1
|
Santana-Coelho D, Pranske ZJ, Nolan SO, Hodges SL, Binder MS, Womble PD, Narvaiz DA, Muhammad I, Lugo JN. Neonatal immune stimulation results in sex-specific changes in ultrasonic vocalizations but does not affect seizure susceptibility in neonatal mice. Int J Dev Neurosci 2024; 84:381-391. [PMID: 38712612 DOI: 10.1002/jdn.10333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 04/15/2024] [Accepted: 04/19/2024] [Indexed: 05/08/2024] Open
Abstract
Neuroinflammation during the neonatal period has been linked to disorders such as autism and epilepsy. In this study, we investigated the early life behavioral consequences of a single injection of lipopolysaccharide (LPS) at postnatal day 10 (PD10) in mice. To assess deficits in communication, we performed the isolation-induced ultrasonic vocalizations (USVs) test at PD12. To determine if early life immune stimulus could alter seizure susceptibility, latency to flurothyl-induced generalized seizures was measured at 4 hours (hrs), 2 days, or 5 days after LPS injections. LPS had a sex-dependent effect on USV number. LPS-treated male mice presented significantly fewer USVs than LPS-treated female mice. However, the number of calls did not significantly differ between control and LPS for either sex. In male mice, we found that downward, short, and composite calls were significantly more prevalent in the LPS treatment group, while upward, chevron, and complex calls were less prevalent than in controls (p < 0.05). Female mice that received LPS presented a significantly higher proportion of short, frequency steps, two-syllable, and composite calls in their repertoire when compared with female control mice (p < 0.05). Seizure latency was not altered by early-life inflammation at any of the time points measured. Our findings suggest that early-life immune stimulation at PD10 disrupts vocal development but does not alter the susceptibility to flurothyl-induced seizures during the neonatal period. Additionally, the effect of inflammation in the disruption of vocalization is sex-dependent.
Collapse
Affiliation(s)
| | - Zachary J Pranske
- Department of Psychology and Neuroscience, Baylor University, Waco, Texas, USA
| | - Suzanne O Nolan
- Department of Psychology and Neuroscience, Baylor University, Waco, Texas, USA
| | | | - Matthew S Binder
- Department of Psychology and Neuroscience, Baylor University, Waco, Texas, USA
| | - Paige D Womble
- Department of Psychology and Neuroscience, Baylor University, Waco, Texas, USA
| | - David A Narvaiz
- Department of Psychology and Neuroscience, Baylor University, Waco, Texas, USA
| | - Ilyasah Muhammad
- Department of Psychology and Neuroscience, Baylor University, Waco, Texas, USA
| | - Joaquin N Lugo
- Department of Psychology and Neuroscience, Baylor University, Waco, Texas, USA
- Institute of Biomedical Studets, Waco, Texas, USA
- Department of Biology, Baylor University, Waco, Texas, USA
| |
Collapse
|
2
|
Ohki CMY, Benazzato C, van der Linden V, França JV, Toledo CM, Machado RRG, Araujo DB, Oliveira DBL, Neris RS, Assunção-Miranda I, de Oliveira Souza IN, Nogueira CO, Leite PEC, van der Linden H, Figueiredo CP, Durigon EL, Clarke JR, Russo FB, Beltrão-Braga PCB. Zika virus infection impairs synaptogenesis, induces neuroinflammation, and could be an environmental risk factor for autism spectrum disorder outcome. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167097. [PMID: 38408544 DOI: 10.1016/j.bbadis.2024.167097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 02/20/2024] [Accepted: 02/20/2024] [Indexed: 02/28/2024]
Abstract
Zika virus (ZIKV) infection was first associated with Central Nervous System (CNS) infections in Brazil in 2015, correlated with an increased number of newborns with microcephaly, which ended up characterizing the Congenital Zika Syndrome (CZS). Here, we investigated the impact of ZIKV infection on the functionality of iPSC-derived astrocytes. Besides, we extrapolated our findings to a Brazilian cohort of 136 CZS children and validated our results using a mouse model. Interestingly, ZIKV infection in neuroprogenitor cells compromises cell migration and causes apoptosis but does not interfere in astrocyte generation. Moreover, infected astrocytes lost their ability to uptake glutamate while expressing more glutamate transporters and secreted higher levels of IL-6. Besides, infected astrocytes secreted factors that impaired neuronal synaptogenesis. Since these biological endophenotypes were already related to Autism Spectrum Disorder (ASD), we extrapolated these results to a cohort of children, now 6-7 years old, and found seven children with ASD diagnosis (5.14 %). Additionally, mice infected by ZIKV revealed autistic-like behaviors, with a significant increase of IL-6 mRNA levels in the brain. Considering these evidence, we inferred that ZIKV infection during pregnancy might lead to synaptogenesis impairment and neuroinflammation, which could increase the risk for ASD.
Collapse
Affiliation(s)
| | - Cecília Benazzato
- Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Julia V França
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carmen M Toledo
- Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | | | | | - Romulo S Neris
- Institute of Microbiology Paulo de Goes, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Iranaia Assunção-Miranda
- Institute of Microbiology Paulo de Goes, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Clara O Nogueira
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Paulo Emilio Corrêa Leite
- Clinical Research Unit of the Antonio Pedro Hospital, Federal Fluminense University, Rio de Janeiro, Brazil
| | | | - Claudia P Figueiredo
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Edison Luiz Durigon
- Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil; Institut Pasteur de São Paulo, São Paulo, Brazil
| | - Julia R Clarke
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | |
Collapse
|
3
|
Iwakura Y, Kobayashi Y, Namba H, Nawa H, Takei N. Epidermal Growth Factor Suppresses the Development of GABAergic Neurons Via the Modulation of Perineuronal Net Formation in the Neocortex of Developing Rodent Brains. Neurochem Res 2024; 49:1347-1358. [PMID: 38353896 DOI: 10.1007/s11064-024-04122-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/02/2024] [Accepted: 02/04/2024] [Indexed: 04/04/2024]
Abstract
Previously, we reported that epidermal growth factor (EGF) suppresses GABAergic neuronal development in the rodent cortex. Parvalbumin-positive GABAergic neurons (PV neurons) have a unique extracellular structure, perineuronal nets (PNNs). PNNs are formed during the development of PV neurons and are mainly formed from chondroitin sulfate (CS) proteoglycans (CSPGs). We examined the effect of EGF on CSPG production and PNN formation as a potential molecular mechanism for the inhibition of inhibiting GABAergic neuronal development by EGF. In EGF-overexpressing transgenic (EGF-Tg) mice, the number of PNN-positive PV neurons was decreased in the cortex compared with that in wild-type mice, as in our previous report. The amount of CS and neurocan was also lower in the cortex of EGF-Tg mice, with a similar decrease observed in EGF-treated cultured cortical neurons. PD153035, an EGF receptor (ErbB1) kinase inhibitor, prevented those mentioned above excess EGF-induced reduction in PNN. We explored the molecular mechanism underlying the effect of EGF on PNNs using fluorescent substrates for matrix metalloproteinases (MMPs) and a disintegrin and metalloproteinases (ADAMs). EGF increased the enzyme activity of MMPs and ADAMs in cultured neurons. These enzyme activities were also increased in the EGF-Tg mice cortex. GM6001, a broad inhibitor of MMPs and ADAMs, also blocked EGF-induced PNN reductions. Therefore, EGF/EGF receptor signals may regulate PNN formation in the developing cortex.
Collapse
Affiliation(s)
- Yuriko Iwakura
- Department of Brain Tumor Biology, Brain Research Institute, Niigata University, Niigata, 951-8122, Japan.
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Niigata, 951-8122, Japan.
| | - Yutaro Kobayashi
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Niigata, 951-8122, Japan
- Department of Biochemistry, Graduate School of Medicine, Faculty of Medicine, University of Yamanashi, Yamanashi, 409-3898, Japan
| | - Hisaaki Namba
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Niigata, 951-8122, Japan
- Department of Physiological Sciences, School of Pharmaceutical Sciences, Wakayama Medical University, Wakayama, 640-8156, Japan
| | - Hiroyuki Nawa
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Niigata, 951-8122, Japan
- Department of Physiological Sciences, School of Pharmaceutical Sciences, Wakayama Medical University, Wakayama, 640-8156, Japan
| | - Nobuyuki Takei
- Department of Brain Tumor Biology, Brain Research Institute, Niigata University, Niigata, 951-8122, Japan
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Niigata, 951-8122, Japan
| |
Collapse
|
4
|
Gervasi MT, Romero R, Cainelli E, Veronese P, Tran MR, Jung E, Suksai M, Bosco M, Gotsch F. Intra-amniotic inflammation in the mid-trimester of pregnancy is a risk factor for neuropsychological disorders in childhood. J Perinat Med 2023; 51:363-378. [PMID: 36173676 PMCID: PMC10010737 DOI: 10.1515/jpm-2022-0255] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/17/2022] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Intra-amniotic inflammation is a subclinical condition frequently caused by either microbial invasion of the amniotic cavity or sterile inflammatory stimuli, e.g., alarmins. An accumulating body of evidence supports a role for maternal immune activation in the genesis of fetal neuroinflammation and the occurrence of neurodevelopmental disorders such as cerebral palsy, schizophrenia, and autism. The objective of this study was to determine whether fetal exposure to mid-trimester intra-amniotic inflammation is associated with neurodevelopmental disorders in children eight to 12 years of age. METHODS This is a retrospective case-control study comprising 20 children with evidence of prenatal exposure to intra-amniotic inflammation in the mid-trimester and 20 controls matched for gestational age at amniocentesis and at delivery. Amniotic fluid samples were tested for concentrations of interleukin-6 and C-X-C motif chemokine ligand 10, for bacteria by culture and molecular microbiologic methods as well as by polymerase chain reaction for eight viruses. Neuropsychological testing of children, performed by two experienced psychologists, assessed cognitive and behavioral domains. Neuropsychological dysfunction was defined as the presence of an abnormal score (<2 standard deviations) on at least two cognitive tasks. RESULTS Neuropsychological dysfunction was present in 45% (9/20) of children exposed to intra-amniotic inflammation but in only 10% (2/20) of those in the control group (p=0.03). The relative risk (RR) of neuropsychological dysfunction conferred by amniotic fluid inflammation remained significant after adjusting for gestational age at delivery [aRR=4.5 (1.07-16.7)]. Of the 11 children diagnosed with neuropsychological dysfunction, nine were delivered at term and eight of them had mothers with intra-amniotic inflammation. Children exposed to intra-amniotic inflammation were found to have abnormalities in neuropsychological tasks evaluating complex skills, e.g., auditory attention, executive functions, and social skills, whereas the domains of reasoning, language, and memory were not affected in the cases and controls. CONCLUSIONS Asymptomatic sterile intra-amniotic inflammation in the mid-trimester of pregnancy, followed by a term birth, can still confer to the offspring a substantial risk for neurodevelopmental disorders in childhood. Early recognition and treatment of maternal immune activation in pregnancy may be a strategy for the prevention of subsequent neurodevelopmental disorders in offspring.
Collapse
Affiliation(s)
- Maria Teresa Gervasi
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, USA, and Detroit, MI, USA
- Gynaecology and Obstetrics Unit, Department of Women’s and Children’s Health, University Hospital of Padua, Padua, Italy
| | - Roberto Romero
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, USA, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, USA
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, USA
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, USA
- Detroit Medical Center, Detroit, MI, USA
| | - Elisa Cainelli
- Department of General Psychology, University of Padova, Padova, Italy
| | - Paola Veronese
- Maternal-Fetal Medicine Unit, Department of Women’s and Children’s Health, AOPD, Padua, Italy
| | - Maria Rosa Tran
- Gynaecology and Obstetrics Unit, Department of Women’s and Children’s Health, University Hospital of Padua, Padua, Italy
| | - Eunjung Jung
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, USA, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Manaphat Suksai
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, USA, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Mariachiara Bosco
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, USA, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Francesca Gotsch
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, USA, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
5
|
Sotoyama H, Namba H, Tohmi M, Nawa H. Schizophrenia Animal Modeling with Epidermal Growth Factor and Its Homologs: Their Connections to the Inflammatory Pathway and the Dopamine System. Biomolecules 2023; 13:biom13020372. [PMID: 36830741 PMCID: PMC9953688 DOI: 10.3390/biom13020372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/10/2023] [Accepted: 02/12/2023] [Indexed: 02/18/2023] Open
Abstract
Epidermal growth factor (EGF) and its homologs, such as neuregulins, bind to ErbB (Her) receptor kinases and regulate glial differentiation and dopaminergic/GABAergic maturation in the brain and are therefore implicated in schizophrenia neuropathology involving these cell abnormalities. In this review, we summarize the biological activities of the EGF family and its neuropathologic association with schizophrenia, mainly overviewing our previous model studies and the related articles. Transgenic mice as well as the rat/monkey models established by perinatal challenges of EGF or its homologs consistently exhibit various behavioral endophenotypes relevant to schizophrenia. In particular, post-pubertal elevation in baseline dopaminergic activity may illustrate the abnormal behaviors relevant to positive and negative symptoms as well as to the timing of this behavioral onset. With the given molecular interaction and transactivation of ErbB receptor kinases with Toll-like receptors (TLRs), EGF/ErbB signals are recruited by viral infection and inflammatory diseases such as COVID-19-mediated pneumonia and poxvirus-mediated fibroma and implicated in the immune-inflammatory hypothesis of schizophrenia. Finally, we also discuss the interaction of clozapine with ErbB receptor kinases as well as new antipsychotic development targeting these receptors.
Collapse
Affiliation(s)
- Hidekazu Sotoyama
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
- Department of Physiology, School of Medicine, Niigata University, Niigata 951-8122, Japan
- Correspondence: (H.N.); (H.S.)
| | - Hisaaki Namba
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
- Department of Physiological Sciences, School of Pharmaceutical Sciences, Wakayama Medical University, Wakayama 649-8156, Japan
| | - Manavu Tohmi
- Department of Physiological Sciences, School of Pharmaceutical Sciences, Wakayama Medical University, Wakayama 649-8156, Japan
| | - Hiroyuki Nawa
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
- Department of Physiological Sciences, School of Pharmaceutical Sciences, Wakayama Medical University, Wakayama 649-8156, Japan
- Correspondence: (H.N.); (H.S.)
| |
Collapse
|
6
|
Common infectious morbidity and white blood cell count in middle childhood predict behavior problems in adolescence. Dev Psychopathol 2023; 35:301-313. [PMID: 34420539 DOI: 10.1017/s0954579421000675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
We examined the associations of middle childhood infectious morbidity and inflammatory biomarkers with adolescent internalizing and externalizing behavior problems. We recruited 1018 Colombian schoolchildren aged 5-12 years into a cohort. We quantified white blood cell (WBC) counts and C-reactive protein at enrollment and prospectively recorded incidence of gastrointestinal, respiratory, and fever-associated morbidity during the first follow-up year. After a median 6 years, we assessed adolescent internalizing and externalizing behavior problems using child behavior checklist (CBCL) and youth self-report (YSR) questionnaires. Behavior problem scores were compared over biomarker and morbidity categories using mean differences and 95% confidence intervals (CI) from multivariable linear regression. Compared with children without symptoms, CBCL internalizing problem scores were an adjusted 2.5 (95% CI: 0.1, 4.9; p = .04) and 3.1 (95% CI: 1.1, 5.2; p = .003) units higher among children with moderate diarrhea with vomiting and high cough with fever rates, respectively. High cough with fever and high fever rates were associated with increased CBCL somatic complaints and anxious/depressed scores, respectively. WBC >10,000/mm3 was associated with both internalizing problem and YSR withdrawn/depressed scores. There were no associations with externalizing behavior problems. Whether or not decreasing the burden of common infections results in improved neurobehavioral outcomes warrants further investigation.
Collapse
|
7
|
Piromalli Girado D, Miranda M, Giachero M, Weisstaub N, Bekinschtein P. Endocytosis is required for consolidation of pattern-separated memories in the perirhinal cortex. Front Syst Neurosci 2023; 17:1043664. [PMID: 36911226 PMCID: PMC9995888 DOI: 10.3389/fnsys.2023.1043664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 02/07/2023] [Indexed: 02/25/2023] Open
Abstract
Introduction The ability to separate similar experiences into differentiated representations is proposed to be based on a computational process called pattern separation, and it is one of the key characteristics of episodic memory. Although pattern separation has been mainly studied in the dentate gyrus of the hippocampus, this cognitive function if thought to take place also in other regions of the brain. The perirhinal cortex is important for the acquisition and storage of object memories, and in particular for object memory differentiation. The present study was devoted to investigating the importance of the cellular mechanism of endocytosis for object memory differentiation in the perirhinal cortex and its association with brain-derived neurotrophic factor, which was previously shown to be critical for the pattern separation mechanism in this structure. Methods We used a modified version of the object recognition memory task and intracerebral delivery of a peptide (Tat-P4) into the perirhinal cortex to block endocytosis. Results We found that endocytosis is necessary for pattern separation in the perirhinal cortex. We also provide evidence from a molecular disconnection experiment that BDNF and endocytosis-related mechanisms interact for memory discrimination in both male and female rats. Discussion Our experiments suggest that BDNF and endocytosis are essential for consolidation of separate object memories and a part of a time-restricted, protein synthesis-dependent mechanism of memory stabilization in Prh during storage of object representations.
Collapse
Affiliation(s)
- Dinka Piromalli Girado
- Laboratory of Memory and Molecular Cognition, Instituto de Neurociencia Cognitiva y Traslacional (Consejo Nacional de Investigaciones Científicas y Técnicas-Fundación INECO-Universidad Favaloro), Buenos Aires, Argentina
| | - Magdalena Miranda
- Laboratory of Memory and Molecular Cognition, Instituto de Neurociencia Cognitiva y Traslacional (Consejo Nacional de Investigaciones Científicas y Técnicas-Fundación INECO-Universidad Favaloro), Buenos Aires, Argentina
| | - Marcelo Giachero
- Laboratory of Memory and Molecular Cognition, Instituto de Neurociencia Cognitiva y Traslacional (Consejo Nacional de Investigaciones Científicas y Técnicas-Fundación INECO-Universidad Favaloro), Buenos Aires, Argentina
| | - Noelia Weisstaub
- Laboratory of Memory and Molecular Cognition, Instituto de Neurociencia Cognitiva y Traslacional (Consejo Nacional de Investigaciones Científicas y Técnicas-Fundación INECO-Universidad Favaloro), Buenos Aires, Argentina
| | - Pedro Bekinschtein
- Laboratory of Memory and Molecular Cognition, Instituto de Neurociencia Cognitiva y Traslacional (Consejo Nacional de Investigaciones Científicas y Técnicas-Fundación INECO-Universidad Favaloro), Buenos Aires, Argentina
| |
Collapse
|
8
|
González‐Acosta CA, Ortiz‐Muñoz D, Becerra‐Hernández LV, Casanova MF, Buriticá E. Von Economo neurons: Cellular specialization of human limbic cortices? J Anat 2022; 241:20-32. [PMID: 35178703 PMCID: PMC9178382 DOI: 10.1111/joa.13642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 01/28/2022] [Accepted: 01/31/2022] [Indexed: 01/26/2023] Open
Abstract
Von Economo neurons (VENs) have been mentioned in the medical literature since the second half of the 19th century; however, it was not until the second decade of the 20th century that their cytomorphology was described in detail. To date, VENs have been found in limbic sectors of the frontal, temporal and insular lobes. In humans, their density seems to decrease in the caudo-rostral and ventro-dorsal direction; that is, from the anterior regions of the cingulate and insular cortices towards the frontal pole and the superior frontal gyrus. Several studies have provided similar descriptions of the shape of the VEN soma, but the size of the soma varies from one cortical region to another. There is consensus among different authors about the selective vulnerability of VENs in certain pathologies, in which a deterioration of the capacities involved in social behaviour is observed. In this review, we propose that the restriction of VENs towards the sectors linked to limbic information processing in Homo sapiens gives them a possible functional role in relation to the structures in which they are located. However, given the divergence in characteristics such as location, density, size and biochemical profile among VENs of different cortical sectors, the activities in which they participate could allow them to partake in a wide spectrum of neurological functions, including autonomic responses and executive functions.
Collapse
Affiliation(s)
| | - Daniela Ortiz‐Muñoz
- Centro de Estudios Cerebrales, Facultad de SaludUniversidad del ValleCaliColombia
| | | | - Manuel F. Casanova
- Center for Childhood NeurotherapeuticsUniversity of South Carolina School of Medicine GreenvilleGreenvilleSouth CarolinaUSA
| | - Efraín Buriticá
- Centro de Estudios Cerebrales, Facultad de SaludUniversidad del ValleCaliColombia
| |
Collapse
|
9
|
Hu A, Li F, Guo L, Zhao X, Xiang X. Mitochondrial Damage of Lymphocytes in Patients with Acute Relapse of Schizophrenia: A Correlational Study with Efficacy and Clinical Symptoms. Neuropsychiatr Dis Treat 2022; 18:2455-2466. [PMID: 36325435 PMCID: PMC9621005 DOI: 10.2147/ndt.s380353] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 10/12/2022] [Indexed: 11/25/2022] Open
Abstract
OBJECTIVE Accumulating evidence has demonstrated that schizophrenia is associated with mitochondrial and immune abnormalities. In this pilot case-control study, we investigated the level of mitochondrial impairment in lymphocytes in patients with acute relapse of schizophrenia and explored the correlation between the level of mitochondrial damage and symptoms or treatment response. METHODS Lymphocytic mitochondrial damage was detected using mitochondrial fluorescence staining and flow cytometry in 37 patients (at admission and discharge) and 24 controls. Clinical symptoms were assessed using the Positive and Negative Syndrome Scale (PANSS) and Clinical Global Impression Scale (CGI-S). RESULTS The levels of mitochondrial damage in CD3+ T, CD4+ T, and CD8+ T lymphocytes of the patients with schizophrenia at admission were significantly higher than those of the controls (p<0.05) and did not return to normal at discharge (p>0.05). The mitochondrial damage of T cells significantly improved at discharge for responsive patients only, as compared with that at admission (P<0.05). However, no significant difference was found in mitochondrial damage in CD19+ B cells between patients and healthy controls, or between admission and discharge (p>0.05). Furthermore, the reduction in mitochondrial damage of CD3, CD4, and CD8 lymphocytes was positively correlated with the reduction of the score of the PANSS positive scale at discharge (p<0.05), while no significant correlation was found between the level of mitochondrial damage in lymphocytes and the scores of PANSS and CGI-S. CONCLUSION Acute relapse of schizophrenia might be associated with higher levels of mitochondrial damage in peripheral blood T lymphocytes. The degree of recovery of mitochondrial impairment in the T cells may be used as a predictor of treatment response in schizophrenia. As this is a pilot study, the conclusion still needs further verification in large-scale studies.
Collapse
Affiliation(s)
- Aqian Hu
- Department of Psychiatry and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, People's Republic of China
| | - Faping Li
- Department of Psychiatry, The Second People's Hospital of Guizhou Province, Guiyang, 550004, People's Republic of China
| | - Lei Guo
- Department of Psychiatry and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, People's Republic of China
| | - Xiaoxi Zhao
- Department of Psychiatry and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, People's Republic of China
| | - Xiaojun Xiang
- Department of Psychiatry and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, People's Republic of China
| |
Collapse
|
10
|
Li M, Brokaw A, Furuta AM, Coler B, Obregon-Perko V, Chahroudi A, Wang HY, Permar SR, Hotchkiss CE, Golos TG, Rajagopal L, Adams Waldorf KM. Non-human Primate Models to Investigate Mechanisms of Infection-Associated Fetal and Pediatric Injury, Teratogenesis and Stillbirth. Front Genet 2021; 12:680342. [PMID: 34290739 PMCID: PMC8287178 DOI: 10.3389/fgene.2021.680342] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 05/25/2021] [Indexed: 12/25/2022] Open
Abstract
A wide array of pathogens has the potential to injure the fetus and induce teratogenesis, the process by which mutations in fetal somatic cells lead to congenital malformations. Rubella virus was the first infectious disease to be linked to congenital malformations due to an infection in pregnancy, which can include congenital cataracts, microcephaly, hearing impairment and congenital heart disease. Currently, human cytomegalovirus (HCMV) is the leading infectious cause of congenital malformations globally, affecting 1 in every 200 infants. However, our knowledge of teratogenic viruses and pathogens is far from complete. New emerging infectious diseases may induce teratogenesis, similar to Zika virus (ZIKV) that caused a global pandemic in 2016-2017; thousands of neonates were born with congenital microcephaly due to ZIKV exposure in utero, which also included a spectrum of injuries to the brain, eyes and spinal cord. In addition to congenital anomalies, permanent injury to fetal and neonatal organs, preterm birth, stillbirth and spontaneous abortion are known consequences of a broader group of infectious diseases including group B streptococcus (GBS), Listeria monocytogenes, Influenza A virus (IAV), and Human Immunodeficiency Virus (HIV). Animal models are crucial for determining the mechanism of how these various infectious diseases induce teratogenesis or organ injury, as well as testing novel therapeutics for fetal or neonatal protection. Other mammalian models differ in many respects from human pregnancy including placentation, labor physiology, reproductive tract anatomy, timeline of fetal development and reproductive toxicology. In contrast, non-human primates (NHP) most closely resemble human pregnancy and exhibit key similarities that make them ideal for research to discover the mechanisms of injury and for testing vaccines and therapeutics to prevent teratogenesis, fetal and neonatal injury and adverse pregnancy outcomes (e.g., stillbirth or spontaneous abortion). In this review, we emphasize key contributions of the NHP model pre-clinical research for ZIKV, HCMV, HIV, IAV, L. monocytogenes, Ureaplasma species, and GBS. This work represents the foundation for development and testing of preventative and therapeutic strategies to inhibit infectious injury of human fetuses and neonates.
Collapse
Affiliation(s)
- Miranda Li
- Department of Obstetrics & Gynecology, University of Washington, Seattle, WA, United States
- Department of Biological Sciences, Columbia University, New York, NY, United States
| | - Alyssa Brokaw
- Department of Global Health, University of Washington, Seattle, WA, United States
| | - Anna M. Furuta
- Department of Global Health, University of Washington, Seattle, WA, United States
| | - Brahm Coler
- Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
| | - Veronica Obregon-Perko
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
| | - Ann Chahroudi
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States
- Center for Childhood Infections and Vaccines of Children’s Healthcare of Atlanta and Emory University, Atlanta, GA, United States
| | - Hsuan-Yuan Wang
- Department of Pediatrics, Weill Cornell Medicine, New York, NY, United States
| | - Sallie R. Permar
- Department of Pediatrics, Weill Cornell Medicine, New York, NY, United States
| | - Charlotte E. Hotchkiss
- Washington National Primate Research Center, University of Washington, Seattle, WA, United States
| | - Thaddeus G. Golos
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, United States
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI, United States
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, United States
| | - Lakshmi Rajagopal
- Department of Global Health, University of Washington, Seattle, WA, United States
- Department of Pediatrics, University of Washington, Seattle, WA, United States
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, United States
| | - Kristina M. Adams Waldorf
- Department of Obstetrics & Gynecology, University of Washington, Seattle, WA, United States
- Department of Global Health, University of Washington, Seattle, WA, United States
- Department of Obstetrics and Gynecology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
11
|
Abstract
BACKGROUND Despite adequate antipsychotic treatment, most people with schizophrenia continue to exhibit persistent positive and negative symptoms and cognitive impairments. The current study was designed to examine the efficacy and safety of adjunctive anti-inflammatory combination therapy for these illness manifestations. METHODS Thirty-nine people with either Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, Text Revision, schizophrenia or schizoaffective disorder were entered into a 12-week double-blind, 2-arm, triple-dummy, placebo-controlled, randomized clinical trial: 19 were randomized to anti-inflammatory combination therapy and 20 were randomized to placebo. The Brief Psychiatric Rating Scale positive symptom item total score was used to assess positive symptom change, the Scale for the Assessment of Negative Symptoms total score was used to assess negative symptom change, the Calgary Depression Scale total score was used to assess depressive symptom change, and the MATRICS Consensus Cognitive Battery was used to assess neuropsychological test performance. RESULTS There was a significant time effect for Brief Psychiatric Rating Scale positive symptom item score (t226 = -2.66, P = 0.008), but the treatment (t54=1.52, P = 0.13) and treatment × time (t223 = 0.47, P = 0.64) effects were not significant. There were no significant time (t144 = 0.53, P = 0.72), treatment (t58=0.48, P = 0.63), or treatment × time (t143 = -0.20, P = 0.84) effects for the Scale for the Assessment of Negative Symptoms total score; or for any of the other symptom measures. There were no significant group differences in the change in the MATRICS Consensus Cognitive Battery composite score over the course of the study (F1,26=2.20, P = 0.15). CONCLUSIONS The study results suggest that there is no significant benefit of combined anti-inflammatory treatment for persistent positive symptoms or negative symptoms or cognitive impairments (clinicaltrials.gov trial number: NCT01514682).
Collapse
|
12
|
Granja MG, Oliveira ACDR, de Figueiredo CS, Gomes AP, Ferreira EC, Giestal-de-Araujo E, de Castro-Faria-Neto HC. SARS-CoV-2 Infection in Pregnant Women: Neuroimmune-Endocrine Changes at the Maternal-Fetal Interface. Neuroimmunomodulation 2021; 28:1-21. [PMID: 33910207 PMCID: PMC8247841 DOI: 10.1159/000515556] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 02/23/2021] [Indexed: 12/15/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) has devastating effects on the population worldwide. Given this scenario, the extent of the impact of the disease on more vulnerable individuals, such as pregnant women, is of great concern. Although pregnancy may be a risk factor in respiratory virus infections, there are no considerable differences regarding COVID-19 severity observed between pregnant and nonpregnant women. In these circumstances, an emergent concern is the possibility of neurodevelopmental and neuropsychiatric harm for the offspring of infected mothers. Currently, there is no stronger evidence indicating vertical transmission of SARS-CoV-2; however, the exacerbated inflammatory response observed in the disease could lead to several impairments in the offspring's brain. Furthermore, in the face of historical knowledge on possible long-term consequences for the progeny's brain after infection by viruses, we must consider that this might be another deleterious facet of COVID-19. In light of neuroimmune interactions at the maternal-fetal interface, we review here the possible harmful outcomes to the offspring brains of mothers infected by SARS-CoV-2.
Collapse
Affiliation(s)
- Marcelo Gomes Granja
- Molecular and Cellular Biology Program, Federal University of State of Rio de Janeiro − UNIRIO, Rio de Janeiro, Rajasthan, Brazil
- Immunopharmacology Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation − Fiocruz, Rio de Janeiro, Rajasthan, Brazil
| | | | | | - Alex Portes Gomes
- Medical Science Program, Neurology and Neuroscience, Fluminense Federal University − UFF, Niterói, Rajasthan, Brazil
| | - Erica Camila Ferreira
- Immunopharmacology Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation − Fiocruz, Rio de Janeiro, Rajasthan, Brazil
| | - Elizabeth Giestal-de-Araujo
- Neuroscience Program, Fluminense Federal University − UFF, Niterói, Rajasthan, Brazil
- National Institute of Technology-Neuroimmunomodulation − INCT-NIM, Rio de Janeiro, Rajasthan, Brazil
| | - Hugo Caire de Castro-Faria-Neto
- Immunopharmacology Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation − Fiocruz, Rio de Janeiro, Rajasthan, Brazil
- National Institute of Technology-Neuroimmunomodulation − INCT-NIM, Rio de Janeiro, Rajasthan, Brazil
| |
Collapse
|
13
|
Sotoyama H, Namba H, Kobayashi Y, Hasegawa T, Watanabe D, Nakatsukasa E, Sakimura K, Furuyashiki T, Nawa H. Resting-state dopaminergic cell firing in the ventral tegmental area negatively regulates affiliative social interactions in a developmental animal model of schizophrenia. Transl Psychiatry 2021; 11:236. [PMID: 33888687 PMCID: PMC8062445 DOI: 10.1038/s41398-021-01346-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 03/22/2021] [Accepted: 04/01/2021] [Indexed: 12/19/2022] Open
Abstract
Hyperdopaminergic activities are often linked to positive symptoms of schizophrenia, but their neuropathological implications on negative symptoms are rather controversial among reports. Here, we explored the regulatory role of the resting state-neural activity of dopaminergic neurons in the ventral tegmental area (VTA) on social interaction using a developmental rat model for schizophrenia. We prepared the model by administering an ammonitic cytokine, epidermal growth factor (EGF), to rat pups, which later exhibit the deficits of social interaction as monitored with same-gender affiliative sniffing. In vivo single-unit recording and microdialysis revealed that the baseline firing frequency of and dopamine release from VTA dopaminergic neurons were chronically increased in EGF model rats, and their social interaction was concomitantly reduced. Subchronic treatment with risperidone ameliorated both the social interaction deficits and higher frequency of dopaminergic cell firing in this model. Sustained suppression of hyperdopaminergic cell firing in EGF model rats by DREADD chemogenetic intervention restored the event-triggered dopamine release and their social behaviors. These observations suggest that the higher resting-state activity of VTA dopaminergic neurons is responsible for the reduced social interaction of this schizophrenia model.
Collapse
Affiliation(s)
- Hidekazu Sotoyama
- grid.260975.f0000 0001 0671 5144Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Niigata, 951-8585 Japan
| | - Hisaaki Namba
- grid.260975.f0000 0001 0671 5144Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Niigata, 951-8585 Japan ,grid.412857.d0000 0004 1763 1087Department of Physiological Sciences, School of Pharmaceutical Sciences, Wakayama Medical University, Wakayama, 640-8156 Japan
| | - Yutaro Kobayashi
- grid.260975.f0000 0001 0671 5144Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Niigata, 951-8585 Japan
| | - Taku Hasegawa
- grid.258799.80000 0004 0372 2033Department of Biological Sciences, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501 Japan
| | - Dai Watanabe
- grid.258799.80000 0004 0372 2033Department of Biological Sciences, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501 Japan
| | - Ena Nakatsukasa
- grid.260975.f0000 0001 0671 5144Department of Animal Model Development, Brain Research Institute, Niigata University, Niigata, 951-8585 Japan
| | - Kenji Sakimura
- grid.260975.f0000 0001 0671 5144Department of Animal Model Development, Brain Research Institute, Niigata University, Niigata, 951-8585 Japan
| | - Tomoyuki Furuyashiki
- grid.31432.370000 0001 1092 3077Division of Pharmacology, Graduate School of Medicine, Kobe University, Hyogo, 650-0017 Japan
| | - Hiroyuki Nawa
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Niigata, 951-8585, Japan. .,Department of Physiological Sciences, School of Pharmaceutical Sciences, Wakayama Medical University, Wakayama, 640-8156, Japan.
| |
Collapse
|
14
|
Matelski L, Morgan RK, Grodzki AC, Van de Water J, Lein PJ. Effects of cytokines on nuclear factor-kappa B, cell viability, and synaptic connectivity in a human neuronal cell line. Mol Psychiatry 2021; 26:875-887. [PMID: 31965031 PMCID: PMC7371517 DOI: 10.1038/s41380-020-0647-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 12/12/2019] [Accepted: 01/10/2020] [Indexed: 12/13/2022]
Abstract
Maternal infection during pregnancy is associated with increased risk of psychiatric and neurodevelopmental disorders (NDDs). Experimental animal models demonstrate that maternal immune activation (MIA) elevates inflammatory cytokine levels in the maternal and fetal compartments and causes behavioral changes in offspring. Individual cytokines have been shown to modulate neurite outgrowth and synaptic connectivity in cultured rodent neurons, but whether clinically relevant cytokine mixtures similarly modulate neurodevelopment in human neurons is not known. To address this, we quantified apoptosis, neurite outgrowth, and synapse number in the LUHMES human neuronal cell line exposed to varying concentrations of: (1) a mixture of 12 cytokines and chemokines (EMA) elevated in mid-gestational serum samples from mothers of children with autism and intellectual disability; (2) an inflammatory cytokine mixture (ICM) comprised of five cytokines elevated in experimental MIA models; or (3) individual cytokines in ICM. At concentrations that activated nuclear factor-kappa B (NF-κB) in LUHMES cells, EMA and ICM induced caspase-3/7 activity. ICM altered neurite outgrowth, but only at concentrations that also reduced cell viability, whereas ICM reduced synapse number independent of changes in cell viability. Individual cytokines in ICM phenocopied the effects of ICM on NF-κB activation and synaptic connectivity, but did not completely mimic the effects of ICM on apoptosis. These results demonstrate that clinically relevant cytokine mixtures modulate apoptosis and synaptic density in developing human neurons. Given the relevance of these neurodevelopmental processes in NDDs, our findings support the hypothesis that cytokines contribute to the adverse effects of MIA on children.
Collapse
Affiliation(s)
- Lauren Matelski
- Department of Internal Medicine, University of California, Davis,Department of Molecular Biosciences, University of California, Davis
| | - Rhianna K. Morgan
- Department of Molecular Biosciences, University of California, Davis
| | | | | | - Pamela J. Lein
- Department of Molecular Biosciences, University of California, Davis
| |
Collapse
|
15
|
Amiri S, Dizaji R, Momeny M, Gauvin E, Hosseini MJ. Clozapine attenuates mitochondrial dysfunction, inflammatory gene expression, and behavioral abnormalities in an animal model of schizophrenia. Neuropharmacology 2021; 187:108503. [PMID: 33636190 DOI: 10.1016/j.neuropharm.2021.108503] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/24/2021] [Accepted: 02/16/2021] [Indexed: 10/22/2022]
Abstract
Beyond abnormalities in the neurotransmitter hypothesis, recent evidence suggests that mitochondrial dysfunction and immune-inflammatory responses contribute to the pathophysiology of schizophrenia. The prefrontal cortex (PFC) undergoes maturation and development during adolescence, which is a critical time window in life that is vulnerable to environmental adversities and the development of psychiatric disorders such as schizophrenia. Applying eight weeks of post-weaning social isolation stress (PWSI) to rats, as an animal model of schizophrenia, we decided to investigate the effects of PWSI on the mitochondrial function and expression of immune-inflammatory genes in the PFC of normal and stressed rats. To do this, control and PWSI rats were divided into treatment (clozapine; CLZ, 2.5 mg/kg/day for 28 days) and non-treatment sub-groups. Our results showed PWSI caused schizophrenic-like behaviors in rats and induced mitochondrial dysfunction as well as upregulation of genes associated with innate immunity in the PFC. Chronic treatment with CLZ attenuated the effects of PWSI on behavioral abnormalities, mitochondrial dysfunction, and immune-inflammatory responses in the PFC of rats. These results may advance our understanding about the mechanism of action of CLZ that targets mitochondrial dysfunction and immune-inflammatory responses as factors involved in the pathophysiology of schizophrenia.
Collapse
Affiliation(s)
- Shayan Amiri
- Department of Pharmacology, College of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Rana Dizaji
- Zanjan Applied Pharmacology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Majid Momeny
- Hematology/Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Evan Gauvin
- Division of Neurodegenerative Disorders, St Boniface Hospital Albrechtsen Research Centre, Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, MB, Canada
| | - Mir-Jamal Hosseini
- Zanjan Applied Pharmacology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran; Departments of Pharmacology and Toxicology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran.
| |
Collapse
|
16
|
Toxoplasma gondii: AnUnderestimated Threat? Trends Parasitol 2020; 36:959-969. [PMID: 33012669 DOI: 10.1016/j.pt.2020.08.005] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/17/2020] [Accepted: 08/21/2020] [Indexed: 02/08/2023]
Abstract
Traditionally, the protozoan parasite Toxoplasma gondii has been thought of as relevant to public health primarily within the context of congenital toxoplasmosis or postnatally acquired disease in immunocompromised patients. However, latent T.gondii infection has been increasingly associated with a wide variety of neuropsychiatric disorders and, more recently, causal frameworks for these epidemiological associations have been proposed. We present assimilated evidence on the associations between T.gondii and various human neuropsychiatric disorders and outline how these may be explained within a unifying causal framework. We argue that the occult effects of latent T.gondii infection likely outweigh the recognised overt morbidity caused by toxoplasmosis, substantially raising the public health importance of this parasite.
Collapse
|
17
|
Avalos LA, Ferber J, Zerbo O, Naleway AL, Bulkley J, Thompson M, Cragan J, Williams J, Odouli R, Kauffman TL, Ball S, Shifflett P, Li DK. Trivalent inactivated influenza vaccine (IIV3) during pregnancy and six-month infant development. Vaccine 2020; 38:2326-2332. [PMID: 32033850 PMCID: PMC7309563 DOI: 10.1016/j.vaccine.2020.01.059] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/16/2020] [Accepted: 01/21/2020] [Indexed: 11/19/2022]
Abstract
OBJECTIVE Despite recommendations by professional organizations that all pregnant women receive inactivated influenza vaccine, safety concerns remain a barrier. Our objective was to assess the effect of trivalent influenza vaccines (IIV3) during pregnancy on parent report 6-month infant development. METHODS We conducted a multi-site prospective birth cohort study during the 2010-2011 influenza season and followed pregnant women and their newborns through 6 months of age. Information on IIV3 during pregnancy was ascertained from the EHR and self-report. The Ages and Stages Questionnaire-3 (ASQ-3) was completed by the mother to assess 6-month infant neurodevelopment in five domains (communication, gross motor, fine motor, problem-solving, and personal adaptive skills). Scores for each domain above the cut-off point indicating typical development were categorized as "on schedule" while scores in the zones indicating the need for either monitoring or further assessment were categorized as "not on schedule". Multivariable logistic regression was conducted. RESULTS Of the 1225 infant-mother pairs, 65% received IIV3 during pregnancy. In bivariate analysis, infants of women who received IIV3 during pregnancy were moderately-less likely to need monitoring or further assessment in the personal social domain compared with infants of unvaccinated women (10.0% vs. 14.1%, p = 0.033; crude OR (cOR): 0.68(95%CI:0.48,0.97)). However, after controlling for potential confounders, the findings were no longer statistically significant (aOR:0.72,95%CI: 0.49,1.06,p = 0.46). No significant unadjusted or adjusted associations emerged in any other ASQ-3 domain. CONCLUSION There was no significant association between IIV3 exposure during pregnancy and 6-month infant development. Studies of IIV3 during pregnancy to assess longer-term developmental outcomes are indicated.
Collapse
Affiliation(s)
- Lyndsay A Avalos
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, United States.
| | - Jeannette Ferber
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, United States
| | - Ousseny Zerbo
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, United States
| | - Allison L Naleway
- Center for Health Research, Kaiser Permanente Northwest, Portland, OR, United States
| | - Joanna Bulkley
- Center for Health Research, Kaiser Permanente Northwest, Portland, OR, United States
| | - Mark Thompson
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Janet Cragan
- National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Jennifer Williams
- National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Roxana Odouli
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, United States
| | - Tia L Kauffman
- Center for Health Research, Kaiser Permanente Northwest, Portland, OR, United States
| | - Sarah Ball
- Abt Associates, Cambridge, MA, United States
| | | | - De-Kun Li
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, United States
| |
Collapse
|
18
|
Cai HQ, Catts VS, Webster MJ, Galletly C, Liu D, O’Donnell M, Weickert TW, Weickert CS. Increased macrophages and changed brain endothelial cell gene expression in the frontal cortex of people with schizophrenia displaying inflammation. Mol Psychiatry 2020; 25:761-775. [PMID: 30214039 PMCID: PMC7156343 DOI: 10.1038/s41380-018-0235-x] [Citation(s) in RCA: 149] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 06/22/2018] [Accepted: 07/31/2018] [Indexed: 12/23/2022]
Abstract
Elevated pro-inflammatory cytokines exist in both blood and brain of people with schizophrenia but how this affects molecular indices of the blood-brain barrier (BBB) is unclear. Eight mRNAs relating to BBB function, a microglia and three immune cell markers were measured by qPCR in the prefrontal cortex from 37 people with schizophrenia/schizoaffective disorder and 37 matched controls. This cohort was previously grouped into "high inflammation" and "low inflammation" subgroups based on cortical inflammatory-related transcripts. Soluble intercellular adhesion molecule-1 (sICAM1) was measured in the plasma of 78 patients with schizophrenia/schizoaffective disorder and 73 healthy controls. We found that sICAM1 was significantly elevated in schizophrenia. An efflux transporter, ABCG2, was lower, while mRNAs encoding VE-cadherin and ICAM1 were higher in schizophrenia brain. The "high inflammation" schizophrenia subgroup had lower ABCG2 and higher ICAM1, VE-cadherin, occludin and interferon-induced transmembrane protein mRNAs compared to both "low inflammation" schizophrenia and "low inflammation" control subgroups. ICAM1 immunohistochemistry showed enrichment in brain endothelium regardless of diagnosis and was localised to astrocytes in some brains. Microglia mRNA was not altered in schizophrenia nor did it correlate with ICAM1 expression. Immune cell mRNAs were elevated in "high inflammation" schizophrenia compared to both "low inflammation" schizophrenia and controls. CD163+ perivascular macrophages were identified by immunohistochemistry in brain parenchyma in over 40% of "high inflammation" schizophrenia brains. People with high levels of cytokine expression and schizophrenia display changes consistent with greater immune cell transmigration into brain via increased ICAM1, which could contribute to other neuropathological changes found in this subgroup of people.
Collapse
Affiliation(s)
- Helen Q. Cai
- 0000 0000 8900 8842grid.250407.4Schizophrenia Research Laboratory, Neuroscience Research Australia (NeuRA), Sydney, NSW Australia ,0000 0004 4902 0432grid.1005.4School of Psychiatry, University of New South Wales, Sydney, NSW Australia
| | - Vibeke S. Catts
- 0000 0000 8900 8842grid.250407.4Schizophrenia Research Laboratory, Neuroscience Research Australia (NeuRA), Sydney, NSW Australia ,0000 0004 4902 0432grid.1005.4School of Psychiatry, University of New South Wales, Sydney, NSW Australia
| | - Maree J. Webster
- 0000 0004 0473 2858grid.453353.7Stanley Medical Research Institute, Kensington, MD USA
| | - Cherrie Galletly
- 0000 0004 1936 7304grid.1010.0Discipline of Psychiatry, School of Medicine, The University of Adelaide, Adelaide, SA Australia ,Northern Adelaide Local Health Network, Adelaide, SA Australia ,Ramsay Health Care (SA) Mental Health Services, Adelaide, SA Australia
| | - Dennis Liu
- 0000 0004 1936 7304grid.1010.0Discipline of Psychiatry, School of Medicine, The University of Adelaide, Adelaide, SA Australia ,Northern Adelaide Local Health Network, Adelaide, SA Australia
| | - Maryanne O’Donnell
- 0000 0004 4902 0432grid.1005.4School of Psychiatry, University of New South Wales, Sydney, NSW Australia
| | - Thomas W Weickert
- 0000 0000 8900 8842grid.250407.4Schizophrenia Research Laboratory, Neuroscience Research Australia (NeuRA), Sydney, NSW Australia ,0000 0004 4902 0432grid.1005.4School of Psychiatry, University of New South Wales, Sydney, NSW Australia
| | - Cynthia Shannon Weickert
- Schizophrenia Research Laboratory, Neuroscience Research Australia (NeuRA), Sydney, NSW, Australia. .,School of Psychiatry, University of New South Wales, Sydney, NSW, Australia. .,Department of Neuroscience and Physiology, Upstate Medical University, Syracuse, NY, USA.
| |
Collapse
|
19
|
Wu D, Lv P, Li F, Zhang W, Fu G, Dai J, Hu N, Liu J, Xiao Y, Li S, Shah C, Tao B, Zhao Y, Gong Q, Lui S. Association of peripheral cytokine levels with cerebral structural abnormalities in schizophrenia. Brain Res 2019; 1724:146463. [PMID: 31526800 DOI: 10.1016/j.brainres.2019.146463] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 09/11/2019] [Accepted: 09/13/2019] [Indexed: 02/05/2023]
Abstract
A large body of evidence indicates that both the altered cytokines that mediate the immune-inflammatory process and abnormal gray matter are associated with schizophrenia. Whether peripheral cytokines are related to cerebral structural abnormality remains unclear. Therefore, we aimed to investigate the association of peripheral cytokine levels with gray matter abnormalities at the whole brain level in schizophrenia. Forty-four outpatients with schizophrenia and 44 controls were recruited. The serum levels of interleukin-1 beta (IL-1β), IL-2, IL-6, IL-8, interferon-gamma (IFN-γ), transforming growth factor-beta (TGF-β), and IL-10 were measured using a quantitative chemiluminescence assay. High-resolution T1 weighted images were acquired from all subjects and processed using FreeSurfer software to obtain the cortical thickness, surface area, and cortical and subcortical gray matter volumes. The cytokines and cerebral structures were compared between patients and controls using analysis of covariance (ANCOVA). The association between the cytokines and whole cerebral structures was performed using stepwise linear regression. Patients had higher levels of IL-2, IL-6, IL-8, and IL-10 than controls. In patients, the IL-6 level was significantly associated with the cortical thickness in the left pars opercularis, right pars triangularis, left superior temporal gyrus, and right middle temporal gyrus, which showed structural differences between the two groups. Altered cytokine levels may be associated with particular but not all cortical abnormalities in schizophrenia, especially IL-6, which was significantly associated with the abnormal cortical thickness of the bilateral Broca's area and temporal gyrus, which provided neuroimaging evidence to support the relationship between peripheral cytokines and the cerebral cortex in schizophrenia.
Collapse
Affiliation(s)
- Dongsheng Wu
- Department of Radiology, The Center for Medical Imaging, West China Hospital of Sichuan University, Chengdu, China; Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China; West China Fourth Hospital of Sichuan University, Chengdu, China
| | - Peilin Lv
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, China
| | - Fei Li
- Department of Radiology, The Center for Medical Imaging, West China Hospital of Sichuan University, Chengdu, China; Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China.
| | - Wenjing Zhang
- Department of Radiology, The Center for Medical Imaging, West China Hospital of Sichuan University, Chengdu, China; Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
| | - Gui Fu
- Department of Radiology, The Center for Medical Imaging, West China Hospital of Sichuan University, Chengdu, China; Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
| | - Jing Dai
- The Fourth People's Hospital of Chengdu, Chengdu, China
| | - Na Hu
- Department of Radiology, The Center for Medical Imaging, West China Hospital of Sichuan University, Chengdu, China; Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
| | - Jieke Liu
- Department of Radiology, The Center for Medical Imaging, West China Hospital of Sichuan University, Chengdu, China; Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
| | - Yuan Xiao
- Department of Radiology, The Center for Medical Imaging, West China Hospital of Sichuan University, Chengdu, China; Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
| | - Siyi Li
- Department of Radiology, The Center for Medical Imaging, West China Hospital of Sichuan University, Chengdu, China; Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
| | - Chandan Shah
- Department of Radiology, The Center for Medical Imaging, West China Hospital of Sichuan University, Chengdu, China; Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
| | - Bo Tao
- Department of Radiology, The Center for Medical Imaging, West China Hospital of Sichuan University, Chengdu, China; Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
| | - Youjin Zhao
- Department of Radiology, The Center for Medical Imaging, West China Hospital of Sichuan University, Chengdu, China; Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
| | - Qiyong Gong
- Department of Radiology, The Center for Medical Imaging, West China Hospital of Sichuan University, Chengdu, China
| | - Su Lui
- Department of Radiology, The Center for Medical Imaging, West China Hospital of Sichuan University, Chengdu, China; Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China.
| |
Collapse
|
20
|
Abstract
PURPOSE OF REVIEW With the incidence of neurodevelopmental disorders on the rise, it is imperative to identify and understand the mechanisms by which environmental contaminants can impact the developing brain and heighten risk. Here, we report on recent findings regarding novel mechanisms of developmental neurotoxicity and highlight chemicals of concern, beyond traditionally defined neurotoxicants. RECENT FINDINGS The perinatal window represents a critical and extremely vulnerable period of time during which chemical insult can alter the morphological and functional trajectory of the developing brain. Numerous chemical classes have been associated with alterations in neurodevelopment including metals, solvents, pesticides, and, more recently, endocrine-disrupting compounds. Although mechanisms of neurotoxicity have traditionally been identified as pathways leading to neuronal cell death, neuropathology, or severe neural injury, recent research highlights alternative mechanisms that result in more subtle but consequential changes in the brain and behavior. These emerging areas of interest include neuroendocrine and immune disruption, as well as indirect toxicity via actions on other organs such as the gut and placenta. Understanding of the myriad ways in which the developing brain is vulnerable to chemical exposures has grown tremendously over the past decade. Further progress and implementation in risk assessment is critical to reducing risk of neurodevelopmental disorders.
Collapse
|
21
|
Borhani-Haghighi M, Mohamadi Y, Kashani IR. In utero transplantation of neural stem cells ameliorates maternal inflammation-induced prenatal white matter injury. J Cell Biochem 2019; 120:12785-12795. [PMID: 30861185 DOI: 10.1002/jcb.28548] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/23/2019] [Accepted: 01/28/2019] [Indexed: 01/25/2023]
Abstract
Prenatal white matter injury is a serious problem due to maternal inflammation leading to postnatal disabilities. In this study, we used the periventricular leukomalacia (PVL) model as a common prenatal white matter injury by maternal administration of lipopolysaccharide (LPS). Neural stem cells (NSCs) have shown therapeutic ability in neurological disorders through a different mechanism such as immunomodulation. Here, we studied the preventive potential of NSCs following in utero transplantation into the embryonic lateral ventricle in an LPS-induced white matter injury model. Pregnant animals were divided into three groups and received phosphate buffered saline, LPS, or LPS + NSCs. The brains of offspring were obtained and evaluated by real-time polymerase chain reaction (PCR), immunohistochemy, enzyme-linked immunosorbent assay (ELISA), terminal deoxynucleotidyl transferase-mediated biotinylated-dUTP nick-end labeling (TUNEL), and caspase-3 activity assay. The LPS-induced maternal inflammation degenerated the myelin sheath in the offspring periventricular region which was associated with an increased microglial number, oligodendrocytes degeneration, proinflammatory cytokine secretion, and cell apoptosis. The transplanted NSCs homed into the brain and ameliorated the evaluated parameters. The expression of proinflammatory cytokines interleukin-1β (IL-1β), IL-6, and tumor necrosis factor-α (TNF-α), cell apoptosis and caspase-3 activity were inhibited by NSCs. In addition, Olig2 and myelin basic protein immunohistochemy staining showed that prenatal NSCs transplantation augmented the myelination in the periventricular white matter of offspring. In conclusion, we think that prenatal therapeutic strategies, such as in utero NSCs transplantation, may prevent prenatal white matter injury after birth.
Collapse
Affiliation(s)
- Maryam Borhani-Haghighi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Yousef Mohamadi
- Department of Anatomy, School of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Iraj Ragerdi Kashani
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
22
|
Issa HA, Staes N, Diggs-Galligan S, Stimpson CD, Gendron-Fitzpatrick A, Taglialatela JP, Hof PR, Hopkins WD, Sherwood CC. Comparison of bonobo and chimpanzee brain microstructure reveals differences in socio-emotional circuits. Brain Struct Funct 2018; 224:239-251. [DOI: 10.1007/s00429-018-1751-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 09/09/2018] [Indexed: 12/24/2022]
|
23
|
Bell MR, Dryden A, Will R, Gore AC. Sex differences in effects of gestational polychlorinated biphenyl exposure on hypothalamic neuroimmune and neuromodulator systems in neonatal rats. Toxicol Appl Pharmacol 2018; 353:55-66. [PMID: 29879404 PMCID: PMC7846971 DOI: 10.1016/j.taap.2018.06.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 05/15/2018] [Accepted: 06/01/2018] [Indexed: 01/05/2023]
Abstract
Polychlorinated biphenyls (PCBs) are ubiquitous in the environment and exposure to them is associated with immune, endocrine and neural dysfunction. Effects of PCBs on inflammation and immunity are best described in spleen and blood, with fewer studies on neural tissues. This is an important gap in knowledge, as molecules typically associated with neuroinflammation also serve neuromodulatory roles and interact with hormones in normal brain development. The current study used Sprague-Dawley rats to assess whether gestational PCB exposure altered hypothalamic gene expression and serum cytokine concentration in neonatal animals given an immune challenge. Dams were fed wafers containing a mixture of PCBs at an environmentally relevant dose and composition (20 μg/kg, 1:1:1 Aroclor 1242:1248:1254) or oil vehicle control throughout their pregnancy. One day old male and female offspring were treated with an inflammatory challenge (lipopolysaccharide, LPS, 50 μg/kg, sc) or saline vehicle control approximately 3.5 h prior to tissue collection. Across both basal and activated inflammatory states, PCB exposure caused greater expression of a subset of inflammatory genes in the hypothalamus and lower expression of genes involved in dopamine, serotonin, and opioid systems compared to oil controls. PCB exposure also altered reactions to inflammatory challenge: it reversed the normal decrease in Esr2 hypothalamic expression and induced an abnormal increase in IL-1b and IL-6 serum concentration in response to LPS. Many of these effects were sex specific. Given the potential long-term consequences of neuroimmune disruption, our findings demonstrate the need for further research.
Collapse
Affiliation(s)
- Margaret R Bell
- Department of Biological Sciences and Department of Health Sciences, DePaul University, Chicago, IL 60614, United States.
| | - Ariel Dryden
- Franklin College, Franklin, IN 46131, United States.
| | - Ryan Will
- Department of Psychology, The University of Texas at Austin, Austin, TX 78712, United States
| | - Andrea C Gore
- Division of Pharmacology and Toxicology, College of Pharmacy, Institute for Cellular and Molecular Biology, and Institute for Neuroscience, The University of Texas at Austin, Austin, TX 78712, United States.
| |
Collapse
|
24
|
Konefal SC, Stellwagen D. Tumour necrosis factor-mediated homeostatic synaptic plasticity in behavioural models: testing a role in maternal immune activation. Philos Trans R Soc Lond B Biol Sci 2017; 372:rstb.2016.0160. [PMID: 28093554 DOI: 10.1098/rstb.2016.0160] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2016] [Indexed: 12/25/2022] Open
Abstract
The proinflammatory cytokine tumour necrosis factor-alpha (TNFα) has long been characterized for its role in the innate immune system, but more recently has been found to have a distinct role in the nervous system that does not overlap with other proinflammatory cytokines. Through regulation of neuronal glutamate and GABA receptor trafficking, TNF mediates a homeostatic form of synaptic plasticity, but plays no direct role in Hebbian forms of plasticity. As yet, there is no evidence to suggest that this adaptive plasticity plays a significant role in normal development, but it does maintain neuronal circuit function in the face of several types of disruption. This includes developmental plasticity in primary sensory cortices, as well as modulating the response to antidepressants, chronic antipsychotics and drugs of abuse. TNF is also a prominent component of the neuroinflammation occurring in most neuropathologies, but the role of TNF-mediated synaptic plasticity in this context remains to be determined. We tested this in a maternal immune activation (MIA) model of neurodevelopmental disorders. Using TNF-/- mice, we observed that TNF is not required for the expression of abnormal social or anxious behaviour in this model. This indicates that TNF does not uniquely contribute to the development of neuronal dysfunction in this model, and suggests that during neuroinflammatory events, compensation between the various proinflammatory cytokines is the norm.This article is part of the themed issue 'Integrating Hebbian and homeostatic plasticity'.
Collapse
Affiliation(s)
- Sarah C Konefal
- Department of Neurology and Neurosurgery, Centre for Research in Neuroscience, The Research Institute of the McGill University Health Center, Montreal, Quebec, Canada H3G 1A4
| | - David Stellwagen
- Department of Neurology and Neurosurgery, Centre for Research in Neuroscience, The Research Institute of the McGill University Health Center, Montreal, Quebec, Canada H3G 1A4
| |
Collapse
|
25
|
Bilbo SD, Block CL, Bolton JL, Hanamsagar R, Tran PK. Beyond infection - Maternal immune activation by environmental factors, microglial development, and relevance for autism spectrum disorders. Exp Neurol 2017; 299:241-251. [PMID: 28698032 DOI: 10.1016/j.expneurol.2017.07.002] [Citation(s) in RCA: 207] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 06/26/2017] [Accepted: 07/05/2017] [Indexed: 12/17/2022]
Abstract
Immune molecules such as cytokines and chemokines and the cells that produce them within the brain, notably microglia, are critical for normal brain development. This recognition has in recent years led to the working hypothesis that inflammatory events during pregnancy, e.g. in response to infection, may disrupt the normal expression of immune molecules during critical stages of neural development and thereby contribute to the risk for neurodevelopmental disorders such as autism spectrum disorder (ASD). This hypothesis has in large part been shepherded by the work of Dr. Paul Patterson and colleagues, which has elegantly demonstrated that a single viral infection or injection of a viral mimetic to pregnant mice significantly and persistently impacts offspring immune and nervous system function, changes that underlie ASD-like behavioral dysfunction including social and communication deficits. Subsequent studies by many labs - in humans and in non-human animal models - have supported the hypothesis that ongoing disrupted immune molecule expression and/or neuroinflammation contributes to at least a significant subset of ASD. The heterogeneous clinical and biological phenotypes observed in ASD strongly suggest that in genetically susceptible individuals, environmental risk factors combine or synergize to create a tipping or threshold point for dysfunction. Importantly, animal studies showing a link between maternal immune activation (MIA) and ASD-like outcomes in offspring involve different species and diverse environmental factors associated with ASD in humans, beyond infection, including toxin exposures, maternal stress, and maternal obesity, all of which impact inflammatory or immune pathways. The goal of this review is to highlight the broader implications of Dr. Patterson's work for the field of autism, with a focus on the impact that MIA by diverse environmental factors has on fetal brain development, immune system development, and the pathophysiology of ASD.
Collapse
Affiliation(s)
- Staci D Bilbo
- Pediatrics and Neuroscience, Harvard Medical School, Lurie Center for Autism, Massachusetts General Hospital for Children, Boston, MA 02126, United States.
| | - Carina L Block
- Psychology and Neuroscience, Duke University, Durham, NC 27708, United States
| | - Jessica L Bolton
- Pediatrics and Anatomy/Neurobiology, University of California-Irvine, Irvine, CA 92697, United States
| | - Richa Hanamsagar
- Pediatrics and Neuroscience, Harvard Medical School, Lurie Center for Autism, Massachusetts General Hospital for Children, Boston, MA 02126, United States
| | - Phuong K Tran
- Pediatrics and Neuroscience, Harvard Medical School, Lurie Center for Autism, Massachusetts General Hospital for Children, Boston, MA 02126, United States
| |
Collapse
|
26
|
Immune activation in lactating dams alters sucklings' brain cytokines and produces non-overlapping behavioral deficits in adult female and male offspring: A novel neurodevelopmental model of sex-specific psychopathology. Brain Behav Immun 2017; 63:35-49. [PMID: 28189716 DOI: 10.1016/j.bbi.2017.01.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 12/26/2016] [Accepted: 01/23/2017] [Indexed: 01/04/2023] Open
Abstract
Early immune activation (IA) in rodents, prenatal through the mother or early postnatal directly to the neonate, is widely used to produce behavioral endophenotypes relevant to schizophrenia and depression. Given that maternal immune response plays a crucial role in the deleterious effects of prenatal IA, and lactation is a critical vehicle of immunological support to the neonate, we predicted that immune activation of the lactating dam will produce long-term abnormalities in the sucklings. Nursing dams were injected on postnatal day 4 with the viral mimic poly-I:C (4mg/kg) or saline. Cytokine assessment was performed in dams' plasma and milk 2h, and in the sucklings' hippocampus, 6h and 24h following poly-I:C injection. Male and female sucklings were assessed in adulthood for: a) performance on behavioral tasks measuring constructs considered relevant to schizophrenia (selective attention and executive control) and depression (despair and anhedonia); b) response to relevant pharmacological treatments; c) brain structural changes. Maternal poly-I:C injection caused cytokine alterations in the dams' plasma and milk, as well as in the sucklings' hippocampus. Lactational poly-I:C exposure led to sex-dimorphic (non-overlapping) behavioral abnormalities in the adult offspring, with male but not female offspring exhibiting attentional and executive function abnormalities (manifested in persistent latent inhibition and slow reversal) and hypodopaminergia, and female but not male offspring exhibiting despair and anhedonia (manifested in increased immobility in the forced swim test and reduced saccharine preference) and hyperdopaminergia, mimicking the known sex-bias in schizophrenia and depression. The behavioral double-dissociation predicted distinct pharmacological profiles, recapitulating the pharmacology of negative/cognitive symptoms and depression. In-vivo imaging revealed hippocampal and striatal volume reductions in both sexes, as found in both disorders. This is the first evidence for the emergence of long-term behavioral and brain abnormalities after lactational exposure to an inflammatory agent, supporting a causal link between early immune activation and disrupted neuropsychodevelopment. That such exposure produces schizophrenia- or depression-like phenotype depending on sex, resonates with notions that risk factors are transdiagnostic, and that sex is a susceptibility factor for neurodevelopmental psychopathologies.
Collapse
|
27
|
Hafizi S, Tseng HH, Rao N, Selvanathan T, Kenk M, Bazinet RP, Suridjan I, Wilson AA, Meyer JH, Remington G, Houle S, Rusjan PM, Mizrahi R. Imaging Microglial Activation in Untreated First-Episode Psychosis: A PET Study With [ 18F]FEPPA. Am J Psychiatry 2017; 174:118-124. [PMID: 27609240 PMCID: PMC5342628 DOI: 10.1176/appi.ajp.2016.16020171] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Neuroinflammation and abnormal immune responses are increasingly implicated in the pathophysiology of schizophrenia. Previous positron emission tomography (PET) studies targeting the translocator protein 18 kDa (TSPO) have been limited by high nonspecific binding of the first-generation radioligand, low-resolution scanners, small sample sizes, and psychotic patients being on antipsychotics or not being in the first episode of their illness. The present study uses the novel second-generation TSPO PET radioligand [18F]FEPPA to evaluate whether microglial activation is elevated in the dorsolateral prefrontal cortex and hippocampus of untreated patients with first-episode psychosis. METHOD Nineteen untreated patients with first-episode psychosis (14 of them antipsychotic naive) and 20 healthy volunteers underwent a high-resolution [18F]FEPPA PET scan and MRI. Dynamic PET data were analyzed using the validated two-tissue compartment model with arterial plasma input function with total volume of distribution (VT) as outcome measure. All analyses were corrected for TSPO rs6971 polymorphism (which is implicated in differential binding affinity). RESULTS No significant differences were observed between patients and healthy volunteers in microglial activation, as indexed by [18F]FEPPA VT, in either the dorsolateral prefrontal cortex or the hippocampus. There were no significant correlations between [18F]FEPPA VT and duration of illness, clinical presentation, or neuropsychological measures after adjusting for multiple testing. CONCLUSIONS The lack of significant differences in [18F]FEPPA VT between groups suggests that microglial activation is not present in first-episode psychosis.
Collapse
Affiliation(s)
- Sina Hafizi
- From the Research Imaging Centre and the Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto; the Departments of Psychiatry and of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto; and the Institute of Medical Science, University of Toronto, Toronto
| | - Huai-Hsuan Tseng
- From the Research Imaging Centre and the Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto; the Departments of Psychiatry and of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto; and the Institute of Medical Science, University of Toronto, Toronto
| | - Naren Rao
- From the Research Imaging Centre and the Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto; the Departments of Psychiatry and of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto; and the Institute of Medical Science, University of Toronto, Toronto
| | - Thiviya Selvanathan
- From the Research Imaging Centre and the Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto; the Departments of Psychiatry and of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto; and the Institute of Medical Science, University of Toronto, Toronto
| | - Miran Kenk
- From the Research Imaging Centre and the Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto; the Departments of Psychiatry and of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto; and the Institute of Medical Science, University of Toronto, Toronto
| | - Richard P Bazinet
- From the Research Imaging Centre and the Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto; the Departments of Psychiatry and of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto; and the Institute of Medical Science, University of Toronto, Toronto
| | - Ivonne Suridjan
- From the Research Imaging Centre and the Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto; the Departments of Psychiatry and of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto; and the Institute of Medical Science, University of Toronto, Toronto
| | - Alan A Wilson
- From the Research Imaging Centre and the Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto; the Departments of Psychiatry and of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto; and the Institute of Medical Science, University of Toronto, Toronto
| | - Jeffrey H Meyer
- From the Research Imaging Centre and the Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto; the Departments of Psychiatry and of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto; and the Institute of Medical Science, University of Toronto, Toronto
| | - Gary Remington
- From the Research Imaging Centre and the Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto; the Departments of Psychiatry and of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto; and the Institute of Medical Science, University of Toronto, Toronto
| | - Sylvain Houle
- From the Research Imaging Centre and the Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto; the Departments of Psychiatry and of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto; and the Institute of Medical Science, University of Toronto, Toronto
| | - Pablo M Rusjan
- From the Research Imaging Centre and the Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto; the Departments of Psychiatry and of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto; and the Institute of Medical Science, University of Toronto, Toronto
| | - Romina Mizrahi
- From the Research Imaging Centre and the Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto; the Departments of Psychiatry and of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto; and the Institute of Medical Science, University of Toronto, Toronto
| |
Collapse
|
28
|
Yenilmez C, Ozdemir Koroglu Z, Kurt H, Yanas M, Colak E, Degirmenci I, Gunes HV. A study of the possible association of plasminogen activator inhibitor type 1 4G/5G insertion/deletion polymorphism with susceptibility to schizophrenia and in its subtypes. J Clin Pharm Ther 2016; 42:103-107. [PMID: 27796029 DOI: 10.1111/jcpt.12470] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 09/26/2016] [Indexed: 11/29/2022]
Abstract
WHAT IS KNOWN AND OBJECTIVE Inhibition of the fibrinolytic system may occur at the level of plasminogen activation, mainly by PAI-1. Mental and physical stress caused to alterations of platelet function, and also decreased to fibrinolytic activity. Furthermore, stress-induced thrombosis regulation was proposed to be by PAI-1 in schizophrenia patients. In this study, the distribution of genotypes and frequency of alleles of the plasminogen activator inhibitor type 1 (PAI-1) gene 4G/5G polymorphism in different Turkish clinical schizophrenia subtypes was investigated for its role in schizophrenia development. METHODS The clinical schizophrenia subtypes include paranoid, catatonic, disorganized, undifferentiated and residual, as diagnosed according to the Diagnostic and Statistical Manual of Mental Disorders-Fourth Edition IV (DSM-IV). Samples of genomic DNA (250 total, including 150 schizophrenia patients and 100 healthy subjects) were analysed. PAI-1 4G/5G genotyping was performed by polymerase chain reaction-allele-specific amplification. PCR products were separated by 2% agarose gel electrophoresis and then visualized. RESULTS AND DISCUSSION The genotype distributions (P = 0·136) and allele frequencies (P = 0·721 for 4G, P = 0. 097 for 5G) were not significantly different between patients with schizophrenia and control subjects for the 4G/5G polymorphism. Similar results were also found for the genotype distributions (P = 0·640) and allele frequencies (P = 0·763 for 4G, P = 0·448 for 5G) in the clinical schizophrenia subtypes compared to the each other. WHAT IS NEW AND CONCLUSION We conclude that PAI-1 4G/5G polymorphism was not significantly associated with schizophrenia or its subtypes in the Turkish population. However, we recognize that with our sample sizes, we cannot exclude weak associations.
Collapse
Affiliation(s)
- C Yenilmez
- Department of Psychiatry, Medical Faculty, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Z Ozdemir Koroglu
- Department of Medical Laboratory, Vocational School of Health Services, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - H Kurt
- Department of Medical Biology, Medical Faculty, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - M Yanas
- Department of Psychiatry, Medical Faculty, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - E Colak
- Department of Biostatistics, Medical Faculty, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - I Degirmenci
- Department of Medical Biology, Medical Faculty, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - H V Gunes
- Department of Medical Biology, Medical Faculty, Eskisehir Osmangazi University, Eskisehir, Turkey
| |
Collapse
|
29
|
Bryn V, Aass HCD, Skjeldal OH, Isaksen J, Saugstad OD, Ormstad H. Cytokine Profile in Autism Spectrum Disorders in Children. J Mol Neurosci 2016; 61:1-7. [PMID: 27730473 DOI: 10.1007/s12031-016-0847-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Accepted: 09/22/2016] [Indexed: 12/19/2022]
Abstract
The pathogenesis of autism spectrum disorders (ASD) is not completely understood, but there is evidence of associations with altered immune responses. The aim of this study was to determine the serum levels of various cytokines in children with ASD and in healthy controls, in order to determine their role in ASD and its diagnostic subgroups. Sixty-five ASD patients were enrolled from an epidemiological survey in Norway, of which 30 were diagnosed with childhood autism, 16 with Asperger syndrome, 12 with atypical autism, 1 with Rett syndrome, and 6 with another ASD diagnosis. The serum levels of 12 cytokines were measured in all of the patients and in 30 healthy children. The cytokine levels did not differ significantly between the ASD group and the healthy controls. However, the interleukin-8 (IL-8) level was significantly higher (6.82 vs 4.58 pg/ml, p = 0.017) while that of IL-10 was significantly lower (2.24 vs 6.49 pg/ml, p = 0.009) in patients with childhood autism than in controls. Furthermore, the IL-8 level was significantly higher in childhood autism than in Asperger syndrome (6.82 vs 4.05 pg/ml, p = 0.013). Our study shows that the cytokine profile of children diagnosed with ASD, regardless of the subdiagnosis, does not differ from healthy controls. However, differentiation into different diagnostic subgroups reveals significantly different levels of IL-8 and IL-10. This indicates that different mechanisms may underlie the different ASD subdiagnoses. Future research into the pathophysiological mechanisms of ASD should pay more attention to the different subdiagnoses of ASD.
Collapse
Affiliation(s)
- Vesna Bryn
- Department of Pediatrics, Innlandet Hospital Trust, Anders Sandvigs 17, 2629, Lillehammer, Norway.
| | | | - Ola H Skjeldal
- Gillberg Neuropsychiatry Centre, University of Gothenburg, Gothenburg, Sweden
| | - Jørn Isaksen
- Department of Habilitation, Innlandet Hospital Trust, Lillehammer, Norway
| | - Ola Didrik Saugstad
- Pediatric Research Institute, Rikshospitalet, Oslo University Hospital, Oslo, Norway
| | - Heidi Ormstad
- Faculty of Health Sciences, University College of Southeast Norway, Drammen, Norway
| |
Collapse
|
30
|
Hagihara H, Shoji H, Miyakawa T. Immaturity of brain as an endophenotype of neuropsychiatric disorders. Nihon Yakurigaku Zasshi 2016; 148:168-175. [PMID: 27725563 DOI: 10.1254/fpj.148.168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
31
|
Asor E, Ben-Shachar D. Gene environment interaction in periphery and brain converge to modulate behavioral outcomes: Insights from the SP1 transient early in life interference rat model. World J Psychiatry 2016; 6:294-302. [PMID: 27679768 PMCID: PMC5031929 DOI: 10.5498/wjp.v6.i3.294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 07/21/2016] [Accepted: 08/08/2016] [Indexed: 02/05/2023] Open
Abstract
It is generally assumed that behavior results from an interaction between susceptible genes and environmental stimuli during critical life stages. The present article reviews the main theoretical and practical concepts in the research of gene environment interaction, emphasizing the need for models simulating real life complexity. We review a novel approach to study gene environment interaction in which a brief post-natal interference with the expression of multiple genes, by hindering the activity of the ubiquitous transcription factor specificity protein 1 (Sp1) is followed by later-in-life exposure of rats to stress. Finally, this review discusses the role of peripheral processes in behavioral responses, with the Sp1 model as one example demonstrating how specific behavioral patterns are linked to modulations in both peripheral and central physiological processes. We suggest that models, which take into account the tripartite reciprocal interaction between the central nervous system, peripheral systems and environmental stimuli will advance our understanding of the complexity of behavior.
Collapse
|
32
|
Effects of Electroconvulsive Therapy on Some Inflammatory Factors in Patients With Treatment-Resistant Schizophrenia. J ECT 2016; 32:174-9. [PMID: 26886746 DOI: 10.1097/yct.0000000000000303] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Electroconvulsive therapy (ECT) is the most effective option for several psychiatric conditions, including treatment-resistant schizophrenia. However, little is known about the molecular mechanism of action of ECT. The link between inflammatory system and schizophrenia is the focus of recent studies. However, the impact of ECT on inflammatory functioning in this disorder remains elusive. Whether ECT could modulate inflammatory factors in patients with schizophrenia was examined. METHODS Plasma levels of interleukin-4 (IL-4), transforming growth factor-β (TGF-β), myeloperoxidase (MPO), and nuclear factor-κB (NF-κB) activation were analyzed in 20 schizophrenic patients, mainly with resistant to antipsychotic medication disorders, and in 20 sex- and age-matched healthy controls. Disease severity was evaluated using the Brief Psychiatric Rating Scale. All patients were followed with measurement of the inflammatory factors before and after ECT treatment and compared with the controls. RESULTS Patients with schizophrenia had markedly raised NF-κB and but decreased TGF-β levels compared with healthy controls. On the other hand, no significant differences were found for the levels of IL-4 and MPO levels. The clinical improvement during repeated ECT was accompanied by a gradual and significant increase in IL-4 and TGF-β level, but MPO and NF-κB activation were left unaffected. Increases in TGF-β were negatively correlated with the change in Brief Psychiatric Rating Scale scores after ECT. CONCLUSIONS It is shown that ECT, while increasing the anti-inflammatory response such as the levels of IL-4 and TGF-β, it did not affect the levels of MPO and NF-κB activation in this study.
Collapse
|
33
|
Elevated peripheral cytokines characterize a subgroup of people with schizophrenia displaying poor verbal fluency and reduced Broca's area volume. Mol Psychiatry 2016; 21:1090-8. [PMID: 26194183 PMCID: PMC4960447 DOI: 10.1038/mp.2015.90] [Citation(s) in RCA: 204] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Revised: 04/11/2015] [Accepted: 05/26/2015] [Indexed: 12/12/2022]
Abstract
Previous studies on schizophrenia have detected elevated cytokines in both brain and blood, suggesting neuroinflammation may contribute to the pathophysiology in some cases. We aimed to determine the extent to which elevated peripheral cytokine messenger RNA (mRNA) expression: (1) characterizes a subgroup of people with schizophrenia and (2) shows a relationship to cognition, brain volume and/or symptoms. Forty-three outpatients with schizophrenia or schizoaffective disorder and matched healthy controls were assessed for peripheral cytokine mRNAs (interleukin (IL)-1β, IL-2, IL-6, IL-8 and IL-18), intelligence quotient, memory and verbal fluency, symptom severity and cortical brain volumes integral to language (that is, Broca's and Wernicke's areas). IL-1β mRNA levels were 28% increased in schizophrenia compared with controls (t(82)=2.64, P<0.01). Using a two-step clustering procedure, we identified a subgroup of people displaying relatively elevated cytokine mRNA levels (17/43 people with schizophrenia and 9/42 controls). Individuals with schizophrenia in the elevated cytokine subgroup performed significantly worse than the low-cytokine subgroup on verbal fluency (F(1,40)=15.7, P<0.001). There was a 17% volume reduction of the left pars opercularis (POp) (Broca's area) in patients with elevated cytokines compared with patients with lower cytokines (F(1,29)=9.41, P=0.005). Negative linear relationships between IL-1β mRNA levels and both verbal fluency and left POp volume were found in schizophrenia. This study is among the first to link blood biomarkers of inflammation with both cognitive deficits and brain volume reductions in people with schizophrenia, supporting that those with elevated cytokines represent a neurobiologically meaningful subgroup. These findings raise the possibility that targeted anti-inflammatory treatments may ameliorate cognitive and brain morphological abnormalities in some people with schizophrenia.
Collapse
|
34
|
Kastrin A, Rindflesch TC, Hristovski D. Link Prediction on a Network of Co-occurring MeSH Terms: Towards Literature-based Discovery. Methods Inf Med 2016; 55:340-6. [PMID: 27435341 DOI: 10.3414/me15-01-0108] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 05/19/2016] [Indexed: 12/24/2022]
Abstract
OBJECTIVES Literature-based discovery (LBD) is a text mining methodology for automatically generating research hypotheses from existing knowledge. We mimic the process of LBD as a classification problem on a graph of MeSH terms. We employ unsupervised and supervised link prediction methods for predicting previously unknown connections between biomedical concepts. METHODS We evaluate the effectiveness of link prediction through a series of experiments using a MeSH network that contains the history of link formation between biomedical concepts. We performed link prediction using proximity measures, such as common neighbor (CN), Jaccard coefficient (JC), Adamic / Adar index (AA) and preferential attachment (PA). Our approach relies on the assumption that similar nodes are more likely to establish a link in the future. RESULTS Applying an unsupervised approach, the AA measure achieved the best performance in terms of area under the ROC curve (AUC = 0.76), followed by CN, JC, and PA. In a supervised approach, we evaluate whether proximity measures can be combined to define a model of link formation across all four predictors. We applied various classifiers, including decision trees, k-nearest neighbors, logistic regression, multilayer perceptron, naïve Bayes, and random forests. Random forest classifier accomplishes the best performance (AUC = 0.87). CONCLUSIONS The link prediction approach proved to be effective for LBD processing. Supervised statistical learning approaches clearly outperform an unsupervised approach to link prediction.
Collapse
Affiliation(s)
- Andrej Kastrin
- Andrej Kastrin, PhD, Faculty of Information Studies, Ljubljanska cesta 31A, SI-8000 Novo Mesto, Slovenia, E-mail:
| | | | | |
Collapse
|
35
|
YANG ZHAI, JIANG QIONG, CHEN SHUANGXI, HU CHENGLIANG, SHEN HUIFAN, HUANG PEIZHI, XU JUNPING, MEI JINPING, ZHANG BENPING, ZHAO WEIJIANG. Differential changes in Neuregulin-1 signaling in major brain regions in a lipopolysaccharide-induced neuroinflammation mouse model. Mol Med Rep 2016; 14:790-6. [PMID: 27220549 PMCID: PMC4918623 DOI: 10.3892/mmr.2016.5325] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 05/10/2016] [Indexed: 02/05/2023] Open
Abstract
Neuregulin 1 (Nrg1) is involved in multiple biological processes in the nervous system. The present study investigated changes in Nrg1 signaling in the major brain regions of mice subjected to lipopolysaccharide (LPS)-induced neuroinflammation. At 24 h post‑intraperitoneal injection of LPS, mouse brain tissues, including tissues from the cortex, striatum, hippocampus and hypothalamus, were collected. Reverse transcription‑polymerase chain reaction was used to determine the expression of Nrg1 and its receptors, Neu and ErbB4, at the mRNA level. Western blotting was performed to determine the levels of these proteins and the protein levels of phosphorylated extracellular signal-regulated kinases (Erk)1/2 and Akt1. Immunohistochemical staining was utilized to detect the levels of pNeu and pErbB4 in these regions. LPS successfully induced sites of neuroinflammation in these regions, in which changes in Nrg1, Neu and ErbB4 at the mRNA and protein levels were identified compared with controls. LPS induced a reduction in pNeu and pErbB4 in the striatum and hypothalamus, although marginally increased pErbB4 levels were found in the hippocampus. LPS increased the overall phosphorylation of Src but this effect was reduced in the hypothalamus. Moreover, increased phosphorylation of Akt1 was found in the striatum and hippocampus. These data suggest diverse roles for Nrg1 signaling in these regions during the process of neuroinflammation.
Collapse
Affiliation(s)
- ZHAI YANG
- Center for Neuroscience, Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - QIONG JIANG
- Center for Neuroscience, Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - SHUANG-XI CHEN
- Center for Neuroscience, Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - CHENG-LIANG HU
- Center for Neuroscience, Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - HUI-FAN SHEN
- Center for Neuroscience, Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - PEI-ZHI HUANG
- Center for Neuroscience, Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - JUN-PING XU
- Center for Neuroscience, Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - JIN-PING MEI
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, P.R. China
| | - BEN-PING ZHANG
- Department of Neurology, The 2nd Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - WEI-JIANG ZHAO
- Center for Neuroscience, Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
- Correspondence to: Dr Wei-Jiang Zhao, Center for Neuroscience, Shantou University Medical College, 22 Xinling Road, Shantou, Guangdong 515041, P.R. China, E-mail:
| |
Collapse
|
36
|
Meyer U, Yee BK, Feldon J. The Neurodevelopmental Impact of Prenatal Infections at Different Times of Pregnancy: The Earlier the Worse? Neuroscientist 2016; 13:241-56. [PMID: 17519367 DOI: 10.1177/1073858406296401] [Citation(s) in RCA: 189] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Environmental insults taking place in early brain development may have long-lasting consequences for adult brain functioning. There is a large body of epidemiological data linking maternal infections during pregnancy to a higher incidence of psychiatric disorders with a presumed neurodevelopmental origin in the offspring, including schizophrenia and autism. Although specific gestational windows may be associated with a differing vulnerability to infection-mediated disturbances in normal brain development, it still remains debatable whether and/or why certain gestation periods may confer maximal risk for neurodevelopmental disturbances following the prenatal exposure to infectious events. In this review, the authors integrate both epidemiological and experimental findings supporting the hypothesis that infection-associated immunological events in early fetal life may have a stronger neurodevelopmental impact compared to late pregnancy infections. This is because infections in early gestation may not only interfere with fundamental neurodevelopmental events such as cell proliferation and differentiation, but it may also predispose the developing nervous system to additional failures in subsequent cell migration, target selection, and synapse maturation, eventually leading to multiple brain and behavioral abnormalities in the adult offspring. The temporal dependency of the epidemiological link between maternal infections during pregnancy and a higher risk for brain disorders in the offspring may thus be explained by specific spatiotemporal events in the course of fetal brain development. NEUROSCIENTIST 13(3):241—256, 2007.
Collapse
Affiliation(s)
- Urs Meyer
- Laboratory of Behavioral Neurobiology, ETH Zurich, Switzerland
| | | | | |
Collapse
|
37
|
Nagano T, Mizuno M, Morita K, Nawa H. Pathological Implications of Oxidative Stress in Patients and Animal Models with Schizophrenia: The Role of Epidermal Growth Factor Receptor Signaling. Curr Top Behav Neurosci 2016; 29:429-446. [PMID: 26475158 DOI: 10.1007/7854_2015_399] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Proinflammatory cytokines perturb brain development and neurotransmission and are implicated in various psychiatric diseases, such as schizophrenia and depression. These cytokines often induce the production of reactive oxygen species (ROS) and regulate not only cell survival and proliferation but also inflammatory process and neurotransmission. Under physiological conditions, ROS are moderately produced in mitochondria but are rapidly scavenged by reducing agents in cells. However, brain injury, ischemia, infection, or seizure-like neural activities induce inflammatory cytokines and trigger the production of excessive amounts of ROS, leading to abnormal brain functions and psychiatric symptoms. Protein phosphatases, which are involved in the basal silencing of cytokine receptor activation, are the major targets of ROS. Consistent with this, several ROS scavengers, such as polyphenols and unsaturated fatty acids, attenuate both cytokine signaling and psychiatric abnormalities. In this review, we list the inducers, producers, targets, and scavengers of ROS in the brain and discuss the interaction between ROS and cytokine signaling implicated in schizophrenia and its animal models. In particular, we present an animal model of schizophrenia established by perinatal exposure to epidermal growth factor and illustrate the pathological role of ROS and antipsychotic actions of ROS scavengers, such as emodin and edaravone.
Collapse
Affiliation(s)
- Tadasato Nagano
- Faculty of Human Life Studies, University of Niigata Prefecture, 471 Ebigase, Higashi-ku, Niigata, 950-8680, Japan
| | - Makoto Mizuno
- Aichi Human Service Center, Institute for Developmental Research, Kasugai, Aichi, 480-0392, Japan
| | - Keisuke Morita
- Department of Molecular Biology, Brain Research Institute, Niigata University, Asahimachi-Dori 1-757, Niigata, 951-8585, Japan
| | - Hiroyuki Nawa
- Department of Molecular Biology, Brain Research Institute, Niigata University, Asahimachi-Dori 1-757, Niigata, 951-8585, Japan.
| |
Collapse
|
38
|
Demeestere D, Libert C, Vandenbroucke RE. Therapeutic implications of the choroid plexus-cerebrospinal fluid interface in neuropsychiatric disorders. Brain Behav Immun 2015; 50:1-13. [PMID: 26116435 DOI: 10.1016/j.bbi.2015.06.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 05/29/2015] [Accepted: 06/13/2015] [Indexed: 12/31/2022] Open
Abstract
The choroid plexus (CP) comprises an epithelial monolayer that forms an important physical, enzymatic and immunologic barrier, called the blood-cerebrospinal fluid barrier (BCSFB). It is a highly vascularized organ located in the brain ventricles that is key in maintaining brain homeostasis as it produces cerebrospinal fluid (CSF) and has other important secretory functions. Furthermore, the CP-CSF interface plays a putative role in neurogenesis and has been implicated in neuropsychiatric diseases such as the neurodevelopmental disorders schizophrenia and autism. A role for this CNS border was also implicated in sleep disturbances and chronic and/or severe stress, which are risk factors for the development of neuropsychiatric conditions. Understanding the mechanisms by which disturbance of the homeostasis at the CP-CSF interface is involved in these different chronic low-grade inflammatory diseases can give new insights into therapeutic strategies. Hence, this review discusses the different roles that have been suggested so far for the CP in these neuropsychiatric disorders, with special attention to potential therapeutic applications.
Collapse
Affiliation(s)
- Delphine Demeestere
- Inflammation Research Center, VIB, Technologiepark 927, B-9052 Zwijnaarde, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, B-9052 Zwijnaarde, Ghent, Belgium
| | - Claude Libert
- Inflammation Research Center, VIB, Technologiepark 927, B-9052 Zwijnaarde, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, B-9052 Zwijnaarde, Ghent, Belgium
| | - Roosmarijn E Vandenbroucke
- Inflammation Research Center, VIB, Technologiepark 927, B-9052 Zwijnaarde, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, B-9052 Zwijnaarde, Ghent, Belgium.
| |
Collapse
|
39
|
Liu H, Cai H, Ren Z, Zhong J, Li J. Clozapine Regulates Cytokines, T-cell Subsets and Immunoglobulins Serum Levels in MK-801-Evoked Schizophrenia Rat. INT J PHARMACOL 2015. [DOI: 10.3923/ijp.2015.596.603] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
40
|
Neonatal levels of inflammatory markers and later risk of schizophrenia. Biol Psychiatry 2015; 77:548-55. [PMID: 25152432 DOI: 10.1016/j.biopsych.2014.07.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 06/27/2014] [Accepted: 07/15/2014] [Indexed: 12/11/2022]
Abstract
BACKGROUND There is a long-standing interest in investigating the impact of early-life immune abnormalities on later onset of psychosis. The aim of this study was to assess inflammatory marker levels in neonatal dried blood spots and their association with later risk of schizophrenia. METHODS This nested case-control study included 995 cases and 980 control subjects. Cases were identified using the Danish Psychiatric Central Register. Control subjects of same age and sex were identified using the Danish Civil Registration System. Samples for the identified individuals were retrieved from the Danish Neonatal Screening Biobank. Concentrations of 17 inflammatory markers were measured in eluates from dried blood spots using a bead-based multiplex assay. Incidence rate ratios were calculated using conditional logistic regression. Principal component analysis was used to capture the overall variation in the inflammatory markers' concentrations. RESULTS No significant differences were found for any of the analyzed interleukins. We did not find any association with schizophrenia for any of the other examined inflammatory markers. CONCLUSIONS Our results suggest that persons who develop schizophrenia do not have higher or lower levels of the examined inflammatory markers at the time of birth. Our findings differ from the studies of maternal inflammatory changes during the antenatal period for which associations with schizophrenia have previously been demonstrated.
Collapse
|
41
|
Wischhof L, Irrsack E, Osorio C, Koch M. Prenatal LPS-exposure--a neurodevelopmental rat model of schizophrenia--differentially affects cognitive functions, myelination and parvalbumin expression in male and female offspring. Prog Neuropsychopharmacol Biol Psychiatry 2015; 57:17-30. [PMID: 25455585 DOI: 10.1016/j.pnpbp.2014.10.004] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 10/08/2014] [Accepted: 10/10/2014] [Indexed: 01/15/2023]
Abstract
Maternal infection during pregnancy increases the risk for the offspring to develop schizophrenia. Gender differences can be seen in various features of the illness and sex steroid hormones (e.g. estrogen) have strongly been implicated in the disease pathology. In the present study, we evaluated sex differences in the effects of prenatal exposure to a bacterial endotoxin (lipopolysaccharide, LPS) in rats. Pregnant dams received LPS-injections (100 μg/kg) at gestational day 15 and 16. The offspring was then tested for prepulse inhibition (PPI), locomotor activity, anxiety-like behavior and object recognition memory at various developmental time points. At postnatal day (PD) 33 and 60, prenatally LPS-exposed rats showed locomotor hyperactivity which was similar in male and female offspring. Moreover, prenatal LPS-treatment caused PPI deficits in pubertal (PD45) and adult (PD90) males while PPI impairments were found only at PD45 in prenatally LPS-treated females. Following prenatal LPS-administration, recognition memory for objects was impaired in both sexes with males being more severely affected. Additionally, we assessed prenatal infection-induced alterations of parvalbumin (Parv) expression and myelin fiber density. Male offspring born to LPS-challenged mothers showed decreased myelination in cortical and limbic brain regions as well as reduced numbers of Parv-expressing cells in the medial prefrontal cortex (mPFC), hippocampus and entorhinal cortex. In contrast, LPS-exposed female rats showed only a modest decrease in myelination and Parv immunoreactivity. Collectively, our data indicate that some of the prenatal immune activation effects are sex dependent and further strengthen the importance of taking into account gender differences in animal models of schizophrenia.
Collapse
Affiliation(s)
- Lena Wischhof
- Brain Research Institute, Department of Neuropharmacology, University of Bremen, Hochschulring 18, 28359 Bremen, Germany.
| | - Ellen Irrsack
- Brain Research Institute, Department of Neuropharmacology, University of Bremen, Hochschulring 18, 28359 Bremen, Germany
| | - Carmen Osorio
- Brain Research Institute, Department of Neuropharmacology, University of Bremen, Hochschulring 18, 28359 Bremen, Germany
| | - Michael Koch
- Brain Research Institute, Department of Neuropharmacology, University of Bremen, Hochschulring 18, 28359 Bremen, Germany
| |
Collapse
|
42
|
Ratnayake U, Basrai HS, Turnley AM, van den Buuse M. Dopaminergic activity and behaviour in SOCS2 transgenic mice: Revealing a potential drug target for schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2015; 56:247-53. [PMID: 25283341 DOI: 10.1016/j.pnpbp.2014.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 09/12/2014] [Accepted: 09/26/2014] [Indexed: 10/24/2022]
Abstract
Alterations in immune function have been implicated in the aetiopathogenesis of schizophrenia. Specifically, the induction of inflammatory cytokines, which are important immunological factors in infection or inflammation, may be critical factors altering the normal course of brain development and increasing schizophrenia risk. Suppressor of cytokine signalling 2 (SOCS2) can negatively regulate the signalling of cytokines. The present study aimed to determine the behavioural phenotype of transgenic mice over-expressing SOCS2 (SOCS2 Tg) in paradigms of relevance to schizophrenia. Both male and female SOCS2 Tg mice displayed reduced locomotor hyperactivity after the administration of the dopamine releaser, amphetamine, compared to wildtype controls (WT). However, only male SOCS2 Tg mice showed enhanced prepulse inhibition compared to WT. Dopamine D2 receptors mRNA expression was reduced and dopamine transporter mRNA expression was increased in the nucleus accumbens of female, but not male, SOCS2 Tg mice, compared to WT. The role of hyperdopaminergia has long been implicated in the aetiology of schizophrenia. This study shows that over-expression of SOCS2 reduces the psychostimulant effects of amphetamine, enhances PPI, and alters mesolimbic dopaminergic activity. SOCS2 may provide a novel target in the development of treatments for schizophrenia.
Collapse
Affiliation(s)
- Udani Ratnayake
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Australia
| | - Harleen S Basrai
- Department of Anatomy and Neuroscience, University of Melbourne, Australia
| | - Ann M Turnley
- Department of Anatomy and Neuroscience, University of Melbourne, Australia
| | - Maarten van den Buuse
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Australia; Department of Pharmacology and Therapeutics, University of Melbourne, Australia; School of Psychological Science, La Trobe University, Melbourne, Australia.
| |
Collapse
|
43
|
Immune System Related Markers: Changes in childhood Neuropsychiatry Disorders Cause and Consequence. ACTA ACUST UNITED AC 2015. [DOI: 10.1007/978-3-319-13602-8_9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
44
|
Mead J, Ashwood P. Evidence supporting an altered immune response in ASD. Immunol Lett 2014; 163:49-55. [PMID: 25448709 DOI: 10.1016/j.imlet.2014.11.006] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 11/07/2014] [Accepted: 11/11/2014] [Indexed: 11/17/2022]
Abstract
Autism spectrum disorders (ASD) are neurodevelopmental disorders characterized by deficits in social interactions, communication, and increased stereotypical repetitive behaviors. The immune system plays an important role in neurodevelopment, regulating neuronal proliferation, synapse formation and plasticity, as well as removing apoptotic neurons. Immune dysfunction in ASD has been repeatedly described by many research groups across the globe. Symptoms of immune dysfunction in ASD include neuroinflammation, presence of autoantibodies, increased T cell responses, and enhanced innate NK cell and monocyte immune responses. Moreover these responses are frequently associated with more impairment in core ASD features including impaired social interactions, repetitive behaviors and communication. In mouse models replacing immune components in animals that exhibit autistic relevant features leads to improvement in behavior in these animals. Taken together this research suggests that the immune dysfunction often seen in ASD directly affects aspects of neurodevelopment and neurological processes leading to changes in behavior. Discussion of immune abnormalities in ASD will be the focus of this review.
Collapse
Affiliation(s)
- Jennifer Mead
- Department of Medical Microbiology and Immunology, UC Davis, CA, USA; The M.I.N.D. Institute, University of California at Davis, CA, USA
| | - Paul Ashwood
- Department of Medical Microbiology and Immunology, UC Davis, CA, USA; The M.I.N.D. Institute, University of California at Davis, CA, USA.
| |
Collapse
|
45
|
Nagai T. [Effects of genetic and environmental factors on neuropsychological development]. YAKUGAKU ZASSHI 2014; 134:1029-35. [PMID: 25274212 DOI: 10.1248/yakushi.14-00182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abnormalities in early brain development contribute to the etiology of many neurological disorders in later life. Recent advances in genome analysis indicate that large numbers of common gene variants shape any individual's disease risk, including that for major mental illnesses. Polyriboinosinic-polyribocytidilic acid (polyI:C) is known to induce strong innate immune responses that mimic immune activation by viral infections. Our previous findings suggest that activation of the innate immune system in astrocytes results in impairments of neurite outgrowth and spine formation, which lead to behavioral abnormalities in adulthood. Although glial cells are classically thought to provide structural and metabolic support to neurons, they are now widely recognized as essential regulators of neuronal development including neuronal migration, axon and dendrite growth, formation of synapses, and synaptic plasticity. Astrocytes also play critical roles in regulating CNS immune function by responding to inflammatory mediators and producing additional cytokines and chemokines. Most of the functions of astrocytes are mediated by the release of humoral factors through a close interaction with neurons. However, the mechanism by which innate immune activation of astrocytes affects neuronal development remains to be determined. To explore the alteration in proteins secreted from murine astrocytes after polyI:C stimulation, astrocyte-conditioned medium (ACM) was analyzed by 2-dimensional fluorescence difference gel electrophoresis (2D-DIGE). We identified matrix metalloproteinase-3 (Mmp3) as a potential mediator of polyI:C/ACM-induced neurodevelopmental impairment. Here, we provide an overview of the mechanism of neurodevelopmental impairment following polyI:C-induced innate immune activation of astrocytes.
Collapse
Affiliation(s)
- Taku Nagai
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine
| |
Collapse
|
46
|
Fatty liver-induced changes in stereotypic behavior in rats and effects of glucagon-like peptide-1 analog on stereotypy. Kaohsiung J Med Sci 2014; 30:447-52. [PMID: 25224767 DOI: 10.1016/j.kjms.2014.05.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 04/26/2014] [Accepted: 02/25/2014] [Indexed: 02/06/2023] Open
|
47
|
Barr GA, Hunter DA. Interactions between glia, the immune system and pain processes during early development. Dev Psychobiol 2014; 56:1698-710. [PMID: 24910104 DOI: 10.1002/dev.21229] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 05/15/2014] [Indexed: 01/10/2023]
Abstract
Pain is a serious problem for infants and children and treatment options are limited. Moreover, infants born prematurely or hospitalized for illness likely have concurrent infection that activates the immune system. It is now recognized that the immune system in general and glia in particular influence neurotransmission and that the neural bases of pain are intimately connected to immune function. We know that injuries that induce pain activate immune function and suppressing the immune system alleviates pain. Despite this advance in our understanding, virtually nothing is known of the role that the immune system plays in pain processing in infants and children, even though pain is a serious clinical issue in pediatric medicine. This brief review summarizes the existing data on immune-neural interactions in infants, providing evidence for the immaturity of these interactions.
Collapse
Affiliation(s)
- Gordon A Barr
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, 19104.
| | | |
Collapse
|
48
|
Neuropathologic implication of peripheral neuregulin-1 and EGF signals in dopaminergic dysfunction and behavioral deficits relevant to schizophrenia: their target cells and time window. BIOMED RESEARCH INTERNATIONAL 2014; 2014:697935. [PMID: 24949465 PMCID: PMC4052624 DOI: 10.1155/2014/697935] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Accepted: 04/10/2014] [Indexed: 01/01/2023]
Abstract
Neuregulin-1 and epidermal growth factor (EGF) are implicated in the pathogenesis of schizophrenia. To test the developmental hypothesis for schizophrenia, we administered these factors to rodent pups, juveniles, and adults and characterized neurobiological and behavioral consequences. These factors were also provided from their transgenes or infused into the adult brain. Here we summarize previous results from these experiments and discuss those from neuropathological aspects. In the neonatal stage but not the juvenile and adult stages, subcutaneously injected factors penetrated the blood-brain barrier and acted on brain neurons, which later resulted in persistent behavioral and dopaminergic impairments associated with schizophrenia. Neonatally EGF-treated animals exhibited persistent hyperdopaminergic abnormalities in the nigro-pallido-striatal system while neuregulin-1 treatment resulted in dopaminergic deficits in the corticolimbic dopamine system. Effects on GABAergic and glutamatergic systems were transient or limited. Even in the adult stage, intracerebral administration and transgenic expression of these factors produced similar but not identical behavioral impairments, although the effects of intracerebral administration were reversible. These findings suggest that dopaminergic development is highly vulnerable to circulating ErbB ligands in the pre- and perinatal stages. Once maldevelopment of the dopaminergic system is established during early development, dopamine-associating behavioral deficits become irreversible and manifest at postpubertal stages.
Collapse
|
49
|
Yamada S, Nagai T, Nakai T, Ibi D, Nakajima A, Yamada K. Matrix metalloproteinase-3 is a possible mediator of neurodevelopmental impairment due to polyI:C-induced innate immune activation of astrocytes. Brain Behav Immun 2014; 38:272-82. [PMID: 24594387 DOI: 10.1016/j.bbi.2014.02.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 02/13/2014] [Accepted: 02/24/2014] [Indexed: 01/01/2023] Open
Abstract
Increasing epidemiological evidence indicates that prenatal infection and childhood central nervous system infection with various viral pathogens enhance the risk for several neuropsychiatric disorders. Polyriboinosinic-polyribocytidilic acid (polyI:C) is known to induce strong innate immune responses that mimic immune activation by viral infections. Our previous findings suggested that activation of the innate immune system in astrocytes results in impairments of neurite outgrowth and spine formation, which lead to behavioral abnormalities in adulthood. To identify candidates of astrocyte-derived humoral factors that affect neuronal development, we analyzed astrocyte-conditioned medium (ACM) from murine astrocyte cultures treated with polyI:C (polyI:C-ACM) by two-dimensional fluorescence difference gel electrophoresis (2D-DIGE). Through a quantitative proteomic screen, we found that 13 protein spots were differentially expressed compared with ACM from vehicle-treated astrocytes (control-ACM), and characterized one of the candidates, matrix metalloproteinase-3 (Mmp3). PolyI:C treatment significantly increased the expression levels of Mmp3 mRNA and protein in astrocytes, but not microglia. PolyI:C-ACM was associated with significantly higher Mmp3 protein level and enzyme activity than control-ACM. The addition of recombinant Mmp3 into control-ACM impaired dendritic elongation of primary cultured hippocampal neurons, while the deleterious effect of polyI:C-ACM on neurite elongation was attenuated by knockdown of Mmp3 in astrocytes. These results suggest that Mmp3 is a possible mediator of polyI:C-ACM-induced neurodevelopmental impairment.
Collapse
Affiliation(s)
- Shinnosuke Yamada
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan
| | - Taku Nagai
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan
| | - Tsuyoshi Nakai
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan
| | - Daisuke Ibi
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan
| | - Akira Nakajima
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan
| | - Kiyofumi Yamada
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan.
| |
Collapse
|
50
|
Gao L, Li Z, Chang S, Wang J. Association of interleukin-10 polymorphisms with schizophrenia: a meta-analysis. PLoS One 2014; 9:e90407. [PMID: 24603720 PMCID: PMC3946087 DOI: 10.1371/journal.pone.0090407] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 02/02/2014] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The involvement of cytokines in schizophrenia (SZ) has been proposed in recent years and various studies have accumulated convergent lines of evidence. Among which, the role of interleukin-10 (IL-10) in SZ has been explored in a number of studies by investigating association of single nucleotide polymorphisms (SNPs) and susceptibility of SZ. However, the results are inconsistent since its power is limited by the individual sample size. To evaluate the overall effect between them, we conducted a meta-analysis by combining all available studies. METHODS Studies were searched from the database of PubMed, PsycINFO and ISI web of Knowledge up to Nov 2013. The meta-analysis was conducted based on statement of preferred reporting items for systematic reviews and meta-analyses (PRISMA). RESULTS Eleven studies including 6399 subjects (3129 cases and 3270 controls) were available for the meta-analysis. Among three investigated SNPs, rs1800872 was observed to be significantly associated with risk of SZ (AA vs. AC+CC, Pooled OR = 1.351, P-value = 2.06E-04). Meanwhile, among six haplotypes of rs1800896 - rs1800871 - rs1800872, significant associations were observed in haplotype A-C-A (Pooled OR = 1.762, P-value = 2.00E-03) and G-C-C (Pooled OR = 0.649, P-value = 2.00E-03) for Asians. These results were still significant after adjusting for multiple comparisons. CONCLUSIONS This meta-analysis demonstrated an SNP and two haplotypes of IL-10 significantly associated with SZ, suggesting that IL-10 might be a risk factor of SZ.
Collapse
Affiliation(s)
- Lei Gao
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhao Li
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Suhua Chang
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Jing Wang
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|