1
|
Cui X, Cao Q, Li F, Jing J, Liu Z, Yang X, Schwartz GJ, Yu L, Shi H, Shi H, Xue B. The histone methyltransferase SUV420H2 regulates brown and beige adipocyte thermogenesis. JCI Insight 2024; 9:e164771. [PMID: 38713533 PMCID: PMC11382888 DOI: 10.1172/jci.insight.164771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 05/01/2024] [Indexed: 05/09/2024] Open
Abstract
Activation of brown adipose tissue (BAT) thermogenesis increases energy expenditure and alleviates obesity. Here we discover that histone methyltransferase suppressor of variegation 4-20 homolog 2 (Suv420h2) expression parallels that of Ucp1 in brown and beige adipocytes and that Suv420h2 knockdown significantly reduces - whereas Suv420h2 overexpression significantly increases - Ucp1 levels in brown adipocytes. Suv420h2 knockout (H2KO) mice exhibit impaired cold-induced thermogenesis and are prone to diet-induced obesity. In contrast, mice with specific overexpression of Suv420h2 in adipocytes display enhanced cold-induced thermogenesis and are resistant to diet-induced obesity. Further study shows that Suv420h2 catalyzes H4K20 trimethylation at eukaryotic translation initiation factor 4E-binding protein 1 (4e-bp1) promoter, leading to downregulated expression of 4e-bp1, a negative regulator of the translation initiation complex. This in turn upregulates PGC1α protein levels, and this upregulation is associated with increased expression of thermogenic program. We conclude that Suv420h2 is a key regulator of brown/beige adipocyte development and thermogenesis.
Collapse
Affiliation(s)
- Xin Cui
- Department of Biology, Georgia State University, Atlanta, Georgia, USA
| | - Qiang Cao
- Department of Biology, Georgia State University, Atlanta, Georgia, USA
| | - Fenfen Li
- Department of Biology, Georgia State University, Atlanta, Georgia, USA
| | - Jia Jing
- Department of Biology, Georgia State University, Atlanta, Georgia, USA
| | - Zhixue Liu
- Department of Biology, Georgia State University, Atlanta, Georgia, USA
| | - Xiaosong Yang
- Department of Biology, Georgia State University, Atlanta, Georgia, USA
| | - Gary J Schwartz
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Liqing Yu
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Huidong Shi
- Georgia Cancer Center and
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Hang Shi
- Department of Biology, Georgia State University, Atlanta, Georgia, USA
| | - Bingzhong Xue
- Department of Biology, Georgia State University, Atlanta, Georgia, USA
| |
Collapse
|
2
|
Abstract
Adipose tissue exhibits a remarkable capacity to expand, contract, and remodel in response to changes in physiological and environmental conditions. Here, we describe recent advances in our understanding of how functionally distinct tissue-resident mesenchymal stromal cell subpopulations orchestrate several aspects of physiological and pathophysiological adipose tissue remodeling, with a particular focus on the adaptations that occur in response to changes in energy surplus and environmental temperature. The study of adipose tissue remodeling provides a vehicle to understand the functional diversity of stromal cells and offers a lens through which several generalizable aspects of tissue reorganization can be readily observed.
Collapse
Affiliation(s)
- Jessica Cannavino
- Department of Medicine, Division of Endocrinology, Duke Molecular Physiology Institute, Duke University Medical Center, Durham, North Carolina 27701, USA
| | - Rana K Gupta
- Department of Medicine, Division of Endocrinology, Duke Molecular Physiology Institute, Duke University Medical Center, Durham, North Carolina 27701, USA
| |
Collapse
|
3
|
Maniyadath B, Zhang Q, Gupta RK, Mandrup S. Adipose tissue at single-cell resolution. Cell Metab 2023; 35:386-413. [PMID: 36889280 PMCID: PMC10027403 DOI: 10.1016/j.cmet.2023.02.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/22/2023] [Accepted: 02/03/2023] [Indexed: 03/09/2023]
Abstract
Adipose tissue exhibits remarkable plasticity with capacity to change in size and cellular composition under physiological and pathophysiological conditions. The emergence of single-cell transcriptomics has rapidly transformed our understanding of the diverse array of cell types and cell states residing in adipose tissues and has provided insight into how transcriptional changes in individual cell types contribute to tissue plasticity. Here, we present a comprehensive overview of the cellular atlas of adipose tissues focusing on the biological insight gained from single-cell and single-nuclei transcriptomics of murine and human adipose tissues. We also offer our perspective on the exciting opportunities for mapping cellular transitions and crosstalk, which have been made possible by single-cell technologies.
Collapse
Affiliation(s)
- Babukrishna Maniyadath
- Center for Functional Genomics and Tissue Plasticity, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark
| | - Qianbin Zhang
- Department of Internal Medicine, Touchstone Diabetes Center, UT Southwestern Medical Center, Dallas, TX, USA
| | - Rana K Gupta
- Department of Internal Medicine, Touchstone Diabetes Center, UT Southwestern Medical Center, Dallas, TX, USA.
| | - Susanne Mandrup
- Center for Functional Genomics and Tissue Plasticity, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark.
| |
Collapse
|
4
|
Lu G, Hu R, Tao T, Hu M, Dong Z, Wang C. Regulatory role of atrial natriuretic peptide in brown adipose tissue: A narrative review. Obes Rev 2023; 24:e13522. [PMID: 36336901 DOI: 10.1111/obr.13522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 09/15/2022] [Accepted: 10/17/2022] [Indexed: 11/09/2022]
Abstract
Atrial natriuretic peptide (ANP) has been considered to exert an essential role as a cardiac secretory hormone in the regulation of hemodynamic homeostasis. As the research progresses, the role of ANP in the crosstalk between heart and lipid metabolism has become an interesting topic that is attracting the interest of researchers. The regulation of ANP in lipid metabolism shows favorable effects, particularly the activation of brown adipose tissue (BAT). The complex regulatory network of ANP on BAT has not been fully outlined. This narrative review critically evaluated the existing literature on the regulatory effects of ANP on BAT. In general, we have summarized the expression of ANP and its receptors in various human tissues, analyzed the progress of research on the relationship between the ANP and BAT, and described several potential pathways of ANP to BAT. Exogenous ANP, natriuretic peptide receptor C (NPRC) deficiency, cold exposure, bariatric surgery, and cardiac or renal insufficiency could all contribute to BAT expression by increasing circulating ANP levels.
Collapse
Affiliation(s)
- Guanhua Lu
- Department of Metabolic and Bariatric Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, China.,Guangdong-Hong Kong-Macao Joint University Laboratory of Metabolic and Molecular Medicine, The University of Hong Kong and Jinan University, Guangzhou, Guangdong Province, China
| | - Ruixiang Hu
- Department of Metabolic and Bariatric Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, China.,Guangdong-Hong Kong-Macao Joint University Laboratory of Metabolic and Molecular Medicine, The University of Hong Kong and Jinan University, Guangzhou, Guangdong Province, China
| | - Tian Tao
- Department of Metabolic and Bariatric Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, China.,Guangdong-Hong Kong-Macao Joint University Laboratory of Metabolic and Molecular Medicine, The University of Hong Kong and Jinan University, Guangzhou, Guangdong Province, China
| | - Min Hu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, China
| | - Zhiyong Dong
- Department of Metabolic and Bariatric Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, China.,Guangdong-Hong Kong-Macao Joint University Laboratory of Metabolic and Molecular Medicine, The University of Hong Kong and Jinan University, Guangzhou, Guangdong Province, China
| | - Cunchuan Wang
- Department of Metabolic and Bariatric Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, China.,Guangdong-Hong Kong-Macao Joint University Laboratory of Metabolic and Molecular Medicine, The University of Hong Kong and Jinan University, Guangzhou, Guangdong Province, China
| |
Collapse
|
5
|
Chen W, Yin H, Xiao J, Liu W, Qu Q, Gong F, He X. The effect of aging on glucose metabolism improvement after Roux-en-Y gastric bypass in type 2 diabetes rats. Nutr Diabetes 2022; 12:51. [PMID: 36564376 PMCID: PMC9789110 DOI: 10.1038/s41387-022-00229-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/01/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND This study aimed to investigate the effect of aging on glucose metabolism improvement after Roux-en-Y gastric bypass (RYGB) in rat models with type 2 diabetes mellitus (T2DM). METHODS Twenty aged Goto-Kakizaki rats were randomly assigned into RYGB-A group and sham RYGB (SR-A) group, and 10 adult Goto-Kakizaki rats also accept RYGB procedures (RYGB-Y). Glucose metabolism, resting energy expenditure (REE), glucagon-like peptide-1 (GLP-1) and total bile acid level were measured. RESULTS RYGB could significantly improve glucose metabolism in aged diabetic rats. The fasting blood glucose level in the RYGB-A group decreased from 15.8 ± 1.1 mmol/l before surgery to 12.3 ± 1.5 mmol/l 16 weeks after surgery (P < 0.01), and the AUCOGTT value decreased from 2603.9 ± 155.4 (mmol/l) min to 2299.9 ± 252.8 (mmol/l) min (P = 0.08). The decrease range of fasting blood glucose in the RYGB-A group was less than that in the RYGB-Y group (20.5% ± 6.5% vs. 40.6% ± 10.6%, P < 0.01), so is the decrease range of AUCOGTT value (11.6% ± 14.8% vs. 38.5% ± 8.3%, P < 0.01). Moreover, at the 16th postoperative week, the increase range of REE of the RYGB-A group was lower than that of the RYGB-Y group (15.3% ± 11.1% vs. 29.1% ± 12.1%, P = 0.04). The increased range of bile acid of the RYGB-A group was less than that of the RYGB-Y group (80.2 ± 59.3 % vs.212.3 ± 139.0 %, P < 0.01). The GLP-1 level of the RYGB-A group was less than that of the RYGB-Y group (12.8 ± 3.9 pmol/L vs. 18.7 ± 5.6 pmol/L, P = 0.02). There was no significant difference between the RYGB-A group and the RYGB-Y group in the level of the triiodothyronine level. CONCLUSIONS RYGB could induce a glucose metabolism improvement in aged diabetic rats, and aging might moderate the effect of RYGB.
Collapse
Affiliation(s)
- Weijie Chen
- grid.413106.10000 0000 9889 6335Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Shuaifuyuan 1#, Beijing, 100730 PR China
| | - Haixin Yin
- grid.413106.10000 0000 9889 6335Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Shuaifuyuan 1#, Beijing, 100730 PR China
| | - Jianchun Xiao
- grid.413106.10000 0000 9889 6335Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Shuaifuyuan 1#, Beijing, 100730 PR China
| | - Wei Liu
- grid.413106.10000 0000 9889 6335Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Shuaifuyuan 1#, Beijing, 100730 PR China
| | - Qiang Qu
- grid.413106.10000 0000 9889 6335Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Shuaifuyuan 1#, Beijing, 100730 PR China
| | - Fengying Gong
- grid.413106.10000 0000 9889 6335Department of Endocrinology, Key Laboratory of Endocrinology of the Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Shuaifuyuan 1#, Beijing, 100730 PR China
| | - Xiaodong He
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Shuaifuyuan 1#, Beijing, 100730, PR China.
| |
Collapse
|
6
|
Huang D, Zhang Z, Dong Z, Liu R, Huang J, Xu G. Caloric restriction and Roux-en-Y Gastric Bypass promote white adipose tissue browning in mice. J Endocrinol Invest 2022; 45:139-148. [PMID: 34232475 DOI: 10.1007/s40618-021-01626-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 06/24/2021] [Indexed: 12/12/2022]
Abstract
PURPOSE Caloric restriction (CR) and Roux-en-Y Gastric Bypass (RYGB) are considered effective means of body weight control, but the mechanism by which CR and RYGB protect against high-fat diet (HFD)-induced obesity remains elusive. The browning of white adipose tissue (WAT) is a potential approach to combat obesity. Here we assess whether browning of WAT is involved in CR- and RYGB-treatment. METHODS The average size of adipocytes was determined by histological analysis. Expression of thermogenic genes in both human subjects and mice were measured by quantitative real-time PCR and immunohistochemical staining. RESULTS The average size of adipocytes was bigger, while the expression of thermogenic genes such as uncoupling protein 1 (UCP1), nuclear factor erythroid-2 like 1 (NRF1) and PPARγ coactivator-1 α (PGC1α) were lower in the WAT of obese subjects when compared to lean controls. Both CR and RYGB promoted weight and fat loss. Increment of the average adipocytes size and down-regulation of thermogenic genes were significantly reversed by both CR and RYGB in the WAT of obese mice. CONCLUSIONS Our findings showed that CR and RYGB significantly improved high-fat diet-induced lipid accumulation by promoting the browning of WAT.
Collapse
Affiliation(s)
- D Huang
- Department of Physiology, School of Medicine, Jinan University, 601 Huangpu Avenue West, Tianhe District, Guangzhou, 510632, Guangdong, China
| | - Z Zhang
- Department of Physiology, School of Medicine, Jinan University, 601 Huangpu Avenue West, Tianhe District, Guangzhou, 510632, Guangdong, China
| | - Z Dong
- Department of Obesity and Metabolic Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - R Liu
- Department of Physiology, School of Medicine, Jinan University, 601 Huangpu Avenue West, Tianhe District, Guangzhou, 510632, Guangdong, China
| | - J Huang
- Department of Physiology, School of Medicine, Jinan University, 601 Huangpu Avenue West, Tianhe District, Guangzhou, 510632, Guangdong, China
| | - G Xu
- Department of Physiology, School of Medicine, Jinan University, 601 Huangpu Avenue West, Tianhe District, Guangzhou, 510632, Guangdong, China.
| |
Collapse
|
7
|
Lizarraga-Mollinedo E, Carreras-Badosa G, Xargay-Torrent S, Remesar X, Mas-Pares B, Prats-Puig A, de Zegher F, Ibáñez L, López-Bermejo A, Bassols J. Catch-up growth in juvenile rats, fat expansion, and dysregulation of visceral adipose tissue. Pediatr Res 2022; 91:107-115. [PMID: 33654281 DOI: 10.1038/s41390-021-01422-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/06/2021] [Indexed: 01/31/2023]
Abstract
BACKGROUND Accelerated catch-up growth following intrauterine restriction increases the risk of developing visceral adiposity and metabolic abnormalities. However, the underlying molecular mechanisms of such metabolic programming are still poorly understood. METHODS A Wistar rat model of catch-up growth following intrauterine restriction was used. A gene expression array was performed in the retroperitoneal adipose tissue sampled at postnatal day (PD) 42. RESULTS Five hundred and forty-six differentially expressed genes (DEGs) were identified (adjusted p value < 0.05). Gene ontology enrichment analysis identified pathways related to immune and lipid metabolic processes, brown fat cell differentiation, and regulation of PI3K. Ccl21, Npr3, Serpina3n, Pnpla3, Slc2a4, and Serpina12 were validated to be upregulated in catch-up pups (all p < 0.01) and related to several fat expansion and metabolic parameters, including body weight at PD42, postnatal body weight gain, white and brown adipose tissue mass, plasma triglycerides, and insulin resistance index (all p < 0.05). CONCLUSIONS Genes related to immune and metabolic processes were upregulated in retroperitoneal adipose tissue following catch-up growth in juvenile rats and were found to be associated with fat expansion and metabolic parameters. Our results provide evidence for several dysregulated genes in white adipose tissue that could help develop novel strategies to prevent the metabolic abnormalities associated with catch-up growth. IMPACT Catch-up growth presents several dysregulated genes in white adipose tissue related to metabolic abnormalities. Ccl21, Npr3, Serpina3n, Pnpla3, Slc2a4, and Serpina12 were validated to be upregulated in catch-up pups and related to visceral fat expansion and metabolic parameters. Profiling and validation of these dysregulated genes in visceral adipose tissue could help develop novel strategies to prevent the metabolic abnormalities associated with catch-up growth.
Collapse
Affiliation(s)
| | | | | | - Xavier Remesar
- Department of Biochemistry and Molecular Biomedicine, Universitat de Barcelona, Barcelona, Spain.,CIBEROBN, Instituto de Salud Carlos III, Madrid, Spain
| | - Berta Mas-Pares
- Maternal-Fetal Metabolic Group, Girona Biomedical Research Institute, Girona, Spain
| | - Anna Prats-Puig
- Department of Physiotherapy, EUSES University School, Girona, Spain
| | - Francis de Zegher
- Department of Development AND Regeneration, University of Leuven, Leuven, Belgium
| | - Lourdes Ibáñez
- Sant Joan de Déu Children's Hospital Pediatric Institute, University of Barcelona, Barcelona, Spain.,CIBERDEM, Instituto de Salud Carlos III, Madrid, Spain
| | - Abel López-Bermejo
- Pediatric Endocrinology Group, Girona Biomedical Research Institute, Girona, Spain. .,Department of Pediatrics, Dr. Josep Trueta Hospital, Girona, Spain. .,Department of Medical Sciences, University of Girona, Girona, Spain.
| | - Judit Bassols
- Maternal-Fetal Metabolic Group, Girona Biomedical Research Institute, Girona, Spain
| |
Collapse
|
8
|
Impact of Bariatric Surgery on Adipose Tissue Biology. J Clin Med 2021; 10:jcm10235516. [PMID: 34884217 PMCID: PMC8658722 DOI: 10.3390/jcm10235516] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/20/2021] [Accepted: 11/22/2021] [Indexed: 02/07/2023] Open
Abstract
Bariatric surgery (BS) procedures are actually the most effective intervention to help subjects with severe obesity achieve significant and sustained weight loss. White adipose tissue (WAT) is increasingly recognized as the largest endocrine organ. Unhealthy WAT expansion through adipocyte hypertrophy has pleiotropic effects on adipocyte function and promotes obesity-associated metabolic complications. WAT dysfunction in obesity encompasses an altered adipokine secretome, unresolved inflammation, dysregulated autophagy, inappropriate extracellular matrix remodeling and insufficient angiogenic potential. In the last 10 years, accumulating evidence suggests that BS can improve the WAT function beyond reducing the fat depot sizes. The causal relationships between improved WAT function and the health benefits of BS merits further investigation. This review summarizes the current knowledge on the short-, medium- and long-term outcomes of BS on the WAT composition and function.
Collapse
|
9
|
Inflammation in Metabolic and Cardiovascular Disorders-Role of Oxidative Stress. Life (Basel) 2021; 11:life11070672. [PMID: 34357044 PMCID: PMC8308054 DOI: 10.3390/life11070672] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 06/30/2021] [Accepted: 06/30/2021] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular diseases (CVD) constitute the main cause of death worldwide. Both inflammation and oxidative stress have been reported to be involved in the progress of CVD. It is well known that generation of oxidative stress during the course of CVD is involved in tissue damage and inflammation, causing deleterious effects such as hypertension, dysfunctional metabolism, endothelial dysfunction, stroke, and myocardial infarction. Remarkably, natural antioxidant strategies have been increasingly discovered and are subject to current scientific investigations. Here, we addressed the activation of immune cells in the context of ROS production, as well as how their interaction with other cellular players and further (immune) mediators contribute to metabolic and cardiovascular disorders. We also highlight how a dysregulated complement system contributes to immune imbalance and tissue damage in the context of increases oxidative stress. Additionally, modulation of hypothalamic oxidative stress is discussed, which may offer novel treatment strategies for type-2 diabetes and obesity. Together, we provide new perspectives on therapy strategies for CVD caused by oxidative stress, with a focus on oxidative stress.
Collapse
|
10
|
Bang IH, Park D, Lee Y, Cho H, Park B, Bae EJ. Sirtuin 6 promotes eosinophil differentiation by activating GATA-1 transcription factor. Aging Cell 2021; 20:e13418. [PMID: 34125994 PMCID: PMC8282249 DOI: 10.1111/acel.13418] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 04/19/2021] [Accepted: 05/24/2021] [Indexed: 12/16/2022] Open
Abstract
There is evidence emerging that exposure to cold temperatures enhances alternative activation of macrophages in white adipose tissue (WAT), which promotes adipocyte beiging and adaptive thermogenesis. Although we recently reported that NAD+‐dependent deacetylase sirtuin 6 (Sirt6) drives alternatively activated (M2) macrophage polarization, the role of myeloid Sirt6 in adaptive thermogenesis had remained elusive. In this study, we demonstrate that myeloid Sirt6 deficiency impaired both thermogenic responses and M2 macrophage infiltration in subcutaneous WAT (scWAT) during cold exposure. Moreover, the infiltration of Siglec‐F‐positive eosinophils in scWAT and Th2 cytokines levels was reduced in myeloid Sirt6 knockout mice. An ex vivo bone marrow‐derived cell culture experiment indicated that Sirt6 was required for eosinophil differentiation independent of its deacetylase activity. Data from our in vitro experiments show that Sirt6 acted as a transcriptional cofactor of GATA‐1, independent of its catalytic function as a deacetylase or ADP‐ribosyltransferase. Specifically, Sirt6 physically interacted with GATA‐1, and enhanced GATA‐1’s acetylation and transcriptional activity by facilitating its cooperation with p300. Overall, our results suggest that myeloid Sirt6 plays an important role in eosinophil differentiation and fat beiging/adaptive thermogenesis, which is at least in part due to its ability to bind GATA‐1 and stimulate its transcriptional activity.
Collapse
Affiliation(s)
- In Hyuk Bang
- Department of Biochemistry and Molecular Biology Chonbuk National University Medical School Jeonju Korea
| | - Dami Park
- Department of Biochemistry and Molecular Biology Chonbuk National University Medical School Jeonju Korea
| | - Youngyi Lee
- Department of Biochemistry and Molecular Biology Chonbuk National University Medical School Jeonju Korea
| | - Hwangeui Cho
- College of Pharmacy Chonbuk National University Jeonju Korea
| | - Byung‐Hyun Park
- Department of Biochemistry and Molecular Biology Chonbuk National University Medical School Jeonju Korea
| | - Eun Ju Bae
- College of Pharmacy Chonbuk National University Jeonju Korea
| |
Collapse
|
11
|
Xie Z, Cheng Y, Zhang Q, Hao H, Yin Y, Zang L, Wang X, Mu Y. Anti-obesity effect and mechanism of mesenchymal stem cells influence on obese mice. Open Life Sci 2021; 16:653-666. [PMID: 34222665 PMCID: PMC8234810 DOI: 10.1515/biol-2021-0061] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 12/12/2022] Open
Abstract
Mesenchymal stem cells (MSCs) can be obtained from almost all tissues and present promising therapeutic effects for metabolic diseases. Human adipose-derived MSCs (hASCs) have recently been widely studied due to their easy access and low immunity. Thus, we intended to figure out the effects and potential mechanism of hASCs on obesity in high-fat-diet (HFD)-induced obese mice. Following 16 weeks of being fed HFD, hASCs were intravenously injected. Two weeks later, body weight, body composition, and energy expenditure were evaluated. Additionally, the phenotypes of macrophages infiltrating adipose tissue were analyzed. The results revealed that hASCs administration significantly reduced adipose tissue weight, adipocyte size, and fat mass and exerted beneficial effects in serum lipid profile. This anti-obesity effect was mediated by the increased O2 consumption, CO2 production, and energy expenditure, which was further evidenced by the upregulation of uncoupling protein-1 (UCP-1) and metabolism-associated genes. Furthermore, hASCs infusion increased the amount of alternatively activated (M2) macrophages in adipose tissue, and the expression of pro-inflammatory cytokines-related genes was reduced. Taken together, these results indicated that hASCs suppressed obesity by increasing UCP-1 expression and enhancing energy expenditure, and this effect might be due to the increased M2 macrophages.
Collapse
Affiliation(s)
- Zongyan Xie
- Department of Clinical Pharmacology, Beijing Luhe Hospital Affiliated to Capital Medical University, 82 Xinhua South Road, Beijing 101149, People's Republic of China
| | - Yu Cheng
- Department of Endocrinology, The First Medical Center of PLA General Hospital, 28 Fuxing Road, Beijing 100853, People's Republic of China
| | - Qi Zhang
- Department of Endocrinology, Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing 100070, People's Republic of China
| | - Haojie Hao
- Department of Molecular Biology, Institute of Basic Medicine, The First Medical Center of PLA General Hospital, Beijing 100853, People's Republic of China
| | - Yaqi Yin
- Department of Endocrinology, The First Medical Center of PLA General Hospital, 28 Fuxing Road, Beijing 100853, People's Republic of China
| | - Li Zang
- Department of Endocrinology, The First Medical Center of PLA General Hospital, 28 Fuxing Road, Beijing 100853, People's Republic of China
| | - Xuhong Wang
- Department of Clinical Pharmacology, Beijing Luhe Hospital Affiliated to Capital Medical University, 82 Xinhua South Road, Beijing 101149, People's Republic of China
| | - Yiming Mu
- Department of Endocrinology, The First Medical Center of PLA General Hospital, 28 Fuxing Road, Beijing 100853, People's Republic of China
| |
Collapse
|
12
|
Leptin Receptors Are Not Required for Roux-en-Y Gastric Bypass Surgery to Normalize Energy and Glucose Homeostasis in Rats. Nutrients 2021; 13:nu13051544. [PMID: 34064308 PMCID: PMC8147759 DOI: 10.3390/nu13051544] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 12/29/2022] Open
Abstract
Sensitization to the adipokine leptin is a promising therapeutic strategy against obesity and its comorbidities and has been proposed to contribute to the lasting metabolic benefits of Roux-en-Y gastric bypass (RYGB) surgery. We formally tested this idea using Zucker fatty fa/fa rats as an established genetic model of obesity, glucose intolerance, and fatty liver due to leptin receptor deficiency. We show that the changes in body weight in these rats following RYGB largely overlaps with that of diet-induced obese Wistar rats with intact leptin receptors. Further, food intake and oral glucose tolerance were normalized in RYGB-treated Zucker fatty fa/fa rats to the levels of lean Zucker fatty fa/+ controls, in association with increased glucagon-like peptide 1 (GLP-1) and insulin release. In contrast, while fatty liver was also normalized in RYGB-treated Zucker fatty fa/fa rats, their circulating levels of the liver enzyme alanine aminotransferase (ALT) remained elevated at the level of obese Zucker fatty fa/fa controls. These findings suggest that the leptin system is not required for the normalization of energy and glucose homeostasis associated with RYGB, but that its potential contribution to the improvements in liver health postoperatively merits further investigation.
Collapse
|
13
|
Reilly SM, Abu-Odeh M, Ameka M, DeLuca JH, Naber MC, Dadpey B, Ebadat N, Gomez AV, Peng X, Poirier B, Walk E, Potthoff MJ, Saltiel AR. FGF21 is required for the metabolic benefits of IKKε/TBK1 inhibition. J Clin Invest 2021; 131:145546. [PMID: 33822771 DOI: 10.1172/jci145546] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 03/23/2021] [Indexed: 12/15/2022] Open
Abstract
The protein kinases IKKε and TBK1 are activated in liver and fat in mouse models of obesity. We have previously demonstrated that treatment with the IKKε/TBK1 inhibitor amlexanox produces weight loss and relieves insulin resistance in obese animals and patients. While amlexanox treatment caused a transient reduction in food intake, long-term weight loss was attributable to increased energy expenditure via FGF21-dependent beiging of white adipose tissue (WAT). Amlexanox increased FGF21 synthesis and secretion in several tissues. Interestingly, although hepatic secretion determined circulating levels, it was dispensable for regulating energy expenditure. In contrast, adipocyte-secreted FGF21 may have acted as an autocrine factor that led to adipose tissue browning and weight loss in obese mice. Moreover, increased energy expenditure was an important determinant of improved insulin sensitivity by amlexanox. Conversely, the immediate reductions in fasting blood glucose observed with acute amlexanox treatment were mediated by the suppression of hepatic glucose production via activation of STAT3 by adipocyte-secreted IL-6. These findings demonstrate that amlexanox improved metabolic health via FGF21 action in adipocytes to increase energy expenditure via WAT beiging and that adipocyte-derived IL-6 has an endocrine role in decreasing gluconeogenesis via hepatic STAT3 activation, thereby producing a coordinated improvement in metabolic parameters.
Collapse
Affiliation(s)
- Shannon M Reilly
- Division of Metabolism and Endocrinology, Department of Medicine, UCSD, La Jolla, California, USA.,Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA
| | - Mohammad Abu-Odeh
- Division of Metabolism and Endocrinology, Department of Medicine, UCSD, La Jolla, California, USA
| | - Magdalene Ameka
- Department of Neuroscience and Pharmacology and.,Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Julia H DeLuca
- Division of Metabolism and Endocrinology, Department of Medicine, UCSD, La Jolla, California, USA
| | - Meghan C Naber
- Department of Neuroscience and Pharmacology and.,Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Benyamin Dadpey
- Division of Metabolism and Endocrinology, Department of Medicine, UCSD, La Jolla, California, USA
| | - Nima Ebadat
- Division of Metabolism and Endocrinology, Department of Medicine, UCSD, La Jolla, California, USA
| | - Andrew V Gomez
- Division of Metabolism and Endocrinology, Department of Medicine, UCSD, La Jolla, California, USA
| | - Xiaoling Peng
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA
| | - BreAnne Poirier
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA
| | - Elyse Walk
- Division of Metabolism and Endocrinology, Department of Medicine, UCSD, La Jolla, California, USA
| | - Matthew J Potthoff
- Department of Neuroscience and Pharmacology and.,Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Alan R Saltiel
- Division of Metabolism and Endocrinology, Department of Medicine, UCSD, La Jolla, California, USA.,Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
14
|
Zhang C, Biehl Rudkjær LC, Cachón MF, Falkenhahn M, Theis S, Schmidt T, Vrang N, Jelsing J, Rigbolt K. Transcriptomic changes in pancreatic islets, adipose and liver after Roux-en-Y gastric bypass in a diet-induced obese rat model. Peptides 2021; 136:170467. [PMID: 33253774 DOI: 10.1016/j.peptides.2020.170467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/28/2020] [Accepted: 11/21/2020] [Indexed: 12/28/2022]
Abstract
Roux-en-Y gastric bypass (RYGB) is the most efficient intervention in morbid obesity and promotes metabolic improvements in several peripheral tissues. However, the underlying molecular mechanisms are still poorly understood. To further understand the effects of RYGB on peripheral tissues transcriptomes, we determined transcriptome signatures in pancreatic islets, adipose and liver tissue from diet-induced obese (DIO) rats model following RYGB. Whereas RYGB led to discrete gene expression changes in pancreatic islets, substantial transcriptome changes were observed in metabolic and immune signaling pathways in adipose tissue and the liver, indicating major gene adaptive responses in fat-storing tissues. Compared to RYGB DIO rats, peripheral tissue transcriptome signatures were markedly different in caloric restricted weight matching DIO rats, implying that caloric restriction paradigms do not reflect transcriptomic regulations of RYGB induced weight loss. The present gene expression study may serve as a basis for further investigations into molecular regulatory effects in peripheral tissues following RYGB-induced weight loss.
Collapse
Affiliation(s)
| | | | | | | | - Stefan Theis
- Sanofi-Aventis Deutschland GmbH, Frankfurt am Main, Germany
| | | | | | | | | |
Collapse
|
15
|
Ye Y, Abu El Haija M, Morgan DA, Guo D, Song Y, Frank A, Tian L, Riedl RA, Burnett CML, Gao Z, Zhu Z, Shahi SK, Zarei K, Couvelard A, Poté N, Ribeiro-Parenti L, Bado A, Noureddine L, Bellizzi A, Kievit P, Mangalam AK, Zingman LV, Le Gall M, Grobe JL, Kaplan LM, Clegg D, Rahmouni K, Mokadem M. Endocannabinoid Receptor-1 and Sympathetic Nervous System Mediate the Beneficial Metabolic Effects of Gastric Bypass. Cell Rep 2020; 33:108270. [PMID: 33113371 PMCID: PMC7660289 DOI: 10.1016/j.celrep.2020.108270] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 05/18/2020] [Accepted: 09/23/2020] [Indexed: 12/27/2022] Open
Abstract
The exact mechanisms underlying the metabolic effects of bariatric surgery remain unclear. Here, we demonstrate, using a combination of direct and indirect calorimetry, an increase in total resting metabolic rate (RMR) and specifically anaerobic RMR after Roux-en-Y gastric bypass (RYGB), but not sleeve gastrectomy (SG). We also show an RYGB-specific increase in splanchnic sympathetic nerve activity and "browning" of visceral mesenteric fat. Consequently, selective splanchnic denervation abolishes all beneficial metabolic outcomes of gastric bypass that involve changes in the endocannabinoid signaling within the small intestine. Furthermore, we demonstrate that administration of rimonabant, an endocannabinoid receptor-1 (CB1) inverse agonist, to obese mice mimics RYGB-specific effects on energy balance and splanchnic nerve activity. On the other hand, arachidonoylethanolamide (AEA), a CB1 agonist, attenuates the weight loss and metabolic signature of this procedure. These findings identify CB1 as a key player in energy regulation post-RYGB via a pathway involving the sympathetic nervous system.
Collapse
Affiliation(s)
- Yuanchao Ye
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Marwa Abu El Haija
- Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Donald A Morgan
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Deng Guo
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Yang Song
- College of Pharmacy, China Medical University, 77 Puhe Rd., Liaoning 110122, P.R. China
| | - Aaron Frank
- The Biomedical Research Department, Diabetes and Obesity Research Division, Cedars Sinai Medical Center, Beverly Hills, CA 90048, USA
| | - Liping Tian
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, P.R. China
| | - Ruth A Riedl
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Colin M L Burnett
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Zhan Gao
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Zhiyong Zhu
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Shailesh K Shahi
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Kasra Zarei
- Medical Scientist Training Program, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Anne Couvelard
- INSERM U1149, Centre de Recherche sur l'Inflammation, Université de Paris, Paris 75018, France; Department of Pathology, Bichat Hospital, AP-HP, Paris 75018, France
| | - Nicolas Poté
- INSERM U1149, Centre de Recherche sur l'Inflammation, Université de Paris, Paris 75018, France; Department of Pathology, Bichat Hospital, AP-HP, Paris 75018, France
| | - Lara Ribeiro-Parenti
- INSERM U1149, Centre de Recherche sur l'Inflammation, Université de Paris, Paris 75018, France; Department of General and Digestive Surgery, Bichat Hospital, AP-HP, Paris 75018, France
| | - André Bado
- INSERM U1149, Centre de Recherche sur l'Inflammation, Université de Paris, Paris 75018, France
| | - Lama Noureddine
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Andrew Bellizzi
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Paul Kievit
- Division of Diabetes, Obesity and Metabolism, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USA
| | - Ashutosh K Mangalam
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Interdisciplinary Graduate Program in Immunology and Molecular Medicine, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Leonid V Zingman
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Fraternal Orders of Eagles Diabetes Research Center, Iowa City, IA 52242, USA; Veterans Affairs Health Care System, Iowa City, IA 52242, USA; Obesity Research & Education Initiative, University of Iowa, Iowa City, IA 52242, USA
| | - Maude Le Gall
- INSERM U1149, Centre de Recherche sur l'Inflammation, Université de Paris, Paris 75018, France
| | - Justin L Grobe
- Departments of Physiology and Biomedical Engineering, Medical College of Wisconsin, Milwaukee, MI 53226, USA
| | - Lee M Kaplan
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA; Obesity, Metabolism, and Nutrition Institute, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Deborah Clegg
- College of Nursing and Health Professions, Drexel University, 1601 Cherry Street, Philadelphia, PA 19102, USA
| | - Kamal Rahmouni
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Medical Scientist Training Program, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Fraternal Orders of Eagles Diabetes Research Center, Iowa City, IA 52242, USA; Veterans Affairs Health Care System, Iowa City, IA 52242, USA; Obesity Research & Education Initiative, University of Iowa, Iowa City, IA 52242, USA
| | - Mohamad Mokadem
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Fraternal Orders of Eagles Diabetes Research Center, Iowa City, IA 52242, USA; Veterans Affairs Health Care System, Iowa City, IA 52242, USA; Obesity Research & Education Initiative, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
16
|
Hankir MK, Seyfried F. Partial Leptin Reduction: An Emerging Weight Loss Paradigm. Trends Endocrinol Metab 2020; 31:395-397. [PMID: 32396841 DOI: 10.1016/j.tem.2020.03.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/27/2020] [Accepted: 03/02/2020] [Indexed: 02/06/2023]
Abstract
Leptin-based obesity pharmacotherapies were originally developed according to the lipostatic view that elevated circulating leptin levels promote a negative energy balance. A series of independent preclinical findings suggest, however, that a partial reduction in circulating leptin levels (either by immunoneutralization, a peripherally restricted CB1 receptor inverse agonist, or bariatric surgery) can paradoxically lead to weight loss.
Collapse
Affiliation(s)
- Mohammed K Hankir
- Department of Experimental Surgery, University Hospital Wuerzburg, Wuerzburg 97080, Bavaria, Germany.
| | - Florian Seyfried
- Department of General, Visceral, Transplant, Vascular, and Pediatric Surgery, University Hospital Wuerzburg, Wuerzburg 97080, Bavaria, Germany
| |
Collapse
|
17
|
Abstract
Reviewed here are multiple mouse models of vertical sleeve gastrectomy (VSG) and Roux-en Y gastric bypass (RYGB) that have emerged over the past decade. These models use diverse approaches to both operative and perioperative procedures. Scrutinizing the benefits and pitfalls of each surgical model and what to expect in terms of post-operative outcomes will enhance our assessment of studies using mouse models, as well as advance our understanding of their translational potential. Two mouse models of bariatric surgery, VSG-lembert and RYGB-small pouch, demonstrate low mortality and most closely recapitulate the human forms of surgery. The use of liquid diets can be minimized, and in mice, RYGB demonstrates more reliable and longer lasting effects on weight loss compared to that of VSG.
Collapse
|
18
|
Hankir MK, Seyfried F. Do Bariatric Surgeries Enhance Brown/Beige Adipose Tissue Thermogenesis? Front Endocrinol (Lausanne) 2020; 11:275. [PMID: 32425889 PMCID: PMC7203442 DOI: 10.3389/fendo.2020.00275] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 04/14/2020] [Indexed: 12/13/2022] Open
Abstract
Bariatric surgeries induce marked and durable weight loss in individuals with morbid obesity through powerful effects on both food intake and energy expenditure. While alterations in gut-brain communication are increasingly implicated in the improved eating behavior following bariatric surgeries, less is known about the mechanistic basis for energy expenditure changes. Brown adipose tissue (BAT) and beige adipose tissue (BeAT) have emerged as major regulators of whole-body energy metabolism in humans as well as in rodents due to their ability to convert the chemical energy in circulating glucose and fatty acids into heat. In this Review, we critically discuss the steadily growing evidence from preclinical and clinical studies suggesting that Roux-en-Y gastric bypass (RYGB) and vertical sleeve gastrectomy (VSG), the two most commonly performed bariatric surgeries, enhance BAT/BeAT thermogenesis. We address the documented mechanisms, highlight study limitations and finish by outlining unanswered questions in the subject. Further understanding how and to what extent bariatric surgeries enhance BAT/BeAT thermogenesis may not only aid in the development of improved obesity pharmacotherapies that safely and optimally target both sides of the energy balance equation, but also in the development of novel hyperglycemia and/or hyperlipidemia pharmacotherapies.
Collapse
Affiliation(s)
- Mohammed K. Hankir
- Department of Experimental Surgery, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Florian Seyfried
- Department of General, Visceral, Vascular and Pediatric Surgery, University Hospital Wuerzburg, Wuerzburg, Germany
| |
Collapse
|
19
|
Changes of Resting Energy Expenditure in Type 2 Diabetes Rats After Roux-en-Y Gastric Bypass. Obes Surg 2020; 30:2994-3000. [PMID: 32338325 DOI: 10.1007/s11695-020-04638-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
20
|
Tarabra E, Nouws J, Vash-Margita A, Nadzam GS, Goldberg R, Van Name M, Pierpont B, Knight JR, Shulman GI, Caprio S. The omentum of obese girls harbors small adipocytes and browning transcripts. JCI Insight 2020; 5:135448. [PMID: 32125283 PMCID: PMC7213797 DOI: 10.1172/jci.insight.135448] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 02/26/2020] [Indexed: 12/21/2022] Open
Abstract
Severe obesity (SO) affects about 6% of youth in the United States, augmenting the risks for cardiovascular disease and type 2 diabetes. Herein, we obtained paired omental adipose tissue (omVAT) and abdominal subcutaneous adipose tissue (SAT) biopsies from girls with SO undergoing sleeve gastrectomy (SG), to test whether differences in cellular and transcriptomic profiles between omVAT and SAT depots affect insulin sensitivity differently. Following weight loss, these analyses were repeated in a subgroup of subjects having a second SAT biopsy. We found that omVAT displayed smaller adipocytes compared with SAT, increased lipolysis through adipose triglyceride lipase phosphorylation, reduced inflammation, and increased expression of browning/beiging markers. Contrary to omVAT, SAT adipocyte diameter correlated with insulin resistance. Following SG, both weight and insulin sensitivity improved markedly in all subjects. SAT adipocytes' size became smaller, showing increased lipolysis through perilipin 1 phosphorylation, decreased inflammation, and increased expression in browning/beiging markers. In summary, in adolescent girls with SO, both omVAT and SAT depots showed distinct cellular and transcriptomic profiles. Following weight loss, the SAT depot changed its cellular morphology and transcriptomic profiles into more favorable ones. These changes in the SAT depot may play a fundamental role in the resolution of insulin resistance.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - James R Knight
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
- Yale Center for Genome Analysis, Yale University West Campus, Orange, Connecticut, USA
| | - Gerald I Shulman
- Department of Internal Medicine
- Department of Cellular and Molecular Physiology, and
- Yale Diabetes Research Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | | |
Collapse
|
21
|
Chait A, den Hartigh LJ. Adipose Tissue Distribution, Inflammation and Its Metabolic Consequences, Including Diabetes and Cardiovascular Disease. Front Cardiovasc Med 2020; 7:22. [PMID: 32158768 PMCID: PMC7052117 DOI: 10.3389/fcvm.2020.00022] [Citation(s) in RCA: 633] [Impact Index Per Article: 158.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 02/10/2020] [Indexed: 12/13/2022] Open
Abstract
Adipose tissue plays essential roles in maintaining lipid and glucose homeostasis. To date several types of adipose tissue have been identified, namely white, brown, and beige, that reside in various specific anatomical locations throughout the body. The cellular composition, secretome, and location of these adipose depots define their function in health and metabolic disease. In obesity, adipose tissue becomes dysfunctional, promoting a pro-inflammatory, hyperlipidemic and insulin resistant environment that contributes to type 2 diabetes mellitus (T2DM). Concurrently, similar features that result from adipose tissue dysfunction also promote cardiovascular disease (CVD) by mechanisms that can be augmented by T2DM. The mechanisms by which dysfunctional adipose tissue simultaneously promote T2DM and CVD, focusing on adipose tissue depot-specific adipokines, inflammatory profiles, and metabolism, will be the focus of this review. The impact that various T2DM and CVD treatment strategies have on adipose tissue function and body weight also will be discussed.
Collapse
Affiliation(s)
- Alan Chait
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, Seattle, WA, United States
| | - Laura J den Hartigh
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, Seattle, WA, United States
| |
Collapse
|
22
|
Meng J, Chen W, Wang J. Interventions in the B-type natriuretic peptide signalling pathway as a means of controlling chronic itch. Br J Pharmacol 2020; 177:1025-1040. [PMID: 31877230 DOI: 10.1111/bph.14952] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 11/08/2019] [Accepted: 11/19/2019] [Indexed: 12/22/2022] Open
Abstract
Chronic itch poses major health care and economic burdens worldwide. In 2013, B-type natriuretic peptide (BNP) was identified as an itch-selective neuropeptide and shown to be both necessary and sufficient to produce itch behaviour in mice. Since then, mechanistic studies of itch have increased, not only at central levels of the spinal relay of itch signalling but also in the periphery and skin. In this review, we have critically analysed recent findings from complementary pharmacological and physiological approaches, combined with genetic strategies to examine the role of BNP in itch transduction and modulation of other pruritic proteins. Additionally, potential targets and possible strategies against BNP signalling are discussed for developing novel therapeutics in itch. Overall, we aim to provide insights into drug development by altering BNP signalling to modulate disease symptoms in chronic itch, including conditions for which no approved treatment exists.
Collapse
Affiliation(s)
- Jianghui Meng
- School of Life Sciences, Henan University, Henan, China.,National Institute for Cellular Biotechnology, Dublin City University, Dublin, Ireland.,School of Biotechnology, Faculty of Science and Health, Dublin City University, Dublin, Ireland
| | - Weiwei Chen
- School of Life Sciences, Henan University, Henan, China
| | - Jiafu Wang
- School of Life Sciences, Henan University, Henan, China.,School of Biotechnology, Faculty of Science and Health, Dublin City University, Dublin, Ireland
| |
Collapse
|
23
|
Shao M, Wang QA, Song A, Vishvanath L, Busbuso NC, Scherer PE, Gupta RK. Cellular Origins of Beige Fat Cells Revisited. Diabetes 2019; 68:1874-1885. [PMID: 31540940 PMCID: PMC6754244 DOI: 10.2337/db19-0308] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 07/10/2019] [Indexed: 12/11/2022]
Abstract
Activated beige adipocytes have therapeutic potential due to their ability to improve glucose and lipid homeostasis. To date, the origin of beige adipocytes remains enigmatic. Whether beige cells arise through de novo differentiation from resident precursors or through reprogramming of mature white adipocytes has been a topic of intense discussion. Here, we offer our perspective on the natural origin of beige adipocytes in mice. In particular, we revisit recent lineage-tracing studies that shed light on this issue and offer new insight into how environmental housing temperatures early in life influence the mode of beige adipocyte biogenesis upon cold exposure later in life. We suggest a unified model in which beige adipocytes (UCP1+ multilocular cells) in rodents initially arise predominantly from progenitors (i.e., de novo beige adipogenesis) upon the first exposure to cold temperatures and then interconvert between "dormant beige" and "active beige" phenotypes (i.e., beige cell activation) upon subsequent changes in environmental temperature. Importantly, we highlight experimental considerations needed to visualize de novo adipogenesis versus beige cell activation in mice. A precise understanding of the cellular origins of beige adipocytes emanating in response to physiological and pharmacological stimuli may better inform therapeutic strategies to recruit beige adipocytes in vivo.
Collapse
Affiliation(s)
- Mengle Shao
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX
| | - Qiong A Wang
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX
- Department of Molecular and Cellular Endocrinology, Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, CA
| | - Anying Song
- Department of Molecular and Cellular Endocrinology, Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, CA
| | - Lavanya Vishvanath
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX
| | - Napoleon C Busbuso
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX
| | - Philipp E Scherer
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX
| | - Rana K Gupta
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX
| |
Collapse
|
24
|
Iyer MS, Paszkiewicz RL, Bergman RN, Richey JM, Woolcott OO, Asare-Bediako I, Wu Q, Kim SP, Stefanovski D, Kolka CM, Clegg DJ, Kabir M. Activation of NPRs and UCP1-independent pathway following CB1R antagonist treatment is associated with adipose tissue beiging in fat-fed male dogs. Am J Physiol Endocrinol Metab 2019; 317:E535-E547. [PMID: 31237449 PMCID: PMC6766608 DOI: 10.1152/ajpendo.00539.2018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 06/21/2019] [Accepted: 06/24/2019] [Indexed: 11/22/2022]
Abstract
CB1 receptor (CB1R) antagonism improves the deleterious effects of a high-fat diet (HFD) by reducing body fat mass and adipocyte cell size. Previous studies demonstrated that the beneficial effects of the CB1R antagonist rimonabant (RIM) in white adipose tissue (WAT) are partially due to an increase of mitochondria numbers and upregulation thermogenesis markers, suggesting an induction of WAT beiging. However, the molecular mechanism by which CB1R antagonism induces weight loss and WAT beiging is unclear. In this study, we probed for genes associated with beiging and explored longitudinal molecular mechanisms by which the beiging process occurs. HFD dogs received either RIM (HFD+RIM) or placebo (PL) (HFD+PL) for 16 wk. Several genes involved in beiging were increased in HFD+RIM compared with pre-fat, HFD, and HFD+PL. We evaluated lipolysis and its regulators including natriuretic peptide (NP) and its receptors (NPRs), β-1 and β-3 adrenergic receptor (β1R, β3R) genes. These genes were increased in WAT depots, accompanied by an increase in lipolysis in HFD+RIM. In addition, RIM decreased markers of inflammation and increased adiponectin receptors in WAT. We observed a small but significant increase in UCP1; therefore, we evaluated the newly discovered UCP1-independent thermogenesis pathway. We confirmed that SERCA2b and RYR2, the two key genes involved in this pathway, were upregulated in the WAT. Our data suggest that the upregulation of NPRs, β-1R and β-3R, lipolysis, and SERCA2b and RYR2 may be one of the mechanisms by which RIM promotes beiging and overall the improvement of metabolic homeostasis induced by RIM.
Collapse
MESH Headings
- Adipose Tissue/drug effects
- Adipose Tissue, Brown/drug effects
- Adipose Tissue, White/drug effects
- Animals
- Diet, High-Fat/adverse effects
- Dogs
- Gene Expression/drug effects
- Inflammation/pathology
- Inflammation/prevention & control
- Insulin Resistance
- Male
- Organelle Biogenesis
- Receptor, Cannabinoid, CB1/antagonists & inhibitors
- Receptors, Adrenergic, beta/drug effects
- Receptors, Adrenergic, beta/metabolism
- Receptors, Atrial Natriuretic Factor/drug effects
- Rimonabant/pharmacology
- Thermogenesis/drug effects
- Thermogenesis/genetics
- Uncoupling Protein 1/drug effects
- Weight Loss/drug effects
Collapse
Affiliation(s)
- Malini S Iyer
- Cedars-Sinai Diabetes and Obesity Research Institute, Los Angeles, California
| | | | - Richard N Bergman
- Cedars-Sinai Diabetes and Obesity Research Institute, Los Angeles, California
| | - Joyce M Richey
- Department of Physiology and Biophysics, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Orison O Woolcott
- Cedars-Sinai Diabetes and Obesity Research Institute, Los Angeles, California
| | - Isaac Asare-Bediako
- Cedars-Sinai Diabetes and Obesity Research Institute, Los Angeles, California
| | - Qiang Wu
- Cedars-Sinai Diabetes and Obesity Research Institute, Los Angeles, California
| | - Stella P Kim
- Cedars-Sinai Diabetes and Obesity Research Institute, Los Angeles, California
| | - Darko Stefanovski
- Cedars-Sinai Diabetes and Obesity Research Institute, Los Angeles, California
| | - Cathryn M Kolka
- Cedars-Sinai Diabetes and Obesity Research Institute, Los Angeles, California
| | - Deborah J Clegg
- Cedars-Sinai Diabetes and Obesity Research Institute, Los Angeles, California
| | - Morvarid Kabir
- Cedars-Sinai Diabetes and Obesity Research Institute, Los Angeles, California
| |
Collapse
|
25
|
Role of epicardial adipose tissue NPR-C in acute coronary syndrome. Atherosclerosis 2019; 286:79-87. [DOI: 10.1016/j.atherosclerosis.2019.05.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 04/28/2019] [Accepted: 05/08/2019] [Indexed: 12/12/2022]
|
26
|
Abstract
One of the biggest challenges in the management of obesity is the prevention of weight regain after successful weight loss. Weight regain after weight loss has large interindividual variation. Although many factors probably contribute to this variation, we hypothesize that variability in biological responses associated with weight loss-induced shrinking of subcutaneous adipocytes has an important role. In this Review, we show that weight loss-induced variations in cellular stress, extracellular matrix remodelling, inflammatory responses, adipokine secretion and lipolysis seem to be associated with the amount of weight that is regained after successful weight loss. Weight regain could therefore, at least in part, depend on a combination of these factors. Further research on the causality of these associations could aid the development of effective strategies to prevent weight regain after successful weight loss.
Collapse
Affiliation(s)
- Marleen A van Baak
- NUTRIM School for Nutrition and Translational Research in Metabolism, Department of Human Biology, Maastricht University, Maastricht, Netherlands.
| | - Edwin C M Mariman
- NUTRIM School for Nutrition and Translational Research in Metabolism, Department of Human Biology, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
27
|
Senese R, Cioffi F, De Matteis R, Petito G, de Lange P, Silvestri E, Lombardi A, Moreno M, Goglia F, Lanni A. 3,5 Diiodo-l-Thyronine (T₂) Promotes the Browning of White Adipose Tissue in High-Fat Diet-Induced Overweight Male Rats Housed at Thermoneutrality. Cells 2019; 8:cells8030256. [PMID: 30889829 PMCID: PMC6468521 DOI: 10.3390/cells8030256] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/08/2019] [Accepted: 03/14/2019] [Indexed: 12/22/2022] Open
Abstract
The conversion of white adipose cells into beige adipose cells is known as browning, a process affecting energy metabolism. It has been shown that 3,5 diiodo-l-thyronine (T₂), an endogenous metabolite of thyroid hormones, stimulates energy expenditure and a reduction in fat mass. In light of the above, the purpose of this study was to test whether in an animal model of fat accumulation, T₂ has the potential to activate a browning process and to explore the underlying mechanism. Three groups of rats were used: (i) receiving a standard diet for 14 weeks; (ii) receiving a high-fat diet (HFD) for 14 weeks; and (iii) receiving a high fat diet for 10 weeks and being subsequently treated for four weeks with an HFD together with the administration of T₂. We showed that T₂ was able to induce a browning in the white adipose tissue of T₂-treated rats. We also showed that some miRNA (miR133a and miR196a) and MAP kinase 6 were involved in this process. These results indicate that, among others, the browning may be another cellular/molecular mechanism by which T₂ exerts its beneficial effects of contrast to overweight and of reduction of fat mass in rats subjected to HFD.
Collapse
Affiliation(s)
- Rosalba Senese
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "L. Vanvitelli", 81100 Caserta, Italy.
| | - Federica Cioffi
- Department of Sciences and Technologies, University of Sannio, 82100 Benevento, Italy.
| | - Rita De Matteis
- Department of Biomolecular Sciences, Urbino University, 61029 Urbino, Italy.
| | - Giuseppe Petito
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "L. Vanvitelli", 81100 Caserta, Italy.
| | - Pieter de Lange
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "L. Vanvitelli", 81100 Caserta, Italy.
| | - Elena Silvestri
- Department of Sciences and Technologies, University of Sannio, 82100 Benevento, Italy.
| | - Assunta Lombardi
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy.
| | - Maria Moreno
- Department of Sciences and Technologies, University of Sannio, 82100 Benevento, Italy.
| | - Fernando Goglia
- Department of Sciences and Technologies, University of Sannio, 82100 Benevento, Italy.
| | - Antonia Lanni
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "L. Vanvitelli", 81100 Caserta, Italy.
| |
Collapse
|
28
|
Nilaweera KN, Speakman JR. Regulation of intestinal growth in response to variations in energy supply and demand. Obes Rev 2018; 19 Suppl 1:61-72. [PMID: 30511508 PMCID: PMC6334514 DOI: 10.1111/obr.12780] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 09/11/2018] [Indexed: 12/14/2022]
Abstract
The growth of the intestine requires energy, which is known to be met by catabolism of ingested nutrients. Paradoxically, during whole body energy deficit including calorie restriction, the intestine grows in size. To understand how and why this happens, we reviewed data from several animal models of energetic challenge. These were bariatric surgery, cold exposure, lactation, dietary whey protein intake and calorie restriction. Notably, these challenges all reduced the adipose tissue mass, altered hypothalamic neuropeptide expression and increased intestinal size. Based on these data, we propose that the loss of energy in the adipose tissue promotes the growth of the intestine via a signalling mechanism involving the hypothalamus. We discuss possible candidates in this pathway including data showing a correlative change in intestinal (ileal) expression of the cyclin D1 gene with adipose tissue mass, adipose derived-hormone leptin and hypothalamic expression of leptin receptor and the pro-opiomelanocortin gene. The ability of the intestine to grow in size during depletion of energy stores provides a mechanism to maximize assimilation of ingested energy and in turn sustain critical functions of tissues important for survival.
Collapse
Affiliation(s)
- K N Nilaweera
- Department of Food Biosciences, Teagasc Food Research Centre, Fermoy, County Cork, Ireland
| | - J R Speakman
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
29
|
Katsi V, Marketou M, Antonopoulos AS, Vrachatis D, Parthenakis F, Tousoulis D. B-type natriuretic peptide levels and benign adiposity in obese heart failure patients. Heart Fail Rev 2018; 24:219-226. [DOI: 10.1007/s10741-018-9739-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
30
|
Knuth CM, Peppler WT, Townsend LK, Miotto PM, Gudiksen A, Wright DC. Prior exercise training improves cold tolerance independent of indices associated with non-shivering thermogenesis. J Physiol 2018; 596:4375-4391. [PMID: 30109697 DOI: 10.1113/jp276228] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 07/12/2018] [Indexed: 12/18/2022] Open
Abstract
KEY POINTS Mammals defend against cold-induced reductions in body temperature through both shivering and non-shivering thermogenesis. The activation of non-shivering thermogenesis is primarily driven by uncoupling protein-1 in brown adipose tissue and to a lesser degree by the browning of white adipose tissue. Endurance exercise has also been shown to increase markers of white adipose tissue browning. This study aimed to determine whether prior exercise training would alter the response to a cold challenge and if this would be associated with differences in indices of non-shivering thermogenesis. It is shown that exercise training protects against cold-induced weight loss by increasing food intake. Exercise-trained mice were better able to maintain their core temperature, independent of differences in markers of non-shivering thermogenesis. ABSTRACT Shivering is one of the first defences against cold, and as skeletal muscle fatigues there is an increased reliance on non-shivering thermogenesis. Brown and beige adipose tissues are the primary thermogenic tissues regulating this process. Exercise has also been shown to increase the thermogenic capacity of subcutaneous white adipose tissue. Whether exercise has an effect on the adaptations to cold stress within adipose tissue and skeletal muscle remains to be shown. Male C57BL/6 mice were either subjected to voluntary wheel running or remained sedentary for 12 days. Exercise led to decreased body weight and increased glucose tolerance. Mice were then divided into groups kept at 25°C room temperature or a cold challenge of 4°C for 48 h. Exercised mice were protected against cold-induced reductions in weight and in parallel with increased food intake. Providing exercised mice with the same amount of food as sedentary mice eliminated the protection against cold-induced weight loss. Cold exposure led to greater reductions in rectal temperature in sedentary compared to exercised mice. This protective effect was not explained by differences in the browning of white adipose tissue or brown adipose tissue mass. Similarly, the ability of the β3 -adrenergic agonist CL 316,243 to increase energy expenditure was attenuated in previously exercised mice, suggesting that the activation of uncoupling protein-1 in brown and/or beige adipocytes is not the source of protective effects. We speculate that the protection against cold-induced reductions in rectal temperature could potentially be linked to exercise-induced alterations in skeletal muscle.
Collapse
Affiliation(s)
- Carly M Knuth
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada N1G 2W1
| | - Willem T Peppler
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada N1G 2W1
| | - Logan K Townsend
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada N1G 2W1
| | - Paula M Miotto
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada N1G 2W1
| | - Anders Gudiksen
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - David C Wright
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada N1G 2W1
| |
Collapse
|
31
|
Ben-Zvi D, Meoli L, Abidi WM, Nestoridi E, Panciotti C, Castillo E, Pizarro P, Shirley E, Gourash WF, Thompson CC, Munoz R, Clish CB, Anafi RC, Courcoulas AP, Stylopoulos N. Time-Dependent Molecular Responses Differ between Gastric Bypass and Dieting but Are Conserved Across Species. Cell Metab 2018; 28:310-323.e6. [PMID: 30043755 PMCID: PMC6628900 DOI: 10.1016/j.cmet.2018.06.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 09/19/2017] [Accepted: 06/04/2018] [Indexed: 12/22/2022]
Abstract
The effectiveness of Roux-en-Y gastric bypass (RYGB) against obesity and its comorbidities has generated excitement about developing new, less invasive treatments that use the same molecular mechanisms. Although controversial, RYGB-induced improvement of metabolic function may not depend entirely upon weight loss. To elucidate the differences between RYGB and dieting, we studied several individual organ molecular responses and generated an integrative, interorgan view of organismal physiology. We also compared murine and human molecular signatures. We show that, although dieting and RYGB can bring about the same degree of weight loss, post-RYGB physiology is very different. RYGB induces distinct, organ-specific adaptations in a temporal pattern that is characterized by energetically demanding processes, which may be coordinated by HIF1a activation and the systemic repression of growth hormone receptor signaling. Many of these responses are conserved in rodents and humans and may contribute to the remarkable ability of surgery to induce and sustain metabolic improvement.
Collapse
Affiliation(s)
- Danny Ben-Zvi
- Center for Basic and Translational Obesity Research, Division of Endocrinology, CLS16066, Boston Children's Hospital and Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA; Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA.
| | - Luca Meoli
- Center for Basic and Translational Obesity Research, Division of Endocrinology, CLS16066, Boston Children's Hospital and Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Wasif M Abidi
- Developmental Endoscopy Laboratory, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Eirini Nestoridi
- Center for Basic and Translational Obesity Research, Division of Endocrinology, CLS16066, Boston Children's Hospital and Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Courtney Panciotti
- Center for Basic and Translational Obesity Research, Division of Endocrinology, CLS16066, Boston Children's Hospital and Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Erick Castillo
- Department of Digestive Surgery, School of Medicine, Pontificia Universidad Católica, Santiago 8331150, Chile
| | - Palmenia Pizarro
- Department of Digestive Surgery, School of Medicine, Pontificia Universidad Católica, Santiago 8331150, Chile
| | - Eleanor Shirley
- Division of Minimally Invasive and Metabolic Surgery, Magee-Womens Hospital, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - William F Gourash
- Division of Minimally Invasive and Metabolic Surgery, Magee-Womens Hospital, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Christopher C Thompson
- Developmental Endoscopy Laboratory, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Rodrigo Munoz
- Department of Digestive Surgery, School of Medicine, Pontificia Universidad Católica, Santiago 8331150, Chile
| | - Clary B Clish
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Ron C Anafi
- Center for Sleep and Circadian Neurobiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Anita P Courcoulas
- Division of Minimally Invasive and Metabolic Surgery, Magee-Womens Hospital, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Nicholas Stylopoulos
- Center for Basic and Translational Obesity Research, Division of Endocrinology, CLS16066, Boston Children's Hospital and Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
32
|
Stojanović O, Kieser S, Trajkovski M. Common traits between the beige fat-inducing stimuli. Curr Opin Cell Biol 2018; 55:67-73. [PMID: 30007128 DOI: 10.1016/j.ceb.2018.05.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 05/08/2018] [Accepted: 05/19/2018] [Indexed: 01/09/2023]
Abstract
Adipose tissues play an essential role in regulating the metabolic homeostasis and can be found in almost all parts of the body. Excessive adiposity leads to obesity and can contribute to metabolic and other disorders. Adipocytes show remarkable plasticity in their function, which can be pushed toward energy storage, or energy expenditure-a `browning' of fat. Browning is controlled by the cellular milieu of the adipose tissue, with sympathetic innervation and by immune responses as key integrators of the signals that promote browning. Here, we describe the latest contributions to our understanding of how different metabolic stimuli can shape the adipocyte function. We especially focus on the role of the gut microbiota and the negative energy balance in regulating the browning.
Collapse
Affiliation(s)
- Ozren Stojanović
- University of Geneva, Faculty of Medicine, Department of Cell Physiology and Metabolism, Centre Médical Universitaire, 1211 Geneva, Switzerland; University of Geneva, Diabetes Centre, Faculty of Medicine, 1211 Geneva, Switzerland
| | - Silas Kieser
- University of Geneva, Faculty of Medicine, Department of Cell Physiology and Metabolism, Centre Médical Universitaire, 1211 Geneva, Switzerland; University of Geneva, Diabetes Centre, Faculty of Medicine, 1211 Geneva, Switzerland
| | - Mirko Trajkovski
- University of Geneva, Faculty of Medicine, Department of Cell Physiology and Metabolism, Centre Médical Universitaire, 1211 Geneva, Switzerland; University of Geneva, Diabetes Centre, Faculty of Medicine, 1211 Geneva, Switzerland; Institute for Genetics and Genomics in Geneva, University of Geneva, 1211 Geneva, Switzerland.
| |
Collapse
|
33
|
Balazova L, Wolfrum C, Balaz M. Weight Loss and Adipose Tissue Browning in Humans: The Chicken or the Egg? Trends Endocrinol Metab 2018; 29:450-452. [PMID: 29548805 DOI: 10.1016/j.tem.2018.03.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 03/02/2018] [Indexed: 01/05/2023]
Abstract
Recruitment of thermogenic adipocytes within white fat depots represents a promising strategy to increase energy expenditure. Negative energy balance has been reported to promote adipose tissue browning in rodents. In a recent issue of Cell Reports, Barquissau et al. show that caloric restriction-associated weight loss does not induce browning of subcutaneous abdominal white fat in obese humans.
Collapse
Affiliation(s)
- Lucia Balazova
- Laboratory of Translational Nutrition Biology, Institute of Food, Nutrition and Health, Swiss Federal Institute of Technology, ETH Zürich, CH-8603 Schwerzenbach, Switzerland
| | - Christian Wolfrum
- Laboratory of Translational Nutrition Biology, Institute of Food, Nutrition and Health, Swiss Federal Institute of Technology, ETH Zürich, CH-8603 Schwerzenbach, Switzerland
| | - Miroslav Balaz
- Laboratory of Translational Nutrition Biology, Institute of Food, Nutrition and Health, Swiss Federal Institute of Technology, ETH Zürich, CH-8603 Schwerzenbach, Switzerland.
| |
Collapse
|
34
|
Shao M, Gupta RK. Transcriptional brakes on the road to adipocyte thermogenesis. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1864:20-28. [PMID: 29800720 DOI: 10.1016/j.bbalip.2018.05.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 03/29/2018] [Accepted: 05/17/2018] [Indexed: 12/22/2022]
Abstract
White adipocytes represent the principle site for energy storage whereas brown/beige adipocytes emerge from seemingly distinct cellular lineages and burn chemical energy to produce heat. Thermogenic adipocytes utilize cell-type selective master regulatory transcription factors to drive the expression of their adipocyte thermogenic gene program. White adipocytes harbor transcriptional mechanisms to suppress the thermogenic gene program and maintain an energy-storing function. Here, we summarize some of the key developmental and transcriptional mechanisms leading to the postnatal recruitment of thermogenic adipocytes under physiological conditions, with a particular emphasis on the transcriptional "brakes" on the thermogenic gene program. We highlight a number of recent studies, including our own work on the transcription factor, ZFP423, that illustrate the potential to engineer the subcutaneous and visceral white fat lineages to adopt a thermogenic fat cell fate by releasing the inhibition of the adipocyte thermogenic gene program. These transcriptional brakes on adipocyte thermogenesis may represent potential targets of therapeutic interventions designed to combat obesity and associated metabolic disorders.
Collapse
Affiliation(s)
- Mengle Shao
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Rana K Gupta
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
35
|
Yan K, Chen W, Zhu H, Lin G, Pan H, Li N, Wang L, Yang H, Liu M, Gong F. Ileal Transposition Surgery Decreases Fat Mass and Improves Glucose Metabolism in Diabetic GK Rats: Possible Involvement of FGF21. Front Physiol 2018; 9:191. [PMID: 29593555 PMCID: PMC5854974 DOI: 10.3389/fphys.2018.00191] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 02/23/2018] [Indexed: 12/14/2022] Open
Abstract
Objective: Ileal transposition (IT) surgery has been reported to improve glucose and lipid metabolism, and fibroblast growth factor 21 (FGF21) is a powerful metabolic regulator. In the present study, we aimed to investigate the effects of IT surgery on metabolism and its possible relationship with the FGF21 signaling pathway in diabetic Goto-Kakizaki (GK) rats. Methods: Ten-week-old male GK rats were subjected to IT surgery with translocation of a 10 cm ileal segment to the proximal jejunum (IT group) or sham surgery without the ileum transposition (Sham-IT group). Rats in the no surgery group did not receive any surgical intervention. Six weeks later, body weight, fat mass, fasting blood glucose (FBG), and serum levels of FGF21 and leptin were measured. The expression of the FGF21 signaling pathway and white adipose tissue (WAT) browning-related genes in the WAT and liver were evaluated by real-time reverse transcription polymerase chain reaction (RT-qPCR) and western blot. Results: IT surgery significantly decreased the body weights and FBG levels and increased the insulin sensitivity of GK rats. The total WAT mass of the IT rats showed a 41.5% reduction compared with the Sham-IT rats, and serum levels of FGF21 and leptin of the IT rats decreased by 26.3 and 61.7%, respectively (all P < 0.05). The mRNA levels of fibroblast growth factor receptor 1 (FGFR1) and its co-receptor β klotho (KLB) in the perirenal WAT (pWAT) of the IT rats were 1.4- and 2.4-fold that of the Sham-IT rats, respectively, and the FGFR1 protein levels were 1.7-fold of the Sham-IT rats (all P < 0.05). In accordance with the pWAT, the protein levels of FGFR1 and KLB in the epididymal WAT (eWAT) of the IT rats notably increased to 3.0- and 3.9-fold of the Sham-IT rats (P < 0.05). Furthermore, uncoupling protein 1 (UCP1) protein levels in the eWAT and pWAT of the IT rats also increased to 2.2- and 2.3-fold of the Sham-IT rats (P < 0.05). However, the protein levels of FGFR1 and KLB in the subcutaneous WAT (sWAT) of the IT rats decreased by 34.4 and 72.1%, respectively, compared with the Sham-IT rats (P < 0.05). In addition, the protein levels of FGF21 and KLB in the livers of IT rats were 3.9- and 2.3-fold of the Sham-IT rats (all P < 0.05). Conclusions: IT surgery significantly decreased fat mass and improved glucose metabolism in diabetic GK rats. These beneficial roles of IT surgery were probably associated with its stimulatory action on the expression of FGFR1 and KLB in both the eWAT and the pWAT, thereby promoting UCP1 expression in these tissues.
Collapse
Affiliation(s)
- Kemin Yan
- Key Laboratory of Endocrinology of National Health and Family Planning Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Weijie Chen
- Department of Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Huijuan Zhu
- Key Laboratory of Endocrinology of National Health and Family Planning Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Guole Lin
- Department of Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Hui Pan
- Key Laboratory of Endocrinology of National Health and Family Planning Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Naishi Li
- Key Laboratory of Endocrinology of National Health and Family Planning Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Linjie Wang
- Key Laboratory of Endocrinology of National Health and Family Planning Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Hongbo Yang
- Key Laboratory of Endocrinology of National Health and Family Planning Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Meijuan Liu
- Key Laboratory of Endocrinology of National Health and Family Planning Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Fengying Gong
- Key Laboratory of Endocrinology of National Health and Family Planning Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| |
Collapse
|
36
|
Chechi K, van Marken Lichtenbelt W, Richard D. Brown and beige adipose tissues: phenotype and metabolic potential in mice and men. J Appl Physiol (1985) 2018; 124:482-496. [PMID: 28302705 PMCID: PMC5867364 DOI: 10.1152/japplphysiol.00021.2017] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 03/09/2017] [Accepted: 03/13/2017] [Indexed: 01/06/2023] Open
Abstract
With the recent rediscovery of brown fat in adult humans, our outlook on adipose tissue biology has undergone a paradigm shift. While we attempt to identify, recruit, and activate classic brown fat stores in humans, identification of beige fat has also raised the possibility of browning our white fat stores. Whether such transformation of human white fat depots can be achieved to enhance the whole body oxidative potential remains to be seen. Evidence to date, however, largely points toward a major oxidative role only for classic brown fat depots, at least in rodents. White fat stores seem to provide the main fuel for sustaining thermogenesis via lipolysis. Interestingly, molecular markers consistent with both classic brown and beige fat identity can be observed in human supraclavicular depot, thereby complicating the discussion on beige fat in humans. Here, we review the recent advances made in our understanding of brown and beige fat in humans and mice. We further provide an overview of their plausible physiological relevance to whole body energy metabolism.
Collapse
Affiliation(s)
- Kanta Chechi
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Ville de Québec, Quebec , Canada
| | - Wouter van Marken Lichtenbelt
- Department of Human Biology, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Center , Maastricht , The Netherlands
| | - Denis Richard
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Ville de Québec, Quebec , Canada
| |
Collapse
|
37
|
Barquissau V, Léger B, Beuzelin D, Martins F, Amri EZ, Pisani DF, Saris WHM, Astrup A, Maoret JJ, Iacovoni J, Déjean S, Moro C, Viguerie N, Langin D. Caloric Restriction and Diet-Induced Weight Loss Do Not Induce Browning of Human Subcutaneous White Adipose Tissue in Women and Men with Obesity. Cell Rep 2018; 22:1079-1089. [PMID: 29386128 DOI: 10.1016/j.celrep.2017.12.102] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 10/18/2017] [Accepted: 12/27/2017] [Indexed: 01/25/2023] Open
Abstract
Caloric restriction (CR) is standard lifestyle therapy in obesity management. CR-induced weight loss improves the metabolic profile of individuals with obesity. In mice, occurrence of beige fat cells in white fat depots favors a metabolically healthy phenotype, and CR promotes browning of white adipose tissue (WAT). Here, human subcutaneous abdominal WAT samples were analyzed in 289 individuals with obesity following a two-phase dietary intervention consisting of an 8 week very low calorie diet and a 6-month weight-maintenance phase. Before the intervention, we show sex differences and seasonal variation, with higher expression of brown and beige markers in women with obesity and during winter, respectively. The very low calorie diet resulted in decreased browning of subcutaneous abdominal WAT. During the whole dietary intervention, evolution of body fat and insulin resistance was independent of changes in brown and beige fat markers. These data suggest that diet-induced effects on body fat and insulin resistance are independent of subcutaneous abdominal WAT browning in people with obesity.
Collapse
Affiliation(s)
- Valentin Barquissau
- INSERM, UMR 1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France; University of Toulouse, Paul Sabatier University, Toulouse, France
| | - Benjamin Léger
- INSERM, UMR 1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France; University of Toulouse, Paul Sabatier University, Toulouse, France
| | - Diane Beuzelin
- INSERM, UMR 1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France; University of Toulouse, Paul Sabatier University, Toulouse, France
| | - Frédéric Martins
- INSERM, UMR 1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France; University of Toulouse, Paul Sabatier University, Toulouse, France
| | - Ez-Zoubir Amri
- University of Côte d'Azur, CNRS, Inserm, iBV, Nice, France
| | | | - Wim H M Saris
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Arne Astrup
- Department of Nutrition, Exercise and Sports, Faculty of Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jean-José Maoret
- INSERM, UMR 1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France; University of Toulouse, Paul Sabatier University, Toulouse, France
| | - Jason Iacovoni
- INSERM, UMR 1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France; University of Toulouse, Paul Sabatier University, Toulouse, France
| | - Sébastien Déjean
- University of Toulouse, Paul Sabatier University, Toulouse, France; CNRS, UMR 5219, Toulouse Mathematics Institute, Toulouse, France
| | - Cédric Moro
- INSERM, UMR 1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France; University of Toulouse, Paul Sabatier University, Toulouse, France
| | - Nathalie Viguerie
- INSERM, UMR 1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France; University of Toulouse, Paul Sabatier University, Toulouse, France
| | - Dominique Langin
- INSERM, UMR 1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France; University of Toulouse, Paul Sabatier University, Toulouse, France; Toulouse University Hospitals, Laboratory of Clinical Biochemistry, Toulouse, France.
| |
Collapse
|
38
|
Cao WY, Liu Z, Guo F, Yu J, Li H, Yin X. Adipocyte ADRB3 Down-Regulated in Chinese Overweight Individuals Adipocyte ADRB3 in Overweight. Obes Facts 2018; 11:524-533. [PMID: 30580338 PMCID: PMC6341365 DOI: 10.1159/000495116] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 11/02/2018] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVES Activation of β3-adrenoceptor (ADRB3) is essential in the process of human adipose tissue browning, but obese subjects suffered from reduced ability of brown adipose tissue activation. The present study aims to detect the adipocyte ADRB3 expression in overweight individuals and the relationship between adipocyte ADRB3 expression and adiposity in adults. METHODS Visceral adipose tissue samples were obtained from 85 subjects who underwent abdominal surgery. ADRB3 mRNA and protein expression levels in mature adipocytes and adipose tissue stromal vascular cells were examined by quantitative real-time PCR and Western blot assay, respectively. UCP-1mRNA expression levels in mature adipocytes were examined by quantitative real-time PCR. RESULTS The data revealed that ADRB3 mRNA (p = 0.021) and protein (p = 0.025) expression levels in mature adipocytes were significantly higher in the normal-weight than in the overweight group. Similar results were also found for ADRB3 mRNA (p = 0.041) and protein (p = 0.025) expressions of stromal vascular cells. An inverse correlation was verified between mature adipocyte ADRB3 mRNA expression and BMI (r = -0.362, p = 0.012). UCP-1 mRNA expression levels in mature adipocytes were higher in the normal-weight group compared with the overweight group (p = 0.045). CONCLUSION Adipocyte ADRB3 expression levels were down-regulated before the onset of obesity, which indicated that the reduction of ADRB3 expression might be the cause of compromised adipose tissue browning and obesity rather than the result. Thus, the interference of the ADRB3 pathway in adipocytes may provide a potential treatment target for obesity.
Collapse
Affiliation(s)
- Wen-Yue Cao
- Department of Endocrinology, Jinan Central Hospital Affiliated to Shandong University, Jinan, China
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zhao Liu
- Department of Hepatobiliary Surgery, Jinan Central Hospital Affiliated to Shandong University, Jinan, China
| | - Feng Guo
- Department of Urology, Jinan Central Hospital Affiliated to Shandong University, Jinan, China
| | - Jing Yu
- Operating Room, Jinan Central Hospital Affiliated to Shandong University, Jinan, China
| | - Han Li
- Department of Endocrinology, Jinan Central Hospital Affiliated to Shandong University, Jinan, China
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiao Yin
- Department of Endocrinology, Jinan Central Hospital Affiliated to Shandong University, Jinan, China,
| |
Collapse
|
39
|
Celiker H. A new proposed mechanism of action for gastric bypass surgery: Air hypothesis. Med Hypotheses 2017; 107:81-89. [PMID: 28915970 DOI: 10.1016/j.mehy.2017.08.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 07/02/2017] [Accepted: 08/08/2017] [Indexed: 02/07/2023]
Abstract
Roux-en-Y gastric bypass (RYGB) surgery is one of the most effective treatments for obesity and type II diabetes. RYGB was originally believed to work by mechanically restricting caloric intake or causing macronutrient malabsorption. However, such mechanical effects play no role in the remarkable efficacy of gastric bypass. Instead, mounting evidence shows that altered neuroendocrine signaling is responsible for the weight reducing effects of RYGB. The exact mechanism of this surgical response is still a mystery. Here, we propose that RYGB leads to weight loss primarily by inducing a functional shift in the gut microbiome, manifested by a relative expansion of aerobic bacteria numbers in the colon. We point to compelling evidence that gastric bypass changes the function of the microbiome by disrupting intestinal gas homeostasis, causing excessive transit of swallowed air (oxygen) into the colon.
Collapse
Affiliation(s)
- Hasan Celiker
- Xeno Biosciences Inc., 12 Mt Auburn St #7, Cambridge, MA, USA.
| |
Collapse
|
40
|
Thyagarajan B, Foster MT. Beiging of white adipose tissue as a therapeutic strategy for weight loss in humans. Horm Mol Biol Clin Investig 2017; 31:/j/hmbci.ahead-of-print/hmbci-2017-0016/hmbci-2017-0016.xml. [PMID: 28672737 DOI: 10.1515/hmbci-2017-0016] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 04/18/2017] [Indexed: 12/16/2022]
Abstract
An imbalance between energy intake and expenditure leads to obesity. Adiposity associated with obesity progressively causes inflammation, type 2 diabetes, hypertension, hyperlipidemia and cardiovascular disease. Excessive dietary intake of fat results in its accumulation and storage in the white adipose tissue (WAT), whereas energy expenditure by fat utilization and oxidation predominately occurs in the brown adipose tissue (BAT). Recently, the presence of a third type of fat, referred to as beige or brite (brown in white), has been recognized in certain kinds of WAT depots. It has been suggested that WAT can undergo the process of browning in response to stimuli that induce and enhance the expression of thermogenes characteristic of those typically associated with brown fat. The resultant beige or brite cells enhance energy expenditure by reducing lipids stored within adipose tissue. This has created significant excitement towards the development of a promising strategy to induce browning/beiging in WAT to combat the growing epidemic of obesity. This review systematically describes differential locations and functions of WAT and BAT, mechanisms of beiging of WAT and a concise analysis of drug molecules and natural products that activate the browning phenomenon in vitro and in vivo. This review also discusses potential approaches for targeting WAT with compounds for site-specific beiging induction. Overall, there are numerous mechanisms that govern browning of WAT. There are a variety of newly identified targets whereby potential molecules can promote beiging of WAT and thereby combat obesity.
Collapse
|
41
|
Hepler C, Gupta RK. The expanding problem of adipose depot remodeling and postnatal adipocyte progenitor recruitment. Mol Cell Endocrinol 2017; 445:95-108. [PMID: 27743993 PMCID: PMC5346481 DOI: 10.1016/j.mce.2016.10.011] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 10/08/2016] [Accepted: 10/11/2016] [Indexed: 02/07/2023]
Abstract
The rising incidence of obesity and associated metabolic diseases has increased the urgency in understanding all aspects of adipose tissue biology. This includes the function of adipocytes, how adipose tissue expands in obesity, and how expanded adipose tissues in adults can impact physiology. Here, we highlight the growing appreciation for the importance of de novo adipocyte differentiation to adipose tissue expansion in adult humans and animals. We detail recent efforts to identify adipose precursor populations that contribute to the physiological postnatal recruitment of white, brown, and beige adipocytes in mice, and summarize new data that reveal the complexity of adipose tissue development in vivo.
Collapse
Affiliation(s)
- Chelsea Hepler
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Rana K Gupta
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
42
|
Martínez-Sánchez N, Moreno-Navarrete JM, Contreras C, Rial-Pensado E, Fernø J, Nogueiras R, Diéguez C, Fernández-Real JM, López M. Thyroid hormones induce browning of white fat. J Endocrinol 2017; 232:351-362. [PMID: 27913573 PMCID: PMC5292977 DOI: 10.1530/joe-16-0425] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Accepted: 12/02/2016] [Indexed: 12/17/2022]
Abstract
The canonical view about the effect of thyroid hormones (THs) on thermogenesis assumes that the hypothalamus acts merely as a modulator of the sympathetic outflow on brown adipose tissue (BAT). Recent data have challenged that vision by demonstrating that THs act on the ventromedial nucleus of the hypothalamus (VMH) to inhibit AMP-activated protein kinase (AMPK), which regulates the thermogenic program in BAT, leading to increased thermogenesis and weight loss. Current data have shown that in addition to activation of brown fat, the browning of white adipose tissue (WAT) might also be an important thermogenic mechanism. However, the possible central effects of THs on the browning of white fat remain unclear. Here, we show that 3,3',5,5' tetraiodothyroxyne (T4)-induced hyperthyroidism promotes a marked browning of WAT. Of note, central or VMH-specific administration of 3,3',5-triiodothyronine (T3) recapitulates that effect. The specific genetic activation of hypothalamic AMPK in the VMH reversed the central effect of T3 on browning. Finally, we also showed that the expression of browning genes in human WAT correlates with serum T4 Overall, these data indicate that THs induce browning of WAT and that this mechanism is mediated via the central effects of THs on energy balance.
Collapse
Affiliation(s)
- Noelia Martínez-Sánchez
- Department of PhysiologyCIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn)Santiago de Compostela, Spain
| | - José M Moreno-Navarrete
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn)Santiago de Compostela, Spain
- Department of DiabetesEndocrinology and Nutrition, Hospital de Girona 'Dr Josep Trueta', Institut D'investigació Biomèdica de Girona (IdIBGi) and University of Girona, Girona, Spain
| | - Cristina Contreras
- Department of PhysiologyCIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn)Santiago de Compostela, Spain
| | - Eva Rial-Pensado
- Department of PhysiologyCIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn)Santiago de Compostela, Spain
| | - Johan Fernø
- Department of PhysiologyCIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
- Department of Clinical ScienceKG Jebsen Center for Diabetes Research, University of Bergen, Bergen, Norway
| | - Rubén Nogueiras
- Department of PhysiologyCIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn)Santiago de Compostela, Spain
| | - Carlos Diéguez
- Department of PhysiologyCIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn)Santiago de Compostela, Spain
| | - José-Manuel Fernández-Real
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn)Santiago de Compostela, Spain
- Department of DiabetesEndocrinology and Nutrition, Hospital de Girona 'Dr Josep Trueta', Institut D'investigació Biomèdica de Girona (IdIBGi) and University of Girona, Girona, Spain
| | - Miguel López
- Department of PhysiologyCIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn)Santiago de Compostela, Spain
| |
Collapse
|
43
|
Abstract
The ability to maintain and expand the pool of adipocytes in adults is integral to the regulation of energy balance, tissue/stem cell homeostasis, and disease pathogenesis. For decades, our knowledge of adipocyte precursors has relied on cellular models. The identity of native adipocyte precursors has remained unclear. Recent studies have identified distinct adipocyte precursor populations that are physiologically regulated and contribute to the development, maintenance, and expansion of adipocyte pools in mice. With new tools available, the properties of adipocyte precursors can now be defined, and the regulation and function of adipose plasticity in development and physiology can be explored.
Collapse
Affiliation(s)
- Chelsea Hepler
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Lavanya Vishvanath
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Rana K Gupta
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| |
Collapse
|
44
|
Inter-organ regulation of adipose tissue browning. Cell Mol Life Sci 2016; 74:1765-1776. [PMID: 27866221 DOI: 10.1007/s00018-016-2420-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 11/08/2016] [Accepted: 11/14/2016] [Indexed: 01/05/2023]
Abstract
Adaptive thermogenesis is an important component of energy expenditure. Brown adipocytes are best known for their ability to convert chemical energy into heat. Beige cells are brown-like adipocytes that arise in white adipose tissue in response to certain environmental cues to dissipate heat and improve metabolic homeostasis. A large body of intrinsic factors and external signals are critical for the function of beige adipocytes. In this review, we discuss recent advances in our understanding of neuronal, hormonal, and metabolic regulation of the development and activation of beige adipocytes, with a focus on the regulation of beige adipocytes by other organs, tissues, and cells. Understanding the cellular and molecular mechanisms of inter-organ regulation of adipose tissue browning may provide an avenue for combating obesity and associated diseases.
Collapse
|
45
|
Abstract
Brown and beige adipocytes expend chemical energy to produce heat and are therefore important in regulating body temperature and body weight. Brown adipocytes develop in discrete and relatively homogenous depots of brown adipose tissue, whereas beige adipocytes are induced to develop in white adipose tissue in response to certain stimuli - notably, exposure to cold. Fate-mapping analyses have identified progenitor populations that give rise to brown and beige fat cells, and have revealed unanticipated cell-lineage relationships between vascular smooth muscle cells and beige adipocytes, and between skeletal muscle cells and brown fat. In addition, non-adipocyte cells in adipose tissue, including neurons, blood vessel-associated cells and immune cells, have crucial roles in regulating the differentiation and function of brown and beige fat.
Collapse
Affiliation(s)
- Wenshan Wang
- Institute for Diabetes, Obesity & Metabolism, Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania
| | - Patrick Seale
- Institute for Diabetes, Obesity & Metabolism, Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania
| |
Collapse
|
46
|
Fabbiano S, Suárez-Zamorano N, Rigo D, Veyrat-Durebex C, Stevanovic Dokic A, Colin DJ, Trajkovski M. Caloric Restriction Leads to Browning of White Adipose Tissue through Type 2 Immune Signaling. Cell Metab 2016; 24:434-446. [PMID: 27568549 DOI: 10.1016/j.cmet.2016.07.023] [Citation(s) in RCA: 214] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 06/22/2016] [Accepted: 07/26/2016] [Indexed: 12/14/2022]
Abstract
Caloric restriction (CR) extends lifespan from yeast to mammals, delays onset of age-associated diseases, and improves metabolic health. We show that CR stimulates development of functional beige fat within the subcutaneous and visceral adipose tissue, contributing to decreased white fat and adipocyte size in lean C57BL/6 and BALB/c mice kept at room temperature or at thermoneutrality and in obese leptin-deficient mice. These metabolic changes are mediated by increased eosinophil infiltration, type 2 cytokine signaling, and M2 macrophage polarization in fat of CR animals. Suppression of the type 2 signaling, using Il4ra(-/-), Stat6(-/-), or mice transplanted with Stat6(-/-) bone marrow-derived hematopoietic cells, prevents the CR-induced browning and abrogates the subcutaneous fat loss and the metabolic improvements induced by CR. These results provide insights into the overall energy homeostasis during CR, and they suggest beige fat development as a common feature in conditions of negative energy balance.
Collapse
Affiliation(s)
- Salvatore Fabbiano
- Department of Cell Physiology and Metabolism, Centre Médical Universitaire (CMU), Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland; Diabetes Centre, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Nicolas Suárez-Zamorano
- Department of Cell Physiology and Metabolism, Centre Médical Universitaire (CMU), Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland; Diabetes Centre, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Dorothée Rigo
- Department of Cell Physiology and Metabolism, Centre Médical Universitaire (CMU), Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland; Diabetes Centre, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Christelle Veyrat-Durebex
- Department of Cell Physiology and Metabolism, Centre Médical Universitaire (CMU), Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland; Diabetes Centre, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Ana Stevanovic Dokic
- Department of Cell Physiology and Metabolism, Centre Médical Universitaire (CMU), Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland; Diabetes Centre, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Didier J Colin
- Centre for BioMedical Imaging (CIBM), University Hospitals of Geneva, 1211 Geneva, Switzerland
| | - Mirko Trajkovski
- Department of Cell Physiology and Metabolism, Centre Médical Universitaire (CMU), Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland; Diabetes Centre, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland; Institute for Genetics and Genomics in Geneva (iGE3), University of Geneva, 1211 Geneva, Switzerland.
| |
Collapse
|
47
|
Hao Z, Mumphrey MB, Townsend RL, Morrison CD, Münzberg H, Ye J, Berthoud HR. Body Composition, Food Intake, and Energy Expenditure in a Murine Model of Roux-en-Y Gastric Bypass Surgery. Obes Surg 2016; 26:2173-2182. [PMID: 26781597 PMCID: PMC4949156 DOI: 10.1007/s11695-016-2062-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND The mechanisms by which Roux-en-Y gastric bypass surgery (RYGB) so effectively lowers body weight and improves glycemic control are not well understood, and murine models are essential for identifying the crucial signaling pathways involved. The aim of this study is to characterize the time course of RYGB on body weight, body composition, food intake, and energy expenditure in diet-induced obese mice and establish a tissue bank for global "omics" or targeted biochemical and structural analyses. METHODS High-fat diet-induced obese mice were subjected to RYGB using an improved surgical technique with a small gastric pouch. The effects on body weight, body composition, food intake, and energy expenditure were compared to sham surgery, high-fat diet-restricted weight-matched controls, and never-obese chow-fed controls. RESULTS Without mortality or complications, RYGB surgery in high-fat diet-induced obese mice gradually decreased body weight to a plateau that was more or less sustained for up to 12 weeks (33 g, -18 %, p < 0.01) and significantly lower compared with sham-operated mice (51 g, +25 %, p < 0.01), but higher (+18 %, p < 0.01) than age-matched, chow-fed control mice (27 g). Energy intake after RYGB was significantly suppressed compared to sham only for the first 10 days, but significantly higher compared to weight-matched mice. Energy expenditure after RYGB was higher throughout the study compared with weight-matched, but not sham animals. CONCLUSIONS RYGB surgery in diet-induced obese mice results in similar body weight and body composition changes as observed in humans, but in contrast with humans, this is achieved mainly through increased energy expenditure rather than decreased food intake.
Collapse
Affiliation(s)
- Zheng Hao
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, 70808, USA
| | - Michael B Mumphrey
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, 70808, USA
| | - R Leigh Townsend
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, 70808, USA
| | - Christopher D Morrison
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, 70808, USA
| | - Heike Münzberg
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, 70808, USA
| | - Jianping Ye
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, 70808, USA
| | - Hans-Rudolf Berthoud
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, 70808, USA.
| |
Collapse
|
48
|
Mulya A, Kirwan JP. Brown and Beige Adipose Tissue: Therapy for Obesity and Its Comorbidities? Endocrinol Metab Clin North Am 2016; 45:605-21. [PMID: 27519133 PMCID: PMC5206678 DOI: 10.1016/j.ecl.2016.04.010] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Overweight and obesity are global health problems placing an ever-increasing demand on health care systems. Brown adipose tissue (BAT) is present in significant amounts in adults. BAT has potential as a fuel for oxidation and dissipation as heat production, which makes it an attractive target for obesity therapy. BAT activation results in increased energy expenditure via thermogenesis. The role of BAT/beige adipocyte activation on whole body energy homeostasis, body weight management/regulation, and whole body glucose and lipid homeostasis remains unproven. This paper reviews knowledge on brown/beige adipocytes in energy expenditure and how it may impact obesity therapy and its comorbidities.
Collapse
Affiliation(s)
- Anny Mulya
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, NE40, Cleveland, OH 44195, USA
| | - John P Kirwan
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, NE40, Cleveland, OH 44195, USA; Department of Nutrition, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA; Metabolic Translational Research Center, Endocrine and Metabolism Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA.
| |
Collapse
|
49
|
Frikke-Schmidt H, O'Rourke RW, Lumeng CN, Sandoval DA, Seeley RJ. Does bariatric surgery improve adipose tissue function? Obes Rev 2016; 17:795-809. [PMID: 27272117 PMCID: PMC5328428 DOI: 10.1111/obr.12429] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 03/25/2016] [Accepted: 04/20/2016] [Indexed: 12/19/2022]
Abstract
Bariatric surgery is currently the most effective treatment for obesity. Not only do these types of surgeries produce significant weight loss but also they improve insulin sensitivity and whole body metabolic function. The aim of this review is to explore how altered physiology of adipose tissue may contribute to the potent metabolic effects of some of these procedures. This includes specific effects on various fat depots, the function of individual adipocytes and the interaction between adipose tissue and other key metabolic tissues. Besides a dramatic loss of fat mass, bariatric surgery shifts the distribution of fat from visceral to the subcutaneous compartment favoring metabolic improvement. The sensitivity towards lipolysis controlled by insulin and catecholamines is improved, adipokine secretion is altered and local adipose inflammation as well as systemic inflammatory markers decreases. Some of these changes have been shown to be weight loss independent, and novel hypothesis for these effects includes include changes in bile acid metabolism, gut microbiota and central regulation of metabolism. In conclusion bariatric surgery is capable of improving aspects of adipose tissue function and do so in some cases in ways that are not entirely explained by the potent effect of surgery. © 2016 World Obesity.
Collapse
Affiliation(s)
| | - R W O'Rourke
- Department of Surgery, University of Michigan, Ann Arbor, USA
| | - C N Lumeng
- Department of Pediatrics, University of Michigan, Ann Arbor, USA
| | - D A Sandoval
- Department of Surgery, University of Michigan, Ann Arbor, USA
| | - R J Seeley
- Department of Surgery, University of Michigan, Ann Arbor, USA
| |
Collapse
|
50
|
Gastric Bypass Surgery but not Caloric Restriction Improves Reproductive Function in Obese Mice. Obes Surg 2016; 26:467-73. [PMID: 26667161 DOI: 10.1007/s11695-015-2009-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In women, obesity is associated with decrements in reproductive health that are improved with weight loss. Due to the difficulty of maintaining weight loss through lifestyle interventions, surgical interventions have become popular treatments for obesity. We examined how weight loss induced by Roux-en Y gastric bypass surgery (RYGB) or calorie restriction impacted expression of hypothalamic genes related to energy intake and reproduction. RYGB and calorie restriction induced equivalent weight loss; however, expression of the anorexigenic melanocortin pathway decreased only in calorie restricted mice. Serum estradiol concentrations were lower in calorie restricted mice relative to RYGB during proestrous, suggesting that RYGB maintained normal estrous cycling. Thus, the effects of RYGB for female mice, and possibly humans, extend beyond weight loss to include enhanced reproductive health.
Collapse
|