1
|
Tiwari V, Jin B, Sun O, Lopez Gonzalez ED, Chen MH, Wu X, Shah H, Zhang A, Herman MA, Spracklen CN, Goodman RP, Brenner C. Glycerol-3-phosphate activates ChREBP, FGF21 transcription and lipogenesis in Citrin Deficiency. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.27.630525. [PMID: 39763913 PMCID: PMC11703153 DOI: 10.1101/2024.12.27.630525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Citrin Deficiency (CD) is caused by inactivation of SLC25A13, a mitochondrial membrane protein required to move electrons from cytosolic NADH to the mitochondrial matrix in hepatocytes. People with CD do not like sweets. We discovered that SLC25A13 loss causes accumulation of glycerol-3-phosphate (G3P), which activates carbohydrate response element binding protein (ChREBP) to transcribe FGF21, which acts in the brain to restrain intake of sweets and alcohol, and to transcribe key genes of de novo lipogenesis. Mouse and human data establish G3P-ChREBP as a new mechanistic component of the Randle Cycle that contributes to metabolic dysfunction-associated steatotic liver disease (MASLD) and forms part of a system that communicates metabolic states from liver to brain in a manner that alters food and alcohol choices. The data provide a framework for understanding FGF21 induction in varied conditions, suggest ways to develop FGF21-inducing drugs, and drug candidates for both lean MASLD and support of urea cycle function in CD.
Collapse
Affiliation(s)
- Vinod Tiwari
- Beckman Research Institute of City of Hope; Duarte, USA
| | - Byungchang Jin
- Liver Center and Endocrine Unit, Massachusetts General Hospital; Boston, USA
| | - Olivia Sun
- Beckman Research Institute of City of Hope; Duarte, USA
| | | | | | - Xiwei Wu
- Beckman Research Institute of City of Hope; Duarte, USA
| | - Hardik Shah
- Comprehensive Cancer Center, University of Chicago; Chicago, USA
| | - Andrew Zhang
- Liver Center and Endocrine Unit, Massachusetts General Hospital; Boston, USA
| | | | | | - Russell P. Goodman
- Liver Center and Endocrine Unit, Massachusetts General Hospital; Boston, USA
| | | |
Collapse
|
2
|
Li X, Rao Z, Hu W, Lu W, Luo Y. Treating metabolic dysfunction-associated steatohepatitis: The fat-trimming FGF21 approach. Obes Rev 2024:e13861. [PMID: 39546893 DOI: 10.1111/obr.13861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/10/2024] [Accepted: 10/25/2024] [Indexed: 11/17/2024]
Abstract
Metabolic dysfunction-associated steatohepatitis (MASH) is a condition characterized by hepatosteatosis, inflammation, and tissue damage, with steatosis as the initial stage, which involves chronic, excess deposition of lipids in hepatic lipid droplets. Despite the growing prevalence and serious risks it poses, including liver decompensation, the need for transplantation, and increased patient mortality, MASH currently faces no approved pharmacotherapy. Several promising treatment candidates have emerged from recent clinical trials, including analogs of FGF21 and agonists of the associated FGFR1-KLB complex. These agents were well-tolerated in trials and have demonstrated significant improvements in both histological and biochemical markers of liver fat content, inflammation, injury, and fibrosis in patients with MASH. Endocrine FGF21 plays a vital role in maintaining homeostasis of lipid, glucose, and energy metabolism. It achieves this through pathways that target lipids or lipid droplets in adipocytes and hepatocytes. Mechanistically, pharmacological FGF21 acts as a potent catabolic factor to promote lipid or lipid droplet lipolysis, fatty acid oxidation, mitochondrial catabolic flux, and heat-dissipating energy expenditure, leading to effective clearance of hepatic and systemic gluco-lipotoxicity and inflammatory stress, thereby preventing obesity, diabetes, and MASH pathologies. In this review, we aim to provide an update on the outcomes of clinical trials for several FGF21 mimetics. We compare these outcomes with preclinical studies and offer a lipid-centric perspective on the mechanisms underlying the clinical benefits of these agents for MASH.
Collapse
Affiliation(s)
- Xiaokun Li
- School of Pharmaceutical Sciences, Wenzhou Medical University, & Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), Wenzhou, Zhejiang, China
| | - Zhiheng Rao
- School of Pharmaceutical Sciences, Wenzhou Medical University, & Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), Wenzhou, Zhejiang, China
| | - Wenhao Hu
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Weiqin Lu
- Division of Gastroenterology and Hepatology, Department of Medicine, Stony Brook University School of Medicine, Stony Brook, NY, USA
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Texas at El Paso, El Paso, Texas, USA
| | - Yongde Luo
- School of Pharmaceutical Sciences, Wenzhou Medical University, & Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), Wenzhou, Zhejiang, China
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
3
|
Fougerat A, Bruse J, Polizzi A, Montagner A, Guillou H, Wahli W. Lipid sensing by PPARα: Role in controlling hepatocyte gene regulatory networks and the metabolic response to fasting. Prog Lipid Res 2024; 96:101303. [PMID: 39521352 DOI: 10.1016/j.plipres.2024.101303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/18/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024]
Abstract
Peroxisome proliferator-activated receptors (PPARs) constitute a small family of three nuclear receptors that act as lipid sensors, and thereby regulate the transcription of genes having key roles in hepatic and whole-body energy homeostasis, and in other processes (e.g., inflammation), which have far-reaching health consequences. Peroxisome proliferator-activated receptor isotype α (PPARα) is expressed in oxidative tissues, particularly in the liver, carrying out critical functions during the adaptive fasting response. Advanced omics technologies have provided insight into the vast complexity of the regulation of PPAR expression and activity, as well as their downstream effects on the physiology of the liver and its associated metabolic organs. Here, we provide an overview of the gene regulatory networks controlled by PPARα in the liver in response to fasting. We discuss impacts on liver metabolism, the systemic repercussions and benefits of PPARα-regulated ketogenesis and production of fibroblast growth factor 21 (FGF21), a fasting- and stress-inducible metabolic hormone. We also highlight current challenges in using novel methods to further improve our knowledge of PPARα in health and disease.
Collapse
Affiliation(s)
- Anne Fougerat
- Toxalim (Research Centre in Toxicology), INRAE, ENVT, INP-Purpan, UPS, Toulouse University, Toulouse, France.
| | - Justine Bruse
- Toxalim (Research Centre in Toxicology), INRAE, ENVT, INP-Purpan, UPS, Toulouse University, Toulouse, France
| | - Arnaud Polizzi
- Toxalim (Research Centre in Toxicology), INRAE, ENVT, INP-Purpan, UPS, Toulouse University, Toulouse, France
| | - Alexandra Montagner
- Institute of Metabolic and Cardiovascular Diseases (I2MC), INSERM UMR1297, Toulouse III University, University Paul Sabatier (UPS), Toulouse, France
| | - Hervé Guillou
- Toxalim (Research Centre in Toxicology), INRAE, ENVT, INP-Purpan, UPS, Toulouse University, Toulouse, France
| | - Walter Wahli
- Toxalim (Research Centre in Toxicology), INRAE, ENVT, INP-Purpan, UPS, Toulouse University, Toulouse, France; Center for Integrative Genomics, University of Lausanne, CH-1015 Lausanne, Switzerland.
| |
Collapse
|
4
|
Jian H, Li R, Huang X, Li J, Li Y, Ma J, Zhu M, Dong X, Yang H, Zou X. Branched-chain amino acids alleviate NAFLD via inhibiting de novo lipogenesis and activating fatty acid β-oxidation in laying hens. Redox Biol 2024; 77:103385. [PMID: 39426289 PMCID: PMC11536022 DOI: 10.1016/j.redox.2024.103385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/02/2024] [Accepted: 10/02/2024] [Indexed: 10/21/2024] Open
Abstract
The adverse metabolic impacts of branched-chain amino acids (BCAA) have been elucidated are mediated by isoleucine and valine. Dietary restriction of isoleucine promotes metabolic health and increases lifespan. However, a high protein diet enriched in BCAA is presently the most useful therapeutic strategy for nonalcoholic fatty liver disease (NAFLD), yet, its underlying mechanism remains largely unknown. Fatty liver hemorrhagic syndrome (FLHS), a specialized laying hen NAFLD model, can spontaneously develop fatty liver and hepatic steatosis under a high-energy and high-protein dietary background that the pathogenesis of FLHS is similar to human NAFLD. The mechanism underlying dietary BCAA control of NAFLD development in laying hens remains unclear. Herein, we demonstrate that dietary supplementation with 67 % High BCAA has unique mitigative impacts on NAFLD in laying hens. A High BCAA diet alleviates NAFLD, by inhibiting the tryptophan-ILA-AHR axis and MAPK9-mediated de novo lipogenesis (DNL), promoting ketogenesis and energy metabolism, and activating PPAR-RXR and pexophagy to promote fatty acid β-oxidation. Furthermore, we uncover that High BCAA strongly activates ubiquitin-proteasome autophagy via downregulating UFMylation to trigger MAPK9-mediated DNL, fatty acid elongation and lipid droplet formation-related proteins ubiquitination degradation, activating PPAR-RXR and pexophagy mediated fatty acid β-oxidation and lipolysis. Together, our data highlight moderating intake of high BCAA by inhibiting the AHR/MAPK9 are promising new strategies in NAFLD and FLHS treatment.
Collapse
Affiliation(s)
- Huafeng Jian
- Institute of Feed Science, College of Animal Sciences, Zhejiang University, Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Zhejiang Key Laboratory of Nutrition and Breeding for High-quality Animal Products, Hangzhou, 310058, China; Xianghu Laboratory, Hangzhou, 311231, China
| | - Ru Li
- Institute of Feed Science, College of Animal Sciences, Zhejiang University, Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Zhejiang Key Laboratory of Nutrition and Breeding for High-quality Animal Products, Hangzhou, 310058, China
| | - Xuan Huang
- Institute of Feed Science, College of Animal Sciences, Zhejiang University, Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Zhejiang Key Laboratory of Nutrition and Breeding for High-quality Animal Products, Hangzhou, 310058, China
| | - Jiankui Li
- Institute of Feed Science, College of Animal Sciences, Zhejiang University, Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Zhejiang Key Laboratory of Nutrition and Breeding for High-quality Animal Products, Hangzhou, 310058, China
| | - Yan Li
- Institute of Feed Science, College of Animal Sciences, Zhejiang University, Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Zhejiang Key Laboratory of Nutrition and Breeding for High-quality Animal Products, Hangzhou, 310058, China
| | | | - Mingkun Zhu
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212100, China
| | - Xinyang Dong
- Institute of Feed Science, College of Animal Sciences, Zhejiang University, Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Zhejiang Key Laboratory of Nutrition and Breeding for High-quality Animal Products, Hangzhou, 310058, China
| | - Hua Yang
- Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| | - Xiaoting Zou
- Institute of Feed Science, College of Animal Sciences, Zhejiang University, Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Zhejiang Key Laboratory of Nutrition and Breeding for High-quality Animal Products, Hangzhou, 310058, China.
| |
Collapse
|
5
|
Streeter J, Persaud L, Gao J, Manika D, Fairman W, García-Peña LM, Marti A, Manika C, Gaddi S, Schickling B, Pereira RO, Abel ED. ATF4-dependent and independent mitokine secretion from OPA1 deficient skeletal muscle in mice is sexually dimorphic. Front Endocrinol (Lausanne) 2024; 15:1325286. [PMID: 39381436 PMCID: PMC11458430 DOI: 10.3389/fendo.2024.1325286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 08/30/2024] [Indexed: 10/10/2024] Open
Abstract
Introduction Reducing Optic Atrophy 1 (OPA1) expression in skeletal muscle in male mice induces Activation Transcription Factor 4 (ATF4) and the integrated stress response (ISR). Additionally, skeletal muscle secretion of Fibroblast Growth Factor 21 (FGF21) is increased, which mediates metabolic adaptations including resistance to diet-induced obesity (DIO) and glucose intolerance in these mice. Although FGF21 induction in this model can be reversed with pharmacological attenuation of ER stress, it remains to be determined if ATF4 is responsible for FGF21 induction and its metabolic benefits in this model. Methods We generated mice with homozygous floxed Opa1 and Atf4 alleles and a tamoxifen-inducible Cre transgene controlled by the human skeletal actin promoter to enable simultaneous depletion of OPA1 and ATF4 in skeletal muscle (mAO DKO). Mice were fed high fat (HFD) or control diet and evaluated for ISR activation, body mass, fat mass, glucose tolerance, insulin tolerance and circulating concentrations of FGF21 and growth differentiation factor 15 (GDF15). Results In mAO DKO mice, ATF4 induction is absent. Other indices of ISR activation, including XBP1s, ATF6, and CHOP were induced in mAO DKO males, but not in mOPA1 or mAO DKO females. Resistance to diet-induced obesity was not reversed in mAO DKO mice of both sexes. Circulating FGF21 and GDF15 illustrated sexually dimorphic patterns. Loss of OPA1 in skeletal muscle increases circulating FGF21 in mOPA1 males, but not in mOPA1 females. Additional loss of ATF4 decreased circulating FGF21 in mAO DKO male mice, but increased circulating FGF21 in female mAO DKO mice. Conversely, circulating GDF15 was increased in mAO DKO males and mOPA1 females, but not in mAO DKO females. Conclusion Sex differences exist in the transcriptional outputs of the ISR following OPA deletion in skeletal muscle. Deletion of ATF4 in male and female OPA1 KO mice does not reverse the resistance to DIO. Induction of circulating FGF21 is ATF4 dependent in males, whereas induction of circulating GDF15 is ATF4 dependent in females. Elevated GDF15 in males and FGF21 in females could reflect activation by other transcriptional outputs of the ISR, that maintain mitokine-dependent metabolic protection in an ATF4-independent manner.
Collapse
Affiliation(s)
- Jennifer Streeter
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Luis Persaud
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Jason Gao
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Deeraj Manika
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Will Fairman
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Luis Miguel García-Peña
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Alex Marti
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Chethan Manika
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Shreya Gaddi
- Department of Obstetrics and Gynecology, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Brandon Schickling
- Department of Obstetrics and Gynecology, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Renata O. Pereira
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - E. Dale Abel
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
6
|
Cao Y, Araki M, Nakagawa Y, Deisen L, Lundsgaard A, Kanta JM, Holm S, Johann K, Brings Jacobsen JC, Jähnert M, Schürmann A, Kiens B, Clemmensen C, Shimano H, Fritzen AM, Kleinert M. Dietary medium-chain fatty acids reduce hepatic fat accumulation via activation of a CREBH-FGF21 axis. Mol Metab 2024; 87:101991. [PMID: 39019116 PMCID: PMC11327439 DOI: 10.1016/j.molmet.2024.101991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/01/2024] [Accepted: 07/11/2024] [Indexed: 07/19/2024] Open
Abstract
OBJECTIVE Dietary medium-chain fatty acids (MCFAs), characterized by chain lengths of 8-12 carbon atoms, have been proposed to have beneficial effects on glucose and lipid metabolism, yet the underlying mechanisms remain elusive. We hypothesized that MCFA intake benefits metabolic health by inducing the release of hormone-like factors. METHODS The effects of chow diet, high-fat diet rich in long-chain fatty acids (LCFA HFD) fed ad libitum or pair-fed to a high-fat diet rich in MCFA (MCFA HFD) on glycemia, hepatic gene expression, circulating fibroblast growth factor 21 (FGF21), and liver fat content in both wildtype and Fgf21 knockout mice were investigated. The impact of a single oral dose of an MCFA-rich oil on circulating FGF21 and hepatic Fgf21 mRNA expression was assessed. In flag-tagged Crebh knockin mice and liver-specific Crebh knockout mice, fed LCFA HFD or MCFA HFD, active hepatic CREBH and hepatic Fgf21 mRNA abundance were determined, respectively. RESULTS MCFA HFD improves glucose tolerance, enhances glucose clearance into brown adipose tissue, and prevents high-fat diet-induced hepatic steatosis in wildtype mice. These benefits are associated with increased liver expression of CREBH target genes (Apoa4 and Apoc2), including Fgf21. Both acute and chronic intake of dietary MCFAs elevate circulating FGF21. Augmented hepatic Fgf21 mRNA following MCFA HFD intake is accompanied by higher levels of active hepatic CREBH; and MCFA-induced hepatic Fgf21 expression is blocked in mice lacking Crebh. Notably, while feeding male and female Fgf21 wildtype mice MCFA HFD results in reduced liver triacylglycerol (TG) levels, this liver TG-lowering effect is blunted in Fgf21 knockout mice fed MCFA HFD. The reduction in liver TG levels observed with MCFA HFD was independent of weight loss. CONCLUSIONS Dietary MCFAs reduce liver fat accumulation via activation of a CREBH-FGF21 signaling axis.
Collapse
Affiliation(s)
- Ye Cao
- Department of Molecular Physiology of Exercise and Nutrition, German Institute of Human Nutrition (DIfE), Potsdam-Rehbruecke, Nuthetal, Germany; German Center for Diabetes Research (DZD), 85764 Munich-Neuherberg, Germany
| | - Masaya Araki
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan; Division of Complex Biosystem Research, Department of Research and Development, Institute of Natural Medicine, University of Toyama, Toyama, Toyama 930-0194, Japan
| | - Yoshimi Nakagawa
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan; Division of Complex Biosystem Research, Department of Research and Development, Institute of Natural Medicine, University of Toyama, Toyama, Toyama 930-0194, Japan
| | - Luisa Deisen
- Department of Molecular Physiology of Exercise and Nutrition, German Institute of Human Nutrition (DIfE), Potsdam-Rehbruecke, Nuthetal, Germany; German Center for Diabetes Research (DZD), 85764 Munich-Neuherberg, Germany
| | - Annemarie Lundsgaard
- The August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Josephine M Kanta
- The August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Stephanie Holm
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kornelia Johann
- Department of Molecular Physiology of Exercise and Nutrition, German Institute of Human Nutrition (DIfE), Potsdam-Rehbruecke, Nuthetal, Germany; German Center for Diabetes Research (DZD), 85764 Munich-Neuherberg, Germany
| | - Jens Christian Brings Jacobsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Markus Jähnert
- German Center for Diabetes Research (DZD), 85764 Munich-Neuherberg, Germany; Department of Experimental Diabetology, German Institute of Human Nutrition (DIfE), 14558 Potsdam, Germany
| | - Annette Schürmann
- German Center for Diabetes Research (DZD), 85764 Munich-Neuherberg, Germany; Department of Experimental Diabetology, German Institute of Human Nutrition (DIfE), 14558 Potsdam, Germany; Institute of Nutrition Science, University of Potsdam, Nuthetal, Germany; Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus-Senftenberg, The Brandenburg Medical School Theodor Fontane and The University of Potsdam, 14469 Potsdam, Germany
| | - Bente Kiens
- The August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Christoffer Clemmensen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Hitoshi Shimano
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan; International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan; Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan; Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology (AMED-CREST), Chiyoda-ku, Tokyo 100-0004, Japan.
| | - Andreas M Fritzen
- The August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark; Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Maximilian Kleinert
- Department of Molecular Physiology of Exercise and Nutrition, German Institute of Human Nutrition (DIfE), Potsdam-Rehbruecke, Nuthetal, Germany; German Center for Diabetes Research (DZD), 85764 Munich-Neuherberg, Germany; The August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark; Institute of Nutrition Science, University of Potsdam, Nuthetal, Germany.
| |
Collapse
|
7
|
Yamazaki M, Yamada H, Munetsuna E, Ando Y, Mizuno G, Teshigawara A, Ichikawa H, Nouchi Y, Kageyama I, Wakasugi T, Ishikawa H, Ohgami N, Suzuki K, Ohashi K. Approaches to nutritional research using organoids; fructose treatment induces epigenetic changes in liver organoids. J Nutr Biochem 2024; 131:109671. [PMID: 38768870 DOI: 10.1016/j.jnutbio.2024.109671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 05/15/2024] [Accepted: 05/15/2024] [Indexed: 05/22/2024]
Abstract
Nutritional researches have successfully used animal models to gain new insights into nutrient action. However, comprehensive descriptions of their molecular mechanisms of action remain elusive as appropriate in vitro evaluation systems are lacking. Organoid models can mimic physiological structures and reproduce in vivo functions, making them increasingly utilized in biomedical research for a better understand physiological and pathological phenomena. Therefore, organoid modeling can be a powerful approach for to understand the molecular mechanisms of nutrient action. The present study aims to demonstrate the utility of organoids in nutritional research by further investigating the molecular mechanisms responsible for the negative effects of fructose intake using liver organoids. Here, we treated liver organoids with fructose and analyzed their gene expression profiles and DNA methylation levels. Microarray analysis demonstrated that fructose-treated organoids exhibited increased selenoprotein p (Sepp1) gene expression, whereas pyrosequencing assays revealed reduced DNA methylation levels in the Sepp1 region. These results were consistent with observations using hepatic tissues from fructose-fed rats. Conversely, no differences in Sepp1 mRNA and DNA methylation levels were observed in two-dimensional cells. These results suggest that organoids serve as an ideal in vitro model to recapitulate in vivo tissue responses and help to validate the molecular mechanisms of nutrient action compared to conventional cellular models.
Collapse
Affiliation(s)
- Mirai Yamazaki
- Department of Medical Technology, Kagawa Prefectural University of Health Sciences, Takamatsu, Japan; Department of Hygiene, Fujita Health University School of Medicine, Toyoake, Japan.
| | - Hiroya Yamada
- Department of Hygiene, Fujita Health University School of Medicine, Toyoake, Japan.
| | - Eiji Munetsuna
- Department of Animal Science and Biotechnology, Azabu University School of Veterinary Medicine, Sagamihara, Japan
| | - Yoshitaka Ando
- Department of Informative Clinical Medicine, Fujita Health University School of Medical Sciences, Toyoake, Japan
| | - Genki Mizuno
- Department of Medical Technology, Tokyo University of Technology School of Health Sciences, Ota, Japan
| | - Atsushi Teshigawara
- Department of Informative Clinical Medicine, Fujita Health University School of Medical Sciences, Toyoake, Japan; Department of Preventive Medical Sciences, Fujita Health University School of Medical Sciences, Toyoake, Japan
| | - Hayato Ichikawa
- Department of Informative Clinical Medicine, Fujita Health University School of Medical Sciences, Toyoake, Japan
| | - Yuki Nouchi
- Department of Informative Clinical Medicine, Fujita Health University School of Medical Sciences, Toyoake, Japan; Department of Preventive Medical Sciences, Fujita Health University School of Medical Sciences, Toyoake, Japan
| | - Itsuki Kageyama
- Department of Informative Clinical Medicine, Fujita Health University School of Medical Sciences, Toyoake, Japan; Department of Preventive Medical Sciences, Fujita Health University School of Medical Sciences, Toyoake, Japan
| | - Takuya Wakasugi
- Department of Hygiene, Fujita Health University School of Medicine, Toyoake, Japan
| | - Hiroaki Ishikawa
- Department of Informative Clinical Medicine, Fujita Health University School of Medical Sciences, Toyoake, Japan
| | - Nobutaka Ohgami
- Department of Hygiene, Fujita Health University School of Medicine, Toyoake, Japan
| | - Koji Suzuki
- Department of Preventive Medical Sciences, Fujita Health University School of Medical Sciences, Toyoake, Japan
| | - Koji Ohashi
- Department of Informative Clinical Medicine, Fujita Health University School of Medical Sciences, Toyoake, Japan
| |
Collapse
|
8
|
Kim SQ, Spann RA, Khan MSH, Berthoud HR, Münzberg H, Albaugh VL, He Y, McDougal DH, Soto P, Yu S, Morrison CD. FGF21 as a mediator of adaptive changes in food intake and macronutrient preference in response to protein restriction. Neuropharmacology 2024; 255:110010. [PMID: 38797244 PMCID: PMC11156534 DOI: 10.1016/j.neuropharm.2024.110010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/20/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
Free-feeding animals navigate complex nutritional landscapes in which food availability, cost, and nutritional value can vary markedly. Animals have thus developed neural mechanisms that enable the detection of nutrient restriction, and these mechanisms engage adaptive physiological and behavioral responses that limit or reverse this nutrient restriction. This review focuses specifically on dietary protein as an essential and independently defended nutrient. Adequate protein intake is required for life, and ample evidence exists to support an active defense of protein that involves behavioral changes in food intake, food preference, and food motivation, likely mediated by neural changes that increase the reward value of protein foods. Available evidence also suggests that the circulating hormone fibroblast growth factor 21 (FGF21) acts in the brain to coordinate these adaptive changes in food intake, making it a unique endocrine signal that drives changes in macronutrient preference in the context of protein restriction. This article is part of the Special Issue on "Food intake and feeding states".
Collapse
Affiliation(s)
- Sora Q Kim
- Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA
| | - Redin A Spann
- Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA
| | | | | | - Heike Münzberg
- Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA
| | - Vance L Albaugh
- Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA; Department of Surgery, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA
| | - Yanlin He
- Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA
| | - David H McDougal
- Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA
| | - Paul Soto
- Department of Psychology, Louisiana State University, Baton Rouge, LA, 70810, USA
| | - Sangho Yu
- Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA
| | | |
Collapse
|
9
|
Zhang D, Zhao Y, Zhang G, Lank D, Cooke S, Wang S, Nuotio-Antar A, Tong X, Yin L. Suppression of hepatic ChREBP⍺-CYP2C50 axis-driven fatty acid oxidation sensitizes mice to diet-induced MASLD/MASH. Mol Metab 2024; 85:101957. [PMID: 38740087 PMCID: PMC11145360 DOI: 10.1016/j.molmet.2024.101957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 05/03/2024] [Accepted: 05/09/2024] [Indexed: 05/16/2024] Open
Abstract
OBJECTIVES Compromised hepatic fatty acid oxidation (FAO) has been observed in human MASH patients and animal models of MASLD/MASH. It remains poorly understood how and when the hepatic FAO pathway is suppressed during the progression of MASLD towards MASH. Hepatic ChREBP⍺ is a classical lipogenic transcription factor that responds to the intake of dietary sugars. METHODS We examined its role in regulating hepatocyte fatty acid oxidation (FAO) and the impact of hepatic Chrebpa deficiency on sensitivity to diet-induced MASLD/MASH in mice. RESULTS We discovered that hepatocyte ChREBP⍺ is both necessary and sufficient to maintain FAO in a cell-autonomous manner independently of its DNA-binding activity. Supplementation of synthetic PPAR⍺/δ agonist is sufficient to restore FAO in Chrebp-/- primary mouse hepatocytes. Hepatic ChREBP⍺ was decreased in mouse models of diet-induced MAFSLD/MASH and in patients with MASH. Hepatocyte-specific Chrebp⍺ knockout impaired FAO, aggravated liver steatosis and inflammation, leading to early-onset fibrosis in response to diet-induced MASH. Conversely, liver overexpression of ChREBP⍺-WT or its non-lipogenic mutant enhanced FAO, reduced lipid deposition, and alleviated liver injury, inflammation, and fibrosis. RNA-seq analysis identified the CYP450 epoxygenase (CYP2C50) pathway of arachidonic acid metabolism as a novel target of ChREBP⍺. Over-expression of CYP2C50 partially restores hepatic FAO in primary hepatocytes with Chrebp⍺ deficiency and attenuates preexisting MASH in the livers of hepatocyte-specific Chrebp⍺-deleted mice. CONCLUSIONS Our findings support the protective role of hepatocyte ChREBPa against diet-induced MASLD/MASH in mouse models in part via promoting CYP2C50-driven FAO.
Collapse
Affiliation(s)
- Deqiang Zhang
- Department of Molecular & Integrative Physiology, USA; Caswell Diabetes Institute, University of Michigan Medical School, NCRC Building 20-3843, 2800 Plymouth Road, Ann Arbor, MI 48105, USA
| | - Yuee Zhao
- Department of Molecular & Integrative Physiology, USA; Caswell Diabetes Institute, University of Michigan Medical School, NCRC Building 20-3843, 2800 Plymouth Road, Ann Arbor, MI 48105, USA; Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Rd, Furong District, Changsha, Hunan Province 410011, PR China
| | - Gary Zhang
- Department of Molecular & Integrative Physiology, USA; Caswell Diabetes Institute, University of Michigan Medical School, NCRC Building 20-3843, 2800 Plymouth Road, Ann Arbor, MI 48105, USA
| | - Daniel Lank
- Department of Pharmacology, University of Virginia, 1340 Jefferson Park Avenue, Charlottesville, VA 22908, USA
| | - Sarah Cooke
- Neurosciences Graduate Program, Case Western Reserve University School of Medicine, Cleveland, OH 44016, USA
| | - Sujuan Wang
- Department of Infectious Diseases, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Rd, Furong District, Changsha, Hunan Province 410011, PR China
| | - Alli Nuotio-Antar
- Children Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xin Tong
- Department of Molecular & Integrative Physiology, USA; Caswell Diabetes Institute, University of Michigan Medical School, NCRC Building 20-3843, 2800 Plymouth Road, Ann Arbor, MI 48105, USA
| | - Lei Yin
- Department of Molecular & Integrative Physiology, USA; Caswell Diabetes Institute, University of Michigan Medical School, NCRC Building 20-3843, 2800 Plymouth Road, Ann Arbor, MI 48105, USA.
| |
Collapse
|
10
|
Negroiu CE, Tudoraşcu RI, Beznă MC, Ungureanu AI, Honţaru SO, Dănoiu S. The role of FGF21 in the interplay between obesity and non-alcoholic fatty liver disease: a narrative review. ROMANIAN JOURNAL OF MORPHOLOGY AND EMBRYOLOGY = REVUE ROUMAINE DE MORPHOLOGIE ET EMBRYOLOGIE 2024; 65:159-172. [PMID: 39020530 PMCID: PMC11384831 DOI: 10.47162/rjme.65.2.02] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/19/2024]
Abstract
Obesity poses a significant and escalating challenge in contemporary society, increasing the risk of developing various metabolic disorders such as dyslipidemia, cardiovascular diseases, non-alcoholic fatty liver disease (NAFLD), type 2 diabetes, and certain types of cancer. The current array of therapeutic interventions for obesity remains insufficient, prompting a pressing demand for novel and more effective treatments. In response, scientific attention has turned to the fibroblast growth factor 21 (FGF21) due to its remarkable and diverse impacts on lipid, carbohydrate, and energy metabolism. This comprehensive review aims to delve into the multifaceted aspects of FGF21, encompassing its discovery, synthesis, functional roles, and potential as a biomarker and therapeutic agent, with a specific focus on its implications for NAFLD.
Collapse
Affiliation(s)
- Cristina Elena Negroiu
- Department of Pathophysiology, University of Medicine and Pharmacy of Craiova, Romania; ; Department of Health Care and Physiotherapy, Faculty of Sciences, Physical Education and Informatics, University Center of Piteşti, National University for Science and Technology Politehnica, Bucharest, Romania;
| | | | | | | | | | | |
Collapse
|
11
|
Richter MM, Thomsen MN, Skytte MJ, Kjeldsen SAS, Samkani A, Frystyk J, Magkos F, Holst JJ, Madsbad S, Krarup T, Haugaard SB, Wewer Albrechtsen NJ. Effect of a 6-Week Carbohydrate-Reduced High-Protein Diet on Levels of FGF21 and GDF15 in People With Type 2 Diabetes. J Endocr Soc 2024; 8:bvae008. [PMID: 38379856 PMCID: PMC10875725 DOI: 10.1210/jendso/bvae008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Indexed: 02/22/2024] Open
Abstract
Context Fibroblast growth factor 21 (FGF21) and growth differentiation factor 15 (GDF15) are increased in type 2 diabetes and are potential regulators of metabolism. The effect of changes in caloric intake and macronutrient composition on their circulating levels in patients with type 2 diabetes are unknown. Objective To explore the effects of a carbohydrate-reduced high-protein diet with and without a clinically significant weight loss on circulating levels of FGF21 and GDF15 in patients with type 2 diabetes. Methods We measured circulating FGF21 and GDF15 in patients with type 2 diabetes who completed 2 previously published diet interventions. Study 1 randomized 28 subjects to an isocaloric diet in a 6 + 6-week crossover trial consisting of, in random order, a carbohydrate-reduced high-protein (CRHP) or a conventional diabetes (CD) diet. Study 2 randomized 72 subjects to a 6-week hypocaloric diet aiming at a ∼6% weight loss induced by either a CRHP or a CD diet. Fasting plasma FGF21 and GDF15 were measured before and after the interventions in a subset of samples (n = 24 in study 1, n = 66 in study 2). Results Plasma levels of FGF21 were reduced by 54% in the isocaloric study (P < .05) and 18% in the hypocaloric study (P < .05) in CRHP-treated individuals only. Circulating GDF15 levels increased by 18% (P < .05) following weight loss in combination with a CRHP diet but only in those treated with metformin. Conclusion The CRHP diet significantly reduced FGF21 in people with type 2 diabetes independent of weight loss, supporting the role of FGF21 as a "nutrient sensor." Combining metformin treatment with carbohydrate restriction and weight loss may provide additional metabolic improvements due to the rise in circulating GDF15.
Collapse
Affiliation(s)
- Michael M Richter
- Department of Clinical Biochemistry, Copenhagen University Hospital—Bispebjerg and Frederiksberg, Copenhagen, 2400, Denmark
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Mads N Thomsen
- Department of Endocrinology, Copenhagen University Hospital—Bispebjerg and Frederiksberg, Copenhagen, 2400, Denmark
| | - Mads J Skytte
- Department of Endocrinology, Copenhagen University Hospital—Bispebjerg and Frederiksberg, Copenhagen, 2400, Denmark
- Department of Forensic Medicine, University of Copenhagen, Copenhagen, 2100, Denmark
| | - Sasha A S Kjeldsen
- Department of Clinical Biochemistry, Copenhagen University Hospital—Bispebjerg and Frederiksberg, Copenhagen, 2400, Denmark
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Amirsalar Samkani
- Department of Endocrinology, Copenhagen University Hospital—Bispebjerg and Frederiksberg, Copenhagen, 2400, Denmark
| | - Jan Frystyk
- Department of Endocrinology, Odense University Hospital, Odense, 5000, Denmark
| | - Faidon Magkos
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Jens J Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 2200, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Sten Madsbad
- Department of Endocrinology, Copenhagen University Hospital—Hvidovre, Hvidovre, 2650, Denmark
| | - Thure Krarup
- Department of Endocrinology, Copenhagen University Hospital—Bispebjerg and Frederiksberg, Copenhagen, 2400, Denmark
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Steen B Haugaard
- Department of Endocrinology, Copenhagen University Hospital—Bispebjerg and Frederiksberg, Copenhagen, 2400, Denmark
- Institute of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Nicolai J Wewer Albrechtsen
- Department of Clinical Biochemistry, Copenhagen University Hospital—Bispebjerg and Frederiksberg, Copenhagen, 2400, Denmark
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 2200, Denmark
| |
Collapse
|
12
|
Kataoka H, Nirengi S, Matsui Y, Taniguchi H. Fructose-induced FGF21 secretion does not activate brown adipose tissue in Japanese young men: randomized cross-over and randomized controlled trials. J Physiol Anthropol 2024; 43:5. [PMID: 38178259 PMCID: PMC10765626 DOI: 10.1186/s40101-023-00353-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 12/22/2023] [Indexed: 01/06/2024] Open
Abstract
BACKGROUND Human brown adipose tissue (BAT) activity is associated with lower body fatness and favorable glucose metabolism. Previous studies reported that oral fructose loading induces postprandial fibroblast growth factor 21 (FGF21) secretion. FGF21 is a known inducer of adipose tissue thermogenesis; however, the effects of diet-induced FGF21 secretion on BAT thermogenesis remain to be elucidated. METHODS The effects of both single load and daily consumption of fructose on BAT activity were examined using a randomized cross-over trial and a 2-week randomized controlled trial (RCT), respectively. In the cross-over trial, 15 young men consumed a single dose of fructose solution or water and then consumed the other on a subsequent day. The RCT enrolled 22 young men, and the participants were allocated to a group that consumed fructose and a group that consumed water daily for 2 weeks. BAT activity was analyzed using thermography with cold exposure. Plasma FGF21 level was determined by enzyme-linked immunosorbent assay. RESULTS In the cross-over single-load trial, plasma FGF21 levels were significantly increased at 2 h after oral fructose load (p < 0.01); however, there was no significant difference in BAT activity between the fructose load and drinking water. The 2-week RCT revealed that both plasma FGF21 levels and BAT activity were not significantly increased by daily fructose consumption compared to water. Correlation analyses revealed that BAT activity at the baseline and the final measurements were strongly and positively associated with the RCT (r = 0.869, p < 0.001). Changes in BAT activity were significantly and negatively correlated with changes in plasma glucose levels during the 2-week intervention (r = - 0.497, p = 0.022). CONCLUSIONS Oral fructose load induces a temporary increase in circulating FGF21 levels; however, this does not activate BAT thermogenesis in healthy young men. Further studies are needed to elucidate the effect of endogenous FGF21 on physiological function. TRIAL REGISTRATION This study is registered with the University Hospital Medical Information Network in Japan (number 000051761, registered 1 August 2023, retrospectively registered, https://center6.umin.ac.jp/cgi-open-bin/ctr/ctr_view.cgi?recptno=R000052680 ).
Collapse
Affiliation(s)
- Haruki Kataoka
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan
| | - Shinsuke Nirengi
- Clinical Research Institute, Division of Preventive Medicine, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
- Dorothy M. Davis Heart and Lung Research Institute, Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Yuka Matsui
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan
| | - Hirokazu Taniguchi
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan.
| |
Collapse
|
13
|
Ramne S, Duizer L, Nielsen MS, Jørgensen NR, Svenningsen JS, Grarup N, Sjödin A, Raben A, Gillum MP. Meal sugar-protein balance determines postprandial FGF21 response in humans. Am J Physiol Endocrinol Metab 2023; 325:E491-E499. [PMID: 37729024 PMCID: PMC10874651 DOI: 10.1152/ajpendo.00241.2023] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/05/2023] [Accepted: 09/14/2023] [Indexed: 09/22/2023]
Abstract
Biological mechanisms to promote dietary balance remain unclear. Fibroblast growth factor 21 (FGF21) has been suggested to contribute to such potential regulation considering that FGF21 1) is genetically associated with carbohydrate/sugar and protein intake in opposite directions, 2) is secreted after sugar ingestion and protein restriction, and 3) pharmacologically reduces sugar and increases protein intake in rodents. To gain insight of the nature of this potential regulation, we aimed to study macronutrient interactions in the secretory regulation of FGF21 in healthy humans. We conducted a randomized, double-blinded, crossover meal study (NCT05061485), wherein healthy volunteers consumed a sucrose drink, a sucrose + protein drink, and a sucrose + fat drink (matched sucrose content), and compared postprandial FGF21 responses between the three macronutrient combinations. Protein suppressed the sucrose-induced FGF21 secretion [incremental area under the curve (iAUC) for sucrose 484 ± 127 vs. sucrose + protein -35 ± 49 pg/mL × h, P < 0.001]. The same could not be demonstrated for fat (iAUC 319 ± 102 pg/mL × h, P = 203 for sucrose + fat vs. sucrose). We found no indications that regulators of glycemic homeostasis could explain this effect. This indicates that FGF21 responds to disproportionate intake of sucrose relative to protein acutely within a meal, and that protein outweighs sucrose in FGF21 regulation. Together with previous findings, our results suggests that FGF21 might act to promote macronutrient balance and sufficient protein intake.NEW & NOTEWORTHY Here we test the interactions between sugar, protein, and fat in human FGF21 regulation and demonstrate that protein, but not fat, suppresses sugar-induced FGF21 secretion. This indicates that protein outweighs the effects of sugar in the secretory regulation of FGF21, and could suggest that the nutrient-specific appetite-regulatory actions of FGF21 might prioritize ensuring sufficient protein intake over limiting sugar intake.
Collapse
Affiliation(s)
- Stina Ramne
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lisanne Duizer
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| | - Mette S Nielsen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Niklas Rye Jørgensen
- Department of Clinical Biochemistry, Copenhagen University Hospital, Glostrup, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Jens S Svenningsen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Niels Grarup
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anders Sjödin
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| | - Anne Raben
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
- Department of Clinical and Translational Research, Copenhagen University Hospital-Diabetes Center Copenhagen, Herlev, Denmark
| | - Matthew P Gillum
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
14
|
Peixoto ÁS, Moreno MF, Castro É, Perandini LA, Belchior T, Oliveira TE, Vieira TS, Gilio GR, Tomazelli CA, Leonardi BF, Ortiz-Silva M, Silva Junior LP, Moretti EH, Steiner AA, Festuccia WT. Hepatocellular carcinoma induced by hepatocyte Pten deletion reduces BAT UCP-1 and thermogenic capacity in mice, despite increasing serum FGF-21 and iWAT browning. J Physiol Biochem 2023; 79:731-743. [PMID: 37405670 DOI: 10.1007/s13105-023-00970-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 06/23/2023] [Indexed: 07/06/2023]
Abstract
Hepatocellular carcinoma (HCC) markedly enhances liver secretion of fibroblast growth factor 21 (FGF-21), a hepatokine that increases brown and subcutaneous inguinal white adipose tissues (BAT and iWAT, respectively) uncoupling protein 1 (UCP-1) content, thermogenesis and energy expenditure. Herein, we tested the hypothesis that an enhanced BAT and iWAT UCP-1-mediated thermogenesis induced by high levels of FGF-21 is involved in HCC-associated catabolic state and fat mass reduction. For this, we evaluated body weight and composition, liver mass and morphology, serum and tissue levels of FGF-21, BAT and iWAT UCP-1 content, and thermogenic capacity in mice with Pten deletion in hepatocytes that display a well-defined progression from steatosis to steatohepatitis (NASH) and HCC upon aging. Hepatocyte Pten deficiency promoted a progressive increase in liver lipid deposition, mass, and inflammation, culminating with NASH at 24 weeks and hepatomegaly and HCC at 48 weeks of age. NASH and HCC were associated with elevated liver and serum FGF-21 content and iWAT UCP-1 expression (browning), but reduced serum insulin, leptin, and adiponectin levels and BAT UCP-1 content and expression of sympathetically regulated gene glycerol kinase (GyK), lipoprotein lipase (LPL), and fatty acid transporter protein 1 (FATP-1), which altogether resulted in an impaired whole-body thermogenic capacity in response to CL-316,243. In conclusion, FGF-21 pro-thermogenic actions in BAT are context-dependent, not occurring in NASH and HCC, and UCP-1-mediated thermogenesis is not a major energy-expending process involved in the catabolic state associated with HCC induced by Pten deletion in hepatocytes.
Collapse
Affiliation(s)
- Álbert S Peixoto
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Av. Prof Lineu Prestes, 1524, 05508000, Sao Paulo, Brazil
| | - Mayara F Moreno
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Av. Prof Lineu Prestes, 1524, 05508000, Sao Paulo, Brazil
| | - Érique Castro
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Av. Prof Lineu Prestes, 1524, 05508000, Sao Paulo, Brazil
| | - Luiz A Perandini
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Av. Prof Lineu Prestes, 1524, 05508000, Sao Paulo, Brazil
| | - Thiago Belchior
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Av. Prof Lineu Prestes, 1524, 05508000, Sao Paulo, Brazil
| | - Tiago E Oliveira
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Av. Prof Lineu Prestes, 1524, 05508000, Sao Paulo, Brazil
| | - Thayna S Vieira
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Av. Prof Lineu Prestes, 1524, 05508000, Sao Paulo, Brazil
| | - Gustavo R Gilio
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Av. Prof Lineu Prestes, 1524, 05508000, Sao Paulo, Brazil
| | - Caroline A Tomazelli
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Av. Prof Lineu Prestes, 1524, 05508000, Sao Paulo, Brazil
| | - Bianca F Leonardi
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Av. Prof Lineu Prestes, 1524, 05508000, Sao Paulo, Brazil
| | - Milene Ortiz-Silva
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Av. Prof Lineu Prestes, 1524, 05508000, Sao Paulo, Brazil
| | - Luciano P Silva Junior
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Av. Prof Lineu Prestes, 1524, 05508000, Sao Paulo, Brazil
| | - Eduardo H Moretti
- Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Alexandre A Steiner
- Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - William T Festuccia
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Av. Prof Lineu Prestes, 1524, 05508000, Sao Paulo, Brazil.
| |
Collapse
|
15
|
Prezotto LD, Keane JA, Cupp AS, Thorson JF. Fibroblast Growth Factor 21 Has a Diverse Role in Energetic and Reproductive Physiological Functions of Female Beef Cattle. Animals (Basel) 2023; 13:3185. [PMID: 37893910 PMCID: PMC10603626 DOI: 10.3390/ani13203185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/29/2023] [Accepted: 10/05/2023] [Indexed: 10/29/2023] Open
Abstract
Fibroblast growth factor 21 (FGF21) has been identified in multiple mammalian species as a molecular marker of energy metabolism while also providing negative feedback to the gonads. However, the role of FGF21 in regulating the energetic and reproductive physiology of beef heifers and cows has yet to be characterized. Herein, we investigated the temporal concentrations of FGF21 in female beef cattle from the prepubertal period to early lactation. Circulating concentrations of FGF21, non-esterified fatty acids, plasma urea nitrogen, glucose, and progesterone were assessed. Ultrasonography was employed to determine the onset of puberty and resumption of postpartum ovarian cyclicity as well as to measure backfat thickness. Finally, cows and calves underwent the weigh-suckle-weigh technique to estimate rate of milk production. We have revealed that FGF21 has an expansive role in the physiology of female beef cattle, including pubertal onset, adaptation to nutritional transition, rate of body weight gain, circulating markers of metabolism, and rate of milk production. In conclusion, FGF21 plays a role in physiological functions in beef cattle that can be applied to advance the understanding of basic scientific processes governing the nutritional regulation of reproductive function but also provides a novel means for beef cattle producers to select parameters of financial interest.
Collapse
Affiliation(s)
- Ligia D. Prezotto
- Department of Animal Science, University of Nebraska-Lincoln, 3940 Fair Street, Lincoln, NE 68583-0908, USA; (L.D.P.); (J.A.K.); (A.S.C.)
| | - Jessica A. Keane
- Department of Animal Science, University of Nebraska-Lincoln, 3940 Fair Street, Lincoln, NE 68583-0908, USA; (L.D.P.); (J.A.K.); (A.S.C.)
| | - Andrea S. Cupp
- Department of Animal Science, University of Nebraska-Lincoln, 3940 Fair Street, Lincoln, NE 68583-0908, USA; (L.D.P.); (J.A.K.); (A.S.C.)
| | - Jennifer F. Thorson
- U.S. Meat Animal Research Center, Agricultural Research Service, United States Department of Agriculture, Clay Center, NE 68933-0166, USA
| |
Collapse
|
16
|
Uehara K, Santoleri D, Whitlock AEG, Titchenell PM. Insulin Regulation of Hepatic Lipid Homeostasis. Compr Physiol 2023; 13:4785-4809. [PMID: 37358513 PMCID: PMC10760932 DOI: 10.1002/cphy.c220015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2023]
Abstract
The incidence of obesity, insulin resistance, and type II diabetes (T2DM) continues to rise worldwide. The liver is a central insulin-responsive metabolic organ that governs whole-body metabolic homeostasis. Therefore, defining the mechanisms underlying insulin action in the liver is essential to our understanding of the pathogenesis of insulin resistance. During periods of fasting, the liver catabolizes fatty acids and stored glycogen to meet the metabolic demands of the body. In postprandial conditions, insulin signals to the liver to store excess nutrients into triglycerides, cholesterol, and glycogen. In insulin-resistant states, such as T2DM, hepatic insulin signaling continues to promote lipid synthesis but fails to suppress glucose production, leading to hypertriglyceridemia and hyperglycemia. Insulin resistance is associated with the development of metabolic disorders such as cardiovascular and kidney disease, atherosclerosis, stroke, and cancer. Of note, nonalcoholic fatty liver disease (NAFLD), a spectrum of diseases encompassing fatty liver, inflammation, fibrosis, and cirrhosis, is linked to abnormalities in insulin-mediated lipid metabolism. Therefore, understanding the role of insulin signaling under normal and pathologic states may provide insights into preventative and therapeutic opportunities for the treatment of metabolic diseases. Here, we provide a review of the field of hepatic insulin signaling and lipid regulation, including providing historical context, detailed molecular mechanisms, and address gaps in our understanding of hepatic lipid regulation and the derangements under insulin-resistant conditions. © 2023 American Physiological Society. Compr Physiol 13:4785-4809, 2023.
Collapse
Affiliation(s)
- Kahealani Uehara
- Institute of Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Dominic Santoleri
- Institute of Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Anna E. Garcia Whitlock
- Institute of Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Paul M. Titchenell
- Institute of Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
17
|
Le TDV, Fathi P, Watters AB, Ellis BJ, Besing GLK, Bozadjieva-Kramer N, Perez MB, Sullivan AI, Rose JP, Baggio LL, Koehler J, Brown JL, Bales MB, Nwaba KG, Campbell JE, Drucker DJ, Potthoff MJ, Seeley RJ, Ayala JE. Fibroblast growth factor-21 is required for weight loss induced by the glucagon-like peptide-1 receptor agonist liraglutide in male mice fed high carbohydrate diets. Mol Metab 2023; 72:101718. [PMID: 37030441 PMCID: PMC10131131 DOI: 10.1016/j.molmet.2023.101718] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/20/2023] [Accepted: 03/29/2023] [Indexed: 04/10/2023] Open
Abstract
OBJECTIVE Glucagon-like peptide-1 receptor (GLP-1R) agonists (GLP-1RA) and fibroblast growth factor-21 (FGF21) confer similar metabolic benefits. GLP-1RA induce FGF21, leading us to investigate mechanisms engaged by the GLP-1RA liraglutide to increase FGF21 levels and the metabolic relevance of liraglutide-induced FGF21. METHODS Circulating FGF21 levels were measured in fasted male C57BL/6J, neuronal GLP-1R knockout, β-cell GLP-1R knockout, and liver peroxisome proliferator-activated receptor alpha knockout mice treated acutely with liraglutide. To test the metabolic relevance of liver FGF21 in response to liraglutide, chow-fed control and liver Fgf21 knockout (LivFgf21-/-) mice were treated with vehicle or liraglutide in metabolic chambers. Body weight and composition, food intake, and energy expenditure were measured. Since FGF21 reduces carbohydrate intake, we measured body weight in mice fed matched diets with low- (LC) or high-carbohydrate (HC) content and in mice fed a high-fat, high-sugar (HFHS) diet. This was done in control and LivFgf21-/- mice and in mice lacking neuronal β-klotho (Klb) expression to disrupt brain FGF21 signaling. RESULTS Liraglutide increases FGF21 levels independently of decreased food intake via neuronal GLP-1R activation. Lack of liver Fgf21 expression confers resistance to liraglutide-induced weight loss due to attenuated reduction of food intake in chow-fed mice. Liraglutide-induced weight loss was impaired in LivFgf21-/- mice when fed HC and HFHS diets but not when fed a LC diet. Loss of neuronal Klb also attenuated liraglutide-induced weight loss in mice fed HC or HFHS diets. CONCLUSIONS Our findings support a novel role for a GLP-1R-FGF21 axis in regulating body weight in a dietary carbohydrate-dependent manner.
Collapse
Affiliation(s)
- Thao D V Le
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, 2215 Garland Avenue, Nashville, TN 37232, USA.
| | - Payam Fathi
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, 2215 Garland Avenue, Nashville, TN 37232, USA.
| | - Amanda B Watters
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, 2215 Garland Avenue, Nashville, TN 37232, USA.
| | - Blair J Ellis
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, 2215 Garland Avenue, Nashville, TN 37232, USA
| | - Gai-Linn K Besing
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, 2215 Garland Avenue, Nashville, TN 37232, USA.
| | - Nadejda Bozadjieva-Kramer
- Department of Surgery, University of Michigan, 1500 E. Medical Center Drive, Ann Arbor, MI 48109, USA; Veterans Affairs Ann Arbor Healthcare System, Research Service, 2215 Fuller Road, Ann Arbor, MI 48105, USA.
| | - Misty B Perez
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, 375 Newton Road, Iowa City, IA 52242, USA.
| | - Andrew I Sullivan
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, 375 Newton Road, Iowa City, IA 52242, USA.
| | - Jesse P Rose
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, 375 Newton Road, Iowa City, IA 52242, USA.
| | - Laurie L Baggio
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Department of Medicine, University of Toronto, 600 University Avenue, Toronto, Ontario M5G 1X5, Canada.
| | - Jacqueline Koehler
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Department of Medicine, University of Toronto, 600 University Avenue, Toronto, Ontario M5G 1X5, Canada
| | - Jennifer L Brown
- Duke Molecular Physiology Institute, Duke University, 300 N. Duke Street, Durham, NC 27701, USA
| | - Michelle B Bales
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, 2215 Garland Avenue, Nashville, TN 37232, USA.
| | - Kaitlyn G Nwaba
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, 2215 Garland Avenue, Nashville, TN 37232, USA
| | - Jonathan E Campbell
- Duke Molecular Physiology Institute, Duke University, 300 N. Duke Street, Durham, NC 27701, USA.
| | - Daniel J Drucker
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Department of Medicine, University of Toronto, 600 University Avenue, Toronto, Ontario M5G 1X5, Canada.
| | - Matthew J Potthoff
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, 375 Newton Road, Iowa City, IA 52242, USA.
| | - Randy J Seeley
- Department of Surgery, University of Michigan, 1500 E. Medical Center Drive, Ann Arbor, MI 48109, USA.
| | - Julio E Ayala
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, 2215 Garland Avenue, Nashville, TN 37232, USA; Vanderbilt Mouse Metabolic Phenotyping Center, Vanderbilt University School of Medicine, 2215 Garland Avenue, Nashville, TN 37232, USA; Vanderbilt Center for Addiction Research, Vanderbilt University School of Medicine, 2215 Garland Avenue, Nashville, TN 37232, USA.
| |
Collapse
|
18
|
Ahn B. The Function of MondoA and ChREBP Nutrient-Sensing Factors in Metabolic Disease. Int J Mol Sci 2023; 24:ijms24108811. [PMID: 37240157 DOI: 10.3390/ijms24108811] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/12/2023] [Accepted: 05/13/2023] [Indexed: 05/28/2023] Open
Abstract
Obesity is a major global public health concern associated with an increased risk of many health problems, including type 2 diabetes, heart disease, stroke, and some types of cancer. Obesity is also a critical factor in the development of insulin resistance and type 2 diabetes. Insulin resistance is associated with metabolic inflexibility, which interferes with the body's ability to switch from free fatty acids to carbohydrate substrates, as well as with the ectopic accumulation of triglycerides in non-adipose tissue, such as that of skeletal muscle, the liver, heart, and pancreas. Recent studies have demonstrated that MondoA (MLX-interacting protein or MLXIP) and the carbohydrate response element-binding protein (ChREBP, also known as MLXIPL and MondoB) play crucial roles in the regulation of nutrient metabolism and energy homeostasis in the body. This review summarizes recent advances in elucidating the function of MondoA and ChREBP in insulin resistance and related pathological conditions. This review provides an overview of the mechanisms by which MondoA and ChREBP transcription factors regulate glucose and lipid metabolism in metabolically active organs. Understanding the underlying mechanism of MondoA and ChREBP in insulin resistance and obesity can foster the development of new therapeutic strategies for treating metabolic diseases.
Collapse
Affiliation(s)
- Byungyong Ahn
- Department of Food Science and Nutrition, University of Ulsan, Ulsan 44610, Republic of Korea
| |
Collapse
|
19
|
Régnier M, Carbinatti T, Parlati L, Benhamed F, Postic C. The role of ChREBP in carbohydrate sensing and NAFLD development. Nat Rev Endocrinol 2023; 19:336-349. [PMID: 37055547 DOI: 10.1038/s41574-023-00809-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/31/2023] [Indexed: 04/15/2023]
Abstract
Excessive sugar consumption and defective glucose sensing by hepatocytes contribute to the development of metabolic diseases including type 2 diabetes mellitus (T2DM) and nonalcoholic fatty liver disease (NAFLD). Hepatic metabolism of carbohydrates into lipids is largely dependent on the carbohydrate-responsive element binding protein (ChREBP), a transcription factor that senses intracellular carbohydrates and activates many different target genes, through the activation of de novo lipogenesis (DNL). This process is crucial for the storage of energy as triglycerides in hepatocytes. Furthermore, ChREBP and its downstream targets represent promising targets for the development of therapies for the treatment of NAFLD and T2DM. Although lipogenic inhibitors (for example, inhibitors of fatty acid synthase, acetyl-CoA carboxylase or ATP citrate lyase) are currently under investigation, targeting lipogenesis remains a topic of discussion for NAFLD treatment. In this Review, we discuss mechanisms that regulate ChREBP activity in a tissue-specific manner and their respective roles in controlling DNL and beyond. We also provide in-depth discussion of the roles of ChREBP in the onset and progression of NAFLD and consider emerging targets for NAFLD therapeutics.
Collapse
Affiliation(s)
- Marion Régnier
- Université Paris Cité, Institut Cochin, CNRS, INSERM, Paris, France.
| | - Thaïs Carbinatti
- Université Paris Cité, Institut Cochin, CNRS, INSERM, Paris, France
| | - Lucia Parlati
- Université Paris Cité, Institut Cochin, CNRS, INSERM, Paris, France
| | - Fadila Benhamed
- Université Paris Cité, Institut Cochin, CNRS, INSERM, Paris, France
| | - Catherine Postic
- Université Paris Cité, Institut Cochin, CNRS, INSERM, Paris, France.
| |
Collapse
|
20
|
Inci MK, Park SH, Helsley RN, Attia SL, Softic S. Fructose impairs fat oxidation: Implications for the mechanism of western diet-induced NAFLD. J Nutr Biochem 2023; 114:109224. [PMID: 36403701 PMCID: PMC11042502 DOI: 10.1016/j.jnutbio.2022.109224] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 09/29/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022]
Abstract
Increased fructose intake from sugar-sweetened beverages and highly processed sweets is a well-recognized risk factor for the development of obesity and its complications. Fructose strongly supports lipogenesis on a normal chow diet by providing both, a substrate for lipid synthesis and activation of lipogenic transcription factors. However, the negative health consequences of dietary sugar are best observed with the concomitant intake of a HFD. Indeed, the most commonly used obesogenic research diets, such as "Western diet", contain both fructose and a high amount of fat. In spite of its common use, how the combined intake of fructose and fat synergistically supports development of metabolic complications is not fully elucidated. Here we present the preponderance of evidence that fructose consumption decreases oxidation of dietary fat in human and animal studies. We provide a detailed review of the mitochondrial β-oxidation pathway. Fructose affects hepatic activation of fatty acyl-CoAs, decreases acylcarnitine production and impairs the carnitine shuttle. Mechanistically, fructose suppresses transcriptional activity of PPARα and its target CPT1α, the rate limiting enzyme of acylcarnitine production. These effects of fructose may be, in part, mediated by protein acetylation. Acetylation of PGC1α, a co-activator of PPARα and acetylation of CPT1α, in part, account for fructose-impaired acylcarnitine production. Interestingly, metabolic effects of fructose in the liver can be largely overcome by carnitine supplementation. In summary, fructose decreases oxidation of dietary fat in the liver, in part, by impairing acylcarnitine production, offering one explanation for the synergistic effects of these nutrients on the development of metabolic complications, such as NAFLD.
Collapse
Affiliation(s)
| | - Se-Hyung Park
- Department of Pediatrics, University of Kentucky College of Medicine, Lexington, KY, USA; Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | - Robert N Helsley
- Department of Pediatrics, University of Kentucky College of Medicine, Lexington, KY, USA; Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA; Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, USA
| | - Suzanna L Attia
- Department of Pediatrics, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Samir Softic
- Department of Pediatrics, University of Kentucky College of Medicine, Lexington, KY, USA; Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA; Joslin Diabetes Center and Department of Medicine, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
21
|
Choi M, Schneeberger M, Fan W, Bugde A, Gautron L, Vale K, Hammer RE, Zhang Y, Friedman JM, Mangelsdorf DJ, Kliewer SA. FGF21 counteracts alcohol intoxication by activating the noradrenergic nervous system. Cell Metab 2023; 35:429-437.e5. [PMID: 36889282 PMCID: PMC10009780 DOI: 10.1016/j.cmet.2023.02.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/15/2023] [Accepted: 02/07/2023] [Indexed: 03/09/2023]
Abstract
Animals that consume fermenting fruit and nectar are at risk of exposure to ethanol and the detrimental effects of inebriation. In this report, we show that the hormone FGF21, which is strongly induced by ethanol in murine and human liver, stimulates arousal from intoxication without changing ethanol catabolism. Mice lacking FGF21 take longer than wild-type littermates to recover their righting reflex and balance following ethanol exposure. Conversely, pharmacologic FGF21 administration reduces the time needed for mice to recover from ethanol-induced unconsciousness and ataxia. FGF21 did not counteract sedation caused by ketamine, diazepam, or pentobarbital, indicating specificity for ethanol. FGF21 mediates its anti-intoxicant effects by directly activating noradrenergic neurons in the locus coeruleus region, which regulates arousal and alertness. These results suggest that this FGF21 liver-brain pathway evolved to protect against ethanol-induced intoxication and that it might be targeted pharmaceutically for treating acute alcohol poisoning.
Collapse
Affiliation(s)
- Mihwa Choi
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Marc Schneeberger
- Laboratory of Molecular Genetics, Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA
| | - Wei Fan
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Abhijit Bugde
- Live Cell Imaging Core Facility, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Laurent Gautron
- Division of Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Kevin Vale
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Robert E Hammer
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yuan Zhang
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jeffrey M Friedman
- Laboratory of Molecular Genetics, Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA
| | - David J Mangelsdorf
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX 75390, USA; Howard Hughes Medical Institute, UT Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Steven A Kliewer
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX 75390, USA; Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
22
|
Le TDV, Fathi P, Watters AB, Ellis BJ, Bozadjieva-Kramer N, Perez MB, Sullivan AI, Rose JP, Baggio LL, Koehler J, Brown JL, Bales MB, Nwaba KG, Campbell JE, Drucker DJ, Potthoff MJ, Seeley RJ, Ayala JE. Liver Fibroblast Growth Factor 21 (FGF21) is Required for the Full Anorectic Effect of the Glucagon-Like Peptide-1 Receptor Agonist Liraglutide in Male Mice fed High Carbohydrate Diets. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.03.522509. [PMID: 36711605 PMCID: PMC9881863 DOI: 10.1101/2023.01.03.522509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/15/2023]
Abstract
Glucagon-like peptide-1 receptor (GLP-1R) agonists and fibroblast growth factor 21 (FGF21) confer similar metabolic benefits. Studies report that GLP-1RA induce FGF21. Here, we investigated the mechanisms engaged by the GLP-1R agonist liraglutide to increase FGF21 levels and the metabolic relevance of liraglutide-induced FGF21. We show that liraglutide increases FGF21 levels via neuronal GLP-1R activation. We also demonstrate that lack of liver Fgf21 expression confers partial resistance to liraglutide-induced weight loss. Since FGF21 reduces carbohydrate intake, we tested whether the contribution of FGF21 to liraglutide-induced weight loss is dependent on dietary carbohydrate content. In control and liver Fgf21 knockout (Liv Fgf21 -/- ) mice fed calorically matched diets with low- (LC) or high-carbohydrate (HC) content, we found that only HC-fed Liv Fgf21 -/- mice were resistant to liraglutide-induced weight loss. Similarly, liraglutide-induced weight loss was partially impaired in Liv Fgf21 -/- mice fed a high-fat, high-sugar (HFHS) diet. Lastly, we show that loss of neuronal β-klotho expression also diminishes liraglutide-induced weight loss in mice fed a HC or HFHS diet, indicating that FGF21 mediates liraglutide-induced weight loss via neuronal FGF21 action. Our findings support a novel role for a GLP-1R-FGF21 axis in regulating body weight in the presence of high dietary carbohydrate content.
Collapse
|
23
|
Ahuja P, Bi X, Ng CF, Tse MCL, Hang M, Pang BPS, Iu ECY, Chan WS, Ooi XC, Sun A, Herlea-Pana O, Liu Z, Yang X, Jiao B, Ma X, Wu KKL, Lee LTO, Cheng KKY, Lee CW, Chan CB. Src homology 3 domain binding kinase 1 protects against hepatic steatosis and insulin resistance through the Nur77-FGF21 pathway. Hepatology 2023; 77:213-229. [PMID: 35363898 DOI: 10.1002/hep.32501] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 03/26/2022] [Accepted: 03/28/2022] [Indexed: 02/03/2023]
Abstract
BACKGROUND AND AIMS Metabolism in the liver is dysregulated in obesity, contributing to various health problems including steatosis and insulin resistance. While the pathogenesis of lipid accumulation has been extensively studied, the protective mechanism against lipid challenge in the liver remains unclear. Here, we report that Src homology 3 domain binding kinase 1 (SBK1) is a regulator of hepatic lipid metabolism and systemic insulin sensitivity in response to obesity. APPROACH AND RESULTS Enhanced Sbk1 expression was found in the liver of high-fat diet (HFD)-induced obese mice and fatty acid (FA)-challenged hepatocytes. SBK1 knockdown in mouse liver cells augmented FA uptake and lipid accumulation. Similarly, liver-specific SBK1 knockout ( Lsko ) mice displayed more severe hepatosteatosis and higher expression of genes in FA uptake and lipogenesis than the Flox/Flox ( Fl/Fl ) control mice when fed the HFD. The HFD-fed Lsko mice also showed symptoms of hyperglycemia, poor systemic glucose tolerance, and lower insulin sensitivity than the Fl/Fl mice. On the other hand, hepatic Sbk1 overexpression alleviated the high-fructose diet-induced hepatosteatosis, hyperlipidemia, and hyperglycemia in mice. White adipose tissue browning was also observed in hepatic SBK1 -overexpressed mice. Moreover, we found that SBK1 was a positive regulator of FGF21 in the liver during energy surplus conditions. Mechanistically, SBK1 phosphorylates the orphan nuclear receptor 4A1 (Nur77) on serine 344 to promote hepatic FGF21 expression and inhibit the transcription of genes involved in lipid anabolism. CONCLUSIONS Collectively, our data suggest that SBK1 is a regulator of the metabolic adaption against obesity through the Nur77-FGF21 pathway.
Collapse
Affiliation(s)
- Palak Ahuja
- School of Biological Sciences , The University of Hong Kong , Hong Kong SAR , China
| | - Xinyi Bi
- School of Biological Sciences , The University of Hong Kong , Hong Kong SAR , China
| | - Chun Fai Ng
- School of Biological Sciences , The University of Hong Kong , Hong Kong SAR , China
| | | | - Miaojia Hang
- School of Biological Sciences , The University of Hong Kong , Hong Kong SAR , China
| | - Brian Pak Shing Pang
- School of Biological Sciences , The University of Hong Kong , Hong Kong SAR , China
| | - Elsie Chit Yu Iu
- School of Biological Sciences , The University of Hong Kong , Hong Kong SAR , China
| | - Wing Suen Chan
- School of Biological Sciences , The University of Hong Kong , Hong Kong SAR , China
| | - Xin Ci Ooi
- School of Biological Sciences , The University of Hong Kong , Hong Kong SAR , China
| | - Anqi Sun
- School of Biological Sciences , The University of Hong Kong , Hong Kong SAR , China
| | - Oana Herlea-Pana
- Department of Physiology , The University of Oklahoma Health Sciences Center , Oklahoma City , Oklahoma , USA
| | - Zhixue Liu
- Center for Molecular & Translational Medicine , Georgia State University , Atlanta , Georgia , USA
| | - Xiuying Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Beijing , Key Laboratory of Drug Target and Screening Research , Institute of Materia Medica of Peking Union Medical College , Beijing , China
| | - Baowei Jiao
- State Key Laboratory of Genetic Resources and Evolution , Kunming Institute of Zoology , Chinese Academy of Sciences , Kunming , China
| | - Xin Ma
- Cancer Centre , Faculty of Health Sciences , University of Macau , Taipa, Macau , China
| | - Kelvin Ka Lok Wu
- Department of Health Technology and Informatics , The Hong Kong Polytechnic University , Hong Kong SAR , China
| | - Leo Tsz On Lee
- Cancer Centre , Faculty of Health Sciences , University of Macau , Taipa, Macau , China
- MOE Frontiers Science Center for Precision Oncology , University of Macau , Taipa, Macau , China
| | - Kenneth King Yip Cheng
- Department of Health Technology and Informatics , The Hong Kong Polytechnic University , Hong Kong SAR , China
| | - Chi Wai Lee
- School of Biomedical Sciences , The University of Hong Kong , Hong Kong SAR , China
| | - Chi Bun Chan
- School of Biological Sciences , The University of Hong Kong , Hong Kong SAR , China
- State Key Laboratory of Pharmaceutical Biotechnology , The University of Hong Kong , Hong Kong SAR , China
| |
Collapse
|
24
|
Chen Z, Yang L, Liu Y, Huang P, Song H, Zheng P. The potential function and clinical application of FGF21 in metabolic diseases. Front Pharmacol 2022; 13:1089214. [PMID: 36618930 PMCID: PMC9810635 DOI: 10.3389/fphar.2022.1089214] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
As an endocrine hormone, fibroblast growth factor 21 (FGF21) plays a crucial role in regulating lipid, glucose, and energy metabolism. Endogenous FGF21 is generated by multiple cell types but acts on restricted effector tissues, including the brain, adipose tissue, liver, heart, and skeletal muscle. Intervention with FGF21 in rodents or non-human primates has shown significant pharmacological effects on a range of metabolic dysfunctions, including weight loss and improvement of hyperglycemia, hyperlipidemia, insulin resistance, cardiovascular disease, and non-alcoholic fatty liver disease (NAFLD). Due to the poor pharmacokinetic and biophysical characteristics of native FGF21, long-acting FGF21 analogs and FGF21 receptor agonists have been developed for the treatment of metabolic dysfunction. Clinical trials of several FGF21-based drugs have been performed and shown good safety, tolerance, and efficacy. Here we review the actions of FGF21 and summarize the associated clinical trials in obesity, type 2 diabetes mellitus (T2DM), and NAFLD, to help understand and promote the development of efficient treatment for metabolic diseases via targeting FGF21.
Collapse
Affiliation(s)
- Zhiwei Chen
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lili Yang
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yang Liu
- Teaching Experiment Center, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ping Huang
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Haiyan Song
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China,*Correspondence: Peiyong Zheng, ; Haiyan Song,
| | - Peiyong Zheng
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China,*Correspondence: Peiyong Zheng, ; Haiyan Song,
| |
Collapse
|
25
|
Pohlhammer J, Heinzl MW, Klammer C, Feldbauer R, Rosenberger K, Resl M, Wagner T, Obendorf F, Egger‐Salmhofer M, Dieplinger B, Clodi M. Glucose and lipopolysaccharide differentially regulate fibroblast growth factor 21 in healthy male human volunteers - A prospective cross-over trial. J Cell Mol Med 2022; 26:5998-6005. [PMID: 36415151 PMCID: PMC9753437 DOI: 10.1111/jcmm.17614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/12/2022] [Accepted: 10/31/2022] [Indexed: 11/25/2022] Open
Abstract
Fibroblast growth factor 21 (FGF21) affects the regulation of metabolism. Additionally, anti-inflammatory properties are attributed to FGF21, and studies in animals and humans show conflicting results. This study aimed to investigate how FGF21 is affected by glucose and lipopolysaccharide (LPS) in humans. Therefore, FGF21 was measured eight times at different time points within 48 h in this prospective cross-over trial after glucose and LPS on two different study days. The study included ten healthy, non-smoking male subjects aged 18-40. Repeated measures analysis of variance and paired t-test as post hoc analysis were applied. The administration of glucose and LPS resulted in a significant difference in regulating FGF21 (p < 0.001). After glucose administration, FGF21 declined sharply at 360 min, with a subsequent steep increase that exceeded baseline levels. LPS induced a drop in FGF21 after 180 min, while the baseline concentrations were not reached. After 180 min and 24 h, a statistically significant difference was demonstrated after adjusting the Bonferroni-Holm method. So, our results support the hypothesis that glucose and LPS differentially affect the human expression of FGF21 over 48 h.
Collapse
Affiliation(s)
- Johannes Pohlhammer
- Department of MedicineKonventhospital Barmherzige Brueder Linz (St. John of God Hospital Linz)LinzAustria,ICMR–Institute for Cardiovascular and Metabolic Research, JKU LinzLinzAustria
| | - Matthias Wolfgang Heinzl
- Department of MedicineKonventhospital Barmherzige Brueder Linz (St. John of God Hospital Linz)LinzAustria,ICMR–Institute for Cardiovascular and Metabolic Research, JKU LinzLinzAustria
| | - Carmen Klammer
- Department of MedicineKonventhospital Barmherzige Brueder Linz (St. John of God Hospital Linz)LinzAustria,ICMR–Institute for Cardiovascular and Metabolic Research, JKU LinzLinzAustria
| | - Roland Feldbauer
- Department of MedicineKonventhospital Barmherzige Brueder Linz (St. John of God Hospital Linz)LinzAustria,ICMR–Institute for Cardiovascular and Metabolic Research, JKU LinzLinzAustria
| | | | - Michael Resl
- Department of MedicineKonventhospital Barmherzige Brueder Linz (St. John of God Hospital Linz)LinzAustria,ICMR–Institute for Cardiovascular and Metabolic Research, JKU LinzLinzAustria
| | - Thomas Wagner
- Department of MedicineKonventhospital Barmherzige Brueder Linz (St. John of God Hospital Linz)LinzAustria,ICMR–Institute for Cardiovascular and Metabolic Research, JKU LinzLinzAustria
| | - Florian Obendorf
- Department of MedicineKonventhospital Barmherzige Brueder Linz (St. John of God Hospital Linz)LinzAustria,ICMR–Institute for Cardiovascular and Metabolic Research, JKU LinzLinzAustria
| | - Margot Egger‐Salmhofer
- Department of Laboratory MedicineKonventhospital Barmherzige Brueder Linz and Ordensklinikum Linz Barmherzige SchwesternLinzAustria
| | - Benjamin Dieplinger
- Department of Laboratory MedicineKonventhospital Barmherzige Brueder Linz and Ordensklinikum Linz Barmherzige SchwesternLinzAustria
| | - Martin Clodi
- Department of MedicineKonventhospital Barmherzige Brueder Linz (St. John of God Hospital Linz)LinzAustria,ICMR–Institute for Cardiovascular and Metabolic Research, JKU LinzLinzAustria
| |
Collapse
|
26
|
Fibroblast growth factor 21 and dietary macronutrient intake in female mice. Physiol Behav 2022; 257:113995. [DOI: 10.1016/j.physbeh.2022.113995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/17/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022]
|
27
|
Yan F, Yuan L, Yang F, Wu G, Jiang X. Emerging roles of fibroblast growth factor 21 in critical disease. Front Cardiovasc Med 2022; 9:1053997. [PMID: 36440004 PMCID: PMC9684205 DOI: 10.3389/fcvm.2022.1053997] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 10/19/2022] [Indexed: 03/01/2024] Open
Abstract
In spite of the great progress in the management of critical diseases in recent years, its associated prevalence and mortality of multiple organ failure still remain high. As an endocrine hormone, fibroblast growth factor 21 (FGF21) functions to maintain homeostasis in the whole body. Recent studies have proved that FGF21 has promising potential effects in critical diseases. FGF21 has also been found to have a close relationship with the progression of critical diseases and has a great predictive function for organ failure. The level of FGF21 was elevated in both mouse models and human patients with sepsis or other critical illnesses. Moreover, it is a promising biomarker and has certain therapeutic roles in some critical diseases. We focus on the emerging roles of FGF21 and its potential effects in critical diseases including acute lung injury/acute respiratory distress syndrome (ALI/ARDS), acute myocardial injury (AMI), acute kidney injury (AKI), sepsis, and liver failure in this review. FGF21 has high application value and is worth further studying. Focusing on FGF21 may provide a new perspective for the management of the critical diseases.
Collapse
Affiliation(s)
- Fang Yan
- Department of Geriatrics, Chengdu Fifth People’s Hospital, Geriatric Diseases Institute of Chengdu, Chengdu, China
- Center for Medicine Research and Translation, Chengdu Fifth People’s Hospital, Chengdu, China
| | - Li Yuan
- Department of Clinical Laboratory Medicine, Chengdu Fifth People’s Hospital, Chengdu, China
| | - Fan Yang
- Department of Endocrinology, Chengdu Fifth People’s Hospital, Chengdu, China
| | - Guicheng Wu
- Department of Hepatology, School of Medicine, Chongqing Municipality Clinical Research Center for Endocrinology and Metabolic Diseases, Chongqing University Three Goreges Hosipital, Chongqing University, Chongqing, China
| | - Xiaobo Jiang
- Department of Cardiology, Chengdu Fifth People’s Hospital, Chengdu, China
| |
Collapse
|
28
|
Geidl-Flueck B, Hochuli M, Spinas GA, Gerber PA. Do Sugar-Sweetened Beverages Increase Fasting FGF21 Irrespective of the Type of Added Sugar? A Secondary Exploratory Analysis of a Randomized Controlled Trial. Nutrients 2022; 14:4169. [PMID: 36235821 PMCID: PMC9572320 DOI: 10.3390/nu14194169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/16/2022] [Accepted: 10/01/2022] [Indexed: 11/05/2022] Open
Abstract
Human fibroblast growth factor 21 (FGF21) is a multifaceted metabolic regulator considered to control sugar intake and to exert beneficial effects on glucose and lipid metabolism. Elevated serum FGF21 levels are associated with metabolic syndrome, suggesting a state of FGF21 resistance. Further, given the evidence of a hepatic ChREBP and FGF21 signaling axis, it can be assumed that SSBs containing fructose would possibly increase FGF21 concentrations. We investigated the effects of sugar-sweetened beverage (SSB) consumption on fasting FGF21 levels in healthy, lean men, discriminating the effects of glucose, fructose, and their disaccharide sucrose by secondary data analysis from a randomized controlled trial. Seven weeks of daily SSB consumption resulted in increased fasting FGF21 in healthy, lean men, irrespective of the sugar type. Medians of ΔFGF21 between post-SSB intervention values (week 7) and no-intervention period values (IQR) in pg/mL were: glucose 17.4 (0.4-45.8), fructose 22.9 (-8.6-35.1), and sucrose 13.7 (2.2-46.1). In contrast, this change in FGF21 concentration was only 6.3 (-20.1-26.9) pg/mL in the control group. The lack of a fructose-specific effect on FGF21 concentrations is contrary to our assumption. It is concluded that SSB intake may impact FGF21 concentrations and could contribute to the increased FGF21 concentrations observed in subjects suffering from metabolic syndrome that is possibly associated with decreased FGF21 responsiveness.
Collapse
Affiliation(s)
- Bettina Geidl-Flueck
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ), 8091 Zurich and University of Zurich (UZH), 8006 Zurich, Switzerland
| | - Michel Hochuli
- Department of Diabetes, Endocrinology, Nutritional Medicine and Metabolism, Inselspital, Bern University Hospital and University of Bern, 3010 Bern, Switzerland
| | - Giatgen A. Spinas
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ), 8091 Zurich and University of Zurich (UZH), 8006 Zurich, Switzerland
| | - Philipp A. Gerber
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ), 8091 Zurich and University of Zurich (UZH), 8006 Zurich, Switzerland
| |
Collapse
|
29
|
SUI Y, CHEN J. Hepatic FGF21: Its Emerging Role in Inter-Organ Crosstalk and Cancers. Int J Biol Sci 2022; 18:5928-5942. [PMID: 36263162 PMCID: PMC9576513 DOI: 10.7150/ijbs.76924] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 09/18/2022] [Indexed: 02/07/2023] Open
Abstract
Fibroblast growth factor (FGF) 21 is one of the FGF members with special endocrine properties. In the last twenty years, it has attracted intense research and development for its physiological functions that respond to dietary manipulation, pharmacological benefits of improving the macronutrient metabolism, and clinical values as a biomarker of various human diseases. Generally, FGF21 can be produced by major metabolic organs, but only the subgroup from the liver shows canonical endocrine properties, which emphasizes the special value of delineating the unique secretory and functional characteristics of hepatic FGF21. There has been a growth in literature to address the extra-hepatic activities of FGF21, and many striking findings have therefore been published. Yet, they are fragmented and scattered, and controversies are raised from divergent findings. For this reason, there is a need for a systematic and critical evaluation of current research in this aspect. In this review, we focus on the current knowledge about the molecular biology of endocrine FGF21, especially present details on the regulation of circulating levels of FGF21. We also emphasize its emerging roles in inter-organ crosstalk and cancer development.
Collapse
Affiliation(s)
- Yue SUI
- School of Chinese Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Jianping CHEN
- School of Chinese Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
- Shenzhen Institute of Research and Innovation, The University of Hong Kong, Shenzhen, China
| |
Collapse
|
30
|
Qian Z, Zhang Y, Yang N, Nie H, Yang Z, Luo P, Wei X, Guan Y, Huang Y, Yan J, Ruan L, Zhang C, Zhang L. Close association between lifestyle and circulating FGF21 levels: A systematic review and meta-analysis. Front Endocrinol (Lausanne) 2022; 13:984828. [PMID: 36093108 PMCID: PMC9453313 DOI: 10.3389/fendo.2022.984828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 08/03/2022] [Indexed: 11/19/2022] Open
Abstract
Background The impact of lifestyle factors on circulating fibroblast growth factor 21 (cFGF21) remains unclear. We conducted this systematic review and meta-analysis to evaluate the association between lifestyle factors and cFGF21 levels. Methods We included studies that evaluated the effects of different lifestyles on cFGF21 concentration in adults, which included smoking, exercise, diets, alcohol consumption and weight loss. Random effects models or fixed effects models were used for meta-analysis to calculate the standardized mean difference (SMD) and 95% confidence interval according to the heterogeneity among studies. Study quality was assessed using the Newcastle-Ottawa Scale for cohort studies, the Joanna Briggs Institution Checklist for cross-sectional studies, and the PEDro scale for experimental studies. Results A total of 50 studies with 1438 individuals were included. Overall, smoking, a hypercaloric carbohydrate-rich diet, a hypercaloric fat-rich diet, amino acid or protein restriction, excessive fructose intake and alcohol consumption significantly upregulated cFGF21 levels (p<0.05), whereas fish oil intake and calorie restriction with sufficient protein intake significantly decreased cFGF21 (p<0.05). Compared to the preexercise cFGF21 level, the cFGF21 level significantly increased within 3 hours postexercise (p<0.0001), while it significantly decreased in the blood sampled >6 h postexercise (p=0.01). Moreover, higher exercise intensity resulted in higher upregulation of cFGF21 at 1-hour post exercise (p=0.0006). Conclusion FGF21 could serve as a potential biomarker for the assessment of different lifestyle interventions. When it is used for this purpose, a standard study protocol needs to be established, especially taking into consideration the intervention types and the sampling time post-intervention. Systematic Review Registration https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42021254758, identifier CRD42021254758.
Collapse
Affiliation(s)
- Zonghao Qian
- Institute of Gerontology, Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Gerontology Center of Hubei Province, Wuhan, China
| | - Yucong Zhang
- Institute of Gerontology, Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Gerontology Center of Hubei Province, Wuhan, China
| | - Ni Yang
- Institute of Gerontology, Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Gerontology Center of Hubei Province, Wuhan, China
| | - Hao Nie
- Institute of Gerontology, Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Gerontology Center of Hubei Province, Wuhan, China
| | - Zhen Yang
- Institute of Gerontology, Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Gerontology Center of Hubei Province, Wuhan, China
| | - Pengcheng Luo
- Institute of Gerontology, Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Gerontology Center of Hubei Province, Wuhan, China
| | - Xiuxian Wei
- Institute of Gerontology, Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Gerontology Center of Hubei Province, Wuhan, China
| | - Yuqi Guan
- Institute of Gerontology, Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Gerontology Center of Hubei Province, Wuhan, China
| | - Yi Huang
- Institute of Gerontology, Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Gerontology Center of Hubei Province, Wuhan, China
| | - Jinhua Yan
- Institute of Gerontology, Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Gerontology Center of Hubei Province, Wuhan, China
| | - Lei Ruan
- Institute of Gerontology, Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Gerontology Center of Hubei Province, Wuhan, China
| | - Cuntai Zhang
- Institute of Gerontology, Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Gerontology Center of Hubei Province, Wuhan, China
| | - Le Zhang
- Institute of Gerontology, Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Gerontology Center of Hubei Province, Wuhan, China
| |
Collapse
|
31
|
Strober JW, Fernandez S, Ye H, Brady MJ. Differential effects of acute versus chronic dietary fructose consumption on metabolic responses in FVB/N mice. Am J Physiol Regul Integr Comp Physiol 2022; 323:R255-R266. [PMID: 35580305 PMCID: PMC9306790 DOI: 10.1152/ajpregu.00174.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Increased human consumption of hgh fructose corn syrup has been linked to the marked increase in obesity and metabolic syndrome. Previous studies on the rapid effects of a high fructose diet in mice have largely been confined to the C57Bl6 strains. In the current studied, the FVB/N strain of mice that are resistant to diet induced weight gain were utilized and fed a control or high fructose diet for 48 hours or 12 weeks. Many of the previously reported changes that occurred upon high fructose feeding for 48 hours in C57Bl6 mice were recapitulated in the FVB/N mice. However, the acute increases in fructolytic and lipogenic gene expression were completely lost during the 12 week dietary intervention protocol. Furthermore, there was no significant weight gain in FVB/N mice fed a high fructose diet for 12 weeks, despite an overall increase in caloric consumption and an increase in average epididymal adipocyte cell size. These findings may be in part explained by a commensurate increase in energy expenditure and in carbohydrate utilization in high fructose fed animals. Overall, these findings demonstrate that FVB/N mice are a suitable model for the study of the effects of dietary intervention on metabolic and molecular parameters. Furthermore, the rapid changes in hepatic gene expression that have been widely reported were not sustained over a longer time course. Compensatory changes in energy expenditure and utilization may be in part responsible for the differences obtained between acute and chronic high fructose feeding protocols.
Collapse
Affiliation(s)
- Jordan W Strober
- Committee on Molecular Metabolism and Nutrition, University of Chicago, Chicago IL, United States
| | - Sully Fernandez
- Committee on Molecular Metabolism and Nutrition, University of Chicago, Chicago IL, United States
| | - Honggang Ye
- Department of Medicine, Section of Endocrinology, Diabetes and Metabolism, University of Chicago, Chicago IL, United States
| | - Matthew J Brady
- Committee on Molecular Metabolism and Nutrition, University of Chicago, Chicago IL, United States.,Department of Medicine, Section of Endocrinology, Diabetes and Metabolism, University of Chicago, Chicago IL, United States
| |
Collapse
|
32
|
Chronic Inflammation—A Link between Nonalcoholic Fatty Liver Disease (NAFLD) and Dysfunctional Adipose Tissue. Medicina (B Aires) 2022; 58:medicina58050641. [PMID: 35630058 PMCID: PMC9147364 DOI: 10.3390/medicina58050641] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 05/02/2022] [Accepted: 05/03/2022] [Indexed: 02/06/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a new challenge in modern medicine, due to its high prevalence in the world. The pathogenesis of NAFLD is a complex dysmetabolic process, following the “multiple-hit” hypothesis that involves hepatocytes excessive accumulation of triglycerides, insulin resistance (IR), increased oxidative stress, chronic low-grade inflammatory response and lipotoxicity. In this review, we provide an overview of the interrelation of these processes, the link between systemic and local inflammation and the role of dysfunctional adipose tissue (AT) in the NAFLD development. Multiple extrahepatic triggers of the pathophysiological mechanisms of NAFLD are described: nutritional deficiency or malnutrition, unhealthy food intake, the dysfunction of the liver–gut axis, the involvement of the mesenteric adipose tissue, the role of adipokines such as adiponectin, of food intake hormone, the leptin and leptin resistance (LR) and adipose tissue’s hormone, the resistin. In addition, a wide range of intrahepatic players are involved: oxidative stress, fatty acid oxidation, endoplasmic reticulum stress, mitochondrial dysfunction, resident macrophages (Kupffer cells), neutrophils, dendritic cells (DCs), B and T lymphocytes contributing to the potential evolution of NAFLD to nonalcoholic steatohepatitis (NASH). This interdependent approach to complex dysmetabolic imbalance in NAFLD, integrating relevant studies, could contribute to a better clarification of pathogenesis and consequently the development of new personalized treatments, targeting de novo lipogenesis, chronic inflammation and fibrosis. Further studies are needed to focus not only on treatment, but also on prevention strategy in NAFLD.
Collapse
|
33
|
Katsumura S, Siddiqui N, Goldsmith MR, Cheah JH, Fujikawa T, Minegishi G, Yamagata A, Yabuki Y, Kobayashi K, Shirouzu M, Inagaki T, Huang THM, Musi N, Topisirovic I, Larsson O, Morita M. Deadenylase-dependent mRNA decay of GDF15 and FGF21 orchestrates food intake and energy expenditure. Cell Metab 2022; 34:564-580.e8. [PMID: 35385705 PMCID: PMC9386786 DOI: 10.1016/j.cmet.2022.03.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 10/26/2021] [Accepted: 03/14/2022] [Indexed: 12/11/2022]
Abstract
Hepatokines, secretory proteins from the liver, mediate inter-organ communication to maintain a metabolic balance between food intake and energy expenditure. However, molecular mechanisms by which hepatokine levels are rapidly adjusted following stimuli are largely unknown. Here, we unravel how CNOT6L deadenylase switches off hepatokine expression after responding to stimuli (e.g., exercise and food) to orchestrate energy intake and expenditure. Mechanistically, CNOT6L inhibition stabilizes hepatic Gdf15 and Fgf21 mRNAs, increasing corresponding serum protein levels. The resulting upregulation of GDF15 stimulates the hindbrain to suppress appetite, while increased FGF21 affects the liver and adipose tissues to induce energy expenditure and lipid consumption. Despite the potential of hepatokines to treat metabolic disorders, their administration therapies have been challenging. Using small-molecule screening, we identified a CNOT6L inhibitor enhancing GDF15 and FGF21 hepatokine levels, which dramatically improves diet-induced metabolic syndrome. Our discovery, therefore, lays the foundation for an unprecedented strategy to treat metabolic syndrome.
Collapse
Affiliation(s)
- Sakie Katsumura
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Nadeem Siddiqui
- Department of Biochemistry and Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3, Canada
| | | | - Jaime H Cheah
- High Throughput Sciences Facility, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Teppei Fujikawa
- Center for Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Genki Minegishi
- Laboratory of DDS Design and Drug Disposition, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan
| | - Atsushi Yamagata
- RIKEN Center for Biosystems Dynamics Research, Yokohama, Kanagawa 230-0045, Japan
| | - Yukako Yabuki
- RIKEN Center for Biosystems Dynamics Research, Yokohama, Kanagawa 230-0045, Japan
| | - Kaoru Kobayashi
- Department of Biopharmaceutics, Graduate School of Clinical Pharmacy, Meiji Pharmaceutical University, Kiyose-shi, Tokyo 204-8588, Japan
| | - Mikako Shirouzu
- RIKEN Center for Biosystems Dynamics Research, Yokohama, Kanagawa 230-0045, Japan
| | - Takeshi Inagaki
- Laboratory of Epigenetics and Metabolism, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi-shi, Gunma 371-8512, Japan
| | - Tim H-M Huang
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Nicolas Musi
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; San Antonio Geriatric Research, Education, and Clinical Center, South Texas Veterans Health Care System, San Antonio, TX 78229, USA
| | - Ivan Topisirovic
- Lady Davis Institute, Sir Mortimer B. Davis Jewish General Hospital, Montreal, QC H3A 1A3, Canada; Gerald Bronfman Department of Oncology, Division of Experimental Medicine and Department of Biochemistry, McGill University, Montreal, QC H3A 1A3, Canada
| | - Ola Larsson
- Department of Oncology-Pathology, Science for Life Laboratory, Karolinska Institute, 171 65 Stockholm, Sweden
| | - Masahiro Morita
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA.
| |
Collapse
|
34
|
Quan X, Guo Q, Li X, Liang Y, Cui M, Li J, Huang S, Wang J, Li B. Malus toringoides (Rehd.) Hughes improves glucose and lipid metabolism and liver injury in high fructose-induced mice. J Food Biochem 2022; 46:e14134. [PMID: 35332572 DOI: 10.1111/jfbc.14134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 01/08/2022] [Accepted: 01/29/2022] [Indexed: 01/06/2023]
Abstract
Malus toringoides (Rehd.) Hughes, as a traditional medicinal and edible plant used in Tibet, China, is used to treat hypertension, hyperlipidemia, and liver diseases. In recent decades, excessive fructose intake with diet has greatly increased the occurrence of a series of metabolic diseases including obesity, insulin resistance, hypertension, and hyperlipidemia. The present study was designed to investigate the effects of an ethanol extract of M. toringoides (EMT) on glucose and lipid metabolism and liver injury in high fructose-induced mice. The C57BL/6J male mice were orally administrated with 30% fructose solution for 8 weeks, and EMT was given orally for another 8 weeks. The level of liver lipids related parameters, hepatic oxidative stress, and inflammatory mediators was detected by the kits. The improving effects of EMT on liver injury and lipid accumulation of mice were observed by hematoxylin and eosin staining and Oil Red O staining. In vitro, the hypolipidemic effect of EMT on palmitic acid-induced HepG2 cells was detected by the kits and Oil Red O staining. Our results showed that EMT has the hypolipidemic effect in vivo and in vitro, and can improve liver injury caused by fructose intake though ameliorating oxidative stress and inflammatory responses. Thus, we suggested that EMT may be a candidate therapeutic agent to improve a series of metabolic diseases including obesity, insulin resistance, and hyperlipidemia. PRACTICAL APPLICATIONS: Our study was aimed to find a novel candidate drug for liver diseases using natural products. We assessed the protective effects of Malus toringoides (Rehd.) Hughes in the pathogenesis of glucose and lipid metabolism. In vivo, the plant significantly improved the disorder of blood lipid and blood glucose, and liver injury in mice induced by fructose, and in vitro, this plant significantly improved the lipid accumulation of HepG2 cells induced by palmitic acid. To sum up, our studies suggested that the plant may be beneficial in the prevention and management of diet-induced abnormal glucose and lipid metabolism and liver diseases. Therefore, it will be a candidate therapeutic agent to improve liver diseases.
Collapse
Affiliation(s)
- Xianghua Quan
- Department of Pharmacy, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Qie Guo
- Department of Pharmacy, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiangpeng Li
- Department of Pharmacy, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yu Liang
- Department of Pharmacy, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Mengna Cui
- Department of Pharmacy, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jing Li
- Department of Pharmacy, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shan Huang
- Key Laboratory of Pharmaceutical Research for Metabolic Diseases, Department of Pharmacy, Qingdao University of Science & Technology, Qingdao, China
| | - Jule Wang
- Key Laboratory of Pharmaceutical Research for Metabolic Diseases, Department of Pharmacy, Tibet University, Lhasa, China
| | - Bin Li
- Key Laboratory of Pharmaceutical Research for Metabolic Diseases, Department of Pharmacy, Qingdao University of Science & Technology, Qingdao, China
| |
Collapse
|
35
|
Eroglu N, Yerlikaya FH, Onmaz DE, Colakoglu MC. Role of ChREBP and SREBP-1c in gestational diabetes: two key players in glucose and lipid metabolism. Int J Diabetes Dev Ctries 2022. [DOI: 10.1007/s13410-022-01050-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
36
|
Endocrine Fibroblast Growth Factors in Relation to Stress Signaling. Cells 2022; 11:cells11030505. [PMID: 35159314 PMCID: PMC8834311 DOI: 10.3390/cells11030505] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/30/2022] [Accepted: 01/31/2022] [Indexed: 01/10/2023] Open
Abstract
Fibroblast growth factors (FGFs) play important roles in various growth signaling processes, including proliferation, development, and differentiation. Endocrine FGFs, i.e., atypical FGFs, including FGF15/19, FGF21, and FGF23, function as endocrine hormones that regulate energy metabolism. Nutritional status is known to regulate the expression of endocrine FGFs through nuclear hormone receptors. The increased expression of endocrine FGFs regulates energy metabolism processes, such as fatty acid metabolism and glucose metabolism. Recently, a relationship was found between the FGF19 subfamily and stress signaling during stresses such as endoplasmic reticulum stress and oxidative stress. This review focuses on endocrine FGFs and the recent progress in FGF studies in relation to stress signaling. In addition, the relevance of the stress-FGF pathway to disease and human health is discussed.
Collapse
|
37
|
Wu CT, Chaffin AT, Ryan KK. Fibroblast Growth Factor 21 Facilitates the Homeostatic Control of Feeding Behavior. J Clin Med 2022; 11:580. [PMID: 35160033 PMCID: PMC8836936 DOI: 10.3390/jcm11030580] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 02/01/2023] Open
Abstract
Fibroblast growth factor 21 (FGF21) is a stress hormone that is released from the liver in response to nutritional and metabolic challenges. In addition to its well-described effects on systemic metabolism, a growing body of literature now supports the notion that FGF21 also acts via the central nervous system to control feeding behavior. Here we review the current understanding of FGF21 as a hormone regulating feeding behavior in rodents, non-human primates, and humans. First, we examine the nutritional contexts that induce FGF21 secretion. Initial reports describing FGF21 as a 'starvation hormone' have now been further refined. FGF21 is now better understood as an endocrine mediator of the intracellular stress response to various nutritional manipulations, including excess sugars and alcohol, caloric deficits, a ketogenic diet, and amino acid restriction. We discuss FGF21's effects on energy intake and macronutrient choice, together with our current understanding of the underlying neural mechanisms. We argue that the behavioral effects of FGF21 function primarily to maintain systemic macronutrient homeostasis, and in particular to maintain an adequate supply of protein and amino acids for use by the cells.
Collapse
Affiliation(s)
| | | | - Karen K. Ryan
- Department of Neurobiology, Physiology and Behavior, College of Biological Sciences, University of California, Davis, CA 95616, USA; (C.-T.W.); (A.T.C.)
| |
Collapse
|
38
|
Solomon TP, Carter S, Haus JM, Karstoft K, von Holstein-Rathlou S, Nielsen MS, Gillum MP. Plasma FGF21 concentrations are regulated by glucose independently of insulin and GLP-1 in lean, healthy humans. PeerJ 2022; 10:e12755. [PMID: 35111398 PMCID: PMC8783558 DOI: 10.7717/peerj.12755] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 12/15/2021] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Fibroblast growth factor 21 (FGF21) treatment improves metabolic homeostasis in diverse species, including humans. Physiologically, plasma FGF21 levels increase modestly after glucose ingestion, but it is unclear whether this is mediated by glucose itself or due to a secondary effect of postprandial endocrine responses. A refined understanding of the mechanisms that control FGF21 release in humans may accelerate the development of small-molecule FGF21 secretagogues to treat metabolic disease. This study aimed to determine whether FGF21 secretion is stimulated by elevations in plasma glucose, insulin, or glucagon-like peptide-1 (GLP-1) in humans. METHODS Three groups of ten healthy participants were included in a parallel-group observational study. Group A underwent a hyperglycemic infusion; Group B underwent a 40 mU/m2/min hyperinsulinemic euglycemic clamp; Group C underwent two pancreatic clamps (to suppress endogenous insulin secretion) with euglycemic and hyperglycemic stages with an infusion of either saline or 0.5 pmol/kg/min GLP-1. Plasma FGF21 concentrations were measured at baseline and during each clamp stage by ELISA. RESULTS Plasma FGF21 was unaltered during hyperglycemic infusion and hyperinsulinemic euglycemic clamps, compared to baseline. FGF21 was, however, increased by hyperglycemia under pancreatic clamp conditions (P < 0.05), while GLP-1 infusion under pancreatic clamp conditions did not change circulating FGF21 levels. CONCLUSION Increases in plasma FGF21 are likely driven directly by changes in plasma glucose independent of changes in insulin or GLP-1 secretion. Ecologically valid postprandial investigations are now needed to confirm our observations from basic science infusion models.
Collapse
Affiliation(s)
- Thomas P.J. Solomon
- School of Sport, Exercise and Rehabilitation Sciences, College of Life & Environmental Sciences, University of Birmingham, Edgbaston, United Kingdom,Institute of Metabolism and Systems Research, College of Medical & Dental Sciences, University of Birmingham, Edgbaston, United Kingdom
| | - Steven Carter
- School of Sport, Exercise and Rehabilitation Sciences, College of Life & Environmental Sciences, University of Birmingham, Edgbaston, United Kingdom
| | - Jacob M. Haus
- School of Kinesiology, University of Michigan - Ann Arbor, Michigan, United States of America
| | - Kristian Karstoft
- Centre of Inflammation and Metabolism, Rigshospitalet, Copenhagen, Denmark,Centre for Physical Activity Research, Rigshospitalet, Copenhagen, Denmark
| | - Stephanie von Holstein-Rathlou
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mette S. Nielsen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Matthew P. Gillum
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
39
|
Guisantes-Batan E, Mazuecos L, Rubio B, Pereira-Caro G, Moreno-Rojas JM, Andrés A, Gómez-Alonso S, Gallardo N. Grape seed extract supplementation modulates hepatic lipid metabolism in rats. Implication of PPARβ/δ. Food Funct 2022; 13:11353-11368. [DOI: 10.1039/d2fo02199d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Grape seed extract supplementationat low doses (25 mg per kg BW per day) modulates the transcriptional programs that controls the hepatic lipid metabolism in lean normolipidemic Wistar rats through PPARβ/δ activation.
Collapse
Affiliation(s)
- Eduardo Guisantes-Batan
- Regional Institute for Applied Scientific Research, University of Castilla-La Mancha, Avenida Camilo José Cela 1B, 13071 Ciudad Real, Spain
- Department of Analytical Chemistry and Food Technology, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, Avenida Camilo José Cela 10, 13071 Ciudad Real, Spain
| | - Lorena Mazuecos
- Regional Centre for Biomedical Research (CRIB), University of Castilla-La Mancha, 13071 Ciudad Real, Spain
- Biochemistry Section, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, Avenida Camilo José Cela 10, 13071 Ciudad Real, Spain
| | - Blanca Rubio
- Regional Centre for Biomedical Research (CRIB), University of Castilla-La Mancha, 13071 Ciudad Real, Spain
- Biochemistry Section, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, Avenida Camilo José Cela 10, 13071 Ciudad Real, Spain
| | - Gema Pereira-Caro
- Department of Agroindustry and Food Quality, Andalusian Institute of Agricultural and Fisheries Research and Training (IFAPA), Avenida Menendez-Pidal, SN, 14004 Córdoba, Spain
- Foods for Health Group, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
| | - José Manuel Moreno-Rojas
- Department of Agroindustry and Food Quality, Andalusian Institute of Agricultural and Fisheries Research and Training (IFAPA), Avenida Menendez-Pidal, SN, 14004 Córdoba, Spain
- Foods for Health Group, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
| | - Antonio Andrés
- Regional Centre for Biomedical Research (CRIB), University of Castilla-La Mancha, 13071 Ciudad Real, Spain
- Biochemistry Section, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, Avenida Camilo José Cela 10, 13071 Ciudad Real, Spain
| | - Sergio Gómez-Alonso
- Regional Institute for Applied Scientific Research, University of Castilla-La Mancha, Avenida Camilo José Cela 1B, 13071 Ciudad Real, Spain
- Department of Analytical Chemistry and Food Technology, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, Avenida Camilo José Cela 10, 13071 Ciudad Real, Spain
| | - Nilda Gallardo
- Regional Centre for Biomedical Research (CRIB), University of Castilla-La Mancha, 13071 Ciudad Real, Spain
- Biochemistry Section, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, Avenida Camilo José Cela 10, 13071 Ciudad Real, Spain
| |
Collapse
|
40
|
Khan MS, Spann RA, Münzberg H, Yu S, Albaugh VL, He Y, Berthoud HR, Morrison CD. Protein Appetite at the Interface between Nutrient Sensing and Physiological Homeostasis. Nutrients 2021; 13:4103. [PMID: 34836357 PMCID: PMC8620426 DOI: 10.3390/nu13114103] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/04/2021] [Accepted: 11/11/2021] [Indexed: 12/19/2022] Open
Abstract
Feeding behavior is guided by multiple competing physiological needs, as animals must sense their internal nutritional state and then identify and consume foods that meet nutritional needs. Dietary protein intake is necessary to provide essential amino acids and represents a specific, distinct nutritional need. Consistent with this importance, there is a relatively strong body of literature indicating that protein intake is defended, such that animals sense the restriction of protein and adaptively alter feeding behavior to increase protein intake. Here, we argue that this matching of food consumption with physiological need requires at least two concurrent mechanisms: the first being the detection of internal nutritional need (a protein need state) and the second being the discrimination between foods with differing nutritional compositions. In this review, we outline various mechanisms that could mediate the sensing of need state and the discrimination between protein-rich and protein-poor foods. Finally, we briefly describe how the interaction of these mechanisms might allow an animal to self-select between a complex array of foods to meet nutritional needs and adaptively respond to changes in either the external environment or internal physiological state.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Christopher D. Morrison
- Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA; (M.S.K.); (R.A.S.); (H.M.); (S.Y.); (V.L.A.); (Y.H.); (H.-R.B.)
| |
Collapse
|
41
|
The Roles of Carbohydrate Response Element Binding Protein in the Relationship between Carbohydrate Intake and Diseases. Int J Mol Sci 2021; 22:ijms222112058. [PMID: 34769488 PMCID: PMC8584459 DOI: 10.3390/ijms222112058] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 10/29/2021] [Accepted: 11/05/2021] [Indexed: 12/12/2022] Open
Abstract
Carbohydrates are macronutrients that serve as energy sources. Many studies have shown that carbohydrate intake is nonlinearly associated with mortality. Moreover, high-fructose corn syrup (HFCS) consumption is positively associated with obesity, cardiovascular disease, and type 2 diabetes mellitus (T2DM). Accordingly, products with equal amounts of glucose and fructose have the worst effects on caloric intake, body weight gain, and glucose intolerance, suggesting that carbohydrate amount, kind, and form determine mortality. Understanding the role of carbohydrate response element binding protein (ChREBP) in glucose and lipid metabolism will be beneficial for elucidating the harmful effects of high-fructose corn syrup (HFCS), as this glucose-activated transcription factor regulates glycolytic and lipogenic gene expression. Glucose and fructose coordinately supply the metabolites necessary for ChREBP activation and de novo lipogenesis. Chrebp overexpression causes fatty liver and lower plasma glucose levels, and ChREBP deletion prevents obesity and fatty liver. Intestinal ChREBP regulates fructose absorption and catabolism, and adipose-specific Chrebp-knockout mice show insulin resistance. ChREBP also regulates the appetite for sweets by controlling fibroblast growth factor 21, which promotes energy expenditure. Thus, ChREBP partly mimics the effects of carbohydrate, especially HFCS. The relationship between carbohydrate intake and diseases partly resembles those between ChREBP activity and diseases.
Collapse
|
42
|
Doridot L, Hannou SA, Krawczyk SA, Tong W, Kim MS, McElroy GS, Fowler AJ, Astapova II, Herman MA. A Systems Approach Dissociates Fructose-Induced Liver Triglyceride from Hypertriglyceridemia and Hyperinsulinemia in Male Mice. Nutrients 2021; 13:3642. [PMID: 34684643 PMCID: PMC8540719 DOI: 10.3390/nu13103642] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/01/2021] [Accepted: 10/13/2021] [Indexed: 12/13/2022] Open
Abstract
The metabolic syndrome (MetS), defined as the co-occurrence of disorders including obesity, dyslipidemia, insulin resistance, and hepatic steatosis, has become increasingly prevalent in the world over recent decades. Dietary and other environmental factors interacting with genetic predisposition are likely contributors to this epidemic. Among the involved dietary factors, excessive fructose consumption may be a key contributor. When fructose is consumed in large amounts, it can quickly produce many of the features of MetS both in humans and mice. The mechanisms by which fructose contributes to metabolic disease and its potential interactions with genetic factors in these processes remain uncertain. Here, we generated a small F2 genetic cohort of male mice derived from crossing fructose-sensitive and -resistant mouse strains to investigate the interrelationships between fructose-induced metabolic phenotypes and to identify hepatic transcriptional pathways that associate with these phenotypes. Our analysis indicates that the hepatic transcriptional pathways associated with fructose-induced hypertriglyceridemia and hyperinsulinemia are distinct from those that associate with fructose-mediated changes in body weight and liver triglyceride. These results suggest that multiple independent mechanisms and pathways may contribute to different aspects of fructose-induced metabolic disease.
Collapse
Affiliation(s)
- Ludivine Doridot
- Division of Endocrinology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA; (L.D.); (S.A.K.); (M.-S.K.); (G.S.M.); (A.J.F.)
| | - Sarah A. Hannou
- Duke Molecular Physiology Institute, Duke University, Durham, NC 27701, USA; (S.A.H.); (W.T.); (I.I.A.)
| | - Sarah A. Krawczyk
- Division of Endocrinology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA; (L.D.); (S.A.K.); (M.-S.K.); (G.S.M.); (A.J.F.)
| | - Wenxin Tong
- Duke Molecular Physiology Institute, Duke University, Durham, NC 27701, USA; (S.A.H.); (W.T.); (I.I.A.)
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27705, USA
| | - Mi-Sung Kim
- Division of Endocrinology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA; (L.D.); (S.A.K.); (M.-S.K.); (G.S.M.); (A.J.F.)
| | - Gregory S. McElroy
- Division of Endocrinology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA; (L.D.); (S.A.K.); (M.-S.K.); (G.S.M.); (A.J.F.)
| | - Alan J. Fowler
- Division of Endocrinology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA; (L.D.); (S.A.K.); (M.-S.K.); (G.S.M.); (A.J.F.)
| | - Inna I. Astapova
- Duke Molecular Physiology Institute, Duke University, Durham, NC 27701, USA; (S.A.H.); (W.T.); (I.I.A.)
| | - Mark A. Herman
- Duke Molecular Physiology Institute, Duke University, Durham, NC 27701, USA; (S.A.H.); (W.T.); (I.I.A.)
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27705, USA
- Division of Endocrinology and Metabolism and Nutrition, Duke University, Durham, NC 27710, USA
| |
Collapse
|
43
|
Fujihara Y, Kodo Y, Miyoshi SI, Watanabe R, Toyoda H, Mankura M, Kabuto H, Takayama F. Spirulina platensis and its ingredient biopterin glucoside improved insulin sensitivity in non-alcoholic steatohepatitis model. J Clin Biochem Nutr 2021; 69:151-157. [PMID: 34616107 PMCID: PMC8482380 DOI: 10.3164/jcbn.20-201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 12/25/2020] [Indexed: 11/25/2022] Open
Abstract
Non-alcoholic steatohepatitis is the chronic liver disease leading to cirrhosis and cancer and its prevalence is increasing. Some agents are under clinical trials for non-alcoholic steatohepatitis treatment. We previously reported Spirulina (Arthrospira) platensis effectively prevented non-alcoholic steatohepatitis progression in our model rats. The contribution of phycocyanin, an ingredient of Spirulina (Arthrospira) platensis, was limited. We, therefore, have looked for more active components of Spirulina (Arthrospira) platensis. In this study, we pursued the effect of biopterin glucoside, another bioactive ingredient of Spirulina (Arthrospira) platensis. We found Spirulina (Arthrospira) platensis and biopterin glucoside oral administrations effectively alleviated oxidative stress, inflammation and insulin signal failure, and prevented fibroblast growth factor 21 gene overexpression in non-alcoholic steatohepatitis rat livers. We concluded biopterin glucoside is a major component of Spirulina (Arthrospira) platensis action.
Collapse
Affiliation(s)
- Yuri Fujihara
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Yasumasa Kodo
- Spirulina BioLab. Co., Ltd., 1-13-6 Nishinakajima, Yodogawa-ku, Osaka 532-0011, Japan
| | - Shin-Ichi Miyoshi
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Ritsuko Watanabe
- Okayama Kyoritsu General Hospital, 8-10 Akasakahonmachi, Naka-ku, Okayama 703-8288, Japan
| | - Hiroshi Toyoda
- Okayama Kyoritsu General Hospital, 8-10 Akasakahonmachi, Naka-ku, Okayama 703-8288, Japan
| | - Mitsumasa Mankura
- Kurashiki Sakuyo University, 3515 Tamashima Nagao, Kurashiki, Okayama 710-0292, Japan
| | - Hideaki Kabuto
- Kagawa Prefectural College of Health Sciences, 281-1 Murechohara, Takamatsu, Kagawa 761-0123, Japan
| | - Fusako Takayama
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| |
Collapse
|
44
|
Liu D, Pang J, Shao W, Gu J, Zeng Y, He HH, Ling W, Qian X, Jin T. Hepatic Fibroblast Growth Factor 21 Is Involved in Mediating Functions of Liraglutide in Mice With Dietary Challenge. Hepatology 2021; 74:2154-2169. [PMID: 33851458 DOI: 10.1002/hep.31856] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/24/2021] [Accepted: 04/08/2021] [Indexed: 12/27/2022]
Abstract
BACKGROUND AND AIMS Several studies have shown that expression of hepatic fibroblast growth factor 21 (FGF21) can be stimulated by glucagon-like peptide 1 (GLP-1)-based diabetes drugs. As GLP-1 receptor (GLP-1R) is unlikely to be expressed in hepatocytes, we aimed to compare such stimulation in mice and in mouse hepatocytes, determine the involvement of GLP-1R, and clarify whether FGF21 mediates certain functions of the GLP-1R agonist liraglutide. APPROACH AND RESULTS Liver FGF21 expression was assessed in mice receiving a daily liraglutide injection for 3 days or in mouse primary hepatocytes (MPHs) undergoing direct liraglutide treatment. The effects of liraglutide on metabolic improvement and FGF21 expression were then assessed in high-fat diet (HFD)-fed mice and compared with the effects of the dipeptidyl-peptidase 4 inhibitor sitagliptin. Animal studies were also performed in Glp1r-/- mice and liver-specific FGF21-knockout (lFgf21-KO) mice. In wild-type mouse liver that underwent RNA sequencing and quantitative reverse-transcription PCR, we observed liraglutide-stimulated hepatic Fgf21 expression and a lack of Glp1r expression. In MPHs, liraglutide did not stimulate Fgf21. In mice with HFD-induced obesity, liraglutide or sitagliptin treatment reduced plasma triglyceride levels, whereas their effect on reducing body-weight gain was different. Importantly, increased hepatic FGF21 expression was observed in liraglutide-treated mice but was not observed in sitagliptin-treated mice. In HFD-fed Glp1r-/- mice, liraglutide showed no beneficial effects and could not stimulate Fgf21 expression. In lFgf21-KO mice undergoing dietary challenge, the body-weight-gain attenuation and lipid homeostatic effects of liraglutide were lost or significantly reduced. CONCLUSIONS We suggest that liraglutide-stimulated hepatic Fgf21 expression may require GLP-1R to be expressed in extrahepatic organs. Importantly, we revealed that hepatic FGF21 is required for liraglutide to lower body weight and improve hepatic lipid homeostasis. These observations advanced our mechanistic understanding of the function of GLP-1-based drugs in NAFLD.
Collapse
Affiliation(s)
- Dinghui Liu
- Department of Cardiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China.,Division of Advanced Diagnostics, Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Juan Pang
- Division of Advanced Diagnostics, Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada.,Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Weijuan Shao
- Division of Advanced Diagnostics, Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Jianqiu Gu
- Division of Advanced Diagnostics, Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada.,Department of Endocrinology and Metabolism, The First Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China.,Institute of Endocrinology, The First Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Yong Zeng
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Housheng Hansen He
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Wenhua Ling
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Xiaoxian Qian
- Department of Cardiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Tianru Jin
- Division of Advanced Diagnostics, Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada.,Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.,Banting and Best Diabetes Centre, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
45
|
Semmler G, Datz C, Reiberger T, Trauner M. Diet and exercise in NAFLD/NASH: Beyond the obvious. Liver Int 2021; 41:2249-2268. [PMID: 34328248 PMCID: PMC9292198 DOI: 10.1111/liv.15024] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 07/06/2021] [Accepted: 07/10/2021] [Indexed: 12/12/2022]
Abstract
Lifestyle represents the most relevant factor for non-alcoholic fatty liver disease (NAFLD) as the hepatic manifestation of the metabolic syndrome. Although a tremendous body of clinical and preclinical data on the effectiveness of dietary and lifestyle interventions exist, the complexity of this topic makes firm and evidence-based clinical recommendations for nutrition and exercise in NAFLD difficult. The aim of this review is to guide readers through the labyrinth of recent scientific findings on diet and exercise in NAFLD and non-alcoholic steatohepatitis (NASH), summarizing "obvious" findings in a holistic manner and simultaneously highlighting stimulating aspects of clinical and translational research "beyond the obvious". Specifically, the importance of calorie restriction regardless of dietary composition and evidence from low-carbohydrate diets to target the incidence and severity of NAFLD are discussed. The aspect of ketogenesis-potentially achieved via intermittent calorie restriction-seems to be a central aspect of these diets warranting further investigation. Interactions of diet and exercise with the gut microbiota and the individual genetic background need to be comprehensively understood in order to develop personalized dietary concepts and exercise strategies for patients with NAFLD/NASH.
Collapse
Affiliation(s)
- Georg Semmler
- Division of Gastroenterology and HepatologyDepartment of Internal Medicine IIIMedical University of ViennaViennaAustria
| | - Christian Datz
- Department of Internal MedicineGeneral Hospital OberndorfTeaching Hospital of the Paracelsus Medical University SalzburgSalzburgAustria
| | - Thomas Reiberger
- Division of Gastroenterology and HepatologyDepartment of Internal Medicine IIIMedical University of ViennaViennaAustria
| | - Michael Trauner
- Division of Gastroenterology and HepatologyDepartment of Internal Medicine IIIMedical University of ViennaViennaAustria
| |
Collapse
|
46
|
Dong XC, Chowdhury K, Huang M, Kim HG. Signal Transduction and Molecular Regulation in Fatty Liver Disease. Antioxid Redox Signal 2021; 35:689-717. [PMID: 33906425 PMCID: PMC8558079 DOI: 10.1089/ars.2021.0076] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Significance: Fatty liver disease is a major liver disorder in the modern societies. Comprehensive understanding of the pathophysiology and molecular mechanisms is essential for the prevention and treatment of the disease. Recent Advances: Remarkable progress has been made in the recent years in basic and translational research in the field of fatty liver disease. Multiple signaling pathways have been implicated in the development of fatty liver disease, including AMP-activated protein kinase, mechanistic target of rapamycin kinase, endoplasmic reticulum stress, oxidative stress, inflammation, transforming growth factor β, and yes1-associated transcriptional regulator/transcriptional coactivator with PDZ-binding motif (YAP/TAZ). In addition, critical molecular regulations at the transcriptional and epigenetic levels have been linked to the pathogenesis of fatty liver disease. Critical Issues: Some critical issues remain to be solved so that research findings can be translated into clinical applications. Robust and reliable biomarkers are needed for diagnosis of different stages of the fatty liver disease. Effective and safe molecular targets remain to be identified and validated. Prevention strategies require solid scientific evidence and population-wide feasibility. Future Directions: As more data are generated with time, integrative approaches are needed to comprehensively understand the disease pathophysiology and mechanisms at multiple levels from population, organismal system, organ/tissue, to cell. The interactions between genes and environmental factors require deeper investigation for the purposes of prevention and personalized treatment of fatty liver disease. Antioxid. Redox Signal. 35, 689-717.
Collapse
Affiliation(s)
- Xiaocheng Charlie Dong
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Department of BioHealth Informatics, School of Informatics and Computing, Indiana University Purdue University Indianapolis, Indianapolis, Indiana, USA
| | - Kushan Chowdhury
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Menghao Huang
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Hyeong Geug Kim
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
47
|
Wang Q, Zhang P, Cakir I, Mi L, Cone RD, Lin JD. Deletion of the Feeding-Induced Hepatokine TSK Ameliorates the Melanocortin Obesity Syndrome. Diabetes 2021; 70:2081-2091. [PMID: 34183373 PMCID: PMC8576423 DOI: 10.2337/db21-0161] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 06/17/2021] [Indexed: 11/13/2022]
Abstract
Work in recent decades has established that metabolic hormones released by endocrine cells and diverse other cell types serve to regulate nutrient intake and energy homeostasis. Tsukushi (TSK) is a leucine-rich repeat-containing protein secreted primarily by the liver that exerts an inhibitory effect on brown fat sympathetic innervation and thermogenesis. Despite this, physiological regulation of TSK and the mechanisms underlying its effects on energy balance remain poorly understood. Here we show that hepatic expression and plasma concentrations of TSK are induced by feeding and regulated by melanocortin-4 receptor (MC4R) signaling. We generated TSK and MC4R-double-knockout mice to elucidate the nature of cross talk between TSK and the central regulatory circuit of energy balance. Remarkably, TSK inactivation restores energy balance, ameliorates hyperphagia, and improves metabolic health in MC4R-deficient mice. TSK ablation enhances thermogenic gene expression in brown fat, dampens obesity-association inflammation in the liver and adipose tissue, and protects MC4R-null mice from diet-induced nonalcoholic steatohepatitis. At the cellular level, TSK deficiency augments feeding-induced c-Fos expression in the paraventricular nucleus of the hypothalamus. These results illustrate physiological cross talk between TSK and the central regulatory circuit in maintaining energy balance and metabolic homeostasis.
Collapse
Affiliation(s)
- Qiuyu Wang
- Life Sciences Institute and Department of Cell & Developmental Biology, Michigan Medicine, University of Michigan, Ann Arbor, MI
| | - Peng Zhang
- Life Sciences Institute and Department of Cell & Developmental Biology, Michigan Medicine, University of Michigan, Ann Arbor, MI
| | - Isin Cakir
- Life Sciences Institute and Department of Molecular & Integrated Physiology, Michigan Medicine, University of Michigan, Ann Arbor, MI
| | - Lin Mi
- Life Sciences Institute and Department of Cell & Developmental Biology, Michigan Medicine, University of Michigan, Ann Arbor, MI
| | - Roger D Cone
- Life Sciences Institute and Department of Molecular & Integrated Physiology, Michigan Medicine, University of Michigan, Ann Arbor, MI
| | - Jiandie D Lin
- Life Sciences Institute and Department of Cell & Developmental Biology, Michigan Medicine, University of Michigan, Ann Arbor, MI
| |
Collapse
|
48
|
Kiyama G, Nakashima KI, Shimada K, Murono N, Kakihana W, Imai H, Inoue M, Hirai T. Transmembrane G protein-coupled receptor 5 signaling stimulates fibroblast growth factor 21 expression concomitant with up-regulation of the transcription factor nuclear receptor Nr4a1. Biomed Pharmacother 2021; 142:112078. [PMID: 34449315 DOI: 10.1016/j.biopha.2021.112078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 11/19/2022] Open
Abstract
Fibroblast growth factor 21 (FGF21) acts as an endocrine factor, playing important roles in the regulation of energy homeostasis, glucose and lipid metabolism. It is induced by diverse metabolic and cellular stresses, such as starvation and cold challenge, which in turn facilitate adaptation to the stress environment. The pharmacological action of FGF21 has received much attention, because the administration of FGF21 or its analogs has been shown to have an anti-obesity effect in rodent models. In the present study, we found that 3-O-acetyloleanolic acid, an active constituent isolated from the fruits of Forsythia suspensa, stimulated FGF21 production concomitant with the up-regulation of a transcription factor, nuclear receptor Nr4a1, in C2C12 myotubes. Additionally, significant increases in mFgf21 promoter activity were observed in C2C12 cells overexpressing TGR5 receptor in response to 3-O-acetyloleanolic acid treatment. Treatment with the p38 MAPK inhibitor SB203580 was effective at suppressing these stimulatory effects of 3-O-acetyloleanolic acid. Pretreatment with SB203580 also significantly repressed FGF21 mRNA abundance and FGF21 secretion in C2C12 myotubes after 3-O-acetyloleanolic acid stimulation, suggesting that p38 activation is required for the induction of FGF21 by ligand-activated TGR5 in C2C12 myotubes. These findings collectively indicated that TGR5 receptor signaling drives FGF21 expression via p38 activation, at least partly, by mediating Nr4a1 expression. Thus, the novel biological function of 3-O-acetyloleanolic acid as an agent having anti-obesity effects is likely to be mediated through the activation of TGR5 receptors.
Collapse
Affiliation(s)
- Genki Kiyama
- Laboratory of Medicinal Resources, School of Pharmacy, Aichi Gakuin University, Nagoya 464-8650, Japan
| | - Ken-Ichi Nakashima
- Laboratory of Medicinal Resources, School of Pharmacy, Aichi Gakuin University, Nagoya 464-8650, Japan
| | - Kazumasa Shimada
- Laboratory of Medicinal Resources, School of Pharmacy, Aichi Gakuin University, Nagoya 464-8650, Japan
| | - Naoko Murono
- Community Health Nursing, Ishikawa Prefectual Nursing University, Ishikawa Prefectural Nursing University, Ishikawa 929-1210, Japan
| | - Wataru Kakihana
- Department of Human Sciences, Ishikawa Prefectual Nursing University, Ishikawa 929-1210, Japan
| | - Hideki Imai
- Laboratory of Health Sciences, Department of Health and Medical Sciences, Ishikawa Prefectural Nursing University, Ishikawa 929-1210, Japan
| | - Makoto Inoue
- Laboratory of Medicinal Resources, School of Pharmacy, Aichi Gakuin University, Nagoya 464-8650, Japan
| | - Takao Hirai
- Laboratory of Medicinal Resources, School of Pharmacy, Aichi Gakuin University, Nagoya 464-8650, Japan; Laboratory of Biochemical Pharmacology, Department of Health and Medical Sciences, Ishikawa Prefectural Nursing University, Ishikawa 929-1210, Japan.
| |
Collapse
|
49
|
Haslam DE, Peloso GM, Guirette M, Imamura F, Bartz TM, Pitsillides AN, Wang CA, Li-Gao R, Westra JM, Pitkänen N, Young KL, Graff M, Wood AC, Braun KVE, Luan J, Kähönen M, Kiefte-de Jong JC, Ghanbari M, Tintle N, Lemaitre RN, Mook-Kanamori DO, North K, Helminen M, Mossavar-Rahmani Y, Snetselaar L, Martin LW, Viikari JS, Oddy WH, Pennell CE, Rosendall FR, Ikram MA, Uitterlinden AG, Psaty BM, Mozaffarian D, Rotter JI, Taylor KD, Lehtimäki T, Raitakari OT, Livingston KA, Voortman T, Forouhi NG, Wareham NJ, de Mutsert R, Rich SS, Manson JE, Mora S, Ridker PM, Merino J, Meigs JB, Dashti HS, Chasman DI, Lichtenstein AH, Smith CE, Dupuis J, Herman MA, McKeown NM. Sugar-Sweetened Beverage Consumption May Modify Associations Between Genetic Variants in the CHREBP (Carbohydrate Responsive Element Binding Protein) Locus and HDL-C (High-Density Lipoprotein Cholesterol) and Triglyceride Concentrations. CIRCULATION-GENOMIC AND PRECISION MEDICINE 2021; 14:e003288. [PMID: 34270325 PMCID: PMC8373451 DOI: 10.1161/circgen.120.003288] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Supplemental Digital Content is available in the text. Background: ChREBP (carbohydrate responsive element binding protein) is a transcription factor that responds to sugar consumption. Sugar-sweetened beverage (SSB) consumption and genetic variants in the CHREBP locus have separately been linked to HDL-C (high-density lipoprotein cholesterol) and triglyceride concentrations. We hypothesized that SSB consumption would modify the association between genetic variants in the CHREBP locus and dyslipidemia. Methods: Data from 11 cohorts from the Cohorts for Heart and Aging Research in Genomic Epidemiology consortium (N=63 599) and the UK Biobank (N=59 220) were used to quantify associations of SSB consumption, genetic variants, and their interaction on HDL-C and triglyceride concentrations using linear regression models. A total of 1606 single nucleotide polymorphisms within or near CHREBP were considered. SSB consumption was estimated from validated questionnaires, and participants were grouped by their estimated intake. Results: In a meta-analysis, rs71556729 was significantly associated with higher HDL-C concentrations only among the highest SSB consumers (β, 2.12 [95% CI, 1.16–3.07] mg/dL per allele; P<0.0001), but not significantly among the lowest SSB consumers (P=0.81; PDiff <0.0001). Similar results were observed for 2 additional variants (rs35709627 and rs71556736). For triglyceride, rs55673514 was positively associated with triglyceride concentrations only among the highest SSB consumers (β, 0.06 [95% CI, 0.02–0.09] ln-mg/dL per allele, P=0.001) but not the lowest SSB consumers (P=0.84; PDiff=0.0005). Conclusions: Our results identified genetic variants in the CHREBP locus that may protect against SSB-associated reductions in HDL-C and other variants that may exacerbate SSB-associated increases in triglyceride concentrations. Registration: URL: https://www.clinicaltrials.gov; Unique identifier: NCT00005133, NCT00005121, NCT00005487, and NCT00000479.
Collapse
Affiliation(s)
- Danielle E Haslam
- Nutritional Epidemiology Program (D.E.H., M. Guirette, K.A.L., N.M.M.), Tufts University, Boston, MA.,Channing Division of Network Medicine (D.E.H., J.E.M.), Brigham and Women's Hospital and Harvard Medical School, Boston, MA.,Department of Nutrition (D.E.H.), Harvard T.H. Chan School of Public Health, Boston, MA
| | - Gina M Peloso
- Department of Biostatistics, Boston University School of Public Health, MA (G.M.P., A.N.P., J.D.)
| | - Melanie Guirette
- Nutritional Epidemiology Program (D.E.H., M. Guirette, K.A.L., N.M.M.), Tufts University, Boston, MA
| | - Fumiaki Imamura
- Medical Research Council Epidemiology Unit, University of Cambridge, United Kingdom (F.I., J.L., N.G.F., N.J.W.)
| | - Traci M Bartz
- Cardiovascular Health Research Unit, Departments of Biostatistics (T.M.B.), University of Washington, Seattle.,Department of Medicine (T.M.B., R.N.L., B.M.P.), University of Washington, Seattle
| | - Achilleas N Pitsillides
- Department of Biostatistics, Boston University School of Public Health, MA (G.M.P., A.N.P., J.D.)
| | - Carol A Wang
- School of Medicine and Public Health, Faculty of Medicine and Health, The University of Newcastle, NSW, Australia (C.A.W., C.E.P.)
| | - Ruifang Li-Gao
- Department of Clinical Epidemiology (R.L.G., D.O.M.-K., F.R.R., R.dM.), Leiden University Medical Center, the Netherlands
| | | | - Niina Pitkänen
- Auria Biobank (N.P.), University of Turku, Finland.,Research Centre of Applied and Preventive Cardiovascular Medicine (N.P., O.T.R.), University of Turku, Finland
| | - Kristin L Young
- Department of Epidemiology, Gillings School of Global Public Health (K.L.Y., M. Graff, K.N.), University of North Carolina, Chapel Hill
| | - Mariaelisa Graff
- Department of Epidemiology, Gillings School of Global Public Health (K.L.Y., M. Graff, K.N.), University of North Carolina, Chapel Hill
| | - Alexis C Wood
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX (A.C.W.)
| | - Kim V E Braun
- Department of Epidemiology (K.V.E.B., J.C.K.-d.J., M. Ghanbari, M.A.I.), Erasmus MC University Medical Center Rotterdam, the Netherlands
| | - Jian'an Luan
- Medical Research Council Epidemiology Unit, University of Cambridge, United Kingdom (F.I., J.L., N.G.F., N.J.W.)
| | - Mika Kähönen
- Department of Clinical Physiology (M.K.), Tampere University Hospital, Finland.,Department of Clinical Physiology (M.K.), Finnish Cardiovascular Research Center-Tampere, Faculty of Medicine and Life Sciences, University of Tampere, Finland
| | - Jessica C Kiefte-de Jong
- Department of Public Health and Primary Care (J.C.L.d.J., D.O.M.-K.), Leiden University Medical Center, the Netherlands.,Department of Epidemiology (K.V.E.B., J.C.K.-d.J., M. Ghanbari, M.A.I.), Erasmus MC University Medical Center Rotterdam, the Netherlands
| | - Mohsen Ghanbari
- Department of Epidemiology (K.V.E.B., J.C.K.-d.J., M. Ghanbari, M.A.I.), Erasmus MC University Medical Center Rotterdam, the Netherlands
| | | | - Rozenn N Lemaitre
- Department of Medicine (T.M.B., R.N.L., B.M.P.), University of Washington, Seattle
| | - Dennis O Mook-Kanamori
- Department of Clinical Epidemiology (R.L.G., D.O.M.-K., F.R.R., R.dM.), Leiden University Medical Center, the Netherlands.,Department of Public Health and Primary Care (J.C.L.d.J., D.O.M.-K.), Leiden University Medical Center, the Netherlands
| | - Kari North
- Department of Epidemiology, Gillings School of Global Public Health (K.L.Y., M. Graff, K.N.), University of North Carolina, Chapel Hill.,Carolina Center for Genome Science (K.N.), University of North Carolina, Chapel Hill
| | - Mika Helminen
- Research Development and Innovation Centre (M.H.), Tampere University Hospital, Finland.,Faculty of Social Sciences, Health Sciences, Tampere University, Finland (M.H.)
| | - Yasmin Mossavar-Rahmani
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY (Y.M.-R.)
| | - Linda Snetselaar
- Department of Epidemiology, University of Iowa, Iowa City (L.S.)
| | - Lisa W Martin
- George Washington University School of Medicine and Health Sciences, Washington, D.C. (L.W.M.)
| | - Jorma S Viikari
- Department of Medicine (J.S.V.), University of Turku, Finland.,Division of Medicine (J.S.V.), Turku University Hospital, Finland
| | - Wendy H Oddy
- Menzies Institute for Medical Research, University of Tasmania, HOB, Australia (W.H.O.)
| | - Craig E Pennell
- Nutrition and Genomics Laboratory (C.E.S.), Tufts University, Boston, MA.,School of Medicine and Public Health, Faculty of Medicine and Health, The University of Newcastle, NSW, Australia (C.A.W., C.E.P.)
| | - Frits R Rosendall
- Department of Clinical Epidemiology (R.L.G., D.O.M.-K., F.R.R., R.dM.), Leiden University Medical Center, the Netherlands
| | - M Arfan Ikram
- Department of Epidemiology (K.V.E.B., J.C.K.-d.J., M. Ghanbari, M.A.I.), Erasmus MC University Medical Center Rotterdam, the Netherlands
| | - Andre G Uitterlinden
- Department of Internal Medicine (A.G.U.), Erasmus MC University Medical Center Rotterdam, the Netherlands
| | - Bruce M Psaty
- Department of Medicine (T.M.B., R.N.L., B.M.P.), University of Washington, Seattle.,Departments of Epidemiology and Health Services (B.M.P.), University of Washington, Seattle.,Kaiser Permanente Washington Health Research Institute, Seattle, WA (B.M.P.)
| | - Dariush Mozaffarian
- Jean Mayer U.S. Department of Agriculture Human Nutrition Research Center on Aging, and Friedman School of Nutrition Science and Policy (D.M.), Tufts University, Boston, MA
| | - Jerome I Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA (J.I.R., K.D.T.)
| | - Kent D Taylor
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA (J.I.R., K.D.T.)
| | - Terho Lehtimäki
- Department of Clinical Chemistry (T.L.), Finnish Cardiovascular Research Center-Tampere, Faculty of Medicine and Life Sciences, University of Tampere, Finland.,Department of Clinical Chemistry, Fimlab Laboratories, Tampere, Finland (T.L.)
| | - Olli T Raitakari
- Research Centre of Applied and Preventive Cardiovascular Medicine (N.P., O.T.R.), University of Turku, Finland.,Centre for Population Health Research (O.T.R.), University of Turku, Finland.,Department of Clinical Physiology and Nuclear Medicine (O.T.R.), Turku University Hospital, Finland
| | - Kara A Livingston
- Nutritional Epidemiology Program (D.E.H., M. Guirette, K.A.L., N.M.M.), Tufts University, Boston, MA
| | | | - Nita G Forouhi
- Medical Research Council Epidemiology Unit, University of Cambridge, United Kingdom (F.I., J.L., N.G.F., N.J.W.)
| | - Nick J Wareham
- Medical Research Council Epidemiology Unit, University of Cambridge, United Kingdom (F.I., J.L., N.G.F., N.J.W.)
| | - Renée de Mutsert
- Department of Clinical Epidemiology (R.L.G., D.O.M.-K., F.R.R., R.dM.), Leiden University Medical Center, the Netherlands
| | - Steven S Rich
- Center for Public Health Genomics and Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville (S.S.R.)
| | - JoAnn E Manson
- Channing Division of Network Medicine (D.E.H., J.E.M.), Brigham and Women's Hospital and Harvard Medical School, Boston, MA.,Division of Preventive Medicine (J.E.M., S.M., P.M.R., D.I.C.), Brigham and Women's Hospital and Harvard Medical School, Boston, MA.,Department of Epidemiology (J.E.M.), Harvard T.H. Chan School of Public Health, Boston, MA
| | - Samia Mora
- Division of Preventive Medicine (J.E.M., S.M., P.M.R., D.I.C.), Brigham and Women's Hospital and Harvard Medical School, Boston, MA.,Cardiovascular Division of Medicine and Center for Lipid Metabolomics (S.M., P.M.R.), Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Paul M Ridker
- Division of Preventive Medicine (J.E.M., S.M., P.M.R., D.I.C.), Brigham and Women's Hospital and Harvard Medical School, Boston, MA.,Cardiovascular Division of Medicine and Center for Lipid Metabolomics (S.M., P.M.R.), Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Jordi Merino
- Program in Medical and Population Genetics (J.M., J.B.M., H.S.D.), Broad Institute of MIT and Harvard, Cambridge, MA.,Program in Metabolism (J.M., J.B.M.), Broad Institute of MIT and Harvard, Cambridge, MA.,Department of Medicine, Harvard Medical School, Boston, MA (J.M., J.B.M.).,Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain (J.M.).,Diabetes Unit and Center for Genomic Medicine (J.M., H.S.D.), Massachusetts General Hospital and Harvard Medical School, Boston
| | - James B Meigs
- Program in Medical and Population Genetics (J.M., J.B.M., H.S.D.), Broad Institute of MIT and Harvard, Cambridge, MA.,Program in Metabolism (J.M., J.B.M.), Broad Institute of MIT and Harvard, Cambridge, MA.,Department of Medicine, Harvard Medical School, Boston, MA (J.M., J.B.M.).,Division of General Internal Medicine (J.B.M.), Massachusetts General Hospital and Harvard Medical School, Boston
| | - Hassan S Dashti
- Program in Medical and Population Genetics (J.M., J.B.M., H.S.D.), Broad Institute of MIT and Harvard, Cambridge, MA.,Diabetes Unit and Center for Genomic Medicine (J.M., H.S.D.), Massachusetts General Hospital and Harvard Medical School, Boston.,Department of Anesthesia, Critical Care and Pain Medicine (H.S.D.), Massachusetts General Hospital and Harvard Medical School, Boston
| | - Daniel I Chasman
- Division of Preventive Medicine (J.E.M., S.M., P.M.R., D.I.C.), Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | | | | | - Josée Dupuis
- Department of Biostatistics, Boston University School of Public Health, MA (G.M.P., A.N.P., J.D.)
| | - Mark A Herman
- Division Of Endocrinology, Metabolism, and Nutrition, Department of Medicine and Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC (M.A.H.)
| | - Nicola M McKeown
- Nutritional Epidemiology Program (D.E.H., M. Guirette, K.A.L., N.M.M.), Tufts University, Boston, MA
| |
Collapse
|
50
|
Richter MM, Plomgaard P. The Regulation of Circulating Hepatokines by Fructose Ingestion in Humans. J Endocr Soc 2021; 5:bvab121. [PMID: 34337280 PMCID: PMC8317633 DOI: 10.1210/jendso/bvab121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Indexed: 01/22/2023] Open
Abstract
Context Fibroblast growth factor 21 (FGF21), follistatin, angiopoietin-like 4 (ANGPTL4), and growth differential factor 15 (GDF15) are regulated by energy metabolism. Recent findings in humans demonstrate that fructose ingestion increases circulating FGF21, with increased response in conditions of insulin resistance. Objective This study examines the acute effect of fructose and somatostatin on circulating FGF21, follistatin, ANGPTL4, and GDF15 in humans. Methods Plasma FGF21, follistatin, ANGPTL4, and GDF15 concentrations were measured in response to oral ingestion of 75 g of fructose in 10 young healthy males with and without a 15-minute infusion of somatostatin to block insulin secretion. A control infusion of somatostatin was also performed in the same subjects. Results Following fructose ingestion, plasma FGF21 peaked at 3.7-fold higher than basal concentration (P < 0.05), and it increased 4.9-fold compared with basal concentration (P < 0.05) when somatostatin was infused. Plasma follistatin increased 1.8-fold after fructose ingestion (P < 0.05), but this increase was blunted by concomitant somatostatin infusion. For plasma ANGPTL4 and GDF15, no increases were obtained following fructose ingestion. Infusion of somatostatin alone slightly increased plasma FGF21 and follistatin. Conclusion Here we show that in humans (1) the fructose-induced increase in plasma FGF21 was enhanced when somatostatin was infused, suggesting an inhibitory role of insulin on the fructose-induced FGF21 increase; (2) fructose ingestion also increased plasma follistatin, but somatostatin infusion blunted the increase; and (3) fructose ingestion had no stimulating effect on ANGPTL4 and GDF15 levels, demonstrating differences in the hepatokine response to fructose ingestion.
Collapse
Affiliation(s)
- Michael M Richter
- Department of Clinical Biochemistry, Rigshospitalet, DK-2100 Copenhagen, Denmark
| | - Peter Plomgaard
- Department of Clinical Biochemistry, Rigshospitalet, DK-2100 Copenhagen, Denmark.,The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Department of Infectious Diseases and CMRC, Rigshospitalet, DK-2100 Copenhagen, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| |
Collapse
|