1
|
Bjørklund G, Mkhitaryan M, Sahakyan E, Fereshetyan K, Meguid NA, Hemimi M, Nashaat NH, Yenkoyan K. Linking Environmental Chemicals to Neuroinflammation and Autism Spectrum Disorder: Mechanisms and Implications for Prevention. Mol Neurobiol 2024; 61:6328-6340. [PMID: 38296898 DOI: 10.1007/s12035-024-03941-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 01/11/2024] [Indexed: 02/02/2024]
Abstract
This article explores the potential link between endocrine-disrupting chemicals (EDCs), neuroinflammation, and the development of autism spectrum disorder (ASD). Neuroinflammation refers to the immune system's response to injury, infection, or disease in the central nervous system. Studies have shown that exposure to EDCs, such as bisphenol A and phthalates, can disrupt normal immune function in the brain, leading to chronic or excessive neuroinflammation. This disruption of immune function can contribute to developing neurological disorders, including ASD. Furthermore, EDCs may activate microglia, increasing pro-inflammatory cytokine production and astroglia-mediated oxidative stress, exacerbating neuroinflammation. EDCs may also modulate the epigenetic profile of cells by methyltransferase expression, thereby affecting neurodevelopment. This article also highlights the importance of reducing exposure to EDCs and advocating for policies and regulations restricting their use. Further research is needed to understand better the mechanisms underlying the link between EDCs, neuroinflammation, and ASD and to develop new treatments for ASD.
Collapse
Affiliation(s)
- Geir Bjørklund
- Council for Nutritional and Environmental Medicine (CONEM), Toften 24, 8610, Mo i Rana, Norway.
| | - Meri Mkhitaryan
- Neuroscience Laboratory, Cobrain Center, Yerevan State Medical University after M. Heratsi, 0025, 2 Koryun str, Yerevan, Armenia
| | - Elen Sahakyan
- Neuroscience Laboratory, Cobrain Center, Yerevan State Medical University after M. Heratsi, 0025, 2 Koryun str, Yerevan, Armenia
| | - Katarine Fereshetyan
- Neuroscience Laboratory, Cobrain Center, Yerevan State Medical University after M. Heratsi, 0025, 2 Koryun str, Yerevan, Armenia
| | - Nagwa A Meguid
- Research on Children with Special Needs Department, National Research Centre, Giza, Egypt
- CONEM Egypt Child Brain Research Group, National Research Centre, Giza, Egypt
| | - Maha Hemimi
- Research on Children with Special Needs Department, National Research Centre, Giza, Egypt
- CONEM Egypt Child Brain Research Group, National Research Centre, Giza, Egypt
| | | | - Konstantin Yenkoyan
- Neuroscience Laboratory, Cobrain Center, Yerevan State Medical University after M. Heratsi, 0025, 2 Koryun str, Yerevan, Armenia.
| |
Collapse
|
2
|
Cernigliaro F, Santangelo A, Nardello R, Lo Cascio S, D'Agostino S, Correnti E, Marchese F, Pitino R, Valdese S, Rizzo C, Raieli V, Santangelo G. Prenatal Nutritional Factors and Neurodevelopmental Disorders: A Narrative Review. Life (Basel) 2024; 14:1084. [PMID: 39337868 PMCID: PMC11433086 DOI: 10.3390/life14091084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/14/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024] Open
Abstract
According to the DSM-5, neurodevelopmental disorders represent a group of heterogeneous conditions, with onset during the developmental period, characterized by an alteration of communication and social skills, learning, adaptive behavior, executive functions, and psychomotor skills. These deficits determine an impairment of personal, social, scholastic, or occupational functioning. Neurodevelopmental disorders are characterized by an increased incidence and a multifactorial etiology, including genetic and environmental components. Data largely explain the role of genetic and environmental factors, also through epigenetic modifications such as DNA methylation and miRNA. Despite genetic factors, nutritional factors also play a significant role in the pathophysiology of these disorders, both in the prenatal and postnatal period, underscoring that the control of modifiable factors could decrease the incidence of neurodevelopmental disorders. The preventive role of nutrition is widely studied as regards many chronic diseases, such as diabetes, hypertension, and cancer, but actually we also know the effects of nutrition on embryonic brain development and the influence of prenatal and preconceptional nutrition in predisposition to various pathologies. These factors are not limited only to a correct caloric intake and a good BMI, but rather to an adequate and balanced intake of macro and micronutrients, the type of diet, and other elements such as exposure to heavy metals. This review represents an analysis of the literature as regards the physiopathological mechanisms by which food influences our state of health, especially in the age of development (from birth to adolescence), through prenatal and preconceptional changes, underlying how controlling these nutritional factors should improve mothers' nutritional state to significantly reduce the risk of neurodevelopmental disorders in offspring. We searched key words such as "maternal nutrition and neurodevelopmental disorders" on Pubmed and Google Scholar, selecting the main reviews and excluding individual cases. Therefore, nutrigenetics and nutrigenomics teach us the importance of personalized nutrition for good health. So future perspectives may include well-established reference values in order to determine the correct nutritional intake of mothers through food and integration.
Collapse
Affiliation(s)
- Federica Cernigliaro
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialities "G. D'Alessandro", University of Palermo, 90127 Palermo, Italy
| | - Andrea Santangelo
- Pediatrics Department, AOUP Santa Chiara Hospital, 56126 Pisa, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, 16126 Genoa, Italy
| | - Rosaria Nardello
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialities "G. D'Alessandro", University of Palermo, 90127 Palermo, Italy
| | - Salvatore Lo Cascio
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialities "G. D'Alessandro", University of Palermo, 90127 Palermo, Italy
| | - Sofia D'Agostino
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialities "G. D'Alessandro", University of Palermo, 90127 Palermo, Italy
| | - Edvige Correnti
- Child Neuropsychiatry Department, ISMEP-ARNAS Civico-Di Cristina Benfratelli, Di Cristina Pediatric Hospital, 90134 Palermo, Italy
| | | | - Renata Pitino
- Child Neuropsychiatry Department, ISMEP-ARNAS Civico-Di Cristina Benfratelli, Di Cristina Pediatric Hospital, 90134 Palermo, Italy
| | - Silvia Valdese
- Child Neuropsychiatry Department, ISMEP-ARNAS Civico-Di Cristina Benfratelli, Di Cristina Pediatric Hospital, 90134 Palermo, Italy
| | - Carmelo Rizzo
- A.I.Nu.C-International Academy of Clinical Nutrition, 00166 Rome, Italy
| | - Vincenzo Raieli
- Child Neuropsychiatry Department, ISMEP-ARNAS Civico-Di Cristina Benfratelli, Di Cristina Pediatric Hospital, 90134 Palermo, Italy
| | - Giuseppe Santangelo
- Child Neuropsychiatry Department, ISMEP-ARNAS Civico-Di Cristina Benfratelli, Di Cristina Pediatric Hospital, 90134 Palermo, Italy
| |
Collapse
|
3
|
Shao W, Su Y, Liu J, Liu Y, Zhao J, Fan X. Understanding the link between different types of maternal diabetes and the onset of autism spectrum disorders. DIABETES & METABOLISM 2024; 50:101543. [PMID: 38761920 DOI: 10.1016/j.diabet.2024.101543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 05/03/2024] [Accepted: 05/04/2024] [Indexed: 05/20/2024]
Abstract
Autism spectrum disorders (ASD) encompass a collection of neurodevelopmental disorders that exhibit impaired social interactions and repetitive stereotypic behaviors. Although the exact cause of these disorders remains unknown, it is widely accepted that both genetic and environmental factors contribute to their onset and progression. Recent studies have highlighted the potential negative impact of maternal diabetes on embryonic neurodevelopment, suggesting that intrauterine hyperglycemia could pose an additional risk to early brain development and contribute to the development of ASD. This paper presents a comprehensive analysis of the current research on the relationship between various forms of maternal diabetes, such as type 1 diabetes mellitus, type 2 diabetes mellitus, and gestational diabetes mellitus, and the likelihood of ASD in offspring. The study elucidates the potential mechanisms through which maternal hyperglycemia affects fetal development, involving metabolic hormones, immune dysregulation, heightened oxidative stress, and epigenetic alterations. The findings of this review offer valuable insights for potential preventive measures and evidence-based interventions targeting ASD.
Collapse
Affiliation(s)
- Wenyu Shao
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yichun Su
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jiayin Liu
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yulong Liu
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jinghui Zhao
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, China.
| | - Xiaotang Fan
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
4
|
Schendel D, Ejlskov L, Overgaard M, Jinwala Z, Kim V, Parner E, Kalkbrenner AE, Acosta CL, Fallin MD, Xie S, Mortensen PB, Lee BK. 3-generation family histories of mental, neurologic, cardiometabolic, birth defect, asthma, allergy, and autoimmune conditions associated with autism: an open-source catalogue of findings. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2023.11.03.23298042. [PMID: 37961212 PMCID: PMC10635276 DOI: 10.1101/2023.11.03.23298042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
The relatively few conditions and family members investigated in autism family health history limits etiologic understanding. For more comprehensive understanding and hypothesis-generation we produced an open-source catalogue of autism associations with family histories of mental, neurologic, cardiometabolic, birth defect, asthma, allergy, and autoimmune conditions. All live births in Denmark, 1980-2012, of Denmark-born parents (1,697,231 births), and their 3-generation family members were followed through April 10, 2017 for each of 90 diagnoses (including autism), emigration or death. Adjusted hazard ratios (aHR) were estimated via Cox regression for each diagnosis-family member type combination, adjusting for birth year, sex, birth weight, gestational age, parental ages at birth, and number of family member types of index person; aHRs also calculated for sex-specific co-occurrence of each disorder. We obtained 6,462 individual family history aHRS across autism overall (26,840 autistic persons; 1.6% of births), by sex, and considering intellectual disability (ID); and 350 individual co-occurrence aHRS. Results are catalogued in interactive heat maps and down-loadable data files: https://ncrr-au.shinyapps.io/asd-riskatlas/ and interactive graphic summaries: https://public.tableau.com/views/ASDPlots_16918786403110/e-Figure5. While primarily for reference material or use in other studies (e.g., meta-analyses), results revealed considerable breadth and variation in magnitude of familial health history associations with autism by type of condition, family member type, sex of the family member, side of the family, sex of the index person, and ID status, indicative of diverse genetic, familial, and non-genetic autism etiologic pathways. Careful attention to sources of autism likelihood in family health history, aided by our open data resource, may accelerate understanding of factors underlying neurodiversity.
Collapse
Affiliation(s)
- Diana Schendel
- A.J. Drexel Autism Institute, Drexel University, Philadelphia, PA, USA
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- National Centre for Register-Based Research, Aarhus BSS, Aarhus University, Aarhus, Denmark
| | - Linda Ejlskov
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- National Centre for Register-Based Research, Aarhus BSS, Aarhus University, Aarhus, Denmark
| | | | - Zeal Jinwala
- A.J. Drexel Autism Institute, Drexel University, Philadelphia, PA, USA
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA
| | - Viktor Kim
- A.J. Drexel Autism Institute, Drexel University, Philadelphia, PA, USA
| | - Erik Parner
- Department of Public Health, Aarhus University, Aarhus, Denmark
| | - Amy E Kalkbrenner
- University of Wisconsin Milwaukee, Joseph J Zilber College of Public Health, Milwaukee, WI, USA
| | - Christine Ladd Acosta
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - M Danielle Fallin
- Wendy Klag Center for Autism and Developmental Disabilities, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Current affiliation: Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA USA
| | - Sherlly Xie
- Dornsife School of Public Health, Drexel University, Philadelphia, PA, USA
- Medtronic, Mounds View, Minnesota, USA
| | - Preben Bo Mortensen
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- National Centre for Register-Based Research, Aarhus BSS, Aarhus University, Aarhus, Denmark
- Centre for Integrated Register-based Research, Aarhus University, Aarhus, Denmark
| | - Brian K Lee
- A.J. Drexel Autism Institute, Drexel University, Philadelphia, PA, USA
- Dornsife School of Public Health, Drexel University, Philadelphia, PA, USA
- Department of Global Public Health, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
5
|
Nadeem NJ, Moawad A, Howatson S, Ahmed A, Cassell D. Case report: Diagnostic challenges in an adolescent case of autistic catatonia. Front Psychiatry 2024; 15:1386949. [PMID: 38859882 PMCID: PMC11163276 DOI: 10.3389/fpsyt.2024.1386949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 04/12/2024] [Indexed: 06/12/2024] Open
Abstract
Catatonia is a complex neuropsychiatric syndrome involving a constellation of psychomotor disturbances including catalepsy, waxy flexibility, stupor, mutism, negativism, agitation, posturing, stereotypes, mannerisms, grimacing, echolalia, and echopraxia. Catatonia occurs in several conditions including psychotic, affective and neurodevelopmental disorders such as autism spectrum disorder (ASD). ASD is a neurodevelopmental disorder characterized by persistent deficits in communication, social interaction, restricted interests, repetitive behaviours and sensory sensitivities. Catatonia can occur in response to life stressors such as extreme fear or threat, interpersonal conflict, tragic events or following significant loss. Those with ASD may be particularly vulnerable to the negative impact of stressors and the link between catatonia and ASD is being increasingly recognized. The overlapping features of catatonia and ASD make it difficult to differentiate often resulting in delayed or missed diagnosis. Catatonia in ASD remains a significant clinical challenge; it is difficult to diagnose and can pose debilitating difficulties for those affected. Catatonia is a treatable condition and prompt recognition is vital in securing the best possible outcome. We report a complex and unique case of a 15-year-old boy who presented with severe cognitive and functional decline with a background history of significant bullying and deterioration in his mental state. This case posed a diagnostic conundrum leading to a diagnosis of underlying ASD, anxiety and trauma.
Collapse
Affiliation(s)
- Nighat J. Nadeem
- General Adolescent Inpatient Unit, South West London and St George’s Mental Health National Health Service (NHS) Trust, London, United Kingdom
| | | | | | | | | |
Collapse
|
6
|
Kim E, Huh JR, Choi GB. Prenatal and postnatal neuroimmune interactions in neurodevelopmental disorders. Nat Immunol 2024; 25:598-606. [PMID: 38565970 DOI: 10.1038/s41590-024-01797-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 02/15/2024] [Indexed: 04/04/2024]
Abstract
The intricate relationship between immune dysregulation and neurodevelopmental disorders (NDDs) has been observed across the stages of both prenatal and postnatal development. In this Review, we provide a comprehensive overview of various maternal immune conditions, ranging from infections to chronic inflammatory conditions, that impact the neurodevelopment of the fetus during pregnancy. Furthermore, we examine the presence of immunological phenotypes, such as immune-related markers and coexisting immunological disorders, in individuals with NDDs. By delving into these findings, we shed light on the potential underlying mechanisms responsible for the high occurrence of immune dysregulation alongside NDDs. We also discuss current mouse models of NDDs and their contributions to our understanding of the immune mechanisms underlying these diseases. Additionally, we discuss how neuroimmune interactions contribute to shaping the manifestation of neurological phenotypes in individuals with NDDs while also exploring potential avenues for mitigating these effects.
Collapse
Affiliation(s)
- Eunha Kim
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea.
- Department of Neuroscience, Korea University College of Medicine, Seoul, Republic of Korea.
| | - Jun R Huh
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Gloria B Choi
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
7
|
Villarreal VR, Katusic MZ, Myers SM, Weaver AL, Nocton JJ, Voigt RG. Risk of Autoimmune Disease in Research-Identified Cases of Autism Spectrum Disorder: A Longitudinal, Population-Based Birth Cohort Study. J Dev Behav Pediatr 2024; 45:e46-e53. [PMID: 38364086 PMCID: PMC10878713 DOI: 10.1097/dbp.0000000000001232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 09/18/2023] [Indexed: 02/18/2024]
Abstract
OBJECTIVE Determine the risk of autoimmune disease in research-identified cases of autism spectrum disorder (ASD) compared with referents using a longitudinal, population-based birth cohort. METHODS ASD incident cases were identified from a population-based birth cohort of 31,220 individuals. Inclusive ASD definition based on DSM-IV-TR autistic disorder, Asperger syndrome, and pervasive developmental disorder, not otherwise specified, was used to determine ASD cases. For each ASD case, 2 age- and sex-matched referents without ASD were identified. Diagnosis codes assigned between birth and December 2017 were electronically obtained. Individuals were classified as having an autoimmune disorder if they had at least 2 diagnosis codes more than 30 days apart. Cox proportional hazards models were fit to estimate the hazard ratio (HR) between ASD status and autoimmune disorder. RESULTS Of 1014 ASD cases, 747 (73.7%) were male. Fifty ASD cases and 59 of the 1:2 matched referents were diagnosed with first autoimmune disorder at the median age of 14 and 17.1 years, respectively. ASD cases had increased risk of autoimmune disease compared with matched referents (HR 1.74; 95% confidence interval [CI], 1.21-2.52). The increased risk was statistically significant among male patients (HR 2.01; 95% CI, 1.26-3.21) but not among the smaller number of female subjects (HR 1.38; 95% CI, 0.76-2.50). CONCLUSION This study provides evidence from a longitudinal, population-based birth cohort for co-occurrence of ASD and autoimmune disorders. Thus, children with ASD should be monitored for symptoms of autoimmune disease and appropriate workup initiated.
Collapse
Affiliation(s)
- Veronica R Villarreal
- Division of Pediatric Neurology/Neurodevelopment, Department of Pediatrics, Baylor College of Medicine, San Antonio, TX
| | | | - Scott M Myers
- Geisinger Autism & Developmental Medicine Institute, Geisinger, Lewisburg, PA
- Geisinger Commonwealth School of Medicine, Scranton, PA
| | - Amy L Weaver
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN
| | - James J Nocton
- Department of Pediatrics, Medical College of Wisconsin, Wauwatosa, WI
| | - Robert G Voigt
- Meyer Center for Developmental Pediatrics, Department of Pediatrics, Baylor College of Medicine, Houston, TX
| |
Collapse
|
8
|
Lombardi L, Le Clerc S, Wu CL, Bouassida J, Boukouaci W, Sugusabesan S, Richard JR, Lajnef M, Tison M, Le Corvoisier P, Barau C, Banaschewski T, Holt R, Durston S, Persico AM, Oakley B, Loth E, Buitelaar J, Murphy D, Leboyer M, Zagury JF, Tamouza R. A human leukocyte antigen imputation study uncovers possible genetic interplay between gut inflammatory processes and autism spectrum disorders. Transl Psychiatry 2023; 13:244. [PMID: 37407551 DOI: 10.1038/s41398-023-02550-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/24/2023] [Accepted: 06/27/2023] [Indexed: 07/07/2023] Open
Abstract
Autism spectrum disorders (ASD) are neurodevelopmental conditions that are for subsets of individuals, underpinned by dysregulated immune processes, including inflammation, autoimmunity, and dysbiosis. Consequently, the major histocompatibility complex (MHC)-hosted human leukocyte antigen (HLA) has been implicated in ASD risk, although seldom investigated. By utilizing a GWAS performed by the EU-AIMS consortium (LEAP cohort), we compared HLA and MHC genetic variants, single nucleotide polymorphisms (SNP), and haplotypes in ASD individuals, versus typically developing controls. We uncovered six SNPs, namely rs9268528, rs9268542, rs9268556, rs14004, rs9268557, and rs8084 that crossed the Bonferroni threshold, which form the underpinnings of 3 independent genetic pathways/blocks that differentially associate with ASD. Block 1 (rs9268528-G, rs9268542-G, rs9268556-C, and rs14004-A) afforded protection against ASD development, whilst the two remaining blocks, namely rs9268557-T, and rs8084-A, associated with heightened risk. rs8084 and rs14004 mapped to the HLA-DRA gene, whilst the four other SNPs located in the BTNL2 locus. Different combinations amongst BTNL2 SNPs and HLA amino acid variants or classical alleles were found either to afford protection from or contribute to ASD risk, indicating a genetic interplay between BTNL2 and HLA. Interestingly, the detected variants had transcriptional and/or quantitative traits loci implications. As BTNL2 modulates gastrointestinal homeostasis and the identified HLA alleles regulate the gastrointestinal tract in celiac disease, it is proposed that the data on ASD risk may be linked to genetically regulated gut inflammatory processes. These findings might have implications for the prevention and treatment of ASD, via the targeting of gut-related processes.
Collapse
Affiliation(s)
- Laura Lombardi
- Université Paris Est Créteil, INSERM U955, IMRB, Laboratoire Neuro-Psychiatrie translationnelle, F-94010, Créteil, France
- Laboratoire Génomique, Bio-informatique et Chimie Moléculaire (EA7528), Conservatoire National des Arts et Métiers, 292, rue Saint Martin, 75003, Paris, France
- HESAM Université, Paris, France
| | - Sigrid Le Clerc
- Laboratoire Génomique, Bio-informatique et Chimie Moléculaire (EA7528), Conservatoire National des Arts et Métiers, 292, rue Saint Martin, 75003, Paris, France
- HESAM Université, Paris, France
| | - Ching-Lien Wu
- Université Paris Est Créteil, INSERM U955, IMRB, Laboratoire Neuro-Psychiatrie translationnelle, F-94010, Créteil, France
| | - Jihène Bouassida
- Université Paris Est Créteil, INSERM U955, IMRB, Laboratoire Neuro-Psychiatrie translationnelle, F-94010, Créteil, France
| | - Wahid Boukouaci
- Université Paris Est Créteil, INSERM U955, IMRB, Laboratoire Neuro-Psychiatrie translationnelle, F-94010, Créteil, France
| | - Sobika Sugusabesan
- Université Paris Est Créteil, INSERM U955, IMRB, Laboratoire Neuro-Psychiatrie translationnelle, F-94010, Créteil, France
| | - Jean-Romain Richard
- Université Paris Est Créteil, INSERM U955, IMRB, Laboratoire Neuro-Psychiatrie translationnelle, F-94010, Créteil, France
| | - Mohamed Lajnef
- Université Paris Est Créteil, INSERM U955, IMRB, Laboratoire Neuro-Psychiatrie translationnelle, F-94010, Créteil, France
| | - Maxime Tison
- Université Paris Est Créteil, INSERM U955, IMRB, Laboratoire Neuro-Psychiatrie translationnelle, F-94010, Créteil, France
- Laboratoire Génomique, Bio-informatique et Chimie Moléculaire (EA7528), Conservatoire National des Arts et Métiers, 292, rue Saint Martin, 75003, Paris, France
- HESAM Université, Paris, France
| | - Philippe Le Corvoisier
- Université Paris Est Créteil, Inserm, Centre Investigation Clinique, CIC 1430, Henri Mondor, Créteil, F94010, France
| | - Caroline Barau
- Plateforme de Ressources Biologiques, HU Henri Mondor, Créteil, F94010, France
| | - Tobias Banaschewski
- Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Rosemary Holt
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Sarah Durston
- Education Center, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Antonio M Persico
- Child and Adolescent Neuropsychiatry Program at Modena University Hospital, & Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Bethany Oakley
- Department of Forensic and Neurodevelopemental Science, Institute of Psychatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Eva Loth
- Department of Forensic and Neurodevelopemental Science, Institute of Psychatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Jan Buitelaar
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Declan Murphy
- Department of Forensic and Neurodevelopemental Science, Institute of Psychatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Marion Leboyer
- Université Paris Est Créteil, INSERM U955, IMRB, Laboratoire Neuro-Psychiatrie translationnelle, F-94010, Créteil, France
- Université Paris Est Créteil, INSERM U955, IMRB, Laboratoire Neuro-Psychiatrie translationnelle, AP-HP, Hôpital Henri Mondor, Département Médico-Universitaire de Psychiatrie et d'Addictologie (DMU IMPACT), Fédération Hospitalo-Universitaire de Médecine de Précision (FHU ADAPT) and Fondation FondaMental, Créteil, F-94010, France
| | - Jean-François Zagury
- Laboratoire Génomique, Bio-informatique et Chimie Moléculaire (EA7528), Conservatoire National des Arts et Métiers, 292, rue Saint Martin, 75003, Paris, France
- HESAM Université, Paris, France
| | - Ryad Tamouza
- Université Paris Est Créteil, INSERM U955, IMRB, Laboratoire Neuro-Psychiatrie translationnelle, F-94010, Créteil, France.
- Université Paris Est Créteil, INSERM U955, IMRB, Laboratoire Neuro-Psychiatrie translationnelle, AP-HP, Hôpital Henri Mondor, Département Médico-Universitaire de Psychiatrie et d'Addictologie (DMU IMPACT), Fédération Hospitalo-Universitaire de Médecine de Précision (FHU ADAPT) and Fondation FondaMental, Créteil, F-94010, France.
| |
Collapse
|
9
|
Liu X, Xu W, Leng F, Zhang P, Guo R, Zhang Y, Hao C, Ni X, Li W. NeuroCNVscore: a tissue-specific framework to prioritise the pathogenicity of CNVs in neurodevelopmental disorders. BMJ Paediatr Open 2023; 7:e001966. [PMID: 37407247 DOI: 10.1136/bmjpo-2023-001966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 06/15/2023] [Indexed: 07/07/2023] Open
Abstract
BACKGROUND Neurodevelopmental disorders (NDDs) are associated with altered development of the brain especially in childhood. Copy number variants (CNVs) play a crucial role in the genetic aetiology of NDDs by disturbing gene expression directly at linear sequence or remotely at three-dimensional genome level in a tissue-specific manner. Despite the substantial increase in NDD studies employing whole-genome sequencing, there is no specific tool for prioritising the pathogenicity of CNVs in the context of NDDs. METHODS Using an XGBoost classifier, we integrated 189 features that represent genomic sequences, gene information and functional/genomic segments for evaluating genome-wide CNVs in a neuro/brain-specific manner, to develop a new tool, neuroCNVscore. We used Human Phenotype Ontology to construct an independent NDD-related set. RESULTS Our neuroCNVscore framework (https://github.com/lxsbch/neuroCNVscore) achieved high predictive performance (precision recall=0.82; area under curve=0.85) and outperformed an existing reference method SVScore. Notably, the predicted pathogenic CNVs showed enrichment in known genes associated with autism. CONCLUSIONS NeuroCNVscore prioritises functional, deleterious and pathogenic CNVs in NDDs at whole genome-wide level, which is important for genetic studies and clinical genomic screening of NDDs as well as for providing novel biological insights into NDDs.
Collapse
Affiliation(s)
- Xuanshi Liu
- Beijing Children's Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute, Beijing, China
- MOE Key Laboratory of Major Diseaseas in Children, Beijing, China
- Genetics and Birth Defects Control Centre, National Centre for Children's Health, Beijing, China
| | - Wenjian Xu
- Beijing Children's Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute, Beijing, China
- MOE Key Laboratory of Major Diseaseas in Children, Beijing, China
- Genetics and Birth Defects Control Centre, National Centre for Children's Health, Beijing, China
| | - Fei Leng
- Beijing Children's Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute, Beijing, China
- MOE Key Laboratory of Major Diseaseas in Children, Beijing, China
- Genetics and Birth Defects Control Centre, National Centre for Children's Health, Beijing, China
| | - Peng Zhang
- Beijing Children's Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute, Beijing, China
- MOE Key Laboratory of Major Diseaseas in Children, Beijing, China
- Genetics and Birth Defects Control Centre, National Centre for Children's Health, Beijing, China
| | - Ruolan Guo
- Beijing Children's Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute, Beijing, China
- MOE Key Laboratory of Major Diseaseas in Children, Beijing, China
- Genetics and Birth Defects Control Centre, National Centre for Children's Health, Beijing, China
| | - Yue Zhang
- Beijing Children's Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute, Beijing, China
- MOE Key Laboratory of Major Diseaseas in Children, Beijing, China
- Genetics and Birth Defects Control Centre, National Centre for Children's Health, Beijing, China
| | - Chanjuan Hao
- Beijing Children's Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute, Beijing, China
- MOE Key Laboratory of Major Diseaseas in Children, Beijing, China
- Genetics and Birth Defects Control Centre, National Centre for Children's Health, Beijing, China
| | - Xin Ni
- Beijing Children's Hospital, Capital Medical University, Beijing, China
- MOE Key Laboratory of Major Diseaseas in Children, Beijing, China
- National Centre for Children's Health, Beijing, China
| | - Wei Li
- Beijing Children's Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute, Beijing, China
- MOE Key Laboratory of Major Diseaseas in Children, Beijing, China
- Genetics and Birth Defects Control Centre, National Centre for Children's Health, Beijing, China
| |
Collapse
|
10
|
Xu XJ, Lang JD, Yang J, Long B, Liu XD, Zeng XF, Tian G, You X. Differences of gut microbiota and behavioral symptoms between two subgroups of autistic children based on γδT cells-derived IFN-γ Levels: A preliminary study. Front Immunol 2023; 14:1100816. [PMID: 36875075 PMCID: PMC9975759 DOI: 10.3389/fimmu.2023.1100816] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 02/06/2023] [Indexed: 02/17/2023] Open
Abstract
Background Autism Spectrum Disorders (ASD) are defined as a group of pervasive neurodevelopmental disorders, and the heterogeneity in the symptomology and etiology of ASD has long been recognized. Altered immune function and gut microbiota have been found in ASD populations. Immune dysfunction has been hypothesized to involve in the pathophysiology of a subtype of ASD. Methods A cohort of 105 ASD children were recruited and grouped based on IFN-γ levels derived from ex vivo stimulated γδT cells. Fecal samples were collected and analyzed with a metagenomic approach. Comparison of autistic symptoms and gut microbiota composition was made between subgroups. Enriched KEGG orthologues markers and pathogen-host interactions based on metagenome were also analyzed to reveal the differences in functional features. Results The autistic behavioral symptoms were more severe for children in the IFN-γ-high group, especially in the body and object use, social and self-help, and expressive language performance domains. LEfSe analysis of gut microbiota revealed an overrepresentation of Selenomonadales, Negatiyicutes, Veillonellaceae and Verrucomicrobiaceae and underrepresentation of Bacteroides xylanisolvens and Bifidobacterium longum in children with higher IFN-γ level. Decreased metabolism function of carbohydrate, amino acid and lipid in gut microbiota were found in the IFN-γ-high group. Additional functional profiles analyses revealed significant differences in the abundances of genes encoding carbohydrate-active enzymes between the two groups. And enriched phenotypes related to infection and gastroenteritis and underrepresentation of one gut-brain module associated with histamine degradation were also found in the IFN-γ-High group. Results of multivariate analyses revealed relatively good separation between the two groups. Conclusions Levels of IFN-γ derived from γδT cell could serve as one of the potential candidate biomarkers to subtype ASD individuals to reduce the heterogeneity associated with ASD and produce subgroups which are more likely to share a more similar phenotype and etiology. A better understanding of the associations among immune function, gut microbiota composition and metabolism abnormalities in ASD would facilitate the development of individualized biomedical treatment for this complex neurodevelopmental disorder.
Collapse
Affiliation(s)
- Xin-Jie Xu
- Medical Science Research Center, Research Center for Translational Medicine, Department of Scientific Research, Peking Union Medical College Hospital, Beijing, China.,Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ji-Dong Lang
- Precision Medicine Center, Geneis Beijing Co., Ltd., Beijing, China
| | - Jun Yang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bo Long
- Medical Science Research Center, Research Center for Translational Medicine, Department of Scientific Research, Peking Union Medical College Hospital, Beijing, China
| | - Xu-Dong Liu
- Medical Science Research Center, Research Center for Translational Medicine, Department of Scientific Research, Peking Union Medical College Hospital, Beijing, China
| | - Xiao-Feng Zeng
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Beijing, China
| | - Geng Tian
- Precision Medicine Center, Geneis Beijing Co., Ltd., Beijing, China
| | - Xin You
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Beijing, China.,Autism Special Fund, Peking Union Medical Foundation, Beijing, China
| |
Collapse
|
11
|
Folate in maternal rheumatoid arthritis-filial autism spectrum disorder continuum. Reprod Toxicol 2023; 115:29-35. [PMID: 36402436 DOI: 10.1016/j.reprotox.2022.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/10/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022]
Abstract
Rheumatoid Arthritis (RA) is an inflammatory autoimmune disease that affects women three times more than men. Epidemiological studies found that the incidence of Autism Spectrum Disorder (ASD), a neurological and developmental disorder, in children born to mothers suffering from RA is higher compared with the control population. Considering that the pathogenesis of ASD could be traced back to pregnancy and in uterine conditions, and the evidence of reduced folate levels in the brain of ASD-affected children, we aimed to study the role of folate, as an important nutritional factor during pregnancy, in associating maternal RA to ASD development in the offspring. Folate balance during RA could be influenced twice, initially during the immune activation associated with disease onset, and later during the treatment with anti-folate drugs, with a potential consequence of folate deficiency. Maternal folate deficiency during pregnancy could increase homocysteine levels, oxidative stress, and global DNA hypomethylation, all known risk factors in ASD pathogenesis. These effects could be intensified by genetic polymorphisms in the folate system, which were also found as genetic risk factors for both RA and ASD. The available evidence suggests that folate level as an important factor during RA, pregnancy and ASD could have pathological and therapeutical significance and should be carefully monitored and investigated in the RA-pregnancy-ASD axis.
Collapse
|
12
|
Suspected neurodevelopmental disorders in adult patients of memory clinics: Start at the beginning. GREDEV proposals for clinical practice. Rev Neurol (Paris) 2022; 179:297-307. [PMID: 36424291 DOI: 10.1016/j.neurol.2022.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/07/2022] [Accepted: 09/07/2022] [Indexed: 11/23/2022]
Abstract
Neurodevelopmental disorders are frequent but underestimated in adult populations, even though the cognitive profile of those affected remains atypical throughout adulthood and the disorders can cause significant impairment in activities of daily living. Retrospective diagnosis in this population is challenging. In this article, the GREDEV (working group for the assessment of neurodevelopmental disorders in adults) proposes a brief screening questionnaire for patients with suspected neurodevelopmental disorders, a checklist to facilitate taking the patient history, a list of self-administered questionnaires, and the different key steps of diagnosing neurodevelopmental disorders in adults.
Collapse
|
13
|
de Camargo RW, de Novais Júnior LR, da Silva LM, Meneguzzo V, Daros GC, da Silva MG, de Bitencourt RM. Implications of the endocannabinoid system and the therapeutic action of cannabinoids in autism spectrum disorder: A literature review. Pharmacol Biochem Behav 2022; 221:173492. [PMID: 36379443 DOI: 10.1016/j.pbb.2022.173492] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/31/2022] [Accepted: 11/09/2022] [Indexed: 11/15/2022]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder, onset in early childhood and associated with cognitive, social, behavioral, and sensory impairments. The pathophysiology is still unclear, and it is believed that genetic and environmental factors are fully capable of influencing ASD, especially cell signaling and microglial functions. Furthermore, the endocannabinoid system (ECS) participates in the modulation of various brain processes and is also involved in the pathophysiological mechanisms of this condition. Due to the health and quality of life impacts of autism for the patient and his/her family and the lack of effective medications, the literature has elucidated the possibility that Cannabis phytocannabinoids act favorably on ASD symptoms, probably through the modulation of neurotransmitters, in addition to endogenous ligands derived from arachidonic acid, metabolizing enzymes and even transporters of the membrane. These findings support the notion that there are links between key features of ASD and ECS due to the favorable actions of cannabidiol (CBD) and other cannabinoids on symptoms related to behavioral and cognitive disorders, as well as deficits in communication and social interaction, hyperactivity, anxiety and sleep disorders. Thus, phytocannabinoids emerge as therapeutic alternatives for ASD.
Collapse
Affiliation(s)
- Rick Wilhiam de Camargo
- Behavioral Neuroscience Laboratory, University of Southern Santa Catarina, Tubarão, Santa Catarina, Brazil.
| | | | - Larissa Mendes da Silva
- Behavioral Neuroscience Laboratory, University of Southern Santa Catarina, Tubarão, Santa Catarina, Brazil
| | - Vicente Meneguzzo
- Behavioral Neuroscience Laboratory, University of Southern Santa Catarina, Tubarão, Santa Catarina, Brazil
| | - Guilherme Cabreira Daros
- Behavioral Neuroscience Laboratory, University of Southern Santa Catarina, Tubarão, Santa Catarina, Brazil
| | - Marina Goulart da Silva
- Behavioral Neuroscience Laboratory, University of Southern Santa Catarina, Tubarão, Santa Catarina, Brazil
| | | |
Collapse
|
14
|
Moore S, Amatya DN, Chu MM, Besterman AD. Catatonia in autism and other neurodevelopmental disabilities: a state-of-the-art review. NPJ MENTAL HEALTH RESEARCH 2022; 1:12. [PMID: 38609506 PMCID: PMC10955936 DOI: 10.1038/s44184-022-00012-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/26/2022] [Indexed: 04/14/2024]
Abstract
Individuals with neurodevelopmental disabilities (NDDs) may be at increased risk for catatonia, which can be an especially challenging condition to diagnose and treat. There may be symptom overlap between catatonia and NDD-associated behaviors, such as stereotypies. The diagnosis of catatonia should perhaps be adjusted to address symptom overlap and to include extreme behaviors observed in patients with NDDs, such as severe self-injury. Risk factors for catatonia in individuals with NDDs may include trauma and certain genetic variants, such as those that disrupt SHANK3. Common etiologic features between neurodevelopmental disabilities and catatonia, such as excitatory/inhibitory imbalance and neuroimmune dysfunction, may partially account for comorbidity. New approaches leveraging genetic testing and neuroimmunologic evaluation may allow for more precise diagnoses and effective treatments.
Collapse
Affiliation(s)
- Shavon Moore
- University of California San Diego, Department of Psychiatry, San Diego, CA, USA
- Rady Children's Hospital San Diego, Division of Behavioral Health Services, San Diego, CA, USA
| | - Debha N Amatya
- University of California San Diego, Department of Psychiatry, San Diego, CA, USA
- UCLA Semel Institute of Neuroscience and Human Behavior, Los Angeles, CA, USA
| | - Michael M Chu
- University of California San Diego, Department of Psychiatry, San Diego, CA, USA
- Rady Children's Hospital San Diego, Division of Behavioral Health Services, San Diego, CA, USA
- Children's Hospital of Orange County, Division of Child and Adolescent Psychiatry, Orange, CA, USA
- University of California Irvine, Department of Psychiatry, Irvine, CA, USA
| | - Aaron D Besterman
- University of California San Diego, Department of Psychiatry, San Diego, CA, USA.
- Rady Children's Hospital San Diego, Division of Behavioral Health Services, San Diego, CA, USA.
- Rady Children's Institute for Genomic Medicine, San Diego, CA, USA.
| |
Collapse
|
15
|
Enhanced Expression of Human Endogenous Retroviruses, TRIM28 and SETDB1 in Autism Spectrum Disorder. Int J Mol Sci 2022; 23:ijms23115964. [PMID: 35682642 PMCID: PMC9180946 DOI: 10.3390/ijms23115964] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/12/2022] [Accepted: 05/23/2022] [Indexed: 02/01/2023] Open
Abstract
Human endogenous retroviruses (HERVs) are relics of ancestral infections and represent 8% of the human genome. They are no longer infectious, but their activation has been associated with several disorders, including neuropsychiatric conditions. Enhanced expression of HERV-K and HERV-H envelope genes has been found in the blood of autism spectrum disorder (ASD) patients, but no information is available on syncytin 1 (SYN1), SYN2, and multiple sclerosis-associated retrovirus (MSRV), which are thought to be implicated in brain development and immune responses. HERV activation is regulated by TRIM28 and SETDB1, which are part of the epigenetic mechanisms that organize the chromatin architecture in response to external stimuli and are involved in neural cell differentiation and brain inflammation. We assessed, through a PCR realtime Taqman amplification assay, the transcription levels of pol genes of HERV-H, -K, and -W families, of env genes of SYN1, SYN2, and MSRV, as well as of TRIM28 and SETDB1 in the blood of 33 ASD children (28 males, median 3.8 years, 25–75% interquartile range 3.0–6.0 y) and healthy controls (HC). Significantly higher expressions of TRIM28 and SETDB1, as well as of all the HERV genes tested, except for HERV-W-pol, were found in ASD, as compared with HC. Positive correlations were observed between the mRNA levels of TRIM28 or SETDB1 and every HERV gene in ASD patients, but not in HC. Overexpression of TRIM28/SETDB1 and several HERVs in children with ASD and the positive correlations between their transcriptional levels suggest that these may be main players in pathogenetic mechanisms leading to ASD.
Collapse
|
16
|
He H, Yu Y, Liew Z, Gissler M, László KD, Valdimarsdóttir UA, Zhang J, Li F, Li J. Association of Maternal Autoimmune Diseases With Risk of Mental Disorders in Offspring in Denmark. JAMA Netw Open 2022; 5:e227503. [PMID: 35426923 PMCID: PMC9012963 DOI: 10.1001/jamanetworkopen.2022.7503] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
IMPORTANCE Maternal immune activation during pregnancy is associated with increased risks of several mental disorders in offspring during childhood, but little is known about how maternal autoimmune diseases during pregnancy are associated with mental health in offspring during and after childhood. OBJECTIVE To investigate the association between maternal autoimmune diseases before childbirth and risk of mental disorders among offspring up to early adulthood. DESIGN, SETTING, AND PARTICIPANTS This population-based nationwide cohort study used data from Danish national registers on singletons born in Denmark from 1978 to 2015 with up to 38 years of follow-up. Data analyses were conducted from March 1, 2020, through September 30, 2021. EXPOSURES Maternal autoimmune disease diagnosed before or during pregnancy according to the Danish National Patient Register. MAIN OUTCOMES AND MEASURES The main outcome was mental disorders, defined by hospital diagnoses, in offspring. Cox proportional hazards regression was used to estimate hazard ratios (HRs) and 95% CIs for mental disorders. RESULTS Of the 2 254 234 singleton infants included in the study (median age, 16.7 years [IQR, 10.5-21.7 years]; 51.28% male), 2.26% were born to mothers with autoimmune diseases before childbirth. Exposed participants had an increased risk of overall mental disorders compared with their unexposed counterparts (HR, 1.16; 95% CI, 1.13-1.19; incidence, 9.38 vs 7.91 per 1000 person-years). Increased risks of overall mental disorders in offspring were seen in different age groups for type 1 diabetes (1-5 years: HR, 1.35 [95% CI, 1.17-1.57]; 6-18 years: HR, 1.24 [95% CI, 1.15-1.33]; >18 years: HR, 1.19 [95% CI, 1.09-1.30]) and rheumatoid arthritis (1-5 years: HR, 1.42 [95% CI, 1.16-1.74]; 6-18 years: HR, 1.19 [95% CI, 1.05-1.36]; >18 years: HR, 1.28 [95% CI, 1.02-1.60]). Regarding specific mental disorders, increased risk after exposure to any maternal autoimmune disorder was observed for organic disorders (HR, 1.54; 95% CI, 1.21-1.94), schizophrenia (HR, 1.35; 95% CI, 1.21-1.51), obsessive-compulsive disorder (HR, 1.42; 95% CI, 1.24-1.63), mood disorders (HR, 1.12; 95% CI, 1.04-1.21), and a series of neurodevelopmental disorders (eg, childhood autism [HR, 1.21; 95% CI, 1.08-1.36] and attention-deficit/hyperactivity disorder [HR, 1.19; 95% CI, 1.12-1.26]). CONCLUSIONS AND RELEVANCE In this cohort study in Denmark, prenatal exposure to maternal autoimmune diseases was associated with increased risks of overall and type-specific mental disorders in offspring. Maternal type 1 diabetes and rheumatoid arthritis during pregnancy were associated with offspring's mental health up to early adulthood. Individuals prenatally exposed to autoimmune disease may benefit from long-term surveillance for mental disorders.
Collapse
Affiliation(s)
- Hua He
- Developmental and Behavioral Pediatric Department and Child Primary Care Department, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Ministry of Education, Shanghai Key Laboratory of Children’s Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yongfu Yu
- Department of Biostatistics, School of Public Health and the Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai, China
- Department of Clinical Medicine, Department of Clinical Epidemiology, Aarhus University, Denmark
| | - Zeyan Liew
- Yale Center for Perinatal, Pediatric, and Environmental Epidemiology, Yale School of Public Health, New Haven, Connecticut
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, Connecticut
| | - Mika Gissler
- Finnish Institute for Health and Welfare, Information Services Department, Helsinki, Finland
- Research Centre for Child Psychiatry, University of Turku, Turku, Finland
- Region Stockholm, Academic Primary Health Care Centre, Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden
| | | | - Unnur Anna Valdimarsdóttir
- Center of Public Health Sciences, University of Iceland, Reykjavik, Iceland
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden
| | - Jun Zhang
- Ministry of Education, Shanghai Key Laboratory of Children’s Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fei Li
- Developmental and Behavioral Pediatric Department and Child Primary Care Department, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Ministry of Education, Shanghai Key Laboratory of Children’s Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiong Li
- Department of Clinical Medicine, Department of Clinical Epidemiology, Aarhus University, Denmark
| |
Collapse
|
17
|
A nationwide study of the risks of major mental disorders among the offspring of parents with rheumatoid arthritis. Sci Rep 2022; 12:4962. [PMID: 35322089 PMCID: PMC8943140 DOI: 10.1038/s41598-022-08834-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 03/07/2022] [Indexed: 02/06/2023] Open
Abstract
Rheumatoid arthritis (RA) may share genomic risks with certain mental disorders. This study aimed at investigating associations between parental RA and risks of mental disorders in offspring. Using the National Health Insurance Research Database (2001–2010), we conducted a matched cohort study involving two parent–child cohorts (i.e., RA-parent–child cohort and non-RA-parent–child cohort) between which risks of major mental disorders in offspring were compared. There were 23,981 parent–child pairs in the RA-parent–child cohort and 239,810 in the non-RA-parent–child cohort. Preliminary analysis demonstrated increased risks of autism spectrum disorders (ASDs) [Odds ratio (OR) 1.47; 95% confidence interval (CI) 1.05–2.07], attention-deficit/hyperactivity disorder (ADHD) [OR 1.34; (95% CI 1.17–1.54)], bipolar disorder [OR 1.41 (95% CI 1.17–1.70)], and major depressive disorder [OR 1.20 (95% CI 1.07–1.35)] associated with parental RA. Sub-group analysis further showed higher risks of the four disorders in children of mothers with RA but not those from fathers with RA. Higher risks of ASDs and ADHD were not noted in children of mothers with RA before childbirth. Maternal RA, but not paternal RA or mothers diagnosed with RA before childbirth, was associated with increased risks of multiple mental disorders in their offspring, suggesting potential contributions of maternal genetic factors to ASDs and ADHD development in offspring.
Collapse
|
18
|
Ellul P, Acquaviva E, Peyre H, Rosenzwajg M, Gressens P, Klatzmann D, Delorme R. Parental autoimmune and autoinflammatory disorders as multiple risk factors for common neurodevelopmental disorders in offspring: a systematic review and meta-analysis. Transl Psychiatry 2022; 12:112. [PMID: 35304436 PMCID: PMC8933391 DOI: 10.1038/s41398-022-01843-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 02/04/2022] [Accepted: 02/07/2022] [Indexed: 01/10/2023] Open
Abstract
Epidemiological studies have raised concerns about the risk of neurodevelopmental disorders (NDD) in children of patients with autoimmune or inflammatory disorders (AID). The pathophysiological pathways underlying this association are still unknown and little is known about the specific and distinct risk of each AID. To explore these questions, we investigated the association between the occurrences of several NDD in the offspring of mothers or fathers with different IDA. We conducted a meta-analysis-PROSPERO (CRD42020159250)-examining the risk of NDD in the offspring of mothers or fathers with AID. We performed specific analyses separately in fathers or mothers of NDD patients as well as subgroup analyses for each NDD and AID. We searched MEDLINE, Embase, PsycINFO, Cochrane Central Register of Controlled Trials, and Web of Science Core Collection published until December 2021. From an initial pool of 2074 potentially relevant references, 14 studies were included, involving more than 1,400,000 AID and 10,000,000 control parents, 180,000 children with NDD and more than 14,000,000 control children. We found AID in mothers (Adjusted OR 1.27 [95% CI 1.03; 1.57] p = 0.02, [I2 = 65%, Tau2 = 0.03 p = 0.01] and adjusted OR 1.31 [95% CI 1.11; 1.55] p = 0.001, [I2 = 93%, Tau2 = 0.13 p = 0.001] and, although in a lesser extent, in fathers (adjusted OR 1.18 [95% CI 1.07; 1.30] p = 0.01, [I2 = 15.5%, Tau2 = 0.002 p = 0.47]) and adjusted OR 1.14 [95% CI 1.10; 1.17] p < 0.0001, [I2 = 0%, Tau2 = 0 p = 0.29]) to be associated with ASD and ADHD in the offspring. This difference in the strength of the association was found in the AID-specific analyses, suggesting that AID increase the risk of NDD by a shared mechanism but that a specific maternal route appears to represent an additional excess risk. Inflammatory bowel disease were not associated with an additional risk (neither in fathers nor in mothers) of NDD in offspring. Our results suggest that complex and multiple AID-specific pathophysiological mechanisms may underlie the association of AID and NDD in offspring. Further, comprehensive studies of the different AID and NDD are needed to draw definitive conclusions about the pathophysiological links between parental AID and NDD in children.
Collapse
Affiliation(s)
- Pierre Ellul
- Child and Adolescent Psychiatry Department, Robert Debre Hospital, APHP, Paris, France.
- Immunology-Immunopathology-Immunotherapy (i3), UMRS 959, INSERM, Paris, France.
| | - Eric Acquaviva
- Child and Adolescent Psychiatry Department, Robert Debre Hospital, APHP, Paris, France
| | - Hugo Peyre
- Child and Adolescent Psychiatry Department, Robert Debre Hospital, APHP, Paris, France
- NeuroDiderot, Paris University, INSERM, Paris, France
| | - Michelle Rosenzwajg
- University hospital department Inflammation-Immunopathology-Biotherapy (i2B), Pitié-Salpêtrière Hospital, APHP, Paris, France
| | | | - David Klatzmann
- Immunology-Immunopathology-Immunotherapy (i3), UMRS 959, INSERM, Paris, France
- University hospital department Inflammation-Immunopathology-Biotherapy (i2B), Pitié-Salpêtrière Hospital, APHP, Paris, France
| | - Richard Delorme
- Child and Adolescent Psychiatry Department, Robert Debre Hospital, APHP, Paris, France
- Human Genetics and Cognitive Functions, Institut Pasteur, Paris, France
| |
Collapse
|
19
|
Immune Dysregulation in Autism Spectrum Disorder: What Do We Know about It? Int J Mol Sci 2022; 23:ijms23063033. [PMID: 35328471 PMCID: PMC8955336 DOI: 10.3390/ijms23063033] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/03/2022] [Accepted: 03/09/2022] [Indexed: 02/06/2023] Open
Abstract
Autism spectrum disorder (ASD) is a group of complex multifactorial neurodevelopmental disorders characterized by a wide and variable set of neuropsychiatric symptoms, including deficits in social communication, narrow and restricted interests, and repetitive behavior. The immune hypothesis is considered to be a major factor contributing to autism pathogenesis, as well as a way to explain the differences of the clinical phenotypes and comorbidities influencing disease course and severity. Evidence highlights a link between immune dysfunction and behavioral traits in autism from several types of evidence found in both cerebrospinal fluid and peripheral blood and their utility to identify autistic subgroups with specific immunophenotypes; underlying behavioral symptoms are also shown. This review summarizes current insights into immune dysfunction in ASD, with particular reference to the impact of immunological factors related to the maternal influence of autism development; comorbidities influencing autism disease course and severity; and others factors with particular relevance, including obesity. Finally, we described main elements of similarities between immunopathology overlapping neurodevelopmental and neurodegenerative disorders, taking as examples autism and Parkinson Disease, respectively.
Collapse
|
20
|
Maternal P2X7 receptor inhibition prevents autism-like phenotype in male mouse offspring through the NLRP3-IL-1β pathway. Brain Behav Immun 2022; 101:318-332. [PMID: 35065198 DOI: 10.1016/j.bbi.2022.01.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/29/2021] [Accepted: 01/16/2022] [Indexed: 12/25/2022] Open
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental condition caused by interactions of environmental and genetic factors. Recently we showed that activation of the purinergic P2X7 receptors is necessary and sufficient to convert maternal immune activation (MIA) to ASD-like features in male offspring mice. Our aim was to further substantiate these findings and identify downstream signaling pathways coupled to P2X7 upon MIA. Maternal treatment with the NLRP3 antagonist MCC950 and a neutralising IL-1β antibody during pregnancy counteracted the development of autistic characteristics in offspring mice. We also explored time-dependent changes of a widespread cytokine and chemokine profile in maternal blood and fetal brain samples of poly(I:C)/saline-treated dams. MIA-induced increases in plasma IL-1β, RANTES, MCP-1, and fetal brain IL-1β, IL-2, IL-6, MCP-1 concentrations are regulated by the P2X7/NLRP3 pathway. Offspring treatment with the selective P2X7 receptor antagonist JNJ47965567 was effective in the prevention of autism-like behavior in mice using a repeated dosing protocol. Our results highlight that in addition to P2X7, NLRP3, as well as inflammatory cytokines, may also be potential biomarkers and therapeutic targets of social deficits and repetitive behaviors observed in autism spectrum disorder.
Collapse
|
21
|
Wren GH, Humby T, Thompson AR, Davies W. Mood symptoms, neurodevelopmental traits, and their contributory factors in X-linked ichthyosis, ichthyosis vulgaris and psoriasis. Clin Exp Dermatol 2022; 47:1097-1108. [PMID: 35104372 PMCID: PMC9314151 DOI: 10.1111/ced.15116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 11/28/2022]
Abstract
Background High rates of adverse mood/neurodevelopmental traits are seen in multiple dermatological conditions, and can significantly affect patient quality of life. Understanding the sex‐specific nature, magnitude, impact and basis of such traits in lesser‐studied conditions like ichthyosis, is important for developing effective interventions. Aim To quantify and compare relevant psychological traits in men with X‐linked ichthyosis (XLI, n = 54) or in XLI carrier women (n = 83) and in patients with ichthyosis vulgaris (IV, men n = 23, women n = 59) or psoriasis (men n = 30, women n = 122), and to identify factors self‐reported to contribute most towards depressive, anxious and irritable phenotypes. Methods Participants recruited via relevant charities or social media completed an online survey of established questionnaires. Data were analysed by sex and skin condition, and compared with general population data. Results Compared with the general population, there was a higher rate of lifetime prevalence of mood disorder diagnoses across all groups and of neurodevelopmental disorder diagnoses in the XLI groups. The groups exhibited similarly significant elevations in recent mood symptoms (Cohen d statistic 0.95–1.28, P < 0.001) and neurodevelopmental traits (d = 0.31–0.91, P < 0.05) compared with general population controls, and self‐reported moderate effects on quality of life and stigmatization. There were strong positive associations between neurodevelopmental traits and recent mood symptoms (r > 0.47, P < 0.01), and between feelings of stigmatization and quality of life, particularly in men. Numerous factors were identified as contributing significantly to mood symptoms in a condition or sex‐specific, or condition or sex‐independent, manner. Conclusion We found that individuals with XLI, IV or psoriasis show higher levels of mood disorder diagnoses and symptoms than matched general population controls, and that the prevalence and severity of these is similar across conditions. We also identified a number of factors potentially conferring either general or condition‐specific risk of adverse mood symptoms in the three skin conditions, which could be targeted clinically and/or through education programmes. In clinical practice, recognizing mood/neurodevelopmental problems in ichthyosis and psoriasis, and addressing the predisposing factors identified by this study should benefit the mental health of affected individuals.
Collapse
Affiliation(s)
| | - Trevor Humby
- School of Psychology, Cardiff University, Cardiff, UK
| | - Andrew R Thompson
- School of Psychology, Cardiff University, Cardiff, UK.,South Wales Clinical Psychology Doctoral Programme, Cardiff, Vale University Health Board, Cardiff, UK
| | - William Davies
- School of Psychology, Cardiff University, Cardiff, UK.,Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, UK.,MRC Centre for Neuropsychiatric Genetics and Genomics and Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| |
Collapse
|
22
|
Hughes HK, Rowland ME, Onore CE, Rogers S, Ciernia AV, Ashwood P. Dysregulated gene expression associated with inflammatory and translation pathways in activated monocytes from children with autism spectrum disorder. Transl Psychiatry 2022; 12:39. [PMID: 35082275 PMCID: PMC8791942 DOI: 10.1038/s41398-021-01766-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 11/17/2021] [Accepted: 12/07/2021] [Indexed: 01/26/2023] Open
Abstract
Autism spectrum disorder (ASD) is a complex developmental disorder characterized by deficits in social interactions, communication, and stereotypical behaviors. Immune dysfunction is a common co-morbidity seen in ASD, with innate immune activation seen both in the brain and periphery. We previously identified significant differences in peripheral monocyte cytokine responses after stimulation with lipoteichoic acid (LTA) and lipopolysaccharide (LPS), which activate toll-like receptors (TLR)-2 and 4 respectively. However, an unbiased examination of monocyte gene expression in response to these stimulants had not yet been performed. To identify how TLR activation impacts gene expression in ASD monocytes, we isolated peripheral blood monocytes from 26 children diagnosed with autistic disorder (AD) or pervasive developmental disorder-not otherwise specified (PDDNOS) and 22 typically developing (TD) children and cultured them with LTA or LPS for 24 h, then performed RNA sequencing. Activation of both TLR2 and TLR4 induced expression of immune genes, with a subset that were differentially regulated in AD compared to TD samples. In response to LPS, monocytes from AD children showed a unique increase in KEGG pathways and GO terms that include key immune regulator genes. In contrast, monocytes from TD children showed a consistent decrease in expression of genes associated with translation in response to TLR stimulation. This decrease was not observed in AD or PDDNOS monocytes, suggesting a failure to properly downregulate a prolonged immune response in monocytes from children with ASD. As monocytes are involved in early orchestration of the immune response, our findings will help elucidate the mechanisms regulating immune dysfunction in ASD.
Collapse
Affiliation(s)
- Heather K Hughes
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA, USA
- M.I.N.D. Institute, University of California, Davis, CA, USA
| | - Megan E Rowland
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
| | - Charity E Onore
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA, USA
- M.I.N.D. Institute, University of California, Davis, CA, USA
| | - Sally Rogers
- M.I.N.D. Institute, University of California, Davis, CA, USA
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, CA, USA
| | - Annie Vogel Ciernia
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
| | - Paul Ashwood
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA, USA.
- M.I.N.D. Institute, University of California, Davis, CA, USA.
| |
Collapse
|
23
|
Hu C, Li H, Li J, Luo X, Hao Y. Microglia: Synaptic modulator in autism spectrum disorder. Front Psychiatry 2022; 13:958661. [PMID: 36465285 PMCID: PMC9714329 DOI: 10.3389/fpsyt.2022.958661] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 10/28/2022] [Indexed: 11/18/2022] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by variable impairment of social communication and repetitive behaviors, highly restricted interests, and/or sensory behaviors beginning early in life. Many individuals with ASD have dysfunction of microglia, which may be closely related to neuroinflammation, making microglia play an important role in the pathogenesis of ASD. Mounting evidence indicates that microglia, the resident immune cells of the brain, are required for proper brain function, especially in the maintenance of neuronal circuitry and control of behavior. Dysfunction of microglia will ultimately affect the neural function in a variety of ways, including the formation of synapses and alteration of excitatory-inhibitory balance. In this review, we provide an overview of how microglia actively interact with neurons in physiological conditions and modulate the fate and functions of synapses. We put a spotlight on the multi-dimensional neurodevelopmental roles of microglia, especially in the essential influence of synapses, and discuss how microglia are currently thought to influence ASD progression.
Collapse
Affiliation(s)
- Cong Hu
- Division of Child Healthcare, Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Heli Li
- Division of Child Healthcare, Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinhui Li
- Division of Child Healthcare, Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoping Luo
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Hao
- Division of Child Healthcare, Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
24
|
Whiteley P, Marlow B, Kapoor RR, Blagojevic-Stokic N, Sala R. Autoimmune Encephalitis and Autism Spectrum Disorder. Front Psychiatry 2021; 12:775017. [PMID: 34975576 PMCID: PMC8718789 DOI: 10.3389/fpsyt.2021.775017] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/29/2021] [Indexed: 11/23/2022] Open
Abstract
The concept of "acquired autism" refers to the hypothesis that amongst the massive heterogeneity that encompasses autism spectrum disorder (ASD) there may be several phenotypes that are neither syndromic nor innate. Strong and consistent evidence has linked exposure to various pharmacological and infective agents with an elevated risk of a diagnosis of ASD including maternal valproate use, rubella and herpes encephalitis. Autoimmune encephalitis (AE) describes a group of conditions characterised by the body's immune system mounting an attack on healthy brain cells causing brain inflammation. The resultant cognitive, psychiatric and neurological symptoms that follow AE have also included ASD or autism-like traits and states. We review the current literature on AE and ASD. Drawing also on associated literature on autoimmune psychosis (AP) and preliminary evidence of a psychosis-linked subtype of ASD, we conclude that AE may either act as a potentially causative agent for ASD, and/or produce symptoms that could easily be mistaken for or misdiagnosed as autism. Further studies are required to discern the connection between AE and autism. Where autism is accompanied by regression and atypical onset patterns, it may be prudent to investigate whether a differential diagnosis of AE would be more appropriate.
Collapse
Affiliation(s)
| | - Ben Marlow
- Colchester Hospital, East Suffolk and North Essex NHS Foundation Trust, Colchester, United Kingdom
- The Synapse Centre for Neurodevelopment ESNEFT, Colchester, United Kingdom
| | - Ritika R. Kapoor
- Paediatric Endocrinology, Variety Club Children's Hospital, King's College Hospital NHS Foundation Trust, London, United Kingdom
- Faculty of Medicine and Life Sciences, King's College London, London, United Kingdom
| | | | - Regina Sala
- Centre for Psychiatry, Wolfson Institute, Barts and The London School of Medicine and Dentistry Queen Mary University of London, London, United Kingdom
| |
Collapse
|
25
|
Northcutt KV, Leal-Medina TS, Yoon YS. Early postnatal hypothyroidism reduces juvenile play behavior, but prenatal hypothyroidism compensates for these effects. Physiol Behav 2021; 241:113594. [PMID: 34536436 DOI: 10.1016/j.physbeh.2021.113594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/22/2021] [Accepted: 09/13/2021] [Indexed: 10/20/2022]
Abstract
Perinatal hypothyroidism causes long-lasting effects on behavior, including hyperactivity, cognitive delays/deficits, and a reduction in anxiety. Although there is some evidence that hypothyroidism during fetal development in humans has been associated with later autism spectrum disorder diagnosis or autism-like traits, the relationships between early thyroid hormones and social behaviors are largely unknown. Previously, we found that a moderate dose of the hypothyroid-inducing drug methimazole during embryonic and postnatal development dramatically increased juvenile play in male and female rats. The goal of the current study was to determine the extent to which thyroid hormones act in prenatal or postnatal development to organize later social behaviors. Subjects were exposed to methimazole in the drinking water during prenatal (embryonic day 12 to birth), postnatal (birth to postnatal day 23), or pre- and postnatal development; control animals received regular drinking water throughout the experiment. They were tested for play behavior as juveniles (P30-32). We found an interaction between pre- and postnatal methimazole administration such that postnatal hypothyroidism decreased some play behaviors, whereas sustained pre- and postnatal hypothyroidism restored play to control levels. The effects were similar in males and females. To our knowledge, this is the first report of an interaction between pre- and postnatal hypothyroidism on later behavior. The complexity of the timing of these effects may help explain why epidemiological studies have not consistently found a relationship between gestational hypothyroidism and later behavior.
Collapse
Affiliation(s)
- Katharine V Northcutt
- Biology Department and Neuroscience Program, Mercer University, 1501 Mercer University Dr., Macon, GA 31207, USA.
| | - Tanya S Leal-Medina
- Biology Department and Neuroscience Program, Mercer University, 1501 Mercer University Dr., Macon, GA 31207, USA
| | - Ye S Yoon
- Biology Department and Neuroscience Program, Mercer University, 1501 Mercer University Dr., Macon, GA 31207, USA
| |
Collapse
|
26
|
Evaluation and Treatment of New-Onset Psychotic Symptoms in a Patient with Autism Spectrum Disorder and Multiple Autoimmune Disorders. Harv Rev Psychiatry 2021; 29:378-387. [PMID: 34524779 DOI: 10.1097/hrp.0000000000000314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
27
|
Theoharides TC. Ways to Address Perinatal Mast Cell Activation and Focal Brain Inflammation, including Response to SARS-CoV-2, in Autism Spectrum Disorder. J Pers Med 2021; 11:860. [PMID: 34575637 PMCID: PMC8465360 DOI: 10.3390/jpm11090860] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 01/08/2023] Open
Abstract
The prevalence of autism spectrum disorder (ASD) continues to increase, but no distinct pathogenesis or effective treatment are known yet. The presence of many comorbidities further complicates matters, making a personalized approach necessary. An increasing number of reports indicate that inflammation of the brain leads to neurodegenerative changes, especially during perinatal life, "short-circuiting the electrical system" in the amygdala that is essential for our ability to feel emotions, but also regulates fear. Inflammation of the brain can result from the stimulation of mast cells-found in all tissues including the brain-by neuropeptides, stress, toxins, and viruses such as SARS-CoV-2, leading to the activation of microglia. These resident brain defenders then release even more inflammatory molecules and stop "pruning" nerve connections, disrupting neuronal connectivity, lowering the fear threshold, and derailing the expression of emotions, as seen in ASD. Many epidemiological studies have reported a strong association between ASD and atopic dermatitis (eczema), asthma, and food allergies/intolerance, all of which involve activated mast cells. Mast cells can be triggered by allergens, neuropeptides, stress, and toxins, leading to disruption of the blood-brain barrier (BBB) and activation of microglia. Moreover, many epidemiological studies have reported a strong association between stress and atopic dermatitis (eczema) during gestation, which involves activated mast cells. Both mast cells and microglia can also be activated by SARS-CoV-2 in affected mothers during pregnancy. We showed increased expression of the proinflammatory cytokine IL-18 and its receptor, but decreased expression of the anti-inflammatory cytokine IL-38 and its receptor IL-36R, only in the amygdala of deceased children with ASD. We further showed that the natural flavonoid luteolin is a potent inhibitor of the activation of both mast cells and microglia, but also blocks SARS-CoV-2 binding to its receptor angiotensin-converting enzyme 2 (ACE2). A treatment approach should be tailored to each individual patient and should address hyperactivity/stress, allergies, or food intolerance, with the introduction of natural molecules or drugs to inhibit mast cells and microglia, such as liposomal luteolin.
Collapse
Affiliation(s)
- Theoharis C Theoharides
- Laboratory of Molecular Immunopharmacology and Drug Discovery, Department of Immunology, Tufts University School of Medicine, 136 Harrison Avenue, Suite 304, Boston, MA 02111, USA
- School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111, USA
- Department of Internal Medicine, Tufts University School of Medicine and Tufts Medical Center, Boston, MA 02111, USA
- Department of Psychiatry, Tufts University School of Medicine and Tufts Medical Center, Boston, MA 02111, USA
| |
Collapse
|
28
|
Ejlskov L, Wulff JN, Kalkbrenner A, Ladd-Acosta C, Fallin MD, Agerbo E, Mortensen PB, Lee BK, Schendel D. Prediction of Autism Risk From Family Medical History Data Using Machine Learning: A National Cohort Study From Denmark. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2021; 1:156-164. [PMID: 36324994 PMCID: PMC9616292 DOI: 10.1016/j.bpsgos.2021.04.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/09/2021] [Accepted: 04/18/2021] [Indexed: 11/15/2022] Open
Abstract
Background A family history of specific disorders (e.g., autism, depression, epilepsy) has been linked to risk for autism spectrum disorder (ASD). This study examines whether family history data could be used for ASD risk prediction. Methods We followed all Danish live births, from 1980 to 2012, of Denmark-born parents for an ASD diagnosis through April 10, 2017 (N = 1,697,231 births; 26,840 ASD cases). Linking each birth to three-generation family members, we identified 438 morbidity indicators, comprising 73 disorders reported prospectively for each family member. We tested various models using a machine learning approach. From the best-performing model, we calculated a family history risk score and estimated odds ratios and 95% confidence intervals for the risk of ASD. Results The best-performing model comprised 41 indicators: eight mental conditions (e.g., ASD, attention-deficit/hyperactivity disorder, neurotic/stress disorders) and nine nonmental conditions (e.g., obesity, hypertension, asthma) across six family member types; model performance was similar in training and test subsamples. The highest risk score group had 17.0% ASD prevalence and a 15.3-fold (95% confidence interval, 14.0-17.1) increased ASD risk compared with the lowest score group, which had 0.6% ASD prevalence. In contrast, individuals with a full sibling with ASD had 9.5% ASD prevalence and a 6.1-fold (95% confidence interval, 5.9-6.4) higher risk than individuals without an affected sibling. Conclusions Family history of multiple mental and nonmental conditions can identify more individuals at highest risk for ASD than only considering the immediate family history of ASD. A comprehensive family history may be critical for a clinically relevant ASD risk prediction framework in the future.
Collapse
Affiliation(s)
- Linda Ejlskov
- Department of Economics and Business, National Center for Register-based Research, Aarhus University, Aarhus, Denmark
- Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Aarhus, Denmark
| | - Jesper N. Wulff
- Department of Econometrics and Business Analytics, Aarhus University, Aarhus, Denmark
| | - Amy Kalkbrenner
- Joseph J Zilber School of Public Health, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin
| | - Christine Ladd-Acosta
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - M. Danielle Fallin
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
- Wendy Klag Center for Autism and Developmental Disabilities, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Esben Agerbo
- Department of Economics and Business, National Center for Register-based Research, Aarhus University, Aarhus, Denmark
- Centre for Integrated Register-based Research, Aarhus University, Aarhus, Denmark
- Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Aarhus, Denmark
| | - Preben Bo Mortensen
- Department of Economics and Business, National Center for Register-based Research, Aarhus University, Aarhus, Denmark
- Centre for Integrated Register-based Research, Aarhus University, Aarhus, Denmark
- Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Aarhus, Denmark
| | - Brian K. Lee
- Department of Epidemiology and Biostatistics, Drexel University, Philadelphia, Pennsylvania
- A.J. Drexel Autism Institute, Drexel University, Philadelphia, Pennsylvania
| | - Diana Schendel
- Department of Economics and Business, National Center for Register-based Research, Aarhus University, Aarhus, Denmark
- Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Aarhus, Denmark
- A.J. Drexel Autism Institute, Drexel University, Philadelphia, Pennsylvania
| |
Collapse
|
29
|
Jaini R, Wolf MR, Yu Q, King AT, Frazier TW, Eng C. Maternal genetics influences fetal neurodevelopment and postnatal autism spectrum disorder-like phenotype by modulating in-utero immunosuppression. Transl Psychiatry 2021; 11:348. [PMID: 34091589 PMCID: PMC8179926 DOI: 10.1038/s41398-021-01472-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 05/06/2021] [Accepted: 05/18/2021] [Indexed: 12/11/2022] Open
Abstract
Genetic studies in ASD have mostly focused on the proband, with no clear understanding of parental genetic contributions to fetal neurodevelopment. Among parental etiological factors, perinatal maternal inflammation secondary to autoimmunity, infections, and toxins is associated with ASD. However, the inherent impact of maternal genetics on in-utero inflammation and fetal neurodevelopment in the absence of strong external inflammatory exposures is not known. We used the PtenWT/m3m4 mouse model for ASD to demonstrate the impact of maternal genetics on the penetrance of ASD-like phenotypes in the offspring. PtenWT/m3m4 (Momm3m4) or PtenWT/WT (MomWT) females, their offspring, and placental interface were analyzed for inflammatory markers, gene expression, and cellular phenotypes at E17.5. Postnatal behavior was tested by comparing pups from Momm3m4 vs. MomWT. Mothers of the PtenWT/m3m4 genotype (Momm3m4) showed inadequate induction of IL-10 mediated immunosuppression during pregnancy. Low IL-10 in the mother was directly correlated with decreased complement expression in the fetal liver. Fetuses from Momm3m4 had increased breakdown of the blood-brain-barrier, neuronal loss, and lack of glial cell maturation during in-utero stages. This impact of maternal genotype translated to a postnatal increase in the risk of newborn mortality, visible macrocephaly and ASD-like repetitive and social behaviors. Depending on maternal genotype, non-predisposed (wildtype) offspring showed ASD-like phenotypes, and phenotypic penetrance was decreased in predisposed pups from MomWT. Our study introduces the concept that maternal genetics alone, without any added external inflammatory insults, can modulate fetal neurodevelopment and ASD-related phenotypes in the offspring via alteration of IL-10 mediated materno-fetal immunosuppression.
Collapse
Affiliation(s)
- Ritika Jaini
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Matthew R Wolf
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Qi Yu
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Alexander T King
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Thomas W Frazier
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
- Department of Psychology, John Carroll University, University Heights, Cleveland, OH, 44118, USA
- Autism Speaks, Cleveland, OH, 44131, USA
| | - Charis Eng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA.
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA.
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA.
| |
Collapse
|
30
|
Amgalan A, Andescavage N, Limperopoulos C. Prenatal origins of neuropsychiatric diseases. Acta Paediatr 2021; 110:1741-1749. [PMID: 33475192 DOI: 10.1111/apa.15766] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/28/2021] [Accepted: 01/18/2021] [Indexed: 12/18/2022]
Abstract
AIM The main objective is to review the available evidence in the literature for developmental origins of neuropsychiatric diseases and their underlying mechanisms. We also probe emerging cutting-edge prenatal MR imaging tools and their future role in advancing our understanding the prenatal footprints of neuropsychiatric disorders. OBSERVATIONS Both human and animal studies support early intrauterine origins of neuropsychiatric disease, particularly autism spectrum disorders (ASD), attention and hyperactivity disorders, schizophrenia, depression, anxiety and mood disorders. Specific mechanisms of intrauterine injury include infection, inflammation, hypoxia, hypoperfusion, ischaemia polysubstance use/abuse, maternal mental health and placental dysfunction. CONCLUSIONS AND RELEVANCE There is ample evidence to suggest developmental vulnerability of the foetal brain to intrauterine exposures that increases and individual's risk for neuropsychiatric disease, especially the risk of ASD, depression and anxiety. Elucidating the exact timing and mechanisms of injury can be difficult and require novel, non-invasive approaches to the study emerging structural and functional brain development of the foetus. Clinical care should both emphasise maternal health during pregnancy, as well as close, continued monitoring for at risk offspring throughout young adulthood for the early identification and treatment of neuropsychiatric diseases.
Collapse
Affiliation(s)
| | - Nickie Andescavage
- Division of Neonatology Children’s National Health System Washington DC USA
- Department of Pediatrics George Washington University School of Medicine Washington DC USA
| | - Catherine Limperopoulos
- Department of Pediatrics George Washington University School of Medicine Washington DC USA
- Division of Diagnostic Imaging & Radiology Children’s National Health System Washington DC USA
- Department of Radiology George Washington University School of Medicine Washington DC USA
| |
Collapse
|
31
|
A Systematic Review and Meta-Analysis of Immunoglobulin G Abnormalities and the Therapeutic Use of Intravenous Immunoglobulins (IVIG) in Autism Spectrum Disorder. J Pers Med 2021; 11:jpm11060488. [PMID: 34070826 PMCID: PMC8229039 DOI: 10.3390/jpm11060488] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/22/2021] [Accepted: 05/26/2021] [Indexed: 02/06/2023] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder affecting approximately 2% of children in the United States. Growing evidence suggests that immune dysregulation is associated with ASD. One immunomodulatory treatment that has been studied in ASD is intravenous immunoglobulins (IVIG). This systematic review and meta-analysis examined the studies which assessed immunoglobulin G (IgG) concentrations and the therapeutic use of IVIG for individuals with ASD. Twelve studies that examined IgG levels suggested abnormalities in total IgG and IgG 4 subclass concentrations, with concentrations in these IgGs related to aberrant behavior and social impairments, respectively. Meta-analysis supported possible subsets of children with ASD with low total IgG and elevated IgG 4 subclass but also found significant variability among studies. A total of 27 publications reported treating individuals with ASD using IVIG, including four prospective, controlled studies (one was a double-blind, placebo-controlled study); six prospective, uncontrolled studies; 2 retrospective, controlled studies; and 15 retrospective, uncontrolled studies. In some studies, clinical improvements were observed in communication, irritability, hyperactivity, cognition, attention, social interaction, eye contact, echolalia, speech, response to commands, drowsiness, decreased activity and in some cases, the complete resolution of ASD symptoms. Several studies reported some loss of these improvements when IVIG was stopped. Meta-analysis combining the aberrant behavior checklist outcome from two studies demonstrated that IVIG treatment was significantly associated with improvements in total aberrant behavior and irritability (with large effect sizes), and hyperactivity and social withdrawal (with medium effect sizes). Several studies reported improvements in pro-inflammatory cytokines (including TNF-alpha). Six studies reported improvements in seizures with IVIG (including patients with refractory seizures), with one study reporting a worsening of seizures when IVIG was stopped. Other studies demonstrated improvements in recurrent infections, appetite, weight gain, neuropathy, dysautonomia, and gastrointestinal symptoms. Adverse events were generally limited but included headaches, vomiting, worsening behaviors, anxiety, fever, nausea, fatigue, and rash. Many studies were limited by the lack of standardized objective outcome measures. IVIG is a promising and potentially effective treatment for symptoms in individuals with ASD; further research is needed to provide solid evidence of efficacy and determine the subset of children with ASD who may best respond to this treatment as well as to investigate biomarkers which might help identify responsive candidates.
Collapse
|
32
|
Do Autism Spectrum and Autoimmune Disorders Share Predisposition Gene Signature Due to mTOR Signaling Pathway Controlling Expression? Int J Mol Sci 2021; 22:ijms22105248. [PMID: 34065644 PMCID: PMC8156237 DOI: 10.3390/ijms22105248] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/08/2021] [Accepted: 05/14/2021] [Indexed: 12/22/2022] Open
Abstract
Autism spectrum disorder (ASD) is characterized by uncommon genetic heterogeneity and a high heritability concurrently. Most autoimmune disorders (AID), similarly to ASD, are characterized by impressive genetic heterogeneity and heritability. We conducted gene-set analyses and revealed that 584 out of 992 genes (59%) included in a new release of the SFARI Gene database and 439 out of 871 AID-associated genes (50%) could be attributed to one of four groups: 1. FMRP (fragile X mental retardation protein) target genes, 2. mTOR signaling network genes, 3. mTOR-modulated genes, and 4. vitamin D3-sensitive genes. With the exception of FMRP targets, which are obviously associated with the direct involvement of local translation disturbance in the pathological mechanisms of ASD, the remaining categories are represented among AID genes in a very similar percentage as among ASD predisposition genes. Thus, mTOR signaling pathway genes make up 4% of ASD and 3% of AID genes, mTOR-modulated genes-31% of both ASD and AID genes, and vitamin D-sensitive genes-20% of ASD and 23% of AID genes. The network analysis revealed 3124 interactions between 528 out of 729 AID genes for the 0.7 cutoff, so the great majority (up to 67%) of AID genes are related to the mTOR signaling pathway directly or indirectly. Our present research and available published data allow us to hypothesize that both a certain part of ASD and AID comprise a connected set of disorders sharing a common aberrant pathway (mTOR signaling) rather than a vast set of different disorders. Furthermore, an immune subtype of the autism spectrum might be a specific type of autoimmune disorder with an early manifestation of a unique set of predominantly behavioral symptoms.
Collapse
|
33
|
Affiliation(s)
- Søren Dalsgaard
- The National Centre for Register-based Research, Aarhus University, Aarhus, Denmark.,iPSYCH-The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
| |
Collapse
|
34
|
Katz J, Reichenberg A, Kolevzon A. Prenatal and perinatal metabolic risk factors for autism: a review and integration of findings from population-based studies. Curr Opin Psychiatry 2021; 34:94-104. [PMID: 33278157 PMCID: PMC9341035 DOI: 10.1097/yco.0000000000000673] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
PURPOSE OF REVIEW Given the ongoing rise in prevalence of autism spectrum disorder (ASD) and the challenges in developing and administering interventions to significantly alleviate ASD symptoms, there is an urgent need to identify modifiable risk factors for ASD. The goal of this review is to systematically evaluate the current evidence for an association between conditions related to maternal metabolic syndrome and risk for ASD in offspring focusing on methodically rigorous studies. RECENT FINDINGS In recent years, multiple studies explored the association between various conditions related to maternal metabolic syndrome (obesity, hypertension, or diabetes prior to, or with onset during pregnancy) and ASD risk in the offspring. SUMMARY Examining large, sufficiently powered, population-based epidemiological studies that explored the association between maternal metabolic syndrome and ASD, we found consistent evidence for an association between maternal preeclampsia and risk for ASD. Other conditions that are part of maternal metabolic syndrome, including maternal obesity, gestational weight gain, diabetes and gestational diabetes, should be studied further with careful attention paid to potential synergistic effects between different metabolic conditions. These findings highlight the need for rigorous, large, population-based epidemiological studies of potentially modifiable ASD risk factors that could inform public health interventions.
Collapse
Affiliation(s)
- Julia Katz
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, NY, NY
| | - Abraham Reichenberg
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, NY, NY
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, NY, NY
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, NY, NY
| | - Alexander Kolevzon
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, NY, NY
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, NY, NY
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, NY, NY
| |
Collapse
|
35
|
Kronzer VL, Crowson CS, Sparks JA, Myasoedova E, Davis J. Family History of Rheumatic, Autoimmune, and Nonautoimmune Diseases and Risk of Rheumatoid Arthritis. Arthritis Care Res (Hoboken) 2021; 73:180-187. [PMID: 31785183 PMCID: PMC7260093 DOI: 10.1002/acr.24115] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 11/26/2019] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Since comorbidities such as autoimmune diseases may be associated with rheumatoid arthritis (RA) risk, we hypothesized that a family history of these other conditions might also predict RA. Therefore, we aimed to determine the association between family history of 79 comorbidities and RA. METHODS This case-control study identified 821 cases of RA in the Mayo Clinic Biobank (positive predictive value 95%) and matched 3 controls to each case based on age, sex, recruitment year, and location. Patients self reported family history and characteristics (adjusted). Logistic regression was used to estimate odds ratios (ORs) and 95% confidence intervals (95% CIs) for RA risk according to the presence of family history for each comorbidity, adjusted for body mass index, race, and smoking. RESULTS Family history of several conditions was associated with developing RA, including rheumatic autoimmune diseases (ORadj 1.89 [95% CI 1.41-2.52]), pulmonary fibrosis (ORadj 2.12 [95% CI 1.16-3.80]), inflammatory bowel disease (ORadj 1.45 [95% CI 1.05-1.98]), hyper/hypothyroidism (ORadj 1.34 [95% CI 1.10-1.63]), and obstructive sleep apnea (ORadj 1.28 [95% CI 1.05-1.55]). Parkinson's disease and type 2 diabetes mellitus were associated with a statistically decreased risk of RA that did not reach the prespecified significance threshold of P < 0.01 (ORadj 0.70 [95% CI 0.49-0.98] and ORadj 0.81 [95% CI 0.67-0.97], respectively). Analyses among 143 cases of incident RA were similar and also suggested an association with a family history of autism (OR 10.5 [95% CI 2.51-71.3]). CONCLUSION Family history of several autoimmune and nonautoimmune comorbidities was associated with increased risk of RA, providing an opportunity to identify novel populations at risk for RA.
Collapse
|
36
|
Mesleh AG, Abdulla SA, El-Agnaf O. Paving the Way toward Personalized Medicine: Current Advances and Challenges in Multi-OMICS Approach in Autism Spectrum Disorder for Biomarkers Discovery and Patient Stratification. J Pers Med 2021; 11:jpm11010041. [PMID: 33450950 PMCID: PMC7828397 DOI: 10.3390/jpm11010041] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 02/06/2023] Open
Abstract
Autism spectrum disorder (ASD) is a multifactorial neurodevelopmental disorder characterized by impairments in two main areas: social/communication skills and repetitive behavioral patterns. The prevalence of ASD has increased in the past two decades, however, it is not known whether the evident rise in ASD prevalence is due to changes in diagnostic criteria or an actual increase in ASD cases. Due to the complexity and heterogeneity of ASD, symptoms vary in severity and may be accompanied by comorbidities such as epilepsy, attention deficit hyperactivity disorder (ADHD), and gastrointestinal (GI) disorders. Identifying biomarkers of ASD is not only crucial to understanding the biological characteristics of the disorder, but also as a detection tool for its early screening. Hence, this review gives an insight into the main areas of ASD biomarker research that show promising findings. Finally, it covers success stories that highlight the importance of precision medicine and the current challenges in ASD biomarker discovery studies.
Collapse
Affiliation(s)
- Areej G. Mesleh
- Division of Genomics and Precision Medicine (GPM), College of Health & Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Doha 34110, Qatar;
| | - Sara A. Abdulla
- Neurological Disorder Center, Qatar Biomedical Research Institute (QBRI), HBKU, Doha 34110, Qatar
- Correspondence: (S.A.A.); (O.E.-A.)
| | - Omar El-Agnaf
- Division of Genomics and Precision Medicine (GPM), College of Health & Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Doha 34110, Qatar;
- Neurological Disorder Center, Qatar Biomedical Research Institute (QBRI), HBKU, Doha 34110, Qatar
- Correspondence: (S.A.A.); (O.E.-A.)
| |
Collapse
|
37
|
Rydzewska E, Dunn K, Cooper SA. Umbrella systematic review of systematic reviews and meta-analyses on comorbid physical conditions in people with autism spectrum disorder. Br J Psychiatry 2021; 218:10-19. [PMID: 33161922 DOI: 10.1192/bjp.2020.167] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND Comorbid physical conditions may be more common in people with autism spectrum disorder (ASD) than other people. AIMS To identify what is and what is not known about comorbid physical conditions in people with ASD. METHOD We undertook an umbrella systematic review of systematic reviews and meta-analyses on comorbid physical conditions in people with ASD. Five databases were searched. There were strict inclusion/exclusion criteria. We undertook double reviewing for eligibility, systematic data extraction and quality assessment. Prospective PROSPERO registration: CRD42015020896. RESULTS In total, 24 of 5552 retrieved articles were included, 15 on children, 1 on adults, and 8 both on children and adults. Although the quality of included reviews was good, most reported several limitations in the studies they included and considerable heterogeneity. Comorbid physical conditions are common, and some are more prevalent than in the general population: sleep problems, epilepsy, sensory impairments, atopy, autoimmune disorders and obesity. Asthma is not. However, there are substantial gaps in the evidence base. Fewer studies have been undertaken on other conditions and some findings are inconsistent. CONCLUSIONS Comorbid physical conditions occur more commonly in people with ASD, but the evidence base is slim and more research is needed. Some comorbidities compound care if clinicians are unaware, for example sensory impairments, given the communication needs of people with ASD. Others, such as obesity, can lead to an array of other conditions, disadvantages and early mortality. It is essential that potentially modifiable physical conditions are identified to ensure people with ASD achieve their best outcomes. Heightening clinicians' awareness is important to aid in assessments and differential diagnoses, and to improve healthcare.
Collapse
Affiliation(s)
| | - Kirsty Dunn
- Institute of Health and Wellbeing, University of Glasgow, UK
| | | |
Collapse
|
38
|
Behl S, Mehta S, Pandey MK. Abnormal Levels of Metal Micronutrients and Autism Spectrum Disorder: A Perspective Review. Front Mol Neurosci 2020; 13:586209. [PMID: 33362464 PMCID: PMC7759187 DOI: 10.3389/fnmol.2020.586209] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 10/20/2020] [Indexed: 12/16/2022] Open
Abstract
The aim of the present review is to summarize the prevalence of abnormal levels of various metal micronutrients including copper (Cu), iron (Fe), magnesium (Mg), zinc (Zn), and selenium (Se) in Autism Spectrum Disorder (ASD) using hair, nail and serum samples. A correlation of selected abnormal metal ions with known neurodevelopmental processes using Gene Ontology (GO) term was also conducted. Data included in this review are derived from ASD clinical studies performed globally. Metal ion disparity data is also analyzed and discussed based on gender (Male/Female) to establish any gender dependent correlation. Finally, a rational perspective and possible path to better understand the role of metal micronutrients in ASD is suggested.
Collapse
Affiliation(s)
- Supriya Behl
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, United States
| | - Sunil Mehta
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, United States
| | - Mukesh K Pandey
- Department of Radiology, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
39
|
Critical Role of the Maternal Immune System in the Pathogenesis of Autism Spectrum Disorder. Biomedicines 2020; 8:biomedicines8120557. [PMID: 33271759 PMCID: PMC7760377 DOI: 10.3390/biomedicines8120557] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/26/2020] [Accepted: 11/29/2020] [Indexed: 12/27/2022] Open
Abstract
Autism spectrum disorders (ASD) are a group of neurodevelopmental disorders characterised by impairments in communication, social interaction, and the presence of restrictive and repetitive behaviours. Over the past decade, most of the research in ASD has focused on the contribution of genetics, with the identification of a variety of different genes and mutations. However, the vast heterogeneity in clinical presentations associated with this disorder suggests that environmental factors may be involved, acting as a “second hit” in already genetically susceptible individuals. To this regard, emerging evidence points towards a role for maternal immune system dysfunctions. This literature review considered evidence from epidemiological studies and aimed to discuss the pathological relevance of the maternal immune system in ASD by looking at the proposed mechanisms by which it alters the prenatal environment. In particular, this review focuses on the effects of maternal immune activation (MIA) by looking at foetal brain-reactive antibodies, cytokines and the microbiome. Despite the arguments presented here that strongly implicate MIA in the pathophysiology of ASD, further research is needed to fully understand the precise mechanisms by which they alter brain structure and behaviour. Overall, this review has not only shown the importance of the maternal immune system as a risk factor for ASD, but more importantly, has highlighted new promising pathways to target for the discovery of novel therapeutic interventions for the treatment of such a life-changing disorder.
Collapse
|
40
|
Masini E, Loi E, Vega-Benedetti AF, Carta M, Doneddu G, Fadda R, Zavattari P. An Overview of the Main Genetic, Epigenetic and Environmental Factors Involved in Autism Spectrum Disorder Focusing on Synaptic Activity. Int J Mol Sci 2020; 21:ijms21218290. [PMID: 33167418 PMCID: PMC7663950 DOI: 10.3390/ijms21218290] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/28/2020] [Accepted: 10/30/2020] [Indexed: 12/11/2022] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder that affects social interaction and communication, with restricted interests, activity and behaviors. ASD is highly familial, indicating that genetic background strongly contributes to the development of this condition. However, only a fraction of the total number of genes thought to be associated with the condition have been discovered. Moreover, other factors may play an important role in ASD onset. In fact, it has been shown that parental conditions and in utero and perinatal factors may contribute to ASD etiology. More recently, epigenetic changes, including DNA methylation and micro RNA alterations, have been associated with ASD and proposed as potential biomarkers. This review aims to provide a summary of the literature regarding ASD candidate genes, mainly focusing on synapse formation and functionality and relevant epigenetic and environmental aspects acting in concert to determine ASD onset.
Collapse
Affiliation(s)
- Elena Masini
- Department of Biomedical Sciences, Unit of Biology and Genetics, University of Cagliari, 09042 Cagliari, Italy; (E.M.); (E.L.); (A.F.V.-B.)
| | - Eleonora Loi
- Department of Biomedical Sciences, Unit of Biology and Genetics, University of Cagliari, 09042 Cagliari, Italy; (E.M.); (E.L.); (A.F.V.-B.)
| | - Ana Florencia Vega-Benedetti
- Department of Biomedical Sciences, Unit of Biology and Genetics, University of Cagliari, 09042 Cagliari, Italy; (E.M.); (E.L.); (A.F.V.-B.)
| | - Marinella Carta
- Center for Pervasive Developmental Disorders, Azienda Ospedaliera Brotzu, 09121 Cagliari, Italy;
| | - Giuseppe Doneddu
- Centro per l’Autismo e Disturbi correlati (CADc), Nuovo Centro Fisioterapico Sardo, 09131 Cagliari, Italy;
| | - Roberta Fadda
- Department of Pedagogy, Psychology, Philosophy, University of Cagliari, 09123 Cagliari, Italy;
| | - Patrizia Zavattari
- Department of Biomedical Sciences, Unit of Biology and Genetics, University of Cagliari, 09042 Cagliari, Italy; (E.M.); (E.L.); (A.F.V.-B.)
- Correspondence:
| |
Collapse
|
41
|
Maternal Systemic Lupus Erythematosus, Rheumatoid Arthritis, and Risk for Autism Spectrum Disorders in Offspring: A Meta-analysis. J Autism Dev Disord 2020; 50:2852-2859. [PMID: 32034648 DOI: 10.1007/s10803-020-04400-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This study assessed the relationships between maternal systemic lupus erythematosus (SLE) or rheumatoid arthritis (RA) and risk for autism spectrum disorders (ASDs) in offspring. Seven observational studies, including 25,005 ASD cases and 4,543,321 participants, were included for meta-analysis. Pooled results by using random-effects models suggested that maternal RA was associated with an increased risk for ASDs [odds ratio (OR) 1.39, 95% confidence interval (CI) 1.16-1.67], while maternal SLE was associated with an increased risk for ASDs only in western population (OR 1.91, 95% CI 1.02-3.57). Further study is warranted to confirm these results.
Collapse
|
42
|
Thom RP, McDougle CJ. Immune Modulatory Treatments for Autism Spectrum Disorder. Semin Pediatr Neurol 2020; 35:100836. [PMID: 32892957 DOI: 10.1016/j.spen.2020.100836] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Several lines of evidence from family history studies, immunogenetics, maternal immune activation, neuroinflammation, and systemic inflammation support an immune subtype of autism spectrum disorder (ASD). Current Food and Drug Administration-approved medications for ASD do not address the underlying pathophysiology of ASD, have not consistently been shown to address the core symptoms of ASD, and are currently only approved for treating irritability in children and adolescents. In this article, we review the immune modulatory effects of the 2 currently Food and Drug Administration-approved treatments for ASD. We then provide an overview of current data on emerging treatments for ASD from multiple fields of medicine with immune modulatory effects. Although further research is needed to more clearly establish the efficacy and safety of immune modulatory treatments, early data on repurposing medications used to treat systemic inflammation for ASD demonstrate potential benefit and further research is warranted.
Collapse
Affiliation(s)
- Robyn P Thom
- Massachusetts General Hospital, Boston, MA; Department of Psychiatry, Harvard Medical School, Boston, MA
| | - Christopher J McDougle
- Massachusetts General Hospital, Boston, MA; Lurie Center for Autism, Lexington, MA; Department of Psychiatry, Harvard Medical School, Boston, MA.
| |
Collapse
|
43
|
Kutuk MO, Tufan E, Gokcen C, Kilicaslan F, Karadag M, Mutluer T, Yektas C, Coban N, Kandemir H, Buber A, Coskun S, Acikbas U, Guler G, Topal Z, Celik F, Altintas E, Giray A, Aka Y, Kutuk O. Cytokine expression profiles in Autism spectrum disorder: A multi-center study from Turkey. Cytokine 2020; 133:155152. [DOI: 10.1016/j.cyto.2020.155152] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 05/27/2020] [Accepted: 05/28/2020] [Indexed: 12/31/2022]
|
44
|
Patel S, Dale RC, Rose D, Heath B, Nordahl CW, Rogers S, Guastella AJ, Ashwood P. Maternal immune conditions are increased in males with autism spectrum disorders and are associated with behavioural and emotional but not cognitive co-morbidity. Transl Psychiatry 2020; 10:286. [PMID: 32796821 PMCID: PMC7429839 DOI: 10.1038/s41398-020-00976-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/21/2020] [Accepted: 07/24/2020] [Indexed: 12/16/2022] Open
Abstract
Epidemiological and animal research shows that maternal immune activation increases the risk of autism spectrum disorders (ASD) in offspring. Emerging evidence suggests that maternal immune conditions may play a role in the phenotypic expression of neurodevelopmental difficulties in children with ASD and this may be moderated by offspring sex. This study aimed to investigate whether maternal immune conditions were associated with increased severity of adverse neurodevelopmental outcomes in children with ASD. Maternal immune conditions were examined as predictors of ASD severity, behavioural and emotional well-being, and cognitive functioning in a cohort of 363 children with ASD (n = 363; 252 males, 111 females; median age 3.07 [interquartile range 2.64-3.36 years]). We also explored whether these outcomes varied between male and female children. Results showed that maternal asthma was the most common immune condition reported in mothers of children with ASD. A history of maternal immune conditions (p = 0.009) was more common in male children with ASD, compared to female children. Maternal immune conditions were associated with increased behavioural and emotional problems in male and female children. By contrast, maternal immune conditions were not associated with decreased cognitive function. The findings demonstrate that MIA may influence the expression of symptoms in children with ASD and outcomes may vary between males and females.
Collapse
Affiliation(s)
- Shrujna Patel
- grid.1013.30000 0004 1936 834XAutism Clinic for Translational Research, Brain and Mind Centre, Children’s Hospital Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW Australia
| | - Russell C. Dale
- grid.1013.30000 0004 1936 834XKids Neuroscience Centre, The Children’s Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, Westmead, NSW Australia
| | - Destanie Rose
- grid.27860.3b0000 0004 1936 9684Department of Medical Microbiology and Immunology and MIND Institute, UC Davis, Davis, CA USA
| | - Brianna Heath
- grid.27860.3b0000 0004 1936 9684Department of Psychiatry and MIND Institute, UC Davis, Davis, CA USA
| | - Christine W. Nordahl
- grid.27860.3b0000 0004 1936 9684Department of Psychiatry and MIND Institute, UC Davis, Davis, CA USA
| | - Sally Rogers
- grid.27860.3b0000 0004 1936 9684Department of Psychiatry and MIND Institute, UC Davis, Davis, CA USA
| | - Adam J. Guastella
- grid.1013.30000 0004 1936 834XAutism Clinic for Translational Research, Brain and Mind Centre, Children’s Hospital Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW Australia
| | - Paul Ashwood
- Department of Medical Microbiology and Immunology and MIND Institute, UC Davis, Davis, CA, USA.
| |
Collapse
|
45
|
Marks K, Coutinho E, Vincent A. Maternal-Autoantibody-Related (MAR) Autism: Identifying Neuronal Antigens and Approaching Prospects for Intervention. J Clin Med 2020; 9:jcm9082564. [PMID: 32784803 PMCID: PMC7465310 DOI: 10.3390/jcm9082564] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/31/2020] [Accepted: 08/03/2020] [Indexed: 02/06/2023] Open
Abstract
Recent studies indicate the existence of a maternal-autoantibody-related subtype of autism spectrum disorder (ASD). To date, a large number of studies have focused on describing patterns of brain-reactive serum antibodies in maternal-autoantibody-related (MAR) autism and some have described attempts to define the antigenic targets. This article describes evidence on MAR autism and the various autoantibodies that have been implicated. Among other possibilities, antibodies to neuronal surface protein Contactin Associated Protein 2 (CASPR2) have been found more frequently in mothers of children with neurodevelopmental disorders or autism, and two independent experimental studies have shown pathogenicity in mice. The N-methyl-D-aspartate receptor (NMDAR) is another possible target for maternal antibodies as demonstrated in mice. Here, we discuss the growing evidence, discuss issues regarding biomarker definition, and summarise the therapeutic approaches that might be used to reduce or prevent the transfer of pathogenic maternal antibodies.
Collapse
Affiliation(s)
- Katya Marks
- Medical Sciences Division, John Radcliffe Hospital, University of Oxford, OX3 9DU Oxford, UK;
| | - Ester Coutinho
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King’s College London, SE5 9RT London, UK;
- Nuffield Department of Clinical Neurosciences and Weatherall Institute for Molecular Medicine, University of Oxford, OX3 9DS Oxford, UK
| | - Angela Vincent
- Medical Research Council Centre for Neurodevelopmental Disorders, King’s College London, SE1 1UL London, UK
- Correspondence: ; Tel.: +44-781-722-4849 or +44-186-555-9636
| |
Collapse
|
46
|
Abstract
Autism spectrum disorder (referred to here as autism) is one of several overlapping neurodevelopmental conditions that have variable impacts on different individuals. This variability results from dynamic interactions between biological and non-biological risk factors, which result in increasing differentiation between individuals over time. Although this differentiation continues well into adulthood, the infancy period is when the brain and behavior develop rapidly, and when the first signs and symptoms of autism emerge. This review discusses advances in our understanding of the causal pathways leading to autism and overlapping neurodevelopmental conditions. Research is also mapping trajectories of brain and behavioral development for some risk groups, namely later born siblings of children with autism and/or infants referred because of developmental concerns. This knowledge has been useful in improving early identification and establishing the feasibility of targeted interventions for infant risk groups before symptoms arise. However, key knowledge gaps remain, such as the discovery of protective factors (biological or environmental) that may mitigate the impact of risk. Also, the dynamic mechanisms that underlie the associations between risk factors and outcomes need further research. These include the processes of resilience, which may explain why some individuals at risk for autism achieve better than expected outcomes. Bridging these knowledge gaps would help to provide tools for early identification and intervention that reflect dynamic developmental pathways from risk to outcomes.
Collapse
Affiliation(s)
- Mayada Elsabbagh
- Montreal Neurological Institute, Azrieli Centre for Autism Research, McGill University, Montreal, Canada
| |
Collapse
|
47
|
Dudova I, Horackova K, Hrdlicka M, Balastik M. Can Maternal Autoantibodies Play an Etiological Role in ASD Development? Neuropsychiatr Dis Treat 2020; 16:1391-1398. [PMID: 32581542 PMCID: PMC7276202 DOI: 10.2147/ndt.s239504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 04/10/2020] [Indexed: 12/20/2022] Open
Abstract
Autism spectrum disorder (ASD) is a heterogeneous condition with multiple etiologies and risk factors - both genetic and environmental. Recent data demonstrate that the immune system plays an important role in prenatal brain development. Deregulation of the immune system during embryonic development can lead to neurodevelopmental changes resulting in ASD. One of the potential etiologic factors in the development of ASD has been identified as the presence of maternal autoantibodies targeting fetal brain proteins. The type of ASD associated with the presence of maternal autoantibodies has been referred to as maternal antibodies related to ASD (MAR ASD). The link between maternal autoantibodies and ASD has been demonstrated in both clinical studies and animal models, but the exact mechanism of their action in the pathogenesis of ASD has not been clarified yet. Several protein targets of ASD-related maternal autoantibodies have been identified. Here, we discuss the role of microtubule-associated proteins of the collapsin response mediator protein (CRMP) family in neurodevelopment and ASD. CRMPs have been shown to integrate multiple signaling cascades regulating neuron growth, guidance or migration. Their targeting by maternal autoantibodies could change CRMP levels or distribution in the developing nervous system, leading to defects in axon growth/guidance, cortical migration, or dendritic projection, which could play an etiological role in ASD development. In addition, we discuss the future possibilities of MAR ASD treatment.
Collapse
Affiliation(s)
- Iva Dudova
- Department of Child Psychiatry, Charles University Second Faculty of Medicine, Prague, Czech Republic
| | - Klara Horackova
- Department of Psychiatry, Charles University First Faculty of Medicine, Prague, Czech Republic
| | - Michal Hrdlicka
- Department of Child Psychiatry, Charles University Second Faculty of Medicine, Prague, Czech Republic
| | - Martin Balastik
- Laboratory of Molecular Neurobiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
48
|
Missig G, McDougle CJ, Carlezon WA. Sleep as a translationally-relevant endpoint in studies of autism spectrum disorder (ASD). Neuropsychopharmacology 2020; 45:90-103. [PMID: 31060044 PMCID: PMC6879602 DOI: 10.1038/s41386-019-0409-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/16/2019] [Accepted: 04/19/2019] [Indexed: 02/07/2023]
Abstract
Sleep has numerous advantages for aligning clinical and preclinical (basic neuroscience) studies of neuropsychiatric illness. Sleep has high translational relevance, because the same endpoints can be studied in humans and laboratory animals. In addition, sleep experiments are conducive to continuous data collection over long periods (hours/days/weeks) and can be based on highly objective neurophysiological measures. Here, we provide a translationally-oriented review on what is currently known about sleep in the context of autism spectrum disorder (ASD), including ASD-related conditions, thought to have genetic, environmental, or mixed etiologies. In humans, ASD is frequently associated with comorbid medical conditions including sleep disorders. Animal models used in the study of ASD frequently recapitulate dysregulation of sleep and biological (diurnal, circadian) rhythms, suggesting common pathophysiologies across species. As our understanding of the neurobiology of ASD and sleep each become more refined, it is conceivable that sleep-derived metrics may offer more powerful biomarkers of altered neurophysiology in ASD than the behavioral tests currently used in humans or lab animals. As such, the study of sleep in animal models for ASD may enable fundamentally new insights on the condition and represent a basis for strategies that enable the development of more effective therapeutics.
Collapse
Affiliation(s)
- Galen Missig
- 0000 0000 8795 072Xgrid.240206.2Basic Neuroscience Division, Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA USA
| | - Christopher J. McDougle
- 0000 0004 0386 9924grid.32224.35Lurie Center for Autism, Massachusetts General Hospital, Lexington, MA USA ,000000041936754Xgrid.38142.3cDepartment of Psychiatry, Harvard Medical School, Boston, MA USA
| | - William A. Carlezon
- 0000 0000 8795 072Xgrid.240206.2Basic Neuroscience Division, Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA USA
| |
Collapse
|
49
|
Al-Haddad BJS, Oler E, Armistead B, Elsayed NA, Weinberger DR, Bernier R, Burd I, Kapur R, Jacobsson B, Wang C, Mysorekar I, Rajagopal L, Adams Waldorf KM. The fetal origins of mental illness. Am J Obstet Gynecol 2019; 221:549-562. [PMID: 31207234 PMCID: PMC6889013 DOI: 10.1016/j.ajog.2019.06.013] [Citation(s) in RCA: 167] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/07/2019] [Accepted: 06/10/2019] [Indexed: 12/14/2022]
Abstract
The impact of infections and inflammation during pregnancy on the developing fetal brain remains incompletely defined, with important clinical and research gaps. Although the classic infectious TORCH pathogens (ie, Toxoplasma gondii, rubella virus, cytomegalovirus [CMV], herpes simplex virus) are known to be directly teratogenic, emerging evidence suggests that these infections represent the most extreme end of a much larger spectrum of injury. We present the accumulating evidence that prenatal exposure to a wide variety of viral and bacterial infections-or simply inflammation-may subtly alter fetal brain development, leading to neuropsychiatric consequences for the child later in life. The link between influenza infections in pregnant women and an increased risk for development of schizophrenia in their children was first described more than 30 years ago. Since then, evidence suggests that a range of infections during pregnancy may also increase risk for autism spectrum disorder and depression in the child. Subsequent studies in animal models demonstrated that both pregnancy infections and inflammation can result in direct injury to neurons and neural progenitor cells or indirect injury through activation of microglia and astrocytes, which can trigger cytokine production and oxidative stress. Infectious exposures can also alter placental serotonin production, which can perturb neurotransmitter signaling in the developing brain. Clinically, detection of these subtle injuries to the fetal brain is difficult. As the neuropsychiatric impact of perinatal infections or inflammation may not be known for decades after birth, our construct for defining teratogenic infections in pregnancy (eg, TORCH) based on congenital anomalies is insufficient to capture the full adverse impact on the child. We discuss the clinical implications of this body of evidence and how we might place greater emphasis on prevention of prenatal infections. For example, increasing uptake of the seasonal influenza vaccine is a key strategy to reduce perinatal infections and the risk for fetal brain injury. An important research gap exists in understanding how antibiotic therapy during pregnancy affects the fetal inflammatory load and how to avoid inflammation-mediated injury to the fetal brain. In summary, we discuss the current evidence and mechanisms linking infections and inflammation with the increased lifelong risk of neuropsychiatric disorders in the child, and how we might improve prenatal care to protect the fetal brain.
Collapse
Affiliation(s)
| | - Elizabeth Oler
- Department of Obstetrics & Gynecology, University of Washington, Seattle, WA
| | - Blair Armistead
- Department of Global Health, University of Washington Seattle, WA; Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA
| | - Nada A Elsayed
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Daniel R Weinberger
- Lieber Institute for Brain Development, Departments of Psychiatry, Neurology, Neuroscience, and McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine Baltimore, MD
| | - Raphael Bernier
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA
| | - Irina Burd
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Raj Kapur
- Department of Pediatrics, University of Washington, Seattle Children's Hospital, Seattle, WA
| | - Bo Jacobsson
- Department of Obstetrics and Gynecology, Institute of Clinical Science, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden; Department of Genetics and Bioinformatics, Domain of Health Data and Digitalization, Institute of Public Health, Oslo, Norway
| | - Caihong Wang
- Department of Obstetrics and Gynecology, Center for Reproductive Health Sciences, Washington University School of Medicine, St. Louis, MO
| | - Indira Mysorekar
- Departments of Obstetrics and Gynecology and Pathology and Immunology, Center for Reproductive Health Sciences, Washington University School of Medicine, St. Louis, MO
| | - Lakshmi Rajagopal
- Center for Innate Immunity and Immune Disease, Department of Pediatrics, University of Washington, Seattle, WA; Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA
| | - Kristina M Adams Waldorf
- Department of Obstetrics & Gynecology and Global Health, Center for Innate Immunity and Immune Disease, Center for Emerging and Reemerging Infectious Diseases, University of Washington, Seattle, WA; Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
50
|
Maternal and early postnatal immune activation produce sex-specific effects on autism-like behaviors and neuroimmune function in mice. Sci Rep 2019; 9:16928. [PMID: 31729416 PMCID: PMC6858355 DOI: 10.1038/s41598-019-53294-z] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 10/28/2019] [Indexed: 01/08/2023] Open
Abstract
Increasing evidence suggests a role for inflammation in neuropsychiatric conditions including autism spectrum disorder (ASD), a neurodevelopmental syndrome with higher prevalence in males than females. Here we examined the effects of early-life immune system activation (EIA)—comprising regimens of prenatal, early postnatal, or combined (“two-hit”) immune activation—on the core behavioral features of ASD (decreased social interaction, increased repetitive behavior, and aberrant communication) in C57BL/6J mice. We treated timed-pregnant mice with polyinosinic:polycytidylic acid (Poly I:C) on gestational day 12.5 to produce maternal immune activation (MIA). Some offspring also received lipopolysaccharide (LPS) on postnatal day 9 to produce postnatal immune activation (PIA). EIA produced disruptions in social behavior and increases in repetitive behaviors that were larger in males than in females. Ultrasonic vocalizations (USVs) were altered in both sexes. Molecular studies revealed that EIA also produced prominent sex-specific changes in inflammation-related gene expression in the brain. Whereas both sexes showed increases in pro-inflammatory factors, as reflected by levels of mRNA and protein, expression of anti-inflammatory factors was decreased in males but increased in females. Our findings demonstrate that EIA can produce sex-specific behavioral effects and immune responses in the brain, and identify molecular processes that may contribute to resilience in females.
Collapse
|