1
|
Breeze B, Connell E, Wileman T, Muller M, Vauzour D, Pontifex MG. Menopause and Alzheimer's disease susceptibility: Exploring the potential mechanisms. Brain Res 2024; 1844:149170. [PMID: 39163895 DOI: 10.1016/j.brainres.2024.149170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/15/2024] [Accepted: 08/17/2024] [Indexed: 08/22/2024]
Abstract
Alzheimer's Disease (AD), responsible for 62% of all dementia cases, is a progressive neurodegenerative condition that leads to cognitive dysfunction. The prevalence of AD is consistently higher in women suggesting they are disproportionately affected by this disease. Despite this, our understanding of this female AD vulnerability remains limited. Menopause has been identified as a potential contributing factor to AD in women, with earlier menopause onset associated with greater AD risk. However, the underlying mechanisms responsible for this increased risk are not fully understood. This review examines the potential role of menopause in the development of Alzheimer's Disease providing a mechanistic overview of the available literature from hormones to pathology. While literature is now emerging that indicates a role of hormonal shifts, gut dysbiosis, lipid dysregulation and inflammation, more research is needed to fully elucidate the mechanisms involved.
Collapse
Affiliation(s)
- Bernadette Breeze
- Norwich Medical School, Faculty of Medicine and Health Sciences, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | - Emily Connell
- Norwich Medical School, Faculty of Medicine and Health Sciences, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | - Tom Wileman
- Norwich Medical School, Faculty of Medicine and Health Sciences, University of East Anglia, Norwich NR4 7TJ, United Kingdom; Quadram Institute Biosciences, Norwich NR4 7UQ, United Kingdom
| | - Michael Muller
- Norwich Medical School, Faculty of Medicine and Health Sciences, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | - David Vauzour
- Norwich Medical School, Faculty of Medicine and Health Sciences, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | - Matthew G Pontifex
- Norwich Medical School, Faculty of Medicine and Health Sciences, University of East Anglia, Norwich NR4 7TJ, United Kingdom.
| |
Collapse
|
2
|
Antelo-Cea DA, Martínez-Rojas L, Cabrerizo-Ibáñez I, Roudi Rashtabady A, Hernández-Alvarez MI. Regulation of Mitochondrial and Peroxisomal Metabolism in Female Obesity and Type 2 Diabetes. Int J Mol Sci 2024; 25:11237. [PMID: 39457018 PMCID: PMC11508381 DOI: 10.3390/ijms252011237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
Obesity and type 2 diabetes (T2D) are widespread metabolic disorders that significantly impact global health today, affecting approximately 17% of adults worldwide with obesity and 9.3% with T2D. Both conditions are closely linked to disruptions in lipid metabolism, where peroxisomes play a pivotal role. Mitochondria and peroxisomes are vital organelles responsible for lipid and energy regulation, including the β-oxidation and oxidation of very long-chain fatty acids (VLCFAs), cholesterol biosynthesis, and bile acid metabolism. These processes are significantly influenced by estrogens, highlighting the interplay between these organelles' function and hormonal regulation in the development and progression of metabolic diseases, such as obesity, metabolic dysfunction-associated fatty liver disease (MAFLD), and T2D. Estrogens modulate lipid metabolism through interactions with nuclear receptors, like peroxisome proliferator-activated receptors (PPARs), which are crucial for maintaining metabolic balance. Estrogen deficiency, such as in postmenopausal women, impairs PPAR regulation, leading to lipid accumulation and increased risk of metabolic disorders. The disruption of peroxisomal-mitochondrial function and estrogen regulation exacerbates lipid imbalances, contributing to insulin resistance and ROS accumulation. This review emphasizes the critical role of these organelles and estrogens in lipid metabolism and their implications for metabolic health, suggesting that therapeutic strategies, including hormone replacement therapy, may offer potential benefits in treating and preventing metabolic diseases.
Collapse
Affiliation(s)
- Damián A. Antelo-Cea
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain; (D.A.A.-C.); (L.M.-R.); (I.C.-I.); (A.R.R.)
- IBUB Universitat de Barcelona—Institut de Biomedicina de la Universitat de Barcelona, 08028 Barcelona, Spain
| | - Laura Martínez-Rojas
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain; (D.A.A.-C.); (L.M.-R.); (I.C.-I.); (A.R.R.)
| | - Izan Cabrerizo-Ibáñez
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain; (D.A.A.-C.); (L.M.-R.); (I.C.-I.); (A.R.R.)
| | - Ayda Roudi Rashtabady
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain; (D.A.A.-C.); (L.M.-R.); (I.C.-I.); (A.R.R.)
- IBUB Universitat de Barcelona—Institut de Biomedicina de la Universitat de Barcelona, 08028 Barcelona, Spain
| | - María Isabel Hernández-Alvarez
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain; (D.A.A.-C.); (L.M.-R.); (I.C.-I.); (A.R.R.)
- IBUB Universitat de Barcelona—Institut de Biomedicina de la Universitat de Barcelona, 08028 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
3
|
Cornelius SA, Basu U, Zimmern PE, De Nisco NJ. Overcoming challenges in the management of recurrent urinary tract infections. Expert Rev Anti Infect Ther 2024:1-13. [PMID: 39387179 DOI: 10.1080/14787210.2024.2412628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/10/2024] [Accepted: 10/01/2024] [Indexed: 10/12/2024]
Abstract
INTRODUCTION Urinary tract infection (UTI) is a major global health concern. While acute UTIs can usually be effectively treated, recurrent UTIs (rUTIs) impact patients for years, causing significant morbidity and can become refractory to front-line antibiotics. AREAS COVERED This review discusses the risk factors associated with rUTI, current rUTI treatment paradigms, prophylactic strategies, and challenges in rUTI diagnostics. We specifically discuss common risk factors for rUTI, including biological sex, age, menopause status, and diabetes mellitus. We also review recently available evidence for commonly used treatments, from oral antibiotic therapy to intravesical antimicrobials, electrofulguration of chronic cystitis, and the last-resort treatment, cystectomy. We discuss the most current literature evaluating prophylactic strategies for rUTI including long-term antibiotic prophylaxis, estrogen hormone therapy, and dietary supplements. Finally, we address the important role of UTI diagnostics in effective rUTI management and review the strengths and limitations of both current and emerging UTI diagnostic platforms as well as their ability to operate at point-of-care. EXPERT OPINION We discuss the current challenges faced by clinicians in managing rUTI in women and the steps that should be taken so that clinicians, scientists, and patients can work together to better understand the disease and develop better strategies for its management.
Collapse
Affiliation(s)
- Samuel A Cornelius
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Ujjaini Basu
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Philippe E Zimmern
- Department of Urology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Nicole J De Nisco
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX, USA
- Department of Urology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
4
|
Rossi F, Trakoolwilaiwan T, Gigli V, Tortolini C, Lenzi A, Isidori AM, Thanh NTK, Antiochia R. Progress in nanoparticle-based electrochemical biosensors for hormone detection. NANOSCALE 2024; 16:18134-18164. [PMID: 39254475 DOI: 10.1039/d4nr02075h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Hormones are chemical messengers that regulate a wide range of physiological processes including metabolism, development, growth, reproduction and mood. The concentration of hormones that orchestrate the numerous bodily functions is very low (1 nM or less). Efforts have been made to develop highly sensitive tools to detect them. This review represents a critical comparison between different types of nanoparticle-based electrochemical biosensors for the detection of various hormones, namely cortisol, sex hormones (estradiol, progesterone, testosterone), insulin, thyroid-stimulating hormone (TSH) and growth hormone (GH). The electrochemical biosensors investigated for each hormone are first divided on the basis of the biological fluid tested for their detection, and successively on the basis of the electrochemical transducer utilized in the device (voltammetric or impedimetric). Focus is placed on the nanoparticles employed and the successive electrode modification developed in order to improve detection sensitivity and specificity and biosensor stability. Limit of detection (LOD), linear range, reproducibility and possibility of regeneration for continuous reuse are also investigated and compared. The review also addresses the recent trends in the development of wearable biosensors and point-of-care testing for hormone detection in clinical diagnostics useful for endocrinology research, and the future perspectives regarding the integration of nanomaterials, microfluidics, near field communication (NFC) technology and portable devices.
Collapse
Affiliation(s)
- Francesco Rossi
- ICCOM-CNR, Polo Scientifico, Via Madonna del piano 10, Sesto Fiorentino, FI, 50019, Italy
| | - Thithawat Trakoolwilaiwan
- Biophysics Group, Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, UK
- UCL Healthcare Biomagnetics and Nanomaterials Laboratories, 21 Albemarle Street, London W1S 4BS, UK.
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Valeria Gigli
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Cristina Tortolini
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Andrea Lenzi
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | | | - Nguyen Thi Kim Thanh
- UCL Healthcare Biomagnetics and Nanomaterials Laboratories, 21 Albemarle Street, London W1S 4BS, UK.
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Riccarda Antiochia
- Department of Chemistry and Drug Technologies, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
5
|
Bondy E. Considering the role of estradiol in the psychoneuroimmunology of perimenopausal depression. Brain Behav Immun Health 2024; 40:100830. [PMID: 39161877 PMCID: PMC11331712 DOI: 10.1016/j.bbih.2024.100830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 06/24/2024] [Accepted: 07/20/2024] [Indexed: 08/21/2024] Open
Abstract
In recent years, a burgeoning field of research has focused on women's mental health and psychiatric conditions associated with perinatal and postpartum periods. An emerging trend points to the link between hormone fluctuations during pregnancy and postpartum that have immunologic consequences in cases of perinatal depression and postpartum psychosis. The transition to menopause (or "perimenopause") has garnered comparatively less attention, but existing studies point to the influential interaction of hormonal and immune pathways. Moreover, the role of this cross talk in perturbing neural networks has been implicated in risk for cognitive decline, but relatively less work has focused on the depressed brain during perimenopause. This brief review brings a psychoneuroimmunology lens to depression during the perimenopausal period by providing an overview of existing knowledge and suggestions for future research to intertwine these bodies of work.
Collapse
Affiliation(s)
- Erin Bondy
- Department of Psychiatry, University of North Carolina School of Medicine, USA
| |
Collapse
|
6
|
Bhatia N, Thareja S. Aromatase inhibitors for the treatment of breast cancer: An overview (2019-2023). Bioorg Chem 2024; 151:107607. [PMID: 39002515 DOI: 10.1016/j.bioorg.2024.107607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/02/2024] [Accepted: 06/28/2024] [Indexed: 07/15/2024]
Abstract
Aromatase inhibition is considered a legitimate approach for the treatment of ER-positive (ER+) breast cancer as it accounts for more than 70% of breast cancer cases. Aromatase inhibitor therapy has been demonstrated to be highly effective in decreasing tumour size, increasing survival rates, and lowering the chance of cancer recurrence. The present review deliberates the pathophysiology and the role of aromatase in estrogen biosynthesis. Estrogen biosynthesis, various androgens, and their function in the human body have also been discussed. The salient aspects of the aromatase active site, its mode of action, and AIs, along with their intended interactions with presently FDA-approved inhibitors, have been briefly discussed. It has been detailed how different reported AIs were designed, their SAR investigations, in silico analysis, and biological evaluations. Various AIs from multiple origins, such as synthetic and semi-synthetic, have also been discussed.
Collapse
Affiliation(s)
- Neha Bhatia
- Department of Pharmaceutical Sciences and Natural Products, School of Health Sciences, Central University of Punjab, Bathinda, Punjab 151401, India
| | - Suresh Thareja
- Department of Pharmaceutical Sciences and Natural Products, School of Health Sciences, Central University of Punjab, Bathinda, Punjab 151401, India.
| |
Collapse
|
7
|
Maroteaux MJ, Noccioli CT, Daniel JM, Schrader LA. Rapid and local neuroestrogen synthesis supports long-term potentiation of hippocampal Schaffer collaterals-cornu ammonis 1 synapse in ovariectomized mice. J Neuroendocrinol 2024:e13450. [PMID: 39351868 DOI: 10.1111/jne.13450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 07/31/2024] [Accepted: 09/04/2024] [Indexed: 10/03/2024]
Abstract
In aging women, cognitive decline and increased risk of dementia have been associated with the cessation of ovarian hormones production at menopause. In the brain, presence of the key enzyme aromatase required for the synthesis of 17-β-estradiol (E2) allows for local production of E2 in absence of functional ovaries. Understanding how aromatase activity is regulated could help alleviate the cognitive symptoms. In female rodents, genetic or pharmacological reduction of aromatase activity over extended periods of time impair memory formation, decreases spine density, and hinders long-term potentiation (LTP) in the hippocampus. Conversely, increased excitatory neurotransmission resulting in rapid N-methyl-d-aspartic acid (NMDA) receptor activation rapidly promotes neuroestrogen synthesis. This rapid modulation of aromatase activity led us to address the hypothesis that acute neuroestrogens synthesis is necessary for LTP at the Schaffer collateral-cornu ammonis 1 (CA1) synapse in absence of circulating ovarian estrogens. To test this hypothesis, we did electrophysiological recordings of field excitatory postsynaptic potential (fEPSPs) in hippocampal slices obtained from ovariectomized mice. To assess the impact of neuroestrogens synthesis on LTP, we applied the specific aromatase inhibitor, letrozole, before the induction of LTP with a theta burst stimulation protocol. We found that blocking aromatase activity prevented LTP. Interestingly, exogenous E2 application, while blocking aromatase activity, was not sufficient to recover LTP in our model. Our results indicate the critical importance of rapid, activity-dependent local neuroestrogens synthesis, independent of circulating hormones for hippocampal synaptic plasticity in female rodents.
Collapse
Affiliation(s)
- Matthieu J Maroteaux
- Department of Psychology, Tulane University, New Orleans, LA, USA
- Tulane Brain Institute, Tulane University, New Orleans, LA, USA
| | - Claire T Noccioli
- Department of Psychology, Tulane University, New Orleans, LA, USA
- Tulane Brain Institute, Tulane University, New Orleans, LA, USA
| | - Jill M Daniel
- Department of Psychology, Tulane University, New Orleans, LA, USA
- Tulane Brain Institute, Tulane University, New Orleans, LA, USA
| | - Laura A Schrader
- Tulane Brain Institute, Tulane University, New Orleans, LA, USA
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA, USA
| |
Collapse
|
8
|
Guzmán A, Rosales-Torres AM, Medina-Moctezuma ZB, González-Aretia D, Hernández-Coronado CG. Effects and action mechanism of gonadotropins on ovarian follicular cells: A novel role of Sphingosine-1-Phosphate (S1P). A review. Gen Comp Endocrinol 2024; 357:114593. [PMID: 39047797 DOI: 10.1016/j.ygcen.2024.114593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 07/02/2024] [Accepted: 07/19/2024] [Indexed: 07/27/2024]
Abstract
Follicle-stimulating hormone (FSH) and luteinizing hormone (LH) control antral follicular growth by regulating several processes, such as the synthesis of hormones and signaling molecules, proliferation, survival, apoptosis, luteinization, and ovulation. To exert these effects, gonadotropins bind to their respective Gs protein-coupled receptors, activating the protein kinase A (PKA) pathway or recruiting Gq proteins to activate protein kinase C (PKC) signaling. Although the action mechanism of FSH and LH is clear, recently, it has been shown that both gonadotropins promote the synthesis of sphingosine-1-phosphate (S1P) in granulosa and theca cells through the activation of sphingosine kinase 1. Moreover, the inhibition of SPHKs reduces S1P synthesis, cell viability, and the proliferation of follicular cells in response to gonadotropins, and the addition of S1P to the culture medium increases the proliferation of granulosa and theca cells without apparent effects on sexual steroid synthesis. Therefore, we consider that S1P is a crucial signaling molecule that complements the canonical gonadotropin pathway to promote the proliferation and viability of granulosa and theca cells.
Collapse
Affiliation(s)
- A Guzmán
- Universidad Autónoma Metropolitana Unidad Xochimilco, Departamento Producción Agrícola y Animal, Ciudad de México, Mexico
| | - A M Rosales-Torres
- Universidad Autónoma Metropolitana Unidad Xochimilco, Departamento Producción Agrícola y Animal, Ciudad de México, Mexico
| | - Z B Medina-Moctezuma
- Doctorado en Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Ciudad de México, Mexico
| | - D González-Aretia
- Doctorado en Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Ciudad de México, Mexico
| | - C G Hernández-Coronado
- Universidad Autónoma Metropolitana Unidad Xochimilco, Departamento Producción Agrícola y Animal, Ciudad de México, Mexico.
| |
Collapse
|
9
|
Mitchnick KA, Nicholson K, Wideman C, Jardine K, Jamieson-Williams R, Creighton SD, Lacoursiere A, Milite C, Castellano S, Sbardella G, MacLusky NJ, Choleris E, Winters BD. The Lysine Acetyltransferase PCAF Functionally Interacts with Estrogen Receptor Alpha in the Hippocampus of Gonadally Intact Male-But Not Female-Rats to Enhance Short-Term Memory. J Neurosci 2024; 44:e1574232024. [PMID: 39138001 PMCID: PMC11376336 DOI: 10.1523/jneurosci.1574-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 07/05/2024] [Accepted: 07/15/2024] [Indexed: 08/15/2024] Open
Abstract
Acetylation of histone proteins by histone acetyltransferases (HATs), and the resultant change in gene expression, is a well-established mechanism necessary for long-term memory (LTM) consolidation, which is not required for short-term memory (STM). However, we previously demonstrated that the HAT p300/CBP-associated factor (PCAF) also influences hippocampus (HPC)-dependent STM in male rats. In addition to their epigenetic activity, HATs acetylate nonhistone proteins involved in nongenomic cellular processes, such as estrogen receptors (ERs). Given that ERs have rapid, nongenomic effects on HPC-dependent STM, we investigated the potential interaction between ERs and PCAF for STM mediated by the dorsal hippocampus (dHPC). Using a series of pharmacological agents administered directly into the dHPC, we reveal a functional interaction between PCAF and ERα in the facilitation of short-term object-in-place memory in male but not female rats. This interaction was specific to ERα, while ERβ agonism did not enhance STM. It was further specific to dHPC STM, as the effect was not present in the dHPC for LTM or in the perirhinal cortex. Further, while STM required local (i.e., dHPC) estrogen synthesis, the facilitatory interaction effect appeared independent of estrogens. Finally, western blot analyses demonstrated that PCAF activation in the dHPC rapidly (5 min) activated downstream estrogen-related cell signaling kinases (c-Jun N-terminal kinase and extracellular signal-related kinase). Collectively, these findings indicate that PCAF, which is typically implicated in LTM through epigenetic processes, also influences STM in the dHPC, possibly via nongenomic ER activity. Critically, this novel PCAF-ER interaction might exist as a male-specific mechanism supporting STM.
Collapse
Affiliation(s)
- Krista A Mitchnick
- Department of Psychology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
- Collaborative Neuroscience Program, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Kate Nicholson
- Collaborative Neuroscience Program, University of Guelph, Guelph, Ontario N1G 2W1, Canada
- Department of Biomedical Sciences, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Cassidy Wideman
- Department of Psychology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
- Collaborative Neuroscience Program, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Kristen Jardine
- Department of Psychology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
- Collaborative Neuroscience Program, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | | | - Samantha D Creighton
- Department of Psychology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
- Collaborative Neuroscience Program, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Allison Lacoursiere
- Department of Psychology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Ciro Milite
- Department of Pharmacy, Epigenetic Med Chem Lab, University of Salerno, Fisciano I-84084, Italy
| | - Sabrina Castellano
- Department of Pharmacy, Epigenetic Med Chem Lab, University of Salerno, Fisciano I-84084, Italy
| | - Gianluca Sbardella
- Department of Pharmacy, Epigenetic Med Chem Lab, University of Salerno, Fisciano I-84084, Italy
| | - Neil J MacLusky
- Collaborative Neuroscience Program, University of Guelph, Guelph, Ontario N1G 2W1, Canada
- Department of Biomedical Sciences, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Elena Choleris
- Department of Psychology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
- Collaborative Neuroscience Program, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Boyer D Winters
- Department of Psychology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
- Collaborative Neuroscience Program, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
10
|
Sagar RC, Millson-Brown V. Gender-affirming hormone treatment modalities for transfemale & non-binary transfeminine individuals: A UK perspective. Best Pract Res Clin Endocrinol Metab 2024; 38:101921. [PMID: 39232976 DOI: 10.1016/j.beem.2024.101921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Gender incongruence and the number of people seeking gender affirming hormone treatment has dramatically risen in the last two decades. In the UK, transgender women and non-binary transfeminine individuals are typically treated with simultaneous suppression of endogenous testosterone production through anti-androgens and exogenous oestradiol replacement. Oestrogen replacement comes in different forms and is primarily given as transdermal (gel or patch) or oral preparations in the UK. Decisions around preparation choice are based on a combination of individual preference and/or mitigating the chance of complications based on individual risk profiles. Time frames to achieve female physical changes are largely predictable and managing expectations of individuals prior to commencing treatment is highly important. Common complications include venous thromboembolism, liver dysfunction and effects on fertility, thus individuals should be thoroughly counselled prior to commencing treatment. This article provides an overview of the management and considerations of gender-affirming hormone treatment in transgender women and non-binary transfeminine individuals.
Collapse
Affiliation(s)
- Rebecca C Sagar
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, LS2 9JT, United Kingdom
| | - Victoria Millson-Brown
- Gender Identity Service, The Newsam Centre, Seacroft Hospital, Leeds LS14 6UH, United Kingdom.
| |
Collapse
|
11
|
Almuntashiri S, Dutta S, Zhu Y, Gamare S, Ramírez G, Irineo‐Moreno V, Camarena A, Regino N, Campero P, Hernández‐Cardenas CM, Rodriguez‐ Reyna TS, Zuñiga J, Owen CA, Wang X, Zhang D. Estrogen-dependent gene regulation: Molecular basis of TIMP-1 as a sex-specific biomarker for acute lung injury. Physiol Rep 2024; 12:e70047. [PMID: 39267201 PMCID: PMC11392656 DOI: 10.14814/phy2.70047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/30/2024] [Accepted: 08/30/2024] [Indexed: 09/14/2024] Open
Abstract
Increased circulating tissue inhibitor of metalloproteinases-1 (TIMP-1) levels have been observed in patients with acute lung injury (ALI). However, the sex-specific regulation of TIMP-1 and the underlying molecular mechanisms have not been well elucidated. In this study, we found that plasma TIMP-1 levels were significantly higher in COVID-19 and H1N1 patients compared with those in healthy subjects (n = 25). TIMP-1 concentrations were significantly different between males and females in each disease group. Among female but not male patients, TIMP-1 levels significantly correlated with the PaO2/FiO2 ratio and hospital length of stay. Using the mouse model of ALI induced by the H1N1 virus, we found that TIMP-1 is strikingly induced in PDGFRα-positive cells in the murine lungs. Moreover, female mice showed a higher Timp-1 expression in the lungs on day 3 postinfection. Mechanistically, we observed that estrogen can upregulate TIMP-1 expression in lung fibroblasts, not epithelial cells. In addition, overexpression of estrogen receptor α (ERα) increased the TIMP-1 promoter activity. In summary, TIMP-1 is an estrogen-responsive gene, and its promoter activity is regulated by ERα. Circulating TIMP-1 may serve as a sex-specific marker, reflecting the severity and worst outcomes in female patients with SARS-CoV2- and IAV-related ALI.
Collapse
Affiliation(s)
- Sultan Almuntashiri
- Clinical and Experimental Therapeutics, College of PharmacyUniversity of Georgia and Charlie Norwood VA Medical CenterAugustaGeorgiaUSA
- Department of Clinical Pharmacy, College of PharmacyUniversity of HailHailSaudi Arabia
| | - Saugata Dutta
- Clinical and Experimental Therapeutics, College of PharmacyUniversity of Georgia and Charlie Norwood VA Medical CenterAugustaGeorgiaUSA
| | - Yin Zhu
- Clinical and Experimental Therapeutics, College of PharmacyUniversity of Georgia and Charlie Norwood VA Medical CenterAugustaGeorgiaUSA
| | - Siddhika Gamare
- Clinical and Experimental Therapeutics, College of PharmacyUniversity of Georgia and Charlie Norwood VA Medical CenterAugustaGeorgiaUSA
| | - Gustavo Ramírez
- Laboratory of Immunobiology and Genetics and Intensive Care UnitInstituto Nacional de Enfermedades Respiratorias Ismael Cosío VillegasMexico CityMexico
| | - Valeria Irineo‐Moreno
- Laboratory of Immunobiology and Genetics and Intensive Care UnitInstituto Nacional de Enfermedades Respiratorias Ismael Cosío VillegasMexico CityMexico
- Tecnologico de Monterrey, School of Medicine and Health SciencesMexico CityMexico
| | - Angel Camarena
- Laboratory of Immunobiology and Genetics and Intensive Care UnitInstituto Nacional de Enfermedades Respiratorias Ismael Cosío VillegasMexico CityMexico
| | - Nora Regino
- Laboratory of Immunobiology and Genetics and Intensive Care UnitInstituto Nacional de Enfermedades Respiratorias Ismael Cosío VillegasMexico CityMexico
- Tecnologico de Monterrey, School of Medicine and Health SciencesMexico CityMexico
| | - Paloma Campero
- Laboratory of Immunobiology and Genetics and Intensive Care UnitInstituto Nacional de Enfermedades Respiratorias Ismael Cosío VillegasMexico CityMexico
| | | | - Tatiana S. Rodriguez‐ Reyna
- Department of Immunology and RheumatologyInstituto Nacional de Ciencias Médicas y Nutrición Salvador ZubiránMexico CityMexico
| | - Joaquin Zuñiga
- Laboratory of Immunobiology and Genetics and Intensive Care UnitInstituto Nacional de Enfermedades Respiratorias Ismael Cosío VillegasMexico CityMexico
- Tecnologico de Monterrey, School of Medicine and Health SciencesMexico CityMexico
| | - Caroline A. Owen
- Division of Pulmonary and Critical Care MedicineBrigham and Women's Hospital, and Harvard Medical SchoolBostonMassachusettsUSA
| | - Xiaoyun Wang
- Clinical and Experimental Therapeutics, College of PharmacyUniversity of Georgia and Charlie Norwood VA Medical CenterAugustaGeorgiaUSA
| | - Duo Zhang
- Clinical and Experimental Therapeutics, College of PharmacyUniversity of Georgia and Charlie Norwood VA Medical CenterAugustaGeorgiaUSA
- Department of Medicine, Medical College of GeorgiaAugusta UniversityAugustaGeorgiaUSA
| |
Collapse
|
12
|
Romero-Martínez BS, Flores-Soto E, Sommer B, Reyes-García J, Arredondo-Zamarripa D, Solís-Chagoyán H, Lemini C, Rivero-Segura NA, Santiago-de-la-Cruz JA, Pérez-Plascencia C, Montaño LM. 17β-estradiol induces hyperresponsiveness in guinea pig airway smooth muscle by inhibiting the plasma membrane Ca 2+-ATPase. Mol Cell Endocrinol 2024; 590:112273. [PMID: 38763427 DOI: 10.1016/j.mce.2024.112273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 05/21/2024]
Abstract
High serum estrogen concentrations are associated with asthma development and severity, suggesting a link between estradiol and airway hyperresponsiveness (AHR). 17β-estradiol (E2) has non-genomic effects via Ca2+ regulatory mechanisms; however, its effect on the plasma membrane Ca2+-ATPases (PMCA1 and 4) and sarcoplasmic reticulum Ca2+-ATPase (SERCA) is unknown. Hence, in the present study, we aim to demonstrate if E2 favors AHR by increasing intracellular Ca2+ concentrations in guinea pig airway smooth muscle (ASM) through a mechanism involving Ca2+-ATPases. In guinea pig ASM, Ca2+ microfluorometry, muscle contraction, and Western blot were evaluated. Then, we performed molecular docking analysis between the estrogens and Ca2+ ATPases. In tracheal rings, E2 produced AHR to carbachol. In guinea pig myocytes, acute exposure to physiological levels of E2 modified the transient Ca2+ peak induced by caffeine to a Ca2+ plateau. The incubation with PMCA inhibitors (lanthanum and carboxyeosin, CE) partially reversed the E2-induced sustained plateau in the caffeine response. In contrast, cyclopiazonic acid (SERCA inhibitor), U-0126 (an inhibitor of ERK 1/2), and choline chloride did not modify the Ca2+ plateau produced by E2. The mitochondrial uniporter activity and the capacitative Ca2+ entry were unaffected by E2. In guinea pig ASM, Western blot analysis demonstrated PMCA1 and PMCA4 expression. The results from the docking modeling demonstrate that E2 binds to both plasma membrane ATPases. In guinea pig tracheal smooth muscle, inhibiting the PMCA with CE, induced hyperresponsiveness to carbachol. 17β-estradiol produces hyperresponsiveness by inhibiting the PMCA in the ASM and could be one of the mechanisms responsible for the increase in asthmatic crisis in women.
Collapse
Affiliation(s)
- Bianca S Romero-Martínez
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Av. Universidad No. 3000, Alcaldía de Coyoacán, CP 04510, CDMX, México
| | - Edgar Flores-Soto
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Av. Universidad No. 3000, Alcaldía de Coyoacán, CP 04510, CDMX, México
| | - Bettina Sommer
- Departamento de Investigación en Hiperreactividad Bronquial, Instituto Nacional de Enfermedades Respiratorias, Calz. De Tlalpan 4502, Col. Sección XVI, Alcaldía de Tlalpan, CP 14080, CDMX, México
| | - Jorge Reyes-García
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Av. Universidad No. 3000, Alcaldía de Coyoacán, CP 04510, CDMX, México
| | - David Arredondo-Zamarripa
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Av. Universidad No. 3000, Alcaldía de Coyoacán, CP 04510, CDMX, México
| | - Héctor Solís-Chagoyán
- Neurociencia Cognitiva Evolutiva, Centro de Investigación en Ciencias Cognitivas, Universidad Autónoma Del Estado de Morelos, CP 62209, Morelos, México
| | - Cristina Lemini
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Av. Universidad No. 3000, Alcaldía de Coyoacán, CP 04510, CDMX, México
| | - Nadia A Rivero-Segura
- Dirección de Investigación, Instituto Nacional de Geriatría (INGER), Ciudad de México, CP 10200, México
| | | | - Carlos Pérez-Plascencia
- Unidad de Genómica y Cáncer, Subdirección de Investigación Básica, INCan, SSA, Av. San Fernando 22, Alcaldía de Tlalpan, CP 14080, CDMX, México; Facultad de Estudios Superiores Iztacala, Av. de Los Barrios S/N Los Reyes Ixtacala Tlalnepantla de Baz, Edo. de México, CP 54090, Tlalnepantla de Baz, México
| | - Luis M Montaño
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Av. Universidad No. 3000, Alcaldía de Coyoacán, CP 04510, CDMX, México.
| |
Collapse
|
13
|
Wang X, Chen W, Zhao W, Miao M. Risk of glaucoma to subsequent dementia or cognitive impairment: a systematic review and meta-analysis. Aging Clin Exp Res 2024; 36:172. [PMID: 39162899 PMCID: PMC11335947 DOI: 10.1007/s40520-024-02811-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 07/13/2024] [Indexed: 08/21/2024]
Abstract
BACKGROUND Substantial evidence supports that glaucoma and dementia share pathological mechanisms and pathogenic risk factors. However, the association between glaucoma, cognitive decline and dementia has yet to be elucidated. OBJECTIVE This study was aimed to assess whether glaucoma increase the risk of dementia or cognitive impairment. METHODS PubMed, Cochrane Library, Web of Science, and EMBASE databases for cohort or case-control studies were searched from inception to March 10, 2024. The Newcastle-Ottawa Quality Assessment Scale (NOS) was used to the risk of bias. Heterogeneity was rigorously evaluated using the I2 test, while publication bias was assessed by visual inspection of the funnel plot and by Egger' s regression asymmetry test. Subgroup analyses were applied to determine the sources of heterogeneity. RESULTS Twenty-seven studies covering 9,061,675 individuals were included. Pooled analyses indicated that glaucoma increased the risk of all-cause dementia, Alzheimer's disease, vascular dementia, and cognitive impairment. Subgroup analysis showed that the prevalence of dementia was 2.90 (95% CI: 1.45-5.77) in age ≥ 65 years and 2.07 (95% CI: 1.18-3.62) in age<65 years; the incidence rates in female glaucoma patients was 1.46 (95% CI: 1.06-2.00), respectively, which was no statistical significance in male patients. Among glaucoma types, POAG was more likely to develop dementia and cognitive impairment. There were also differences in regional distribution, with the highest prevalence in the Asia region, while glaucoma was not associated with dementia in Europe and North America regions. CONCLUSION Glaucoma increased the risk of subsequent cognitive impairment and dementia. The type of glaucoma, gender, age, and region composition of the study population may significantly affect the relationship between glaucoma and dementia.
Collapse
Affiliation(s)
- Xiaoran Wang
- Department of Clinical, Henan University of Chinese Medicine, No.156 Jinshui East Road, Zhengzhou, Henan, 450046, China
| | - Wenjing Chen
- Department of Pharmacology, Henan University of Chinese Medicine, No.156 Jinshui East Road, Zhengzhou, Henan, 450046, China
| | - Wenxia Zhao
- The First Affiliated Hospital, Henan University of Chinese Medicine, No. 19 Renmin Road, Jinshui District, Zhengzhou, Henan, 450003, China.
| | - Mingsan Miao
- Department of Pharmacology, Henan University of Chinese Medicine, No.156 Jinshui East Road, Zhengzhou, Henan, 450046, China.
- National International Cooperation Base of Chinese Medicine, Henan University of Chinese Medicine, Zhengzhou, China.
| |
Collapse
|
14
|
Marques RP, Ahmad W, Soares R, Oliveira KC, Botelho MC. Insights into the State of the Art of Urogenital Schistosomiasis with a Focus on Infertility. Trop Med Infect Dis 2024; 9:177. [PMID: 39195615 PMCID: PMC11360082 DOI: 10.3390/tropicalmed9080177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 08/29/2024] Open
Abstract
Schistosomiasis is a neglected tropical disease that affects developing countries worldwide and is caused by several species of parasites from the Schistosoma genus. Chronic infection is characterized by the formation of granulomas around the parasite eggs, the leading cause of pathology. The hepatosplenic clinical form is one of the most common, but urogenital schistosomiasis is another relevant clinical presentation responsible for infertility in men and women. Inflammatory response, anatomical deformations, and endocrine/biochemical changes are involved in the development of infertility. Schistosome parasites can synthesize catechol estrogen-like molecules and affect the sexual hormone balance in their host. Here, we review many aspects of the pathology of urogenital schistosomiasis, specifically infertility, and point to the biochemical and endocrinal elements that must be investigated in the future.
Collapse
Affiliation(s)
- Rafaella P. Marques
- Disciplina de Parasitologia, Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo 04023-062, Brazil; (R.P.M.); (K.C.O.)
| | - Waqas Ahmad
- Department of Clinical Sciences, University of Veterinary and Animal Sciences (UVAS), KBCMA Campus, Narowal 51800, Pakistan;
| | - Raquel Soares
- Department of Biomedicine, Faculty of Medicine, University of Porto, 4200-450 Porto, Portugal;
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Katia C. Oliveira
- Disciplina de Parasitologia, Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo 04023-062, Brazil; (R.P.M.); (K.C.O.)
| | - Monica C. Botelho
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- Department of Health Promotion and Chronic Diseases, INSA—National Institute of Health Dr. Ricardo Jorge, 4000-055 Porto, Portugal
| |
Collapse
|
15
|
Kolahchi Z, Henkel N, Eladawi MA, Villarreal EC, Kandimalla P, Lundh A, McCullumsmith RE, Cuevas E. Sex and Gender Differences in Alzheimer's Disease: Genetic, Hormonal, and Inflammation Impacts. Int J Mol Sci 2024; 25:8485. [PMID: 39126053 PMCID: PMC11313277 DOI: 10.3390/ijms25158485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/26/2024] [Accepted: 07/28/2024] [Indexed: 08/12/2024] Open
Abstract
Two-thirds of Americans with Alzheimer's disease are women, indicating a profound variance between the sexes. Variances exist between the sexes in the age and intensity of the presentation, cognitive deficits, neuroinflammatory factors, structural and functional brain changes, as well as psychosocial and cultural circumstances. Herein, we summarize the existing evidence for sexual dimorphism and present the available evidence for these distinctions. Understanding these complexities is critical to developing personalized interventions for the prevention, care, and treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Zahra Kolahchi
- Department of Neurology, Mitchell Center for Neurodegenerative Diseases, School of Medicine, University of Texas Medical Branch, Galveston, TX 77555, USA; (Z.K.); (E.C.V.)
| | - Nicholas Henkel
- Department of Neurosciences and Neurological Disorders, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH 43614, USA; (N.H.); (M.A.E.); (P.K.); (A.L.); (R.E.M.)
| | - Mahmoud A. Eladawi
- Department of Neurosciences and Neurological Disorders, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH 43614, USA; (N.H.); (M.A.E.); (P.K.); (A.L.); (R.E.M.)
| | - Emma C. Villarreal
- Department of Neurology, Mitchell Center for Neurodegenerative Diseases, School of Medicine, University of Texas Medical Branch, Galveston, TX 77555, USA; (Z.K.); (E.C.V.)
| | - Prathik Kandimalla
- Department of Neurosciences and Neurological Disorders, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH 43614, USA; (N.H.); (M.A.E.); (P.K.); (A.L.); (R.E.M.)
| | - Anna Lundh
- Department of Neurosciences and Neurological Disorders, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH 43614, USA; (N.H.); (M.A.E.); (P.K.); (A.L.); (R.E.M.)
| | - Robert E. McCullumsmith
- Department of Neurosciences and Neurological Disorders, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH 43614, USA; (N.H.); (M.A.E.); (P.K.); (A.L.); (R.E.M.)
- ProMedica Neurosciences Center, Toledo, OH 43606, USA
| | - Elvis Cuevas
- Department of Neurology, Mitchell Center for Neurodegenerative Diseases, School of Medicine, University of Texas Medical Branch, Galveston, TX 77555, USA; (Z.K.); (E.C.V.)
| |
Collapse
|
16
|
Peng J, Zhang Y, Liu Q, Tang Y, Zhang W, Zheng S, Huang W, Yang M, He Y, Li Z, Xie L, Li J, Wang J, Zhou Y. Allicin in pregnancy diets modulates steroid metabolism in pregnant sows and placental sulphate metabolism promoting placental angiogenesis and foetal development. Animal 2024; 18:101224. [PMID: 39024999 DOI: 10.1016/j.animal.2024.101224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 07/20/2024] Open
Abstract
The low-birth-weight of piglets is an important factor affecting pig enterprises. The placenta, as a key organ for material exchange between mother and foetus, directly influences the growth and development of the foetus. Allicin exhibits various biological activities, including anti-inflammatory and antioxidant properties. It may also play a crucial role in enhancing sow reproductive performance and placental angiogenesis. In this study, we used 70 lactating Landrace × Yorkshire binary heterozygous sows to explore the effect of allicin on the reproductive performance of sows and placental development. The sows were randomly assigned into the Allicin group (Allicin), which was fed with a diet containing 0.25% allicin, and the negative control group, which was fed with basal feed. The experimental period lasted for 114 d from the date of mating to the end of farrowing. The results showed that the addition of allicin to the gestation diets increased the number of total born piglets, born alive piglets, and high-birth-weight piglets, reduced peripartum oxidative stress, alleviated dysregulation of glucose-lipid metabolism in sows, and increased the levels of antioxidant markers in the placenta. Differential analysis of metabolites in maternal plasma and placenta samples by non-targeted metabolomics revealed that allicin improved cholesterol metabolism, steroid biosynthesis, and increased plasma progesterone levels in sows. Allicin promoted sulphur metabolism, cysteine and methionine metabolism in placental samples and increased the hydrogen sulphide (H2S) content in the placenta. In addition, Quantitative Real-time PCR, Western blot and immunofluorescence results showed that allicin upregulated the expression of angiogenesis-related genes, VEGF-A, FLK 1 and Ang 1, in the placenta, implying that it promoted placental angiogenesis. These results indicate that supplementing the diet of pregnant sows with allicin reduces oxidative stress, alleviates dysregulation of glucose-lipid metabolism during the periparturient period, and promotes placental angiogenesis and foetal development by increasing plasma progesterone level and placental H2S content.
Collapse
Affiliation(s)
- J Peng
- Innovative Institute of Animal Healthy Breeding, College of Animal Science and Technology, College of Light Industry and Food Sciences, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
| | - Y Zhang
- Innovative Institute of Animal Healthy Breeding, College of Animal Science and Technology, College of Light Industry and Food Sciences, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
| | - Q Liu
- Innovative Institute of Animal Healthy Breeding, College of Animal Science and Technology, College of Light Industry and Food Sciences, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
| | - Y Tang
- Innovative Institute of Animal Healthy Breeding, College of Animal Science and Technology, College of Light Industry and Food Sciences, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
| | - W Zhang
- Innovative Institute of Animal Healthy Breeding, College of Animal Science and Technology, College of Light Industry and Food Sciences, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
| | - S Zheng
- Innovative Institute of Animal Healthy Breeding, College of Animal Science and Technology, College of Light Industry and Food Sciences, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
| | - W Huang
- Innovative Institute of Animal Healthy Breeding, College of Animal Science and Technology, College of Light Industry and Food Sciences, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China; College of Animal Science and Technology and Animal Medicine, Huazhong Agricultural University, Frontiers Science Center for Animal Breeding and Sustainable Production, Wuchang, Wuhan 430000, China
| | - M Yang
- Innovative Institute of Animal Healthy Breeding, College of Animal Science and Technology, College of Light Industry and Food Sciences, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
| | - Y He
- Innovative Institute of Animal Healthy Breeding, College of Animal Science and Technology, College of Light Industry and Food Sciences, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
| | - Z Li
- Innovative Institute of Animal Healthy Breeding, College of Animal Science and Technology, College of Light Industry and Food Sciences, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
| | - L Xie
- Innovative Institute of Animal Healthy Breeding, College of Animal Science and Technology, College of Light Industry and Food Sciences, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
| | - J Li
- School of Life and Health Science, Anhui Science and Technology University, Fengyang, Anhui 233100, China
| | - J Wang
- Division of AOS & CDC, Faculty of Dentistry, and State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong 999077, China
| | - Y Zhou
- College of Animal Science and Technology and Animal Medicine, Huazhong Agricultural University, Frontiers Science Center for Animal Breeding and Sustainable Production, Wuchang, Wuhan 430000, China.
| |
Collapse
|
17
|
Wang X, Feng S, Deng Q, Wu C, Duan R, Yang L. The role of estrogen in Alzheimer's disease pathogenesis and therapeutic potential in women. Mol Cell Biochem 2024:10.1007/s11010-024-05071-4. [PMID: 39088186 DOI: 10.1007/s11010-024-05071-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 07/11/2024] [Indexed: 08/02/2024]
Abstract
Estrogens are pivotal regulators of brain function throughout the lifespan, exerting profound effects from early embryonic development to aging. Extensive experimental evidence underscores the multifaceted protective roles of estrogens on neurons and neurotransmitter systems, particularly in the context of Alzheimer's disease (AD) pathogenesis. Studies have consistently revealed a greater risk of AD development in women compared to men, with postmenopausal women exhibiting heightened susceptibility. This connection between sex factors and long-term estrogen deprivation highlights the significance of estrogen signaling in AD progression. Estrogen's influence extends to key processes implicated in AD, including amyloid precursor protein (APP) processing and neuronal health maintenance mediated by brain-derived neurotrophic factor (BDNF). Reduced BDNF expression, often observed in AD, underscores estrogen's role in preserving neuronal integrity. Notably, hormone replacement therapy (HRT) has emerged as a sex-specific and time-dependent strategy for primary cardiovascular disease (CVD) prevention, offering an excellent risk profile against aging-related disorders like AD. Evidence suggests that HRT may mitigate AD onset and progression in postmenopausal women, further emphasizing the importance of estrogen signaling in AD pathophysiology. This review comprehensively examines the physiological and pathological changes associated with estrogen in AD, elucidating the therapeutic potential of estrogen-based interventions such as HRT. By synthesizing current knowledge, it aims to provide insights into the intricate interplay between estrogen signaling and AD pathogenesis, thereby informing future research directions and therapeutic strategies for this debilitating neurodegenerative disorder.
Collapse
Affiliation(s)
- Xinyi Wang
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Shu Feng
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Qianting Deng
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Chongyun Wu
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China.
- Laboratory of Regenerative Medicine in Sports Science, School of Physical Education and Sports Science, South China Normal University, Guangzhou, China.
| | - Rui Duan
- Laboratory of Regenerative Medicine in Sports Science, School of Physical Education and Sports Science, South China Normal University, Guangzhou, China
| | - Luodan Yang
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China.
| |
Collapse
|
18
|
Yoshida K, Hata Y, Ichimata S, Tanaka R, Nishida N. Prevalence and clinicopathological features of primary age-related tauopathy (PART): A large forensic autopsy study. Alzheimers Dement 2024; 20:5411-5420. [PMID: 38938196 PMCID: PMC11350034 DOI: 10.1002/alz.14037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/15/2024] [Accepted: 05/06/2024] [Indexed: 06/29/2024]
Abstract
INTRODUCTION Primary age-related tauopathy (PART), often regarded as a minimally symptomatic pathology of old age, lacks comprehensive cohorts across various age groups. METHODS We examined PART prevalence and clinicopathologic features in 1589 forensic autopsy cases (≥40 years old, mean age ± SD 70.2 ± 14.2 years). RESULTS PART cases meeting criteria for argyrophilic grain diseases (AGD) were AGD+PART (n = 181). The remaining PART cases (n = 719, 45.2%) were classified as comorbid conditions (PART-C, n = 90) or no comorbid conditions (pure PART, n = 629). Compared to controls (n = 208), Alzheimer's disease (n = 133), and AGD+PART, PART prevalence peaked in the individuals in their 60s (65.5%) and declined in the 80s (21.5%). No significant clinical background differences were found (excluding controls). However, PART-C in patients inclusive of age 80 had a higher suicide rate than pure PART (p < 0.05), and AGD+PART showed more dementia (p < 0.01) and suicide (p < 0.05) than pure PART. DISCUSSION Our results advocate a reevaluation of the PART concept and its diagnostic criteria. HIGHLIGHTS We investigated 1589 forensic autopsy cases to investigate the features of primary age-related tauopathy (PART). PART peaked in people in their 60s in our study. Many PART cases over 80s had comorbid pathologies in addition to neurofibrillary tangles pathology. Argyrophilic grain disease and Lewy pathology significantly affected dementia and suicide rates in PART. Our results suggest that the diagnostic criteria of PART need to be reconsidered.
Collapse
Affiliation(s)
- Koji Yoshida
- Department of Legal MedicineFaculty of MedicineUniversity of ToyamaToyamaJapan
- Tanz Centre for Research in Neurodegenerative DiseaseKrembil Discovery TowerUniversity of TorontoTorontoOntarioCanada
- Department of Laboratory Medicine and Pathobiology and Department of MedicineUniversity of TorontoTorontoOntarioCanada
| | - Yukiko Hata
- Department of Legal MedicineFaculty of MedicineUniversity of ToyamaToyamaJapan
| | - Shojiro Ichimata
- Department of Legal MedicineFaculty of MedicineUniversity of ToyamaToyamaJapan
| | - Ryo Tanaka
- Department of NeurologyToyama University HospitalToyamaJapan
| | - Naoki Nishida
- Department of Legal MedicineFaculty of MedicineUniversity of ToyamaToyamaJapan
| |
Collapse
|
19
|
Rohayem J, Alexander EC, Heger S, Nordenström A, Howard SR. Mini-Puberty, Physiological and Disordered: Consequences, and Potential for Therapeutic Replacement. Endocr Rev 2024; 45:460-492. [PMID: 38436980 PMCID: PMC11244267 DOI: 10.1210/endrev/bnae003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Indexed: 03/05/2024]
Abstract
There are 3 physiological waves of central hypothalamic-pituitary-gonadal (HPG) axis activity over the lifetime. The first occurs during fetal life, the second-termed "mini-puberty"-in the first months after birth, and the third at puberty. After adolescence, the axis remains active all through adulthood. Congenital hypogonadotropic hypogonadism (CHH) is a rare genetic disorder characterized by a deficiency in hypothalamic gonadotropin-releasing hormone (GnRH) secretion or action. In cases of severe CHH, all 3 waves of GnRH pulsatility are absent. The absence of fetal HPG axis activation manifests in around 50% of male newborns with micropenis and/or undescended testes (cryptorchidism). In these boys, the lack of the mini-puberty phase accentuates testicular immaturity. This is characterized by a low number of Sertoli cells, which are important for future reproductive capacity. Thus, absent mini-puberty will have detrimental effects on later fertility in these males. The diagnosis of CHH is often missed in infants, and even if recognized, there is no consensus on optimal therapeutic management. Here we review physiological mini-puberty and consequences of central HPG axis disorders; provide a diagnostic approach to allow for early identification of these conditions; and review current treatment options for replacement of mini-puberty in male infants with CHH. There is evidence from small case series that replacement with gonadotropins to mimic "mini-puberty" in males could have beneficial outcomes not only regarding testis descent, but also normalization of testis and penile sizes. Moreover, such therapeutic replacement regimens in disordered mini-puberty could address both reproductive and nonreproductive implications.
Collapse
Affiliation(s)
- Julia Rohayem
- Department of Pediatric Endocrinology and Diabetology, Children's Hospital of Eastern Switzerland, 9006 St. Gallen, Switzerland
- University of Muenster, 48149 Muenster, Germany
| | - Emma C Alexander
- Centre for Endocrinology, William Harvey Research Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | - Sabine Heger
- Department of Pediatric Endocrinology, Children's Hospital Auf der Bult, 30173 Hannover, Germany
| | - Anna Nordenström
- Pediatric Endocrinology, Karolinska Institutet, Astrid Lindgren Children's Hospital, Karolinska University Hospital, 17176 Stockholm, Sweden
| | - Sasha R Howard
- Centre for Endocrinology, William Harvey Research Institute, Queen Mary University of London, London EC1M 6BQ, UK
- Department of Paediatric Endocrinology, Royal London Children's Hospital, Barts Health NHS Trust, London E1 1FR, UK
| |
Collapse
|
20
|
Burmistrov DE, Gudkov SV, Franceschi C, Vedunova MV. Sex as a Determinant of Age-Related Changes in the Brain. Int J Mol Sci 2024; 25:7122. [PMID: 39000227 PMCID: PMC11241365 DOI: 10.3390/ijms25137122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/16/2024] Open
Abstract
The notion of notable anatomical, biochemical, and behavioral distinctions within male and female brains has been a contentious topic of interest within the scientific community over several decades. Advancements in neuroimaging and molecular biological techniques have increasingly elucidated common mechanisms characterizing brain aging while also revealing disparities between sexes in these processes. Variations in cognitive functions; susceptibility to and progression of neurodegenerative conditions, notably Alzheimer's and Parkinson's diseases; and notable disparities in life expectancy between sexes, underscore the significance of evaluating aging within the framework of gender differences. This comprehensive review surveys contemporary literature on the restructuring of brain structures and fundamental processes unfolding in the aging brain at cellular and molecular levels, with a focus on gender distinctions. Additionally, the review delves into age-related cognitive alterations, exploring factors influencing the acceleration or deceleration of aging, with particular attention to estrogen's hormonal support of the central nervous system.
Collapse
Affiliation(s)
- Dmitriy E. Burmistrov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilova St., 119991 Moscow, Russia;
| | - Sergey V. Gudkov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilova St., 119991 Moscow, Russia;
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia
| | - Claudio Franceschi
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia
| | - Maria V. Vedunova
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia
| |
Collapse
|
21
|
Dratva MA, Banks SJ, Panizzon MS, Galasko D, Sundermann EE. Low testosterone levels relate to poorer cognitive function in women in an APOE-ε4-dependant manner. Biol Sex Differ 2024; 15:45. [PMID: 38835072 PMCID: PMC11151480 DOI: 10.1186/s13293-024-00620-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/15/2024] [Indexed: 06/06/2024] Open
Abstract
BACKGROUND Past research suggests that low testosterone levels relate to poorer cognitive function and higher Alzheimer's disease (AD) risk; however, these findings are inconsistent and are mostly derived from male samples, despite similar age-related testosterone decline in females. Both animal and human studies demonstrate that testosterone's effects on brain health may be moderated by apolipoprotein E ε4 allele (APOE-ε4) carrier status, which may explain some previous inconsistencies. We examined how testosterone relates to cognitive function in older women versus men across healthy aging and the AD continuum and the moderating role of APOE-ε4 genotype. METHODS Five hundred and sixty one participants aged 55-90 (155 cognitively normal (CN), 294 mild cognitive impairment (MCI), 112 AD dementia) from the Alzheimer's Disease Neuroimaging Initiative (ADNI), who had baseline cognitive and plasma testosterone data, as measured by the Rules Based Medicine Human DiscoveryMAP Panel were included. There were 213 females and 348 males (self-reported sex assigned at birth), and 52% of the overall sample were APOE-ε4 carriers. We tested the relationship of plasma testosterone levels and its interaction with APOE-ε4 status on clinical diagnostic group (CN vs. MCI vs. AD), global, and domain-specific cognitive performance using ANOVAs and linear regression models in sex-stratified samples. Cognitive domains included verbal memory, executive function, processing speed, and language. RESULTS We did not observe a significant difference in testosterone levels between clinical diagnostic groups in either sex, regrardless of APOE-ε4 status. Across clinical diagnostic group, we found a significant testosterone by APOE-ε4 interaction in females, such that lower testosterone levels related to worse global cognition, processing speed, and verbal memory in APOE-ε4 carriers only. We did not find that testosterone, nor its interaction with APOE-ε4, related to cognitive outcomes in males. CONCLUSIONS Findings suggest that low testosterone levels in older female APOE-ε4 carriers across the aging-MCI-AD continuum may have deleterious, domain-specific effects on cognitive performance. Although future studies including additional sex hormones and longitudinal cognitive trajectories are needed, our results highlight the importance of including both sexes and considering APOE-ε4 carrier status when examining testosterone's role in cognitive health.
Collapse
Affiliation(s)
- Melanie A Dratva
- Department of Neurosciences, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, USA.
- UCSD ACTRI Building, 2W502-B8, 9452 Medical Center Drive (MC-0841), La Jolla, CA, 92037, USA.
| | - Sarah J Banks
- Department of Neurosciences, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, USA
| | - Matthew S Panizzon
- Department of Psychiatry, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, USA
- Center for Behavior Genetics of Aging, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA, 92092, USA
| | - Douglas Galasko
- Department of Neurosciences, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, USA
| | - Erin E Sundermann
- Department of Psychiatry, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, USA
| |
Collapse
|
22
|
Cignarella A, Bolego C, Barton M. Sex and sex steroids as determinants of cardiovascular risk. Steroids 2024; 206:109423. [PMID: 38631602 DOI: 10.1016/j.steroids.2024.109423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/08/2024] [Accepted: 04/14/2024] [Indexed: 04/19/2024]
Abstract
There are considerable sex differences regarding the risk of cardiovascular disease (CVD), including arterial hypertension, coronary artery disease (CAD) and stroke, as well as chronic renal disease. Women are largely protected from these conditions prior to menopause, and the risk increases following cessation of endogenous estrogen production or after surgical menopause. Cardiovascular diseases in women generally begin to occur at a later age than in men (on average with a delay of 10 years). Cessation of estrogen production also impacts metabolism, increasing the risk of developing obesity and diabetes. In middle-aged individuals, hypertension develops earlier and faster in women than in men, and smoking increases cardiovascular risk to a greater degree in women than it does in men. It is not only estrogen that affects female cardiovascular health and plays a protective role until menopause: other sex hormones such as progesterone and androgen hormones generate a complex balance that differentiates heart and blood vessel function in women compared to men. Estrogens improve vasodilation of epicardial coronary arteries and the coronary microvasculature by augmenting the release of vasodilating factors such as nitric oxide and prostacyclin, which are mechanisms of coronary vasodilatation that are more pronounced in women compared to men. Estrogens are also powerful inhibitors of inflammation, which in part explains their protective effects on CVD and chronic renal disease. Emerging evidence suggests that sex chromosomes also play a significant role in shaping cardiovascular risk. The cardiovascular protection conferred by endogenous estrogens may be extended by hormone therapy, especially using bioidentical hormones and starting treatment early after menopause.
Collapse
Affiliation(s)
| | - Chiara Bolego
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Matthias Barton
- Molecular Internal Medicine, University of Zürich, Zürich, Switzerland; Andreas Grüntzig Foundation, Zürich, Switzerland.
| |
Collapse
|
23
|
Fruzzetti F, Fidecicchi T, Gambacciani M. Oestrogens in oral contraception: considerations for tailoring prescription to women's needs. EUR J CONTRACEP REPR 2024; 29:93-102. [PMID: 38683756 DOI: 10.1080/13625187.2024.2334350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/19/2024] [Indexed: 05/02/2024]
Abstract
BACKGROUND The oestrogenic component of combined oral contraceptives (COCs) has changed over years with the aim of reducing oestrogen-related side effects and risks, whilst maintaining oestrogen beneficial effects, particularly on cycle control. PURPOSE To describe the pharmacological profiles of different oestrogens commonly used in COCs to provide insights on contraceptive prescription tailored to women's needs. RESULTS All COCs ensure a high contraceptive efficacy. COCs containing the natural oestrogens oestradiol (E2), oestradiol valerate (E2V) and estetrol (E4) have limited impact on liver metabolism, lipid and carbohydrate metabolism, haemostasis and sex hormone binding globulin levels, compared with ethinylestradiol (EE). COCs with E2 and E2V appear also to entail a lower elevation of the risk of venous thromboembolism vs. EE-containing pills. No epidemiological data are available for E4-COC. E2- and E2V-containing COCs seem to exert a less stabilising oestrogenic effect on the endometrium compared with EE-COCs. The E4-COC results in a predictable bleeding pattern with a high rate of scheduled bleeding and minimal unscheduled bleeding per cycle. Based on in vitro and in vivo animal data, E4 seems to be associated with a lower effect on cell breast proliferation. CONCLUSION Today various COCs contain different oestrogens. Prescribers must be familiar with the different properties of each oestrogen for a tailored contraceptive recommendation, considering their safety and contraceptive efficacy, as well as women's needs and preferences.
Collapse
Affiliation(s)
- Franca Fruzzetti
- Gynecological Endocrinology Unit, San Rossore Clinical Center, Pisa, Italy
| | - Tiziana Fidecicchi
- Department of Obstetrics and Gynecology, Ospedale Santa Chiara, University of Pisa, Pisa, Italy
| | - Marco Gambacciani
- Gynecological Endocrinology Unit, San Rossore Clinical Center, Pisa, Italy
| |
Collapse
|
24
|
Gandhi N, Omer S, Harrison RE. In Vitro Cell Culture Model for Osteoclast Activation during Estrogen Withdrawal. Int J Mol Sci 2024; 25:6134. [PMID: 38892322 PMCID: PMC11173070 DOI: 10.3390/ijms25116134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
Estrogen (17β-estradiol) deficiency post-menopause alters bone homeostasis whereby bone resorption by osteoclasts exceeds bone formation by osteoblasts, leading to osteoporosis in females. We established an in vitro model to examine the consequences of estrogen withdrawal (E2-WD) on osteoclasts derived from the mouse macrophage RAW 264.7 cell line and utilized it to investigate the mechanism behind the enhanced osteoclast activity post-menopause. We found that a greater population of osteoclasts that underwent E2-WD contained a podosome belt necessary for osteoclasts to adhere and resorb bone and possessed elevated resorptive activity compared to osteoclasts exposed to estrogen (E2) continuously. Our results show that compared to osteoclasts that received E2 continuously, those that underwent E2-WD had a faster rate of microtubule (MT) growth, reduced RhoA activation, and shorter podosome lifespan. Thus, altered podosome and MT dynamics induced by the withdrawal of estrogen supports podosome belt assembly/stability in osteoclasts, which may explain their enhanced bone resorption activity.
Collapse
Affiliation(s)
- Nisha Gandhi
- Department of Cell & Systems Biology, University of Toronto Scarborough, Toronto, ON M1C 1A4, Canada;
| | - Safia Omer
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON M1C 1A4, Canada;
| | - Rene E. Harrison
- Department of Cell & Systems Biology, University of Toronto Scarborough, Toronto, ON M1C 1A4, Canada;
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON M1C 1A4, Canada;
| |
Collapse
|
25
|
Chavda VP, Chaudhari AZ, Balar PC, Gholap A, Vora LK. Phytoestrogens: Chemistry, potential health benefits, and their medicinal importance. Phytother Res 2024; 38:3060-3079. [PMID: 38602108 DOI: 10.1002/ptr.8196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 01/27/2024] [Accepted: 03/13/2024] [Indexed: 04/12/2024]
Abstract
Phytoestrogens, also known as xenoestrogens, are secondary metabolites derived from plants that have similar structures and biological effects as human estrogens. These compounds do not directly affect biological functions but can act as agonists or antagonists depending on the level of endogenous estrogen in the body. Phytoestrogens may have an epigenetic mechanism of action independent of estrogen receptors. These compounds are found in more than 300 plant species and are synthesized through the phenylpropanoid pathway, with specific enzymes leading to various chemical structures. Phytoestrogens, primarily phenolic compounds, include isoflavonoids, flavonoids, stilbenes, and lignans. Extensive research in animals and humans has demonstrated the protective effects of phytoestrogens on estrogen-dependent diseases. Clinical trials have also shown their potential benefits in conditions such as osteoporosis, Parkinson's disease, and certain types of cancer. This review provides a concise overview of phytoestrogen classification, chemical diversity, and biosynthesis and discusses the potential therapeutic effects of phytoestrogens, as well as their preclinical and clinical development.
Collapse
Affiliation(s)
- Vivek P Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, L.M. College of Pharmacy, Ahmedabad, India
| | - Amit Z Chaudhari
- Department of Pharmaceutical Chemistry, L. M. College of Pharmacy, Ahmedabad, Gujarat, India
| | - Pankti C Balar
- Pharmacy section, L.M. College of Pharmacy, Ahmedabad, India
| | - Amol Gholap
- Department of Pharmaceutics, St. John Institute of Pharmacy and Research, Palghar, Maharashtra, India
| | | |
Collapse
|
26
|
Azmy Nabeh O, Amr A, Faoosa AM, Esmat E, Osama A, Khedr AS, Amin B, Saud AI, Elmorsy SA. Emerging Perspectives on the Impact of Diabetes Mellitus and Anti-Diabetic Drugs on Premenstrual Syndrome. A Narrative Review. Diabetes Ther 2024; 15:1279-1299. [PMID: 38668996 PMCID: PMC11096298 DOI: 10.1007/s13300-024-01585-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 04/08/2024] [Indexed: 05/16/2024] Open
Abstract
Diabetes mellitus (DM) and premenstrual syndrome (PMS) are global health challenges. Both disorders are often linked to a range of physical and psychological symptoms that significantly impact the quality of life of many women. Yet, the exact relation between DM and PMS is not clear, and the management of both conditions poses a considerable challenge. In this review, we aimed to investigate the interplay between DM, anti-diabetic drugs, and the different theories and symptoms of PMS. Female sex hormones are implicated in the pathophysiology of PMS and can also impair blood glucose control. In addition, patients with diabetes face a higher susceptibility to anxiety and depression disorders, with a significant number of patients experiencing symptoms such as fatigue and difficulty concentrating, which are reported in patients with PMS as well. Complications related to diabetic medications, such as hypoglycemia (with sulfonylurea) and fluid retention (with thiazolidinediones) may also mediate PMS-like symptoms. DM can, in addition, disturb the normal gut microbiota (GM), with a consequent loss of beneficial GM metabolites that guard against PMS, particularly the short-chain fatty acids and serotonin. Among the several available anti-diabetic drugs, those (1) with an anti-inflammatory potential, (2) that can preserve the beneficial GM, and (3) possessing a lower risk for hypoglycemia, might have a favorable outcome in PMS women. Yet, well-designed clinical trials are needed to investigate the anti-diabetic drug(s) of choice for patients with diabetes and PMS.
Collapse
Affiliation(s)
- Omnia Azmy Nabeh
- Kasr Alainy Faculty of Medicine, Cairo University, Cairo, Egypt.
| | - Alaa Amr
- Kasr Alainy Faculty of Medicine, Cairo University, Cairo, Egypt
| | | | - Eshraka Esmat
- Kasr Alainy Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Alaa Osama
- Kasr Alainy Faculty of Medicine, Cairo University, Cairo, Egypt
| | | | - Basma Amin
- Kasr Alainy Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Alaa I Saud
- Kasr Alainy Faculty of Medicine, Cairo University, Cairo, Egypt
| | | |
Collapse
|
27
|
Granger K, Fitch S, Shen M, Lloyd J, Bhurke A, Hancock J, Ye X, Arora R. Murine uterine gland branching is necessary for gland function in implantation. Mol Hum Reprod 2024; 30:gaae020. [PMID: 38788747 PMCID: PMC11176042 DOI: 10.1093/molehr/gaae020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
Uterine glands are branched, tubular structures whose secretions are essential for pregnancy success. It is known that pre-implantation glandular expression of leukemia inhibitory factor (LIF) is crucial for embryo implantation; however, the contribution of uterine gland structure to gland secretions, such as LIF, is not known. Here, we use mice deficient in estrogen receptor 1 (ESR1) signaling to uncover the role of ESR1 signaling in gland branching and the role of a branched structure in LIF secretion and embryo implantation. We observed that deletion of ESR1 in neonatal uterine epithelium, stroma, and muscle using the progesterone receptor PgrCre causes a block in uterine gland development at the gland bud stage. Embryonic epithelial deletion of ESR1 using a Müllerian duct Cre line, Pax2Cre, displays gland bud elongation but a failure in gland branching. Reduction of ESR1 in adult uterine epithelium using the lactoferrin-Cre (LtfCre) displays normally branched uterine glands. Unbranched glands from Pax2Cre Esr1flox/flox uteri fail to express glandular pre-implantation Lif, preventing implantation chamber formation and embryo alignment along the uterine mesometrial-antimesometrial axis. In contrast, branched glands from LtfCre Esr1flox/flox uteri display reduced expression of ESR1 and glandular Lif resulting in delayed implantation chamber formation and embryo-uterine axes alignment but mice deliver a normal number of pups. Finally, pre-pubertal unbranched glands in control mice express Lif in the luminal epithelium but fail to express Lif in the glandular epithelium, even in the presence of estrogen. These data strongly suggest that branched glands are necessary for pre-implantation glandular Lif expression for implantation success. Our study is the first to identify a relationship between the branched structure and secretory function of uterine glands and provides a framework for understanding how uterine gland structure-function contributes to pregnancy success.
Collapse
Affiliation(s)
- Katrina Granger
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, East Lansing, MI, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - Sarah Fitch
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, East Lansing, MI, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - May Shen
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, East Lansing, MI, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - Jarrett Lloyd
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, East Lansing, MI, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - Aishwarya Bhurke
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, East Lansing, MI, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - Jonathan Hancock
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
- Interdisciplinary Toxicology Program, University of Georgia, Athens, GA, USA
| | - Xiaoqin Ye
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
- Interdisciplinary Toxicology Program, University of Georgia, Athens, GA, USA
| | - Ripla Arora
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, East Lansing, MI, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
28
|
Skalski HJ, Arendt AR, Harkins SK, MacLachlan M, Corbett CJM, Goy RW, Kapoor A, Hostetter G, Chandler RL. Key Considerations for Studying the Effects of High-Fat Diet on the Nulligravid Mouse Endometrium. J Endocr Soc 2024; 8:bvae104. [PMID: 38854907 PMCID: PMC11156617 DOI: 10.1210/jendso/bvae104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Indexed: 06/11/2024] Open
Abstract
The obesity epidemic continues to increase, with half of US women predicted to be obese by 2030. Women with obesity are at increased risk for not only cardiovascular and liver disease, but also reproductive disorders. Although mouse models are useful in studying the effects of obesity, there is inconsistency in obesity-induction methods, diet composition, and mouse strains, and studies using female mice are limited. In this study, we sought to compare the effects of a 45% high-fat diet (HFD) versus a 60% HFD on the uterine estrous cycle of nulligravid C57BL/6J mice. For 22 weeks, we placed a total of 20 mice on either a 60% HFD, 45% HFD, or each HFD-matched control diet (CD). Both HFDs produced significant weight gain, with 60% HFD and 45% HFD gaining significant weight after 2 weeks and 15 weeks, respectively. Additionally, both HFDs led to glucose intolerance, fatty liver, and adipocyte hypertrophy. Mice fed 60% HFD displayed hyperphagia in the first 12 weeks of HFD treatment. Moreover, 60% HFD-treated mice had a longer estrous cycle length and an increased percentage of estrus stage samplings compared to CD-treated mice. Estrous cycle stage-controlled 60% HFD-treated mice displayed an increased estrogen-to-progesterone ratio and decreased ovarian corpora lutea compared to CD-treated mice, which may underlie the observed estrous cycle differences. There was no significant difference between diets regarding endometrial morphology or the percent of endometrial CD45+ immune cells. Our results indicate that consideration is needed when selecting a HFD-induced obesity mouse model for research involving female reproductive health.
Collapse
Affiliation(s)
- Hilary J Skalski
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA
| | - Amelia R Arendt
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA
| | - Shannon K Harkins
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA
| | - Madison MacLachlan
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA
| | - Cody J M Corbett
- Wisconsin National Primate Research Center, Assay Services, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Robinson W Goy
- Wisconsin National Primate Research Center, Assay Services, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Amita Kapoor
- Wisconsin National Primate Research Center, Assay Services, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Galen Hostetter
- Pathology and Biorepository Core, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Ronald L Chandler
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA
- Department for Epigenetics, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| |
Collapse
|
29
|
Ahanchi NS, Fischer AS, Quezada-Pinedo HG, Khatami F, Eisenga MF, Muka T, Vidal PM. Cross-sectional and longitudinal associations of Iron biomarkers and cardiovascular risk factors in pre- and postmenopausal women: leveraging repeated measurements to address natural variability. Cardiovasc Diabetol 2024; 23:158. [PMID: 38715055 PMCID: PMC11077797 DOI: 10.1186/s12933-024-02242-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 04/21/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND The association between iron biomarkers and cardiovascular disease risk factors (CVD-RFs) remains unclear. We aimed to (1) evaluate the cross-sectional and longitudinal associations between iron biomarkers (serum ferritin, transferrin saturation (TSAT), transferrin) and CVD-RFs among women, and (2) explore if these associations were modified by menopausal status. METHOD Cross-sectional and longitudinal analyses including 2542 and 1482 women from CoLaus cohort, respectively. Multiple linear regression and multilevel mixed models were used to analyse the associations between Iron biomarkers and CVD-RFs. Variability of outcomes and iron markers between surveys was accessed using intraclass correlation (ICC). RESULTS After multivariable adjustment, elevated serum ferritin levels were associated with increased insulin and glucose levels, while higher transferrin levels were linked to elevated glucose, insulin and total cholesterol, and systolic and diastolic blood pressure (p < 0.05). No association was observed between CVD-RFs and TSAT (p > 0.05). Iron biomarkers demonstrated low reliability across reproductive stages but exhibited stronger associations in the perimenopausal group. In longitudinal analysis, we found association only for transferrin with lower glucose levels [β = - 0.59, 95% CI (- 1.10, - 0.08), p = 0.02] and lower diastolic blood pressure [β = - 7.81, 95% CI (- 15.9, - 0.56), p = 0.04]. CONCLUSION In cross-sectional analysis, transferrin was associated with several CVD-RFs, and the associations did not change according to menopausal status. Conversely, in the longitudinal analyses, changes in transferrin were associated only with lower glucose and diastolic blood pressure levels. These differences might stem from the substantial longitudinal variation of iron biomarkers, underscoring the need for multiple iron measurements in longitudinal analyses.
Collapse
Affiliation(s)
- Noushin Sadat Ahanchi
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland.
- Graduate School for Health Sciences, University of Bern, Bern, Switzerland.
- Department of Internal Medicine, Internal Medicine, Lausanne University Hospital, Lausanne, Switzerland.
| | - Amira Salomé Fischer
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
| | - Hugo G Quezada-Pinedo
- Department of Cardiology, Bern University Hospital, University of Bern, Bern, Switzerland
- The Generation R Study Group, Rotterdam, Netherlands
| | - Farnaz Khatami
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
- Graduate School for Health Sciences, University of Bern, Bern, Switzerland
- Community Medicine Department, Tehran University of Medical Sciences, Tehran, Iran
| | - Michele F Eisenga
- Division of Nephrology, Department of Internal Medicine, University of Groningen, Groningen, Netherlands
| | - Taulant Muka
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
- Epistudia, Bern, Switzerland
| | - Pedro-Marques Vidal
- Department of Internal Medicine, Internal Medicine, Lausanne University Hospital, Lausanne, Switzerland.
| |
Collapse
|
30
|
Min SY, Yong HJ, Kim D. Sex or gender differences in treatment outcomes of sepsis and septic shock. Acute Crit Care 2024; 39:207-213. [PMID: 38863351 PMCID: PMC11167424 DOI: 10.4266/acc.2024.00591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/12/2024] [Accepted: 04/12/2024] [Indexed: 06/13/2024] Open
Abstract
Gender disparities in intensive care unit (ICU) treatment approaches and outcomes are evident. However, clinicians often pay little attention to the importance of biological sex and sociocultural gender in their treatment courses. Previous studies have reported that differences between sexes or genders can significantly affect the manifestation of diseases, diagnosis, clinicians' treatment decisions, scope of treatment, and treatment outcomes in the intensive care field. In addition, numerous reports have suggested that immunomodulatory effects of sex hormones and differences in gene expression from X chromosomes between genders might play a significant role in treatment outcomes of various diseases. However, results from clinical studies are conflicting. Recently, the need for customized treatment based on physical, physiological, and genetic differences between females and males and sociocultural characteristics of society have been increasingly emphasized. However, interest in and research into this field are remarkably lacking in Asian countries, including South Korea. Through this review, we hope to enhance our awareness of the importance of sex and gender in intensive care treatment and research by briefly summarizing several principal issues, mainly focusing on sex and sex hormone-based outcomes in patients admitted to the ICU with sepsis and septic shock.
Collapse
Affiliation(s)
- Seung Yeon Min
- Department of Internal Medicine, Dankook University Hospital, Cheonan, Korea
| | - Ho Jin Yong
- Department of Internal Medicine, Dankook University Hospital, Cheonan, Korea
| | - Dohhyung Kim
- Division of Pulmonary Medicine and Allergy, Department of Internal Medicine, Dankook University Hospital, Dankook University College of Medicine, Cheonan, Korea
| |
Collapse
|
31
|
Trout AL, McLouth CJ, Westberry JM, Sengoku T, Wilson ME. Estrogen's sex-specific effects on ischemic cell death and estrogen receptor mRNA expression in rat cortical organotypic explants. AGING BRAIN 2024; 5:100117. [PMID: 38650743 PMCID: PMC11033203 DOI: 10.1016/j.nbas.2024.100117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 02/14/2024] [Accepted: 04/09/2024] [Indexed: 04/25/2024] Open
Abstract
Estrogens, such as the biologically active 17-β estradiol (E2), regulate not only reproductive behaviors in adults, but also influence neurodevelopment and neuroprotection in both females and males. E2, contingent upon the timing and concentration of the therapy, is neuroprotective in female and male rodent models of stroke. In Vivo studies suggest that E2 may partially mediate this neuroprotection, particularly in the cortex, via ERα. In Vitro studies, utilizing a chemically induced ischemic injury in cortical explants from both sexes, suggest that ERα or ERβ signaling is needed to mediate the E2 protection. Since we know that the timing and concentration of E2 therapy may be sex-specific, we examined if E2 (1 nM) mediates neuroprotection when female and male cortical explants are separately isolated from postnatal day (PND) 3-4 rat. Changes in basal levels ERα, ERβ, and AR mRNA expression are compared across early post-natal development in the intact cortex and the corresponding days in vitro (DIV) for cortical explants. Following ischemic injury at 7 DIV, cell death and ERα, ERβ and AR mRNA expression was compared in female and male cortical explants. We provide evidence that E2-mediated protection is maintained in isolated cortical explants from females, but not male rats. In female cortical explants, the E2-mediated protection at 24 h occurs secondarily to a blunted transient increase in ERα mRNA at 12 h. These results suggest that cortical E2-mediated protection is influenced by sex and supports data to differentially treat females and males following ischemic injury.
Collapse
Affiliation(s)
- Amanda L. Trout
- Department of Physiology, University of Kentucky, Lexington, KY 40536, USA
- Department of Neurosurgery, University of Kentucky, Lexington, KY 40536, USA
| | - Christopher J McLouth
- Department of Neurology, University of Kentucky, Lexington, KY, 40536, USA
- Department of Biostatistics, University of Kentucky, Lexington, KY, 40536, USA
| | - Jenne M. Westberry
- Department of Physiology, University of Kentucky, Lexington, KY 40536, USA
| | - Tomoko Sengoku
- Department of Physiology, University of Kentucky, Lexington, KY 40536, USA
| | - Melinda E. Wilson
- Department of Physiology, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
32
|
Wang Y, Islam RM, Hussain SM, McNeil JJ, Davis SR. Associations Between Blood Concentrations of Sex Hormones and Physical Function in Community-Dwelling Older Women: A Prospective Cohort Study. J Gerontol A Biol Sci Med Sci 2024; 79:glad287. [PMID: 38157294 PMCID: PMC10919882 DOI: 10.1093/gerona/glad287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Indexed: 01/03/2024] Open
Abstract
BACKGROUND Blood concentrations of testosterone and estrone tend to increase in women aged ≥70 years, whereas concentrations of their precursor hormone dehydroepiandrosterone decline. It is unknown whether these changes influence physical function. We investigated whether concentrations of these hormones were associated with grip strength and self-reported physical function in community-dwelling older women. METHODS A total of 9 179 Australian women, aged ≥70 years, were recruited to the ASPirin in Reducing Events in the Elderly (ASPREE) trial. Sex hormones were measured in Sex Hormones in Older Women, an ASPREE substudy, by liquid chromatography-tandem mass spectrometry in 6 358 women. The associations between hormone concentrations and physical function (handgrip strength and self-reported physical function assessed by SF-12v2 physical component summary [PCS]) were examined using multiple linear regression. RESULTS The median age of the 5,447 participants was 74.0 (interquartile range 71.7-77.6) years. Testosterone concentrations above the lowest quartile were associated with less decline in grip strength (mean -1.39 [95% CI -1.54 to -1.24] vs -1.75 [-2.00 to -1.50] kg, p = .02), and dehydroepiandrosterone concentrations above the lowest quartile were associated with less decline in grip strength (-1.39 [-1.54 to -1.25] vs -1.82 [-2.11 to -1.55] kg, p = .007) and PCS scores (-1.49 [-1.80 to -1.17] vs -2.33 [-2.93 to -1.72], p = .02) over 4 years, compared with those in the respective lowest quartile. CONCLUSIONS Low endogenous concentrations of testosterone and dehydroepiandrosterone were associated the greatest likelihood of physical function decline in community-based women aged ≥70 years. Further studies are warranted to determine whether testosterone and dehydroepiandrosterone therapy prevent functional decline in this at-risk group using sensitive measures of muscle strength and performance.
Collapse
Affiliation(s)
- Yuanyuan Wang
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Rakibul M Islam
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Sultana Monira Hussain
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - John J McNeil
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Susan R Davis
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
- Department of Endocrinology and Diabetes, Alfred Health, Melbourne, Victoria, Australia
| |
Collapse
|
33
|
Peltier MR, Verplaetse TL, Altemus M, Zakiniaeiz Y, Ralevski EA, Mineur YS, Gueorguieva R, Picciotto MR, Cosgrove KP, Petrakis I, McKee SA. The role of neurosteroids in posttraumatic stress disorder and alcohol use disorder: A review of 10 years of clinical literature and treatment implications. Front Neuroendocrinol 2024; 73:101119. [PMID: 38184208 PMCID: PMC11185997 DOI: 10.1016/j.yfrne.2023.101119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 12/08/2023] [Accepted: 12/31/2023] [Indexed: 01/08/2024]
Abstract
Rates of alcohol use disorder (AUD) are increasing in men and women and there are high rates of concurrent posttraumatic stress disorder (PTSD) and AUD. AUD and PTSD synergistically increase symptomatology and negatively affect treatment outcomes; however, there are very limited pharmacological treatments for PTSD/AUD. Neurosteroids have been implicated in the underlying neurobiological mechanisms of both PTSD and AUD and may be a target for treatment development. This review details the past ten years of research on pregnenolone, progesterone, allopregnanolone, pregnanolone, estradiol, testosterone and dehydroepiandrosterone/dehydroepiandrosterone-sulfate (DHEA/DHEA-S) in the context of PTSD and AUD, including examination of trauma/alcohol-related variables, such as stress-reactivity. Emerging evidence that exogenous pregnenolone, progesterone, and allopregnanolone may be promising, novel interventions is also discussed. Specific emphasis is placed on examining the application of sex as a biological variable in this body of literature, given that women are more susceptible to both PTSD diagnoses and stress-related alcohol consumption.
Collapse
Affiliation(s)
- MacKenzie R Peltier
- Yale School of Medicine, Department of Psychiatry, New Haven, CT 06519, USA; VA Connecticut Healthcare System, Mental Health Service, West Haven, CT 06516, USA; National Center for PTSD, Clinical Neuroscience Division, West Haven, CT 06516, USA.
| | | | - Margaret Altemus
- Yale School of Medicine, Department of Psychiatry, New Haven, CT 06519, USA; VA Connecticut Healthcare System, Mental Health Service, West Haven, CT 06516, USA
| | - Yasmin Zakiniaeiz
- Yale School of Medicine, Department of Psychiatry, New Haven, CT 06519, USA
| | - Elizabeth A Ralevski
- Yale School of Medicine, Department of Psychiatry, New Haven, CT 06519, USA; VA Connecticut Healthcare System, Mental Health Service, West Haven, CT 06516, USA
| | - Yann S Mineur
- Yale School of Medicine, Department of Psychiatry, New Haven, CT 06519, USA
| | - Ralitza Gueorguieva
- Yale School of Medicine, Department of Psychiatry, New Haven, CT 06519, USA; Department of Biostatistics, School of Public Health, Yale University, New Haven, CT, USA
| | - Marina R Picciotto
- Yale School of Medicine, Department of Psychiatry, New Haven, CT 06519, USA
| | - Kelly P Cosgrove
- Yale School of Medicine, Department of Psychiatry, New Haven, CT 06519, USA; National Center for PTSD, Clinical Neuroscience Division, West Haven, CT 06516, USA; Department of Radiology and Biomedical Imaging, School of Medicine, Yale University, New Haven, CT, USA
| | - Ismene Petrakis
- Yale School of Medicine, Department of Psychiatry, New Haven, CT 06519, USA; VA Connecticut Healthcare System, Mental Health Service, West Haven, CT 06516, USA; National Center for PTSD, Clinical Neuroscience Division, West Haven, CT 06516, USA
| | - Sherry A McKee
- Yale School of Medicine, Department of Psychiatry, New Haven, CT 06519, USA
| |
Collapse
|
34
|
Lee J, Wang ZM, Messi ML, Milligan C, Furdui CM, Delbono O. Sex differences in single neuron function and proteomics profiles examined by patch-clamp and mass spectrometry in the locus coeruleus of the adult mouse. Acta Physiol (Oxf) 2024; 240:e14123. [PMID: 38459766 PMCID: PMC11021178 DOI: 10.1111/apha.14123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/16/2024] [Accepted: 02/19/2024] [Indexed: 03/10/2024]
Abstract
AIMS This study aimed to characterize the properties of locus coeruleus (LC) noradrenergic neurons in male and female mice. We also sought to investigate sex-specific differences in membrane properties, action potential generation, and protein expression profiles to understand the mechanisms underlying neuronal excitability variations. METHODS Utilizing a genetic mouse model by crossing Dbhcre knock-in mice with tdTomato Ai14 transgenic mice, LC neurons were identified using fluorescence microscopy. Neuronal functional properties were assessed using patch-clamp recordings. Proteomic analyses of individual LC neuron soma was conducted using mass spectrometry to discern protein expression profiles. Data are available via ProteomeXchange with identifier PXD045844. RESULTS Female LC noradrenergic neurons displayed greater membrane capacitance than those in male mice. Male LC neurons demonstrated greater spontaneous and evoked action potential generation compared to females. Male LC neurons exhibited a lower rheobase and achieved higher peak frequencies with similar current injections. Proteomic analysis revealed differences in protein expression profiles between sexes, with male mice displaying a notably larger unique protein set compared to females. Notably, pathways pertinent to protein synthesis, degradation, and recycling, such as EIF2 and glucocorticoid receptor signaling, showed reduced expression in females. CONCLUSIONS Male LC noradrenergic neurons exhibit higher intrinsic excitability compared to those from females. The discernible sex-based differences in excitability could be ascribed to varying protein expression profiles, especially within pathways that regulate protein synthesis and degradation. This study lays the groundwork for future studies focusing on the interplay between proteomics and neuronal function examined in individual cells.
Collapse
Affiliation(s)
- Jingyun Lee
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157
| | - Zhong-Min Wang
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157
| | - María Laura Messi
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157
| | - Carol Milligan
- Department of Translational Neuroscience, Wake Forest University School of Medicine, Winston-Salem, NC 27157
| | - Cristina M. Furdui
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157
| | - Osvaldo Delbono
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157
| |
Collapse
|
35
|
Dignam JP, Sharma S, Stasinopoulos I, MacLean MR. Pulmonary arterial hypertension: Sex matters. Br J Pharmacol 2024; 181:938-966. [PMID: 37939796 DOI: 10.1111/bph.16277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 11/10/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a complex disease of multifactorial origin. While registries have demonstrated that women are more susceptible to the disease, females with PAH have superior right ventricle (RV) function and a better prognosis than their male counterparts, a phenomenon referred to as the 'estrogen paradox'. Numerous pre-clinical studies have investigated the involvement of sex hormones in PAH pathobiology, often with conflicting results. However, recent advances suggest that abnormal estrogen synthesis, metabolism and signalling underpin the sexual dimorphism of this disease. Other sex hormones, such as progesterone, testosterone and dehydroepiandrosterone may also play a role. Several non-hormonal factor including sex chromosomes and epigenetics have also been implicated. Though the underlying pathophysiological mechanisms are complex, several compounds that modulate sex hormones levels and signalling are under investigation in PAH patients. Further elucidation of the estrogen paradox will set the stage for the identification of additional therapeutic targets for this disease.
Collapse
Affiliation(s)
- Joshua P Dignam
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, Scotland, UK
| | - Smriti Sharma
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, Scotland, UK
| | - Ioannis Stasinopoulos
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, Scotland, UK
- Mass Spectrometry Core, Edinburgh Clinical Research Facility, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, Scotland, UK
| | - Margaret R MacLean
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, Scotland, UK
| |
Collapse
|
36
|
Rio P, Caldarelli M, Chiantore M, Ocarino F, Candelli M, Gasbarrini A, Gambassi G, Cianci R. Immune Cells, Gut Microbiota, and Vaccines: A Gender Perspective. Cells 2024; 13:526. [PMID: 38534370 DOI: 10.3390/cells13060526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 03/11/2024] [Accepted: 03/15/2024] [Indexed: 03/28/2024] Open
Abstract
The development of preventive and therapeutic vaccines has played a crucial role in preventing infections and treating chronic and non-communicable diseases, respectively. For a long time, the influence of sex differences on modifying health and disease has not been addressed in clinical and preclinical studies. The interaction of genetic, epigenetic, and hormonal factors plays a role in the sex-related differences in the epidemiology of diseases, clinical manifestations, and the response to treatment. Moreover, sex is one of the leading factors influencing the gut microbiota composition, which could further explain the different predisposition to diseases in men and women. In the same way, differences between sexes occur also in the immune response to vaccines. This narrative review aims to highlight these differences, focusing on the immune response to vaccines. Comparative data about immune responses, vaccine effectiveness, and side effects are reviewed. Hence, the intricate interplay between sex, immunity, and the gut microbiota will be discussed for its potential role in the response to vaccination. Embracing a sex-oriented perspective in research may improve the efficacy of the immune response and allow the design of tailored vaccine schedules.
Collapse
Affiliation(s)
- Pierluigi Rio
- Department of Translational Medicine and Surgery, Catholic University of Rome, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| | - Mario Caldarelli
- Department of Translational Medicine and Surgery, Catholic University of Rome, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| | - Monica Chiantore
- Department of Translational Medicine and Surgery, Catholic University of Rome, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| | - Francesca Ocarino
- Department of Translational Medicine and Surgery, Catholic University of Rome, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| | - Marcello Candelli
- Department of Emergency, Anesthesiological and Reanimation Sciences, Catholic University of Rome, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| | - Antonio Gasbarrini
- Department of Translational Medicine and Surgery, Catholic University of Rome, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| | - Giovanni Gambassi
- Department of Translational Medicine and Surgery, Catholic University of Rome, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| | - Rossella Cianci
- Department of Translational Medicine and Surgery, Catholic University of Rome, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| |
Collapse
|
37
|
Chen Z, Si L, Zhang X, Wei C, Shu W, Wei M, Cheng L, Chen Z, Qiao Y, Yang S. Therapeutic effects of melatonin in female mice with central precocious puberty by regulating the hypothalamic Kiss-1/Kiss1R system. Behav Brain Res 2024; 461:114783. [PMID: 38029845 DOI: 10.1016/j.bbr.2023.114783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/11/2023] [Accepted: 11/23/2023] [Indexed: 12/01/2023]
Abstract
In recent years, central precocious puberty (CPP) in children is becoming more common, which seriously affects their physical and psychological health and requires finding a safe and effective treatment method. The aim of this study was to investigate the therapeutic effect of melatonin on CPP. A CPP model was established by subcutaneous injection of 300 micrograms of danazol into 5-day-old female mice, followed by treatment with melatonin and leuprolide. The vaginal opening was checked daily. Mice were weighed, gonads were weighed, gonadal index was calculated, and gonadal development was observed by hematoxylin and eosin (HE) staining. Serum follicle stimulating hormone (FSH), luteinizing hormone (LH) and estradiol (E2) levels were measured by ELISA. By using RT-PCR and Western blotting, the mRNA and protein expression of the hypothalamus Kiss-1, Kiss-1 receptor (Kiss1R), gonadotropin-releasing hormone (GnRH), and pituitary GnRH receptor (GnRHR) were identified. The results showed that melatonin delayed vaginal opening time and reduced body weight, gonadal weight and indices in female CPP mice. Melatonin treatment prevents uterine wall thickening and ovarian luteinization in female CPP mice. Melatonin treatment reduces serum concentrations of FSH, LH, and E2 in female CPP mice. Melatonin suppressed the expressions of Kiss-1, Kiss1R and GnRH in the hypothalamus, and the expression of GnRHR in the pituitary of the female CPP mice. Our results suggest that melatonin can inhibit the hypothalamic-pituitary-gonadal (HPG) axis by down-regulating the Kiss-1/Kiss1R system, thereby treating CPP in female mice.
Collapse
Affiliation(s)
- Zixuan Chen
- Department of Human Anatomy, Chengde Medical University, Chengde, China
| | - Lina Si
- Department of Human Anatomy, Chengde Medical University, Chengde, China
| | - Xin Zhang
- Department of Human Anatomy, Chengde Medical University, Chengde, China
| | - Chenyang Wei
- Department of Human Anatomy, Chengde Medical University, Chengde, China
| | - Weihan Shu
- Department of Immunology, Chengde Medical University, Chengde, China
| | - Meng Wei
- Department of Human Anatomy, Chengde Medical University, Chengde, China
| | - Luyang Cheng
- Department of Immunology, Chengde Medical University, Chengde, China
| | - Zhihong Chen
- Faculty of Graduate Studies, Chengde Medical University, Chengde, China
| | - Yuebing Qiao
- Department of Human Anatomy, Chengde Medical University, Chengde, China.
| | - Songhe Yang
- Faculty of Graduate Studies, Chengde Medical University, Chengde, China.
| |
Collapse
|
38
|
Bardhi O, Dubey P, Palmer BF, Clegg DJ. Oestrogens, adipose tissues and environmental exposures influence obesity and diabetes across the lifecycle. Proc Nutr Soc 2024:1-8. [PMID: 38305136 DOI: 10.1017/s0029665124000119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Endogenous oestrogens regulate essential functions to include menstrual cycles, energy balance, adipose tissue distribution, pancreatic β-cell function, insulin sensitivity and lipid homeostasis. Oestrogens are a family of hormones which include oestradiol (E2), oestrone (E1) and oestriol (E3). Oestrogens function by binding and activating oestrogen receptors (ERs). Phytoestrogens are plant-derived compounds which exhibit oestrogenic-like activity and can bind to ERs. Phytoestrogens exert potential oestrogenic-like benefits; however, their effects are context-dependent and require cautious consideration regarding generalised health benefits. Xenoestrogens are synthetic compounds which have been determined to disrupt endocrine function through binding to ERs. Xenoestrogens enter the body through various routes and given their chemical structure they can accumulate, posing long-term health risks. Xenoestrogens interfere with endogenous oestrogens and their functions contributing to conditions like cancer, infertility, and metabolic disorders. Understanding the interplay between endogenous and exogenous oestrogens is critical in order to determine their potential health consequences and requires further investigation. This manuscript provides a summary of the role endogenous oestrogens have in regulating metabolic functions. Additionally, we discuss the impact phytoestrogens and synthetic xenoestrogens have on biological systems across various life stages. We highlight their mechanisms of action, potential benefits, risks and discuss the need for further research to bridge gaps in understanding and mitigate exposure-related health risks.
Collapse
Affiliation(s)
- Olgert Bardhi
- Department of Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Pallavi Dubey
- Department of Obstetrics and Gynecology, Paul L Foster School of Medicine, El Paso, TX, USA
| | - Biff Franklin Palmer
- Department of Medicine, Division of Nephrology, University of Texas Southwestern Medical, Center, Dallas, TX, USA
| | - Deborah J Clegg
- Vice President for Research, Texas Tech Health Sciences Center, El Paso, TX, USA
| |
Collapse
|
39
|
Seo M, Choi J, Park J, Yu WJ, Kim S. Computational modeling approaches for developing a synergistic effect prediction model of estrogen agonistic activity. CHEMOSPHERE 2024; 349:140926. [PMID: 38092168 DOI: 10.1016/j.chemosphere.2023.140926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/05/2023] [Accepted: 12/07/2023] [Indexed: 12/17/2023]
Abstract
The concerns regarding the potential health threats caused by estrogenic endocrine-disrupting chemicals (EDCs) and their mixtures manufactured by the chemical industry are increasing worldwide. Conventional experimental tests for understanding the estrogenic activity of mixtures are expensive and time-consuming. Although non-testing methods using computational modeling approaches have been developed to reduce the number of traditional tests, they are unsuitable for predicting synergistic effects because current prediction models consider only a single chemical. Thus, the development of predictive models is essential for predicting the mixture toxicity, including chemical interactions. However, selecting suitable computational modeling approaches to develop a high-performance prediction model requires considerable time and effort. In this study, we provide a suitable computational approach to develop a predictive model for the synergistic effects of estrogenic activity. We collected datasets on mixture toxicity based on the synergistic effect of estrogen agonistic activity in binary mixtures. Using the model deviation ratio approach, we classified the labels of the binary mixtures as synergistic or non-synergistic effects. We assessed five molecular descriptors, four machine learning-based algorithms, and a deep learning-based algorithm to provide a suitable computational modeling approach. Compared with other modeling approaches, the prediction model using the deep learning-based algorithm and chemical-protein network descriptors exhibited the best performance in predicting the synergistic effects. In conclusion, we developed a new high-performance binary classification model using a deep neural network and chemical-protein network-based descriptors. The developed model will be helpful for the preliminary screening of the synergistic effects of binary mixtures during the development process of chemical products.
Collapse
Affiliation(s)
- Myungwon Seo
- Chemical Analysis Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon, 34114, Republic of Korea.
| | - Jiwon Choi
- Chemical Analysis Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon, 34114, Republic of Korea.
| | - Jongseo Park
- Chemical Analysis Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon, 34114, Republic of Korea.
| | - Wook-Joon Yu
- Developmental and Reproductive Toxicology Research Group, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea.
| | - Sunmi Kim
- Chemical Analysis Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon, 34114, Republic of Korea.
| |
Collapse
|
40
|
Kumar V, Deshpande N, Parekh M, Wong R, Ashraf S, Zahid M, Hui H, Miall A, Kimpton S, Price MO, Price FW, Gonzalez FJ, Rogan E, Jurkunas UV. Estrogen genotoxicity causes preferential development of Fuchs endothelial corneal dystrophy in females. Redox Biol 2024; 69:102986. [PMID: 38091879 PMCID: PMC10716776 DOI: 10.1016/j.redox.2023.102986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/01/2023] [Accepted: 12/03/2023] [Indexed: 01/23/2024] Open
Abstract
Fuchs endothelial corneal dystrophy (FECD) is a genetically complex, age-related, female-predominant disorder characterized by loss of post-mitotic corneal endothelial cells (CEnCs). Ultraviolet-A (UVA) light has been shown to recapitulate the morphological and molecular changes seen in FECD to a greater extent in females than males, by triggering CYP1B1 upregulation in females. Herein, we investigated the mechanism of greater CEnC susceptibility to UVA in females by studying estrogen metabolism in response to UVA in the cornea. Loss of NAD(P)H quinone oxidoreductase 1 (NQO1) resulted in increased production of estrogen metabolites and mitochondrial-DNA adducts, with a higher CEnC loss in Nqo1-/- female compared to wild-type male and female mice. The CYP1B1 inhibitors, trans-2,3',4,5'-tetramethoxystilbene (TMS) and berberine, rescued CEnC loss. Injection of wild-type male mice with estrogen (E2; 17β-estradiol) increased CEnC loss, followed by increased production of estrogen metabolites and mitochondrial DNA (mtDNA) damage, not seen in E2-treated Cyp1b1-/-male mice. This study demonstrates that the endo-degenerative phenotype is driven by estrogen metabolite-dependent CEnC loss that is exacerbated in the absence of NQO1; thus, explaining the mechanism accounting for the higher incidence of FECD in females. The mitigation of estrogen-adduct production by CYP1B1 inhibitors could serve as a novel therapeutic strategy for FECD.
Collapse
Affiliation(s)
- Varun Kumar
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, 02115, USA
| | - Neha Deshpande
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, 02115, USA
| | - Mohit Parekh
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, 02115, USA
| | - Raymond Wong
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, 02115, USA
| | - Shazia Ashraf
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, 02115, USA
| | - Muhammad Zahid
- Department of Environmental, Agricultural and Occupational Health, College of Public Health, University of Nebraska Medical Center, Omaha, NE, 68198-4388, USA
| | - Hanna Hui
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, 02115, USA
| | - Annie Miall
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, 02115, USA
| | - Sylvie Kimpton
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, 02115, USA
| | - Marianne O Price
- Price Vision Group and Cornea Research Foundation of America, Indianapolis, IN, USA
| | - Francis W Price
- Price Vision Group and Cornea Research Foundation of America, Indianapolis, IN, USA
| | - Frank J Gonzalez
- Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Eleanor Rogan
- Department of Environmental, Agricultural and Occupational Health, College of Public Health, University of Nebraska Medical Center, Omaha, NE, 68198-4388, USA
| | - Ula V Jurkunas
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
41
|
Parveen D, Das A, Amin S, Alam MM, Akhter M, Ahmed Khan M, Ali R, Anwer T, Sheikh KA, Azam F, Shaquiquzzaman M. Effectiveness of estrogen and its derivatives over dexamethasone in the treatment of COVID-19. J Biomol Struct Dyn 2024; 42:1858-1874. [PMID: 37129196 DOI: 10.1080/07391102.2023.2205944] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 04/08/2023] [Indexed: 05/03/2023]
Abstract
Coronavirus disease (COVID-19) is an infectious disease caused by the SARS-CoV-2 virus and dexamethasone is a glucocorticoid widely used for its treatment. Dexamethasone is not used in non-severe cases due to its immunosuppressant action. So, considering this, Estrogen and Estetrol were tested for the treatment of COVID-19 as they all possess a common steroid ring and dislike dexamethasone, they are immunoenhancer. Virtual screening of test ligands was performed through molecular docking, MM-GBSA, simulations, in silico ADMET and drug-likeness prediction to identify their potential to inhibit the effects of SARS-CoV-2. Results showed that test ligands possess drug-like properties and they are safe as drug candidates. The protein-ligand interaction study revealed that they bind with the amino acid residues at the active site of the target proteins and the test ligands possess better binding potential than Dexamethasone. With protein Mpro, Estetrol and Estrogen showed docking score of -7.240 and -5.491 kcal/mol, and with protein ACE2, Estetrol and Estrogen showed docking score of -5.269 and -4.732 kcal/mol, respectively. Further, MD Simulation was carried out and most of the interactions of molecular docking are preserved during simulation. The prominent interactions that our test ligands showed during MD Simulation are similar to drugs that possess in vitro anticovid activity as shown in recent studies. Hence, our test ligands possessed potential for anticovid activity and they should be further tested through in vitro and in vivo studies for their activity against COVID-19.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Darakhshan Parveen
- Drug Design and Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, India
| | - Anwesha Das
- Drug Design and Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, India
| | - Shaista Amin
- Drug Design and Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, India
| | - M Mumtaz Alam
- Drug Design and Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, India
| | - Mymoona Akhter
- Drug Design and Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, India
| | - Mohammad Ahmed Khan
- Department of Pharmacology, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, India
| | - Ruhi Ali
- Department of Pharmaceutical Chemistry, DIPSAR, Delhi Pharmaceutical Science and Research University (DPSRU), New Delhi, India
| | - Tarique Anwer
- Department of Pharmacology, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Khursheed A Sheikh
- Drug Design and Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, India
| | - Faizul Azam
- Department of Pharmaceutical Chemistry and Pharmacognosy, Unaizah College of Pharmacy, Qassim University, Buraydah, Saudi Arabia
| | - M Shaquiquzzaman
- Drug Design and Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, India
| |
Collapse
|
42
|
Wang X, Kong F, Liu Y, Lv S, Zhang K, Sun S, Liu J, Wang M, Cai X, Jin H, Yan S, Luo J. 17β-estradiol biosensors based on different bioreceptors and their applications. Front Bioeng Biotechnol 2024; 12:1347625. [PMID: 38357703 PMCID: PMC10864596 DOI: 10.3389/fbioe.2024.1347625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 01/16/2024] [Indexed: 02/16/2024] Open
Abstract
17β-Estradiol (E2) is a critical sex steroid hormone, which has significant effects on the endocrine systems of both humans and animals. E2 is also believed to play neurotrophic and neuroprotective roles in the brain. Biosensors present a powerful tool to detect E2 because of their small, efficient, and flexible design. Furthermore, Biosensors can quickly and accurately obtain detection results with only a small sampling amount, which greatly meets the detection of the environment, food safety, medicine safety, and human body. This review focuses on previous studies of biosensors for detecting E2 and divides them into non-biometric sensors, enzyme biosensors, antibody biosensors, and aptamer biosensors according to different bioreceptors. The advantages, disadvantages, and design points of various bioreceptors for E2 detection are analyzed and summarized. Additionally, applications of different bioreceptors of E2 detection are presented and highlight the field of environmental monitoring, food and medicine safety, and disease detection in recent years. Finally, the development of E2 detection by biosensor is prospected.
Collapse
Affiliation(s)
- Xinyi Wang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Fanli Kong
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Yaoyao Liu
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Shiya Lv
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Kui Zhang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Shutong Sun
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Juntao Liu
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Mixia Wang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Xinxia Cai
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Hongyan Jin
- Obstetrics and Gynecology Department, Peking University First Hospital, Beijing, China
| | - Shi Yan
- Department of Thoracic Surgery II, Peking University Cancer Hospital & Institute, Beijing, China
| | - Jinping Luo
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
43
|
Xiao X, Kennelly JP, Feng AC, Cheng L, Romartinez-Alonso B, Bedard A, Gao Y, Cui L, Young SG, Schwabe JW, Tontonoz P. Aster-B-dependent estradiol synthesis protects female mice from diet-induced obesity. J Clin Invest 2024; 134:e173002. [PMID: 38175723 PMCID: PMC10866650 DOI: 10.1172/jci173002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 12/20/2023] [Indexed: 01/05/2024] Open
Abstract
Aster proteins mediate the nonvesicular transport of cholesterol from the plasma membrane (PM) to the endoplasmic reticulum (ER). However, the importance of nonvesicular sterol movement for physiology and pathophysiology in various tissues is incompletely understood. Here we show that loss of Aster-B leads to diet-induced obesity in female but not in male mice, and that this sex difference is abolished by ovariectomy. We further demonstrate that Aster-B deficiency impairs nonvesicular cholesterol transport from the PM to the ER in ovaries in vivo, leading to hypogonadism and reduced estradiol synthesis. Female Aster-B-deficient mice exhibit reduced locomotor activity and energy expenditure, consistent with established effects of estrogens on systemic metabolism. Administration of exogenous estradiol ameliorates the diet-induced obesity phenotype of Aster-B-deficient female mice. These findings highlight the key role of Aster-B-dependent nonvesicular cholesterol transport in regulating estradiol production and protecting females from obesity.
Collapse
Affiliation(s)
- Xu Xiao
- Department of Pathology and Laboratory Medicine
- Department of Biological Chemistry
| | - John P. Kennelly
- Department of Pathology and Laboratory Medicine
- Department of Biological Chemistry
| | - An-Chieh Feng
- Department of Microbiology, Immunology & Molecular Genetics, UCLA, Los Angeles, California, USA
| | - Lijing Cheng
- Department of Microbiology, Immunology & Molecular Genetics, UCLA, Los Angeles, California, USA
| | - Beatriz Romartinez-Alonso
- Institute of Structural and Chemical Biology, Department of Molecular and Cell Biology, University of Leicester, Leicester, United Kingdom
| | - Alexander Bedard
- Department of Pathology and Laboratory Medicine
- Department of Biological Chemistry
| | - Yajing Gao
- Department of Pathology and Laboratory Medicine
- Department of Biological Chemistry
| | - Liujuan Cui
- Department of Pathology and Laboratory Medicine
- Department of Biological Chemistry
| | - Stephen G. Young
- Department of Medicine and Human Genetics, UCLA, Los Angeles, California, USA
| | - John W.R. Schwabe
- Institute of Structural and Chemical Biology, Department of Molecular and Cell Biology, University of Leicester, Leicester, United Kingdom
| | - Peter Tontonoz
- Department of Pathology and Laboratory Medicine
- Department of Biological Chemistry
| |
Collapse
|
44
|
Kundakovic M, Tickerhoof M. Epigenetic mechanisms underlying sex differences in the brain and behavior. Trends Neurosci 2024; 47:18-35. [PMID: 37968206 PMCID: PMC10841872 DOI: 10.1016/j.tins.2023.09.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/21/2023] [Accepted: 09/26/2023] [Indexed: 11/17/2023]
Abstract
Sex differences are found across brain regions, behaviors, and brain diseases. Sexual differentiation of the brain is initiated prenatally but it continues throughout life, as a result of the interaction of three major factors: gonadal hormones, sex chromosomes, and the environment. These factors are thought to act, in part, via epigenetic mechanisms which control chromatin and transcriptional states in brain cells. In this review, we discuss evidence that epigenetic mechanisms underlie sex-specific neurobehavioral changes during critical organizational periods, across the estrous cycle, and in response to diverse environments throughout life. We further identify future directions for the field that will provide novel mechanistic insights into brain sex differences, inform brain disease treatments and women's brain health in particular, and apply to people across genders.
Collapse
Affiliation(s)
- Marija Kundakovic
- Department of Biological Sciences, Fordham University, Bronx, NY 10458, USA.
| | - Maria Tickerhoof
- Department of Biological Sciences, Fordham University, Bronx, NY 10458, USA
| |
Collapse
|
45
|
Su H, Yan B, Wang R, Li Z, Xu Z, Xue H, Tan G. Proteomic Analysis Based on TMT Regarding the Therapeutic Action of Rhizoma Drynariae on Rats in an Osteoporosis Model. Comb Chem High Throughput Screen 2024; 27:2223-2238. [PMID: 38099525 PMCID: PMC11348476 DOI: 10.2174/0113862073261905231110061401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/01/2023] [Accepted: 09/21/2023] [Indexed: 08/21/2024]
Abstract
BACKGROUND Primary osteoporosis has increasingly become one of the risk factors affecting human health, and the clinical effect and action mechanism of traditional Chinese medicine in the treatment of primary osteoporosis have been widely studied. Previous studies have confirmed that in traditional Chinese medicine (TCM), Drynaria rhizome has a role in improving bone density. In this study, a tandem mass tag (TMT)-based proteomic analysis was conducted to derive potential targets for Drynaria rhizome treatment in postmenopausal osteoporosis. METHODS The model group (OVX) and experimental group (OVXDF) for menopausal osteoporosis were established using the universally acknowledged ovariectomy method, and the OVXDF group was given 0.48g/kg Rhizoma Drynariae solution by gavage for 12 weeks. After 12 weeks, femurs of rats selected for this study were examined with a bone mineral density (BMD) test, Micro-CT, ELISABiochemical testing, hematoxylin and eosin (HE) staining, and immunohistochemistry. A certain portion of the bone tissue was studied with a TMT-based proteomic analysis and functional and pathway enrichment analysis. Finally, key target genes were selected for Western blotting for validation. RESULTS The comparison of the OVXDF and OVX groups indicated that Drynaria rhizome could improve bone density. In the TMT-based proteomic analysis, the comparison of these two groups revealed a total of 126 differentially expressed proteins (DEPs), of which 62 were upregulated and 64 were downregulated. Further, by comparing the differential genes between the OVXDF and OVX groups and between the OVX and SHAM groups, we concluded that the 27 differential genes were significantly changed in the rats selected for the osteoporosis model after Drynaria rhizome intragastric administration. The gene ontology (GO) enrichment analysis of DEPs showed that molecular function was mainly involved in biological processes, such as glucose metabolism, carbohydrate metabolism, immune responses, and aging. A Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of DEPs revealed that multiple differential genes were enriched in the estrogen and peroxisome proliferator-activated receptor (PPAR) signaling pathways. Relationships with nitrogen metabolism, glycerophospholipid metabolism, secretion systems, and tumor diseases were also observed. Western blotting was consistent with the analysis. CONCLUSIONS We used TMT-based proteomics to analyze the positive effects of TCM Drynaria rhizome, which can regulate related proteins through the unique roles of multiple mechanisms, targets, and pathways. This treatment approach can regulate oxidative stress, improve lipid metabolism, reduce the inflammatory response mechanism, and improve bone density. These benefits highlight the unique advantages of TCM in the treatment of primary osteoporosis.
Collapse
Affiliation(s)
- Hui Su
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Binghan Yan
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Ruochong Wang
- Beijing University of Traditional Chinese Medicine, Beijing, China
| | - Zhichao Li
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Zhanwang Xu
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Haipeng Xue
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Guoqing Tan
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| |
Collapse
|
46
|
Ebrahimnejad P, Mohammadi Z, Babaei A, Ahmadi M, Amirkhanloo S, Asare-Addo K, Nokhodchid A. Novel Strategies Using Sagacious Targeting for Site-Specific Drug Delivery in Breast Cancer Treatment: Clinical Potential and Applications. Crit Rev Ther Drug Carrier Syst 2024; 41:35-84. [PMID: 37824418 DOI: 10.1615/critrevtherdrugcarriersyst.v41.i1.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
For more than a decade, researchers have been working to achieve new strategies and smart targeting drug delivery techniques and technologies to treat breast cancer (BC). Nanotechnology presents a hopeful strategy for targeted drug delivery into the building of new therapeutics using the properties of nanomaterials. Nanoparticles are of high regard in the field of diagnosis and the treatment of cancer. The use of these nanoparticles as an encouraging approach in the treatment of various cancers has drawn the interest of researchers in recent years. In order to achieve the maximum therapeutic effectiveness in the treatment of BC, combination therapy has also been adopted, leading to minimal side effects and thus an enhancement in the quality of life for patients. This review article compares, discusses and criticizes the approaches to treat BC using novel design strategies and smart targeting of site-specific drug delivery systems.
Collapse
Affiliation(s)
- Pedram Ebrahimnejad
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran; Pharmaceutical Sciences Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Zahra Mohammadi
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Amirhossein Babaei
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Melika Ahmadi
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Shervin Amirkhanloo
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Kofi Asare-Addo
- Department of Pharmacy, University of Huddersfield, Huddersfield, UK
| | - Ali Nokhodchid
- Lupin Pharmaceutical Research Center, Coral Springs, Florida, USA; Pharmaceutics Research Lab, Arundel Building, School of Life Sciences, University of Sussex, Brighton, UK
| |
Collapse
|
47
|
Sayfullaeva J, McLoughlin J, Kwakowsky A. Hormone Replacement Therapy and Alzheimer's Disease: Current State of Knowledge and Implications for Clinical Use. J Alzheimers Dis 2024; 101:S235-S261. [PMID: 39422965 DOI: 10.3233/jad-240899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder responsible for over half of dementia cases, with two-thirds being women. Growing evidence from preclinical and clinical studies underscores the significance of sex-specific biological mechanisms in shaping AD risk. While older age is the greatest risk factor for AD, other distinct biological mechanisms increase the risk and progression of AD in women including sex hormones, brain structural differences, genetic background, immunomodulation and vascular disorders. Research indicates a correlation between declining estrogen levels during menopause and an increased risk of developing AD, highlighting a possible link with AD pathogenesis. The neuroprotective effects of estrogen vary with the age of treatment initiation, menopause stage, and type. This review assesses clinical and observational studies conducted in women, examining the influence of estrogen on cognitive function or addressing the ongoing question regarding the potential use of hormone replacement therapy (HRT) as a preventive or therapeutic option for AD. This review covers recent literature and discusses the working hypothesis, current use, controversies and challenges regarding HRT in preventing and treating age-related cognitive decline and AD. The available evidence indicates that estrogen plays a significant role in influencing dementia risk, with studies demonstrating both beneficial and detrimental effects of HRT. Recommendations regarding HRT usage should carefully consider the age when the hormonal supplementation is initiated, baseline characteristics such as genotype and cardiovascular health, and treatment duration until this approach can be more thoroughly investigated or progress in the development of alternative treatments can be made.
Collapse
Affiliation(s)
- Jessica Sayfullaeva
- Pharmacology and Therapeutics, School of Medicine, Galway Neuroscience Centre, University of Galway, Galway, Ireland
| | - John McLoughlin
- Pharmacology and Therapeutics, School of Medicine, Galway Neuroscience Centre, University of Galway, Galway, Ireland
| | - Andrea Kwakowsky
- Pharmacology and Therapeutics, School of Medicine, Galway Neuroscience Centre, University of Galway, Galway, Ireland
| |
Collapse
|
48
|
Lee JK, Frank RD, Christenson LR, Fields JA, Rocca WA, Mielke MM. Associations of reproductive factors and exogenous estrogens with global and domain-specific cognition in later life. Alzheimers Dement 2024; 20:63-73. [PMID: 37450421 PMCID: PMC10787812 DOI: 10.1002/alz.13394] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 06/14/2023] [Accepted: 06/19/2023] [Indexed: 07/18/2023]
Abstract
INTRODUCTION Few studies have comprehensively examined the impact of reproductive factors (i.e., reproductive window, parity, hormonal contraception [HC], and menopausal hormone therapy [MHT]) on global and domain-specific cognition in later life. METHODS We studied a population-based sample of 2458 women (median age 74.2 years) residing in Olmsted County, Minnesota; participants underwent a clinical evaluation and comprehensive cognitive testing. RESULTS The length of a woman's reproductive window was not associated with cognition. Higher parity was associated with greater cognitive decline in all domains. Ever HC use was associated with less decline in all domains. Ever MHT use was associated with greater decline in global cognition and all domain-specific z-scores except visuospatial; results were driven by women who initiated MHT 5 or more years after menopause. Additional adjustments for APOE and vascular-related covariates did not attenuate the results. DISCUSSION Multiple reproductive risk factors are associated with cognitive decline in later life. HIGHLIGHTS The length of a woman's reproductive window was not associated with cognition longitudinally. Greater parity was associated with greater cognitive decline longitudinally. Ever HC use was associated with less decline in global cognition and all domain-specific z-scores longitudinally (all p < 0.01). Ever MHT use was associated with greater decline in global cognition and all domain-specific z-scores except visuospatial longitudinally (all p < 0.01). The greatest cognitive decline was among women who initiated MHT more than 5 years after menopause.
Collapse
Affiliation(s)
- Jillian K. Lee
- Department of Epidemiology and PreventionWake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Ryan D. Frank
- Department of Quantitative Health SciencesMayo ClinicRochesterMinnesotaUSA
| | | | - Julie A. Fields
- Division of Neurocognitive DisordersDepartment of Psychiatry and PsychologyMayo ClinicRochesterMinnesotaUSA
| | - Walter A. Rocca
- Department of Quantitative Health SciencesMayo ClinicRochesterMinnesotaUSA
- Department of NeurologyMayo ClinicRochesterMinnesotaUSA
- Women's Health Research CenterMayo ClinicRochesterMinnesotaUSA
| | - Michelle M. Mielke
- Department of Epidemiology and PreventionWake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
- Department of Quantitative Health SciencesMayo ClinicRochesterMinnesotaUSA
| |
Collapse
|
49
|
Area-Gomez E, Schon EA. Towards a Unitary Hypothesis of Alzheimer's Disease Pathogenesis. J Alzheimers Dis 2024; 98:1243-1275. [PMID: 38578892 DOI: 10.3233/jad-231318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2024]
Abstract
The "amyloid cascade" hypothesis of Alzheimer's disease (AD) pathogenesis invokes the accumulation in the brain of plaques (containing the amyloid-β protein precursor [AβPP] cleavage product amyloid-β [Aβ]) and tangles (containing hyperphosphorylated tau) as drivers of pathogenesis. However, the poor track record of clinical trials based on this hypothesis suggests that the accumulation of these peptides is not the only cause of AD. Here, an alternative hypothesis is proposed in which the AβPP cleavage product C99, not Aβ, is the main culprit, via its role as a regulator of cholesterol metabolism. C99, which is a cholesterol sensor, promotes the formation of mitochondria-associated endoplasmic reticulum (ER) membranes (MAM), a cholesterol-rich lipid raft-like subdomain of the ER that communicates, both physically and biochemically, with mitochondria. We propose that in early-onset AD (EOAD), MAM-localized C99 is elevated above normal levels, resulting in increased transport of cholesterol from the plasma membrane to membranes of intracellular organelles, such as ER/endosomes, thereby upregulating MAM function and driving pathology. By the same token, late-onset AD (LOAD) is triggered by any genetic variant that increases the accumulation of intracellular cholesterol that, in turn, boosts the levels of C99 and again upregulates MAM function. Thus, the functional cause of AD is upregulated MAM function that, in turn, causes the hallmark disease phenotypes, including the plaques and tangles. Accordingly, the MAM hypothesis invokes two key interrelated elements, C99 and cholesterol, that converge at the MAM to drive AD pathogenesis. From this perspective, AD is, at bottom, a lipid disorder.
Collapse
Affiliation(s)
- Estela Area-Gomez
- Department of Neurology, Columbia University, New York, NY, USA
- Centro de Investigaciones Biológicas "Margarita Salas", Spanish National Research Council, Madrid, Spain
| | - Eric A Schon
- Department of Neurology, Columbia University, New York, NY, USA
- Department of Genetics and Development>, Columbia University, New York, NY, USA
| |
Collapse
|
50
|
Schwarz KG, Vicencio SC, Inestrosa NC, Villaseca P, Del Rio R. Autonomic nervous system dysfunction throughout menopausal transition: A potential mechanism underpinning cardiovascular and cognitive alterations during female ageing. J Physiol 2024; 602:263-280. [PMID: 38064358 DOI: 10.1113/jp285126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/24/2023] [Indexed: 01/16/2024] Open
Abstract
Cardiovascular diseases (CVD) and neurodegenerative disorders, such as Alzheimer's disease (AD), are highly prevalent conditions in middle-aged women that severely impair quality of life. Recent evidence suggests the existence of an intimate cross-talk between the heart and the brain, resulting from a complex network of neurohumoral circuits. From a pathophysiological perspective, the higher prevalence of AD in women may be explained, at least in part, by sex-related differences in the incidence/prevalence of CVD. Notably, the autonomic nervous system, the main heart-brain axis physiological orchestrator, has been suggested to play a role in the incidence of adverse cardiovascular events in middle-aged women because of decreases in oestrogen-related signalling during transition into menopause. Despite its overt relevance for public health, this hypothesis has not been thoroughly tested. Accordingly, in this review, we aim to provide up to date evidence supporting how changes in circulating oestrogen levels during transition to menopause may trigger autonomic dysfunction, thus promoting cardiovascular and cognitive decline in women. A main focus on the effects of oestrogen-mediated signalling at CNS structures related to autonomic regulation is provided, particularly on the role of oestrogens in sympathoexcitation. Improving the understanding of the contribution of the autonomic nervous system on the development, maintenance and/or progression of both cardiovascular and cognitive dysfunction during the transition to menopause should help improve the clinical management of elderly women, with the outcome being an improved life quality during the natural ageing process.
Collapse
Affiliation(s)
- Karla G Schwarz
- Laboratory of Cardiorespiratory Control, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Sinay C Vicencio
- Laboratory of Cardiorespiratory Control, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Nibaldo C Inestrosa
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile
| | - Paulina Villaseca
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile
| | - Rodrigo Del Rio
- Laboratory of Cardiorespiratory Control, Pontificia Universidad Católica de Chile, Santiago, Chile
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile
- Department of Cell Biology and Physiology, School of Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|