1
|
Gemperli K, Folorunso F, Norin B, Joshua R, Rykowski R, Hill C, Galindo R, Aravamuthan BR. Preterm birth is associated with dystonic features and reduced cortical parvalbumin immunoreactivity in mice. Pediatr Res 2024:10.1038/s41390-024-03603-8. [PMID: 39433959 DOI: 10.1038/s41390-024-03603-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/19/2024] [Accepted: 09/15/2024] [Indexed: 10/23/2024]
Abstract
BACKGROUND Preterm birth is a common cause of dystonia. Though dystonia is often associated with striatal dysfunction after neonatal brain injury, cortical dysfunction may best predict dystonia following preterm birth. Furthermore, abnormal sensorimotor cortex inhibition is associated with genetic and idiopathic dystonias. To investigate cortical dysfunction and dystonia following preterm birth, we developed a new model of preterm birth in mice. METHODS We induced preterm birth in C57BL/6J mice at embryonic day 18.3, ~24 h early. Leg adduction variability and amplitude, metrics we have shown distinguish between dystonia from spasticity during gait in people with CP, were quantified from gait videos of mice. Parvalbumin-positive interneurons, the largest population of cortical inhibitory interneurons, were quantified in the sensorimotor cortex and striatum. RESULTS Mice born preterm demonstrate increased leg adduction amplitude and variability during gait, suggestive of clinically observed dystonic gait features. Mice born preterm also demonstrate fewer parvalbumin-positive interneurons and reduced parvalbumin immunoreactivity in the sensorimotor cortex, but not the striatum, suggesting dysfunction of cortical inhibition. CONCLUSIONS These data may suggest an association between cortical dysfunction and dystonic gait features following preterm birth. We propose that our novel mouse model of preterm birth can be used to study this association. IMPACT Mouse models of true preterm birth are valuable for studying clinical complications of prematurity. Mice born preterm demonstrate increased leg adduction amplitude and variability during gait, suggestive of clinically observed dystonic gait features. Mice born preterm demonstrate fewer parvalbumin-positive interneurons and reduced parvalbumin immunoreactivity in the sensorimotor cortex, suggesting dysfunction of cortical inhibition. Mice born preterm do not demonstrate changes in parvalbumin immunoreactivity in the striatum. Cortical dysfunction may be associated with dystonic gait features following preterm birth.
Collapse
Affiliation(s)
- Kat Gemperli
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Femi Folorunso
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Benjamin Norin
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Rebecca Joshua
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Rachel Rykowski
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Clayton Hill
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Rafael Galindo
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Bhooma R Aravamuthan
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
2
|
Cepeda C, Holley SM, Barry J, Oikonomou KD, Yazon VW, Peng A, Argueta D, Levine MS. Corticostriatal Maldevelopment in the R6/2 Mouse Model of Juvenile Huntington's Disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.15.618500. [PMID: 39464124 PMCID: PMC11507867 DOI: 10.1101/2024.10.15.618500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
There is a growing consensus that brain development in Huntington's disease (HD) is abnormal, leading to the idea that HD is not only a neurodegenerative but also a neurodevelopmental disorder. Indeed, structural and functional abnormalities have been observed during brain development in both humans and animal models of HD. However, a concurrent study of cortical and striatal development in a genetic model of HD is still lacking. Here we report significant alterations of corticostriatal development in the R6/2 mouse model of juvenile HD. We examined wildtype (WT) and R6/2 mice at postnatal (P) days 7, 14, and 21. Morphological examination demonstrated early structural and cellular alterations reminiscent of malformations of cortical development, and ex vivo electrophysiological recordings of cortical pyramidal neurons (CPNs) demonstrated significant age- and genotype-dependent changes of intrinsic membrane and synaptic properties. In general, R6/2 CPNs had reduced cell membrane capacitance and increased input resistance (P7 and P14), along with reduced frequency of spontaneous excitatory and inhibitory synaptic events during early development (P7), suggesting delayed cortical maturation. This was confirmed by increased occurrence of GABA A receptor-mediated giant depolarizing potentials at P7. At P14, the rheobase of CPNs was significantly reduced, along with increased excitability. Altered membrane and synaptic properties of R6/2 CPNs recovered progressively, and by P21 they were similar to WT CPNs. In striatal medium-sized spiny neurons (MSNs), a different picture emerged. Intrinsic membrane properties were relatively normal throughout development, except for a transient increase in membrane capacitance at P14. The first alterations in MSNs synaptic activity were observed at P14 and consisted of significant deficits in GABAergic inputs, however, these also were normalized by P21. In contrast, excitatory inputs began to decrease at this age. We conclude that the developing HD brain is capable of compensating for early developmental abnormalities and that cortical alterations precede and are a main contributor of striatal changes. Addressing cortical maldevelopment could help prevent or delay disease manifestations.
Collapse
|
3
|
Wang S, Li Z, Liu X, Fan S, Wang X, Chang J, Qin L, Zhao P. Repeated postnatal sevoflurane exposure impairs social recognition in mice by disrupting GABAergic neuronal activity and development in hippocampus. Br J Anaesth 2024; 133:810-822. [PMID: 39142987 DOI: 10.1016/j.bja.2024.05.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/23/2024] [Accepted: 05/28/2024] [Indexed: 08/16/2024] Open
Abstract
BACKGROUND Repeated exposure to sevoflurane during early developmental stages is a risk factor for social behavioural disorders, but the underlying neuropathological mechanisms remain unclear. As the hippocampal cornu ammonis area 2 subregion (CA2) is a critical centre for social cognitive functions, we hypothesised that sevoflurane exposure can lead to social behavioural disorders by disrupting neuronal activity in the CA2. METHODS Neonatal mice were anaesthetised with sevoflurane 3 vol% for 2 h on postnatal day (PND) 6, 8, and 10. Bulk RNA sequencing of CA2 tissue was conducted on PND 12. Social cognitive function was assessed by behavioural experiments, and in vivo CA2 neuronal activity was recorded by multi-channel electrodes on PND 60-65. RESULTS Repeated postnatal exposure to sevoflurane impaired social novelty recognition in adulthood. It also caused a decrease in the synchronisation of neuronal spiking, gamma oscillation power, and spike phase-locking between GABAergic spiking and gamma oscillations in the CA2 during social interaction. After sevoflurane exposure, we observed a reduction in the density and dendritic complexity of CA2 GABAergic neurones, and decreased expression of transcription factors critical for GABAergic neuronal development after. CONCLUSIONS Repeated postnatal exposure to sevoflurane disturbed the development of CA2 GABAergic neurones through downregulation of essential transcription factors. This resulted in impaired electrophysiological function in adult GABAergic neurones, leading to social recognition deficits. These findings reveal a potential electrophysiological mechanism underlying the long-term social recognition deficits induced by sevoflurane and highlight the crucial role of CA2 GABAergic neurones in social interactions.
Collapse
Affiliation(s)
- Shuai Wang
- Department of Anaesthesiology, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Zijie Li
- School of Life Sciences, China Medical University, Shenyang, People's Republic of China
| | - Xin Liu
- Department of Breast Surgery, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, People's Republic of China
| | - Shiyue Fan
- Department of Anaesthesiology, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Xuejiao Wang
- School of Life Sciences, China Medical University, Shenyang, People's Republic of China
| | - Jianjun Chang
- School of Life Sciences, China Medical University, Shenyang, People's Republic of China
| | - Ling Qin
- School of Life Sciences, China Medical University, Shenyang, People's Republic of China.
| | - Ping Zhao
- Department of Anaesthesiology, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China.
| |
Collapse
|
4
|
Hou X, Zhang P, Mo L, Peng C, Zhang D. Sensitivity to vocal emotions emerges in newborns at 37 weeks gestational age. eLife 2024; 13:RP95393. [PMID: 39302291 DOI: 10.7554/elife.95393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024] Open
Abstract
Emotional responsiveness in neonates, particularly their ability to discern vocal emotions, plays an evolutionarily adaptive role in human communication and adaptive behaviors. The developmental trajectory of emotional sensitivity in neonates is crucial for understanding the foundations of early social-emotional functioning. However, the precise onset of this sensitivity and its relationship with gestational age (GA) remain subjects of investigation. In a study involving 120 healthy neonates categorized into six groups based on their GA (ranging from 35 and 40 weeks), we explored their emotional responses to vocal stimuli. These stimuli encompassed disyllables with happy and neutral prosodies, alongside acoustically matched nonvocal control sounds. The assessments occurred during natural sleep states using the odd-ball paradigm and event-related potentials. The results reveal a distinct developmental change at 37 weeks GA, marking the point at which neonates exhibit heightened perceptual acuity for emotional vocal expressions. This newfound ability is substantiated by the presence of the mismatch response, akin to an initial form of adult mismatch negativity, elicited in response to positive emotional vocal prosody. Notably, this perceptual shift's specificity becomes evident when no such discrimination is observed in acoustically matched control sounds. Neonates born before 37 weeks GA do not display this level of discrimination ability. This developmental change has important implications for our understanding of early social-emotional development, highlighting the role of gestational age in shaping early perceptual abilities. Moreover, while these findings introduce the potential for a valuable screening tool for conditions like autism, characterized by atypical social-emotional functions, it is important to note that the current data are not yet robust enough to fully support this application. This study makes a substantial contribution to the broader field of developmental neuroscience and holds promise for future research on early intervention in neurodevelopmental disorders.
Collapse
Affiliation(s)
- Xinlin Hou
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Peng Zhang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
- Department of Pediatrics, Miyun Country Maternal and Child Health Hospital, Beijing, China
| | - Licheng Mo
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, China
| | - Cheng Peng
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Dandan Zhang
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, China
- Shenzhen-Hong Kong Institute of Brain Science, Shenzhen, China
- China Center for Behavioral Economics and Finance, Southwestern University of Finance and Economics, Chengdu, China
- School of Psychology, Chengdu Medical College, Chengdu, China
| |
Collapse
|
5
|
Cory-Slechta DA, Marvin E, Welle K, Goeke C, Chalupa D, Oberdörster G, Sobolewski M. Male-biased vulnerability of mouse brain tryptophan/kynurenine and glutamate systems to adolescent exposures to concentrated ambient ultrafine particle air pollution. Neurotoxicology 2024; 104:20-35. [PMID: 39002649 PMCID: PMC11377152 DOI: 10.1016/j.neuro.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/27/2024] [Accepted: 07/06/2024] [Indexed: 07/15/2024]
Abstract
Air pollution (AP) exposures have been associated with numerous neurodevelopmental and psychiatric disorders, including autism spectrum disorder, attention deficit hyperactivity disorder and schizophrenia, all male-biased disorders with onsets from early life to late adolescence/early adulthood. While prior experimental studies have focused on effects of AP exposures during early brain development, brain development actually extends well into early adulthood. The current study in mice sought to extend the understanding of developmental brain vulnerability during adolescence, a later but significant period of brain development and maturation to the ultrafine particulate (UFPs) component of AP, considered its most reactive component. Additionally, it examined adolescent response to UFPs when preceded by earlier developmental exposures, to ascertain the trajectory of effects and potential enhancement or mitigation of adverse consequences. Outcomes focused on shared features associated with multiple neurodevelopmental disorders. For this purpose, C57Bl/6 J mice of both sexes were exposed to ambient concentrated UFPs or filtered air from PND (postnatal day) 4-7 and PND10-13, and again at PND39-42 and 45-49, resulting in 3 exposure postnatal/adolescent treatment groups per sex: Air/Air, Air/UFP, and UFP/UFP. Features common to neurodevelopmental disorders were examined at PND50. Mass exposure concentration from postnatal exposure averaged 44.34 μg/m3 and the adolescent exposure averaged 49.18 μg/m3. Male brain showed particular vulnerability to UFP exposures in adolescence, with alterations in frontal cortical and striatal glutamatergic and tryptophan/serotonergic neurotransmitters and concurrent reductions in levels of astrocytes in corpus callosum and in serum cytokine levels, with combined exposures resulting in significant reductions in corpus callosum myelination and serum corticosterone. Reductions in serum corticosterone in males correlated with reductions in neurotransmitter levels, and reductions in striatal glutamatergic function specifically correlated with reductions in corpus callosum astrocytes. UFP-induced changes in neurotransmitter levels in males were mitigated by prior postnatal exposure, suggesting potential adaptation, whereas reductions in corticosterone and in corpus callosum neuropathological effects were further strengthened by combined postnatal and adolescent exposures. UFP-induced changes in females occurred primarily in striatal dopamine systems and as reductions in serum cytokines only in response to combined postnatal and adolescent exposures. Findings in males underscore the importance of more integrated physiological assessments of mechanisms of neurotoxicity. Further, these findings provide biological plausibility for an accumulating epidemiologic literature linking air pollution to neurodevelopmental and psychiatric disorders. As such, they support a need for consideration of the regulation of the UFP component of air pollution.
Collapse
Affiliation(s)
- D A Cory-Slechta
- Department of Environmental Medicine, University of Rochester Medical School, Box EHSC, Rochester, NY 14642, United States.
| | - E Marvin
- Department of Environmental Medicine, University of Rochester Medical School, Box EHSC, Rochester, NY 14642, United States
| | - K Welle
- Mass Spectrometry Resource Laboratory, University of Rochester Medical School, Box EHSC, Rochester, NY 14642, United States
| | - C Goeke
- Department of Environmental Medicine, University of Rochester Medical School, Box EHSC, Rochester, NY 14642, United States
| | - D Chalupa
- Department of Environmental Medicine, University of Rochester Medical School, Box EHSC, Rochester, NY 14642, United States
| | - G Oberdörster
- Department of Environmental Medicine, University of Rochester Medical School, Box EHSC, Rochester, NY 14642, United States
| | - M Sobolewski
- Department of Environmental Medicine, University of Rochester Medical School, Box EHSC, Rochester, NY 14642, United States
| |
Collapse
|
6
|
Nyberg H, Bogen IL, Nygaard E, Andersen JM. Effects of prenatal exposure to methadone or buprenorphine and maternal separation on anxiety-like behavior in rats. Drug Alcohol Depend 2024; 262:111367. [PMID: 39003831 DOI: 10.1016/j.drugalcdep.2024.111367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/06/2024] [Accepted: 06/06/2024] [Indexed: 07/16/2024]
Abstract
BACKGROUND The use of medications for opioid use disorder such as methadone or buprenorphine is increasing among pregnant women. However, long-term effects of this treatment on the children's health are not well understood. A key challenge is distinguishing the effects of opioid exposure from other confounding factors associated with human opioid use, such as reduced maternal care. In this study, we therefore used a multi-risk factor design to examine anxiety-like behavior in rats prenatally exposed to methadone or buprenorphine, with or without maternal separation the first two weeks after birth. METHODS Female Sprague Dawley rats were exposed to methadone (10mg/kg/day), buprenorphine (1mg/kg/day) or sterile water throughout gestation. Half of the offspring in each litter experienced maternal separation for 3h per day from postnatal day 2 to 12. Male and female offspring (6-9 weeks) were tested in the open field, light-dark transition and elevated plus maze tests to assess anxiety-like behavior. RESULTS Offspring exposed to buprenorphine and not subjected to maternal separation displayed increased anxiety-like behavior in 3 out of 6 outcomes in the light-dark transition and elevated plus maze tests. Maternal separation did not exacerbate, but rather diminished this behavior. Males and females responded differently to methadone, with a trend towards reduced anxiety for males and increased anxiety for females. CONCLUSIONS Prenatal exposure to methadone or buprenorphine may increase the risk of developing anxiety-like behavior later in life, but the effect depends on specific subgroup characteristics. Further research is required to draw definitive conclusions.
Collapse
Affiliation(s)
- Henriette Nyberg
- Section of Forensic Research, Department of Forensic Sciences, Oslo University Hospital, P.O. Box 4950 Nydalen, Oslo 0424, Norway; Department of Pharmacy, Faculty of Mathematics and Natural Sciences, University of Oslo, P.O. Box 1068 Blindern, Oslo 0316, Norway.
| | - Inger Lise Bogen
- Section of Forensic Research, Department of Forensic Sciences, Oslo University Hospital, P.O. Box 4950 Nydalen, Oslo 0424, Norway; Department of Pharmacy, Faculty of Mathematics and Natural Sciences, University of Oslo, P.O. Box 1068 Blindern, Oslo 0316, Norway
| | - Egil Nygaard
- PROMENTA, Department of Psychology, Faculty of Social Sciences, University of Oslo, P.O. Box 1094 Blindern, Oslo 0317, Norway
| | - Jannike Mørch Andersen
- Section of Forensic Research, Department of Forensic Sciences, Oslo University Hospital, P.O. Box 4950 Nydalen, Oslo 0424, Norway; Department of Pharmacy, Faculty of Mathematics and Natural Sciences, University of Oslo, P.O. Box 1068 Blindern, Oslo 0316, Norway
| |
Collapse
|
7
|
Ferrario CR, Münzberg-Gruening H, Rinaman L, Betley JN, Borgland SL, Dus M, Fadool DA, Medler KF, Morton GJ, Sandoval DA, de La Serre CB, Stanley SA, Townsend KL, Watts AG, Maruvada P, Cummings D, Cooke BM. Obesity- and diet-induced plasticity in systems that control eating and energy balance. Obesity (Silver Spring) 2024; 32:1425-1440. [PMID: 39010249 PMCID: PMC11269035 DOI: 10.1002/oby.24060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 07/17/2024]
Abstract
In April 2023, the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), in partnership with the National Institute of Child Health and Human Development, the National Institute on Aging, and the Office of Behavioral and Social Sciences Research, hosted a 2-day online workshop to discuss neural plasticity in energy homeostasis and obesity. The goal was to provide a broad view of current knowledge while identifying research questions and challenges regarding neural systems that control food intake and energy balance. This review includes highlights from the meeting and is intended both to introduce unfamiliar audiences with concepts central to energy homeostasis, feeding, and obesity and to highlight up-and-coming research in these areas that may be of special interest to those with a background in these fields. The overarching theme of this review addresses plasticity within the central and peripheral nervous systems that regulates and influences eating, emphasizing distinctions between healthy and disease states. This is by no means a comprehensive review because this is a broad and rapidly developing area. However, we have pointed out relevant reviews and primary articles throughout, as well as gaps in current understanding and opportunities for developments in the field.
Collapse
Grants
- P30 DK048520 NIDDK NIH HHS
- NSF1949989 National Science Foundation
- T32 DC000044 NIDCD NIH HHS
- R01 DK133464 NIDDK NIH HHS
- R01 DK089056 NIDDK NIH HHS
- R01 DK130246 NIDDK NIH HHS
- R01 DK124801 NIDDK NIH HHS
- R01 DK100685 NIDDK NIH HHS
- R01 DK124238 NIDDK NIH HHS
- R01 DK130875 NIDDK NIH HHS
- R01 DK125890 NIDDK NIH HHS
- Z99 DK999999 Intramural NIH HHS
- R01 DK124461 NIDDK NIH HHS
- K26 DK138368 NIDDK NIH HHS
- R01 DK121995 NIDDK NIH HHS
- R01 DK121531 NIDDK NIH HHS
- P30 DK089503 NIDDK NIH HHS
- P01 DK119130 NIDDK NIH HHS
- R01 DK118910 NIDDK NIH HHS
- R01 AT011683 NCCIH NIH HHS
- Reported research was supported by DK130246, DK092587, AT011683, MH059911, DK100685, DK119130, DK124801, DK133399, AG079877, DK133464, T32DC000044, F31DC016817, NSF1949989, DK089056, DK124238, DK138368, DK121995, DK125890, DK118910, DK121531, DK124461, DK130875; Canada Research Chair: 950-232211, CIHRFDN148473, CIHRPJT185886; USDA Predoctoral Fellowship; Endowment from the Robinson Family and Tallahassee Memorial Hospital; Department of Defense W81XWH-20-1-0345 and HT9425-23-1-0244; American Diabetes Association #1-17-ACE-31; W.M. Keck Foundation Award; National Science Foundation CAREER 1941822
- R01 DK133399 NIDDK NIH HHS
- HT9425-23-1-0244 Department of Defense
- R01 DK092587 NIDDK NIH HHS
- W81XWH-20-1-0345 Department of Defense
- 1941822 National Science Foundation
- R01 MH059911 NIMH NIH HHS
- F31 DC016817 NIDCD NIH HHS
- R01 AG079877 NIA NIH HHS
- P30 DK017047 NIDDK NIH HHS
Collapse
Affiliation(s)
- Carrie R Ferrario
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan, USA
| | - Heike Münzberg-Gruening
- Laboratory of Central Leptin Signaling, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - Linda Rinaman
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, Florida, USA
| | - J Nicholas Betley
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Stephanie L Borgland
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| | - Monica Dus
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Debra A Fadool
- Department of Biological Science, Program in Neuroscience, Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida, USA
| | - Kathryn F Medler
- School of Animal Sciences, Virginia Tech, Blacksburg, Virginia, USA
| | - Gregory J Morton
- Department of Medicine, University of Washington Medicine Diabetes Institute at South Lake Union, Seattle, Washington, USA
| | - Darleen A Sandoval
- Department of Pediatrics, Section of Nutrition, University of Colorado-Anschutz Medical Campus, Aurora, Colorado, USA
| | - Claire B de La Serre
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Sarah A Stanley
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Kristy L Townsend
- Department of Neurological Surgery, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Alan G Watts
- Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California, USA
| | - Padma Maruvada
- National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland, USA
| | - Diana Cummings
- National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland, USA
| | - Bradley M Cooke
- National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland, USA
| |
Collapse
|
8
|
Cottam NC, Ofori K, Bryant M, Rogge JR, Hekmatyar K, Sun J, Charvet CJ. From circuits to lifespan: translating mouse and human timelines with neuroimaging based tractography. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.28.605528. [PMID: 39131378 PMCID: PMC11312435 DOI: 10.1101/2024.07.28.605528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Age is a major predictor of developmental processes and disease risk, but humans and model systems (e.g., mice) differ substantially in the pace of development and aging. The timeline of human developmental circuits is well known. It is unclear how such timelines compare to those in mice. We lack age alignments across the lifespan of mice and humans. Here, we build upon our Translating Time resource, which is a tool that equates corresponding ages during development. We collected 477 time points (n=1,132 observations) from age-related changes in body, bone, dental, and brain processes to equate corresponding ages across humans and mice. We acquired high-resolution diffusion MR scans of mouse brains (n=12) at sequential stages of postnatal development (postnatal day 3, 4, 12, 21, 60) to trace the timeline of brain circuit maturation (e.g., olfactory association pathway, corpus callosum). We found heterogeneity in white matter pathway growth. The corpus callosum largely ceases to grow days after birth while the olfactory association pathway grows through P60. We found that a P3 mouse equates to a human at roughly GW24, and a P60 mouse equates to a human in teenage years. Therefore, white matter pathway maturation is extended in mice as it is in humans, but there are species-specific adaptations. For example, olfactory-related wiring is protracted in mice, which is linked to their reliance on olfaction. Our findings underscore the importance of translational tools to map common and species-specific biological processes from model systems to humans.
Collapse
Affiliation(s)
- Nicholas C. Cottam
- Department of Biological Sciences, Delaware State University, Dover, DE, USA
| | - Kwadwo Ofori
- Department of Biological Sciences, Delaware State University, Dover, DE, USA
| | - Madison Bryant
- College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Jessica R. Rogge
- College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Khan Hekmatyar
- Center for Biomedical and Brain Imaging Center, University of Delaware, Wilmington, DE, USA
- Advanced Translational Imaging Facility, Georgia State University, Atlanta, GA
| | - Jianli Sun
- Department of Biological Sciences, Delaware State University, Dover, DE, USA
| | | |
Collapse
|
9
|
Ferrante JR, Blendy JA. Advances in animal models of prenatal opioid exposure. Trends Neurosci 2024; 47:367-382. [PMID: 38614891 PMCID: PMC11096018 DOI: 10.1016/j.tins.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/20/2024] [Accepted: 03/15/2024] [Indexed: 04/15/2024]
Abstract
Neonatal opioid withdrawal syndrome (NOWS) is a growing public health concern. The complexity of in utero opioid exposure in clinical studies makes it difficult to investigate underlying mechanisms that could ultimately inform early diagnosis and treatments. Clinical studies are unable to dissociate the influence of maternal polypharmacy or the environment from direct effects of in utero opioid exposure, highlighting the need for effective animal models. Early animal models of prenatal opioid exposure primarily used the prototypical opioid, morphine, and opioid exposure that was often limited to a narrow period during gestation. In recent years, the number of preclinical studies has grown rapidly. Newer models utilize both prescription and nonprescription opioids and vary the onset and duration of opioid exposure. In this review, we summarize novel prenatal opioid exposure models developed in recent years and attempt to reconcile results between studies while critically identifying gaps within the current literature.
Collapse
Affiliation(s)
- Julia R Ferrante
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Julie A Blendy
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
10
|
Wang L, Liu C, Wang X, Zhu S, Zhang L, Wang B, Yu Y. The impact of general anesthesia on the outcomes of preterm infants with gestational age less than 32 weeks delivered via cesarean section. Front Pharmacol 2024; 15:1360691. [PMID: 38572432 PMCID: PMC10987865 DOI: 10.3389/fphar.2024.1360691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 03/07/2024] [Indexed: 04/05/2024] Open
Abstract
Background Recent advancements in China's perinatal and neonatal intensive care have significantly reduced neonatal mortality, yet preterm births before 32 weeks remain the primary cause of neonatal fatalities and contribute to long-term disabilities. The prognosis of very preterm infants (VPIs) is significantly affected by factors including the intrauterine environment, delivery method and neonatal intensive care. Cesarean section which often used for preterm births has implications that are not fully understood, particularly concerning the type of anesthesia used. This study examines the impact of general anesthesia (GA) during cesarean delivery on VPI outcomes, aiming to identify strategies for mitigating GA-associated risks. Methods This cohort study analyzed 1,029 VPIs born via cesarean section under 32 weeks' gestation at our single-center from 1 January 2018, to 31 December 2022. Detailed medical records, encompassing perioperative information, maternal data and neonatal outcomes were meticulously examined. The primary aim of this investigation was to compare maternal characteristics and neonatal outcomes between VPIs delivered under GA and neuraxial anesthesia (NA). A significance level of p < 0.05 was established. Results Of the 1,029 VPIs analyzed, 87.95% (n = 905) were delivered via NA and 12.05% (n = 124) via GA. Mothers with hypertensive pregnancy diseases and emergency operations were more inclined to choose GA. VPIs delivered under GA showed a lower Apgar score at one and 5 minutes (p < 0.01), increased need for tracheal intubation resuscitation (32.2% vs. 12.2%, p < 0.01) and a greater incidence of severe neurological injury (SNI) (14.5% vs. 5%, p < 0.01). Multivariable analysis revealed GA was significantly associated with lower Apgar scores at one (OR 6.321, 95% CI 3.729-10.714; p < 0.01) and 5 minutes (OR 4.535, 95% CI 2.975-6.913; p < 0.01), higher risk of tracheal intubation resuscitation (OR = 3.133, 95% CI = 1.939-5.061; p < 0.01) and SNI (OR = 3.019, 95% CI = 1.615-5.643; p < 0.01). Furthermore, for VPIs delivered under GA, a prolonged interval from skin incision to fetus delivery was associated with a lower 5-min Apgar score (p < 0.01). Conclusion This study revealed the significant impact of GA on adverse outcomes among VPIs. In cases when GA is required, proactive measures should be instituted for the care of VPIs such as expediting the interval from skin incision to fetal delivery.
Collapse
Affiliation(s)
- Lijun Wang
- Department of Neonatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Chengxiao Liu
- Department of Anesthesiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xiaokang Wang
- Department of Neonatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Sha Zhu
- Department of Neonatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Ligong Zhang
- Department of Anesthesiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Bo Wang
- Department of Anesthesiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yonghui Yu
- Department of Neonatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
11
|
Saeedi Borujeni MJ, Codoner Franch P, Alonso Iglesias E, Gombert M. Gestational Diabetes Mellitus and its Effects on the Developing Cerebellum: A Narrative Review on Experimental Studies. IRANIAN JOURNAL OF CHILD NEUROLOGY 2024; 18:9-22. [PMID: 38617398 PMCID: PMC11015721 DOI: 10.22037/ijcn.v18i2.36632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 09/25/2023] [Indexed: 04/16/2024]
Abstract
Diabetes mellitus during pregnancy is a common complication of gestation, but its effects on the offspring's development are poorly understood. Recently, some studies reported that gestational diabetes mellitus (GDM) impairs cerebellar development, and some genetic alterations have been described as consequences. Cerebellum, one of the hindbrain derived structures in the posterior cranial fossa, plays a crucial role in cognition and behavioral functions. In recent years, some surveys stated that gestational diabetes has adverse effects on the fetus's cerebellum. Disruption of cerebellar cortex morphogenesis, reduce the volume of the cerebellum, reduce the thickness of cerebellar cortex layers, and its neuronal cells and effects on the expression of synaptophysin, insulin, and insulin-like growth factor -1 receptors are some of the maternal diabetes effects on developing cerebellum. On other hand, GDM, as a neurotoxic agent, impaired cerebellar development and could be a cause for the behavioral, functional, and structural anomalies observed in pups of diabetic mothers. Based on the literature review, most studies have pointed out that administering insulin in patients with GDM decreased the cellular and molecular alterations that induced by GDM in the developing cerebellum. Undoubtedly, screening strategies for all pregnant women are necessary.
Collapse
Affiliation(s)
| | - Pilar Codoner Franch
- Department of Pediatrics, Obstetrics and Gynecology, University of Valencia, Valencia, Spain
| | | | - Marie Gombert
- Department of Pediatrics, Obstetrics and Gynecology, University of Valencia, Valencia, Spain
| |
Collapse
|
12
|
McCarthy DM, Spencer TJ, Bhide PG. Preclinical Models of Attention Deficit Hyperactivity Disorder: Neurobiology, Drug Discovery, and Beyond. J Atten Disord 2024; 28:880-894. [PMID: 38084074 DOI: 10.1177/10870547231215286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
OBJECTIVE We offer an overview of ADHD research using mouse models of nicotine exposure. METHOD Nicotine exposure of C57BL/6 or Swiss Webster mice occurred during prenatal period only or during the prenatal and the pre-weaning periods. Behavioral, neuroanatomical and neurotransmitter assays were used to investigate neurobiological mechanisms of ADHD and discover candidate ADHD medications. RESULTS Our studies show that norbinaltorphimine, a selective kappa opioid receptor antagonist is a candidate novel non-stimulant ADHD treatment and that a combination of methylphenidate and naltrexone has abuse deterrent potential with therapeutic benefits for ADHD. Other studies showed transgenerational transmission of ADHD-associated behavioral traits and demonstrated that interactions between untreated ADHD and repeated mild traumatic brain injury produced behavioral traits not associated with either condition alone. CONCLUSION Preclinical models contribute to novel insights into ADHD neurobiology and are valuable tools for drug discovery and translation to benefit humans with ADHD.
Collapse
Affiliation(s)
| | - Thomas J Spencer
- Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Pradeep G Bhide
- Florida State University College of Medicine, Tallahassee, FL, USA
| |
Collapse
|
13
|
Gemperli K, Folorunso F, Norin B, Joshua R, Hill C, Rykowski R, Galindo R, Aravamuthan BR. Mice born preterm develop gait dystonia and reduced cortical parvalbumin immunoreactivity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.01.578353. [PMID: 38352408 PMCID: PMC10862908 DOI: 10.1101/2024.02.01.578353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
Preterm birth leading to cerebral palsy (CP) is the most common cause of childhood dystonia, a movement disorder that is debilitating and often treatment refractory. Dystonia has been typically associated with dysfunction of striatal cholinergic interneurons, but clinical imaging data suggests that cortical injury may best predict dystonia following preterm birth. Furthermore, abnormal sensorimotor cortex inhibition has been found in many studies of non-CP dystonias. To assess the potential for a cortical etiology of dystonia following preterm birth, we developed a new model of preterm birth in mice. Noting that term delivery in mice on a C57BL/6J background is embryonic day 19.1 (E19.1), we induced preterm birth at the limits of pup viability at embryonic day (E) 18.3, equivalent to human 22 weeks gestation. Mice born preterm demonstrate display clinically validated metrics of dystonia during gait (leg adduction amplitude and variability) and also demonstrate reduced parvalbumin immunoreactivity in the sensorimotor cortex, suggesting dysfunction of cortical parvalbumin-positive inhibitory interneurons. Notably, reduced parvalbumin immunoreactivity or changes in parvalbumin-positive neuronal number were not observed in the striatum. These data support the association between cortical dysfunction and dystonia following preterm birth. We propose that our mouse model of preterm birth can be used to study this association and potentially also study other sequelae of extreme prematurity.
Collapse
Affiliation(s)
- Kat Gemperli
- Department of Neurology, Washington University School of Medicine, St. Louis, MO
| | - Femi Folorunso
- Department of Neurology, Washington University School of Medicine, St. Louis, MO
| | - Benjamin Norin
- Department of Neurology, Washington University School of Medicine, St. Louis, MO
| | - Rebecca Joshua
- Department of Neurology, Washington University School of Medicine, St. Louis, MO
| | - Clayton Hill
- Department of Neurology, Washington University School of Medicine, St. Louis, MO
| | - Rachel Rykowski
- Department of Neurology, Washington University School of Medicine, St. Louis, MO
| | | | | |
Collapse
|
14
|
Vyas P, Chaturvedi I, Hwang Y, Scafidi J, Kadam SD, Stafstrom CE. High Doses of ANA12 Improve Phenobarbital Efficacy in a Model of Neonatal Post-Ischemic Seizures. Int J Mol Sci 2024; 25:1447. [PMID: 38338726 PMCID: PMC10855037 DOI: 10.3390/ijms25031447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 02/12/2024] Open
Abstract
Phenobarbital (PB) remains the first-line medication for neonatal seizures. Yet, seizures in many newborns, particularly those associated with perinatal ischemia, are resistant to PB. Previous animal studies have shown that in postnatal day P7 mice pups with ischemic stroke induced by unilateral carotid ligation, the tyrosine receptor kinase B (TrkB) antagonist ANA12 (N-[2-[[(hexahydro-2-oxo-1H-azepin-3-yl)amino]carbonyl]phenyl]-benzo[b]thiophene-2-carboxamide, 5 mg/kg) improved the efficacy of PB in reducing seizure occurrence. To meet optimal standards of effectiveness, a wider range of ANA12 doses must be tested. Here, using the unilateral carotid ligation model, we tested the effectiveness of higher doses of ANA12 (10 and 20 mg/kg) on the ability of PB to reduce seizure burden, ameliorate cell death (assessed by Fluoro-Jade staining), and affect neurodevelopment (righting reflex, negative geotaxis test, open field test). We found that a single dose of ANA12 (10 or 20 mg/kg) given 1 h after unilateral carotid ligation in P7 pups reduced seizure burden and neocortical and striatal neuron death without impairing developmental reflexes. In conclusion, ANA12 at a range of doses (10-20 mg/kg) enhanced PB effectiveness for the treatment of perinatal ischemia-related seizures, suggesting that this agent might be a clinically safe and effective adjunctive agent for the treatment of pharmacoresistant neonatal seizures.
Collapse
Affiliation(s)
- Preeti Vyas
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (P.V.); (I.C.); (Y.H.); (J.S.)
| | - Ira Chaturvedi
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (P.V.); (I.C.); (Y.H.); (J.S.)
| | - Yun Hwang
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (P.V.); (I.C.); (Y.H.); (J.S.)
| | - Joseph Scafidi
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (P.V.); (I.C.); (Y.H.); (J.S.)
- Department of Neurology and Developmental Medicine, Kennedy Krieger Institute, Baltimore, MD 21205, USA
| | - Shilpa D. Kadam
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (P.V.); (I.C.); (Y.H.); (J.S.)
- Department of Neurology and Developmental Medicine, Kennedy Krieger Institute, Baltimore, MD 21205, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Carl E. Stafstrom
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (P.V.); (I.C.); (Y.H.); (J.S.)
| |
Collapse
|
15
|
Moloney RA, Pavy CL, Kahl RGS, Palliser HK, Hirst JJ, Shaw JC. Dual isolation of primary neurons and oligodendrocytes from guinea pig frontal cortex. Front Cell Neurosci 2024; 17:1298685. [PMID: 38269115 PMCID: PMC10806141 DOI: 10.3389/fncel.2023.1298685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/18/2023] [Indexed: 01/26/2024] Open
Abstract
Primary cell culture is a technique that is widely used in neuroscience research to investigate mechanisms that underlie pathologies at a cellular level. Typically, mouse or rat tissue is used for this process; however, altricial rodent species have markedly different neurodevelopmental trajectories comparatively to humans. The use of guinea pig brain tissue presents a novel aspect to this routinely used cell culture method whilst also allowing for dual isolation of two major cell types from a physiologically relevant animal model for studying perinatal neurodevelopment. Primary neuronal and oligodendrocyte cell cultures were derived from fetal guinea pig's frontal cortex brain tissue collected at a gestational age of 62 days (GA62), which is a key time in the neuronal and oligodendrocyte development. The major advantage of this protocol is the ability to acquire both neuronal and oligodendrocyte cellular cultures from the frontal cortex of one fetal brain. Briefly, neuronal cells were grown in 12-well plates initially in a 24-h serum-rich medium to enhance neuronal survival before switching to a serum-free media formulation. Oligodendrocytes were first grown in cell culture flasks using a serum-rich medium that enabled the growth of oligodendrocyte progenitor cells (OPCs) on an astrocyte bed. Following confluency, the shake method of differential adhesion and separation was utilized via horizontally shaking the OPCs off the astrocyte bed overnight. Therefore, OPCs were plated in 12-well plates and were initially expanded in media supplemented with growth hormones, before switching to maturation media to progress the lineage to a mature phenotype. Reverse transcription-polymerase chain reaction (RT-PCR) was performed on both cell culture types to analyze key population markers, and the results were further validated using immunocytochemistry. Primary neurons displayed the mRNA expression of multiple neuronal markers, including those specific to GABAergic populations. These cells also positively stained for microtubule-associated protein 2 (MAP2; a dendritic marker specific to neurons) and NeuN (a marker of neuronal cell bodies). Primary oligodendrocytes expressed all investigated markers of the oligodendrocyte lineage, with a majority of the cells displaying an immature oligodendrocyte phenotype. This finding was further confirmed with positive oligodendrocyte transcription factor (OLIG2) staining, which serves as a marker for the overall oligodendrocyte population. This study demonstrates a novel method for isolating both neurons and oligodendrocytes from the guinea pig brain tissue. These isolated cells display key markers and gene expression that will allow for functional experiments to occur and may be particularly useful in studying neurodevelopmental conditions with perinatal origins.
Collapse
Affiliation(s)
- Roisin A. Moloney
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, NSW, Australia
- Hunter Medical Research Institute, Mothers and Babies Research Centre, Newcastle, NSW, Australia
| | - Carlton L. Pavy
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, NSW, Australia
- Hunter Medical Research Institute, Mothers and Babies Research Centre, Newcastle, NSW, Australia
| | - Richard G. S. Kahl
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, NSW, Australia
- Hunter Medical Research Institute, Mothers and Babies Research Centre, Newcastle, NSW, Australia
| | - Hannah K. Palliser
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, NSW, Australia
- Hunter Medical Research Institute, Mothers and Babies Research Centre, Newcastle, NSW, Australia
| | - Jon J. Hirst
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, NSW, Australia
- Hunter Medical Research Institute, Mothers and Babies Research Centre, Newcastle, NSW, Australia
| | - Julia C. Shaw
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, NSW, Australia
- Hunter Medical Research Institute, Mothers and Babies Research Centre, Newcastle, NSW, Australia
| |
Collapse
|
16
|
Cubello J, Marvin E, Conrad K, Merrill AK, George JV, Welle K, Jackson BP, Chalupa D, Oberdörster G, Sobolewski M, Cory-Slechta DA. The contributions of neonatal inhalation of copper to air pollution-induced neurodevelopmental outcomes in mice. Neurotoxicology 2024; 100:55-71. [PMID: 38081392 PMCID: PMC10842733 DOI: 10.1016/j.neuro.2023.12.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 12/17/2023]
Abstract
Exposures to ambient ultrafine particle (UFP) air pollution (AP) during the early postnatal period in mice (equivalent to human third trimester brain development) produce male-biased changes in brain structure, including ventriculomegaly, reduced brain myelination, alterations in neurotransmitters and glial activation, as well as impulsive-like behavioral characteristics, all of which are also features characteristic of male-biased neurodevelopmental disorders (NDDs). The purpose of this study was to ascertain the extent to which inhaled Cu, a common contaminant of AP that is also dysregulated across multiple NDDs, might contribute to these phenotypes. For this purpose, C57BL/6J mice were exposed from postnatal days 4-7 and 10-13 for 4 hr/day to inhaled copper oxide (CuxOy) nanoparticles at an environmentally relevant concentration averaging 171.9 ng/m3. Changes in brain metal homeostasis and neurotransmitter levels were determined following termination of exposure (postnatal day 14), while behavioral changes were assessed in adulthood. CuxOy inhalation modified cortical metal homeostasis and produced male-biased disruption of striatal neurotransmitters, with marked increases in dopaminergic function, as well as excitatory/inhibitory imbalance and reductions in serotonergic function. Impulsive-like behaviors in a fixed ratio (FR) waiting-for-reward schedule and a fixed interval (FI) schedule of food reward occurred in both sexes, but more prominently in males, effects which could not be attributed to altered locomotor activity or short-term memory. Inhaled Cu as from AP exposures, at environmentally relevant levels experienced during development, may contribute to impaired brain function, as shown by its ability to disrupt brain metal homeostasis and striatal neurotransmission. In addition, its ability to evoke impulsive-like behavior, particularly in male offspring, may be related to striatal dopaminergic dysfunction that is known to mediate such behaviors. As such, regulation of air Cu levels may be protective of public health.
Collapse
Affiliation(s)
- Janine Cubello
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA.
| | - Elena Marvin
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Katherine Conrad
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Alyssa K Merrill
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Jithin V George
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Kevin Welle
- Proteomics Core, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Brian P Jackson
- Department of Earth Sciences, Dartmouth College, Hanover, NH 03755, USA
| | - David Chalupa
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Günter Oberdörster
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Marissa Sobolewski
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Deborah A Cory-Slechta
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA.
| |
Collapse
|
17
|
Campos Eusebi W, Iorii T, Presti A, Grimson R, Vázquez-Borsetti P. Divergent Pattern of Development in Rats and Humans. Neurotox Res 2023; 42:7. [PMID: 38147261 DOI: 10.1007/s12640-023-00683-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/27/2023] [Accepted: 12/10/2023] [Indexed: 12/27/2023]
Abstract
Rattus norvegicus is the second most used laboratory species and the most widely used model in neuroscience. Nonetheless, there is still no agreement regarding the temporal relationship of development between humans and rats. We addressed this question by examining the time required to reach a set of homologous developmental milestones in both species. With this purpose, a database was generated with data collected through a bibliographic survey. This database was in turn compared with other databases about the same topic present in the literature. Finally, the databases were combined, covering for the first time the entire development of the rat including the prenatal, perinatal, and postnatal periods. This combined database includes 362 dates of 181 developmental events for each species. The developmental relationship between humans and rats was better fit by a logarithmic function than by a linear function. As development progresses, an increase in the dispersion of the data is observed. Developmental relationships should not be interpreted as a univocal equivalence. In this work is proposed an alternative interpretation where the age of one species is translated into a range of ages in the other.
Collapse
Affiliation(s)
- Wanda Campos Eusebi
- Facultad de Medicina-UBA, Instituto de Biología Celular y Neurociencias "Profesor Eduardo De Robertis" (IBCN), UBA/CONICET, Paraguay 2155 piso 3, 1121 Buenos Aires, Argentina
| | - Tomas Iorii
- Facultad de Medicina-UBA, Instituto de Biología Celular y Neurociencias "Profesor Eduardo De Robertis" (IBCN), UBA/CONICET, Paraguay 2155 piso 3, 1121 Buenos Aires, Argentina
| | - Antonella Presti
- Facultad de Medicina-UBA, Instituto de Biología Celular y Neurociencias "Profesor Eduardo De Robertis" (IBCN), UBA/CONICET, Paraguay 2155 piso 3, 1121 Buenos Aires, Argentina
| | - Rafael Grimson
- 3iA (Instituto de Investigación e Ingeniería Ambiental), UNSAM/CONICET, Buenos Aires, Argentina
| | - Pablo Vázquez-Borsetti
- Facultad de Medicina-UBA, Instituto de Biología Celular y Neurociencias "Profesor Eduardo De Robertis" (IBCN), UBA/CONICET, Paraguay 2155 piso 3, 1121 Buenos Aires, Argentina.
| |
Collapse
|
18
|
Liang X, Jiang M, Xu H, Tang T, Shi X, Dong Y, Xiao L, Xie Y, Fang F, Cang J. Maternal sevoflurane exposure increases the epilepsy susceptibility of adolescent offspring by interrupting interneuron development. BMC Med 2023; 21:510. [PMID: 38129829 PMCID: PMC10740307 DOI: 10.1186/s12916-023-03210-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND Exposure to general anesthesia influences neuronal functions during brain development. Recently, interneurons were found to be involved in developmental neurotoxicity by anesthetic exposure. But the underlying mechanism and long-term consequences remain elusive. METHODS Pregnant mice received 2.5% sevoflurane for 6-h on gestational day 14.5. Pentylenetetrazole (PTZ)-induced seizure, anxiety- and depression-like behavior tests were performed in 30- and 60-day-old male offspring. Cortical interneurons were labeled using Rosa26-EYFP/-; Nkx2.1-Cre mice. Immunofluorescence and electrophysiology were performed to determine the cortical interneuron properties. Q-PCR and in situ hybridization (ISH) were performed for the potential mechanism, and the finding was further validated by in utero electroporation (IUE). RESULTS In this study, we found that maternal sevoflurane exposure increased epilepsy susceptibility by using pentylenetetrazole (PTZ) induced-kindling models and enhanced anxiety- and depression-like behaviors in adolescent offspring. After sevoflurane exposure, the highly ordered cortical interneuron migration was disrupted in the fetal cortex. In addition, the resting membrane potentials of fast-spiking interneurons in the sevoflurane-treated group were more hyperpolarized in adolescence accompanied by an increase in inhibitory synapses. Both q-PCR and ISH indicated that CXCL12/CXCR4 signaling pathway downregulation might be a potential mechanism under sevoflurane developmental neurotoxicity which was further confirmed by IUE and behavioral tests. Although the above effects were obvious in adolescence, they did not persist into adulthood. CONCLUSIONS Our findings demonstrate that maternal anesthesia impairs interneuron migration through the CXCL12/CXCR4 signaling pathway, and influences the interneuron properties, leading to the increased epilepsy susceptibility in adolescent offspring. Our study provides a novel perspective on the developmental neurotoxicity of the mechanistic link between maternal use of general anesthesia and increased susceptibility to epilepsy.
Collapse
Affiliation(s)
- Xinyue Liang
- Department of Anesthesia, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ming Jiang
- Department of Anesthesia, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hao Xu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Tianxiang Tang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Xiangpeng Shi
- Department of Anesthesia, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yi Dong
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China
| | - Lei Xiao
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Yunli Xie
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Fang Fang
- Department of Anesthesia, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Jing Cang
- Department of Anesthesia, Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
19
|
Millevert C, Vidas-Guscic N, Vanherp L, Jonckers E, Verhoye M, Staelens S, Bertoglio D, Weckhuysen S. Resting-State Functional MRI and PET Imaging as Noninvasive Tools to Study (Ab)Normal Neurodevelopment in Humans and Rodents. J Neurosci 2023; 43:8275-8293. [PMID: 38073598 PMCID: PMC10711730 DOI: 10.1523/jneurosci.1043-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 06/09/2023] [Accepted: 09/13/2023] [Indexed: 12/18/2023] Open
Abstract
Neurodevelopmental disorders (NDDs) are a group of complex neurologic and psychiatric disorders. Functional and molecular imaging techniques, such as resting-state functional magnetic resonance imaging (rs-fMRI) and positron emission tomography (PET), can be used to measure network activity noninvasively and longitudinally during maturation in both humans and rodent models. Here, we review the current knowledge on rs-fMRI and PET biomarkers in the study of normal and abnormal neurodevelopment, including intellectual disability (ID; with/without epilepsy), autism spectrum disorder (ASD), and attention deficit hyperactivity disorder (ADHD), in humans and rodent models from birth until adulthood, and evaluate the cross-species translational value of the imaging biomarkers. To date, only a few isolated studies have used rs-fMRI or PET to study (abnormal) neurodevelopment in rodents during infancy, the critical period of neurodevelopment. Further work to explore the feasibility of performing functional imaging studies in infant rodent models is essential, as rs-fMRI and PET imaging in transgenic rodent models of NDDs are powerful techniques for studying disease pathogenesis, developing noninvasive preclinical imaging biomarkers of neurodevelopmental dysfunction, and evaluating treatment-response in disease-specific models.
Collapse
Affiliation(s)
- Charissa Millevert
- Applied & Translational Neurogenomics Group, Vlaams Instituut voor Biotechnology (VIB) Center for Molecular Neurology, VIB, Antwerp 2610, Belgium
- Department of Neurology, University Hospital of Antwerp, Antwerp 2610, Belgium
- µNEURO Research Centre of Excellence, University of Antwerp, Antwerp 2610, Belgium
| | - Nicholas Vidas-Guscic
- Bio-Imaging Lab, University of Antwerp, Antwerp 2610, Belgium
- µNEURO Research Centre of Excellence, University of Antwerp, Antwerp 2610, Belgium
| | - Liesbeth Vanherp
- µNEURO Research Centre of Excellence, University of Antwerp, Antwerp 2610, Belgium
| | - Elisabeth Jonckers
- Bio-Imaging Lab, University of Antwerp, Antwerp 2610, Belgium
- µNEURO Research Centre of Excellence, University of Antwerp, Antwerp 2610, Belgium
| | - Marleen Verhoye
- Bio-Imaging Lab, University of Antwerp, Antwerp 2610, Belgium
- µNEURO Research Centre of Excellence, University of Antwerp, Antwerp 2610, Belgium
| | - Steven Staelens
- Molecular Imaging Center Antwerp (MICA), University of Antwerp, Antwerp 2610, Belgium
- µNEURO Research Centre of Excellence, University of Antwerp, Antwerp 2610, Belgium
| | - Daniele Bertoglio
- Bio-Imaging Lab, University of Antwerp, Antwerp 2610, Belgium
- Molecular Imaging Center Antwerp (MICA), University of Antwerp, Antwerp 2610, Belgium
- µNEURO Research Centre of Excellence, University of Antwerp, Antwerp 2610, Belgium
| | - Sarah Weckhuysen
- Applied & Translational Neurogenomics Group, Vlaams Instituut voor Biotechnology (VIB) Center for Molecular Neurology, VIB, Antwerp 2610, Belgium
- Department of Neurology, University Hospital of Antwerp, Antwerp 2610, Belgium
- µNEURO Research Centre of Excellence, University of Antwerp, Antwerp 2610, Belgium
- Translational Neurosciences, Faculty of Medicine and Health Science, University of Antwerp, Antwerp 2610, Belgium
| |
Collapse
|
20
|
Valenzuela I, Regin Y, Gie A, Basurto D, Emam D, Scuglia M, Zapletalova K, Greyling M, Deprest J, van der Merwe J. Long-term pulmonary and neurodevelopmental impairment in a fetal growth restriction rabbit model. Sci Rep 2023; 13:20966. [PMID: 38017239 PMCID: PMC10684490 DOI: 10.1038/s41598-023-48174-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 11/23/2023] [Indexed: 11/30/2023] Open
Abstract
Fetal growth restriction (FGR) remains one of the main obstetrical problems worldwide, with consequences beyond perinatal life. Animal models with developmental and structural similarities to the human are essential to understand FGR long-term consequences and design novel therapeutic strategies aimed at preventing or ameliorating them. Herein, we described the long-term consequences of FGR in pulmonary function, structure, and gene expression, and characterized neurodevelopmental sequelae up to preadolescence in a rabbit model. FGR was induced at gestational day 25 by surgically reducing placental blood supply in one uterine horn, leaving the contralateral horn as internal control. Neonatal rabbits born near term were assigned to foster care in mixed groups until postnatal day (PND) 21. At that time, one group underwent pulmonary biomechanical testing followed by lung morphometry and gene expression analysis. A second group underwent longitudinal neurobehavioral assessment until PND 60 followed by brain harvesting for multiregional oligodendrocyte and microglia quantification. FGR was associated with impaired pulmonary function and lung development at PND 21. FGR rabbits had higher respiratory resistance and altered parenchymal biomechanical properties in the lungs. FGR lungs presented thicker alveolar septal walls and reduced alveolar space. Furthermore, the airway smooth muscle content was increased, and the tunica media of the intra-acinar pulmonary arteries was thicker. In addition, FGR was associated with anxiety-like behavior, impaired memory and attention, and lower oligodendrocyte proportion in the frontal cortex and white matter. In conclusion, we documented and characterized the detrimental pulmonary function and structural changes after FGR, independent of prematurity, and beyond the neonatal period for the first time in the rabbit model, and describe the oligodendrocyte alteration in pre-adolescent rabbit brains. This characterization will allow researchers to develop and test therapies to treat FGR and prevent its sequelae.
Collapse
Affiliation(s)
- Ignacio Valenzuela
- Department of Development and Regeneration, Cluster Woman and Child, Group Biomedical Sciences, KU Leuven, Herestraat 49, Box 805, B-3000, Leuven, Belgium.
| | - Yannick Regin
- Department of Development and Regeneration, Cluster Woman and Child, Group Biomedical Sciences, KU Leuven, Herestraat 49, Box 805, B-3000, Leuven, Belgium
| | - Andre Gie
- Department of Development and Regeneration, Cluster Woman and Child, Group Biomedical Sciences, KU Leuven, Herestraat 49, Box 805, B-3000, Leuven, Belgium
- Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University and Tygerberg Hospital, Cape Town, South Africa
| | - David Basurto
- Department of Development and Regeneration, Cluster Woman and Child, Group Biomedical Sciences, KU Leuven, Herestraat 49, Box 805, B-3000, Leuven, Belgium
| | - Doaa Emam
- Department of Development and Regeneration, Cluster Woman and Child, Group Biomedical Sciences, KU Leuven, Herestraat 49, Box 805, B-3000, Leuven, Belgium
- Department of Obstetrics and Gynaecology, University Hospitals Tanta, Tanta, Egypt
| | - Marianna Scuglia
- Department of Development and Regeneration, Cluster Woman and Child, Group Biomedical Sciences, KU Leuven, Herestraat 49, Box 805, B-3000, Leuven, Belgium
- Developmental Biology and Cancer Research and Teaching Department, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Katerina Zapletalova
- Department of Development and Regeneration, Cluster Woman and Child, Group Biomedical Sciences, KU Leuven, Herestraat 49, Box 805, B-3000, Leuven, Belgium
- Third Faculty of Medicine, Institute for the Care of Mother and Child, Charles University, Prague, Czech Republic
| | - Marnel Greyling
- Department of Development and Regeneration, Cluster Woman and Child, Group Biomedical Sciences, KU Leuven, Herestraat 49, Box 805, B-3000, Leuven, Belgium
| | - Jan Deprest
- Department of Development and Regeneration, Cluster Woman and Child, Group Biomedical Sciences, KU Leuven, Herestraat 49, Box 805, B-3000, Leuven, Belgium
- Department of Obstetrics and Gynecology, Division Woman and Child, University Hospitals Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Johannes van der Merwe
- Department of Development and Regeneration, Cluster Woman and Child, Group Biomedical Sciences, KU Leuven, Herestraat 49, Box 805, B-3000, Leuven, Belgium
- Department of Obstetrics and Gynecology, Division Woman and Child, University Hospitals Leuven, Herestraat 49, 3000, Leuven, Belgium
| |
Collapse
|
21
|
Liu LB, Yang W, Chang JT, Fan DY, Wu YH, Wang PG, An J. Zika virus infection leads to hormone deficiencies of the hypothalamic-pituitary-gonadal axis and diminished fertility in mice. J Virol 2023; 97:e0100623. [PMID: 37732785 PMCID: PMC10617514 DOI: 10.1128/jvi.01006-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 08/03/2023] [Indexed: 09/22/2023] Open
Abstract
IMPORTANCE Zika virus (ZIKV) infection in pregnant women during the third trimester can cause neurodevelopmental delays and cryptorchidism in children without microcephaly. However, the consequences of congenital ZIKV infection on fertility in these children remain unclear. Here, using an immunocompetent mouse model, we reveal that congenital ZIKV infection can cause hormonal disorders of the hypothalamic-pituitary-gonadal axis, leading to reduced fertility and decreased sexual preference. Our study has for the first time linked the hypothalamus to the reproductive system and social behaviors after ZIKV infection. Although the extent to which these observations in mice translate to humans remains unclear, these findings did suggest that the reproductive health and hormone levels of ZIKV-exposed children should receive more attention to improve their living quality.
Collapse
Affiliation(s)
- Li-Bo Liu
- Department of Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Wei Yang
- Department of Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
- Department of Neurosurgery, Capital Medical University Sanbo Brain Hospital, Beijing, China
| | - Jia-Tong Chang
- Department of Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Dong-Ying Fan
- Department of Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yan-Hua Wu
- Department of Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Pei-Gang Wang
- Department of Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Jing An
- Department of Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
- Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing, China
| |
Collapse
|
22
|
Suleri A, Cecil C, Rommel AS, Hillegers M, White T, de Witte LD, Muetzel RL, Bergink V. Long-term effects of prenatal infection on the human brain: a prospective multimodal neuroimaging study. Transl Psychiatry 2023; 13:306. [PMID: 37789021 PMCID: PMC10547711 DOI: 10.1038/s41398-023-02597-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 09/15/2023] [Accepted: 09/15/2023] [Indexed: 10/05/2023] Open
Abstract
There is convincing evidence from rodent studies suggesting that prenatal infections affect the offspring's brain, but evidence in humans is limited. Here, we assessed the occurrence of common infections during each trimester of pregnancy and examined associations with brain outcomes in adolescent offspring. Our study was embedded in the Generation R Study, a large-scale sociodemographically diverse prospective birth cohort. We included 1094 mother-child dyads and investigated brain morphology (structural MRI), white matter microstructure (DTI), and functional connectivity (functional MRI), as outcomes at the age of 14. We focused on both global and focal regions. To define prenatal infections, we composed a score based on the number and type of infections during each trimester of pregnancy. Models were adjusted for several confounders. We found that prenatal infection was negatively associated with cerebral white matter volume (B = -0.069, 95% CI -0.123 to -0.015, p = 0.011), and we found an association between higher prenatal infection scores and smaller volumes of several frontotemporal regions of the brain. After multiple testing correction, we only observed an association between prenatal infections and the caudal anterior cingulate volume (B = -0.104, 95% CI -0.164 to -0.045, p < 0.001). We did not observe effects of prenatal infection on other measures of adolescent brain morphology, white matter microstructure, or functional connectivity, which is reassuring. Our results show potential regions of interest in the brain for future studies; data on the effect of severe prenatal infections on the offspring's brain in humans are needed.
Collapse
Affiliation(s)
- Anna Suleri
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- The Generation R Study Group, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Charlotte Cecil
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Anna-Sophie Rommel
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Manon Hillegers
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Tonya White
- Section on Social and Cognitive Developmental Neuroscience, National Institute of Mental Health, Bethesda, MD, USA
| | - Lot D de Witte
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Ryan L Muetzel
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Veerle Bergink
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, USA.
- Department of Psychiatry, Erasmus MC University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
23
|
Hossain SR, Karem H, Jafari Z, Kolb BE, Mohajerani MH. Early tactile stimulation influences the development of Alzheimer's disease in gestationally stressed APP NL-G-F adult offspring NL-G-F/NL-G-F mice. Exp Neurol 2023; 368:114498. [PMID: 37536439 DOI: 10.1016/j.expneurol.2023.114498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/20/2023] [Accepted: 07/25/2023] [Indexed: 08/05/2023]
Abstract
Alzheimer's disease (AD) is associated with cerebral plaques and tangles, reduced synapse number, and shrinkage in several brain areas and these morphological effects are associated with the onset of compromised cognitive, motor, and anxiety-like behaviours. The appearance of both anatomical and behavioural symptoms is worsened by stress. The focus of this study was to examine the effect of neonatal tactile stimulation on AD-like behavioural and neurological symptoms on APP NL-G-F/NL-G-F mice, a mouse model of AD, who have been gestationally stressed. Our findings indicate that neonatal tactile stimulation improves cognition, motor skills, and anxiety-like symptoms in both gestationally stressed and non-stressed adult APP mice and that these alterations are associated with reduced Aβ plaque formation. Thus, tactile stimulation appears to be a promising non-invasive preventative strategy for slowing the onset of dementia in aging animals.
Collapse
Affiliation(s)
- Shakhawat R Hossain
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge T1K 3M4, AB, Canada
| | - Hadil Karem
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge T1K 3M4, AB, Canada
| | - Zahra Jafari
- School of Communication Sciences and Disorders, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Bryan E Kolb
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge T1K 3M4, AB, Canada.
| | - Majid H Mohajerani
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge T1K 3M4, AB, Canada.
| |
Collapse
|
24
|
REEDICH EJ, GENRY L, STEELE P, AVILA EMENA, DOWALIBY L, DROBYSHEVSKY A, MANUEL M, QUINLAN KA. Spinal motoneurons respond aberrantly to serotonin in a rabbit model of cerebral palsy. J Physiol 2023; 601:4271-4289. [PMID: 37584461 PMCID: PMC10543617 DOI: 10.1113/jp284803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 07/24/2023] [Indexed: 08/17/2023] Open
Abstract
Cerebral palsy (CP) is caused by a variety of factors that damage the developing central nervous system. Impaired motor control, including muscle stiffness and spasticity, is the hallmark of spastic CP. Rabbits that experience hypoxic-ischaemic (HI) injury in utero (at 70%-83% gestation) are born with muscle stiffness, hyperreflexia and, as recently discovered, increased 5-HT in the spinal cord. To determine whether serotonergic modulation of spinal motoneurons (MNs) contributes to motor deficits, we performed ex vivo whole cell patch clamp in neonatal rabbit spinal cord slices at postnatal day (P) 0-5. HI MNs responded to the application of α-methyl 5-HT (a 5-HT1 /5-HT2 receptor agonist) and citalopram (a selective 5-HT reuptake inhibitor) with increased amplitude and hyperpolarization of persistent inward currents and hyperpolarized threshold voltage for action potentials, whereas control MNs did not exhibit any of these responses. Although 5-HT similarly modulated MN properties of HI motor-unaffected and motor-affected kits, it affected sag/hyperpolarization-activated cation current (Ih ) and spike frequency adaptation only in HI motor-affected MNs. To further explore the differential sensitivity of MNs to 5-HT, we performed immunostaining for inhibitory 5-HT1A receptors in lumbar spinal MNs at P5. Fewer HI MNs expressed the 5-HT1A receptor compared to age-matched control MNs. This suggests that HI MNs may lack a normal mechanism of central fatigue, mediated by 5-HT1A receptors. Altered expression of other 5-HT receptors (including 5-HT2 ) likely also contributes to the robust increase in HI MN excitability. In summary, by directly exciting MNs, the increased concentration of spinal 5-HT in HI-affected rabbits can cause MN hyperexcitability, muscle stiffness and spasticity characteristic of CP. Therapeutic strategies that target serotonergic neuromodulation may be beneficial to individuals with CP. KEY POINTS: We used whole cell patch clamp electrophysiology to test the responsivity of spinal motoneurons (MNs) from neonatal control and hypoxia-ischaemia (HI) rabbits to 5-HT, which is elevated in the spinal cord after prenatal HI injury. HI rabbit MNs showed a more robust excitatory response to 5-HT than control rabbit MNs, including hyperpolarization of the persistent inward current and threshold voltage for action potentials. Although most MN properties of HI motor-unaffected and motor-affected kits responded similarly to 5-HT, 5-HT caused larger sag/hyperpolarization-activated cation current (Ih ) and altered repetitive firing patterns only in HI motor-affected MNs. Immunostaining revealed that fewer lumbar MNs expressed inhibitory 5-HT1A receptors in HI rabbits compared to controls, which could account for the more robust excitatory response of HI MNs to 5-HT. These results suggest that elevated 5-HT after prenatal HI injury could trigger a cascade of events that lead to muscle stiffness and altered motor unit development.
Collapse
Affiliation(s)
- E. J. REEDICH
- George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, USA
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, USA
| | - L.T. GENRY
- George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, USA
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, USA
- Interdisciplinary Neuroscience Program, University of Rhode Island, Kingston, RI, USA
| | - P.R. STEELE
- George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, USA
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, USA
- Interdisciplinary Neuroscience Program, University of Rhode Island, Kingston, RI, USA
| | - E. MENA AVILA
- George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, USA
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, USA
| | - L. DOWALIBY
- George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, USA
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, USA
| | | | - M. MANUEL
- George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, USA
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, USA
- Interdisciplinary Neuroscience Program, University of Rhode Island, Kingston, RI, USA
| | - K. A. QUINLAN
- George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, USA
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, USA
- Interdisciplinary Neuroscience Program, University of Rhode Island, Kingston, RI, USA
| |
Collapse
|
25
|
Dutra-Tavares AC, Souza TP, Silva JO, Semeão KA, Mello FF, Filgueiras CC, Ribeiro-Carvalho A, Manhães AC, Abreu-Villaça Y. Neonatal phencyclidine as a model of sex-biased schizophrenia symptomatology in adolescent mice. Psychopharmacology (Berl) 2023; 240:2111-2129. [PMID: 37530885 DOI: 10.1007/s00213-023-06434-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 07/22/2023] [Indexed: 08/03/2023]
Abstract
Sex-biased differences in schizophrenia are evident in several features of the disease, including symptomatology and response to pharmacological treatments. As a neurodevelopmental disorder, these differences might originate early in life and emerge later during adolescence. Considering that the disruption of the glutamatergic system during development is known to contribute to schizophrenia, we hypothesized that the neonatal phencyclidine model could induce sex-dependent behavioral and neurochemical changes associated with this disorder during adolescence. C57BL/6 mice received either saline or phencyclidine (5, 10, or 20 mg/kg) on postnatal days (PN) 7, 9, and 11. Behavioral assessment occurred in late adolescence (PN48-50), when mice were submitted to the open field, social interaction, and prepulse inhibition tests. Either olanzapine or saline was administered before each test. The NMDAR obligatory GluN1 subunit and the postsynaptic density protein 95 (PSD-95) were evaluated in the frontal cortex and hippocampus at early (PN30) and late (PN50) adolescence. Neonatal phencyclidine evoked dose-dependent deficits in all analyzed behaviors and males were more susceptible. Males also had reduced GluN1 expression in the frontal cortex at PN30. There were late-emergent effects at PN50. Cortical GluN1 was increased in both sexes, while phencyclidine increased cortical and decreased hippocampal PSD-95 in females. Olanzapine failed to mitigate most phencyclidine-evoked alterations. In some instances, this antipsychotic aggravated the deficits or potentiated subthreshold effects. These results lend support to the use of neonatal phencyclidine as a sex-biased neurodevelopmental preclinical model of schizophrenia. Olanzapine null effects and deleterious outcomes suggest that its use during adolescence should be further evaluated.
Collapse
Affiliation(s)
- Ana Carolina Dutra-Tavares
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro (UERJ), Av. Prof. Manuel de Abreu 444, 5 andar, Vila Isabel, Rio de Janeiro, RJ, 20550-170, Brazil
| | - Thainá P Souza
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro (UERJ), Av. Prof. Manuel de Abreu 444, 5 andar, Vila Isabel, Rio de Janeiro, RJ, 20550-170, Brazil
| | - Juliana O Silva
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro (UERJ), Av. Prof. Manuel de Abreu 444, 5 andar, Vila Isabel, Rio de Janeiro, RJ, 20550-170, Brazil
| | - Keila A Semeão
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro (UERJ), Av. Prof. Manuel de Abreu 444, 5 andar, Vila Isabel, Rio de Janeiro, RJ, 20550-170, Brazil
| | - Felipe F Mello
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro (UERJ), Av. Prof. Manuel de Abreu 444, 5 andar, Vila Isabel, Rio de Janeiro, RJ, 20550-170, Brazil
| | - Claudio C Filgueiras
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro (UERJ), Av. Prof. Manuel de Abreu 444, 5 andar, Vila Isabel, Rio de Janeiro, RJ, 20550-170, Brazil
| | - Anderson Ribeiro-Carvalho
- Departamento de Ciências, Faculdade de Formação de Professores da Universidade do Estado do Rio de Janeiro (UERJ), RJ, São Gonçalo, Brazil
| | - Alex C Manhães
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro (UERJ), Av. Prof. Manuel de Abreu 444, 5 andar, Vila Isabel, Rio de Janeiro, RJ, 20550-170, Brazil
| | - Yael Abreu-Villaça
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro (UERJ), Av. Prof. Manuel de Abreu 444, 5 andar, Vila Isabel, Rio de Janeiro, RJ, 20550-170, Brazil.
| |
Collapse
|
26
|
Li D, Liu S, Yu T, Liu Z, Sun S, Bragin D, Shirokov A, Navolokin N, Bragina O, Hu Z, Kurths J, Fedosov I, Blokhina I, Dubrovski A, Khorovodov A, Terskov A, Tzoy M, Semyachkina-Glushkovskaya O, Zhu D. Photostimulation of brain lymphatics in male newborn and adult rodents for therapy of intraventricular hemorrhage. Nat Commun 2023; 14:6104. [PMID: 37775549 PMCID: PMC10541888 DOI: 10.1038/s41467-023-41710-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 09/15/2023] [Indexed: 10/01/2023] Open
Abstract
Intraventricular hemorrhage is one of the most fatal forms of brain injury that is a common complication of premature infants. However, the therapy of this type of hemorrhage is limited, and new strategies are needed to reduce hematoma expansion. Here we show that the meningeal lymphatics is a pathway to remove red blood cells from the brain's ventricular system of male human, adult and newborn rodents and is a target for non-invasive transcranial near infrared photobiomodulation. Our results uncover the clinical significance of phototherapy of intraventricular hemorrhage in 4-day old male rat pups that have the brain similar to a preterm human brain. The course of phototherapy in newborn rats provides fast recovery after intraventricular hemorrhage due to photo-improvements of lymphatic drainage and clearing functions. These findings shed light on the mechanisms of phototherapy of intraventricular hemorrhage that can be a clinically relevant technology for treatment of neonatal intracerebral bleedings.
Collapse
Affiliation(s)
- Dongyu Li
- Britton Chance Center for Biomedical Photonics - MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics - Advanced Biomedical Imaging Facility, Huazhong University of Science and Technology, 430074, Wuhan, Hubei, China
- School of Optical Electronic Information, Huazhong University of Science and Technology, 430074, Wuhan, Hubei, China
| | - Shaojun Liu
- Britton Chance Center for Biomedical Photonics - MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics - Advanced Biomedical Imaging Facility, Huazhong University of Science and Technology, 430074, Wuhan, Hubei, China
| | - Tingting Yu
- Britton Chance Center for Biomedical Photonics - MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics - Advanced Biomedical Imaging Facility, Huazhong University of Science and Technology, 430074, Wuhan, Hubei, China.
| | - Zhang Liu
- Britton Chance Center for Biomedical Photonics - MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics - Advanced Biomedical Imaging Facility, Huazhong University of Science and Technology, 430074, Wuhan, Hubei, China
| | - Silin Sun
- Britton Chance Center for Biomedical Photonics - MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics - Advanced Biomedical Imaging Facility, Huazhong University of Science and Technology, 430074, Wuhan, Hubei, China
| | - Denis Bragin
- Lovelace Biomedical Research Institute, Albuquerque, NM, 87108, USA
- Department of Neurology University of New Mexico School of Medicine, Albuquerque, NM, 87131, USA
| | - Alexander Shirokov
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, Prospekt Entuziastov 13, Saratov, 410049, Russia
- Saratov State University, Astrakhanskaya str., 83, Saratov, 410012, Russia
| | - Nikita Navolokin
- Saratov State University, Astrakhanskaya str., 83, Saratov, 410012, Russia
- Saratov State Medical University, B. Kazachya str., 112, Saratov, 410012, Russia
| | - Olga Bragina
- Lovelace Biomedical Research Institute, Albuquerque, NM, 87108, USA
| | - Zhengwu Hu
- Britton Chance Center for Biomedical Photonics - MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics - Advanced Biomedical Imaging Facility, Huazhong University of Science and Technology, 430074, Wuhan, Hubei, China
- School of Optical Electronic Information, Huazhong University of Science and Technology, 430074, Wuhan, Hubei, China
| | - Jürgen Kurths
- Saratov State University, Astrakhanskaya str., 83, Saratov, 410012, Russia
- Physics Department, Humboldt University, Newtonstrasse 15, 12489, Berlin, Germany
- Potsdam Institute for Climate Impact Research, Telegrafenberg A31, 14473, Potsdam, Germany
- Sechenov First Moscow State Medical University, Bolshaya Pirogovskaya 2, building 4, 119435, Moscow, Russia
| | - Ivan Fedosov
- Saratov State University, Astrakhanskaya str., 83, Saratov, 410012, Russia
| | - Inna Blokhina
- Saratov State University, Astrakhanskaya str., 83, Saratov, 410012, Russia
| | | | | | - Andrey Terskov
- Saratov State University, Astrakhanskaya str., 83, Saratov, 410012, Russia
| | - Maria Tzoy
- Saratov State University, Astrakhanskaya str., 83, Saratov, 410012, Russia
| | - Oxana Semyachkina-Glushkovskaya
- Saratov State University, Astrakhanskaya str., 83, Saratov, 410012, Russia.
- Physics Department, Humboldt University, Newtonstrasse 15, 12489, Berlin, Germany.
| | - Dan Zhu
- Britton Chance Center for Biomedical Photonics - MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics - Advanced Biomedical Imaging Facility, Huazhong University of Science and Technology, 430074, Wuhan, Hubei, China.
| |
Collapse
|
27
|
Hyldgaard Andersen S, Black T, Grassi-Oliveira R, Wegener G. Can early-life high fructose exposure induce long-term depression and anxiety-like behaviours? - A preclinical systematic review. Brain Res 2023; 1814:148427. [PMID: 37263552 DOI: 10.1016/j.brainres.2023.148427] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/15/2023] [Accepted: 05/25/2023] [Indexed: 06/03/2023]
Abstract
Early-life environmental factors, such as maternal diet or early-life nutrition, have been described as significant risk factors for anxiety and depression later in life. With the rising intake of fructose since the 1960 s, several adverse effects have been described, but little is known about the impact of early-life high fructose exposure on the risk of developing depression and anxiety later in life. Since animal models provide ways to test this hypothesis longitudinally in an experimental and controlled environment, we performed a systematic review to investigate whether high fructose exposure during early life influences the risk of developing depression or anxiety-like behaviours in animals. We adopted a high-sensitivity strategy to find potential studies. We included 1805 papers for screening, but only found nine eligible studies that tested only high fructose exposure during development, all conducted in rats. Data extraction and analysis revealed that 6 studies found evidence indicating that fructose exposure in early life increases the risk of anxiety or depression. The remaining 3 studies found no altered behavior after fructose exposure. The discrepancies may be caused by multiple factors, such as time of diet exposure, animal strain, behavioural testing differences, and fructose's metabolic influence. Due to weak and contradictory evidence, we could not conclude if early-life fructose exposure influences the risk of anxiety or depression-like behaviors. We propose future directions and suggestions for future studies to strengthen their findings.
Collapse
Affiliation(s)
| | - Tallan Black
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | - Rodrigo Grassi-Oliveira
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Denmark; Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul, Brazil
| | - Gregers Wegener
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Denmark; AUGUST, Department of Clinical Medicine, Aarhus University, Denmark.
| |
Collapse
|
28
|
Sclafani V, De Pascalis L, Bozicevic L, Sepe A, Ferrari PF, Murray L. Similarities and differences in the functional architecture of mother- infant communication in rhesus macaque and British mother-infant dyads. Sci Rep 2023; 13:13164. [PMID: 37574499 PMCID: PMC10423724 DOI: 10.1038/s41598-023-39623-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 07/27/2023] [Indexed: 08/15/2023] Open
Abstract
Similarly to humans, rhesus macaques engage in mother-infant face-to-face interactions. However, no previous studies have described the naturally occurring structure and development of mother-infant interactions in this population and used a comparative-developmental perspective to directly compare them to the ones reported in humans. Here, we investigate the development of infant communication, and maternal responsiveness in the two groups. We video-recorded mother-infant interactions in both groups in naturalistic settings and analysed them with the same micro-analytic coding scheme. Results show that infant social expressiveness and maternal responsiveness are similarly structured in humans and macaques. Both human and macaque mothers use specific mirroring responses to specific infant social behaviours (modified mirroring to communicative signals, enriched mirroring to affiliative gestures). However, important differences were identified in the development of infant social expressiveness, and in forms of maternal responsiveness, with vocal responses and marking behaviours being predominantly human. Results indicate a common functional architecture of mother-infant communication in humans and monkeys, and contribute to theories concerning the evolution of specific traits of human behaviour.
Collapse
Affiliation(s)
- V Sclafani
- Winnicott Research Unit, Department of Psychology, University of Reading, Reading, UK.
- College of Social Sciences, School of Psychology, University of Lincoln, Brayford Pool, Lincoln, LN6 7TS, UK.
| | - L De Pascalis
- Winnicott Research Unit, Department of Psychology, University of Reading, Reading, UK.
- Department of Psychology, Institute of Population Health, University of Liverpool, Liverpool, UK.
- Department of Psychology, University of Bologna, Bologna, Italy.
| | - L Bozicevic
- Winnicott Research Unit, Department of Psychology, University of Reading, Reading, UK
- Department of Primary Care & Mental Health, Institute of Population Health, University of Liverpool, Liverpool, Merseyside, UK
| | - A Sepe
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Laboratory of Neuro- and Psychophysiology, Department of Neurosciences, KU Leuven Medical School, Leuven, Belgium
| | - P F Ferrari
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Institut des Sciences Cognitives 'Marc Jeannerod', CNRS, Bron, and Université Claude Bernard Lyon 1, Lyon, France
| | - L Murray
- Winnicott Research Unit, Department of Psychology, University of Reading, Reading, UK
| |
Collapse
|
29
|
Milla LA, Corral L, Rivera J, Zuñiga N, Pino G, Nunez-Parra A, Cea-Del Rio CA. Neurodevelopment and early pharmacological interventions in Fragile X Syndrome. Front Neurosci 2023; 17:1213410. [PMID: 37599992 PMCID: PMC10433175 DOI: 10.3389/fnins.2023.1213410] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/17/2023] [Indexed: 08/22/2023] Open
Abstract
Fragile X Syndrome (FXS) is a neurodevelopmental disorder and the leading monogenic cause of autism and intellectual disability. For years, several efforts have been made to develop an effective therapeutic approach to phenotypically rescue patients from the disorder, with some even advancing to late phases of clinical trials. Unfortunately, none of these attempts have completely succeeded, bringing urgency to further expand and refocus research on FXS therapeutics. FXS arises at early stages of postnatal development due to the mutation and transcriptional silencing of the Fragile X Messenger Ribonucleoprotein 1 gene (FMR1) and consequent loss of the Fragile X Messenger Ribonucleoprotein (FMRP) expression. Importantly, FMRP expression is critical for the normal adult nervous system function, particularly during specific windows of embryogenic and early postnatal development. Cellular proliferation, migration, morphology, axonal guidance, synapse formation, and in general, neuronal network establishment and maturation are abnormally regulated in FXS, underlying the cognitive and behavioral phenotypes of the disorder. In this review, we highlight the relevance of therapeutically intervening during critical time points of development, such as early postnatal periods in infants and young children and discuss past and current clinical trials in FXS and their potential to specifically target those periods. We also discuss potential benefits, limitations, and disadvantages of these pharmacological tools based on preclinical and clinical research.
Collapse
Affiliation(s)
- Luis A. Milla
- Centro de Investigacion Biomedica y Aplicada (CIBAP), Escuela de Medicina, Facultad de Ciencias Medicas, Universidad de Santiago de Chile, Santiago, Chile
| | - Lucia Corral
- Laboratorio de Neurofisiopatologia, Centro de Investigacion Biomedica y Aplicada (CIBAP), Escuela de Medicina, Facultad de Ciencias Medicas, Universidad de Santiago de Chile, Santiago, Chile
| | - Jhanpool Rivera
- Laboratorio de Neurofisiopatologia, Centro de Investigacion Biomedica y Aplicada (CIBAP), Escuela de Medicina, Facultad de Ciencias Medicas, Universidad de Santiago de Chile, Santiago, Chile
| | - Nolberto Zuñiga
- Laboratorio de Neurofisiopatologia, Centro de Investigacion Biomedica y Aplicada (CIBAP), Escuela de Medicina, Facultad de Ciencias Medicas, Universidad de Santiago de Chile, Santiago, Chile
| | - Gabriela Pino
- Laboratorio de Neurofisiopatologia, Centro de Investigacion Biomedica y Aplicada (CIBAP), Escuela de Medicina, Facultad de Ciencias Medicas, Universidad de Santiago de Chile, Santiago, Chile
| | - Alexia Nunez-Parra
- Physiology Laboratory, Department of Biology, Faculty of Science, Universidad de Chile, Santiago, Chile
- Cell Physiology Center, Universidad de Chile, Santiago, Chile
| | - Christian A. Cea-Del Rio
- Laboratorio de Neurofisiopatologia, Centro de Investigacion Biomedica y Aplicada (CIBAP), Escuela de Medicina, Facultad de Ciencias Medicas, Universidad de Santiago de Chile, Santiago, Chile
| |
Collapse
|
30
|
Charvet CJ, Ofori K, Falcone C, Rigby Dames BA. Transcription, structure, and organoids translate time across the lifespan of humans and great apes. PNAS NEXUS 2023; 2:pgad230. [PMID: 37554928 PMCID: PMC10406161 DOI: 10.1093/pnasnexus/pgad230] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/20/2023] [Accepted: 07/13/2023] [Indexed: 08/10/2023]
Abstract
How the neural structures supporting human cognition developed and arose in evolution is an enduring question of interest. Yet, we still lack appropriate procedures to align ages across primates, and this lacuna has hindered progress in understanding the evolution of biological programs. We generated a dataset of unprecedented size consisting of 573 time points from abrupt and gradual changes in behavior, anatomy, and transcription across human and 8 nonhuman primate species. We included time points from diverse human populations to capture within-species variation in the generation of cross-species age alignments. We also extracted corresponding ages from organoids. The identification of corresponding ages across the lifespan of 8 primate species, including apes (e.g., orangutans, gorillas) and monkeys (i.e., marmosets, macaques), reveals that some biological pathways are extended in humans compared with some nonhuman primates. Notably, the human lifespan is unusually extended relative to studied nonhuman primates demonstrating that very old age is a phase of life in humans that does not map to other studied primate species. More generally, our work prompts a reevaluation in the choice of a model system to understand aging given very old age in humans is a period of life without a clear counterpart in great apes.
Collapse
Affiliation(s)
- Christine J Charvet
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, 1130 Wire Road, Auburn, 36832, AL, USA
| | - Kwadwo Ofori
- Department of Biology, Delaware State University, 1200 N. Dupont Highway, Dover, DE, 19901, USA
| | - Carmen Falcone
- Department of Neuroscience, International School for Advanced Studies (SISSA), Via Bonomea, 265, 34136 Trieste, Italy
| | - Brier A Rigby Dames
- Department of Computer Science, University of Bath, Claverton Down, Bath, BA2 7AY, UK
- Department of Psychology, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| |
Collapse
|
31
|
Tomlinson C, Vlasova R, Al-Ali K, Young JT, Shi Y, Lubach GR, Alexander AL, Coe CL, Styner M, Fine J. Effects of anesthesia exposure on postnatal maturation of white matter in rhesus monkeys. Dev Psychobiol 2023; 65:e22396. [PMID: 37338252 PMCID: PMC11000522 DOI: 10.1002/dev.22396] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 09/21/2022] [Accepted: 03/24/2023] [Indexed: 06/21/2023]
Abstract
There is increasing concern about the potential effects of anesthesia exposure on the developing brain. The effects of relatively brief anesthesia exposures used repeatedly to acquire serial magnetic resonance imaging scans could be examined prospectively in rhesus macaques. We analyzed magnetic resonance diffusion tensor imaging (DTI) of 32 rhesus macaques (14 females, 18 males) aged 2 weeks to 36 months to assess postnatal white matter (WM) maturation. We investigated the longitudinal relationships between each DTI property and anesthesia exposure, taking age, sex, and weight of the monkeys into consideration. Quantification of anesthesia exposure was normalized to account for variation in exposures. Segmented linear regression with two knots provided the best model for quantifying WM DTI properties across brain development as well as the summative effect of anesthesia exposure. The resulting model revealed statistically significant age and anesthesia effects in most WM tracts. Our analysis indicated there were major effects on WM associated with low levels of anesthesia even when repeated as few as three times. Fractional anisotropy values were reduced across several WM tracts in the brain, indicating that anesthesia exposure may delay WM maturation, and highlight the potential clinical concerns with even a few exposures in young children.
Collapse
Affiliation(s)
- Chalmer Tomlinson
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Roza Vlasova
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Khalid Al-Ali
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jeffrey T Young
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Yundi Shi
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Gabriele R Lubach
- Harlow Center for Biological Psychology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Andrew L Alexander
- Waisman Laboratory for Brain Imaging and Behavior, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Psychiatry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Christopher L Coe
- Harlow Center for Biological Psychology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Martin Styner
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jason Fine
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
32
|
Duckworth RA, Chenard KC, Meza L, Beiriz MC. Coping styles vary with species' sociality and life history: A systematic review and meta-regression analysis. Neurosci Biobehav Rev 2023; 151:105241. [PMID: 37216998 DOI: 10.1016/j.neubiorev.2023.105241] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 05/24/2023]
Abstract
Despite a long history of animal studies investigating coping styles, the causal connections between behavior and stress physiology remain unclear. Consistency across taxa in effect sizes would support the idea of a direct causal link maintained by either functional or developmental dependencies. Alternatively, lack of consistency would suggest coping styles are evolutionarily labile. Here, we investigated correlations between personality traits and baseline and stress-induced glucocorticoid levels using a systematic review and meta-analysis. Most personality traits did not consistently vary with either baseline or stress-induced glucocorticoids. Only aggression and sociability showed a consistent negative correlation with baseline glucocorticoids. We found that life history variation affected the relationship between stress-induced glucocorticoid levels and personality traits, especially anxiety and aggression. The relationship between anxiety and baseline glucocorticoids depended on species' sociality with solitary species showing more positive effect sizes. Thus, integration between behavioral and physiological traits depends on species' sociality and life history and suggests high evolutionary lability of coping styles.
Collapse
Affiliation(s)
- Renée A Duckworth
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA.
| | - Kathryn C Chenard
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA
| | - Lexis Meza
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA
| | - Maria Carolina Beiriz
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA; Department of Ecology and Natural Resources, Universidade Federal do Ceará, Fortaleza, CE 60440-900, Brazil
| |
Collapse
|
33
|
Crocker CE, Sharmeen R, Tran TT, Khan AM, Li W, Alcorn JL. Surfactant protein a attenuates generalized and localized neuroinflammation in neonatal mice. Brain Res 2023; 1807:148308. [PMID: 36871846 PMCID: PMC10065943 DOI: 10.1016/j.brainres.2023.148308] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/24/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023]
Abstract
Surfactant protein A (SP-A) has important roles in innate immunity and modulation of pulmonary and extrapulmonary inflammation. Given SP-A has been detected in rat and human brain, we sought to determine if SP-A has a role in modulating inflammation in the neonatal mouse brain. Neonatal wildtype (WT) and SP-A-deficient (SP-A-/-) mice were subjected to three models of brain inflammation: systemic sepsis, intraventricular hemorrhage (IVH) and hypoxic-ischemic encephalopathy (HIE). Following each intervention, RNA was isolated from brain tissue and expression of cytokine and SP-A mRNA was determined by real-time quantitative RT-PCR analysis. In the sepsis model, expression of most cytokine mRNAs was significantly increased in brains of WT and SP-A-/- mice with significantly greater expression of all cytokine mRNA levels in SP-A-/- mice compared to WT. In the IVH model, expression of all cytokine mRNAs was significantly increased in WT and SP-A-/- mice and levels of most cytokine mRNAs were significantly increased in SP-A-/- mice compared to WT. In the HIE model, only TNF-α mRNA levels were significantly increased in WT brain tissue while all pro-inflammtory cytokine mRNAs were significantly increased in SP-A-/- mice, and all pro-inflammatory cytokine mRNA levels were significantly higher in SP-A-/- mice compared to WT. SP-A mRNA was not detectable in brain tissue of adult WT mice nor in WT neonates subjected to these models. These results suggest that SP-A-/- neonatal mice subjected to models of neuroinflammation are more susceptible to both generalized and localized neuroinflammation compared to WT mice, thus supporting the hypothesis that SP-A attenuates inflammation in neonatal mouse brain.
Collapse
Affiliation(s)
- Caroline E Crocker
- Division of Neonatology, Department of Pediatrics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Romana Sharmeen
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Thu T Tran
- Division of Neonatology, Department of Pediatrics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Amir M Khan
- Division of Neonatology, Department of Pediatrics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Wen Li
- Division of Clinical and Translational Sciences, Department of Internal Medicine, the University of Texas McGovern Medical School at Houston, Houston, TX 77030, USA; Biostatistics/Epidemiology/Research Design Component, Center for Clinical and Translational Sciences, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Joseph L Alcorn
- Division of Neonatology, Department of Pediatrics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; Pediatric Research Center, Department of Pediatrics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
| |
Collapse
|
34
|
Mulder LA, Depla JA, Sridhar A, Wolthers K, Pajkrt D, Vieira de Sá R. A beginner's guide on the use of brain organoids for neuroscientists: a systematic review. Stem Cell Res Ther 2023; 14:87. [PMID: 37061699 PMCID: PMC10105545 DOI: 10.1186/s13287-023-03302-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 03/27/2023] [Indexed: 04/17/2023] Open
Abstract
BACKGROUND The first human brain organoid protocol was presented in the beginning of the previous decade, and since then, the field witnessed the development of many new brain region-specific models, and subsequent protocol adaptations and modifications. The vast amount of data available on brain organoid technology may be overwhelming for scientists new to the field and consequently decrease its accessibility. Here, we aimed at providing a practical guide for new researchers in the field by systematically reviewing human brain organoid publications. METHODS Articles published between 2010 and 2020 were selected and categorised for brain organoid applications. Those describing neurodevelopmental studies or protocols for novel organoid models were further analysed for culture duration of the brain organoids, protocol comparisons of key aspects of organoid generation, and performed functional characterisation assays. We then summarised the approaches taken for different models and analysed the application of small molecules and growth factors used to achieve organoid regionalisation. Finally, we analysed articles for organoid cell type compositions, the reported time points per cell type, and for immunofluorescence markers used to characterise different cell types. RESULTS Calcium imaging and patch clamp analysis were the most frequently used neuronal activity assays in brain organoids. Neural activity was shown in all analysed models, yet network activity was age, model, and assay dependent. Induction of dorsal forebrain organoids was primarily achieved through combined (dual) SMAD and Wnt signalling inhibition. Ventral forebrain organoid induction was performed with dual SMAD and Wnt signalling inhibition, together with additional activation of the Shh pathway. Cerebral organoids and dorsal forebrain model presented the most cell types between days 35 and 60. At 84 days, dorsal forebrain organoids contain astrocytes and potentially oligodendrocytes. Immunofluorescence analysis showed cell type-specific application of non-exclusive markers for multiple cell types. CONCLUSIONS We provide an easily accessible overview of human brain organoid cultures, which may help those working with brain organoids to define their choice of model, culture time, functional assay, differentiation, and characterisation strategies.
Collapse
Affiliation(s)
- Lance A Mulder
- Department of Paediatric Infectious Diseases, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands.
- Department Medical Microbiology, OrganoVIR Labs, Amsterdam UMC Location University of Amsterdam, Amsterdam, the Netherlands.
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, the Netherlands.
| | - Josse A Depla
- Department of Paediatric Infectious Diseases, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
- Department Medical Microbiology, OrganoVIR Labs, Amsterdam UMC Location University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, the Netherlands
- uniQure Biopharma B.V., Amsterdam, The Netherlands
| | - Adithya Sridhar
- Department of Paediatric Infectious Diseases, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
- Department Medical Microbiology, OrganoVIR Labs, Amsterdam UMC Location University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, the Netherlands
| | - Katja Wolthers
- Department Medical Microbiology, OrganoVIR Labs, Amsterdam UMC Location University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, the Netherlands
| | - Dasja Pajkrt
- Department of Paediatric Infectious Diseases, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
- Department Medical Microbiology, OrganoVIR Labs, Amsterdam UMC Location University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, the Netherlands
| | - Renata Vieira de Sá
- Department Medical Microbiology, OrganoVIR Labs, Amsterdam UMC Location University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, the Netherlands
- uniQure Biopharma B.V., Amsterdam, The Netherlands
| |
Collapse
|
35
|
REEDICH EJ, GENRY L, STEELE P, AVILA EMENA, DOWALIBY L, DROBYSHEVSKY A, MANUEL M, QUINLAN KA. Spinal motoneurons respond aberrantly to serotonin in a rabbit model of cerebral palsy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.05.535691. [PMID: 37066318 PMCID: PMC10104065 DOI: 10.1101/2023.04.05.535691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/27/2023]
Abstract
Cerebral palsy (CP) is caused by a variety of factors that damage the developing central nervous system. Impaired motor control, including muscle stiffness and spasticity, is the hallmark of spastic CP. Rabbits that experience hypoxic-ischemic (HI) injury in utero (at 70-80% gestation) are born with muscle stiffness, hyperreflexia, and, as recently discovered, increased serotonin (5-HT) in the spinal cord. To determine whether serotonergic modulation of spinal motoneurons (MNs) contributes to motor deficits, we performed ex vivo whole cell patch clamp in neonatal rabbit spinal cord slices at postnatal day (P) 0-5. HI MNs responded to application of α-methyl 5-HT (a 5-HT 1 /5-HT 2 receptor agonist) and citalopram (a selective 5-HT reuptake inhibitor) with hyperpolarization of persistent inward currents and threshold voltage for action potentials, reduced maximum firing rate, and an altered pattern of spike frequency adaptation while control MNs did not exhibit any of these responses. To further explore the differential sensitivity of MNs to 5-HT, we performed immunohistochemistry for inhibitory 5-HT 1A receptors in lumbar spinal MNs at P5. Fewer HI MNs expressed the 5-HT 1A receptor compared to age-matched controls. This suggests many HI MNs lack a normal mechanism of central fatigue mediated by 5-HT 1A receptors. Other 5-HT receptors (including 5-HT 2 ) are likely responsible for the robust increase in HI MN excitability. In summary, by directly exciting MNs, the increased concentration of spinal 5-HT in HI rabbits can cause MN hyperexcitability, muscle stiffness, and spasticity characteristic of CP. Therapeutic strategies that target serotonergic neuromodulation may be beneficial to individuals with CP. Key points After prenatal hypoxia-ischemia (HI), neonatal rabbits that show hypertonia are known to have higher levels of spinal serotoninWe tested responsivity of spinal motoneurons (MNs) in neonatal control and HI rabbits to serotonin using whole cell patch clampMNs from HI rabbits showed a more robust excitatory response to serotonin than control MNs, including hyperpolarization of the persistent inward current and threshold for action potentials, larger post-inhibitory rebound, and less spike frequency adaptation Based on immunohistochemistry of lumbar MNs, fewer HI MNs express inhibitory 5HT 1A receptors than control MNs, which could account for the more robust excitatory response of HI MNs. These results suggest that after HI injury, the increased serotonin could trigger a cascade of events leading to muscle stiffness and altered motor unit development.
Collapse
Affiliation(s)
- E. J. REEDICH
- George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, USA
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, USA
| | - L.T. GENRY
- George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, USA
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, USA
- Interdisciplinary Neuroscience Program, University of Rhode Island, Kingston, RI, USA
| | - P.R. STEELE
- George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, USA
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, USA
- Interdisciplinary Neuroscience Program, University of Rhode Island, Kingston, RI, USA
| | - E. MENA AVILA
- George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, USA
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, USA
| | - L. DOWALIBY
- George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, USA
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, USA
| | | | - M. MANUEL
- George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, USA
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, USA
- Interdisciplinary Neuroscience Program, University of Rhode Island, Kingston, RI, USA
| | - K. A. QUINLAN
- George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, USA
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, USA
- Interdisciplinary Neuroscience Program, University of Rhode Island, Kingston, RI, USA
| |
Collapse
|
36
|
Zhang J, Li Y. Propofol-Induced Developmental Neurotoxicity: From Mechanisms to Therapeutic Strategies. ACS Chem Neurosci 2023; 14:1017-1032. [PMID: 36854650 DOI: 10.1021/acschemneuro.2c00755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023] Open
Abstract
Propofol is the most commonly used intravenous general anesthetic in clinical anesthesia, and it is also widely used in general anesthesia for pregnant women and infants. Some clinical and preclinical studies have found that propofol causes damage to the immature nervous system, which may lead to neurodevelopmental disorders and cognitive dysfunction in infants and children. However, its potential molecular mechanism has not been fully elucidated. Recent in vivo and in vitro studies have found that some exogenous drugs and interventions can effectively alleviate propofol-induced neurotoxicity. In this review, we focus on the relevant preclinical studies and summarize the latest findings on the potential mechanisms and therapeutic strategies of propofol-induced developmental neurotoxicity.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Anesthesiology, Affiliated Hospital of Qingdao University, Qingdao 266000, China.,Department of Medicine, Qingdao University, Qingdao 266000, China
| | - Yu Li
- Department of Anesthesiology, Affiliated Hospital of Qingdao University, Qingdao 266000, China
| |
Collapse
|
37
|
Perez RF, Conner KE, Erickson MA, Nabatanzi M, Huffman KJ. Alcohol and lactation: Developmental deficits in a mouse model. Front Neurosci 2023; 17:1147274. [PMID: 36992847 PMCID: PMC10040541 DOI: 10.3389/fnins.2023.1147274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 02/21/2023] [Indexed: 03/14/2023] Open
Abstract
It is well documented that prenatal ethanol exposure via maternal consumption of alcohol during pregnancy alters brain and behavioral development in offspring. Thus, the Centers for Disease Control (CDC) advises against maternal alcohol consumption during pregnancy. However, little emphasis has been placed on educating new parents about alcohol consumption while breastfeeding. This is partly due to a paucity of research on lactational ethanol exposure (LEE) effects in children; although, it has been shown that infants exposed to ethanol via breast milk frequently present with reduced body mass, low verbal IQ scores, and altered sleeping patterns. As approximately 36% of breastfeeding mothers in the US consume alcohol, continued research in this area is critical. Our study employed a novel murine LEE model, where offspring were exposed to ethanol via nursing from postnatal day (P) 6 through P20, a period correlated with infancy in humans. Compared to controls, LEE mice had reduced body weights and neocortical lengths at P20 and P30. Brain weights were also reduced in both ages in males, and at P20 for females, however, female brain weights recovered to control levels by P30. We investigated neocortical features and found that frontal cortex thickness was reduced in LEE males compared to controls. Analyses of dendritic spines in the prelimbic subdivision of medial prefrontal cortex revealed a trend of reduced densities in LEE mice. Results of behavioral tests suggest that LEE mice engage in higher risk-taking behavior, show abnormal stress regulation, and exhibit increased hyperactivity. In summary, our data describe potential adverse brain and behavioral developmental outcomes due to LEE. Thus, women should be advised to refrain from consuming alcohol during breastfeeding until additional research can better guide recommendations of safe maternal practices in early infancy.
Collapse
Affiliation(s)
- Roberto F. Perez
- Department of Psychology, University of California, Riverside, Riverside, CA, United States
| | - Kathleen E. Conner
- Interdepartmental Neuroscience Program, University of California, Riverside, Riverside, CA, United States
| | - Michael A. Erickson
- Department of Psychology, University of California, Riverside, Riverside, CA, United States
| | - Mirembe Nabatanzi
- Department of Psychology, University of California, Riverside, Riverside, CA, United States
| | - Kelly J. Huffman
- Department of Psychology, University of California, Riverside, Riverside, CA, United States
- Interdepartmental Neuroscience Program, University of California, Riverside, Riverside, CA, United States
- *Correspondence: Kelly J. Huffman,
| |
Collapse
|
38
|
Hanson KL, Weir RK, Iosif AM, Van de Water J, Carter CS, McAllister AK, Bauman MD, Schumann CM. Altered dendritic morphology in dorsolateral prefrontal cortex of nonhuman primates prenatally exposed to maternal immune activation. Brain Behav Immun 2023; 109:92-101. [PMID: 36610487 PMCID: PMC10023379 DOI: 10.1016/j.bbi.2023.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 12/06/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023] Open
Abstract
Women who contract a viral or bacterial infection during pregnancy have an increased risk of giving birth to a child with a neurodevelopmental or psychiatric disorder. The effects of maternal infection are likely mediated by the maternal immune response, as preclinical animal models have confirmed that maternal immune activation (MIA) leads to long lasting changes in offspring brain and behavior development. The present study sought to determine the impact of MIA-exposure during the first or second trimester on neuronal morphology in dorsolateral prefrontal cortex (DLPFC) and hippocampus from brain tissue obtained from MIA-exposed and control male rhesus monkey (Macaca mulatta) during late adolescence. MIA-exposed offspring display increased neuronal dendritic branching in pyramidal cells in DLPFC infra- and supragranular layers relative to controls, with no significant differences observed between offspring exposed to maternal infection in the first and second trimester. In addition, the diameter of apical dendrites in DLPFC infragranular layer is significantly decreased in MIA-exposed offspring relative to controls, irrespective of trimester exposure. In contrast, alterations in hippocampal neuronal morphology of MIA-exposed offspring were not evident. These findings demonstrate that a maternal immune challenge during pregnancy has long-term consequences for primate offspring dendritic structure, selectively in a brain region vital for socioemotional and cognitive development.
Collapse
Affiliation(s)
- Kari L Hanson
- Department of Psychiatry and Behavioral Sciences, University of California, Davis School of Medicine, United States; MIND Institute, University of California, Davis, United States
| | - Ruth K Weir
- Innovation & Enterprise Department, University College London, United Kingdom
| | - Ana-Maria Iosif
- Division of Biostatistics, Department of Public Health Sciences, University of California, Davis, United States
| | - Judy Van de Water
- MIND Institute, University of California, Davis, United States; Rheumatology/Allergy and Clinical Immunology, University of California, Davis, United States
| | - Cameron S Carter
- Department of Psychiatry and Behavioral Sciences, University of California, Davis School of Medicine, United States; Center for Neuroscience, University of California, Davis, United States
| | | | - Melissa D Bauman
- Department of Psychiatry and Behavioral Sciences, University of California, Davis School of Medicine, United States; MIND Institute, University of California, Davis, United States; California National Primate Research Center, University of California, Davis, United States.
| | - Cynthia M Schumann
- Department of Psychiatry and Behavioral Sciences, University of California, Davis School of Medicine, United States; MIND Institute, University of California, Davis, United States.
| |
Collapse
|
39
|
She YJ, Xu HP, Gao Y, Wang Q, Zheng J, Ruan X. Calpain-TRPC6 signaling pathway contributes to propofol-induced developmental neurotoxicity in rats. Neurotoxicology 2023; 95:56-65. [PMID: 36640868 DOI: 10.1016/j.neuro.2023.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/20/2022] [Accepted: 01/11/2023] [Indexed: 01/13/2023]
Abstract
Growing animal studies suggest a risk of neuronal damage following early childhood exposure to anesthesia and sedation drugs including propofol. Inhibition of transient receptor potential canonical 6 (TRPC6) degradation has been shown to protect neurons from neuronal damage induced by multiple brain injury models. Our aim was to investigate whether calpain-TRPC6 pathway is a target in propofol-induced neurotoxicity. Postnatal day (PND) 7 rats were exposed to five bolus injections of 25 mg/kg propofol or 10 % intralipid at hourly intervals. Neuronal injury was assessed by the expression pattern of TUNEL staining and cleaved-caspase-3. The Morris water maze test was used to evaluate learning and memory functions in later life. Pretreatments consisting of intracerebroventricular injections of a TRPC6 agonist, TRPC6 inhibitor, or calpain inhibitor were used to confirm the potential role of the calpain-TRPC6 pathway in propofol-induced neurotoxicity. Prolonged exposure to propofol induced neuronal injury, downregulation of TRPC6, and enhancement of calpain activity in the cerebral cortex up to 24 h after anesthesia. It also induced long-term behavioral disorders, manifesting as longer escape latency at PND40 and PND41 and as fewer platform-crossing times and less time spent in the target quadrant at PND42. These propofol-induced effects were attenuated by treatment with the TRPC6 agonist and exaggerated by the TRPC6 inhibitor. Pretreatment with the calpain inhibitor alleviated the propofol-induced TRPC6 downregulation and neuronal injury in the cerebral cortex. In conclusion, our data suggest that a calpain-TRPC6 signaling pathway contributes to propofol-induced acute cortical neuron injury and long-term behavioral disorders in rats.
Collapse
Affiliation(s)
- Ying-Jun She
- Department of Anesthesiology and Perioperative Medicine, Guangzhou Women and Children's Medical Center, Guangzhou 510600, China
| | - Hai-Ping Xu
- Department of Anesthesiology and Perioperative Medicine, Guangzhou Women and Children's Medical Center, Guangzhou 510600, China
| | - Yin Gao
- Department of Anesthesiology and Perioperative Medicine, Guangzhou Women and Children's Medical Center, Guangzhou 510600, China
| | - Qiong Wang
- Department of Anesthesiology and Perioperative Medicine, Guangzhou Women and Children's Medical Center, Guangzhou 510600, China
| | - Jun Zheng
- Department of Anesthesiology and Pain Medicine, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Xiangcai Ruan
- Department of Anesthesiology and Pain Medicine, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China.
| |
Collapse
|
40
|
Hashimoto JG, Singer ML, Goeke CM, Zhang F, Song Y, Xia K, Linhardt RJ, Guizzetti M. Sex differences in hippocampal structural plasticity and glycosaminoglycan disaccharide levels after neonatal handling. Exp Neurol 2023; 361:114313. [PMID: 36572372 PMCID: PMC10097408 DOI: 10.1016/j.expneurol.2022.114313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/05/2022] [Accepted: 12/22/2022] [Indexed: 12/25/2022]
Abstract
In this study we investigated the effects of a neonatal handling protocol that mimics the handling of sham control pups in protocols of neonatal exposure to brain insults on dendritic arborization and glycosaminoglycan (GAG) levels in the developing brain. GAGs are long, unbranched polysaccharides, consisting of repeating disaccharide units that can be modified by sulfation at specific sites and are involved in modulating neuronal plasticity during brain development. In this study, male and female Sprague-Dawley rats underwent neonatal handling daily between post-natal day (PD)4 and PD9, with brains analyzed on PD9. Neuronal morphology and morphometric analysis of the apical and basal dendritic trees of CA1 hippocampal pyramidal neurons were carried out by Golgi-Cox staining followed by neuron tracing and analysis with the software Neurolucida. Chondroitin sulfate (CS)-, Hyaluronic Acid (HA)-, and Heparan Sulfate (HS)-GAG disaccharide levels were quantified in the hippocampus by Liquid Chromatography/Mass Spectrometry analyses. We found sex by neonatal handling interactions on several parameters of CA1 pyramidal neuron morphology and in the levels of HS-GAGs, with females, but not males, showing an increase in both dendritic arborization and HS-GAG levels. We also observed increased expression of glucocorticoid receptor gene Nr3c1 in the hippocampus of both males and females following neonatal handling suggesting that both sexes experienced a similar stress during the handling procedure. This is the first study to show sex differences in two parameters of brain plasticity, CA1 neuron morphology and HS-GAG levels, following handling stress in neonatal rats.
Collapse
Affiliation(s)
- Joel G Hashimoto
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA; VA Portland Health Care System, Portland, OR, USA
| | - Mo L Singer
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA; VA Portland Health Care System, Portland, OR, USA
| | - Calla M Goeke
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA; VA Portland Health Care System, Portland, OR, USA
| | - Fuming Zhang
- Chemistry and Chemical Biology, Biomedical Engineering, Chemical and Biological Engineering, and Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Yuefan Song
- Chemistry and Chemical Biology, Biomedical Engineering, Chemical and Biological Engineering, and Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Ke Xia
- Chemistry and Chemical Biology, Biomedical Engineering, Chemical and Biological Engineering, and Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Robert J Linhardt
- Chemistry and Chemical Biology, Biomedical Engineering, Chemical and Biological Engineering, and Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Marina Guizzetti
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA; VA Portland Health Care System, Portland, OR, USA.
| |
Collapse
|
41
|
Acoustic startle and prepulse inhibition deficits in adult monkeys with neonatal lesions of the hippocampus, amygdala and orbital frontal cortex. Behav Brain Res 2023; 438:114170. [PMID: 36283567 DOI: 10.1016/j.bbr.2022.114170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 12/05/2022]
Abstract
Sensory-motor gating, the process of filtering sensory stimuli to modulate motor responses, is impaired in many psychiatric diseases but especially schizophrenia. Sensory-motor gating assessed with the prepulse inhibition paradigm (PPI) measures startle in response to preceding acoustic stimuli. PPI studies in rodents have consistently found that neonatal hippocampal lesions impair sensory-motor gating in adult animals, but its applicability to primates has yet to be tested. The study examined acoustic startle responses and PPI in adult rhesus monkeys with neonatal lesions of the hippocampus (Neo-Hibo), amygdala (Neo-Aibo), and orbital frontal cortex areas 11 and 13 (Neo-Oasp) and with sham-operations (Neo-C). All monkeys were initially habituated to the startle apparatus and assayed for acoustic startle response curves. Subsequently, PPI was measured with the prepulse occurring at 60, 120, 240, 480, 1000 and 5000 msec prior to the pulse onset. No significant group differences in baseline startle were found. Compared to Neo-C monkeys, Neo-Hibo monkeys showed normal startle curves as well as normal PPI at short prepulse delays but prepulse facilitation (PPF) at longer prepulse intervals. Neo-Aibo monkeys displayed enhanced startle responses with only minor changes in PPI, whereas Neo-Oasp monkeys had severe dampening of startle responses and impaired PPI at shorter prepulse intervals. These results support prior evidence from rodent literature of the involvement of each of these areas in the development of the complex cortico-limbic circuit modulating sensory-motor gating and may shade light on the specific neural structures associated with deficits in PPI reported in neuropsychiatric disorders, such as schizophrenia, autism spectrum disorders, and post-traumatic disorders.
Collapse
|
42
|
McCann ME, Soriano SG. Comparer Pommes et Oranges: Perils of Translating Rodent Studies to Human Outcomes. Anesth Analg 2023; 136:238-239. [PMID: 36638507 DOI: 10.1213/ane.0000000000006329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Mary Ellen McCann
- From the Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| | | |
Collapse
|
43
|
Saadati H, Ghaheri S, Sadegzadeh F, Sakhaie N, Abdollahzadeh M. Beneficial effects of enriched environment on behavior, cognitive functions, and hippocampal brain-derived neurotrophic factor level following postnatal serotonin depletion in male rats. Int J Dev Neurosci 2023; 83:67-79. [PMID: 36342785 DOI: 10.1002/jdn.10238] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/04/2022] [Accepted: 10/31/2022] [Indexed: 11/09/2022] Open
Abstract
The neurotransmitter serotonin (5-HT) is one of the most important modulators of neural circuitry and has a critical role in neural development and functions. Previous studies indicated that changes in serotonergic system signaling in early life critically impact mental health, behavior, the morphology of hippocampal neurons, and cognitive functions across the lifespan. The enriched environment (EE) has indicated beneficial effects on behavior and cognitive functions in the developmental period of life, but its impacts on cognitive impairments and behavioral changes following postnatal serotonin depletion are unknown. Therefore, the present study aimed to evaluate the influences of the EE housing (postnatal days [PNDs] 21-60) following postnatal serotonin depletion (by para-chlorophenylalanine [PCPA], 100 mg/kg, s.c, in PNDs 10-20) on anxiety-related behaviors, cognitive functions, and brain-derived neurotrophic factor (BDNF) mRNA expression in the hippocampus of male rats. Memory and behavioral parameters were examined in early adulthood and after that, the hippocampi of rats were removed to determine the BDNF mRNA expression by PCR (PNDs 60-70). The findings of the present work indicated that adolescent EE exposure alleviated memory impairment, decreased BDNF levels, and anxiety disorders induced by experimental depletion of serotonin. Overall, these results indicate that serotonergic system dysregulation during the developmental periods can be alleviated by adolescent EE exposure.
Collapse
Affiliation(s)
- Hakimeh Saadati
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran.,Department of Physiology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Safa Ghaheri
- Students Research Committee, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Farshid Sadegzadeh
- Students Research Committee, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Nona Sakhaie
- Students Research Committee, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Maryam Abdollahzadeh
- Students Research Committee, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| |
Collapse
|
44
|
Abstract
Air pollution is a complex mixture of gases and particulate matter, with adsorbed organic and inorganic contaminants, to which exposure is lifelong. Epidemiological studies increasingly associate air pollution with multiple neurodevelopmental disorders and neurodegenerative diseases, findings supported by experimental animal models. This breadth of neurotoxicity across these central nervous system diseases and disorders likely reflects shared vulnerability of their inflammatory and oxidative stress-based mechanisms and a corresponding ability to produce brain metal dyshomeo-stasis. Future research to define the responsible contaminants of air pollution underlying this neurotoxicity is critical to understanding mechanisms of these diseases and disorders and protecting public health.
Collapse
Affiliation(s)
- Deborah A Cory-Slechta
- Department of Environmental Medicine, University of Rochester School of Medicine, Rochester, New York, USA;
| | - Alyssa Merrill
- Department of Environmental Medicine, University of Rochester School of Medicine, Rochester, New York, USA;
| | - Marissa Sobolewski
- Department of Environmental Medicine, University of Rochester School of Medicine, Rochester, New York, USA;
| |
Collapse
|
45
|
Guma E, Cupo L, Ma W, Gallino D, Moquin L, Gratton A, Devenyi GA, Chakravarty MM. Investigating the "two-hit hypothesis": Effects of prenatal maternal immune activation and adolescent cannabis use on neurodevelopment in mice. Prog Neuropsychopharmacol Biol Psychiatry 2023; 120:110642. [PMID: 36150422 DOI: 10.1016/j.pnpbp.2022.110642] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 12/09/2022]
Abstract
Prenatal exposure to maternal immune activation (MIA) and chronic adolescent cannabis use are both risk factors for neuropsychiatric disorders. However, exposure to a single risk factor may not result in major mental illness, indicating that multiple exposures may be required for illness onset. Here, we examine whether combined exposure to prenatal MIA and adolescent delta-9-tetrahydrocannabinol (THC), the main psychoactive component of cannabis, lead to enduring neuroanatomical and behavioural changes in adulthood. Mice were prenatally exposed to viral mimetic, poly I:C (5 mg/kg), or vehicle at gestational day (GD) 9, and postnatally exposed to chronic THC (5 mg/kg, intraperitoneal) or vehicle during adolescence (postnatal day [PND]28-45). Longitudinal magnetic resonance imaging (MRI) was performed pre-treatment, PND 25, post-treatment, PND 50, and in adulthood, PND85, followed by behavioural tests for anxiety-like, social, and sensorimotor gating. Post-mortem assessment of cannabinoid (CB)1 and 2 receptor expressing cells was performed in altered regions identified by MRI (anterior cingulate and somatosensory cortices, striatum, and hippocampus). Subtle deviations in neurodevelopmental trajectory and subthreshold anxiety-like behaviours were observed in mice exposed to both risk factors. Sex-dependent effects were observed in patterns of shared brain-behaviour covariation, indicative of potential sex differences in response to MIA and THC. Density of CB1 and CB2 receptor positive cells was significantly decreased in all mice exposed to MIA, THC, or both. These findings suggest that there may be a cumulative effect of risk factor exposure on gross neuroanatomical development, and that the endocannabinoid system may be sensitive to both prenatal MIA, adolescent THC, or the combination.
Collapse
Affiliation(s)
- Elisa Guma
- Computational Brain Anatomy Laboratory, Cerebral Imaging Center, Douglas Mental Health University Institute, Montreal, Quebec, Canada; Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada; Developmental Neurogenomics Unit, Human Genetics Branch, National Institute of Mental Health, Bethesda, MD, USA.
| | - Lani Cupo
- Computational Brain Anatomy Laboratory, Cerebral Imaging Center, Douglas Mental Health University Institute, Montreal, Quebec, Canada; Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada
| | - Weiya Ma
- Douglas Mental Health University Institute, McGill University, Montréal, Québec, Canada
| | - Daniel Gallino
- Computational Brain Anatomy Laboratory, Cerebral Imaging Center, Douglas Mental Health University Institute, Montreal, Quebec, Canada
| | - Luc Moquin
- Douglas Mental Health University Institute, McGill University, Montréal, Québec, Canada
| | - Alain Gratton
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada; Department of Psychiatry, McGill University, Montreal, Quebec, Canada; Douglas Mental Health University Institute, McGill University, Montréal, Québec, Canada
| | - Gabriel A Devenyi
- Computational Brain Anatomy Laboratory, Cerebral Imaging Center, Douglas Mental Health University Institute, Montreal, Quebec, Canada; Department of Psychiatry, McGill University, Montreal, Quebec, Canada; Douglas Mental Health University Institute, McGill University, Montréal, Québec, Canada
| | - M Mallar Chakravarty
- Computational Brain Anatomy Laboratory, Cerebral Imaging Center, Douglas Mental Health University Institute, Montreal, Quebec, Canada; Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada; Department of Psychiatry, McGill University, Montreal, Quebec, Canada; Douglas Mental Health University Institute, McGill University, Montréal, Québec, Canada; Department of Biological and Biomedical Engineering, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
46
|
Burgess HA, Burton EA. A Critical Review of Zebrafish Neurological Disease Models-1. The Premise: Neuroanatomical, Cellular and Genetic Homology and Experimental Tractability. OXFORD OPEN NEUROSCIENCE 2023; 2:kvac018. [PMID: 37649777 PMCID: PMC10464506 DOI: 10.1093/oons/kvac018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/13/2022] [Indexed: 09/01/2023]
Abstract
The last decade has seen a dramatic rise in the number of genes linked to neurological disorders, necessitating new models to explore underlying mechanisms and to test potential therapies. Over a similar period, many laboratories adopted zebrafish as a tractable model for studying brain development, defining neural circuits and performing chemical screens. Here we discuss strengths and limitations of using the zebrafish system to model neurological disorders. The underlying premise for many disease models is the high degree of homology between human and zebrafish genes, coupled with the conserved vertebrate Bauplan and repertoire of neurochemical signaling molecules. Yet, we caution that important evolutionary divergences often limit the extent to which human symptoms can be modeled meaningfully in zebrafish. We outline advances in genetic technologies that allow human mutations to be reproduced faithfully in zebrafish. Together with methods that visualize the development and function of neuronal pathways at the single cell level, there is now an unprecedented opportunity to understand how disease-associated genetic changes disrupt neural circuits, a level of analysis that is ideally suited to uncovering pathogenic changes in human brain disorders.
Collapse
Affiliation(s)
- Harold A Burgess
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, 20892, USA
| | - Edward A Burton
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, 15260, USA
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA,15260, USA
- Geriatric Research, Education, and Clinical Center, Pittsburgh VA Healthcare System, Pittsburgh, PA, 15240, USA
| |
Collapse
|
47
|
Points of divergence on a bumpy road: early development of brain and immune threat processing systems following postnatal adversity. Mol Psychiatry 2023; 28:269-283. [PMID: 35705633 DOI: 10.1038/s41380-022-01658-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 05/16/2022] [Accepted: 06/01/2022] [Indexed: 01/11/2023]
Abstract
Lifelong indices of maladaptive behavior or illness often stem from early physiological aberrations during periods of dynamic development. This is especially true when dysfunction is attributable to early life adversity (ELA), when the environment itself is unsuitable to support development of healthy behavior. Exposure to ELA is strongly associated with atypical sensitivity and responsivity to potential threats-a characteristic that could be adaptive in situations where early adversity prepares individuals for lifelong danger, but which often manifests in difficulties with emotion regulation and social relationships. By synthesizing findings from animal research, this review will consider threat sensitivity through the lenses of associated corticolimbic brain circuitry and immune mechanisms, both of which are immature early in life to maximize adaptation for protection against environmental challenges to an individual's well-being. The forces that drive differential development of corticolimbic circuits include caretaking stimuli, physiological and psychological stressors, and sex, which influences developmental trajectories. These same forces direct developmental processes of the immune system, which bidirectionally communicates with sensory systems and emotion regulation circuits within the brain. Inflammatory signals offer a further force influencing the timing and nature of corticolimbic plasticity, while also regulating sensitivity to future threats from the environment (i.e., injury or pathogens). The early development of these systems programs threat sensitivity through juvenility and adolescence, carving paths for probable function throughout adulthood. To strategize prevention or management of maladaptive threat sensitivity in ELA-exposed populations, it is necessary to fully understand these early points of divergence.
Collapse
|
48
|
Simmons SC, Grecco GG, Atwood BK, Nugent FS. Effects of prenatal opioid exposure on synaptic adaptations and behaviors across development. Neuropharmacology 2023; 222:109312. [PMID: 36334764 PMCID: PMC10314127 DOI: 10.1016/j.neuropharm.2022.109312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022]
Abstract
In this review, we focus on prenatal opioid exposure (POE) given the significant concern for the mental health outcomes of children with parents affected by opioid use disorder (OUD) in the view of the current opioid crisis. We highlight some of the less explored interactions between developmental age and sex on synaptic plasticity and associated behavioral outcomes in preclinical POE research. We begin with an overview of the rich literature on hippocampal related behaviors and plasticity across POE exposure paradigms. We then discuss recent work on reward circuit dysregulation following POE. Additional risk factors such as early life stress (ELS) could further influence synaptic and behavioral outcomes of POE. Therefore, we include an overview on the use of preclinical ELS models where ELS exposure during key critical developmental periods confers considerable vulnerability to addiction and stress psychopathology. Here, we hope to highlight the similarity between POE and ELS on development and maintenance of opioid-induced plasticity and altered opioid-related behaviors where similar enduring plasticity in reward circuits may occur. We conclude the review with some of the limitations that should be considered in future investigations. This article is part of the Special Issue on 'Opioid-induced addiction'.
Collapse
Affiliation(s)
- Sarah C Simmons
- Department of Pharmacology and Molecular Therapeutics, School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Greg G Grecco
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA; Medical Scientist Training Program, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Brady K Atwood
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA; Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Fereshteh S Nugent
- Department of Pharmacology and Molecular Therapeutics, School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.
| |
Collapse
|
49
|
Taylor M, Cheng AB, Hodkinson DJ, Afacan O, Zurakowski D, Bajic D. Body size and brain volumetry in the rat following prolonged morphine administration in infancy and adulthood. FRONTIERS IN PAIN RESEARCH 2023; 4:962783. [PMID: 36923651 PMCID: PMC10008895 DOI: 10.3389/fpain.2023.962783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 01/20/2023] [Indexed: 02/28/2023] Open
Abstract
Background Prolonged morphine treatment in infancy is associated with a high incidence of opioid tolerance and dependence, but our knowledge of the long-term consequences of this treatment is sparse. Using a rodent model, we examined the (1) short- and (2) long-term effects of prolonged morphine administration in infancy on body weight and brain volume, and (3) we evaluated if subsequent dosing in adulthood poses an increased brain vulnerability. Methods Newborn rats received subcutaneous injections of either morphine or equal volume of saline twice daily for the first two weeks of life. In adulthood, animals received an additional two weeks of saline or morphine injections before undergoing structural brain MRI. After completion of treatment, structural T2-weigthed MRI images were acquired on a 7 T preclinical scanner (Bruker) using a RARE FSE sequence. Total and regional brain volumes were manually extracted from the MRI images using ITK-SNAP (v.3.6). Regions of interest included the brainstem, the cerebellum, as well as the forebrain and its components: the cerebral cortex, hippocampus, and deep gray matter (including basal ganglia, thalamus, hypothalamus, ventral tegmental area). Absolute (cm3) and normalized (as % total brain volume) values were compared using a one-way ANOVA with Tukey HSD post-hoc test. Results Prolonged morphine administration in infancy was associated with lower body weight and globally smaller brain volumes, which was not different between the sexes. In adulthood, females had lower body weights than males, but no difference was observed in brain volumes between treatment groups. Our results are suggestive of no long-term effect of prolonged morphine treatment in infancy with respect to body weight and brain size in either sex. Interestingly, prolonged morphine administration in adulthood was associated with smaller brain volumes that differed by sex only in case of previous exposure to morphine in infancy. Specifically, we report significantly smaller total brain volume of female rats on account of decreased volumes of forebrain and cortex. Conclusions Our study provides insight into the short- and long-term consequences of prolonged morphine administration in an infant rat model and suggests brain vulnerability to subsequent exposure in adulthood that might differ with sex.
Collapse
Affiliation(s)
- Milo Taylor
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital, Boston, MA, United States
- Harvard College, Massachusetts Hall, Cambridge, MA, United States
| | - Anya Brooke Cheng
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital, Boston, MA, United States
- Harvard College, Massachusetts Hall, Cambridge, MA, United States
| | - Duncan Jack Hodkinson
- Division of Clinical Neuroscience, School of Medicine, University of Nottingham, Nottingham, United Kingdom
- Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, Nottingham, United Kingdom
- National Institute for Health Research (NIHR), Nottingham Biomedical Research Center, Queens Medical Center, Nottingham, United Kingdom
- Versus Arthritis Pain Centre, University of Nottingham, Nottingham, United Kingdom
| | - Onur Afacan
- Department of Radiology, Boston Children’s Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - David Zurakowski
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Dusica Bajic
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Correspondence: Dusica Bajic
| |
Collapse
|
50
|
Eckard ML, Marvin E, Conrad K, Oberdörster G, Sobolewski M, Cory-Slechta DA. Neonatal exposure to ultrafine iron but not combined iron and sulfur aerosols recapitulates air pollution-induced impulsivity in mice. Neurotoxicology 2023; 94:191-205. [PMID: 36509212 PMCID: PMC9839645 DOI: 10.1016/j.neuro.2022.12.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/07/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022]
Abstract
Air pollution (AP) is becoming recognized as a major threat to neurological health across the lifespan with increased risk of both neurodevelopmental and neurodegenerative disorders. AP is a complex mixture of gases and particulate matter, with adsorbed contaminants including metals and trace elements, which may differentially contribute to its neurodevelopmental impacts. Iron (Fe) is one of the most abundant metals found in AP, and Fe concentrations may drive some behavioral deficits observed in children. Furthermore, brains of neonate mice exposed to concentrated ambient ultrafine particulate matter (UFP) show significant brain accumulation of Fe and sulfur (S) supporting the hypothesis that AP exposure may lead to brain metal dyshomeostasis. The current study determined the extent to which behavioral effects of UFP, namely memory deficits and impulsive-like behavior, could be recapitulated with exposure to Fe aerosols with or without concomitant SO2. Male and female neonate mice were either exposed to filtered air or spark discharge-generated ultrafine Fe particles with or without SO2 gas (n = 12/exposure/sex). Inhalation exposures occurred from postnatal day (PND) 4-7 and 10-13 for 4 hr/day, mirroring our previous UFP exposures. Mice were aged to adulthood prior to behavioral testing. While Fe or Fe + SO2 exposure did not affect gross locomotor behavior, Fe + SO2-exposed females displayed consistent thigmotaxis during locomotor testing. Neither exposure affected novel object memory. Fe or Fe + SO2 exposure produced differential outcomes on a fixed-interval reinforcement schedule with males showing higher (Fe-only) or lower (Fe + SO2) response rates and postreinforcement pauses (PRP) and females showing higher (Fe-only) PRP. Lastly, Fe-exposed, but not Fe + SO2-exposed, males showed increased impulsive-like behavior in tasks requiring response inhibition with no such effects in female mice. These findings suggest that: 1) exposure to realistic concentrations of Fe aerosols can recapitulate behavioral effects of UFP exposure, 2) the presence of SO2 can modulate behavioral effects of Fe inhalation, and 3) brain metal dyshomeostasis may be an important factor in AP neurotoxicity.
Collapse
Affiliation(s)
- M L Eckard
- Department of Environmental Medicine, University of Rochester School of Medicine & Dentistry, Rochester, NY, USA; Department of Psychology, Radford University, Radford, VA, USA.
| | - E Marvin
- Department of Environmental Medicine, University of Rochester School of Medicine & Dentistry, Rochester, NY, USA
| | - K Conrad
- Department of Environmental Medicine, University of Rochester School of Medicine & Dentistry, Rochester, NY, USA
| | - G Oberdörster
- Department of Environmental Medicine, University of Rochester School of Medicine & Dentistry, Rochester, NY, USA
| | - M Sobolewski
- Department of Environmental Medicine, University of Rochester School of Medicine & Dentistry, Rochester, NY, USA
| | - D A Cory-Slechta
- Department of Environmental Medicine, University of Rochester School of Medicine & Dentistry, Rochester, NY, USA
| |
Collapse
|