1
|
Rhea EM, Leclerc M, Yassine HN, Capuano AW, Tong H, Petyuk VA, Macauley SL, Fioramonti X, Carmichael O, Calon F, Arvanitakis Z. State of the Science on Brain Insulin Resistance and Cognitive Decline Due to Alzheimer's Disease. Aging Dis 2024; 15:1688-1725. [PMID: 37611907 PMCID: PMC11272209 DOI: 10.14336/ad.2023.0814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 08/14/2023] [Indexed: 08/25/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is common and increasing in prevalence worldwide, with devastating public health consequences. While peripheral insulin resistance is a key feature of most forms of T2DM and has been investigated for over a century, research on brain insulin resistance (BIR) has more recently been developed, including in the context of T2DM and non-diabetes states. Recent data support the presence of BIR in the aging brain, even in non-diabetes states, and found that BIR may be a feature in Alzheimer's disease (AD) and contributes to cognitive impairment. Further, therapies used to treat T2DM are now being investigated in the context of AD treatment and prevention, including insulin. In this review, we offer a definition of BIR, and present evidence for BIR in AD; we discuss the expression, function, and activation of the insulin receptor (INSR) in the brain; how BIR could develop; tools to study BIR; how BIR correlates with current AD hallmarks; and regional/cellular involvement of BIR. We close with a discussion on resilience to both BIR and AD, how current tools can be improved to better understand BIR, and future avenues for research. Overall, this review and position paper highlights BIR as a plausible therapeutic target for the prevention of cognitive decline and dementia due to AD.
Collapse
Affiliation(s)
- Elizabeth M Rhea
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA.
- Department of Medicine, Division of Gerontology and Geriatric Medicine, University of Washington, Seattle, WA 98195, USA.
| | - Manon Leclerc
- Faculty of Pharmacy, Laval University, Quebec, Quebec, Canada.
- Neuroscience Axis, CHU de Québec Research Center - Laval University, Quebec, Quebec, Canada.
| | - Hussein N Yassine
- Departments of Neurology and Medicine, University of Southern California, Los Angeles, CA 90033, USA.
| | - Ana W Capuano
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL 60612, USA.
| | - Han Tong
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL 60612, USA.
| | - Vladislav A Petyuk
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA.
| | - Shannon L Macauley
- Department of Physiology, University of Kentucky, Lexington, KY 40508, USA.
| | - Xavier Fioramonti
- International Associated Laboratory OptiNutriBrain, Bordeaux, France and Quebec, Canada.
- Univ. Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000 Bordeaux, France.
| | - Owen Carmichael
- Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA.
| | - Frederic Calon
- Faculty of Pharmacy, Laval University, Quebec, Quebec, Canada.
- Neuroscience Axis, CHU de Québec Research Center - Laval University, Quebec, Quebec, Canada.
- International Associated Laboratory OptiNutriBrain, Bordeaux, France and Quebec, Canada.
| | - Zoe Arvanitakis
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL 60612, USA.
| |
Collapse
|
2
|
Izbicka E, Streeper RT. Mitigation of Insulin Resistance by Natural Products from a New Class of Molecules, Membrane-Active Immunomodulators. Pharmaceuticals (Basel) 2023; 16:913. [PMID: 37513825 PMCID: PMC10386479 DOI: 10.3390/ph16070913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 07/30/2023] Open
Abstract
Insulin resistance (IR), accompanied by an impaired cellular glucose uptake, characterizes diverse pathologies that include, but are not limited to, metabolic disease, prediabetes and type 2 diabetes. Chronic inflammation associated with deranged cellular signaling is thought to contribute to IR. The key molecular players in IR are plasma membrane proteins, including the insulin receptor and glucose transporter 4. Certain natural products, such as lipids, phenols, terpenes, antibiotics and alkaloids have beneficial effects on IR, yet their mode of action remains obscured. We hypothesized that these products belong to a novel class of bioactive molecules that we have named membrane-active immunomodulators (MAIMs). A representative MAIM, the naturally occurring medium chain fatty acid ester diethyl azelate (DEA), has been shown to increase the fluidity of cell plasma membranes with subsequent downstream effects on cellular signaling. DEA has also been shown to improve markers of IR, including blood glucose, insulin and lipid levels, in humans. The literature supports the notion that DEA and other natural MAIMs share similar mechanisms of action in improving IR. These findings shed a new light on the mechanism of IR mitigation using natural products, and may facilitate the discovery of other compounds with similar activities.
Collapse
|
3
|
Statin-Induced Geranylgeranyl Pyrophosphate Depletion Promotes PCSK9-Dependent Adipose Insulin Resistance. Nutrients 2022; 14:nu14245314. [PMID: 36558473 PMCID: PMC9853319 DOI: 10.3390/nu14245314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/03/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
Statin treatment is accepted to prevent adverse cardiovascular events. However, statin therapy has been reported to be dose-dependently associated with increased risk for new-onset type 2 diabetes mellitus (T2DM). Proprotein convertase subtilisin/kexin type 9 (PCSK9) is expressed in adipose tissue and is positively correlated with lipid metabolism. It is, however, unknown if PCSK9 participates in adipocyte insulin resistance occurring as a result of statin use. Our goal was to use an in vitro adipose tissue explant approach to support the hypothesis that PCSK9 regulates statin-induced new-onset T2DM. Studies were performed using Pcsk-/- and C57Bl/6J control mice. Pcsk9-/- and control mice were fed a high-fat diet to affect a state of chronically altered lipid metabolism and increased PCSK9. Epididymal fat was excised and incubated with atorvastatin (1 µmol/L) in the absence and presence of insulin or geranylgeranyl pyrophosphate (GGPP). PCSK9 mRNA was evaluated using quantitative rtPCR. We further examined the effects of atorvastatin on insulin-mediated AKT signaling in adipose tissue explants by immunoblotting. Atorvastatin was found to upregulate PCSK9 gene expression in adipose tissue. The metabolic intermediate GGPP is required to downregulate PCSK9 expression. PCSK9 deficiency protects against statin-induced impairments in insulin signaling. Moreover, supplementation with GGPP reversed atorvastatin-induced suppression of insulin signaling. Furthermore, the basal and atorvastatin-stimulated release of free fatty acids was observed in adipose tissue from wild-type mice but not PCSK9 deficient mice. Collectively, we describe a novel mechanism for PCSK9 expression in adipose tissue that could mediate statin-impaired adipose insulin resistance.
Collapse
|
4
|
Angiotensin II Inhibits Insulin Receptor Signaling in Adipose Cells. Int J Mol Sci 2022; 23:ijms23116048. [PMID: 35682723 PMCID: PMC9181642 DOI: 10.3390/ijms23116048] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/20/2022] [Accepted: 05/20/2022] [Indexed: 11/17/2022] Open
Abstract
Angiotensin II (Ang II) is a critical regulator of insulin signaling in the cardiovascular system and metabolic tissues. However, in adipose cells, the regulatory role of Ang II on insulin actions remains to be elucidated. The effect of Ang II on insulin-induced insulin receptor (IR) phosphorylation, Akt activation, and glucose uptake was examined in 3T3-L1 adipocytes. In these cells, Ang II specifically inhibited insulin-stimulated IR and insulin receptor substrate-1 (IRS-1) tyrosine-phosphorylation, Akt activation, and glucose uptake in a time-dependent manner. These inhibitory actions were associated with increased phosphorylation of the IR at serine residues. Interestingly, Ang II-induced serine-phosphorylation of IRS was not detected, suggesting that Ang II-induced desensitization begins from IR regulation itself. PKC inhibition by BIM I restored the inhibitory effect of Ang II on insulin actions. We also found that Ang II promoted activation of several PKC isoforms, including PKCα/βI/βII/δ, and its association with the IR, particularly PKCβII, showed the highest interaction. Finally, we also found a similar regulatory effect of Ang II in isolated adipocytes, where insulin-induced Akt phosphorylation was inhibited by Ang II, an effect that was prevented by PKC inhibitors. These results suggest that Ang II may lead to insulin resistance through PKC activation in adipocytes.
Collapse
|
5
|
Sabapathy T, Helmerhorst E, Ellison G, Bridgeman SC, Mamotte CD. High-fat diet induced alterations in plasma membrane cholesterol content impairs insulin receptor binding and signalling in mouse liver but is ameliorated by atorvastatin. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166372. [PMID: 35248691 DOI: 10.1016/j.bbadis.2022.166372] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 02/23/2022] [Accepted: 02/28/2022] [Indexed: 10/18/2022]
Abstract
A high-fat diet (HFD) impairs insulin binding and signalling and may contribute to the development of insulin resistance. In addition, in vitro studies have shown that alterations in plasma membrane cholesterol influence ligand binding and downstream signalling for several receptor-tyrosine kinases (RTKs), including the insulin receptor. Using an ex vivo approach, we explored the effects of a HFD on insulin binding and signalling in mouse liver and relate these to observed changes in plasma membrane cholesterol. Mice fed a HFD demonstrated decreased insulin signalling compared to mice fed a normal chow diet (ND), indicated by a 3-fold decrease in insulin binding (P < 0.001) and a similar decrease in insulin receptor phosphorylation (~2.5-fold; P < 0.0001). Interestingly, we also observed a marked decrease in the cholesterol content of liver plasma membranes in the HFD fed mice (P < 0.0001). These effects of the HFD were found to be ameliorated by atorvastatin treatment (P < 0.0001). However, in ND mice, atorvastatin had no influence on membrane cholesterol content or insulin binding and signalling. The influence of membrane cholesterol on insulin binding and signalling was also corroborated in HepG2 cells. To the best of our knowledge, this is the first demonstration of the effects of a HFD and atorvastatin treatment on changes in plasma membrane cholesterol content and the consequent effects on insulin binding and signalling. Collectively, these findings suggest that changes in membrane cholesterol content could be an important underlying reason for the long-known effects of a HFD on the development of insulin resistance.
Collapse
Affiliation(s)
- Thiru Sabapathy
- School of Medicine, Curtin University, Bentley, Western Australia 6102, Australia; Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia 6102, Australia
| | - Erik Helmerhorst
- School of Medicine, Curtin University, Bentley, Western Australia 6102, Australia
| | - Gaewyn Ellison
- School of Medicine, Curtin University, Bentley, Western Australia 6102, Australia; Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia 6102, Australia; School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia 6102, Australia.
| | - Stephanie C Bridgeman
- School of Medicine, Curtin University, Bentley, Western Australia 6102, Australia; Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia 6102, Australia
| | - Cyril D Mamotte
- School of Medicine, Curtin University, Bentley, Western Australia 6102, Australia; Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia 6102, Australia.
| |
Collapse
|
6
|
Grunwald SA, Haafke S, Grieben U, Kassner U, Steinhagen-Thiessen E, Spuler S. Statins Aggravate the Risk of Insulin Resistance in Human Muscle. Int J Mol Sci 2022; 23:2398. [PMID: 35216514 PMCID: PMC8876152 DOI: 10.3390/ijms23042398] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/13/2022] [Accepted: 02/17/2022] [Indexed: 01/23/2023] Open
Abstract
Beside their beneficial effects on cardiovascular events, statins are thought to contribute to insulin resistance and type-2 diabetes. It is not known whether these effects are long-term events from statin-treatment or already triggered with the first statin-intake. Skeletal muscle is considered the main site for insulin-stimulated glucose uptake and therefore, a primary target for insulin resistance in the human body. We analyzed localization and expression of proteins related to GLUT4 mediated glucose uptake via AMPKα or AKT in human skeletal muscle tissue from patients with statin-intake >6 months and in primary human myotubes after 96 h statin treatment. The ratio for AMPKα activity significantly increased in human skeletal muscle cells treated with statins for long- and short-term. Furthermore, the insulin-stimulated counterpart, AKT, significantly decreased in activity and protein level, while GSK3ß and mTOR protein expression reduced in statin-treated primary human myotubes, only. However, GLUT4 was normally distributed whereas CAV3 was internalized from plasma membrane around the nucleus in statin-treated primary human myotubes. Statin-treatment activates AMPKα-dependent glucose uptake and remains active after long-term statin treatment. Permanent blocking of its insulin-dependent counterpart AKT activation may lead to metabolic inflexibility and insulin resistance in the long run and may be a direct consequence of statin-treatment.
Collapse
Affiliation(s)
- Stefanie A. Grunwald
- Muscle Research Unit, Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13125 Berlin, Germany; (S.H.); (U.G.)
| | - Stefanie Haafke
- Muscle Research Unit, Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13125 Berlin, Germany; (S.H.); (U.G.)
| | - Ulrike Grieben
- Muscle Research Unit, Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13125 Berlin, Germany; (S.H.); (U.G.)
| | - Ursula Kassner
- Interdisciplinary Lipid Metabolic Center, Charité Universitätsmedizin Berlin, 13353 Berlin, Germany; (U.K.); (E.S.-T.)
| | - Elisabeth Steinhagen-Thiessen
- Interdisciplinary Lipid Metabolic Center, Charité Universitätsmedizin Berlin, 13353 Berlin, Germany; (U.K.); (E.S.-T.)
| | - Simone Spuler
- Muscle Research Unit, Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13125 Berlin, Germany; (S.H.); (U.G.)
| |
Collapse
|
7
|
Vieira RFL, Muñoz VR, Junqueira RL, de Oliveira F, Gaspar RC, Nakandakari SCBR, Costa SDO, Torsoni MA, da Silva ASR, Cintra DE, de Moura LP, Ropelle ER, Zaghloul I, Mekary RA, Pauli JR. Time-restricted feeding combined with aerobic exercise training can prevent weight gain and improve metabolic disorders in mice fed a high-fat diet. J Physiol 2021; 600:797-813. [PMID: 33450053 DOI: 10.1113/jp280820] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 01/08/2021] [Indexed: 01/02/2023] Open
Abstract
KEY POINTS Time-restricted feeding (TRF, in which energy intake is restricted to 8 h/day during the dark phase) alone or combined with aerobic exercise (AE) training can prevent weight gain and metabolic disorders in Swiss mice fed a high-fat diet. The benefits of TRF combined with AE are associated with improved hepatic metabolism and decreased hepatic lipid accumulation. TRF combined with AE training increased fatty acid oxidation and decreased expression of lipogenic and gluconeogenic genes in the liver of young male Swiss mice. TRF combined with AE training attenuated the detrimental effects of high-fat diet feeding on the insulin signalling pathway in the liver. ABSTRACT Time-restricted feeding (TRF) or physical exercise have been shown to be efficient in the prevention and treatment of metabolic disorders; however, the additive effects of TRF combined with aerobic exercise (AE) training on liver metabolism have not been widely explored. In this study TRF (8 h in the active phase) and TRF combined with AE (TRF+Exe) were compared in male Swiss mice fed a high-fat diet, with evaluation of the effects on insulin sensitivity and expression of hepatic genes involved in fatty acid oxidation, lipogenesis and gluconeogenesis. As in previous reports, we show that TRF alone (eating only between zeitgeber time 16 and 0) was sufficient to reduce weight and adiposity gain, increase fatty acid oxidation and decrease lipogenesis genes in the liver. In addition, we show that mice of the TRF+Exe group showed additional adaptations such as increased oxygen consumption ( V ̇ O 2 ), carbon dioxide production ( V ̇ C O 2 ) and production of ketone bodies (β-hydroxybutyrate). Also, TRF+Exe attenuated the negative effects of high-fat diet feeding on the insulin signalling pathway (insulin receptor, insulin receptor substrate, Akt), and led to increased fatty acid oxidation (Ppara, Cpt1a) and decreased gluconeogenic (Fbp1, Pck1, Pgc1a) and lipogenic (Srebp1c, Cd36) gene expression in the liver. These molecular results were accompanied by increased glucose metabolism, lower serum triglycerides and reduced hepatic lipid content in the TRF+Exe group. The data presented in this study show that TRF alone has benefits but TRF+Exe has additive benefits and can mitigate the harmful effects of consuming a high-fat diet on body adiposity, liver metabolism and glycaemic homeostasis in young male Swiss mice.
Collapse
Affiliation(s)
- Renan Fudoli Lins Vieira
- Laboratory of Molecular Biology of Exercise (LaBMEx), University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Vitor Rosetto Muñoz
- Laboratory of Molecular Biology of Exercise (LaBMEx), University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Rafael Lima Junqueira
- Laboratory of Molecular Biology of Exercise (LaBMEx), University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Fellipe de Oliveira
- Laboratory of Molecular Biology of Exercise (LaBMEx), University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Rafael Calais Gaspar
- Laboratory of Molecular Biology of Exercise (LaBMEx), University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | | | - Suleyma de Oliveira Costa
- Laboratory of Metabolism Disorders, Faculty of Applied Sciences, State University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Marcio Alberto Torsoni
- Laboratory of Metabolism Disorders, Faculty of Applied Sciences, State University of Campinas (UNICAMP), Limeira, São Paulo, Brazil.,Laboratory of Cell Signaling, Obesity and Comorbidities Research Center (OCRC), University of Campinas, Campinas, São Paulo, Brazil
| | - Adelino S R da Silva
- Postgraduate Program in Rehabilitation and Functional Performance, Ribeirão Preto Medical School, and Postgraduate Program in Physical Education and Sport, School of Physical Education and Sport of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - Dennys Esper Cintra
- Laboratory of Nutritional Genomics (LabGeN), University of Campinas (UNICAMP), Limeira, São Paulo, Brazil.,Laboratory of Cell Signaling, Obesity and Comorbidities Research Center (OCRC), University of Campinas, Campinas, São Paulo, Brazil
| | - Leandro Pereira de Moura
- Laboratory of Molecular Biology of Exercise (LaBMEx), University of Campinas (UNICAMP), Limeira, São Paulo, Brazil.,Laboratory of Cell Signaling, Obesity and Comorbidities Research Center (OCRC), University of Campinas, Campinas, São Paulo, Brazil
| | - Eduardo Rochete Ropelle
- Laboratory of Molecular Biology of Exercise (LaBMEx), University of Campinas (UNICAMP), Limeira, São Paulo, Brazil.,Laboratory of Cell Signaling, Obesity and Comorbidities Research Center (OCRC), University of Campinas, Campinas, São Paulo, Brazil
| | - Iman Zaghloul
- Massachusetts College of Pharmacy and Health Sciences (MCPHS), Boston, MA, USA
| | - Rania A Mekary
- Massachusetts College of Pharmacy and Health Sciences (MCPHS), Boston, MA, USA.,Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - José Rodrigo Pauli
- Laboratory of Molecular Biology of Exercise (LaBMEx), University of Campinas (UNICAMP), Limeira, São Paulo, Brazil.,Laboratory of Cell Signaling, Obesity and Comorbidities Research Center (OCRC), University of Campinas, Campinas, São Paulo, Brazil
| |
Collapse
|
8
|
Luo J, Jiang B, Li C, Jia X, Shi D. CYC27 Synthetic Derivative of Bromophenol from Red Alga Rhodomela confervoides: Anti-Diabetic Effects of Sensitizing Insulin Signaling Pathways and Modulating RNA Splicing-Associated RBPs. Mar Drugs 2019; 17:E49. [PMID: 30641913 PMCID: PMC6356253 DOI: 10.3390/md17010049] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/07/2019] [Accepted: 01/07/2019] [Indexed: 12/13/2022] Open
Abstract
RNA-binding proteins (RBPs) lie at the center of posttranscriptional regulation and the dysregulation of RBPs contributes to diabetes. Therefore, the modulation of RBPs is anticipated to become a potential therapeutic approach to diabetes. CYC27 is a synthetic derivative of marine bromophenol BDB, which is isolated from red alga Rhodomela confervoides. In this study, we found that CYC27 significantly lowered the blood glucose levels of diabetic BKS db mice. Moreover, CYC27 effectively ameliorated dyslipidemia in BKS db mice by reducing their total serum cholesterol (TC) and triglyceride (TG) levels. Furthermore, CYC27 was an insulin-sensitizing agent with increased insulin-stimulated phosphorylation of insulin receptors and relevant downstream factors. Finally, to systemically study the mechanisms of CYC27, label-free quantitative phosphoproteomic analysis was performed to investigate global changes in phosphorylation. Enriched GO annotation showed that most regulated phosphoproteins were related to RNA splicing and RNA processing. Enriched KEGG analysis showed that a spliceosome-associated pathway was the predominant pathway after CYC27 treatment. Protein-protein interaction (PPI) analysis showed that CYC27 modulated the process of mRNA splicing via phosphorylation of the relevant RBPs, including upregulated Cstf3 and Srrt. Our results suggested that CYC27 treatment exerted promising anti-diabetic effects by sensitizing the insulin signaling pathways and modulating RNA splicing-associated RBPs.
Collapse
Affiliation(s)
- Jiao Luo
- School of Public Health, Qingdao University, Qingdao 266071, China.
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
| | - Bo Jiang
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
| | - Chao Li
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
| | - Xiaoling Jia
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
| | - Dayong Shi
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, China.
| |
Collapse
|
9
|
Seferovic MD, Beamish CA, Mosser RE, Townsend SE, Pappan K, Poitout V, Aagaard KM, Gannon M. Increases in bioactive lipids accompany early metabolic changes associated with β-cell expansion in response to short-term high-fat diet. Am J Physiol Endocrinol Metab 2018; 315:E1251-E1263. [PMID: 30106624 PMCID: PMC6336958 DOI: 10.1152/ajpendo.00001.2018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Pancreatic β-cell expansion is a highly regulated metabolic adaptation to increased somatic demands, including obesity and pregnancy; adult β cells otherwise rarely proliferate. We previously showed that high-fat diet (HFD) feeding induces mouse β-cell proliferation in less than 1 wk in the absence of insulin resistance. Here we metabolically profiled tissues from a short-term HFD β-cell expansion mouse model to identify pathways and metabolite changes associated with β-cell proliferation. Mice fed HFD vs. chow diet (CD) showed a 14.3% increase in body weight after 7 days; β-cell proliferation increased 1.75-fold without insulin resistance. Plasma from 1-wk HFD-fed mice induced β-cell proliferation ex vivo. The plasma, as well as liver, skeletal muscle, and bone, were assessed by LC and GC mass-spectrometry for global metabolite changes. Of the 1,283 metabolites detected, 159 showed significant changes [false discovery rate (FDR) < 0.1]. The majority of changes were in liver and muscle. Pathway enrichment analysis revealed key metabolic changes in steroid synthesis and lipid metabolism, including free fatty acids and other bioactive lipids. Other important enrichments included changes in the citric acid cycle and 1-carbon metabolism pathways implicated in DNA methylation. Although the minority of changes were observed in bone and plasma (<20), increased p-cresol sulfate was increased >4 fold in plasma (the largest increase in all tissues), and pantothenate (vitamin B5) decreased >2-fold. The results suggest that HFD-mediated β-cell expansion is associated with complex, global metabolite changes. The finding could be a significant insight into Type 2 diabetes pathogenesis and potential novel drug targets.
Collapse
Affiliation(s)
- Maxim D Seferovic
- Department of Obstetrics and Gynecology, Baylor College of Medicine , Houston, Texas
| | - Christine A Beamish
- Department of Surgery, Houston Methodist Hospital Research Institute , Houston, Texas
| | - Rockann E Mosser
- Department of Veterans Affairs , Nashville, Tennessee
- Department of Medicine, Vanderbilt University Medical Center , Nashville, Tennessee
| | - Shannon E Townsend
- Department of Molecular Physiology and Biophysics, Vanderbilt University , Nashville, Tennessee
| | | | | | - Kjersti M Aagaard
- Department of Obstetrics and Gynecology, Baylor College of Medicine , Houston, Texas
| | - Maureen Gannon
- Department of Veterans Affairs , Nashville, Tennessee
- Department of Medicine, Vanderbilt University Medical Center , Nashville, Tennessee
- Department of Molecular Physiology and Biophysics, Vanderbilt University , Nashville, Tennessee
| |
Collapse
|
10
|
Oi M, Donner D, Peart J, Beck B, Wendt L, Headrick JP, du Toit EF. Pravastatin improves risk factors but not ischaemic tolerance in obese rats. Eur J Pharmacol 2018; 826:148-157. [PMID: 29501869 DOI: 10.1016/j.ejphar.2018.02.050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 02/27/2018] [Accepted: 02/28/2018] [Indexed: 12/22/2022]
Abstract
Statins are effective in management of dyslipidaemia, and a cornerstone of CVD prevention strategies. However, the impacts of their pleiotropic effects on other cardiovascular risk factors and myocardial responses to infarction are not well characterised. We hypothesised that pravastatin treatment in obesity improves lipid profiles, insulin-resistance and myocardial resistance to ischaemia/reperfusion (I/R) injury. Wistar rats were fed a control (C) chow or high carbohydrate and fat diet (HCFD) for 16 weeks with vehicle or pravastatin (prava 7.5 mg/kg/day) treatment for 8 weeks. At 16 weeks HOMAs were performed, blood samples collected and hearts excised for Langendorff perfusions/biochemical analyses. Anti-oxidant activity and proteins regulating mitochondrial fission/fusion and apoptosis were assessed. The HCFD increased body weight (736±15 vs. 655±12 g for C; P<0.001), serum triglycerides (2.91±0.52 vs. 1.64±0.26 mmol/L for C; P<0.001) and insulin-resistance (HOMA- 6.9±0.8 vs. 4.2±0.5 for C; P<0.05) while prava prevented diet induced changes and paradoxically increased lipid peroxidation. The HCFD increased infarct size (34.1±3.1% vs. 18.8±3.0% of AAR for C; P<0.05), which was unchanged by prava in C and HCFD animals. The HCFD decreased cardiac TxR activity and mitochondrial MFN-1 and increased mitochondrial DRP-1 (reducing MFN-1:DRP-1 ratio) and Bax expression, with the latter changes prevented by prava. While unaltered by diet, cytosolic levels of Bax and caspase-3 were reduced by prava in C and HCFD hearts (without changes in cleaved caspase-3). We conclude that obesity, hyper-triglyceridemia and impaired glycemic control in HCFD rats are countered by prava. Despite improved risk factors, prava did not reduce myocardial infarct size, potentially reflecting its complex pleiotropic impacts on cardiac GPX activity and MFN-1, DRP-1, caspase-3 and Bcl-2 proteins.
Collapse
Affiliation(s)
- Massa Oi
- School of Medical Science, Griffith University Gold Coast, Southport, QLD 4222, Australia
| | - Daniel Donner
- School of Medical Science, Griffith University Gold Coast, Southport, QLD 4222, Australia
| | - Jason Peart
- School of Medical Science, Griffith University Gold Coast, Southport, QLD 4222, Australia
| | - Belinda Beck
- School of Allied Health Science, Menzies Health Institute Queensland, Griffith University Gold Coast, Southport, QLD 4222, Australia
| | - Lauren Wendt
- School of Medical Science, Griffith University Gold Coast, Southport, QLD 4222, Australia
| | - John P Headrick
- School of Medical Science, Griffith University Gold Coast, Southport, QLD 4222, Australia
| | - Eugene F du Toit
- School of Medical Science, Griffith University Gold Coast, Southport, QLD 4222, Australia.
| |
Collapse
|
11
|
Han KH. Functional Implications of HMG-CoA Reductase Inhibition on Glucose Metabolism. Korean Circ J 2018; 48:951-963. [PMID: 30334382 PMCID: PMC6196158 DOI: 10.4070/kcj.2018.0307] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Accepted: 09/27/2018] [Indexed: 02/06/2023] Open
Abstract
HMG-CoA reductase inhibitors, i.e. statins, are effective in reducing cardiovascular disease events but also in cardiac-related and overall mortality. Statins are in general well-tolerated, but currently the concerns are raised if statins may increase the risk of new-onset diabetes mellitus (NOD). In this review, the possible effects of statins on organs/tissues being involved in glucose metabolism, i.e. liver, pancreas, adipose tissue, and muscles, had been discussed. The net outcome seems to be inconsistent and often contradictory, which may be largely affected by in vitro experimental settings or/and in vivo animal conditions. The majority of studies point out statin-induced changes of regulations of isoprenoid metabolites and cell-associated cholesterol contents as predisposing factors related to the statin-induced NOD. On the other hand, it should be considered that dysfunctions of isoprenoid pathway and mitochondrial ATP production and the cholesterol homeostasis are already developed under (pre)diabetic and hypercholesterolemic conditions. In order to connect the basic findings with the clinical manifestation more clearly, further research efforts are needed.
Collapse
Affiliation(s)
- Ki Hoon Han
- Department of Internal Medicine, College of Medicine Ulsan University, Asan Medical Center, Seoul, Korea.
| |
Collapse
|
12
|
Scioscia M. D-chiro inositol phosphoglycans in preeclampsia: Where are we, where are we going? J Reprod Immunol 2017; 124:1-7. [DOI: 10.1016/j.jri.2017.09.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 09/15/2017] [Accepted: 09/27/2017] [Indexed: 12/24/2022]
|
13
|
Marín de Mas I, Fanchon E, Papp B, Kalko S, Roca J, Cascante M. Molecular mechanisms underlying COPD-muscle dysfunction unveiled through a systems medicine approach. Bioinformatics 2016; 33:95-103. [PMID: 27794560 DOI: 10.1093/bioinformatics/btw566] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 08/26/2016] [Accepted: 08/29/2016] [Indexed: 01/04/2023] Open
Abstract
MOTIVATION Skeletal muscle dysfunction is a systemic effect in one-third of patients with chronic obstructive pulmonary disease (COPD), characterized by high reactive-oxygen-species (ROS) production and abnormal endurance training-induced adaptive changes. However, the role of ROS in COPD remains unclear, not least because of the lack of appropriate tools to study multifactorial diseases. RESULTS We describe a discrete model-driven method combining mechanistic and probabilistic approaches to decipher the role of ROS on the activity state of skeletal muscle regulatory network, assessed before and after an 8-week endurance training program in COPD patients and healthy subjects. In COPD, our computational analysis indicates abnormal training-induced regulatory responses leading to defective tissue remodeling and abnormal energy metabolism. Moreover, we identified tnf, insr, inha and myc as key regulators of abnormal training-induced adaptations in COPD. The tnf-insr pair was identified as a promising target for therapeutic interventions. Our work sheds new light on skeletal muscle dysfunction in COPD, opening new avenues for cost-effective therapies. It overcomes limitations of previous computational approaches showing high potential for the study of other multi-factorial diseases such as diabetes or cancer. CONTACT jroca@clinic.ub.es or martacascante@ub.eduSupplementary information: Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Igor Marín de Mas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Institute of Biomedicine of University of Barcelona (IBUB) and IDIBAPS, Diagonal 645, Barcelona 08028, Spain.,Institut d' Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Barcelona 08028, Spain.,Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Center of the Hungarian Academy of Sciences, Temesvári krt. 62, Szeged H-6726, Hungary
| | - Eric Fanchon
- Université Grenoble Alpes-CNRS, TIMC-IMAG UMR 5525, Faculté de Médecine, Grenoble 38041, France
| | - Balázs Papp
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Center of the Hungarian Academy of Sciences, Temesvári krt. 62, Szeged H-6726, Hungary
| | - Susana Kalko
- Bioinformatics Core Facility, IDIBAPS-CEK, Hospital Clínic, University de Barcelona, Barcelona 08036, Spain
| | - Josep Roca
- Institut d' Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Barcelona 08028, Spain.,Department of Pulmonary Medicine, Hospital Clínic, IDIBAPS, CIBERES, Universitat de Barcelona, Barcelona 08036, Spain
| | - Marta Cascante
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Institute of Biomedicine of University of Barcelona (IBUB) and IDIBAPS, Diagonal 645, Barcelona 08028, Spain.,Institut d' Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Barcelona 08028, Spain
| |
Collapse
|
14
|
Yang O, Li J, Chen H, Li J, Kong J. Atorvastatin ameliorates endothelium-specific insulin resistance induced by high glucose combined with high insulin. Mol Med Rep 2016; 14:2791-8. [PMID: 27484094 DOI: 10.3892/mmr.2016.5564] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 06/15/2016] [Indexed: 11/06/2022] Open
Abstract
The aim of the present study was to establish an endothelial cell model of endothelium-specific insulin resistance to evaluate the effect of atorvastatin on insulin resistance-associated endothelial dysfunction and to identify the potential pathway responsible for its action. Cultured human umbilical vein endothelial cells (HUVECs) were pretreated with different concentrations of glucose with, or without, 10‑5 M insulin for 24 h, following which the cells were treated with atorvastatin. The tyrosine phosphorylation of insulin receptor (IR) and insulin receptor substrate-1 (IRS‑1), the production of nitric oxide (NO), the activity and phosphorylation level of endothelial NO synthase (eNOS) on serine1177, and the mRNA levels of endothelin‑1 (ET‑1) were assessed during the experimental procedure. Treatment of the HUVECs with 30 mM glucose and 10‑5 M insulin for 24 h impaired insulin signaling, with reductions in the tyrosine phosphorylation of IR and protein expression of IRS‑1 by almost 75 and 65%, respectively. This, in turn, decreased the activity and phosphorylation of eNOS on serine1177, and reduced the production of NO by almost 80%. By contrast, the mRNA levels of ET‑1 were upregulated. All these changes were ameliorated by atorvastatin. Taken together, these results demonstrated that high concentrations of glucose and insulin impaired insulin signaling leading to endothelial dysfunction, and that atorvastatin ameliorated these changes, acting primarily through the phosphatidylinositol 3-kinase/Akt/eNOS signaling pathway.
Collapse
Affiliation(s)
- Ou Yang
- Department of Cadre Ward, First Hospital, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Jinliang Li
- Department of Cardiology, Heilongjiang Provincial Hospital, Harbin, Heilongjiang 150001, P.R. China
| | - Haiyan Chen
- Department of Cadre Ward, First Hospital, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Jie Li
- Department of Cadre Ward, First Hospital, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Jian Kong
- Department of Cadre Ward, First Hospital, Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
15
|
Okin D, Medzhitov R. The Effect of Sustained Inflammation on Hepatic Mevalonate Pathway Results in Hyperglycemia. Cell 2016; 165:343-56. [PMID: 26997483 DOI: 10.1016/j.cell.2016.02.023] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 01/12/2016] [Accepted: 02/04/2016] [Indexed: 02/08/2023]
Abstract
Control of plasma glucose level is essential to organismal survival. Sustained inflammation has been implicated in control of glucose homeostasis in cases of infection, obesity, and type 2 diabetes; however, the precise role of inflammation in these complex disease states remains poorly understood. Here, we find that sustained inflammation results in elevated plasma glucose due to increased hepatic glucose production. We find that sustained inflammation suppresses CYP7A1, leading to accumulation of intermediate metabolites at the branch point of the mevalonate pathway. This results in prenylation of RHOC, which is concomitantly induced by inflammatory cytokines. Subsequent activation of RHO-associated protein kinase results in elevated plasma glucose. These findings uncover an unexpected mechanism by which sustained inflammation alters glucose homeostasis.
Collapse
Affiliation(s)
- Daniel Okin
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Ruslan Medzhitov
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA; Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
16
|
Wang HJ, Park JY, Kwon O, Choe EY, Kim CH, Hur KY, Lee MS, Yun M, Cha BS, Kim YB, Lee H, Kang ES. Chronic HMGCR/HMG-CoA reductase inhibitor treatment contributes to dysglycemia by upregulating hepatic gluconeogenesis through autophagy induction. Autophagy 2015; 11:2089-2101. [PMID: 26389569 DOI: 10.1080/15548627.2015.1091139] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Statins (HMGCR/HMG-CoA reductase [3-hydroxy-3-methylglutaryl-CoA reductase] inhibitors) are widely used to lower blood cholesterol levels but have been shown to increase the risk of type 2 diabetes mellitus. However, the molecular mechanism underlying diabetogenic effects remains to be elucidated. Here we show that statins significantly increase the expression of key gluconeogenic enzymes (such as G6PC [glucose-6-phosphatase] and PCK1 (phosphoenolpyruvate carboxykinase 1 [soluble]) in vitro and in vivo and promote hepatic glucose output. Statin treatment activates autophagic flux in HepG2 cells. Acute suppression of autophagy with lysosome inhibitors in statin treated HepG2 cells reduced gluconeogenic enzymes expression and glucose output. Importantly, the ability of statins to increase gluconeogenesis was impaired when ATG7 was deficient and BECN1 was absent, suggesting that autophagy plays a critical role in the diabetogenic effects of statins. Moreover autophagic vacuoles and gluconeogenic genes expression in the liver of diet-induced obese mice were increased by statins, ultimately leading to elevated hepatic glucose production, hyperglycemia, and insulin resistance. Together, these data demonstrate that chronic statin therapy results in insulin resistance through the activation of hepatic gluconeogenesis, which is tightly coupled to hepatic autophagy. These data further contribute to a better understanding of the diabetogenic effects of stains in the context of insulin resistance.
Collapse
Affiliation(s)
- Hye Jin Wang
- a Division of Endocrinology and Metabolism ; Department of Internal Medicine ; Yonsei University College of Medicine ; Seoul , Korea.,b Institute of Endocrine Research; Yonsei University College of Medicine ; Seoul , Korea.,c Brain Korea 21 PLUS Project for Medical Science; Yonsei University College of Medicine ; Seoul , Korea
| | - Jae Yeo Park
- d Department of Clinical Nursing Science ; Yonsei University College of Nursing ; Seoul , Korea.,e Nursing Policy and Research Institute; Biobehavioral Research Center; Yonsei University ; Seoul , Korea
| | - Obin Kwon
- c Brain Korea 21 PLUS Project for Medical Science; Yonsei University College of Medicine ; Seoul , Korea.,f Department of Pharmacology ; Yonsei University College of Medicine ; Seoul , Korea
| | - Eun Yeong Choe
- a Division of Endocrinology and Metabolism ; Department of Internal Medicine ; Yonsei University College of Medicine ; Seoul , Korea.,b Institute of Endocrine Research; Yonsei University College of Medicine ; Seoul , Korea
| | - Chul Hoon Kim
- c Brain Korea 21 PLUS Project for Medical Science; Yonsei University College of Medicine ; Seoul , Korea.,f Department of Pharmacology ; Yonsei University College of Medicine ; Seoul , Korea
| | - Kyu Yeon Hur
- g Department of Medicine ; Samsung Medical Center; Sungkyunkwan University School of Medicine ; Seoul , Korea
| | - Myung-Shik Lee
- g Department of Medicine ; Samsung Medical Center; Sungkyunkwan University School of Medicine ; Seoul , Korea.,h Samsung Advanced Institute for Health Sciences and Technology; Sungkyunkwan University School of Medicine ; Seoul , Korea
| | - Mijin Yun
- i Department of Nuclear Medicine ; Yonsei University College of Medicine ; Seoul , Korea
| | - Bong Soo Cha
- a Division of Endocrinology and Metabolism ; Department of Internal Medicine ; Yonsei University College of Medicine ; Seoul , Korea.,b Institute of Endocrine Research; Yonsei University College of Medicine ; Seoul , Korea.,c Brain Korea 21 PLUS Project for Medical Science; Yonsei University College of Medicine ; Seoul , Korea
| | - Young-Bum Kim
- j Division of Endocrinology , Diabetes, and Metabolism ; Department of Medicine ; Beth Israel Deaconess Medical Center and Harvard Medical School ; Boston , MA USA
| | - Hyangkyu Lee
- d Department of Clinical Nursing Science ; Yonsei University College of Nursing ; Seoul , Korea.,e Nursing Policy and Research Institute; Biobehavioral Research Center; Yonsei University ; Seoul , Korea
| | - Eun Seok Kang
- a Division of Endocrinology and Metabolism ; Department of Internal Medicine ; Yonsei University College of Medicine ; Seoul , Korea.,b Institute of Endocrine Research; Yonsei University College of Medicine ; Seoul , Korea.,c Brain Korea 21 PLUS Project for Medical Science; Yonsei University College of Medicine ; Seoul , Korea
| |
Collapse
|
17
|
da Rocha AL, Pereira BC, Pauli JR, Cintra DE, de Souza CT, Ropelle ER, R. da Silva AS. Downhill Running-Based Overtraining Protocol Improves Hepatic Insulin Signaling Pathway without Concomitant Decrease of Inflammatory Proteins. PLoS One 2015; 10:e0140020. [PMID: 26445495 PMCID: PMC4596708 DOI: 10.1371/journal.pone.0140020] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 09/19/2015] [Indexed: 11/21/2022] Open
Abstract
The purpose of this study was to verify the effects of overtraining (OT) on insulin, inflammatory and gluconeogenesis signaling pathways in the livers of mice. Rodents were divided into control (CT), overtrained by downhill running (OTR/down), overtrained by uphill running (OTR/up) and overtrained by running without inclination (OTR). Rotarod, incremental load, exhaustive and grip force tests were used to evaluate performance. Thirty-six hours after a grip force test, the livers were extracted for subsequent protein analyses. The phosphorylation of insulin receptor beta (pIRbeta), glycogen synthase kinase 3 beta (pGSK3beta) and forkhead box O1 (pFoxo1) increased in OTR/down versus CT. pGSK3beta was higher in OTR/up versus CT, and pFoxo1 was higher in OTR/up and OTR versus CT. Phosphorylation of protein kinase B (pAkt) and insulin receptor substrate 1 (pIRS–1) were higher in OTR/up versus CT and OTR/down. The phosphorylation of IκB kinase alpha and beta (pIKKalpha/beta) was higher in all OT protocols versus CT, and the phosphorylation of stress-activated protein kinases/Jun amino-terminal kinases (pSAPK-JNK) was higher in OTR/down versus CT. Protein levels of peroxisome proliferator-activated receptor-gamma coactivator 1alpha (PGC-1alpha) and hepatocyte nuclear factor 4alpha (HNF-4alpha) were higher in OTR versus CT. In summary, OTR/down improved the major proteins of insulin signaling pathway but up-regulated TRB3, an Akt inhibitor, and its association with Akt.
Collapse
Affiliation(s)
- Alisson L. da Rocha
- Postgraduate Program in Rehabilitation and Functional Performance, RibeirãoPreto Medical School, USP, RibeirãoPreto, São Paulo, Brazil
| | - Bruno C. Pereira
- Postgraduate Program in Rehabilitation and Functional Performance, RibeirãoPreto Medical School, USP, RibeirãoPreto, São Paulo, Brazil
| | - José R. Pauli
- Sport Sciences Course, Faculty of Applied Sciences, State University of Campinas, Limeira, São Paulo, Brazil
| | - Dennys E. Cintra
- Sport Sciences Course, Faculty of Applied Sciences, State University of Campinas, Limeira, São Paulo, Brazil
| | - Claudio T. de Souza
- Exercise Biochemistry and Physiology Laboratory Postgraduate Program in Health Sciences, Health Sciences Unit, University of Far Southern Santa Catarina, Criciúma, Santa Catarina, Brazil
| | - Eduardo R. Ropelle
- Sport Sciences Course, Faculty of Applied Sciences, State University of Campinas, Limeira, São Paulo, Brazil
| | - Adelino S. R. da Silva
- Postgraduate Program in Rehabilitation and Functional Performance, RibeirãoPreto Medical School, USP, RibeirãoPreto, São Paulo, Brazil
- School of Physical Education and Sport of RibeirãoPreto, University of São Paulo, RibeirãoPreto, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
18
|
Abstract
Diabetes mellitus is accompanied by hormonal and neurochemical changes that can be associated with anxiety and depression. I investigated the antidepressant effect of simvastatin (SMV) on diabetic rats. Rats were divided into control (CTR) and streptozotocin-induced diabetic (STZ) groups and were orally administered 0, 5, or 10 mg/kg of SMV daily for 14 days, then exposed to the forced swimming test (FST). Our results showed that diabetic rats had higher immobility duration than the CTR rats, and SMV decreased this depressive-like behavior in the diabetic rats. However, clomipramine lowered the immobility time in the CTR and STZ rats. STZ decreased serotonin concentration in the hippocampus, which was reversed by SMV and clomipramine. The dopamine concentration in the hippocampus decreased in the STZ groups compared with the CTR groups. However, SMV and clomipramine had no significant effect on the dopamine levels in either the CTR or STZ groups. Corticosterone levels were increased in the untreated STZ group; SMV and clomipramine significantly decreased corticosterone levels in the STZ groups, but had no effect on the CTR groups. In conclusion, SMV exerts an antidepressant-like effect on diabetic rats that are submitted to the FST. The antidepressant-like effect of SMV in the FST appears to be mediated, at least in part, by the biochemical changes to the blood levels of corticosterone and of serotonin concentration in the hippocampus.
Collapse
Affiliation(s)
- Maha Mohamed ElBatsh
- Department of Clinical Pharmacology, Faculty of Medicine, Menoufia University, Shebin El-Kom 32511, Egypt
- Department of Clinical Pharmacology, Faculty of Medicine, Menoufia University, Shebin El-Kom 32511, Egypt
| |
Collapse
|
19
|
Tao W, Wu J, Xie BX, Zhao YY, Shen N, Jiang S, Wang XX, Xu N, Jiang C, Chen S, Gao X, Xue B, Li CJ. Lipid-induced Muscle Insulin Resistance Is Mediated by GGPPS via Modulation of the RhoA/Rho Kinase Signaling Pathway. J Biol Chem 2015; 290:20086-97. [PMID: 26112408 DOI: 10.1074/jbc.m115.657742] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Indexed: 12/14/2022] Open
Abstract
Elevated circulating free fatty acid levels are important contributors to insulin resistance in the muscle and liver, but the underlying mechanisms require further elucidation. Here, we show that geranylgeranyl diphosphate synthase 1 (GGPPS), which is a branch point enzyme in the mevalonic acid pathway, promotes lipid-induced muscle insulin resistance through activation of the RhoA/Rho kinase signaling pathway. We have found that metabolic perturbation would increase GGPPS expression in the skeletal muscles of db/db mice and high fat diet-fed mice. To address the metabolic effects of GGPPS activity in skeletal muscle, we generated mice with specific GGPPS deletions in their skeletal muscle tissue. Heterozygous knock-out of GGPPS in the skeletal muscle improved systemic insulin sensitivity and glucose homeostasis in mice fed both normal chow and high fat diets. These metabolic alterations were accompanied by activated PI3K/Akt signaling and enhanced glucose uptake in the skeletal muscle. Further investigation showed that the free fatty acid-stimulated GGPPS expression in the skeletal muscle was able to enhance the geranylgeranylation of RhoA, which further induced the inhibitory phosphorylation of IRS-1 (Ser-307) by increasing Rho kinase activity. These results implicate a crucial role of the GGPPS/RhoA/Rho kinase/IRS-1 pathway in skeletal muscle, in which it mediates lipid-induced systemic insulin resistance in obese mice. Therefore, skeletal muscle GGPPS may represent a potential pharmacological target for the prevention and treatment of obesity-related type 2 diabetes.
Collapse
Affiliation(s)
- Weiwei Tao
- From the Ministry of Education Key Laboratory of Model Animals for Disease Study, Model Animal Research Center and the School of Medicine, Nanjing University, Nanjing 210061, China
| | - Jing Wu
- From the Ministry of Education Key Laboratory of Model Animals for Disease Study, Model Animal Research Center and the School of Medicine, Nanjing University, Nanjing 210061, China
| | - Bing-Xian Xie
- From the Ministry of Education Key Laboratory of Model Animals for Disease Study, Model Animal Research Center and the School of Medicine, Nanjing University, Nanjing 210061, China
| | - Yuan-Yuan Zhao
- From the Ministry of Education Key Laboratory of Model Animals for Disease Study, Model Animal Research Center and the School of Medicine, Nanjing University, Nanjing 210061, China
| | - Ning Shen
- From the Ministry of Education Key Laboratory of Model Animals for Disease Study, Model Animal Research Center and the School of Medicine, Nanjing University, Nanjing 210061, China
| | - Shan Jiang
- From the Ministry of Education Key Laboratory of Model Animals for Disease Study, Model Animal Research Center and the School of Medicine, Nanjing University, Nanjing 210061, China
| | - Xiu-Xing Wang
- From the Ministry of Education Key Laboratory of Model Animals for Disease Study, Model Animal Research Center and the School of Medicine, Nanjing University, Nanjing 210061, China
| | - Na Xu
- From the Ministry of Education Key Laboratory of Model Animals for Disease Study, Model Animal Research Center and the School of Medicine, Nanjing University, Nanjing 210061, China
| | - Chen Jiang
- From the Ministry of Education Key Laboratory of Model Animals for Disease Study, Model Animal Research Center and the School of Medicine, Nanjing University, Nanjing 210061, China
| | - Shuai Chen
- From the Ministry of Education Key Laboratory of Model Animals for Disease Study, Model Animal Research Center and the School of Medicine, Nanjing University, Nanjing 210061, China
| | - Xiang Gao
- From the Ministry of Education Key Laboratory of Model Animals for Disease Study, Model Animal Research Center and the School of Medicine, Nanjing University, Nanjing 210061, China
| | - Bin Xue
- From the Ministry of Education Key Laboratory of Model Animals for Disease Study, Model Animal Research Center and the School of Medicine, Nanjing University, Nanjing 210061, China
| | - Chao-Jun Li
- From the Ministry of Education Key Laboratory of Model Animals for Disease Study, Model Animal Research Center and the School of Medicine, Nanjing University, Nanjing 210061, China
| |
Collapse
|
20
|
Cecconello AL, Trapp M, Hoefel AL, Marques CV, Arbo BD, Osterkamp G, Kucharski LCR, Ribeiro MFM. Sex-related differences in the effects of high-fat diets on DHEA-treated rats. Endocrine 2015; 48:985-94. [PMID: 25300783 DOI: 10.1007/s12020-014-0396-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 08/13/2014] [Indexed: 01/17/2023]
Abstract
Several studies have investigated the beneficial effects of dehydroepiandrosterone (DHEA) on lipid and glucose metabolism. However, many of these studies are inconclusive about the effects of DHEA administration on metabolic disorders, and there appear to be sex-related differences in the effects of DHEA treatment. Few animal studies have addressed the effects of DHEA on diet-induced metabolic disorders. The present study sought to ascertain whether sex differences exist in the effects of a high-fat diet (HFD) on weight gain, adiposity, and biochemical and hormonal parameters in DHEA-treated rats. Rats were fed a HFD for 4 weeks and simultaneously received treatment with DHEA (10 mg/kg by subcutaneous injection) once weekly. Body weight, retroperitoneal fat depot weight, serum glucose, insulin, and leptin levels, and hepatic lipids were measured. HFD exposure increased the adiposity index in both sexes, the hepatic triglyceride content in both sexes, and the hepatic total cholesterol level in males. Moreover, the HFD induced an increase in blood glucose levels in both sexes, and hyperinsulinemia in males. In this experimental model, DHEA treatment reduced hepatic triglyceride levels only in females, regardless of HFD exposure. Exposure to a HFD, even if it does not cause obesity, may enhance risk factors for metabolic disorders, and males are more sensitive to this effect. DHEA treatment can help prevent metabolic derangements, but its effect varies with sex.
Collapse
Affiliation(s)
- Ana Lúcia Cecconello
- Laboratório de Interação Neuro-Humoral, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Sarmento Leite, 500, Porto Alegre, Rio Grande do Sul, CEP 90050-170, Brazil,
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Perry B, Zhang J, Saleh T, Wang Y. Liuwei Dihuang, a traditional Chinese herbal formula, suppresses chronic inflammation and oxidative stress in obese rats. JOURNAL OF INTEGRATIVE MEDICINE-JIM 2014; 12:447-54. [PMID: 25292344 DOI: 10.1016/s2095-4964(14)60044-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVE To investigate the anti-inflammatory, anti-oxidative stress, and adipokine-ameliorating effects of Liuwei Dihuang (LWDH), a traditional Chinese herbal formula, in obese rats. METHODS After 2 weeks of acclimation with free access to regular rodent chow and water, obese-prone-caesarean-derived (OP-CD) rats were fed a modified AIN-93G diet containing 60% energy from fat. Treatment was performed twice daily by gavage feeding with 500, 1 500, or 3 500 mg/kg body weight LWDH suspended in water (n=12 rats per group). Twelve obese-resistant-CD (OR-CD) rats were fed the atherogenic diet and gavaged with water, and served as the normal control. Blood biomarkers of inflammation, oxidative stress and adiponectin were measured post-sacrifice and used to determine the treatment effect of LWDH and assess the suitability of OR/OP-CD rats for studying these parameters. RESULTS After 9 weeks of treatment, LWDH lowered serum C-reactive protein (CRP) and tumour necrosis factor-α (TNF-α) levels. Serum interleukin-6 (IL-6) levels showed a tendency towards reduction, but were not significantly different from the OP-CD control. Liver superoxide dismutase (SOD) activity was increased in response to all three doses of LWDH, while the levels of reduced (GSH) and oxidized glutathione (GSSG) and thiobarbituric acid reactive substances (TBARS) were unchanged. Serum adiponectin levels were increased in response to oral administration of LWDH at the dose of either 500 or 1 500 mg/kg body weight. In addition, comparisons between OR-CD and OP-CD rats revealed differential, and for some biomarkers, conflicting characteristics of high-fat diet-fed OP-CD rats in reference to obese human subjects in terms of inflammatory and oxidative stress biomarkers and circulating adiponectin levels. CONCLUSION The results show, for the first time, the anti-inflammatory, anti-oxidative stress and adiponectin-ameliorating effects of LWDH in obese rats. The suitability of the OR/OP-CD rat model as a research tool to study inflammation, oxidative stress, and adipokine production requires further investigation.
Collapse
Affiliation(s)
- Benjamin Perry
- Aquatic and Crop Resource Development, Life Sciences Branch, National Research Council Canada, Charlottetown, PE, Canada, C1A 4P3
| | - Junzeng Zhang
- Aquatic and Crop Resource Development, Life Sciences Branch, National Research Council Canada, Charlottetown, PE, Canada, C1A 4P3
| | - Tarek Saleh
- Department of Biomedical Sciences, University of Prince Edward Island, Charlottetown, PE, Canada, C1A 4P3
| | - Yanwen Wang
- Aquatic and Crop Resource Development, Life Sciences Branch, National Research Council Canada, Charlottetown, PE, Canada, C1A 4P3; E-mail:
| |
Collapse
|
22
|
Barella LF, Miranda RA, Franco CCS, Alves VS, Malta A, Ribeiro TAS, Gravena C, Mathias PCF, de Oliveira JC. Vagus nerve contributes to metabolic syndrome in high-fat diet-fed young and adult rats. Exp Physiol 2014; 100:57-68. [PMID: 25398717 DOI: 10.1113/expphysiol.2014.082982] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 11/05/2014] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the central question of this study? Different nerve contributes periods of life are known for their differential sensitivity to interventions, and increased parasympathetic activity affects the development and maintenance of obesity. Thus, we evaluated the involvement of the vagus nerve by performing a vagotomy in young or adult rats that were offered an obesogenic high-fat diet. What is the main finding and its importance? Although the accumulation of adipose tissue decreased in both younger and older groups, the younger rats showed a greater response to the effects of vagotomy in general. In addition to the important role of the parasympathetic activity, we suggest that the vagus nerve contributes to the condition of obesity. Obesity has become a global problem, and this condition develops primarily because of an imbalance between energy intake and expenditure. The high complexity involved in the regulation of energy metabolism results from several factors besides endocrine factors. It has been suggested that obesity could be caused by an imbalance in the autonomous nervous system, which could lead to a condition of high parasympathetic activity in counterpart to low sympathetic tonus. High-fat (HF) diets have been used to induce obesity in experimental animals, and their use in animals leads to insulin resistance, hyperinsulinaemia and high parasympathetic activity, among other disorders. The aim of this work was to evaluate the effects of a vagotomy performed at the initiation of a HF diet at two different stages of life, weaning and adulthood. The vagotomy reduced parasympathetic activity (-32 and -51% in normal fat-fed rats and -43 and -55% in HF diet-fed rats; P < 0.05) and fat depots (-17 and -33%, only in HF diet-fed rats; P < 0.05). High-fat diet-fed rats exhibited fasting hyperinsulinaemia (fivefold higher in young rats and threefold higher in older rats; P < 0.05); however, vagotomy corrected it in younger rats only, and a similar effect was also observed during the glucose tolerance test. The insulin resistance exhibited by the HF diet-fed groups was not altered in the vagotomized rats. We suggest that the vagus nerve, in addition to the important role of parasympathetic activity, contributes to the condition of obesity, and that non-vagal pathways may be involved along with the imbalanced autonomic nervous system.
Collapse
Affiliation(s)
- Luiz F Barella
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringá, Maringá, Paraná, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Lehnen TE, Lehnen AM, Tavares AMV, Belló-Klein A, Markoski MM, Machado UF, Schaan B. Atorvastatin administered before myocardial infarction in rats improves contractility irrespective of metabolic changes. Clin Exp Pharmacol Physiol 2014; 41:986-94. [DOI: 10.1111/1440-1681.12313] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 08/27/2014] [Accepted: 09/03/2014] [Indexed: 11/28/2022]
Affiliation(s)
- Tatiana Ederich Lehnen
- Postgraduate Program in Endocrinology; Federal University of Rio Grande do Sul; Porto Alegre Rio Grande do Sul Brazil
- Endocrine Division; Hospital de Clínicas de Porto Alegre; Porto Alegre Rio Grande do Sul Brazil
- Institute of Cardiology/University Foundation of Cardiology of Rio Grande do Sul; Porto Alegre Rio Grande do Sul Brazil
| | - Alexandre Machado Lehnen
- Postgraduate Program in Endocrinology; Federal University of Rio Grande do Sul; Porto Alegre Rio Grande do Sul Brazil
- Endocrine Division; Hospital de Clínicas de Porto Alegre; Porto Alegre Rio Grande do Sul Brazil
- Institute of Cardiology/University Foundation of Cardiology of Rio Grande do Sul; Porto Alegre Rio Grande do Sul Brazil
| | - Angela Maria Vicente Tavares
- Laboratory of Cardiovascular Physiology; Institute of Basic Health Sciences; Federal University of Rio Grande do Sul; Porto Alegre Rio Grande do Sul Brazil
| | - Adriane Belló-Klein
- Laboratory of Cardiovascular Physiology; Institute of Basic Health Sciences; Federal University of Rio Grande do Sul; Porto Alegre Rio Grande do Sul Brazil
| | - Melissa Medeiros Markoski
- Institute of Cardiology/University Foundation of Cardiology of Rio Grande do Sul; Porto Alegre Rio Grande do Sul Brazil
| | - Ubiratan Fabres Machado
- Department of Physiology and Biophysics; Institute of Biomedical Sciences; University of São Paulo; São Paulo Brazil
| | - Beatriz Schaan
- Postgraduate Program in Endocrinology; Federal University of Rio Grande do Sul; Porto Alegre Rio Grande do Sul Brazil
- Endocrine Division; Hospital de Clínicas de Porto Alegre; Porto Alegre Rio Grande do Sul Brazil
- Institute of Cardiology/University Foundation of Cardiology of Rio Grande do Sul; Porto Alegre Rio Grande do Sul Brazil
| |
Collapse
|
24
|
Melo AM, Benatti RO, Ignacio-Souza LM, Okino C, Torsoni AS, Milanski M, Velloso LA, Torsoni MA. Hypothalamic endoplasmic reticulum stress and insulin resistance in offspring of mice dams fed high-fat diet during pregnancy and lactation. Metabolism 2014; 63:682-92. [PMID: 24636055 DOI: 10.1016/j.metabol.2014.02.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 02/04/2014] [Accepted: 02/04/2014] [Indexed: 02/06/2023]
Abstract
OBJECTIVE The goal of this study was to determine the presence early of markers of endoplasmic reticulum stress (ERS) and insulin resistance in the offspring from dams fed HFD (HFD-O) or standard chow diet (SC-O) during pregnancy and lactation. MATERIALS/METHODS To address this question, we evaluated the hypothalamic and hepatic tissues in recently weaned mice (d28) and the hypothalamus of newborn mice (d0) from dams fed HFD or SC during pregnancy and lactation. RESULTS Body weight, adipose tissue mass, and food intake were more accentuated in HFD-O mice than in SC-O mice. In addition, intolerance to glucose and insulin was higher in HFD-O mice than in SC-O mice. Compared with SC-O mice, levels of hypothalamic IL1-β mRNA, NFκB protein, and p-JNK were increased in HFD-O mice. Furthermore, compared with SC-O mice, hypothalamic AKT phosphorylation after insulin challenge was reduced, while markers of ERS (p-PERK, p-eIF2α, XBP1s, GRP78, and GRP94) and p-AMPK were increased in the hypothalamic tissue of HFD-O at d28 but not at d0. These damages to hypothalamic signaling were accompanied by increased triglyceride deposits, activation of NFκB, p-JNK, p-PERK and p-eIF2α. CONCLUSION These point out lactation period as maternal trigger for metabolic changes in the offspring. These changes may occur early and quietly contribute to obesity and associated pathologies in adulthood. Although in rodents the establishment of ARC neuronal projections occurs during the lactation period, in humans it occurs during the third trimester. Gestational diabetes and obesity in this period may contribute to impairment of energy homeostasis.
Collapse
Affiliation(s)
- Arine M Melo
- Laboratory of Metabolic Disorders, Faculty of Applied Sciences, University of Campinas -UNICAMP, Limeira, São Paulo, Brasil
| | - Rafaela O Benatti
- Laboratory of Metabolic Disorders, Faculty of Applied Sciences, University of Campinas -UNICAMP, Limeira, São Paulo, Brasil
| | | | - Caroline Okino
- Laboratory of Metabolic Disorders, Faculty of Applied Sciences, University of Campinas -UNICAMP, Limeira, São Paulo, Brasil
| | - Adriana S Torsoni
- Laboratory of Metabolic Disorders, Faculty of Applied Sciences, University of Campinas -UNICAMP, Limeira, São Paulo, Brasil; Center for Studies of lipid in Nutrigenomic, Faculty of Applied Sciences, University of Campinas -UNICAMP, Limeira, São Paulo, Brasil
| | - Marciane Milanski
- Laboratory of Metabolic Disorders, Faculty of Applied Sciences, University of Campinas -UNICAMP, Limeira, São Paulo, Brasil; Center for Studies of lipid in Nutrigenomic, Faculty of Applied Sciences, University of Campinas -UNICAMP, Limeira, São Paulo, Brasil
| | - Licio A Velloso
- Laboratoty of Cell Signaling, Department of Internal Medicine, Faculty of Medical Sciences, University of Campinas-UNICAMP, Campinas, São Paulo, Brasil
| | - Marcio Alberto Torsoni
- Laboratory of Metabolic Disorders, Faculty of Applied Sciences, University of Campinas -UNICAMP, Limeira, São Paulo, Brasil; Center for Studies of lipid in Nutrigenomic, Faculty of Applied Sciences, University of Campinas -UNICAMP, Limeira, São Paulo, Brasil.
| |
Collapse
|
25
|
Cappelli AP, Zoppi CC, Barbosa-Sampaio HC, Costa JM, Protzek AO, Morato PN, Boschero AC, Carneiro EM. Taurine-induced insulin signalling improvement of obese malnourished mice is associated with redox balance and protein phosphatases activity modulation. Liver Int 2014; 34:771-83. [PMID: 23998525 DOI: 10.1111/liv.12291] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 07/24/2013] [Indexed: 02/13/2023]
Abstract
BACKGROUND & AIMS Obese protein malnourished mice display liver insulin resistance and taurine (TAU) seems to attenuate this effect. The association between early-life malnutrition and hepatic redox balance in diet-induced insulin resistance is unknown. We investigated TAU supplementation effects upon liver redox state and insulin signalling in obese protein malnourished mice. METHODS Weaned male C57BL-6 mice were fed a control (14% protein - C) or a protein-restricted diet (6% protein - R) for 6 weeks. Afterwards, mice received a high-fat diet (34% fat - HFD) for 8 weeks (CH - RH). Half of the HFD-mice were supplemented with TAU (5%) throughout the treatment (CHT - RHT). Body and tissues' weight, respiratory quotient (RQ), glucose tolerance and insulin sensitivity, hepatic oxidant and antioxidant markers and insulin cascade proteins were assessed. RESULTS Protein restriction leads to typical features whereas HFD was able to induce a catch-up growth in RH. HFD-groups showed higher energy intake and adiposity, lower energy expenditure and altered RQ. Glucose tolerance and insulin sensitivity were impaired in HFD-groups and TAU attenuated these effects. H2 O2 content was increased in CHT and RHT despite no differences in antioxidant enzymes and GSH concentration. AKT and PTEN phosphorylation were significantly increased in CHT but not in RHT. CONCLUSION Our data provide evidence for an association between TAU-induced improved glycaemic control because of PTEN inactivation and higher AKT phosphorylation. These effects seem to be related with altered hepatic redox balance in obese mice, and this effect is impaired by protein malnutrition.
Collapse
Affiliation(s)
- Ana P Cappelli
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
26
|
A reappraisal of the risks and benefits of treating to target with cholesterol lowering drugs. Drugs 2014; 73:1025-54. [PMID: 23754124 DOI: 10.1007/s40265-013-0072-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Atherosclerotic cardiovascular disease (CVD) is the number one cause of death globally, and lipid modification, particularly lowering of low density lipoprotein cholesterol (LDLc), is one of the cornerstones of prevention and treatment. However, even after lowering of LDLc to conventional goals, a sizeable number of patients continue to suffer cardiovascular events. More aggressive lowering of LDLc and optimization of other lipid parameters like triglycerides (TG) and high density lipoprotein cholesterol (HDLc) have been proposed as two potential strategies to address this residual risk. These strategies entail use of maximal doses of highly potent HMG CoA reductase inhibitors (statins) and combination therapy with other lipid modifying agents. Though statins in general are fairly well tolerated, adverse events like myopathy are dose related. There are further risks with combination therapy. In this article, we review the adverse effects of lipid modifying agents used alone and in combination and weigh these effects against the evidence demonstrating their efficacy in reducing cardiovascular events, cardiovascular mortality, and all cause mortality. For patients with established CVD, statins are the only group of drugs that have shown consistent reductions in hard outcomes. Though more aggressive lipid lowering with high dose potent statins can reduce rates of non fatal events and need for interventions, the incremental mortality benefits remain unclear, and their use is associated with a higher rate of drug related adverse effects. Myopathy and renal events have been a significant concern with the use of high potency statin drugs, in particular simvastatin and rosuvastatin. For patients who have not reached target LDL levels or have residual lipid abnormalities on maximal doses of statins, the addition of other agents has not been shown to improve clinical outcomes and carries an increased risk of adverse events. The clinical benefits of drugs to raise HDLc remain unproven. In patients without known cardiovascular disease, there is conflicting evidence as to the benefits of aggressive pursuit of numerical lipid targets, particularly with respect to all cause mortality. Certainly, in statin intolerant patients, alternative agents with a low side effect profile are desirable. Bile acid sequestrants are an effective and safe choice for decreasing LDLc, and omega-3 fatty acids are safe agents to decrease TG. There remains an obvious need to design and carry out large scale studies to help determine which agents, when combined with statins, have the greatest benefit on cardiovascular disease with the least added risk. These studies should be designed to assess the impact on clinical outcomes rather than surrogate endpoints, and require a comprehensive assessment and reporting of safety outcomes.
Collapse
|
27
|
Muscogiuri G, Sarno G, Gastaldelli A, Savastano S, Ascione A, Colao A, Orio F. The good and bad effects of statins on insulin sensitivity and secretion. Endocr Res 2014; 39:137-43. [PMID: 25208056 DOI: 10.3109/07435800.2014.952018] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
AIMS Statins are the main lipid-lowering treatment in both primary and secondary prevention populations. Whether statins deteriorates glycemic control, predisposing to the onset of diabetes mellitus has been a matter of recent concern. Statins may accelerate progression to diabetes via molecular mechanisms that impact insulin sensitivity and secretion. In this review, we debate the relative effect of statins in driving insulin resistance and the impairment of insulin secretion. METHODS Narrative overview of the literature synthesizing the findings of literature was retrieved from searches of computerized databases, hand searches, and authoritative texts employing the key words "Statins", "Randomized Clinical Trial", "Insulin sensitivity", "Insulin resistance", "Insulin Secretion", "Diabetes Mellitus" alone and/or in combination. RESULTS The weight of clinical evidence suggests a worsening effect of statins on insulin resistance and secretion, anyway basic science studies did not find a clear molecular explanation, providing conflicting evidence regarding both the beneficial and the adverse effects of statin therapy on insulin sensitivity. CONCLUSIONS Although most of the clinical studies suggest a worsening of insulin resistance and secretion, the cardiovascular benefits of statin therapy outweigh the risk of developing insulin resistance, thus the data suggest the need to treat dyslipidemia and to make patients aware of the possible risk of developing type 2 diabetes or, if they already are diabetic, of worsening their metabolic control.
Collapse
Affiliation(s)
- Giovanna Muscogiuri
- Department of Clinical Medicine and Surgery, University "Federico II" , Naples , Italy
| | | | | | | | | | | | | |
Collapse
|
28
|
Effects of Chinese Fructus Mume formula and its separated prescription extract on insulin resistance in type 2 diabetic rats. ACTA ACUST UNITED AC 2013; 33:877-885. [PMID: 24337852 DOI: 10.1007/s11596-013-1215-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 10/26/2013] [Indexed: 12/21/2022]
Abstract
The effect of Fructus Mume formula and its separated prescription extract on insulin resistance in type 2 diabetic rats was investigated. The rat model of type 2 diabetes was established by feeding on a high-fat diet for 8 weeks and by subsequently intravenous injection of small doses of streptozotocin. Rats in treatment groups, including the Fructus Mume formula treatment group (FM), the cold property herbs of Fructus Mume formula treatment group (CFM), the warm property herbs of Fructus Mume formula treatment group (WFM), were administrated with Fructus Mume formula and its separated prescription extract by gavage, while the rats in diabetic model group (DM) and metformin group (MET) were given by gavage with normal saline and metformin correspondingly. The body weight before and after treatment was measured, and the oral glucose tolerance test (OGTT) and the insulin release test (IRT) were performed. The homeostasis model assessment-insulin resistance index (HOMA-IR) was calculated. The protein and mRNA expression levels of Insr, β-arrestin-2, Irs-1 and Glut-4 in the liver, skeletal muscle and fat tissues were detected by using Western blotting and RT-PCR respectively. The results demonstrated that, as compared with DM group, OGTT, IRT (0 h, 1 h) levels and HOMR-IR in treatment groups were all reduced, meanwhile their protein and mRNA expression levels of Insr, Irs-1 and Glut-4 in the liver, skeletal muscle and fat tissues were obviously increased, and their protein and mRNA expression levels of β-arrestin-2 in the liver and skeletal muscle tissues were also markedly increased. It was suggested that the Fructus Mume formula and its separated prescription extracts could effectively improve insulin resistance in type 2 diabetic rats, which might be related to the up-regulated expression of Insr, Irs-1 and Glut-4 in the liver, skeletal muscle and fat tissues, and β-arrestin-2 in the liver and skeletal muscle tissues.
Collapse
|
29
|
de las Heras N, Valero-Muñoz M, Ballesteros S, Gómez-Hernández A, Martín-Fernández B, Blanco-Rivero J, Cachofeiro V, Benito M, Balfagón G, Lahera V. Factors involved in rosuvastatin induction of insulin sensitization in rats fed a high fat diet. Nutr Metab Cardiovasc Dis 2013; 23:1107-1114. [PMID: 23434394 DOI: 10.1016/j.numecd.2012.11.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Revised: 09/03/2012] [Accepted: 11/25/2012] [Indexed: 02/02/2023]
Abstract
BACKGROUND AND AIM To investigate whether rosuvastatin can improve insulin sensitivity in overweight rats having a high fat diet (HFD). The potential mechanisms involved in this action were evaluated, including SIRT-1, other factors involved in glucose metabolism and stress signaling pathways. METHODS AND RESULTS Male Wistar rats (n = 30) were divided into three groups: (i) rats fed a standard diet (3.5% fat); (ii) rats fed a HFD (33.5% fat); and (iii) rats fed a HFD and treated with rosuvastatin (15 mg/kg/day). Evolution: 7 weeks. HFD rats showed increased body, epididymal and lumbar adipose tissue weights. Plasma levels of cholesterol, triglycerides, VLDL, glucose and insulin and leptin/adiponectin ratio were higher in HFD rats, and rosuvastatin treatment reduced them. SIRT-1, p53, PGC-1α, PPAR-γ and GLUT-4 protein levels in white adipose tissue (WAT) were lower, and JNK was higher in HFD rats compared to controls. Rosuvastatin treatment normalized expression of these mediators. Endothelium-dependent relaxation was reduced in mesenteric rings from HFD rats compared to controls and rosuvastatin enhanced it in HFD rats. CONCLUSION Rosuvastatin treatment reduced insulin resistance without affecting body weight or WAT loss in HFD rats. Reduction of leptin and JNK, and enhancement of SIRT-1, p53, PGC-1α, PPAR-γ and GLUT-4 expression in WAT could contribute to insulin sensitization. Normalization of SIRT-1 expression in WAT could be considered a key novel mechanism that aids in explaining the beneficial effects of rosuvastatin on the amelioration of glucose metabolism and the arrangement of multiple signaling pathways participating in insulin resistance in overweight HFD rats.
Collapse
Affiliation(s)
- N de las Heras
- Department of Physiology, Facultad de Medicina, Universidad Complutense, Avda. Complutense, s/n, Madrid 28040, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Mita T, Nakayama S, Abe H, Gosho M, Iida H, Hirose T, Kawamori R, Watada H. Comparison of effects of pitavastatin and atorvastatin on glucose metabolism in type 2 diabetic patients with hypercholesterolemia. J Diabetes Investig 2013; 4:297-303. [PMID: 24843669 PMCID: PMC4015667 DOI: 10.1111/jdi.12032] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 09/24/2012] [Accepted: 10/22/2012] [Indexed: 02/02/2023] Open
Abstract
AIMS/INTRODUCTION The distinct effects of different statins on glycemic control have not been fully evaluated. In this open-label, prospective, cross-over clinical trial, we compared the effects of pitavastatin and atorvastatin on glycemic control in type 2 diabetic patients with hypercholesterolemia. MATERIALS AND METHODS A total of 28 Japanese type 2 diabetics with hypercholesterolemia treated with rosuvastatin (2.5 mg/day) for at least 8 weeks were recruited to this quasi-randomized cross-over study. At study entry, the patients assigned to sequence 1 received pitavastatin (2 mg/day) for 12 weeks in period 1 and atorvastatin (10 mg/day) for another 12 weeks in period 2, whereas patients assigned to sequence 2 received atorvastatin (10 mg/day) for 12 weeks in period 1 and pitavastatin (2 mg/day) for another 12 weeks in period 2. Blood samples were collected at three visits (baseline, after 12 and 24 weeks). RESULTS Lipid control was similar in both statins. The difference in glycated hemoglobin between pitavastatin and atorvastatin treatments was -0.18 (95% confidence interval -0.34 to -0.02; P = 0.03). Compared with atorvastatin, pitavastatin treatment significantly lowered the levels of glycoalbumin, fasting glucose and homeostasis model assessment of insulin resistance. CONCLUSIONS Our results showed that treatment with pitavastatin had a more favorable outcome on glycemic control in patients with type 2 diabetes compared with atorvastatin. This trial was registered with UMIN (no. 000003554).
Collapse
Affiliation(s)
- Tomoya Mita
- Department of Metabolism and EndocrinologyTokyo University of ScienceTokyoJapan
- Center for Molecular DiabetologyTokyo University of ScienceTokyoJapan
| | - Shiho Nakayama
- Department of Metabolism and EndocrinologyTokyo University of ScienceTokyoJapan
| | - Hiroko Abe
- Department of Metabolism and EndocrinologyTokyo University of ScienceTokyoJapan
| | - Masahiko Gosho
- Graduate School of EngineeringTokyo University of ScienceTokyoJapan
| | - Hitoshi Iida
- Department of Metabolism and EndocrinologyTokyo University of ScienceTokyoJapan
| | - Takahisa Hirose
- Department of Metabolism and EndocrinologyTokyo University of ScienceTokyoJapan
- Center for Therapeutic Innovations in DiabetesTokyo University of ScienceTokyoJapan
| | | | - Hirotaka Watada
- Department of Metabolism and EndocrinologyTokyo University of ScienceTokyoJapan
- Center for Molecular DiabetologyTokyo University of ScienceTokyoJapan
- Center for Therapeutic Innovations in DiabetesTokyo University of ScienceTokyoJapan
- Sportology CenterTokyo University of ScienceTokyoJapan
- Center for Beta Cell Biology and RegenerationJuntendo University Graduate School of MedicineTokyo University of ScienceTokyoJapan
| |
Collapse
|
31
|
Wang L, Duan G, Lu Y, Pang S, Huang X, Jiang Q, Dang N. The effect of simvastatin on glucose homeostasis in streptozotocin induced type 2 diabetic rats. J Diabetes Res 2013; 2013:274986. [PMID: 23671864 PMCID: PMC3647597 DOI: 10.1155/2013/274986] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 01/01/2013] [Accepted: 01/21/2013] [Indexed: 01/21/2023] Open
Abstract
Objective. To investigate the effect of simvastatin on glucose homeostasis in streptozotocin induced type 2 diabetic rats. Methods. Forty male Wistar rats were randomly divided into four groups. Normal control rats were fed with standard diet, others were fed with high-fat diet. Diabetic rats were induced by a single intraperitoneal injection of STZ. The simvastatin intervention rats were fed with simvastatin during the experiment process, and the simvastatin treatment rats were fed with simvastatin after diabetes rats were induced. We measured body weight, fasting plasma glucose, cholesterol, high-density lipoprotein cholesterol, and triglyceride after an overnight fast. Results. The FPG was higher in diabetic rats when compared to normal control ones; the simvastatin intervention rats had a higher FPG compared to the diabetic rats and were more easily be induced to diabetes at the end of 4 weeks, FPG level of simvastatin treatment rats was increased compared with diabetic model rats after 12 weeks. Conclusion. These data indicate that simvastatin intervention rats may cause hyperglycemia by impairing the function of islet β cells and have an adverse effect on glucose homeostasis, especially on FPG level.
Collapse
Affiliation(s)
- Lulu Wang
- School of Medicine, Shandong University, Jinan, Shandong 250013, China
- Department of Medicine, Jinan Central Hospital Shandong University, Jinan, Shandong 250013, China
| | - Guanglan Duan
- Department of Medicine, Jinan Central Hospital Shandong University, Jinan, Shandong 250013, China
| | - Yong Lu
- Department of Medicine, Jinan Central Hospital Shandong University, Jinan, Shandong 250013, China
| | - Shuguang Pang
- School of Medicine, Shandong University, Jinan, Shandong 250013, China
- Department of Medicine, Jinan Central Hospital Shandong University, Jinan, Shandong 250013, China
- *Shuguang Pang:
| | - Xianping Huang
- Department of Medicine, Jinan Central Hospital Shandong University, Jinan, Shandong 250013, China
| | - Qiang Jiang
- Department of Medicine, Jinan Central Hospital Shandong University, Jinan, Shandong 250013, China
| | - Ningning Dang
- Department of Medicine, Jinan Central Hospital Shandong University, Jinan, Shandong 250013, China
| |
Collapse
|
32
|
Chen P, Xia K, Zhao Z, Deng X, Yang T. Atorvastatin modulates the DDAH1/ADMA system in high-fat diet-induced insulin-resistant rats with endothelial dysfunction. Vasc Med 2012. [PMID: 23184902 DOI: 10.1177/1358863x12467492] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Dimethylarginine dimethyl-aminohydrolase 1 (DDAH1) is a metabolic enzyme for asymmetric dimethylarginine (ADMA), both of which are closely related to endothelial function. Endothelial dysfunction, a main risk factor of cardiovascular diseases, can be attributed to insulin resistance. We aimed to determine the effects of atorvastatin, an endothelium-protective drug, on DDAH1/ADMA in insulin-resistant rats. Insulin resistance in male Sprague-Dawley rats was induced with a high-fat diet for 8 weeks. Some rats received atorvastatin (30 mg/kg/day) for an additional 8 weeks. Insulin-resistant rats exhibited not only decreases in the DDAH activity and aortic expression of DDAH1 and sterol regulatory element-binding protein 1 (SREBP1) but also increases in plasma ADMA levels, all of which were inhibited by atorvastatin. Insulin sensitivity and DDAH activity showed a significant positive correlation. In conclusion, our results suggest that atorvastatin may modulate DDAH1/ADMA to improve endothelial function in insulin-resistant rats; SREBP1 may also play a role in this.
Collapse
Affiliation(s)
- Po Chen
- Cardiology Department, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Ke Xia
- Cardiology Department, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
- Institute of Molecular Medicine and Surgery (MMK), Rolf Luft Centrum, Karolinska Hospital, Stockholm, Sweden
| | - Zhenyu Zhao
- Institute of Clinical Pharmacology, Central South University, Changsha, Hunan, PR China
| | - Xu Deng
- Cardiology Department, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Tianlun Yang
- Cardiology Department, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
- Institute of Hypertension, Central South University, Changsha, Hunan, PR China
| |
Collapse
|
33
|
Beneficial effects of rosuvastatin on insulin resistance, adiposity, inflammatory markers and non-alcoholic fatty liver disease in mice fed on a high-fat diet. Clin Sci (Lond) 2012; 123:259-70. [PMID: 22420611 DOI: 10.1042/cs20110373] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The aim of the present study was to evaluate the effects of ST (rosuvastatin) and GZ (rosiglitazone) on IR (insulin resistance) and on liver as well as adipose tissue in mice fed on an HF (high-fat) diet. Our data show that treatment with ST resulted in a marked improvement in insulin sensitivity characterized by enhanced glucose clearance during the insulin tolerance test and a 70% decrease in the HOMA-IR (homoeostasis model assessment of insulin resistance) index level (P=0.0008). The ST-treated mice exhibited lower gains in BM (body mass; -8%; P<0.01) and visceral fat pad thickness (-60%; P<0.01) compared with the untreated HF group. In comparison with HF-diet-fed mice, HF+ST-treated mice showed a significant reduction in hepatomegaly and liver steatosis (-6%, P<0.05; and -21%, P<0.01 respectively). In HF+ST-treated mice, the hepatic TAG (triacylglycerol) levels were reduced by 58% compared with the HF group (P<0.01). In addition, the expression of SREBP-1c (sterol-regulatory-element-binding protein-1c) was decreased by 50% in the livers of HF+ST-treated mice (P<0.01) relative to the HF-diet-fed mice. The levels of resistin were lower in the HF+ST-treated group compared with the HF group (44% less, P< 0.01). In conclusion, we demonstrated that ST treatment improved insulin sensitivity and decreased liver steatosis in mice fed on an HF diet. Furthermore, ST reduced BM gains, improved the circulating levels of plasma cholesterol and TAG, and reduced hepatic TAG, which was concomitant with lower resistin levels.
Collapse
|
34
|
Arunkumar E, Bhuvaneswari S, Anuradha CV. An intervention study in obese mice with astaxanthin, a marine carotenoid--effects on insulin signaling and pro-inflammatory cytokines. Food Funct 2011; 3:120-6. [PMID: 22089895 DOI: 10.1039/c1fo10161g] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Astaxanthin (ASX), a xanthophyll carotenoid from the marine algae Hematococcus pluvialis, has anti-obesity and insulin-sensitivity effects. The specific molecular mechanisms of its actions are not yet established. The present study was designed to investigate the mechanisms underlying the insulin sensitivity effects of ASX in a non-genetic insulin resistant animal model. A group of male Swiss albino mice was divided into two and fed either a starch-based control diet or a high fat-high fructose diet (HFFD). Fifteen days later, mice in each dietary group were divided into two and were treated with either ASX (6 mg kg(-1) per day) in olive oil or olive oil alone. At the end of 60 days, glucose, insulin and pro-inflammatory cytokines in plasma, lipids and oxidative stress markers in skeletal muscle and adipose tissue were assessed. Further, post-receptor insulin signaling events in skeletal muscle were analyzed. Increased body weight, hyperglycemia, hyperinsulinemia and increased plasma levels of tumor necrosis factor-α and interleukin-6 observed in HFFD-fed mice were significantly improved by ASX addition. ASX treatment also reduced lipid levels and oxidative stress in skeletal muscle and adipose tissue. ASX improved insulin signaling by enhancing the autophosphorylation of insulin receptor-β (IR-β), IRS-1 associated PI3-kinase step, phospho-Akt/Akt ratio and GLUT-4 translocation in skeletal muscle. This study demonstrates for the first time that chronic ASX administration improves insulin sensitivity by activating the post-receptor insulin signaling and by reducing oxidative stress, lipid accumulation and proinflammatory cytokines in obese mice.
Collapse
Affiliation(s)
- Elumalai Arunkumar
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalai Nagar, Tamil Nadu, India
| | | | | |
Collapse
|
35
|
Red yeast barley reduces plasma glucose levels and activates AMPK phosphorylation in db/db mice. Food Sci Biotechnol 2011. [DOI: 10.1007/s10068-011-0174-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
36
|
Figler RA, Wang G, Srinivasan S, Jung DY, Zhang Z, Pankow JS, Ravid K, Fredholm B, Hedrick CC, Rich SS, Kim JK, LaNoue KF, Linden J. Links between insulin resistance, adenosine A2B receptors, and inflammatory markers in mice and humans. Diabetes 2011; 60:669-79. [PMID: 21270276 PMCID: PMC3028369 DOI: 10.2337/db10-1070] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To determine the mechanisms by which blockade of adenosine A(2B) receptors (A(2B)Rs) reduces insulin resistance. RESEARCH DESIGN AND METHODS We investigated the effects of deleting or blocking the A(2B)R on insulin sensitivity using glucose tolerance tests (GTTs) and hyperinsulinemic-euglycemic clamps in mouse models of type 2 diabetes. The effects of diabetes on A(2B)R transcription and signaling were measured in human and mouse macrophages and mouse endothelial cells. In addition, tag single nucleotide polymorphisms (SNPs) in ~42 kb encompassing the A(2B)R gene, ADORA2B, were evaluated for associations with markers of diabetes and inflammation. RESULTS Treatment of mice with the nonselective adenosine receptor agonist 5'-N-ethylcarboxamidoadensoine (NECA) increased fasting blood glucose and slowed glucose disposal during GTTs. These responses were inhibited by A(2B)R deletion or blockade and minimally affected by deletion of A(1)Rs or A(2A)Rs. During hyperinsulinemic-euglycemic clamp of diabetic KKA(Y) mice, A(2B)R antagonism increased glucose infusion rate, reduced hepatic glucose production, and increased glucose uptake into skeletal muscle and brown adipose tissue. Diabetes caused a four- to sixfold increase in A(2B)R mRNA in endothelial cells and macrophages and resulted in enhanced interleukin (IL)-6 production in response to NECA due to activation of protein kinases A and C. Five consecutive tag SNPs in ADORA2B were highly correlated with IL-6 and C-reactive protein (CRP). Diabetes had a highly significant independent effect on variation in inflammatory markers. The strength of associations between several ADORA2B SNPs and inflammatory markers was increased when accounting for diabetes status. CONCLUSIONS Diabetes affects the production of adenosine and the expression of A(2B)Rs that stimulate IL-6 and CRP production, insulin resistance, and the association between ADORA2B SNPs and inflammatory markers. We hypothesize that increased A(2B)R signaling in diabetes increases insulin resistance in part by elevating proinflammatory mediators. Selective A(2B)R blockers may be useful to treat insulin resistance.
Collapse
Affiliation(s)
- Robert A. Figler
- Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia
| | - Guoquan Wang
- Adenosine Therapeutics Group of PGxHealth, Clinical Data Incorporated, Charlottesville, Virginia
| | - Susseela Srinivasan
- Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia
| | - Dae Young Jung
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Zhiyou Zhang
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - James S. Pankow
- Department of Epidemiology and Community Health, University of Minnesota, Minneapolis, Minnesota
| | - Katya Ravid
- Department of Biochemistry, Boston University, Boston, Massachusetts
| | - Bertil Fredholm
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Catherine C. Hedrick
- Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia
| | - Stephen S. Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia
| | - Jason K. Kim
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Kathryn F. LaNoue
- Department of Biochemistry, Boston University, Boston, Massachusetts
| | - Joel Linden
- Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia
- Corresponding author: Joel Linden,
| |
Collapse
|
37
|
Gao L, Zhang X, Wang FR, Cao MF, Zhang XJ, Sun NN, Zhang J, Gao L, Zhao JJ. Chronic ethanol consumption up-regulates protein-tyrosine phosphatase-1B (PTP1B) expression in rat skeletal muscle. Acta Pharmacol Sin 2010; 31:1576-82. [PMID: 21102485 DOI: 10.1038/aps.2010.161] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
AIM to investigate the potential effects of chronic ethanol intake on protein-tyrosine phosphatase-1B (PTP1B) and the insulin receptor signaling pathway in rat skeletal muscle. METHODS rats received ethanol treatment at a daily dose of 0 (control), 0.5 (group L), 2.5 (group M) or 5 gxkg(-1) (group H) via gastric gavage for 22 weeks. In vivo insulin sensitivity was measured using a hyperinsulinemic-euglycemic clamp. Expression of PTP1B in skeletal muscles was examined at both the mRNA (real-time PCR) and protein (Western blot) levels. PTP1B activity was assayed with a p-nitrophenol phosphate (PNPP) hydrolysis method. Changes of insulin signaling in skeletal muscle were analyzed with Western blotting. RESULTS the activity and expression of PTP1B were dose-dependently elevated 1.6 and 2.0 fold in the skeletal muscle by ethanol, resepctively, at the doses of 2.5 and 5 gxkg(-1)xd(-1). Total IRβ and IRS-1, as well as their phosphorylated forms, were decreased by ethanol at the two higher doses. Moreover, chronic ethanol consumption resulted in a significant inhibition of the association between IRS-1 and the p85 subunit of phosphatidylinositol 3-kinase, inhibition of Akt phosphorylation and reduced levels of mitogen-activated protein kinase phosphorylation. CONCLUSION chronic ethanol intake at 2.5 and 5 xkg(-1)xd(-1) sufficient doses can down-regulate the expression of IRβ, P-IRβ, and IRS-1, as well as the phosphorylated forms of IRS-1 and Akt, in rat skeletal muscle, possibly through increased PTP1B activity.
Collapse
|
38
|
Morimoto Y, Bando YK, Shigeta T, Monji A, Murohara T. Atorvastatin prevents ischemic limb loss in type 2 diabetes: role of p53. J Atheroscler Thromb 2010; 18:200-8. [PMID: 21123956 DOI: 10.5551/jat.6437] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
AIM Diabetic peripheral artery disease (PAD) is prone to be aggressive and recent reports have demonstrated that p53 accumulation may be responsible for impaired wound healing in diabetes. Statins has been demonstrated to facilitate p53 degradation by activating its specific ubiquitin ligase, MDM2. The aim of this study was to determine whether atorvastatin (ATR) improves the outcome of diabetic PAD through MDM2-mediated reduction of p53. METHODS Male KK/Ay mice (9 weeks old) were treated with ATR (2 mg/kg/day p.o.) or vehicle for 2 weeks and subjected to ischemic hindlimb operation to generate a diabetic PAD model. Incidences of amputation and changes of p53/MDM2 signaling in each ischemic limb were assessed 2 weeks after the operation (at 13 weeks of age). Effects of ATR on the insulin resistance of age-matched (13-week-old) and unoperated KK/Ay mice were assessed by the glucose tolerance test, circulating adiponectin concentration, and changes in insulin signaling (IRS-1/Akt phosphorylation). RESULTS In intact KK/Ay, ATR treatment mitigated insulin resistance without affecting cholesterol levels. All diabetic PAD models exhibited autoamputation (100%); however, ATR treatment partially restored the limb loss (41.7%). The p53 expression level in the ischemic limb of ATR-treated KK/Ay was significantly decreased and MDM2 phosphorylation level was markedly increased in tandem with the activation of Akt. Hypoxia mimetic iron chelator deferroxamine promoted p53 accumulation in H9c2 myoblast cells by suppressing the Akt/MDM2 pathway, which was restored by ATR. CONCLUSIONS ATR was found to restore ischemic limb loss in diabetes by augmenting p53 degradation through direct activation of the Akt/MDM2 pathway in skeletal muscle.
Collapse
Affiliation(s)
- Yasutsugu Morimoto
- Department of Cardiology, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Japan
| | | | | | | | | |
Collapse
|
39
|
Furuya DT, Poletto AC, Favaro RR, Martins JO, Zorn TMT, Machado UF. Anti-inflammatory effect of atorvastatin ameliorates insulin resistance in monosodium glutamate-treated obese mice. Metabolism 2010; 59:395-9. [PMID: 19800637 DOI: 10.1016/j.metabol.2009.08.011] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2009] [Revised: 08/07/2009] [Accepted: 08/09/2009] [Indexed: 11/22/2022]
Abstract
Considering that inflammation contributes to obesity-induced insulin resistance and that statins have been reported to have other effects beyond cholesterol lowering, the present study aimed to investigate whether atorvastatin treatment has anti-inflammatory action in white adipose tissue of obese mice, consequently improving insulin sensitivity. Insulin sensitivity in vivo (by insulin tolerance test); metabolic-hormonal profile; plasma tumor necrosis factor (TNF)-alpha, interleukin (IL)-6, and adiponectin; adipose tissue immunohistochemistry; glucose transporter (GLUT) 4; adiponectin; TNF-alpha; IL-1 beta; and IL-6 gene expression; and I kappaB kinase (IKK)-alpha/beta activity were assessed in 23-week-old monosodium glutamate-induced obese mice untreated or treated with atorvastatin for 4 weeks. Insulin-resistant obese mice had increased plasma triglyceride, insulin, TNF-alpha, and IL-6 plasma levels. Adipose tissue of obese animals showed increased macrophage infiltration, IKK-alpha (42%, P < .05) and IKK-beta (73%, P < .05) phosphorylation, and TNF-alpha and IL-6 messenger RNA (mRNA) ( approximately 15%, P < .05) levels, and decreased GLUT4 mRNA and protein (30%, P < .05) levels. Atorvastatin treatment lowered cholesterol, triglyceride, insulin, TNF-alpha, and IL-6 plasma levels, and restored whole-body insulin sensitivity. In adipose tissue, atorvastatin decreased macrophage infiltration and normalized IKK-alpha/beta phosphorylation; TNF-alpha, IL-6, and GLUT4 mRNA; and GLUT4 protein to control levels. The present findings demonstrate that atorvastatin has anti-inflammatory effects on adipose tissue of obese mice, which may be important to its local and whole-body insulin-sensitization effects.
Collapse
Affiliation(s)
- Daniela T Furuya
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, 05508-900 São Paulo, Brasil.
| | | | | | | | | | | |
Collapse
|
40
|
Sattar N, Preiss D, Murray HM, Welsh P, Buckley BM, de Craen AJM, Seshasai SRK, McMurray JJ, Freeman DJ, Jukema JW, Macfarlane PW, Packard CJ, Stott DJ, Westendorp RG, Shepherd J, Davis BR, Pressel SL, Marchioli R, Marfisi RM, Maggioni AP, Tavazzi L, Tognoni G, Kjekshus J, Pedersen TR, Cook TJ, Gotto AM, Clearfield MB, Downs JR, Nakamura H, Ohashi Y, Mizuno K, Ray KK, Ford I. Statins and risk of incident diabetes: a collaborative meta-analysis of randomised statin trials. Lancet 2010; 375:735-42. [PMID: 20167359 DOI: 10.1016/s0140-6736(09)61965-6] [Citation(s) in RCA: 1672] [Impact Index Per Article: 119.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Trials of statin therapy have had conflicting findings on the risk of development of diabetes mellitus in patients given statins. We aimed to establish by a meta-analysis of published and unpublished data whether any relation exists between statin use and development of diabetes. METHODS We searched Medline, Embase, and the Cochrane Central Register of Controlled Trials from 1994 to 2009, for randomised controlled endpoint trials of statins. We included only trials with more than 1000 patients, with identical follow-up in both groups and duration of more than 1 year. We excluded trials of patients with organ transplants or who needed haemodialysis. We used the I(2) statistic to measure heterogeneity between trials and calculated risk estimates for incident diabetes with random-effect meta-analysis. FINDINGS We identified 13 statin trials with 91 140 participants, of whom 4278 (2226 assigned statins and 2052 assigned control treatment) developed diabetes during a mean of 4 years. Statin therapy was associated with a 9% increased risk for incident diabetes (odds ratio [OR] 1.09; 95% CI 1.02-1.17), with little heterogeneity (I(2)=11%) between trials. Meta-regression showed that risk of development of diabetes with statins was highest in trials with older participants, but neither baseline body-mass index nor change in LDL-cholesterol concentrations accounted for residual variation in risk. Treatment of 255 (95% CI 150-852) patients with statins for 4 years resulted in one extra case of diabetes. INTERPRETATION Statin therapy is associated with a slightly increased risk of development of diabetes, but the risk is low both in absolute terms and when compared with the reduction in coronary events. Clinical practice in patients with moderate or high cardiovascular risk or existing cardiovascular disease should not change. FUNDING None.
Collapse
Affiliation(s)
- Naveed Sattar
- British Heart Foundation Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Lee MJ, Rao YK, Chen K, Lee YC, Tzeng YM. Effect of flavonol glycosides from Cinnamomum osmophloeum leaves on adiponectin secretion and phosphorylation of insulin receptor-beta in 3T3-L1 adipocytes. JOURNAL OF ETHNOPHARMACOLOGY 2009; 126:79-85. [PMID: 19682565 DOI: 10.1016/j.jep.2009.08.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2009] [Revised: 08/04/2009] [Accepted: 08/05/2009] [Indexed: 05/28/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cinnamomum osmophloeum is used for various ethnomedical conditions in Taiwan including diabetic complications. AIM OF THE STUDY The aim of present study was to identify the anti-diabetic compounds from C. osmophloeum leaves and evaluate the preliminary molecular basis for their insulin-like effects. MATERIALS AND METHODS Silica gel column chromatographic purification of MeOH extract from leaves of C. osmophloeum resulted in the isolation of a two kaempferol glycosides CO-1 and CO-2. These two compounds were evaluated for their effects on adiponectin secretion, tyrosine phosphorylation of insulin receptor (IR)-beta and glucose transporter 4 (GLUT4) in differentiated mouse 3T3-L1 adipocytes, and the results were compared with the reference drug insulin. RESULTS The compound CO-1 at a concentration of 5 microM was able to act as an insulin-mimetic in terms of its ability to increase adiponectin secretion by 12.2-fold, while CO-2 has no such effect up to 20 microM tested. Furthermore, 5 microM of CO-1 and 20 microM of CO-2 showed potential to increase the phosphorylation of IRbeta by 2.3- and 2.1-fold, respectively, in addition to their positive effect on GLUT4 translocation. CO-1 and CO-2 stimulated GLUT4 translocation are reduced by phosphatidylinositol-3-kinase (PI3-K) inhibitor. CONCLUSION The present study indicates that the insulin-like anti-diabetic mechanism of constituents from C. osmophloeum leaves in part due to enhanced adiponectin secretion, and activation of insulin signaling pathway leading to GLUT4 translocation which involved phosphorylation of IR and activation of PI3-K.
Collapse
Affiliation(s)
- Meng-Jen Lee
- Institute of Biochemical Sciences and Technology, Chaoyang University of Technology, Wufeng, Taiwan, ROC
| | | | | | | | | |
Collapse
|
42
|
Taghibiglou C, Bradley CA, Gaertner T, Li Y, Wang Y, Wang YT. Mechanisms involved in cholesterol-induced neuronal insulin resistance. Neuropharmacology 2009; 57:268-76. [DOI: 10.1016/j.neuropharm.2009.05.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2008] [Revised: 04/05/2009] [Accepted: 05/26/2009] [Indexed: 12/27/2022]
|
43
|
Diamanti-Kandarakis E, Kandaraki E, Christakou C, Panidis D. The effect of pharmaceutical intervention on lipid profile in polycystic ovary syndrome. Obes Rev 2009; 10:431-41. [PMID: 19413702 DOI: 10.1111/j.1467-789x.2009.00588.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The polycystic ovary syndrome (PCOS), a prevalent endocrinopathy of women, has been associated with a clustering of adverse metabolic features, which co-exist with reproductive dysfunction. Lipid abnormalities are very common in lean as well as obese women with PCOS and should be cautiously considered in the therapeutic management of the syndrome. Clinicians should also critically assess the lipidemic effect of pharmaceutical intervention, primarily aimed at hyperandrogenism, anovulation or insulin resistance. Because dyslipidemia may contribute to long-term cardiometabolic and reproductive sequelae in PCOS, it should be considered as an additional therapeutic target when these patients are assigned to appropriate pharmaceutical treatment.
Collapse
Affiliation(s)
- E Diamanti-Kandarakis
- Division of Endocrinology, First Department of Medicine, Laiko Hospital, Medical School, University of Athens, Athens, Greece.
| | | | | | | |
Collapse
|
44
|
|
45
|
Malaguarnera M, Di Rosa M, Nicoletti F, Malaguarnera L. Molecular mechanisms involved in NAFLD progression. J Mol Med (Berl) 2009; 87:679-95. [PMID: 19352614 DOI: 10.1007/s00109-009-0464-1] [Citation(s) in RCA: 208] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2008] [Revised: 02/26/2009] [Accepted: 03/18/2009] [Indexed: 02/06/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is an emerging metabolic-related disorder characterized by fatty infiltration of the liver in the absence of alcohol consumption. NAFLD ranges from simple steatosis to non-alcoholic steatohepatitis (NASH), which might progress to end-stage liver disease. This progression is related to the insulin resistance, which is strongly linked to the metabolic syndrome consisting of central obesity, diabetes mellitus, and hypertension. Earlier, the increased concentration of intracellular fatty acids within hepatocytes leads to steatosis. Subsequently, multifactorial complex interactions between nutritional factors, lifestyle, and genetic determinants promote necrosis, inflammation, fibrosis, and hepatocellular damage. Up to now, many studies have revealed the mechanism associated with insulin resistance, whereas the mechanisms related to the molecular components have been incompletely characterized. This review aims to assess the potential molecular mediators initiating and supporting the progression of NASH to establish precocious diagnosis and to plan more specific treatment for this disease.
Collapse
|
46
|
Anderson N, Borlak J. Molecular Mechanisms and Therapeutic Targets in Steatosis and Steatohepatitis. Pharmacol Rev 2008; 60:311-57. [DOI: 10.1124/pr.108.00001] [Citation(s) in RCA: 291] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|