1
|
Fang H, Rodrigues e-Lacerda R, Barra NG, Kukje Zada D, Robin N, Mehra A, Schertzer JD. Postbiotic Impact on Host Metabolism and Immunity Provides Therapeutic Potential in Metabolic Disease. Endocr Rev 2025; 46:60-79. [PMID: 39235984 PMCID: PMC11720174 DOI: 10.1210/endrev/bnae025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/18/2024] [Accepted: 09/04/2024] [Indexed: 09/07/2024]
Abstract
The gut microbiota influences aspects of metabolic disease, including tissue inflammation, adiposity, blood glucose, insulin, and endocrine control of metabolism. Prebiotics or probiotics are often sought to combat metabolic disease. However, prebiotics lack specificity and can have deleterious bacterial community effects. Probiotics require live bacteria to find a colonization niche sufficient to influence host immunity or metabolism. Postbiotics encompass bacterial-derived components and molecules, which are well-positioned to alter host immunometabolism without relying on colonization efficiency or causing widespread effects on the existing microbiota. Here, we summarize the potential for beneficial and detrimental effects of specific postbiotics related to metabolic disease and the underlying mechanisms of action. Bacterial cell wall components, such as lipopolysaccharides, muropeptides, lipoteichoic acids and flagellin, have context-dependent effects on host metabolism by engaging specific immune responses. Specific types of postbiotics within broad classes of compounds, such as lipopolysaccharides and muropeptides, can have opposing effects on endocrine control of host metabolism, where certain postbiotics are insulin sensitizers and others promote insulin resistance. Bacterial metabolites, such as short-chain fatty acids, bile acids, lactate, glycerol, succinate, ethanolamine, and ethanol, can be substrates for host metabolism. Postbiotics can fuel host metabolic pathways directly or influence endocrine control of metabolism through immunomodulation or mimicking host-derived hormones. The interaction of postbiotics in the host-microbe relationship should be considered during metabolic inflammation and metabolic disease.
Collapse
Affiliation(s)
- Han Fang
- Department of Biochemistry and Biomedical Sciences, Farncombe Family Digestive Health Research Institute, and Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada, L8N 3Z5
| | - Rodrigo Rodrigues e-Lacerda
- Department of Biochemistry and Biomedical Sciences, Farncombe Family Digestive Health Research Institute, and Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada, L8N 3Z5
| | - Nicole G Barra
- Department of Biochemistry and Biomedical Sciences, Farncombe Family Digestive Health Research Institute, and Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada, L8N 3Z5
| | - Dana Kukje Zada
- Department of Biochemistry and Biomedical Sciences, Farncombe Family Digestive Health Research Institute, and Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada, L8N 3Z5
| | - Nazli Robin
- Department of Biochemistry and Biomedical Sciences, Farncombe Family Digestive Health Research Institute, and Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada, L8N 3Z5
| | - Alina Mehra
- Department of Biochemistry and Biomedical Sciences, Farncombe Family Digestive Health Research Institute, and Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada, L8N 3Z5
| | - Jonathan D Schertzer
- Department of Biochemistry and Biomedical Sciences, Farncombe Family Digestive Health Research Institute, and Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada, L8N 3Z5
| |
Collapse
|
2
|
Du J, Zheng P, Gao W, Liang Q, Leng L, Shi L. All roads lead to Rome: the plasticity of gut microbiome drives the extensive adaptation of the Yarkand toad-headed agama ( Phrynocephalus axillaris) to different altitudes. Front Microbiol 2025; 15:1501684. [PMID: 39845039 PMCID: PMC11751238 DOI: 10.3389/fmicb.2024.1501684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 12/24/2024] [Indexed: 01/24/2025] Open
Abstract
The gut microbiome was involved in a variety of physiological processes and played a key role in host environmental adaptation. However, the mechanisms of their response to altitudinal environmental changes remain unclear. In this study, we used 16S rRNA sequencing and LC-MS metabolomics to investigate the changes in the gut microbiome and metabolism of the Yarkand toad-headed agama (Phrynocephalus axillaris) at different altitudes (-80 m to 2000 m). The results demonstrated that Firmicutes, Bacteroidetes, and Proteobacteria were the dominant phylum, Lachnospiraceae and Oscillospiraceae were the most abundant family, and the low-altitude populations had higher richness than high-altitude populations; Akkermansiaceae appeared to be enriched in high-altitude populations and the relative abundance tended to increase with altitude. The gut microbiome of three populations of P. axillaris at different altitudes was clustered into two different enterotypes, low-altitude populations and high-altitude populations shared an enterotype dominated by Akkermansia, Kineothrix, Phocaeicola; intermediate-altitude populations had an enterotype dominated by Mesorhizobium, Bradyrhizobium. Metabolites involved in amino acid and lipid metabolism differed significantly at different altitudes. The above results suggest that gut microbiome plasticity drives the extensive adaptation of P. axillaris to multi-stress caused by different altitudes. With global warming, recognizing the adaptive capacity of wide-ranging species to altitude can help plan future conservation strategies.
Collapse
Affiliation(s)
| | | | | | | | | | - Lei Shi
- Xinjiang Key Laboratory for Ecological Adaptation and Evolution of Extreme Environment Biology, College of Life Sciences, Xinjiang Agricultural University, Ürümqi, China
| |
Collapse
|
3
|
Wunderlich M, Miller M, Ritter B, Le Gleut R, Marchi H, Majzoub-Altweck M, Knerr PJ, Douros JD, Müller TD, Brielmeier M. Experimental colonization with H. hepaticus, S. aureus and R. pneumotropicus does not influence the metabolic response to high-fat diet or incretin-analogues in wildtype SOPF mice. Mol Metab 2024; 87:101992. [PMID: 39019114 PMCID: PMC11338133 DOI: 10.1016/j.molmet.2024.101992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/08/2024] [Accepted: 07/12/2024] [Indexed: 07/19/2024] Open
Abstract
OBJECTIVES We here assessed whether typical pathogens of laboratory mice affect the development of diet-induced obesity and glucose intolerance, and whether colonization affects the efficacy of the GLP-1R agonist liraglutide and of the GLP-1/GIP co-agonist MAR709 to treat obesity and diabetes. METHODS Male C57BL/6J mice were experimentally infected with Helicobacter hepaticus, Rodentibacter pneumotropicus and Staphylococcus aureus and compared to a group of uninfected specific and opportunistic pathogen free (SOPF) mice. The development of diet-induced obesity and glucose intolerance was monitored over a period of 26 weeks. To study the influence of pathogens on drug treatment, mice were then subjected for 6 days daily treatment with either the GLP-1 receptor agonist liraglutide or the GLP-1/GIP co-agonist MAR709. RESULTS Colonized mice did not differ from SOPF controls regarding HFD-induced body weight gain, food intake, body composition, glycemic control, or responsiveness to treatment with liraglutide or the GLP-1/GIP co-agonist MAR709. CONCLUSIONS We conclude that the occurrence of H. hepaticus, R. pneumotropicus and S. aureus does neither affect the development of diet-induced obesity or type 2 diabetes, nor the efficacy of GLP-1-based drugs to decrease body weight and to improve glucose control in mice.
Collapse
Affiliation(s)
| | - Manuel Miller
- Core Facility Laboratory Animal Services, Helmholtz Munich, Germany.
| | - Bärbel Ritter
- Core Facility Laboratory Animal Services, Helmholtz Munich, Germany
| | - Ronan Le Gleut
- Core Facility Statistical Consulting, Helmholtz Munich, Germany
| | - Hannah Marchi
- Core Facility Statistical Consulting, Helmholtz Munich, Germany; Faculty of Business Administration and Economics, Bielefeld University, Germany
| | - Monir Majzoub-Altweck
- Institute of Veterinary Pathology, Ludwig-Maximilians-University Munich (LMU), Germany
| | - Patrick J Knerr
- Indiana Biosciences Research Institute, Indianapolis, IN, USA
| | | | - Timo D Müller
- Institute for Diabetes and Obesity, Helmholtz Munich, Germany, and German Center for Diabetes Research, DZD, and Walther-Straub Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University Munich (LMU), Germany
| | | |
Collapse
|
4
|
Cao L, Zhou S, Li J, Chen K, Xue X, Yi W. Effects of electroacupuncture on intestinal microflora and plasma metabolites in an insulin-resistant mouse model of type 2 diabetes mellitus. Acupunct Med 2024; 42:76-86. [PMID: 38160204 DOI: 10.1177/09645284231207871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
OBJECTIVE To investigate the effects of electroacupuncture (EA) at ST36 on intestinal microflora and plasma metabolites in a mouse model of type 2 diabetes mellitus (T2DM), to provide a theoretical basis and guidance for the clinical treatment of T2DM by traditional Chinese medicine (TCM). METHODS Sixteen T2DM db/db mice were randomly divided into treatment (T, n = 8) and model (M, n = 8) groups, and a further eight normal db/m+ mice reared under the same conditions served as a non-diabetic control group (C, n = 8). The general conditions of mice were observed weekly. After obtaining blood and stool samples, the mice were euthanized. Fasting blood glucose (FBG) was measured using a glucometer and fasting insulin (FINS) was measured in plasma by enzyme-linked immunosorbent assay (ELISA). Liver and colon tissues were embedded in paraffin and subjected to hematoxylin-eosin (HE) staining to observe pathological changes in these tissues. In addition, 16S ribosomal RNA (rRNA) sequencing was performed to analyze changes in the intestinal flora and metabolomics was employed to assess changes in metabolites in the blood. RESULTS EA significantly reduced FBG and FINS levels and alleviated pathological damage to the liver and colon. Furthermore, EA increased intestinal community richness and diversity by decreasing the relative abundance of Clostridium and incresasing the relative abundance of Lactobacillus. EA also reduced D-fructose levels in T2DM mice according to plasma metabolomics. CONCLUSION EA has a positive regulatory effect on the intestinal flora and can regulate blood glucose and improve insulin resistance in T2DM model mice.
Collapse
Affiliation(s)
- Linhui Cao
- South China Research Center for Acupuncture and Moxibustion, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Traditional Chinese Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Sheng Zhou
- South China Research Center for Acupuncture and Moxibustion, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jianjun Li
- Department of Traditional Chinese Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Kefang Chen
- Department of Traditional Chinese Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaojin Xue
- Department of Traditional Chinese Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wei Yi
- South China Research Center for Acupuncture and Moxibustion, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
5
|
Wheeler AE, Stoeger V, Owens RM. Lab-on-chip technologies for exploring the gut-immune axis in metabolic disease. LAB ON A CHIP 2024; 24:1266-1292. [PMID: 38226866 DOI: 10.1039/d3lc00877k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
The continued rise in metabolic diseases such as obesity and type 2 diabetes mellitus poses a global health burden, necessitating further research into factors implicated in the onset and progression of these diseases. Recently, the gut-immune axis, with diet as a main regulator, has been identified as a possible role player in their development. Translation of conventional 2D in vitro and animal models is however limited, while human studies are expensive and preclude individual mechanisms from being investigated. Lab-on-chip technology therefore offers an attractive new avenue to study gut-immune interactions. This review provides an overview of the influence of diet on gut-immune interactions in metabolic diseases and a critical analysis of the current state of lab-on-chip technology to study this axis. While there has been progress in the development of "immuno-competent" intestinal lab-on-chip models, with studies showing the ability of the technology to provide mechanical cues, support longer-term co-culture of microbiota and maintain in vivo-like oxygen gradients, platforms which combine all three and include intestinal and immune cells are still lacking. Further, immune cell types and inclusion of microenvironment conditions which enable in vivo-like immune cell dynamics as well as host-microbiome interactions are limited. Future model development should focus on combining these conditions to create an environment capable of hosting more complex microbiota and immune cells to allow further study into the effects of diet and related metabolites on the gut-immune ecosystem and their role in the prevention and development of metabolic diseases in humans.
Collapse
Affiliation(s)
- Alexandra E Wheeler
- Department of Chemical Engineering and Biotechnology, University of Cambridge, UK.
| | - Verena Stoeger
- Department of Chemical Engineering and Biotechnology, University of Cambridge, UK.
| | - Róisín M Owens
- Department of Chemical Engineering and Biotechnology, University of Cambridge, UK.
| |
Collapse
|
6
|
Rodrigues E-Lacerda R, Fang H, Robin N, Bhatwa A, Marko DM, Schertzer JD. Microbiota and Nod-like receptors balance inflammation and metabolism during obesity and diabetes. Biomed J 2023; 46:100610. [PMID: 37263539 PMCID: PMC10505681 DOI: 10.1016/j.bj.2023.100610] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/23/2023] [Accepted: 05/26/2023] [Indexed: 06/03/2023] Open
Abstract
Gut microbiota influence host immunity and metabolism during obesity. Bacterial sensors of the innate immune system relay signals from specific bacterial components (i.e., postbiotics) that can have opposing outcomes on host metabolic inflammation. NOD-like receptors (NLRs) such as Nod1 and Nod2 both recruit receptor-interacting protein kinase 2 (RIPK2) but have opposite effects on blood glucose control. Nod1 connects bacterial cell wall-derived signals to metabolic inflammation and insulin resistance, whereas Nod2 can promote immune tolerance, insulin sensitivity, and better blood glucose control during obesity. NLR family pyrin domain containing (NLRP) inflammasomes can also generate divergent metabolic outcomes. NLRP1 protects against obesity and metabolic inflammation potentially because of a bias toward IL-18 regulation, whereas NLRP3 appears to have a bias toward IL-1β-mediated metabolic inflammation and insulin resistance. Targeting specific postbiotics that improve immunometabolism is a key goal. The Nod2 ligand, muramyl dipeptide (MDP) is a short-acting insulin sensitizer during obesity or during inflammatory lipopolysaccharide (LPS) stress. LPS with underacylated lipid-A antagonizes TLR4 and counteracts the metabolic effects of inflammatory LPS. Providing underacylated LPS derived from Rhodobacter sphaeroides improved insulin sensitivity in obese mice. Therefore, certain types of LPS can generate metabolically beneficial metabolic endotoxemia. Engaging protective adaptive immunoglobulin immune responses can also improve blood glucose during obesity. A bacterial vaccine approach using an extract of the entire bacterial community in the upper gut promotes protective adaptive immune response and long-lasting improvements in blood glucose control. A key future goal is to identify and combine postbiotics that cooperate to improve blood glucose control.
Collapse
Affiliation(s)
- Rodrigo Rodrigues E-Lacerda
- Department of Biochemistry and Biomedical Sciences, Farncombe Family Digestive Health Research Institute, And Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
| | - Han Fang
- Department of Biochemistry and Biomedical Sciences, Farncombe Family Digestive Health Research Institute, And Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
| | - Nazli Robin
- Department of Biochemistry and Biomedical Sciences, Farncombe Family Digestive Health Research Institute, And Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
| | - Arshpreet Bhatwa
- Department of Biochemistry and Biomedical Sciences, Farncombe Family Digestive Health Research Institute, And Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
| | - Daniel M Marko
- Department of Biochemistry and Biomedical Sciences, Farncombe Family Digestive Health Research Institute, And Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
| | - Jonathan D Schertzer
- Department of Biochemistry and Biomedical Sciences, Farncombe Family Digestive Health Research Institute, And Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
7
|
Chen L, Guo L, Feng S, Wang C, Cui Z, Wang S, Lu Q, Chang H, Hang B, Snijders AM, Mao JH, Lu Y, Ding D. Fecal microbiota transplantation ameliorates type 2 diabetes via metabolic remodeling of the gut microbiota in db/db mice. BMJ Open Diabetes Res Care 2023; 11:e003282. [PMID: 37253485 PMCID: PMC10230930 DOI: 10.1136/bmjdrc-2022-003282] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 04/30/2023] [Indexed: 06/01/2023] Open
Abstract
INTRODUCTION Gut microbiome (GM) deregulation has been implicated in major conditions such as obesity and type 2 diabetes (T2DM). Our previous prospective study indicated that fecal microbiota transplantation (FMT) successfully improved patients with T2DM. We hypothesized that FMT may be a potential therapeutic method for T2DM, but its precise mechanisms in T2DM remains to be elucidated. RESEARCH DESIGN AND METHODS Eight db/m mice were FMT donors and control mice, and 16 genetically diabetic db/db mice were equally divided into two groups (db/db+phosphate-buffered saline (PBS) group, db/db+FMT group). The db/db+FMT group was administered fresh fecal suspension (0.2 mL/mice) daily for 4 weeks. Analysis of the GM and serum metabolome was carried out by 16S ribosomal RNA sequencing and liquid chromatogram-mass spectrometry, respectively. Effects of FMT on the gut barrier and pancreas were assessed using protein assays, messenger RNA, immunohistology and clinical indicators testing. RESULTS Our results showed that FMT treatment of db/db mice relieves a series of clinical indicators, including fasting plasma glucose, serum insulin and oral glucose tolerance test among others. Compared with non-diabetic control mice, db/db+PBS mice exhibited decreased abundance of Ruminococaceae, Porphyromonadaceae and increased abundance of Rikenellaceae and Lactobacillaceae. FMT treatment reversed this effect on the microbiome. Eleven metabolites were changed between the db/db+PBS and db/db+FMT groups. Correlation analysis showed that the structural changes of the GM were correlated with host metabolite levels. We further showed that FMT treatment of db/db mice improved intestinal barrier function, reduced inflammation and caused an alteration in the number of circulating immune cells. CONCLUSIONS FMT-mediated changes in the GM, serum metabolites, intestinal epithelial barrier, inflammation and circulating immune cells play an important role in the efficacy of FMT on T2DM disease progression.
Collapse
Affiliation(s)
- Lijuan Chen
- Department of Endocrinology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing Medical University Second Affiliated Hospital, Nanjing, Jiangsu, China
| | - Lin Guo
- Department of Endocrinology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing Medical University Second Affiliated Hospital, Nanjing, Jiangsu, China
| | - Susu Feng
- Department of Endocrinology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing Medical University Second Affiliated Hospital, Nanjing, Jiangsu, China
| | - Congcong Wang
- Department of Endocrinology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing Medical University Second Affiliated Hospital, Nanjing, Jiangsu, China
| | - Zhicheng Cui
- Department of Endocrinology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing Medical University Second Affiliated Hospital, Nanjing, Jiangsu, China
| | - Sijing Wang
- Department of Endocrinology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing Medical University Second Affiliated Hospital, Nanjing, Jiangsu, China
| | - Qingmiao Lu
- Department of Endocrinology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing Medical University Second Affiliated Hospital, Nanjing, Jiangsu, China
| | - Hang Chang
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Bo Hang
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
- Department of Biomaterials, Berkeley-Nanjing Research Center, Nanjing, Jiangsu, China
| | - Antoine M Snijders
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Jian-Hua Mao
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Yibing Lu
- Department of Endocrinology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing Medical University Second Affiliated Hospital, Nanjing, Jiangsu, China
| | - Dafa Ding
- Department of Endocrinology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing Medical University Second Affiliated Hospital, Nanjing, Jiangsu, China
| |
Collapse
|
8
|
Champion C, Neagoe RM, Effernberger M, Sala DT, Servant F, Christensen JE, Arnoriaga-Rodriguez M, Amar J, Lelouvier B, Loubieres P, Azalbert V, Minty M, Thomas C, Blasco-Baque V, Gamboa F, Tilg H, Cardellini M, Federici M, Fernández-Real JM, Loubes JM, Burcelin R. Human liver microbiota modeling strategy at the early onset of fibrosis. BMC Microbiol 2023; 23:34. [PMID: 36717776 PMCID: PMC9885577 DOI: 10.1186/s12866-023-02774-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 01/13/2023] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Gut microbiota is involved in the development of liver diseases such as fibrosis. We and others identified that selected sets of gut bacterial DNA and bacteria translocate to tissues, notably the liver, to establish a non-infectious tissue microbiota composed of microbial DNA and a low frequency live bacteria. However, the precise set of bacterial DNA, and thereby the corresponding taxa associated with the early stages of fibrosis need to be identified. Furthermore, to overcome the impact of different group size and patient origins we adapted innovative statistical approaches. Liver samples with low liver fibrosis scores (F0, F1, F2), to study the early stages of the disease, were collected from Romania(n = 36), Austria(n = 10), Italy(n = 19), and Spain(n = 17). The 16S rRNA gene was sequenced. We considered the frequency, sparsity, unbalanced sample size between cohorts to identify taxonomic profiles and statistical differences. RESULTS Multivariate analyses, including adapted spectral clustering with L1-penalty fair-discriminant strategies, and predicted metagenomics were used to identify that 50% of liver taxa associated with the early stage fibrosis were Enterobacteriaceae, Pseudomonadaceae, Xanthobacteriaceae and Burkholderiaceae. The Flavobacteriaceae and Xanthobacteriaceae discriminated between F0 and F1. Predicted metagenomics analysis identified that the preQ0 biosynthesis and the potential pathways involving glucoryranose and glycogen degradation were negatively associated with liver fibrosis F1-F2 vs F0. CONCLUSIONS Without demonstrating causality, our results suggest first a role of bacterial translocation to the liver in the progression of fibrosis, notably at the earliest stages. Second, our statistical approach can identify microbial signatures and overcome issues regarding sample size differences, the impact of environment, and sets of analyses. TRIAL REGISTRATION TirguMECCH ROLIVER Prospective Cohort for the Identification of Liver Microbiota, registration 4065/2014. Registered 01 01 2014.
Collapse
Affiliation(s)
- Camille Champion
- grid.7429.80000000121866389Institut National de La Santé Et de La Recherche Médicale (INSERM), Toulouse, France ,grid.15781.3a0000 0001 0723 035XUnité Mixte de Recherche (UMR) 1297, Institut Des Maladies Métaboliques Et Cardiovasculaires (I2MC), Team 2: ‘Intestinal Risk FactorsDiabetesDyslipidemia’, Université Paul Sabatier (UPS), F-31432 Toulouse Cedex 4, France ,grid.15781.3a0000 0001 0723 035XInstitut de Mathématiques de Toulouse, Université Paul Sabatier, Toulouse, France
| | - Radu M. Neagoe
- Second Department of Surgery, Emergency Mureş County Hospital, University of Medicine Pharmacy, Science and Technology “George Emil Palade” Tîrgu Mures, Târgu Mureș, Romania
| | - Maria Effernberger
- grid.5361.10000 0000 8853 2677Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Daniela T. Sala
- Second Department of Surgery, Emergency Mureş County Hospital, University of Medicine Pharmacy, Science and Technology “George Emil Palade” Tîrgu Mures, Târgu Mureș, Romania
| | | | - Jeffrey E. Christensen
- grid.7429.80000000121866389Institut National de La Santé Et de La Recherche Médicale (INSERM), Toulouse, France ,grid.15781.3a0000 0001 0723 035XUnité Mixte de Recherche (UMR) 1297, Institut Des Maladies Métaboliques Et Cardiovasculaires (I2MC), Team 2: ‘Intestinal Risk FactorsDiabetesDyslipidemia’, Université Paul Sabatier (UPS), F-31432 Toulouse Cedex 4, France
| | - Maria Arnoriaga-Rodriguez
- grid.411295.a0000 0001 1837 4818Department of Diabetes, Endocrinology and Nutrition, University Hospital of Girona ‘Dr Josep Trueta’, Girona, Spain ,grid.429182.4Institut d’Investigacio Biomedica de Girona IdibGi, Girona, Spain ,CIBER Fisiopatologia de La Obesidad Y Nutricion, Girona, Spain
| | - Jacques Amar
- grid.7429.80000000121866389Institut National de La Santé Et de La Recherche Médicale (INSERM), Toulouse, France ,grid.15781.3a0000 0001 0723 035XUnité Mixte de Recherche (UMR) 1297, Institut Des Maladies Métaboliques Et Cardiovasculaires (I2MC), Team 2: ‘Intestinal Risk FactorsDiabetesDyslipidemia’, Université Paul Sabatier (UPS), F-31432 Toulouse Cedex 4, France ,grid.414295.f0000 0004 0638 3479Therapeutics Department, Rangueil Hospital, Toulouse, France
| | | | - Pascale Loubieres
- grid.7429.80000000121866389Institut National de La Santé Et de La Recherche Médicale (INSERM), Toulouse, France ,grid.15781.3a0000 0001 0723 035XUnité Mixte de Recherche (UMR) 1297, Institut Des Maladies Métaboliques Et Cardiovasculaires (I2MC), Team 2: ‘Intestinal Risk FactorsDiabetesDyslipidemia’, Université Paul Sabatier (UPS), F-31432 Toulouse Cedex 4, France
| | - Vincent Azalbert
- grid.7429.80000000121866389Institut National de La Santé Et de La Recherche Médicale (INSERM), Toulouse, France ,grid.15781.3a0000 0001 0723 035XUnité Mixte de Recherche (UMR) 1297, Institut Des Maladies Métaboliques Et Cardiovasculaires (I2MC), Team 2: ‘Intestinal Risk FactorsDiabetesDyslipidemia’, Université Paul Sabatier (UPS), F-31432 Toulouse Cedex 4, France
| | - Matthieu Minty
- grid.7429.80000000121866389Institut National de La Santé Et de La Recherche Médicale (INSERM), Toulouse, France ,grid.15781.3a0000 0001 0723 035XUnité Mixte de Recherche (UMR) 1297, Institut Des Maladies Métaboliques Et Cardiovasculaires (I2MC), Team 2: ‘Intestinal Risk FactorsDiabetesDyslipidemia’, Université Paul Sabatier (UPS), F-31432 Toulouse Cedex 4, France
| | - Charlotte Thomas
- grid.7429.80000000121866389Institut National de La Santé Et de La Recherche Médicale (INSERM), Toulouse, France ,grid.15781.3a0000 0001 0723 035XUnité Mixte de Recherche (UMR) 1297, Institut Des Maladies Métaboliques Et Cardiovasculaires (I2MC), Team 2: ‘Intestinal Risk FactorsDiabetesDyslipidemia’, Université Paul Sabatier (UPS), F-31432 Toulouse Cedex 4, France
| | - Vincent Blasco-Baque
- grid.7429.80000000121866389Institut National de La Santé Et de La Recherche Médicale (INSERM), Toulouse, France ,grid.15781.3a0000 0001 0723 035XUnité Mixte de Recherche (UMR) 1297, Institut Des Maladies Métaboliques Et Cardiovasculaires (I2MC), Team 2: ‘Intestinal Risk FactorsDiabetesDyslipidemia’, Université Paul Sabatier (UPS), F-31432 Toulouse Cedex 4, France
| | - Fabrice Gamboa
- grid.15781.3a0000 0001 0723 035XInstitut de Mathématiques de Toulouse, Université Paul Sabatier, Toulouse, France
| | - Herbert Tilg
- grid.5361.10000 0000 8853 2677Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Marina Cardellini
- grid.6530.00000 0001 2300 0941Department of Systems Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy
| | - Massimo Federici
- grid.6530.00000 0001 2300 0941Department of Systems Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy
| | - Jose-Manuel Fernández-Real
- grid.411295.a0000 0001 1837 4818Department of Diabetes, Endocrinology and Nutrition, University Hospital of Girona ‘Dr Josep Trueta’, Girona, Spain ,grid.429182.4Institut d’Investigacio Biomedica de Girona IdibGi, Girona, Spain ,CIBER Fisiopatologia de La Obesidad Y Nutricion, Girona, Spain
| | - Jean Michel Loubes
- grid.15781.3a0000 0001 0723 035XInstitut de Mathématiques de Toulouse, Université Paul Sabatier, Toulouse, France
| | - Rémy Burcelin
- grid.7429.80000000121866389Institut National de La Santé Et de La Recherche Médicale (INSERM), Toulouse, France ,grid.15781.3a0000 0001 0723 035XUnité Mixte de Recherche (UMR) 1297, Institut Des Maladies Métaboliques Et Cardiovasculaires (I2MC), Team 2: ‘Intestinal Risk FactorsDiabetesDyslipidemia’, Université Paul Sabatier (UPS), F-31432 Toulouse Cedex 4, France
| |
Collapse
|
9
|
High fat diet-induced hyperlipidemia and tissue steatosis in rabbits through modulating ileal microbiota. Appl Microbiol Biotechnol 2022; 106:7187-7207. [PMID: 36173452 DOI: 10.1007/s00253-022-12203-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 11/02/2022]
Abstract
High-fat diet (HFD) and overnutrition are important starting factors that may alter intestinal microbiota, lipid metabolism, and systemic inflammation. However, there were few studies on how intestinal microbiota contributes to tissue steatosis and hyperlipidemia. Here, we investigated the effect of lipid metabolism disorder-induced inflammation via toll-like receptor 2 (TLR-2), toll-like receptor 4 (TLR-4), and nuclear factor-κB (NF-κB) pathways at the intestinal level in response to HFD. Twenty 80-day-old male New Zealand White rabbits were randomly divided into the normal diet group (NDG) and the high-fat diet group (HDG) for 80 days. Growth performance, blood biochemical parameters, lipid metabolism, inflammation, degree of tissue steatosis, and intestinal microbial composition were measured. HFD increased the relative abundance of Christensenellaceae_R_7_group, Marvinbryantia, Akkermansia etc., with a reduced relative abundance of Enterorhabdus and Lactobacillus. Moreover, HFD caused steatosis in the liver and abdominal fat and abnormal expression of some genes related to lipid metabolism and tight junction proteins. The TLR-2, TLR-4, NF-κB, TNF-α, and IL-6 were confirmed by overexpression with downregulation of IL-10. Serum biochemical indices (TG, TCHO, LDL-C, and HDL-C) were also increased, indicating evidence for the development of the hyperlipidemia model. Correlation analysis showed that this microbial dysbiosis was correlated with lipid metabolism and inflammation, which were associated with the intestinal tract's barrier function and hyperlipidemia. These results provide an insight into the relationship between HFD, the intestinal microbiota, intestinal barrier, tissue inflammation, lipid metabolism, and hyperlipidemia. KEY POINTS: • High-fat diet leads to ileal microbiota disorders • Ileal microbiota mediates local and systemic lipid metabolism disorders and inflammation • There is a specific link between ileal microbiota, histopathology, and hyperlipidemia.
Collapse
|
10
|
Duggan BM, Singh AM, Chan DY, Schertzer JD. Postbiotics engage IRF4 in adipocytes to promote sex-dependent changes in blood glucose during obesity. Physiol Rep 2022; 10:e15439. [PMID: 35993451 PMCID: PMC9393906 DOI: 10.14814/phy2.15439] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/27/2022] [Accepted: 08/09/2022] [Indexed: 11/24/2022] Open
Abstract
Postbiotics are microbial-derived components or metabolites that can influence host immunity and metabolism. Some postbiotics can improve blood glucose control and lower inflammation during bacterial or nutritional stress. Bacterial cell wall-derived muramyl dipeptide (MDP) is a potent insulin-sensitizing postbiotic that engages NOD2, RIPK2, and requires interferon regulatory factor 4 (IRF4) to lower inflammation and improve blood glucose. However, the sex-dependent effects of this postbiotic and the cell type required for IRF4 to cause inflammatory versus glycemic responses to MDP were unknown. Here, we measured how MDP injection altered glucose tolerance and adipose tissue inflammation during low-level endotoxemia and high fat diet (HFD)-induced obesity in male and female adipocyte-specific IRF4 knockout mice (AdipoIRF4fl/fl ) compared to WTfl/fl mice. Adipocyte IRF4 was required for the blood glucose-lowering effects of MDP during endotoxemia and HFD-induced obesity in male mice. However, MDP did not alter blood glucose in female WTfl/fl and AdipoIRF4fl/f mice during endotoxemia. Unexpectedly, female HFD-fed AdipoIRF4fl/f mice had lower blood glucose after MDP treatment compared to WTfl/fl mice. MDP lowered inflammatory gene expression in adipose tissue of HFD-fed WTfl/fl and AdipoIRF4fl/fl mice of both sexes. Therefore, MDP-mediated lowering of adipose inflammation does not require adipocyte IRF4 and was independent of sex. Together, these data show that injection of MDP, an insulin-sensitizing postbiotic, lowers adipose tissue inflammation in male and female mice, but lower adipose inflammation is not always associated with improved blood glucose. The blood glucose-lowering effect of the postbiotic MDP and dependence on adipocyte IRF4 is sex-dependent.
Collapse
Affiliation(s)
- Brittany M. Duggan
- Department of Biochemistry and Biomedical SciencesMcMaster UniversityHamiltonCanada
- Farncombe Family Digestive Health Research InstituteMcMaster UniversityHamiltonCanada
- Centre for Metabolism, Obesity and Diabetes ResearchMcMaster UniversityHamiltonCanada
| | - Anita M. Singh
- Department of Biochemistry and Biomedical SciencesMcMaster UniversityHamiltonCanada
- Farncombe Family Digestive Health Research InstituteMcMaster UniversityHamiltonCanada
- Centre for Metabolism, Obesity and Diabetes ResearchMcMaster UniversityHamiltonCanada
| | - Darryl Y. Chan
- Department of Biochemistry and Biomedical SciencesMcMaster UniversityHamiltonCanada
- Farncombe Family Digestive Health Research InstituteMcMaster UniversityHamiltonCanada
- Centre for Metabolism, Obesity and Diabetes ResearchMcMaster UniversityHamiltonCanada
| | - Jonathan D. Schertzer
- Department of Biochemistry and Biomedical SciencesMcMaster UniversityHamiltonCanada
- Farncombe Family Digestive Health Research InstituteMcMaster UniversityHamiltonCanada
- Centre for Metabolism, Obesity and Diabetes ResearchMcMaster UniversityHamiltonCanada
| |
Collapse
|
11
|
Chen Z, Liu B, Gong Z, Huang H, Gong Y, Xiao W. Metagenomics Approach to the Intestinal Microbiome Structure and Abundance in High-Fat-Diet-Induced Hyperlipidemic Rat Fed with (-)-Epigallocatechin-3-Gallate Nanoparticles. Molecules 2022; 27:molecules27154894. [PMID: 35956844 PMCID: PMC9370321 DOI: 10.3390/molecules27154894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/26/2022] [Accepted: 07/26/2022] [Indexed: 11/16/2022] Open
Abstract
The effects of nanoparticles (NPs) on microbiota homeostasis and their physiological relevance are still unclear. Herein, we compared the modulation and consequent pharmacological effects of oral administration of (−)-epigallocatechin-3-gallate (EGCG)-loaded β-cyclodextrin (β-CD) NPs (EGCG@β-CD NPs) and EGCG on gut microbiota. EGCG@β-CD NPs were prepared using self-assembly and their influence on the intestinal microbiome structure was analyzed using a metagenomics approach. The “Encapsulation efficiency (EE), particle size, polydispersity index (PDI), zeta potential” of EGCG@β-CD NPs were recorded as 98.27 ± 0.36%, 124.6 nm, 0.313 and –24.3 mV, respectively. Surface morphology of EGCG@β-CD NPs was observed as spherical. Fourier-transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD) and molecular docking studies confirmed that EGCG could be well encapsulated in β-CD and formed as EGCG@β-CD NPs. After being continuously administered EGCG@β-CD NPs for 8 weeks, the serum cholesterol (TC), low-density lipoprotein cholesterol (LDL-C) and liver malondialdehyde (MDA) levels in the rats were significantly decreased, while the levels of catalase (CAT) and apolipoprotein-A1 (apo-A1) in the liver increased significantly in the hyperlipidemia model of rats, when compared to the high-fat-diet group. Furthermore, metagenomic analysis revealed that the ratio of Verrucomicrobia/Bacteroidetes was altered and Bacteroidetes decreased in the high-fat diet +200 mg/kg·bw EGCG@β-CD NPs group, while the abundance of Verrucomicrobia was significantly increased, especially Akkermansia muciniphila in rat feces. EGCG@β-CD NPs could be a promising EGCG delivery strategy to modulate the gut microbiota, enhancing its employment in the prevention of hyperlipidemia.
Collapse
Affiliation(s)
- Zhiyin Chen
- Key Lab of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China; (Z.C.); (B.L.); (Z.G.)
- College of Agriculture & Biotechnology, Hunan University of Humanities, Science & Technology, Loudi 417000, China;
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
- Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Changsha 410128, China
| | - Baogui Liu
- Key Lab of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China; (Z.C.); (B.L.); (Z.G.)
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
- Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Changsha 410128, China
| | - Zhihua Gong
- Key Lab of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China; (Z.C.); (B.L.); (Z.G.)
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
- Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Changsha 410128, China
| | - Hua Huang
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Minis-Try of Agriculture and Rural Affairs, Guang-Dong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Institute of Fruit Tree Re-Search, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China;
| | - Yihui Gong
- College of Agriculture & Biotechnology, Hunan University of Humanities, Science & Technology, Loudi 417000, China;
| | - Wenjun Xiao
- Key Lab of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China; (Z.C.); (B.L.); (Z.G.)
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
- Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Changsha 410128, China
- Correspondence: ; Tel.: +86-0731-84635304; Fax: +86-0731-84635306
| |
Collapse
|
12
|
Lommi S, Manzoor M, Engberg E, Agrawal N, Lakka TA, Leinonen J, Kolho KL, Viljakainen H. The Composition and Functional Capacities of Saliva Microbiota Differ Between Children With Low and High Sweet Treat Consumption. Front Nutr 2022; 9:864687. [PMID: 35558746 PMCID: PMC9085455 DOI: 10.3389/fnut.2022.864687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/04/2022] [Indexed: 01/17/2023] Open
Abstract
Excess sugar consumption—common in youth—is associated with poor health. Evidence on the relationship between sugar consumption and the oral microbiome, however, remains scarce and inconclusive. We explored whether the diversity, composition, and functional capacities of saliva microbiota differ based on the consumption of select sugary foods and drinks (“sweet treats”). Using 16S rRNA gene sequencing, we characterized saliva microbiota from 11 to 13-year-old children who participated in the Finnish Health in Teens (Fin-HIT) cohort study. The sample comprised children in the lowest (n = 227) and highest (n = 226) tertiles of sweet treat consumption. We compared differences in the alpha diversity (Shannon, inverse Simpson, and Chao1 indices), beta diversity (principal coordinates analysis based on Bray–Curtis dissimilarity), and abundance (differentially abundant operational taxonomic units (OTUs) at the genus level) between these low and high consumption groups. We performed PICRUSt2 to predict the metabolic pathways of microbial communities. No differences emerged in the alpha diversity between low and high sweet treat consumption, whereas the beta diversity differed between groups (p = 0.001). The abundance of several genera such as Streptococcus, Prevotella, Veillonella, and Selenomonas was higher in the high consumption group compared with the low consumption group following false discovery rate correction (p < 0.05). Children with high sweet treat consumption exhibited higher proportions of nitrate reduction IV and gondoate biosynthesis pathways compared with the low consumption group (p < 0.05). To conclude, sweet treat consumption shapes saliva microbiota. Children who consume a high level of sweet treats exhibited different compositions and metabolic pathways compared with children who consume low levels of sweet treats. Our findings reveal novel insights into the relationship between sugary diets and oral microbiota.
Collapse
Affiliation(s)
- Sohvi Lommi
- Department of Public Health, University of Helsinki, Helsinki, Finland.,Folkhälsan Research Center, Helsinki, Finland
| | - Muhammed Manzoor
- Department of Oral and Maxillofacial Diseases, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Elina Engberg
- Folkhälsan Research Center, Helsinki, Finland.,Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Nitin Agrawal
- Folkhälsan Research Center, Helsinki, Finland.,Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Timo A Lakka
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland.,Department of Clinical Physiology and Nuclear Medicine, Kuopio University Hospital, Kuopio, Finland.,Foundation for Research in Health Exercise and Nutrition, Kuopio Research Institute of Exercise Medicine, Kuopio, Finland
| | - Jukka Leinonen
- Department of Clinical Dentistry, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - Kaija-Leena Kolho
- Children's Hospital, University of Helsinki and Helsinki University Hospital (HUS), Helsinki, Finland.,Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Heli Viljakainen
- Folkhälsan Research Center, Helsinki, Finland.,Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
13
|
Vailati-Riboni M, Rund L, Caetano-Silva ME, Hutchinson NT, Wang SS, Soto-Díaz K, Woods JA, Steelman AJ, Johnson RW. Dietary Fiber as a Counterbalance to Age-Related Microglial Cell Dysfunction. Front Nutr 2022; 9:835824. [PMID: 35360677 PMCID: PMC8964049 DOI: 10.3389/fnut.2022.835824] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/22/2022] [Indexed: 12/24/2022] Open
Abstract
With increasing age, microglia shift toward a pro-inflammatory phenotype that may predispose individuals to neurodegenerative disease. Because fiber fermentation in the colon produces bioactive short-chain fatty acids (SCFAs; e.g., acetate, butyrate, and propionate) that signal through the gut-brain axis, increasing dietary fiber may prevent or reverse age-related dysregulation of microglia. Adult (3–4 months old) and aged (23–24 months old) male and female mice were given ad libitum access to a modified AIN-93M diet with 1% cellulose or the same diet with 2.5 or 5.0% inulin for 8 weeks. Several adult and aged male mice fed 0 or 5% inulin were randomly selected for whole brain single-cell RNA sequencing (scRNA-seq) and differential gene expression analysis to classify brain microglia according to gene expression profile; and identify additional genetic markers of aging as possible targets for dietary interventions. Microglia were isolated from remaining mice and expression of selected aging-, inflammatory-, and sensome-related genes was assessed by Fluidigm as was the ex vivo secretion of tumor necrosis factor-alpha (TNF-α). SCFAs were measured in samples collected from the cecum. Microglia from adult and aged mice segregated into distinct phenotypes according to their gene expression profile. In aged mice, a considerably greater proportion of the population of microglia was identified being “activated” and a considerably smaller proportion was identified being “quiescent.” These findings using whole brain scRNA-seq were largely corroborated using highly purified microglia and Fluidigm analysis to assess a selected panel of genes. Aged mice compared to adults had lower levels of SCFA’s in cecum. Dietary inulin increased SCFAs in cecum and mostly restored microglial cell gene expression and TNF-α secretion to that seen in adults. Sex differences were observed with females having lower levels of SCFAs in cecum and increased neuroinflammation. Overall, these data support the use of fiber supplementation as a strategy to counterbalance the age-related microglial dysregulation.
Collapse
Affiliation(s)
- Mario Vailati-Riboni
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Laurie Rund
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Maria Elisa Caetano-Silva
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Noah T. Hutchinson
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Selena S. Wang
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Katiria Soto-Díaz
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Jeffrey A. Woods
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Andrew J. Steelman
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Rodney W. Johnson
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- *Correspondence: Rodney W. Johnson,
| |
Collapse
|
14
|
|
15
|
Sun H, Du X, Zeng T, Ruan S, Li G, Tao Z, Xu W, Lu L. Effects of Compound Probiotics on Cecal Microbiome and Metabolome of Shaoxing Duck. Front Microbiol 2022; 12:813598. [PMID: 35087506 PMCID: PMC8787150 DOI: 10.3389/fmicb.2021.813598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 12/14/2021] [Indexed: 12/05/2022] Open
Abstract
This experiment was conducted to investigate the effects of compound probiotics on intestinal microflora and metabolome of Shaoxing ducks. A total of 640 1-day-old Shaoxing ducks were randomly divided into two treatments with eight replicates and forty ducks for each replicate. The ducks were fed basal diet (Ctrl) and basal diet supplemented with 0.15% compound probiotics (MixP). The experiment lasted for 85 days. The results showed that the abundance of Bacteroidetes and Bacteroides in MixP was higher than that in Ctrl (P < 0.05). However, the abundance of Firmicutes and Oscillospira and Desulfovibrio in MixP was lower than that in Ctrl (P < 0.05). Concentrations of 71 metabolites differed significantly (P < 0.05) between the MixP and the Ctrl groups; for example, Pyridoxal (Vitamin B6), L-Arginine, and Betaine aldehyde were up-regulated (P < 0.05), and 7-oxocholesterol, 3-hydroxy-L-kynureni-ne, and N-acetyl-d-glucosamine were down-regulated (P < 0.05). KEGG was enriched in 15 metabolic pathways. The pathways of Vitamin B6 metabolism, Vascular smooth muscle contraction, Vitamin digestion and absorption, and Protein digestion and absorption were influenced by compound probiotics supplementation. Thus, supplementation of compound probiotics improved cecal heath through shifts in the cecal microbiome and metabolome.
Collapse
Affiliation(s)
- Hanxue Sun
- Animal Husbandry and Veterinary Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Xizhong Du
- Jinhua Academy of Agricultural Sciences, Jinhua, China
| | - Tao Zeng
- Animal Husbandry and Veterinary Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Shenggang Ruan
- Shaoxing Xianheng Shao Duck Breeding Co., Ltd., Shaoxing, China
| | - Guoqin Li
- Animal Husbandry and Veterinary Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Zhengrong Tao
- Animal Husbandry and Veterinary Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Wenwu Xu
- Animal Husbandry and Veterinary Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Lizhi Lu
- Animal Husbandry and Veterinary Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
16
|
Duggan BM, Tamrakar AK, Barra NG, Anhê FF, Paniccia G, Wallace JG, Stacey HD, Surette MG, Miller MS, Sloboda DM, Schertzer JD. Gut microbiota-based vaccination engages innate immunity to improve blood glucose control in obese mice. Mol Metab 2021; 55:101404. [PMID: 34839023 PMCID: PMC8693341 DOI: 10.1016/j.molmet.2021.101404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 12/20/2022] Open
Abstract
Objective Obesity and diabetes increase circulating levels of microbial components derived from the gut microbiota. Individual bacterial factors (i.e., postbiotics) can have opposing effects on blood glucose. Methods We tested the net effect of gut bacterial extracts on blood glucose in mice using a microbiota-based vaccination strategy. Results Male and female mice had improved glucose and insulin tolerance five weeks after a single subcutaneous injection of a specific dose of a bacterial extract obtained from the luminal contents of the upper small intestine (SI), lower SI, or cecum. Injection of mice with intestinal extracts from germ-free mice revealed that bacteria were required for a microbiota-based vaccination to improve blood glucose control. Vaccination of Nod1−/−, Nod2−/−, and Ripk2−/− mice showed that each of these innate immune proteins was required for bacterial extract injection to improve blood glucose control. A microbiota-based vaccination promoted an immunoglobulin-G (IgG) response directed against bacterial extract antigens, where subcutaneous injection of mice with the luminal contents of the lower SI elicited a bacterial extract-specific IgG response that is compartmentalized to the lower SI of vaccinated mice. A microbiota-based vaccination was associated with an altered microbiota composition in the lower SI and colon of mice. Lean mice only required a single injection of small intestinal-derived bacterial extract, but high fat diet (HFD)-fed, obese mice required prime-boost bacterial extract injections for improvements in blood glucose control. Conclusions Subversion of the gut barrier by vaccination with a microbiota-based extract engages innate immunity to promote long-lasting improvements in blood glucose control in a dose-dependent manner. Subcutaneous injection of gut bacterial extracts improved blood glucose control in mice. Microbiota-based vaccination engaged NOD1-NOD2-RIPK2 to alter blood glucose. Microbiota-based vaccination promoted a proximal gut IgG response. Microbiota-based vaccination altered the composition of the gut microbiome. Obese mice required prime-boost injections to improve blood glucose control.
Collapse
Affiliation(s)
- Brittany M Duggan
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada; Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Canada; Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Canada
| | - Akhilesh K Tamrakar
- Division of Biochemistry, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Nicole G Barra
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada; Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Canada; Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Canada
| | - Fernando F Anhê
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada; Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Canada; Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Canada
| | - Gabriella Paniccia
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada
| | - Jessica G Wallace
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada; Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Canada
| | - Hannah D Stacey
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada; Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Canada; McMaster Immunology Research Centre, McMaster University, Hamilton, Canada
| | - Michael G Surette
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada; Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Canada; Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Canada; Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Canada; Department of Medicine, McMaster University, Hamilton, Canada
| | - Matthew S Miller
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada; Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Canada; McMaster Immunology Research Centre, McMaster University, Hamilton, Canada
| | - Deborah M Sloboda
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada; Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Canada; Department of Obstetrics and Gynecology, McMaster University, Hamilton, Canada; Department of Pediatrics, McMaster University, Hamilton, Canada
| | - Jonathan D Schertzer
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada; Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Canada; Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Canada.
| |
Collapse
|
17
|
Tsuruta T, Muhomah TA, Sonoyama K, Nguyen QD, Takase Y, Nishijima A, Himoto S, Katsumata E, Nishino N. Aicda deficiency exacerbates high-fat diet-induced hyperinsulinemia but not gut dysbiosis in mice. Nutr Res 2021; 93:15-26. [PMID: 34332207 DOI: 10.1016/j.nutres.2021.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 06/16/2021] [Accepted: 06/21/2021] [Indexed: 10/20/2022]
Abstract
Immunoglobulin A (IgA) is a major antibody in the gut. We previously observed that a high-fat diet (HFD) reduces IgA reactivity to gut microbiota, but the physiological implications have yet to be elucidated. We hypothesized that a reduction of IgA reactivity to gut microbiota induced by a HFD may contribute to development of gut dysbiosis and inflammation that accompanies HFD feeding. To test our hypothesis, we used Aicda deficient mice, which have a deficiency in IgA production. Aicda deficient mice and wild-type mice were fed normal-fat diet or HFD for 12 weeks. We found that HFD feeding but not Aicda deficiency altered the fecal microbiota composition. Meanwhile, Aicda deficiency significantly increased gene expression of inflammatory cytokines in the ileum, but not in the colon despite no significant difference between diets. These results suggest that a reduction of IgA reactivity to gut microbiota induced by HFD partly contributes to development of inflammation in the ileum, but not to gut dysbiosis. We also found that the fasting blood insulin level was significantly increased by Aicda deficiency only under HFD feeding. Furthermore, the gene expression of monocyte chemoattractant protein1, a major chemokine responsible for the onset of hyperinsulinemia, in the liver was significantly increased by HFD feeding and tended to be increased by Aicda deficiency. These findings suggest that a reduction of IgA reactivity to gut microbiota induced by HFD contributes to hyperinsulinemia partly via increasing monocyte chemoattractant protein-1 expression in the liver.
Collapse
Affiliation(s)
- Takeshi Tsuruta
- Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan.
| | - Teresia Aluoch Muhomah
- Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan
| | - Kei Sonoyama
- Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Qui D Nguyen
- Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan
| | - Yurika Takase
- Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan
| | - Aoi Nishijima
- Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan
| | - Shiori Himoto
- Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan
| | - Emiko Katsumata
- Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan
| | - Naoki Nishino
- Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan
| |
Collapse
|
18
|
Carrasco E, Gómez de Las Heras MM, Gabandé-Rodríguez E, Desdín-Micó G, Aranda JF, Mittelbrunn M. The role of T cells in age-related diseases. Nat Rev Immunol 2021; 22:97-111. [PMID: 34099898 DOI: 10.1038/s41577-021-00557-4] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2021] [Indexed: 12/11/2022]
Abstract
Age-related T cell dysfunction can lead to failure of immune tolerance mechanisms, resulting in aberrant T cell-driven cytokine and cytotoxic responses that ultimately cause tissue damage. In this Review, we discuss the role of T cells in the onset and progression of age-associated conditions, focusing on cardiovascular disorders, metabolic dysfunction, neuroinflammation and defective tissue repair and regeneration. We present different mechanisms by which T cells contribute to inflammageing and might act as modulators of age-associated diseases, including through enhanced pro-inflammatory and cytotoxic activity, defective clearance of senescent cells or regulation of the gut microbiota. Finally, we propose that 'resetting' immune system tolerance or targeting pathogenic T cells could open up new therapeutic opportunities to boost resilience to age-related diseases.
Collapse
Affiliation(s)
- Elisa Carrasco
- Departamento de Biología, Facultad de Ciencias (UAM); Centro de Biología Molecular 'Severo Ochoa' (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain.,Departamento de Biología Molecular, Facultad de Ciencias (UAM); Centro de Biología Molecular 'Severo Ochoa' (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | - Manuel M Gómez de Las Heras
- Departamento de Biología Molecular, Facultad de Ciencias (UAM); Centro de Biología Molecular 'Severo Ochoa' (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Enrique Gabandé-Rodríguez
- Departamento de Biología Molecular, Facultad de Ciencias (UAM); Centro de Biología Molecular 'Severo Ochoa' (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Gabriela Desdín-Micó
- Departamento de Biología Molecular, Facultad de Ciencias (UAM); Centro de Biología Molecular 'Severo Ochoa' (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Juan Francisco Aranda
- Departamento de Biología Molecular, Facultad de Ciencias (UAM); Centro de Biología Molecular 'Severo Ochoa' (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Maria Mittelbrunn
- Departamento de Biología Molecular, Facultad de Ciencias (UAM); Centro de Biología Molecular 'Severo Ochoa' (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain. .,Instituto de Investigación Sanitaria del Hospital 12 de Octubre (i+12), Madrid, Spain.
| |
Collapse
|
19
|
Khan S, Luck H, Winer S, Winer DA. Emerging concepts in intestinal immune control of obesity-related metabolic disease. Nat Commun 2021; 12:2598. [PMID: 33972511 PMCID: PMC8110751 DOI: 10.1038/s41467-021-22727-7] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 03/22/2021] [Indexed: 12/19/2022] Open
Abstract
The intestinal immune system is an important modulator of glucose homeostasis and obesity-associated insulin resistance. Dietary factors, the intestinal microbiota and their metabolites shape intestinal immunity during obesity. The intestinal immune system in turn affects processes such as intestinal permeability, immune cell trafficking, and intestinal hormone availability, impacting systemic insulin resistance. Understanding these pathways might identify mechanisms underlying treatments for insulin resistance, such as metformin and bariatric surgery, or aid in developing new therapies and vaccination approaches. Here, we highlight evolving concepts centered on intestinal immunity, diet, and the microbiota to provide a working model of obesity-related metabolic disease.
Collapse
Affiliation(s)
- Saad Khan
- Department of Immunology, University of Toronto, Toronto, ON, Canada
- Division of Cellular & Molecular Biology, Diabetes Research Group, Toronto General Hospital Research Institute (TGHRI), University Health Network, Toronto, ON, Canada
| | - Helen Luck
- Division of Cellular & Molecular Biology, Diabetes Research Group, Toronto General Hospital Research Institute (TGHRI), University Health Network, Toronto, ON, Canada
| | - Shawn Winer
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine, St. Michael's Hospital, Toronto, ON, Canada
| | - Daniel A Winer
- Department of Immunology, University of Toronto, Toronto, ON, Canada.
- Division of Cellular & Molecular Biology, Diabetes Research Group, Toronto General Hospital Research Institute (TGHRI), University Health Network, Toronto, ON, Canada.
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.
- Department of Pathology, University Health Network, Toronto, ON, Canada.
- Buck Institute for Research on Aging, Novato, CA, USA.
| |
Collapse
|
20
|
Zhou H, Wang L, Liu F. Immunological Impact of Intestinal T Cells on Metabolic Diseases. Front Immunol 2021; 12:639902. [PMID: 33679800 PMCID: PMC7930072 DOI: 10.3389/fimmu.2021.639902] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 01/29/2021] [Indexed: 12/12/2022] Open
Abstract
Emerging evidence accumulated over the past several years has uncovered intestinal CD4+ T cells as an essential mediator in modulating intestinal immunity in health and diseases. It has also been increasingly recognized that dietary and microbiota-derived factors play key roles in shaping the intestinal CD4+ T-cell compartment. This review aims to discuss the current understanding on how the intestinal T cell immune responses are disturbed by obesity and metabolic stress. In addition, we review how these changes influence systemic metabolic homeostasis and the T-cell-mediated crosstalk between gut and liver or brain in the progression of obesity and its related diseases. Lastly, we highlight the potential roles of some drugs that target intestinal T cells as a therapeutic treatment for metabolic diseases. A better understanding of the interaction among metabolites, bacterial signals, and T cell immune responses in the gut and their roles in systemic inflammation in metabolic tissues should shed new light on the development of effective treatment of obesity and related disorders.
Collapse
Affiliation(s)
- Haiyan Zhou
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Liwen Wang
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Feng Liu
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, China.,Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| |
Collapse
|
21
|
Barengolts E, Smith ED. Considerations for Gut Microbiota and Probiotics in Patients with Diabetes Amidst the Covid-19 Pandemic: A Narrative Review. Endocr Pract 2021; 26:1186-1195. [PMID: 33471720 PMCID: PMC7836311 DOI: 10.4158/ep-2020-0336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 09/07/2020] [Indexed: 12/13/2022]
Abstract
Objective: To review data implicating microbiota influences on Coronavirus Disease 2019 (COVID-19) in patients with diabetes. Methods: Primary literature review included topics: “COVID-19,” “SARS,” “MERS,” “gut micro-biota,” “probiotics,” “immune system,” “ACE2,” and “metformin.” Results: Diabetes was prevalent (~11%) among COVID-19 patients and associated with increased mortality (about 3-fold) compared to patients without diabetes. COVID-19 could be associated with worsening diabetes control and new diabetes diagnosis that could be linked to high expression of angiotensin-converting enzyme 2 (ACE2) receptors (coronavirus point of entry into the host) in the endocrine pancreas. A pre-existing gut microbiota imbalance (dysbiosis) could contribute to COVID-19–related complications in patients with diabetes. The COVID-19 virus was found in fecal samples (~55%), persisted for about 5 weeks, and could be associated with diarrhea, suggesting a role for gut dysbiosis. ACE2 expressed on enterocytes and colonocytes could serve as an alternative route for acquiring COVID-19. Experimental models proposed some probiotics, including Lactobacillus casei, L. plantarum, and L. salivarius, as vectors for delivering or enhancing efficacy of anti-coronavirus vaccines. These Lactobacillus probiotics were also beneficial for diabetes. The potential mechanisms for interconnections between coronavirus, diabetes, and gut microbiota could be related to the immune system, ACE2 pathway, and metformin treatment. There were suggestions but no proof supporting probiotics benefits for COVID-19 infection. Conclusion: The data suggested that the host environment including the gut microbiota could play a role for COVID-19 in patients with diabetes. It is a challenge to the scientific community to investigate the beneficial potential of the gut microbiota for strengthening host defense against coronavirus in patients with diabetes.
Collapse
Affiliation(s)
- Elena Barengolts
- From the Department of Medicine, University of Illinois Medical Center, Chicago, Illinois; Department of Medicine, Jesse Brown VA Medical Center, Chicago, Illinois..
| | - Emily Daviau Smith
- From the Department of Medicine, University of Illinois Medical Center, Chicago, Illinois; Department of Medicine, Jesse Brown VA Medical Center, Chicago, Illinois
| |
Collapse
|
22
|
Microbiota and Diabetes Mellitus: Role of Lipid Mediators. Nutrients 2020; 12:nu12103039. [PMID: 33023000 PMCID: PMC7600362 DOI: 10.3390/nu12103039] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/23/2020] [Accepted: 08/27/2020] [Indexed: 12/13/2022] Open
Abstract
Diabetes Mellitus (DM) is an inflammatory clinical entity with different mechanisms involved in its physiopathology. Among these, the dysfunction of the gut microbiota stands out. Currently, it is understood that lipid products derived from the gut microbiota are capable of interacting with cells from the immune system and have an immunomodulatory effect. In the presence of dysbiosis, the concentration of lipopolysaccharides (LPS) increases, favoring damage to the intestinal barrier. Furthermore, a pro-inflammatory environment prevails, and a state of insulin resistance and hyperglycemia is present. Conversely, during eubiosis, the production of short-chain fatty acids (SCFA) is fundamental for the maintenance of the integrity of the intestinal barrier as well as for immunogenic tolerance and appetite/satiety perception, leading to a protective effect. Additionally, it has been demonstrated that alterations or dysregulation of the gut microbiota can be reversed by modifying the eating habits of the patients or with the administration of prebiotics, probiotics, and symbiotics. Similarly, different studies have demonstrated that drugs like Metformin are capable of modifying the composition of the gut microbiota, promoting changes in the biosynthesis of LPS, and the metabolism of SCFA.
Collapse
|
23
|
From Association to Causality: the Role of the Gut Microbiota and Its Functional Products on Host Metabolism. Mol Cell 2020; 78:584-596. [PMID: 32234490 DOI: 10.1016/j.molcel.2020.03.005] [Citation(s) in RCA: 169] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/30/2020] [Accepted: 03/02/2020] [Indexed: 12/12/2022]
Abstract
Many genomic studies have revealed associations between the gut microbiota composition and host metabolism. These observations led to the idea that a causal relationship could exist between the microbiota and metabolic diseases, a concept supported by studies showing compositional changes in the microbial community in metabolic diseases and transmissibility of host phenotype via microbiota transfer. Accumulating data suggest that the microbiota may affect host metabolic phenotypes through the production of metabolites. These bioactive microbial metabolites, sensitive fingerprints of microbial function, can act as inter-kingdom signaling messengers via penetration into host blood circulation and tissues. These fingerprints may be used for diagnostic purposes, and increased understanding of strain specificity in producing microbial metabolites can identify bacterial strains or specific metabolites that can be used for therapeutic purposes. Here, we will review data supporting the causal role of the gut microbiota in metabolism and discuss mechanisms and potential clinical implications.
Collapse
|
24
|
Anhê FF, Barra NG, Schertzer JD. Glucose alters the symbiotic relationships between gut microbiota and host physiology. Am J Physiol Endocrinol Metab 2020; 318:E111-E116. [PMID: 31794261 DOI: 10.1152/ajpendo.00485.2019] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Bacteria and mammals exhibit all aspects of symbiosis. Metabolic flux in bacteria and in specific host cells can influence host-microbe symbiotic relationships and tip the balance between mutualism, commensalism, and parasitism. The relationship between microbes and host metabolism is bidirectional: microbes can influence host blood glucose, but glucose levels can influence the microbiota and host response to specific bacteria. A key consideration determining symbiotic relationships is compartmentalization of bacterial niches by mucosal, chemical, and physical barriers of the gut. We propose that compartmentalization of glucose levels in the blood versus the intestinal lumen is another important factor dictating host-microbe symbiosis. Host glucose and specific bacteria can modify the intestinal barrier, immune function, and antimicrobial defenses, which can then break down compartmentalization of microbes, alter glucose levels and impact symbiosis. Determining how glucose metabolism promotes mutualistic, commensal, and parasitic relationships within the entire microbiota community is relevant to glucose control in diabetes and enteric infections, which occur more often and have worse outcomes in diabetics.
Collapse
Affiliation(s)
- Fernando F Anhê
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
| | - Nicole G Barra
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
| | - Jonathan D Schertzer
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
25
|
Seyfried S, Herold A. Management of Perianal Fistulas in Crohn's Disease. Visc Med 2019; 35:338-343. [PMID: 31934580 DOI: 10.1159/000504103] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 10/13/2019] [Indexed: 12/18/2022] Open
Abstract
Background Perianal fistulizing Crohn's disease is associated with severe symptoms such as pain, fecal incontinence, and a significant reduction in quality of life. Results In refractory cases, many patients face the decision of having a stoma and/or requiring proctectomy. In former years, the standard of care was a complete fistulectomy, bringing with it a high rate of continence disorders. Additionally, many patients received indefinite treatment, namely the placement of a seton to maintain surgical drainage. Conclusion More recently, newer biologics, cell-based therapies as well as novel surgical techniques have been introduced, raising new hopes that outcomes can be improved upon.
Collapse
Affiliation(s)
- Steffen Seyfried
- Department of Surgery, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | | |
Collapse
|
26
|
Federici M. Gut microbiome and microbial metabolites: a new system affecting metabolic disorders. J Endocrinol Invest 2019; 42:1011-1018. [PMID: 30788772 DOI: 10.1007/s40618-019-01022-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 02/12/2019] [Indexed: 02/08/2023]
Abstract
INTRODUCTION The gut microbiome is emerging as an important player in the field of metabolic disorders. MATERIALS AND METHODS Currently, several studies are ongoing to determine whether the effect of gut microbiome on obesity, type 2 diabetes, non-alcoholic fatty liver disease, and other metabolic diseases is determined by singular species or rather by a functional role of bacterial metabolism at higher taxonomical level. Deciphering if a single or more species are responsible for metabolic traits or rather microbial metabolic pathways are responsible for effects on host metabolism may help to identify appropriate dietary interventions to support microbial functions according to the prevalent host disease. Furthermore, the combination of metagenomics and metabolomics-based signature might be applied in the future to improve the risk prediction in healthy subjects. CONCLUSION In this review, I will summarize the current findings regarding the role of gut microbiome and metabolites in metabolic disorders to argue whether the current achievements may be translated into clinical practice.
Collapse
Affiliation(s)
- M Federici
- Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133, Rome, Italy.
| |
Collapse
|
27
|
On the origin of eating disorders: altered signaling between gut microbiota, adaptive immunity and the brain melanocortin system regulating feeding behavior. Curr Opin Pharmacol 2019; 48:82-91. [PMID: 31430598 DOI: 10.1016/j.coph.2019.07.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 07/15/2019] [Indexed: 12/18/2022]
Abstract
Research in the field of gut microbiota - brain axis may contribute to clarifying the origin of anorexia nervosa and bulimia, the two principal forms of eating disorders (ED). The initial key findings in ED patients of plasma immunoglobulins (Ig) that react with α-melanocyte-stimulating hormone (α-MSH), a neuropeptide in the brain signaling satiety, have initiated further studies leading to the discovery of the origin of such autoantibodies and to the understanding their possible functional role. An anorexigenic bacterial protein Escherichia coli caseinolytic protease B was recently found to be responsible for the production of α-MSH-cross-reactive autoantibodies and this protein was also detected in human plasma. Another recent study revealed enhanced activation of appetite-regulating the melanocortin type 4 receptor by immune complexes withα-MSH. Taken together, these data serve to build a pathophysiological model of ED presented in this article.
Collapse
|
28
|
Sreng N, Champion S, Martin JC, Khelaifia S, Christensen JE, Padmanabhan R, Azalbert V, Blasco-Baque V, Loubieres P, Pechere L, Landrier JF, Burcelin R, Sérée E. Resveratrol-mediated glycemic regulation is blunted by curcumin and is associated to modulation of gut microbiota. J Nutr Biochem 2019; 72:108218. [PMID: 31473511 DOI: 10.1016/j.jnutbio.2019.108218] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 06/15/2019] [Accepted: 07/24/2019] [Indexed: 12/29/2022]
Abstract
The polyphenols resveratrol (RSV) and curcumin (Cur) are phytoalexines and natural antibiotics with numerous pharmacological functions and metabolic impacts. Recent evidences show a broad control of gut microbiota by polyphenols which could influence glycemic regulation. The aim of this work is to estimate the respective effect of RSV and Cur alone or in association on the control of glycemia and on gut microbiota. A 5-week chronic treatment of hyperglycemic mice with RSV and/or Cur resulted in a differential effect on glucose tolerance test and modified gut microbiome. We precisely identified groups of bacteria representing a specific signature of the glycemic effect of RSV. Inferred metagenomic analysis and metabolic pathway prediction showed that the sulfur and branched-chain amino-acid (BCAA) metabolic activities are tightly correlated with the efficacy of RSV for the control of glycaemia. The impact on BCAA metabolism was further validated by serum metabolomics analysis. Altogether, we show that polyphenols specifically impact gut microbiota and corresponding metabolic functions which could be responsible for their therapeutic role.
Collapse
Affiliation(s)
- Navin Sreng
- Institut National de la Santé et de la Recherche Médicale (INSERM), Toulouse, France; Université Paul Sabatier (UPS), Unité Mixte de Recherche (UMR) 1048, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Team 2: 'Intestinal Risk Factors, Diabetes, Dyslipidemia, Heart Failure', F-31432 Toulouse Cedex 4, France; Aix Marseille Univ, INSERM, INRA, C2VN, Marseille, France
| | - Serge Champion
- IMBE-UMR CNRS 7263/IRD 237, Mutagenèse Environnementale, Faculté de Pharmacie, Aix-Marseille Université, 27 boulevard Jean Moulin, 13385, Marseille, France
| | | | - Saber Khelaifia
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, UM 63, CNRS 7278, L'Institut de Recherche pour le Développement 198, Inserm 1095, Institut Hospitalo-Universitaire Méditerranée-Infection, Faculté de Médecine, Aix-Marseille Université, 27 Boulevard Jean Moulin, 13385 Marseille Cedex, 5, France
| | - Jeffrey E Christensen
- Institut National de la Santé et de la Recherche Médicale (INSERM), Toulouse, France; Université Paul Sabatier (UPS), Unité Mixte de Recherche (UMR) 1048, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Team 2: 'Intestinal Risk Factors, Diabetes, Dyslipidemia, Heart Failure', F-31432 Toulouse Cedex 4, France; VAIOMER SAS, 516 Rue Pierre et Marie Curie, 31670 Labège, France
| | - Roshan Padmanabhan
- Institut National de la Santé et de la Recherche Médicale (INSERM), Toulouse, France; Université Paul Sabatier (UPS), Unité Mixte de Recherche (UMR) 1048, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Team 2: 'Intestinal Risk Factors, Diabetes, Dyslipidemia, Heart Failure', F-31432 Toulouse Cedex 4, France
| | - Vincent Azalbert
- Institut National de la Santé et de la Recherche Médicale (INSERM), Toulouse, France; Université Paul Sabatier (UPS), Unité Mixte de Recherche (UMR) 1048, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Team 2: 'Intestinal Risk Factors, Diabetes, Dyslipidemia, Heart Failure', F-31432 Toulouse Cedex 4, France
| | - Vincent Blasco-Baque
- Institut National de la Santé et de la Recherche Médicale (INSERM), Toulouse, France; Université Paul Sabatier (UPS), Unité Mixte de Recherche (UMR) 1048, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Team 2: 'Intestinal Risk Factors, Diabetes, Dyslipidemia, Heart Failure', F-31432 Toulouse Cedex 4, France
| | - Pascale Loubieres
- Institut National de la Santé et de la Recherche Médicale (INSERM), Toulouse, France; Université Paul Sabatier (UPS), Unité Mixte de Recherche (UMR) 1048, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Team 2: 'Intestinal Risk Factors, Diabetes, Dyslipidemia, Heart Failure', F-31432 Toulouse Cedex 4, France
| | - Laurent Pechere
- Laboratoire YVERY sarl, 134 rue Edmond Rostand, 13008 Marseille, France
| | | | - Rémy Burcelin
- Institut National de la Santé et de la Recherche Médicale (INSERM), Toulouse, France; Université Paul Sabatier (UPS), Unité Mixte de Recherche (UMR) 1048, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Team 2: 'Intestinal Risk Factors, Diabetes, Dyslipidemia, Heart Failure', F-31432 Toulouse Cedex 4, France.
| | - Eric Sérée
- Aix Marseille Univ, INSERM, INRA, C2VN, Marseille, France.
| |
Collapse
|
29
|
Microbial and metabolomic remodeling by a formula of Sichuan dark tea improves hyperlipidemia in apoE-deficient mice. PLoS One 2019; 14:e0219010. [PMID: 31269076 PMCID: PMC6608967 DOI: 10.1371/journal.pone.0219010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 06/13/2019] [Indexed: 02/05/2023] Open
Abstract
Medicine-food homology is a long-standing concept in traditional Chinese medicine. YiNianKangBao (YNKB) tea is a medicine-food formulation based on Sichuan dark tea (Ya'an Tibetan tea), which is traditionally used for its lipid-lowering properties. In this study, we evaluated the effects of YNKB on dyslipidemia and investigated the mechanism underlying its correlation with gut microbiota and serum metabolite regulation. Wild-type mice were fed a normal diet as a control. Male ApoE-/- mice were randomly divided into three high-fat diet (HFD) groups, a model group, and two treated groups (100, 400 mg/kg/d for low, high-dose), and fed by gavage for 12 weeks. Serum lipid levels, composition of gut microbiota, and serum metabolites were then analyzed before treatment with YNKB. We extracted the ingredients of YNKB in boiled water for one hour. YNKB supplementation at a high dose of 400 mg/kg/day reduced bodyweight gains (relative epididymal fat pad and liver weight), and markedly attenuated serum lipid profiles and atherosclerosis index, with no significant differences present between the low-dose treatment and HFD groups. Gut microbiota and serum metabolic analysis indicated that significant differences were observed between normal, HFD, and YNKB treatment groups. These differences in gut microbiota exhibited strong correlations with dyslipidemia-related indexes and serum metabolite levels. Oral administration of high-dose YNKB also showed significant lipid-lowering activity against hyperlipidemia in apoE-deficient mice, which might be associated with composition alterations of the gut microbiota and changes in serum metabolite abundances. These findings highlight that YNKB as a medicine-food formulation derived from Sichuan dark tea could prevent dyslipidemia and improve the understanding of its mechanisms and the pharmacological rationale for preventive use.
Collapse
|
30
|
Ojo BA, O'Hara C, Wu L, El-Rassi GD, Ritchey JW, Chowanadisai W, Lin D, Smith BJ, Lucas EA. Wheat Germ Supplementation Increases Lactobacillaceae and Promotes an Anti-inflammatory Gut Milieu in C57BL/6 Mice Fed a High-Fat, High-Sucrose Diet. J Nutr 2019; 149:1107-1115. [PMID: 31162575 DOI: 10.1093/jn/nxz061] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 10/25/2018] [Accepted: 03/11/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND A link between high-fat diet consumption and obesity-related diseases is the disruption of the gut bacterial population, which promotes local and systemic inflammation. Wheat germ (WG) is rich in bioactive components with antioxidant and anti-inflammatory properties. OBJECTIVE The aim of this study was to investigate the effects of WG supplementation in modulating the gut bacterial population and local and systemic inflammatory markers of mice fed a high-fat, high-sucrose (HFS) diet. METHODS Six-week-old male C57BL/6 mice were randomly assigned to 4 groups (n = 12/group) and fed a control (C; 10% kcal fat, 10% kcal sucrose) or HFS (60% kcal fat, 20% kcal sucrose) diet with or without 10% WG (wt:wt) for 12 wk. Cecal bacteria was assessed via 16S rDNA sequencing, fecal short-chain fatty acids by GC, small intestinal CD4+ lymphocytes using flow cytometry, and gut antimicrobial peptide genes and inflammatory markers by quantitative polymerase chain reaction. Statistical analyses included Kruskal-Wallis/Dunn's test and 2-factor ANOVA using HFS and WG as factors. RESULTS There was a 4-fold increase (P = 0.007) in the beneficial bacterial family, Lactobacillaceae, in the HFS + WG compared with the HFS group. Fecal propionic and n-butyric acids were elevated at least 2-fold in C + WG compared with the other groups (P < 0.0001). WG tended to increase (≥7%; P-trend = 0.12) small intestinal regulatory T cell:Th17 ratio, indicating a potential to induce an anti-inflammatory gut environment. WG elevated (≥35%) ileal gene expression of the anti-inflammatory cytokine Il10 compared to the unsupplemented groups (P = 0.038). Ileal gene expression of the antimicrobial peptides Reg3b and Reg3g was upregulated (≥95%) in the HFS + WG compared with other groups (P ≤ 0.040). WG reduced serum concentrations of the pro-inflammatory cytokines, interleukin (IL)-1B, IL-6, interferon-γ, and tumor necrosis factor-α (≥17%; P ≤ 0.012). CONCLUSIONS WG selectively increased gut Lactobacillaceae, upregulated ileal antimicrobial peptides, and attenuated circulating pro-inflammatory cytokines of C57BL/6 mice fed a HFS diet. These changes may be vital in preventing HFS diet-induced comorbidities.
Collapse
Affiliation(s)
| | | | - Lei Wu
- Nutritional Sciences Department
| | | | - Jerry W Ritchey
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK
| | | | | | | | | |
Collapse
|
31
|
Iacobini C, Pugliese G, Blasetti Fantauzzi C, Federici M, Menini S. Metabolically healthy versus metabolically unhealthy obesity. Metabolism 2019; 92:51-60. [PMID: 30458177 DOI: 10.1016/j.metabol.2018.11.009] [Citation(s) in RCA: 253] [Impact Index Per Article: 42.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 11/10/2018] [Accepted: 11/15/2018] [Indexed: 12/22/2022]
Abstract
Obesity-related disease complications reduce life quality and expectancy and increase health-care costs. Some studies have suggested that obesity not always entails metabolic abnormalities and increased risk of cardiometabolic complications. Because of the lack of universally accepted criteria to identify metabolically healthy obesity (MHO), its prevalence varies widely among studies. Moreover, the prognostic value of MHO is hotly debated, mainly because it likely shifts gradually towards metabolically unhealthy obesity (MUO). In this review, we outline the differential factors contributing to the metabolic heterogeneity of obesity by discussing the behavioral, genetic, phenotypical, and biological aspects associated with each of the two metabolic phenotypes (MHO and MUO) of obesity and their clinical implications. Particular emphasis will be laid on the role of adipose tissue biology and function, including genetic determinants of body fat distribution, depot-specific fat metabolism, adipose tissue plasticity and, particularly, adipogenesis. Finally, the emerging role of gut microbiota in obesity and adipose tissue dysfunction as well as the search for novel biomarkers for the obesity-related metabolic traits and associated diseases will be briefly presented. A better understanding of the main determinants of a healthy metabolic status in obesity would allow promotion of this favorable condition by targeting the relevant pathways.
Collapse
Affiliation(s)
- Carla Iacobini
- Department of Clinical and Molecular Medicine, "La Sapienza" University, Rome, Italy
| | - Giuseppe Pugliese
- Department of Clinical and Molecular Medicine, "La Sapienza" University, Rome, Italy
| | | | - Massimo Federici
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Stefano Menini
- Department of Clinical and Molecular Medicine, "La Sapienza" University, Rome, Italy.
| |
Collapse
|
32
|
Zhang-Sun W, Tercé F, Burcelin R, Novikov A, Serino M, Caroff M. Structure function relationships in three lipids A from the Ralstonia genus rising in obese patients. Biochimie 2019; 159:72-80. [PMID: 30703476 DOI: 10.1016/j.biochi.2019.01.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 01/22/2019] [Indexed: 10/27/2022]
Abstract
The identification of a functional molecular moiety relating the lipopolysaccharides (LPSs) to their capacity to induce inflammation-mediated metabolic diseases needed to be performed. We previously described a proportional increase in the relative abundance of the 16 SrDNA bacterial gene from the genus Ralstonia, within the microbiota from the adipose tissue stroma vascular fraction of obese patients, suggesting a causal role of the bacteria. Therefore, we first characterized the structures of the lipids A, the inflammatory inducing moieties of LPSs, of three Ralstonia species: Ralstonia eutropha, R. mannitolilytica and R. pickettii, and then compared each, in terms of in vitro inflammatory capacities. R. pickettii lipid A displaying only 5 Fatty Acids (FA) was a weaker inducer of inflammation, compared to the two other species harboring hexa-acylated lipids A, despite the presence of 2 AraN substituents on the phosphate groups. With regard to in vitro pro-inflammatory activities, TNF-α and IL-6 inducing capacities were compared on THP-1 cells treated with LPSs isolated from the three Ralstonia. R. pickettii, with low inflammatory capacities, and recently involved in nosocomial outcomes, could explain the low inflammatory level reported in previous studies on diabetic patients and animals. In addition, transmission electron microscopy was performed on the three Ralstonia species. It showed that the R. pickettii under-acylated LPSs, with a higher level of phosphate substitution had the capacity of producing more outer membrane vesicles (OMVs). The latter could facilitate transfer of LPSs to the blood and explain the increased low-grade inflammation observed in obese/diabetic patients.
Collapse
Affiliation(s)
- Wei Zhang-Sun
- I2BC, Centre National de la Recherche Scientifique, Université de Paris-Sud, Université de Paris-Saclay, Orsay, France
| | - François Tercé
- Université de Toulouse, UPS, Institut des Maladies Métaboliques et Cardiovasculaires de Rangueil I(2)MC, INSERM, Toulouse, France
| | - Remy Burcelin
- Université de Toulouse, UPS, Institut des Maladies Métaboliques et Cardiovasculaires de Rangueil I(2)MC, INSERM, Toulouse, France
| | - Alexey Novikov
- LPS-BioSciences, I2BC, Bâtiment 409, Université de Paris-Sud, Orsay, France
| | - Matteo Serino
- Université de Toulouse, UPS, Institut des Maladies Métaboliques et Cardiovasculaires de Rangueil I(2)MC, INSERM, Toulouse, France
| | - Martine Caroff
- I2BC, Centre National de la Recherche Scientifique, Université de Paris-Sud, Université de Paris-Saclay, Orsay, France; LPS-BioSciences, I2BC, Bâtiment 409, Université de Paris-Sud, Orsay, France.
| |
Collapse
|
33
|
Li X, Watanabe K, Kimura I. Gut Microbiota Dysbiosis Drives and Implies Novel Therapeutic Strategies for Diabetes Mellitus and Related Metabolic Diseases. Front Immunol 2017; 8:1882. [PMID: 29326727 PMCID: PMC5742320 DOI: 10.3389/fimmu.2017.01882] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Accepted: 12/11/2017] [Indexed: 12/25/2022] Open
Abstract
Accumulating evidence over the past decade has linked the development of metabolic syndrome related to diabetes to variations in gut microbiota, an emerging, critical homeostatic regulator of host energy metabolism and immune responses. Mechanistic studies in rodent models have revealed an ever-increasing multitude of molecular mechanisms whereby the gut microbiota interacts with various host sensing and signaling pathways, leading to modulation of endocrine system, immune responses, nervous system activity, and hence, the predisposition to metabolic diseases. Remarkably, the microbiota-driven immune responses in metabolic tissues and the host nutrient-sensing mechanisms of gut microbial metabolites, in particular short-chain fatty acids, have been significantly associated with the proneness to diabetes and related disorders. This review will synthesize the recent efforts on unraveling the mediating role of gut microbiota in the pathogenesis of metabolic diseases, aiming to reveal new therapeutic opportunities.
Collapse
Affiliation(s)
- Xuan Li
- Department of Applied Biological Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-shi, Japan.,AMED-CREST, Japan Agency for Medical Research and Development, Tokyo, Japan
| | - Keita Watanabe
- Department of Applied Biological Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-shi, Japan
| | - Ikuo Kimura
- Department of Applied Biological Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-shi, Japan.,AMED-CREST, Japan Agency for Medical Research and Development, Tokyo, Japan
| |
Collapse
|
34
|
Cavallari JF, Schertzer JD. Intestinal Microbiota Contributes to Energy Balance, Metabolic Inflammation, and Insulin Resistance in Obesity. J Obes Metab Syndr 2017; 26:161-171. [PMID: 31089513 PMCID: PMC6484920 DOI: 10.7570/jomes.2017.26.3.161] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 05/01/2017] [Accepted: 07/19/2017] [Indexed: 01/01/2023] Open
Abstract
Obesity is associated with increased risk of developing metabolic diseases such as type 2 diabetes. The origins of obesity are multi-factorial, but ultimately rooted in increased host energy accumulation or retention. The gut microbiota has been implicated in control of host energy balance and nutrient extraction from dietary sources. The microbiota also impacts host immune status and dysbiosis-related inflammation can augment insulin resistance, independently of obesity. Advances in microbial metagenomic analyses and directly manipulating bacterial-host models of obesity have contributed to our understanding of the relationship between gut bacteria and metabolic disease. Foodborne, or drug-mediated perturbations to the gut microbiota can increase metabolic inflammation, insulin resistance, and dysglycemia. There is now some evidence that specific bacterial species can influence obesity and related metabolic defects such as insulin sensitivity. Components of bacteria are sufficient to impact obesity-related changes in metabolism. In fact, different microbial components derived from the bacterial cell wall can increase or decrease insulin resistance. Improving our understanding of the how components of the microbiota alter host metabolism is positioned to aid in the development of dietary interventions, avoiding triggers of dysbiosis, and generating novel therapeutic strategies to combat increasing rates of obesity and diabetes.
Collapse
Affiliation(s)
- Joseph F. Cavallari
- Department of Biochemistry and Biomedical Sciences and Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario,
Canada
| | - Jonathan D. Schertzer
- Department of Biochemistry and Biomedical Sciences and Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario,
Canada
| |
Collapse
|
35
|
Celiker H. A new proposed mechanism of action for gastric bypass surgery: Air hypothesis. Med Hypotheses 2017; 107:81-89. [PMID: 28915970 DOI: 10.1016/j.mehy.2017.08.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 07/02/2017] [Accepted: 08/08/2017] [Indexed: 02/07/2023]
Abstract
Roux-en-Y gastric bypass (RYGB) surgery is one of the most effective treatments for obesity and type II diabetes. RYGB was originally believed to work by mechanically restricting caloric intake or causing macronutrient malabsorption. However, such mechanical effects play no role in the remarkable efficacy of gastric bypass. Instead, mounting evidence shows that altered neuroendocrine signaling is responsible for the weight reducing effects of RYGB. The exact mechanism of this surgical response is still a mystery. Here, we propose that RYGB leads to weight loss primarily by inducing a functional shift in the gut microbiome, manifested by a relative expansion of aerobic bacteria numbers in the colon. We point to compelling evidence that gastric bypass changes the function of the microbiome by disrupting intestinal gas homeostasis, causing excessive transit of swallowed air (oxygen) into the colon.
Collapse
Affiliation(s)
- Hasan Celiker
- Xeno Biosciences Inc., 12 Mt Auburn St #7, Cambridge, MA, USA.
| |
Collapse
|
36
|
Burcelin R. [Gut microbiota and immune crosstalk in metabolic disease]. Biol Aujourdhui 2017; 211:1-18. [PMID: 28682223 DOI: 10.1051/jbio/2017008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Indexed: 05/28/2023]
Abstract
The aim of the review is to discuss about the role played by the defence crosstalk between the gut microbiota and the intestinal immune system, in the development of metabolic disease focusing on obesity and diabetes. Starting from physiological and pathological stand points and based on the latest published data, this review is addressing how the concept of the hologenome theory of evolution can drive the fate of metabolic disease. The notion of "metabolic infection" to explain the "metabolic inflammation" is discussed. This imply comments about the process of bacterial translocation and impaired intestinal immune defense against commensals. Eventually this review sets the soil for personalized medicine. The monthly increase in the number of publications on the gut microbiota to intestinal immune defense and the control of metabolism demonstrate the importance of this field of investigation. The notion of commensal as "self or non-self" has to be reevaluated in the light of the current data. Furthermore, data demonstrate the major role played by short chain fatty acids, secondary bile acids, LPS, peptidoglycans, indole derivatives, and other bacteria-related molecules on the shaping of cells involved in the intestinal protection against commensals is now becoming a central player in the incidence of metabolic diseases. The literature demonstrates that the onset of metabolic diseases and some specific co-morbidities can be explained by a gut microbiota to intestinal immune system crosstalk. Therefore, one should now consider this avenue of investigation as a putative source of biomarkers and therapeutic targets to personalize the treatment of metabolic disease and its co-morbidities. Gut microbiota is considered as a major regulator of metabolic disease. This reconciles the notion of metabolic inflammation and the epidemic development of the disease. In addition to evidence showing that a specific gut microbiota characterizes patients with obesity, type 2 diabetes, and hepatic steatosis, the mechanisms causal to the disease could be related to the translocation of microbiota from the gut to the tissues, which induces inflammation. The mechanisms regulating such a process are based on the crosstalk between the gut microbiota and the host immune system. The hologenome theory of evolution supports this concept and implies that therapeutic strategies aiming to control glycemia should take into account both the gut microbiota and the host immune system. This review discusses the latest evidence regarding the bidirectional impact of the gut microbiota on host immune system crosstalk for the control of metabolic disease, hyperglycemia, and obesity. To avoid redundancies with the literature, we will focus our attention on the intestinal immune system, identifying evidence for the generation of novel therapeutic strategies, which could be based on the control of the translocation of gut bacteria to tissues. Such novel strategies should hamper the role played by gut microbiota dysbiosis on the development of metabolic inflammation. Recent evidence in rodents allows us to conclude that an impaired intestinal immune system characterizes and could be causal in the development of metabolic disease. The fine understanding of the molecular mechanisms should allow for the development of a first line of treatment for metabolic disease and its co-morbidities.
Collapse
Affiliation(s)
- Rémy Burcelin
- Institut National de la Santé et de la Recherche Médicale (INSERM), 31024 Toulouse, France - Université Paul Sabatier (UPS), Unité Mixte de Recherche (UMR) 1048, Hôpital Rangueil, 31400 Toulouse, France - Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), 31432 Toulouse Cedex 4, France
| |
Collapse
|
37
|
Wen L, Duffy A. Factors Influencing the Gut Microbiota, Inflammation, and Type 2 Diabetes. J Nutr 2017; 147:1468S-1475S. [PMID: 28615382 DOI: 10.3945/jn.116.240754] [Citation(s) in RCA: 238] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 10/12/2016] [Accepted: 01/11/2017] [Indexed: 12/17/2022] Open
Abstract
The gut microbiota is a complex community of bacteria residing in the intestine. Animal models have demonstrated that several factors contribute to and can significantly alter the composition of the gut microbiota, including genetics; the mode of delivery at birth; the method of infant feeding; the use of medications, especially antibiotics; and the diet. There may exist a gut microbiota signature that promotes intestinal inflammation and subsequent systemic low-grade inflammation, which in turn promotes the development of type 2 diabetes. There are preliminary studies that suggest that the consumption of probiotic bacteria such as those found in yogurt and other fermented milk products can beneficially alter the composition of the gut microbiome, which in turn changes the host metabolism. Obesity, insulin resistance, fatty liver disease, and low-grade peripheral inflammation are more prevalent in patients with low α diversity in the gut microbiome than they are in patients with high α diversity. Fermented milk products, such as yogurt, deliver a large number of lactic acid bacteria to the gastrointestinal tract. They may modify the intestinal environment, including inhibiting lipopolysaccharide production and increasing the tight junctions of gut epithelia cells.
Collapse
Affiliation(s)
- Li Wen
- Section of Endocrinology and
| | - Andrew Duffy
- Department of Surgery, Yale University School of Medicine, New Haven, CT
| |
Collapse
|
38
|
Saccharomyces boulardii Administration Changes Gut Microbiota and Attenuates D-Galactosamine-Induced Liver Injury. Sci Rep 2017; 7:1359. [PMID: 28465509 PMCID: PMC5430957 DOI: 10.1038/s41598-017-01271-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 03/15/2017] [Indexed: 12/13/2022] Open
Abstract
Growing evidence has shown that gut microbiome is a key factor involved in liver health. Therefore, gut microbiota modulation with probiotic bacteria, such as Saccharomyces boulardii, constitutes a promising therapy for hepatosis. In this study, we aimed to investigate the protective effects of S. boulardii on D-Galactosamine-induced liver injury in mice. Liver function test and histopathological analysis both suggested that the liver injury can be effectively attenuated by S. boulardii administration. In the meantime, S. boulardii induced dramatic changes in the gut microbial composition. At the phylum level, we found that S. boulardii significantly increased in the relative abundance of Bacteroidetes, and decreased the relative abundance of Firmicutes and Proteobacteria, which may explain the hepatic protective effects of S. boulardii. Taken together, our results demonstrated that S. boulardii administration could change the gut microbiota in mice and alleviate acute liver failure, indicating a potential protective and therapeutic role of S. boulardii.
Collapse
|
39
|
Cavallari JF, Fullerton MD, Duggan BM, Foley KP, Denou E, Smith BK, Desjardins EM, Henriksbo BD, Kim KJ, Tuinema BR, Stearns JC, Prescott D, Rosenstiel P, Coombes BK, Steinberg GR, Schertzer JD. Muramyl Dipeptide-Based Postbiotics Mitigate Obesity-Induced Insulin Resistance via IRF4. Cell Metab 2017; 25:1063-1074.e3. [PMID: 28434881 DOI: 10.1016/j.cmet.2017.03.021] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 02/08/2017] [Accepted: 03/24/2017] [Indexed: 12/16/2022]
Abstract
Intestinal dysbiosis contributes to obesity and insulin resistance, but intervening with antibiotics, prebiotics, or probiotics can be limited by specificity or sustained changes in microbial composition. Postbiotics include bacterial components such as lipopolysaccharides, which have been shown to promote insulin resistance during metabolic endotoxemia. We found that bacterial cell wall-derived muramyl dipeptide (MDP) is an insulin-sensitizing postbiotic that requires NOD2. Injecting MDP lowered adipose inflammation and reduced glucose intolerance in obese mice without causing weight loss or altering the composition of the microbiome. MDP reduced hepatic insulin resistance during obesity and low-level endotoxemia. NOD1-activating muropeptides worsened glucose tolerance. IRF4 distinguished opposing glycemic responses to different types of peptidoglycan and was required for MDP/NOD2-induced insulin sensitization and lower metabolic tissue inflammation during obesity and endotoxemia. IRF4 was dispensable for exacerbated glucose intolerance via NOD1. Mifamurtide, an MDP-based drug with orphan drug status, was an insulin sensitizer at clinically relevant doses in obese mice.
Collapse
Affiliation(s)
- Joseph F Cavallari
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | - Morgan D Fullerton
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | - Brittany M Duggan
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | - Kevin P Foley
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | - Emmanuel Denou
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | - Brennan K Smith
- Department of Medicine, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | - Eric M Desjardins
- Department of Medicine, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | - Brandyn D Henriksbo
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | - Kalvin J Kim
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | - Brian R Tuinema
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | - Jennifer C Stearns
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON L8N 3Z5, Canada; Department of Medicine, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | - David Prescott
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Philip Rosenstiel
- Institute of Clinical Molecular Biology (IKMB), University of Kiel, Schittenhelmstrasse 12, 24105 Kiel, Germany
| | - Brian K Coombes
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada; Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | - Gregory R Steinberg
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada; Department of Medicine, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | - Jonathan D Schertzer
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada; Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON L8N 3Z5, Canada.
| |
Collapse
|
40
|
Frikke-Schmidt H, Zamarron BF, O'Rourke RW, Sandoval DA, Lumeng CN, Seeley RJ. Weight loss independent changes in adipose tissue macrophage and T cell populations after sleeve gastrectomy in mice. Mol Metab 2017; 6:317-326. [PMID: 28377871 PMCID: PMC5369283 DOI: 10.1016/j.molmet.2017.02.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 02/02/2017] [Accepted: 02/11/2017] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVE In addition to adipocytes, adipose tissue contains large numbers of immune cells. A wide range of evidence links the activity of these cells to regulation of adipocyte and systemic metabolic function. Bariatric surgery improves several aspects of metabolic derangements and at least some of these effects occur in a weight-loss independent manner. We sought to investigate the impact of vertical sleeve gastrectomy (VSG) on adipose immune cell frequencies. METHODS We analyzed the frequencies of immune cells within distinct adipose tissue depots in obese mice that had VSG or sham surgery with a portion of the latter group pair-fed such that their body mass was matched to the VSG animals. RESULTS We demonstrate that VSG induced a shift in the epididymal adipose tissue leukocyte profile including increased frequencies of CD11c- macrophages, increased frequencies of T cells (CD4+, CD8+, and CD4-/CD8- T cells all increased), but a significantly decreased frequency of adipose tissue dendritic cells (ATDC) that, despite the continued high fat feeding of the VSG group, dropped below control diet levels. CONCLUSIONS These results indicate that VSG induces substantial changes in the immune populations residing in the adipose depots independent of weight loss.
Collapse
Affiliation(s)
| | - Brian F Zamarron
- Department Pediatrics and Communicable Diseases, University of Michigan Health System, Ann Arbor, MI, USA
| | - Robert W O'Rourke
- Department of Surgery, University of Michigan Health System, Ann Arbor, MI, USA; Ann Arbor Veteran's Administration Hospital, Ann Arbor, MI, USA
| | - Darleen A Sandoval
- Department of Surgery, University of Michigan Health System, Ann Arbor, MI, USA
| | - Carey N Lumeng
- Department Pediatrics and Communicable Diseases, University of Michigan Health System, Ann Arbor, MI, USA
| | - Randy J Seeley
- Department of Surgery, University of Michigan Health System, Ann Arbor, MI, USA.
| |
Collapse
|
41
|
Sung MM, Kim TT, Denou E, Soltys CLM, Hamza SM, Byrne NJ, Masson G, Park H, Wishart DS, Madsen KL, Schertzer JD, Dyck JRB. Improved Glucose Homeostasis in Obese Mice Treated With Resveratrol Is Associated With Alterations in the Gut Microbiome. Diabetes 2017; 66:418-425. [PMID: 27903747 DOI: 10.2337/db16-0680] [Citation(s) in RCA: 168] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 11/18/2016] [Indexed: 11/13/2022]
Abstract
Oral administration of resveratrol is able to improve glucose homeostasis in obese individuals. Herein we show that resveratrol ingestion produces taxonomic and predicted functional changes in the gut microbiome of obese mice. In particular, changes in the gut microbiome were characterized by a decreased relative abundance of Turicibacteraceae, Moryella, Lachnospiraceae, and Akkermansia and an increased relative abundance of Bacteroides and Parabacteroides Moreover, fecal transplantation from healthy resveratrol-fed donor mice is sufficient to improve glucose homeostasis in obese mice, suggesting that the resveratrol-mediated changes in the gut microbiome may play an important role in the mechanism of action of resveratrol.
Collapse
Affiliation(s)
- Miranda M Sung
- Cardiovascular Research Centre, Department of Pediatrics, and the Alberta Diabetes Institute, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Ty T Kim
- Cardiovascular Research Centre, Department of Pediatrics, and the Alberta Diabetes Institute, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Emmanuel Denou
- Department of Biochemistry and Biomedical Sciences and Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Carrie-Lynn M Soltys
- Cardiovascular Research Centre, Department of Pediatrics, and the Alberta Diabetes Institute, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Shereen M Hamza
- Cardiovascular Research Centre, Department of Pediatrics, and the Alberta Diabetes Institute, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Nikole J Byrne
- Cardiovascular Research Centre, Department of Pediatrics, and the Alberta Diabetes Institute, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Grant Masson
- Cardiovascular Research Centre, Department of Pediatrics, and the Alberta Diabetes Institute, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Heekuk Park
- Division of Gastroenterology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - David S Wishart
- The Metabolomics Innovation Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Karen L Madsen
- Division of Gastroenterology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Jonathan D Schertzer
- Department of Biochemistry and Biomedical Sciences and Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Jason R B Dyck
- Cardiovascular Research Centre, Department of Pediatrics, and the Alberta Diabetes Institute, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
42
|
Burcelin R. Gut microbiota and immune crosstalk in metabolic disease. Mol Metab 2016; 5:771-81. [PMID: 27617200 PMCID: PMC5004167 DOI: 10.1016/j.molmet.2016.05.016] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 05/24/2016] [Accepted: 05/31/2016] [Indexed: 12/29/2022] Open
Abstract
Background Gut microbiota is considered as a major regulator of metabolic disease. This reconciles the notion of metabolic inflammation and the epidemic development of the disease. In addition to evidence showing that a specific gut microbiota characterizes patients with obesity, type 2 diabetes, and hepatic steatosis, the mechanisms causal to the disease could be related to the translocation of microbiota from the gut to the tissues, inducing inflammation. The mechanisms regulating such a process are based on the crosstalk between the gut microbiota and the host immune system. The hologenome theory of evolution supports this concept and implies that therapeutic strategies aiming to control glycemia should take into account both the gut microbiota and the host immune system. Scope of review This review discusses the latest evidence regarding the bidirectional impact of the gut microbiota on host immune system crosstalk for the control of metabolic disease, hyperglycemia, and obesity. To avoid redundancies with the literature, we will focus our attention on the intestinal immune system, identifying evidence for the generation of novel therapeutic strategies, which could be based on the control of the translocation of gut bacteria to tissues. Such novel strategies should hamper the role played by gut microbiota dysbiosis on the development of metabolic inflammation. Major conclusions Recent evidence in rodents allows us to conclude that an impaired intestinal immune system characterizes and could be causal in the development of metabolic disease. The fine understanding of the molecular mechanisms should allow for the development of a first line of treatment for metabolic disease and its co-morbidities. This article is part of a special issue on microbiota.
Collapse
Affiliation(s)
- Rémy Burcelin
- Institut National de la Santé et de la Recherche Médicale (INSERM), Toulouse, France
- Université Paul Sabatier (UPS), Unité Mixte de Recherche (UMR) 1048, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), F-31432 Toulouse Cedex 4, France
- Inserm 1048, Hôpital Rangueil, 31400 Toulouse, France. Tel.: +33 561 32 56 14; fax: +33 561 32 56 21.Inserm 1048Hôpital RangueilToulouse31400France
| |
Collapse
|
43
|
|