacology, Vanderbilt University, Nashville, TN (I.B., A.C.A.)
| | - Yolanda F Otero
- From the Department of Molecular Physiology and Biophysics (I.M.W., Y.F.O., D.P.B., D.H.W.) and Division of Clinical Pharmacology, Vanderbilt University, Nashville, TN (I.B., A.C.A.)
| | - Deanna P Bracy
- From the Department of Molecular Physiology and Biophysics (I.M.W., Y.F.O., D.P.B., D.H.W.) and Division of Clinical Pharmacology, Vanderbilt University, Nashville, TN (I.B., A.C.A.)
| | - David H Wasserman
- From the Department of Molecular Physiology and Biophysics (I.M.W., Y.F.O., D.P.B., D.H.W.) and Division of Clinical Pharmacology, Vanderbilt University, Nashville, TN (I.B., A.C.A.)
| | - Italo Biaggioni
- From the Department of Molecular Physiology and Biophysics (I.M.W., Y.F.O., D.P.B., D.H.W.) and Division of Clinical Pharmacology, Vanderbilt University, Nashville, TN (I.B., A.C.A.)
| | - Amy C Arnold
- From the Department of Molecular Physiology and Biophysics (I.M.W., Y.F.O., D.P.B., D.H.W.) and Division of Clinical Pharmacology, Vanderbilt University, Nashville, TN (I.B., A.C.A.).
| |
Collapse
|
45
|
The Potential Protective Action of Vitamin D in Hepatic Insulin Resistance and Pancreatic Islet Dysfunction in Type 2 Diabetes Mellitus. Nutrients 2016; 8:147. [PMID: 26959059 PMCID: PMC4808876 DOI: 10.3390/nu8030147] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 02/26/2016] [Accepted: 02/29/2016] [Indexed: 02/06/2023] Open
Abstract
Vitamin D deficiency (i.e., hypovitaminosis D) is associated with increased insulin resistance, impaired insulin secretion, and poorly controlled glucose homeostasis, and thus is correlated with the risk of metabolic diseases, including type 2 diabetes mellitus (T2DM). The liver plays key roles in glucose and lipid metabolism, and its dysregulation leads to abnormalities in hepatic glucose output and triglyceride accumulation. Meanwhile, the pancreatic islets are constituted in large part by insulin-secreting β cells. Consequently, islet dysfunction, such as occurs in T2DM, produces hyperglycemia. In this review, we provide a critical appraisal of the modulatory actions of vitamin D in hepatic insulin sensitivity and islet insulin secretion, and we discuss the potential roles of a local vitamin D signaling in regulating hepatic and pancreatic islet functions. This information provides a scientific basis for establishing the benefits of the maintenance, or dietary manipulation, of adequate vitamin D status in the prevention and management of obesity-induced T2DM and non-alcoholic fatty liver disease.
Collapse
|
46
|
Abstract
Hypertension is a highly prevalent condition with numerous health risks, and the incidence of hypertension is greatest among older adults. Traditional discussions of hypertension have largely focused on the risks for cardiovascular disease and associated events. However, there are a number of collateral effects, including risks for dementia, physical disability, and falls/fractures which are increasingly garnering attention in the hypertension literature. Several key mechanisms--including inflammation, oxidative stress, and endothelial dysfunction--are common to biologic aging and hypertension development and appear to have key mechanistic roles in the development of the cardiovascular and collateral risks of late-life hypertension. The objective of the present review is to highlight the multi-dimensional risks of hypertension among older adults and discuss potential strategies for treatment and future areas of research for improving overall care for older adults with hypertension.
Collapse
|
47
|
Herrera CL, Castillo W, Estrada P, Mancilla B, Reyes G, Saavedra N, Guzmán N, Serón P, Lanas F, Salazar LA. Association of polymorphisms within the Renin-Angiotensin System with metabolic syndrome in a cohort of Chilean subjects. ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2016; 60:190-8. [PMID: 26910623 PMCID: PMC10522309 DOI: 10.1590/2359-3997000000134] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 11/01/2015] [Indexed: 11/22/2022]
Abstract
OBJECTIVE Metabolic syndrome (MetS) is associated with hypertension, obesity and dyslipidemia. Thus, genetic variants related with these conditions may modulate its development. We evaluated the effect of polymorphisms in the renin-angiotensin system (RAS) on metabolic syndrome risk in a cohort of Chilean subjects. SUBJECTS AND METHODS A total of 152 subjects, 83 with MetS (51.2 ± 9.6 years) and 69 without MetS (49.5 ± 9.3 years) of both genders were included, according to the ATP III update criteria. The rs4340 Insertion/Deletion (I/D), rs699 (T>C) and rs5186 (A>C) of the ACE, AGT and AGTR1 genes, respectively, were genotyped. RESULTS After adjusting for age and gender, we observed the DD genotype of rs4340 associated with MetS (p = 0.02). Specifically, the DD genotype was associated with MetS risk in women (OR = 4.62, 95%CI, 1.41 - 15.04; p < 0.01). In males, the AA genotype for rs5186 variant was associated with an increased risk for developing MetS when compared with women carrying the same genotype (OR = 3.2; 95%CI, 1.03 - 9.89; p = 0.04). In subjects without MetS, DD genotype was associated with increased waist circumference (p = 0.023) while subjects with MetS carrying the rs5186 TT genotype showed higher levels of HDL-cholesterol (p = 0.031). CONCLUSION The present study contributes data highlighting the role for RAS polymorphisms in predisposing to metabolic syndrome in Chilean subjects.
Collapse
Affiliation(s)
- Christian L. Herrera
- Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource NucleusUniversidad de La FronteraTemucoChileCenter of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera (BIOREN-UFRO), Temuco, Chile
- Departamento de Ciencias PreclínicasFaculty of MedicineUniversidad de La FronteraTemucoChileDepartamento de Ciencias Preclínicas, Faculty of Medicine, Universidad de La Frontera, Temuco, Chile
| | - Wilma Castillo
- Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource NucleusUniversidad de La FronteraTemucoChileCenter of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera (BIOREN-UFRO), Temuco, Chile
| | - Patricia Estrada
- Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource NucleusUniversidad de La FronteraTemucoChileCenter of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera (BIOREN-UFRO), Temuco, Chile
| | - Bárbara Mancilla
- Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource NucleusUniversidad de La FronteraTemucoChileCenter of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera (BIOREN-UFRO), Temuco, Chile
| | - Gerardo Reyes
- Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource NucleusUniversidad de La FronteraTemucoChileCenter of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera (BIOREN-UFRO), Temuco, Chile
| | - Nicolás Saavedra
- Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource NucleusUniversidad de La FronteraTemucoChileCenter of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera (BIOREN-UFRO), Temuco, Chile
| | - Neftalí Guzmán
- Faculty of Health SciencesUniversidad Católica de TemucoTemucoChileFaculty of Health Sciences, Universidad Católica de Temuco, Temuco, Chile
| | - Pamela Serón
- Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource NucleusUniversidad de La FronteraTemucoChileCenter of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera (BIOREN-UFRO), Temuco, Chile
- Departamento de Medicina InternaFaculty of MedicineUniversidad de La FronteraTemucoChileDepartamento de Medicina Interna, Faculty of Medicine, Universidad de La Frontera, Temuco, Chile
| | - Fernando Lanas
- Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource NucleusUniversidad de La FronteraTemucoChileCenter of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera (BIOREN-UFRO), Temuco, Chile
- Departamento de Medicina InternaFaculty of MedicineUniversidad de La FronteraTemucoChileDepartamento de Medicina Interna, Faculty of Medicine, Universidad de La Frontera, Temuco, Chile
| | - Luis A. Salazar
- Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource NucleusUniversidad de La FronteraTemucoChileCenter of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera (BIOREN-UFRO), Temuco, Chile
| |
Collapse
|
48
|
Zhou Y, Gu P, Shi W, Li J, Hao Q, Cao X, Lu Q, Zeng Y. MicroRNA-29a induces insulin resistance by targeting PPARδ in skeletal muscle cells. Int J Mol Med 2016; 37:931-8. [PMID: 26936652 PMCID: PMC4790643 DOI: 10.3892/ijmm.2016.2499] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Accepted: 02/10/2016] [Indexed: 12/03/2022] Open
Abstract
Intrauterine growth retardation (IUGR) induces metabolic syndrome, which is often characterized by insulin resistance (IR), in adults. Previous research has shown that microRNAs (miRNAs or miRs) play a role in the target genes involved in this process, but the mechanisms remain unclear. In the present study, we examined miRNA profiles using samples of skeletal muscles from both IUGR and control rat offspring whose mothers were fed either a protein-restricted diet or a diet which involved normal amounts of protein during pregnancy, respectively. miR-29a was found to be upregulated in the skeletal muscles of IUGR offspring. The luciferase reporter assay confirmed the direct interaction between miR-29a and peroxisome proliferator-activated receptor δ (PPARδ). Overexpression of miR-29a in the skeletal muscle cell line C2C12 suppressed the expression of its target gene PPARδ, which, in turn, influenced the expression of its coactivator, peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α). Thus, PPARδ/PGC-1α-dependent signals together reduced insulin-dependent glucose uptake and adenosine triphosphate (ATP) production. Overexpression of miR-29a also caused a decrease in levels of glucose transporter 4 (GLUT4), the most important glucose transporter in skeletal muscle, which partially induced a decrease insulin-dependent glucose uptake. These findings provide evidence for a novel micro-RNA-mediated mechanism of PPARδ regulation, and we also noted the IR-promoting actions of miR-29a in skeletal muscles of IUGR.
Collapse
Affiliation(s)
- Yuehua Zhou
- Department of Obstetrics and Gynecology of Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200036, P.R. China
| | - Pingqing Gu
- Department of Clinical Laboratory, Nanjing Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Weijie Shi
- Department of Obstetrics and Gynecology of Xinghua People's Hospital, Xinghua, Jiangsu 225700, P.R. China
| | - Jingyun Li
- Department of Clinical Laboratory, Nanjing Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Qun Hao
- Department of Obstetrics and Gynecology, Nanjing General Hospital of PLA, Nanjing, Jiangsu 210002, P.R. China
| | - Xiaomei Cao
- Duman High School, Singapore 436895, Republic of Singapore
| | - Qin Lu
- Department of Obstetrics and Gynecology of Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200036, P.R. China
| | - Yu Zeng
- Department of Clinical Laboratory, Nanjing Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
49
|
Satyanarayana K, Sravanthi K, Shaker IA, Ponnulakshmi R, Selvaraj J. Role of chrysin on expression of insulin signaling molecules. J Ayurveda Integr Med 2016; 6:248-58. [PMID: 26834424 PMCID: PMC4719485 DOI: 10.4103/0975-9476.157951] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background: Currently available drugs are unsuccessful for the treatment of tye-2 diabetes due to their adverseside-effects. Hence, a search for novel drugs, especially ofplant origin, continues. Chrysin (5,7-dihydroxyflavone) is a flavonoid, natural component of traditional medicinal herbs, present in honey, propolis and many plant extracts that hasbeen used in traditional medicine around the world to treat numerous ailments. Objective: The present study was aimed to identify the protective role of chrysin on the expression of insulin-signaling molecules in the skeletal muscle of high fat and sucrose-induced type-2 diabetic adult male rats. Materials and Methods: The oral effective dose of chrysin (100 mg/kg body weight) was given once a day until the end of the study (30 days post-induction of diabetes) to high fat diet-induced diabetic rats. At the end of the experimental period, fasting blood glucose, oral glucose tolerance, serum lipid profile, lipid peroxidation (LPO) and free radical generation, as well as the levels of insulin signaling molecules and tissue glycogen in the gastrocnemius muscle were assessed. Results: Diabetic rats showed impaired glucose tolerance and impairment in insulin signaling molecules (IR, IRS-1, p-IRS-1Tyr632, p- AktThr308), glucose transporter subtype 4 [GLUT4] proteins and glycogen concentration. Serum insulin, lipid profile, LPO and free radical generation were found to be increased in diabetic control rats. The treatment with chrysin normalized the altered levels of blood glucose, serum insulin, lipid profile, LPO and insulin signaling molecules as well as GLUT4 proteins. Conclusion: Our present findings indicate that chrysin improves glycemic control through activation of insulin signal transduction in the gastrocnemius muscle of high fat and sucrose-induced type-2 diabetic male rats.
Collapse
Affiliation(s)
| | - Koora Sravanthi
- Department of Pharmacology, Sakshi Medical College and Research Centre, Guna, Madhya Pradesh, India
| | - Ivvala Anand Shaker
- Department of Medical Biochemistry, Bharath University, Chennai, Tamil Nadu, India
| | - Rajagopal Ponnulakshmi
- Department of Zoology, PG and Research, Ethiraj College for Women, Chennai, Tamil Nadu, India
| | - Jayaraman Selvaraj
- Department of Biotechnology, PG and Research, Holy Cross College, Trichy, Tamil Nadu, India
| |
Collapse
|
50
|
|