1
|
Wang F, Ma Y, Gao T, Tao Y, Wang R, Zhao R, Cao F, Gao Y, Ning X. Repairbads: An automatic and adaptive method to repair bad channels and segments for OPM-MEG. Neuroimage 2025; 306:120996. [PMID: 39778818 DOI: 10.1016/j.neuroimage.2024.120996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 11/11/2024] [Accepted: 12/31/2024] [Indexed: 01/11/2025] Open
Abstract
The optically pumped magnetometer (OPM) based magnetoencephalography (MEG) system offers advantages such as flexible layout and wearability. However, the position instability or jitter of OPM sensors can result in bad channels and segments, which significantly impede subsequent preprocessing and analysis. Most common methods directly reject or interpolate to repair these bad channels and segments. Direct rejection leads to data loss, and when the number of sensors is limited, interpolation using neighboring sensors can cause significant signal distortion and cannot repair bad segments present in all channels. Therefore, most existing methods are unsuitable for OPM-MEG systems with fewer channels. We introduce an automatic bad segments and bad channels repair method for OPM-MEG, called Repairbads. This method aims to repair all bad data and reduce signal distortion, especially capable of automatically repairing bad segments present in all channels simultaneously. Repairbads employs Riemannian Potato combined with joint decorrelation to project out artifact components, achieving automatic bad segment repair. Then, an adaptive algorithm is used to segment the signal into relatively stable noise data chunks, and the source-estimate-utilizing noise-discarding algorithm is applied to each chunk to achieve automatic bad channel repair. We compared the performance of Repairbads with the Autoreject method on both simulated and real auditory evoked data, using five evaluation metrics for quantitative assessment. The results demonstrate that Repairbads consistently outperforms across all five metrics. In both simulated and real OPM-MEG data, Repairbads shows better performance than current state-of-the-art methods, reliably repairing bad data with minimal distortion. The automation of this method significantly reduces the burden of manual inspection, promoting the automated processing and clinical application of OPM-MEG.
Collapse
Affiliation(s)
- Fulong Wang
- Key Laboratory of Ultra-Weak Magnetic Field Measurement Technology, Ministry of Education, School of Instrumentation and Optoelectronic Engineering, Beihang University, 100191, Beijing, China; Hangzhou Institute of Extremely-Weak Magnetic Field Major National Science and Technology Infrastructure, Hangzhou, 310051, China.
| | - Yujie Ma
- Key Laboratory of Ultra-Weak Magnetic Field Measurement Technology, Ministry of Education, School of Instrumentation and Optoelectronic Engineering, Beihang University, 100191, Beijing, China; Hangzhou Institute of Extremely-Weak Magnetic Field Major National Science and Technology Infrastructure, Hangzhou, 310051, China.
| | - Tianyu Gao
- Key Laboratory of Ultra-Weak Magnetic Field Measurement Technology, Ministry of Education, School of Instrumentation and Optoelectronic Engineering, Beihang University, 100191, Beijing, China; Hangzhou Institute of Extremely-Weak Magnetic Field Major National Science and Technology Infrastructure, Hangzhou, 310051, China.
| | - Yue Tao
- Key Laboratory of Ultra-Weak Magnetic Field Measurement Technology, Ministry of Education, School of Instrumentation and Optoelectronic Engineering, Beihang University, 100191, Beijing, China; Hangzhou Institute of Extremely-Weak Magnetic Field Major National Science and Technology Infrastructure, Hangzhou, 310051, China.
| | - Ruonan Wang
- Key Laboratory of Ultra-Weak Magnetic Field Measurement Technology, Ministry of Education, School of Instrumentation and Optoelectronic Engineering, Beihang University, 100191, Beijing, China; Hangzhou Institute of Extremely-Weak Magnetic Field Major National Science and Technology Infrastructure, Hangzhou, 310051, China.
| | - Ruochen Zhao
- Key Laboratory of Ultra-Weak Magnetic Field Measurement Technology, Ministry of Education, School of Instrumentation and Optoelectronic Engineering, Beihang University, 100191, Beijing, China; Hangzhou Institute of Extremely-Weak Magnetic Field Major National Science and Technology Infrastructure, Hangzhou, 310051, China.
| | - Fuzhi Cao
- Key Laboratory of Ultra-Weak Magnetic Field Measurement Technology, Ministry of Education, School of Instrumentation and Optoelectronic Engineering, Beihang University, 100191, Beijing, China; Hangzhou Institute of Extremely-Weak Magnetic Field Major National Science and Technology Infrastructure, Hangzhou, 310051, China; School of Engineering Medicine, Beihang University, Beijing, 100191, China.
| | - Yang Gao
- Key Laboratory of Ultra-Weak Magnetic Field Measurement Technology, Ministry of Education, School of Instrumentation and Optoelectronic Engineering, Beihang University, 100191, Beijing, China; Hangzhou Institute of Extremely-Weak Magnetic Field Major National Science and Technology Infrastructure, Hangzhou, 310051, China.
| | - Xiaolin Ning
- Key Laboratory of Ultra-Weak Magnetic Field Measurement Technology, Ministry of Education, School of Instrumentation and Optoelectronic Engineering, Beihang University, 100191, Beijing, China; Hangzhou Institute of Extremely-Weak Magnetic Field Major National Science and Technology Infrastructure, Hangzhou, 310051, China; State Key Laboratory of Traditional Chinese Medicine Syndrome/Health Construction Center, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China; Hefei National Laboratory, Hefei, 230088, China.
| |
Collapse
|
2
|
Ge Y, Li Y, Li Y, Liu X, Dong X, Gao X. Research on the Application of Silver Nanowire-Based Non-Magnetic Transparent Heating Films in SERF Magnetometers. SENSORS (BASEL, SWITZERLAND) 2025; 25:234. [PMID: 39797024 PMCID: PMC11723459 DOI: 10.3390/s25010234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/26/2024] [Accepted: 01/02/2025] [Indexed: 01/13/2025]
Abstract
We propose a non-magnetic transparent heating film based on silver nanowires (Ag-NWs) for application in spin-exchange relaxation-free (SERF) magnetic field measurement devices. To achieve ultra-high sensitivity in atomic magnetometers, the atoms within the alkali metal vapor cell must be maintained in a stable and uniform high-temperature environment. Ag-NWs, as a transparent conductive material with exceptional electrical conductivity, are well suited for this application. By employing high-frequency AC heating, we effectively minimize associated magnetic noise. The experimental results demonstrate that the proposed heating film, utilizing a surface heating method, can achieve temperatures exceeding 140 °C, which is sufficient to vaporize alkali metal atoms. The average magnetic flux coefficient of the heating film is 0.1143 nT/mA. Typically, as the current increases, a larger magnetic field is generated. When integrated with the heating system discussed in this paper, this characteristic can effectively mitigate low-frequency magnetic interference. In comparison with traditional flexible printed circuits (FPC), the Ag-NWs heating film exhibits a more uniform temperature distribution. This magnetically transparent heating film, leveraging Ag-NWs, enhances atomic magnetometry and presents opportunities for use in chip-level gyroscopes, atomic clocks, and various other atomic devices.
Collapse
Affiliation(s)
- Yi Ge
- School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (Y.G.); (Y.L.); (X.L.); (X.D.); (X.G.)
| | - Yuhan Li
- School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (Y.G.); (Y.L.); (X.L.); (X.D.); (X.G.)
| | - Yang Li
- School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (Y.G.); (Y.L.); (X.L.); (X.D.); (X.G.)
| | - Xuejing Liu
- School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (Y.G.); (Y.L.); (X.L.); (X.D.); (X.G.)
- Qinhuangdao Hongyan Optoelectronics Technology Co., Ltd., Qinhuangdao 066000, China
| | - Xiangmei Dong
- School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (Y.G.); (Y.L.); (X.L.); (X.D.); (X.G.)
| | - Xiumin Gao
- School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (Y.G.); (Y.L.); (X.L.); (X.D.); (X.G.)
| |
Collapse
|
3
|
Wu T, Xiao W, Peng X, Wu T, Guo H. Compact high-bandwidth single-beam optically-pumped magnetometer for biomagnetic measurement. BIOMEDICAL OPTICS EXPRESS 2025; 16:235-244. [PMID: 39816151 PMCID: PMC11729300 DOI: 10.1364/boe.545624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/19/2024] [Accepted: 12/03/2024] [Indexed: 01/18/2025]
Abstract
Optically-pumped magnetometer (OPM) has been of increasing interest for biomagnetic measurements due to its low cost and portability compared with superconducting quantum interference devices (SQUID). Miniaturized spin-exchange-relaxation-free (SERF) OPMs typically have limited bandwidth (less than a few hundred Hertz), making it difficult to measure high-frequency biomagnetic signals such as the magnetocardiography (MCG) signal of the mouse. Existing experiments mainly use SQUID systems to measure the signal. In this paper, we introduce a prototype miniaturized single-beam SERF magnetometer with a bandwidth of ∼ 1 kHz. Instead of operating the OPM in a closed-loop mode to improve the bandwidth of the OPM, which usually has a poorer performance in high-frequency range, we use the power-broadening effects to shorten the spin relaxation time and thus a faster response to the magnetic fields to be measured. Combined with light power stabilizations to improve both the sensitivity and stability, our magnetometer has a low noise floor of 30 fT / Hz1/2, which has been successfully adopted to measure the MCG signal of the mouse.
Collapse
Affiliation(s)
- Tianbo Wu
- State Key Laboratory of Advanced Optical Communication Systems and Networks, School of Electronics, and Center for Quantum Information Technology, Peking University, Beijing 100871, China
| | - Wei Xiao
- State Key Laboratory of Advanced Optical Communication Systems and Networks, School of Electronics, and Center for Quantum Information Technology, Peking University, Beijing 100871, China
- MIIT Key Laboratory of Complex-field Intelligent Sensing, Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China
| | - Xiang Peng
- State Key Laboratory of Advanced Optical Communication Systems and Networks, School of Electronics, and Center for Quantum Information Technology, Peking University, Beijing 100871, China
| | - Teng Wu
- State Key Laboratory of Advanced Optical Communication Systems and Networks, School of Electronics, and Center for Quantum Information Technology, Peking University, Beijing 100871, China
| | - Hong Guo
- State Key Laboratory of Advanced Optical Communication Systems and Networks, School of Electronics, and Center for Quantum Information Technology, Peking University, Beijing 100871, China
| |
Collapse
|
4
|
Sun T, Chi X, Peng Y, Zhang Q, Liu K, Ma Y, Ding M, Ji N, Zhang Y. A first-in-human application of OPM-MEG for localizing motor activity area: Compared to functional MRI. Neuroimage 2024; 304:120953. [PMID: 39608477 DOI: 10.1016/j.neuroimage.2024.120953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 11/07/2024] [Accepted: 11/21/2024] [Indexed: 11/30/2024] Open
Abstract
BACKGROUND Accurately localizing brain motor areas is vital for protecting motor function during neurosurgical procedures. Magnetoencephalography (MEG) based on optically pumped magnetometer (OPM) improves the availability of MEG in clinical applications. The aim of this study is to evaluate the availability, accuracy and precision of "OPM-MEG" for localizing motor areas in brain tumor patients and healthy individuals. METHODS Participants were enrolled and subjected to primary motor area localization by both 3T-fMRI and 128-channel OPM-MEG examinations. The localization accuracy (ability of mapping on the anatomical location) and precision (activation signal centralization) were compared between the two methods, and accuracy was further validated by intraoperative direct cortical electrical stimulation (DCS) on the localized area with assistance of neuro-navigation system. RESULT A total of 12 participants (7 brain tumor patients and 5 healthy individuals) were enrolled and all had successful localization for motor areas by both methods. The average time of OPM-MEG examination for each limb function was approximately 9 min. The localizations by both methods mainly covered the anatomical location of primary motor cortex and were partially overlapped. The motor activation signal identified by OPM-MEG was more centralized than fMRI did. The centroid of motor area localized by the OPM-MEG deviated from it by fMRI, with a mean distance of 19.7 mm and 27.48 mm for hand or foot localization, respectively. Furthermore, the OPM-MEG centroid for hand movement successfully triggered corresponding hand response by DCS. CONCLUSIONS In this first-in-human study exploring the potential of OPM-MEG in functional localization of motor areas, we revealed its availability and reliability in mapping motor areas, demonstrating it as a promising tool in assisting neurosurgical practice and neuroscience research.
Collapse
Affiliation(s)
- Tai Sun
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, PR China.
| | - Xiaohan Chi
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, PR China.
| | - Yuming Peng
- School of Instrumentation Science and Opto-electronics Engineering, Beihang University, Beijing 100191, PR China.
| | - Qianhe Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, PR China.
| | - Kang Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, PR China.
| | - Yiwen Ma
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, PR China.
| | - Ming Ding
- School of Instrumentation Science and Opto-electronics Engineering, Beihang University, Beijing 100191, PR China.
| | - Nan Ji
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, PR China.
| | - Yang Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, PR China.
| |
Collapse
|
5
|
Xu W, Lyu B, Ru X, Li D, Gu W, Ma X, Zheng F, Li T, Liao P, Cheng H, Yang R, Song J, Jin Z, Li C, He K, Gao JH. Decoding the Temporal Structures and Interactions of Multiple Face Dimensions Using Optically Pumped Magnetometer Magnetoencephalography (OPM-MEG). J Neurosci 2024; 44:e2237232024. [PMID: 39358044 PMCID: PMC11580774 DOI: 10.1523/jneurosci.2237-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 09/18/2024] [Accepted: 09/25/2024] [Indexed: 10/04/2024] Open
Abstract
Humans possess a remarkable ability to rapidly access diverse information from others' faces with just a brief glance, which is crucial for intricate social interactions. While previous studies using event-related potentials/fields have explored various face dimensions during this process, the interplay between these dimensions remains unclear. Here, by applying multivariate decoding analysis to neural signals recorded with optically pumped magnetometer magnetoencephalography, we systematically investigated the temporal interactions between invariant and variable aspects of face stimuli, including race, gender, age, and expression. First, our analysis revealed unique temporal structures for each face dimension with high test-retest reliability. Notably, expression and race exhibited a dominant and stably maintained temporal structure according to temporal generalization analysis. Further exploration into the mutual interactions among face dimensions uncovered age effects on gender and race, as well as expression effects on race, during the early stage (∼200-300 ms postface presentation). Additionally, we observed a relatively late effect of race on gender representation, peaking ∼350 ms after the stimulus onset. Taken together, our findings provide novel insights into the neural dynamics underlying the multidimensional aspects of face perception and illuminate the promising future of utilizing OPM-MEG for exploring higher-level human cognition.
Collapse
Affiliation(s)
- Wei Xu
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Changping Laboratory, Beijing 102206, China
| | | | - Xingyu Ru
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Changping Laboratory, Beijing 102206, China
- Beijing City Key Lab for Medical Physics and Engineering, Institution of Heavy Ion Physics, School of Physics, Peking University, Beijing 100871, China
| | - Dongxu Li
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Changping Laboratory, Beijing 102206, China
- Beijing City Key Lab for Medical Physics and Engineering, Institution of Heavy Ion Physics, School of Physics, Peking University, Beijing 100871, China
| | - Wenyu Gu
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Changping Laboratory, Beijing 102206, China
| | - Xiao Ma
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Changping Laboratory, Beijing 102206, China
- Beijing City Key Lab for Medical Physics and Engineering, Institution of Heavy Ion Physics, School of Physics, Peking University, Beijing 100871, China
| | - Fufu Zheng
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Changping Laboratory, Beijing 102206, China
- Beijing City Key Lab for Medical Physics and Engineering, Institution of Heavy Ion Physics, School of Physics, Peking University, Beijing 100871, China
| | - Tingyue Li
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Changping Laboratory, Beijing 102206, China
- Beijing City Key Lab for Medical Physics and Engineering, Institution of Heavy Ion Physics, School of Physics, Peking University, Beijing 100871, China
| | - Pan Liao
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Changping Laboratory, Beijing 102206, China
| | - Hao Cheng
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Changping Laboratory, Beijing 102206, China
| | - Rui Yang
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Changping Laboratory, Beijing 102206, China
- Beijing City Key Lab for Medical Physics and Engineering, Institution of Heavy Ion Physics, School of Physics, Peking University, Beijing 100871, China
| | - Jingqi Song
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Changping Laboratory, Beijing 102206, China
- Beijing City Key Lab for Medical Physics and Engineering, Institution of Heavy Ion Physics, School of Physics, Peking University, Beijing 100871, China
| | - Zeyu Jin
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Changping Laboratory, Beijing 102206, China
- Beijing City Key Lab for Medical Physics and Engineering, Institution of Heavy Ion Physics, School of Physics, Peking University, Beijing 100871, China
| | | | - Kaiyan He
- Changping Laboratory, Beijing 102206, China
| | - Jia-Hong Gao
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Changping Laboratory, Beijing 102206, China
- Beijing City Key Lab for Medical Physics and Engineering, Institution of Heavy Ion Physics, School of Physics, Peking University, Beijing 100871, China
- McGovern Institute for Brain Research, Peking University, Beijing 100871, China
- National Biomedical Imaging Center, Peking University, Beijing 100871, China
| |
Collapse
|
6
|
Ito Y, Ueda H, Oida T, Moriya T, Saito A, Suyama M. Simplified shielded MEG-MRI multimodal system with scalar-mode optically pumped magnetometers as MEG sensors. Sci Rep 2024; 14:25867. [PMID: 39468155 PMCID: PMC11519340 DOI: 10.1038/s41598-024-77089-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 10/18/2024] [Indexed: 10/30/2024] Open
Abstract
Magnetoencephalography (MEG) conventionally operates within high-performance magnetic shields due to the extremely weak magnetic field signals from the measured objects and the narrow dynamic range of the magnetic sensors employed for detection. This limitation results in elevated equipment costs and restricted usage. Additionally, the information obtained from MEG is functional images, and to analyze from which part of the brain the signals are coming, it is necessary to capture morphological images separately. When MEG and morphological imaging devices are separate, despite their individual high measurement accuracies, discrepancies in positional information may arise. In response, we have developed a low-field magnetic resonance imaging system that incorporates scalar-mode optically pumped magnetometers with a wide dynamic range and exceptionally high measurement sensitivity as sensors for MEG. Operating at low magnetic fields eliminates the need for superconducting coils in magnetic resonance imaging and the high-performance magnetic shields essential for MEG, promising a substantial cost reduction compared to traditional approaches. We achieved a noise level of about16.7 pT/Hz 1 / 2 with a single channel magnetometer, and reached a noise level of 367 fT/cm/Hz 1 / 2 with a baseline of 1 cm through differential measurements. We employed this system to conduct sequential OPM-based magnetic field measurements and MRI imaging, successfully demonstrating the compatibility of high OPM sensitivity with clear MRI acquisition.
Collapse
Affiliation(s)
- Yosuke Ito
- Department of Electrical Engineering, Graduate School of Engineering, Kyoto University, Kyoto-daigaku Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan.
| | - Hiroyuki Ueda
- Department of Electrical Engineering, Graduate School of Engineering, Kyoto University, Kyoto-daigaku Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Takenori Oida
- Central Research Laboratory, Hamamatsu Photonics K.K., Hamamatsu, Japan
| | - Takahiro Moriya
- Central Research Laboratory, Hamamatsu Photonics K.K., Hamamatsu, Japan
| | - Akinori Saito
- Central Research Laboratory, Hamamatsu Photonics K.K., Hamamatsu, Japan
| | - Motohiro Suyama
- Global Strategic Challenge Center, Hamamatsu Photonics K.K., Hamamatsu, Japan
| |
Collapse
|
7
|
Power L, Bardouille T, Ikeda KM, Omisade A. Validation of On-Head OPM MEG for Language Laterality Assessment. Brain Topogr 2024; 38:8. [PMID: 39400782 DOI: 10.1007/s10548-024-01086-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 10/06/2024] [Indexed: 10/15/2024]
Abstract
Pre-surgical localization of language function in the brain is critical for patients with medically intractable epilepsy. MEG has emerged as a valuable clinical tool for localizing language areas in clinical populations, however, it is limited for widespread application due to the low availability of the system. Recent advances in optically pumped magnetometer (OPM) systems account for some of the limitations of traditional MEG and have been shown to have a similar signal-to-noise ratio. However, the novelty of these systems means that they have only been tested for limited sensory and motor applications. In this work, we aim to validate a novel on-head OPM MEG procedure for lateralizing language processes. OPM recordings, using a soft cap with flexible sensor placement, were collected from 19 healthy, right-handed controls during an auditory word recognition task. The resulting evoked fields were assessed for hemispheric laterality of the response. Principal component analysis (PCA) of the grand average language response indicated that the first two principal components were lateralized to the left hemisphere. The PCA also revealed that all participants had evoked topographies that closely resembled the average left-lateralized response. Left-lateralized responses were consistent with what is expected for a group of healthy right-handed individuals. These findings demonstrate that language-related evoked fields can be elucidated from on-head OPM MEG recordings in a group of healthy adult participants. In the future, on-head OPM MEG and the associated lateralization methods should be validated in patient populations as they may have utility in the pre-surgical mapping of language functions in patients with epilepsy.
Collapse
Affiliation(s)
- Lindsey Power
- School of Biomedical Engineering, Dalhousie University, Halifax, NS, Canada
| | - Timothy Bardouille
- Department of Physics & Atmospheric Science, Dalhousie University, Halifax, NS, Canada.
| | - Kristin M Ikeda
- Division of Neurology, Department of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Antonina Omisade
- Acquired Brain Injury (Epilepsy Program), Nova Scotia Health, Halifax, NS, Canada
| |
Collapse
|
8
|
Vandewouw MM, Sato J, Safar K, Rhodes N, Taylor MJ. The development of aperiodic and periodic resting-state power between early childhood and adulthood: New insights from optically pumped magnetometers. Dev Cogn Neurosci 2024; 69:101433. [PMID: 39126820 PMCID: PMC11350249 DOI: 10.1016/j.dcn.2024.101433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/04/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024] Open
Abstract
Neurophysiological signals, comprised of both periodic (e.g., oscillatory) and aperiodic (e.g., non-oscillatory) activity, undergo complex developmental changes between childhood and adulthood. With much of the existing literature primarily focused on the periodic features of brain function, our understanding of aperiodic signals is still in its infancy. Here, we are the first to examine age-related changes in periodic (peak frequency and power) and aperiodic (slope and offset) activity using optically pumped magnetometers (OPMs), a new, wearable magnetoencephalography (MEG) technology that is particularly well-suited for studying development. We examined age-related changes in these spectral features in a sample (N=65) of toddlers (1-3 years), children (4-5 years), young adults (20-26 years), and adults (27-38 years). Consistent with the extant literature, we found significant age-related decreases in the aperiodic slope and offset, and changes in peak frequency and power that were frequency-specific; we are the first to show that the effect sizes of these changes also varied across brain regions. This work not only adds to the growing body of work highlighting the advantages of using OPMs, especially for studying development, but also contributes novel information regarding the variation of neurophysiological changes with age across the brain.
Collapse
Affiliation(s)
- Marlee M Vandewouw
- Department of Diagnostic & Interventional Radiology, Hospital for Sick Children, Toronto, Canada; Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, Canada; Autism Research Centre, Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, Canada.
| | - Julie Sato
- Department of Diagnostic & Interventional Radiology, Hospital for Sick Children, Toronto, Canada; Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, Canada
| | - Kristina Safar
- Department of Diagnostic & Interventional Radiology, Hospital for Sick Children, Toronto, Canada; Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, Canada
| | - Natalie Rhodes
- Department of Diagnostic & Interventional Radiology, Hospital for Sick Children, Toronto, Canada; Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, United Kingdom
| | - Margot J Taylor
- Department of Diagnostic & Interventional Radiology, Hospital for Sick Children, Toronto, Canada; Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, Canada; Department of Medical Imaging, University of Toronto, Toronto, Canada; Department of Psychology, University of Toronto, Toronto, Canada
| |
Collapse
|
9
|
Schofield H, Hill RM, Feys O, Holmes N, Osborne J, Doyle C, Bobela D, Corvilain P, Wens V, Rier L, Bowtell R, Ferez M, Mullinger KJ, Coleman S, Rhodes N, Rea M, Tanner Z, Boto E, de Tiège X, Shah V, Brookes MJ. A novel, robust, and portable platform for magnetoencephalography using optically-pumped magnetometers. IMAGING NEUROSCIENCE (CAMBRIDGE, MASS.) 2024; 2:1-22. [PMID: 39502465 PMCID: PMC11533384 DOI: 10.1162/imag_a_00283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/28/2024] [Accepted: 07/29/2024] [Indexed: 11/08/2024]
Abstract
Magnetoencephalography (MEG) measures brain function via assessment of magnetic fields generated by neural currents. Conventional MEG uses superconducting sensors, which place significant limitations on performance, practicality, and deployment; however, the field has been revolutionised in recent years by the introduction of optically-pumped magnetometers (OPMs). OPMs enable measurement of the MEG signal without cryogenics, and consequently the conception of "OPM-MEG" systems which ostensibly allow increased sensitivity and resolution, lifespan compliance, free subject movement, and lower cost. However, OPM-MEG is in its infancy with existing limitations on both sensor and system design. Here, we report a new OPM-MEG design with miniaturised and integrated electronic control, a high level of portability, and improved sensor dynamic range. We show that this system produces equivalent measures compared with an established OPM-MEG instrument; specifically, when measuring task-induced beta-band, gamma-band, and evoked neuro-electrical responses, source localisations from the two systems were comparable and temporal correlation of measured brain responses was >0.7 at the individual level and >0.9 for groups. Using an electromagnetic phantom, we demonstrate improved dynamic range by running the system in background fields up to 8 nT. We show that the system is effective in gathering data during free movement (including a sitting-to-standing paradigm) and that it is compatible with simultaneous electroencephalography (EEG). Finally, we demonstrate portability by moving the system between two laboratories. Overall, our new system is shown to be a significant step forward for OPM-MEG and offers an attractive platform for next generation functional medical imaging.
Collapse
Affiliation(s)
- Holly Schofield
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, United Kingdom
- Cerca Magnetics Limited, Nottingham, United Kingdom
| | - Ryan M. Hill
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, United Kingdom
- Cerca Magnetics Limited, Nottingham, United Kingdom
| | - Odile Feys
- Université libre de Bruxelles, ULB Neuroscience Institute, Laboratoire de neuroanatomie et neuroimagerie translationelles, Brussels, Belgium
- Department of Neurology, Hôpital Erasme, Hôpital Universitaire de Bruxelles, Université libre de Bruxelles, Brussels, Belgium
| | - Niall Holmes
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, United Kingdom
- Cerca Magnetics Limited, Nottingham, United Kingdom
| | | | - Cody Doyle
- QuSpin Inc., Louisville, CO, United States
| | | | - Pierre Corvilain
- Université libre de Bruxelles, ULB Neuroscience Institute, Laboratoire de neuroanatomie et neuroimagerie translationelles, Brussels, Belgium
| | - Vincent Wens
- Université libre de Bruxelles, ULB Neuroscience Institute, Laboratoire de neuroanatomie et neuroimagerie translationelles, Brussels, Belgium
- Department of Translational Neuroimaging, Hôpital Erasme, Hôpital Universitaire de Bruxelles, Université libre de Bruxelles, Brussels, Belgium
| | - Lukas Rier
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, United Kingdom
| | - Richard Bowtell
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, United Kingdom
| | - Maxime Ferez
- Université libre de Bruxelles, ULB Neuroscience Institute, Laboratoire de neuroanatomie et neuroimagerie translationelles, Brussels, Belgium
| | - Karen J. Mullinger
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, United Kingdom
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham, United Kingdom
| | - Sebastian Coleman
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, United Kingdom
| | - Natalie Rhodes
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, United Kingdom
| | - Molly Rea
- Cerca Magnetics Limited, Nottingham, United Kingdom
| | - Zoe Tanner
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, United Kingdom
- Cerca Magnetics Limited, Nottingham, United Kingdom
| | - Elena Boto
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, United Kingdom
- Cerca Magnetics Limited, Nottingham, United Kingdom
| | - Xavier de Tiège
- Université libre de Bruxelles, ULB Neuroscience Institute, Laboratoire de neuroanatomie et neuroimagerie translationelles, Brussels, Belgium
- Department of Translational Neuroimaging, Hôpital Erasme, Hôpital Universitaire de Bruxelles, Université libre de Bruxelles, Brussels, Belgium
| | | | - Matthew J. Brookes
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, United Kingdom
- Cerca Magnetics Limited, Nottingham, United Kingdom
| |
Collapse
|
10
|
Brickwedde M, Anders P, Kühn AA, Lofredi R, Holtkamp M, Kaindl AM, Grent-'t-Jong T, Krüger P, Sander T, Uhlhaas PJ. Applications of OPM-MEG for translational neuroscience: a perspective. Transl Psychiatry 2024; 14:341. [PMID: 39181883 PMCID: PMC11344782 DOI: 10.1038/s41398-024-03047-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 06/25/2024] [Accepted: 08/01/2024] [Indexed: 08/27/2024] Open
Abstract
Magnetoencephalography (MEG) allows the non-invasive measurement of brain activity at millisecond precision combined with localization of the underlying generators. So far, MEG-systems consisted of superconducting quantum interference devices (SQUIDS), which suffer from several limitations. Recent technological advances, however, have enabled the development of novel MEG-systems based on optically pumped magnetometers (OPMs), offering several advantages over conventional SQUID-MEG systems. Considering potential improvements in the measurement of neuronal signals as well as reduced operating costs, the application of OPM-MEG systems for clinical neuroscience and diagnostic settings is highly promising. Here we provide an overview of the current state-of-the art of OPM-MEG and its unique potential for translational neuroscience. First, we discuss the technological features of OPMs and benchmark OPM-MEG against SQUID-MEG and electroencephalography (EEG), followed by a summary of pioneering studies of OPMs in healthy populations. Key applications of OPM-MEG for the investigation of psychiatric and neurological conditions are then reviewed. Specifically, we suggest novel applications of OPM-MEG for the identification of biomarkers and circuit deficits in schizophrenia, dementias, movement disorders, epilepsy, and neurodevelopmental syndromes (autism spectrum disorder and attention deficit hyperactivity disorder). Finally, we give an outlook of OPM-MEG for translational neuroscience with a focus on remaining methodological and technical challenges.
Collapse
Affiliation(s)
- Marion Brickwedde
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, Department of Child and Adolescent Psychiatry, 13353, Berlin, Germany.
- Physikalisch-Technische Bundesanstalt, Berlin, Germany.
| | - Paul Anders
- Physikalisch-Technische Bundesanstalt, Berlin, Germany
| | - Andrea A Kühn
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, Sektion für Bewegungsstörungen und Neuromodulation, Klinik für Neurologie und Experimentelle Neurologie, 10117, Berlin, Germany
- Bernstein Center for Computational Neuroscience, Humboldt-Universität, Berlin, Germany
- NeuroCure, Exzellenzcluster, Charité-Universitätsmedizin Berlin, Berlin, Germany
- DZNE, German center for neurodegenerative diseases, Berlin, Germany
- Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Roxanne Lofredi
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, Sektion für Bewegungsstörungen und Neuromodulation, Klinik für Neurologie und Experimentelle Neurologie, 10117, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| | - Martin Holtkamp
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, Department of Neurology, Epilepsy-Center Berlin-Brandenburg, 10117, Berlin, Germany
| | - Angela M Kaindl
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, Department of Pediatric Neurology, 13353, Berlin, Germany
- Charité- Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, Center for Chronically Sick Children, 13353, Berlin, Germany
- Charité- Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, Institute of Cell Biology and Neurobiology, 10117, Berlin, Germany
| | - Tineke Grent-'t-Jong
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, Department of Child and Adolescent Psychiatry, 13353, Berlin, Germany
- Institute for Neuroscience and Psychology, Glasgow University, Scotland, United Kingdom
| | - Peter Krüger
- Physikalisch-Technische Bundesanstalt, Berlin, Germany
| | | | - Peter J Uhlhaas
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, Department of Child and Adolescent Psychiatry, 13353, Berlin, Germany
- Institute for Neuroscience and Psychology, Glasgow University, Scotland, United Kingdom
| |
Collapse
|
11
|
Bomatter P, Paillard J, Garces P, Hipp J, Engemann DA. Machine learning of brain-specific biomarkers from EEG. EBioMedicine 2024; 106:105259. [PMID: 39106531 DOI: 10.1016/j.ebiom.2024.105259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 07/05/2024] [Accepted: 07/11/2024] [Indexed: 08/09/2024] Open
Abstract
BACKGROUND Electroencephalography (EEG) has a long history as a clinical tool to study brain function, and its potential to derive biomarkers for various applications is far from exhausted. Machine learning (ML) can guide future innovation by harnessing the wealth of complex EEG signals to isolate relevant brain activity. Yet, ML studies in EEG tend to ignore physiological artefacts, which may cause problems for deriving biomarkers specific to the central nervous system (CNS). METHODS We present a framework for conceptualising machine learning from CNS versus peripheral signals measured with EEG. A signal representation based on Morlet wavelets allowed us to define traditional brain activity features (e.g. log power) and alternative inputs used by state-of-the-art ML approaches based on covariance matrices. Using more than 2600 EEG recordings from large public databases (TUAB, TDBRAIN), we studied the impact of peripheral signals and artefact removal techniques on ML models in age and sex prediction analyses. FINDINGS Across benchmarks, basic artefact rejection improved model performance, whereas further removal of peripheral signals using ICA decreased performance. Our analyses revealed that peripheral signals enable age and sex prediction. However, they explained only a fraction of the performance provided by brain signals. INTERPRETATION We show that brain signals and body signals, both present in the EEG, allow for prediction of personal characteristics. While these results may depend on specific applications, our work suggests that great care is needed to separate these signals when the goal is to develop CNS-specific biomarkers using ML. FUNDING All authors have been working for F. Hoffmann-La Roche Ltd.
Collapse
Affiliation(s)
- Philipp Bomatter
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Joseph Paillard
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Pilar Garces
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Jörg Hipp
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Denis-Alexander Engemann
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland.
| |
Collapse
|
12
|
Xu X, Liu Y. The active magnetic compensation coil. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2024; 95:081501. [PMID: 39093122 DOI: 10.1063/5.0186023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 06/29/2024] [Indexed: 08/04/2024]
Abstract
The active magnetic compensation coil is of great significance for extensive applications, such as fundamental physics, aerospace engineering, national defense industry, and biological science. The magnetic shielding demand is increasing over past few decades, and better performances of the coil are required. To maintain normal operating conditions for some sensors, active magnetic compensation coils are often used to implement near-zero field environments. Many coil design methods have been developed to design the active compensation coil for different fields. It is opportune to review the development and challenges associated with active magnetic compensation coils. Active magnetic compensation coils are reviewed in this paper in terms of design methods, technology, and applications. Furthermore, the operational principle and typical structures of the coil are elucidated. The developments of the forward design method, inverse design method, and optimization algorithm are presented. Principles of various design methods and their respective advantages and disadvantages are described in detail. Finally, critical challenges in the active magnetic compensation coil techniques and potential research directions have been highlighted.
Collapse
Affiliation(s)
- Xueping Xu
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China
- Zhejiang Provincial Key Laboratory of Ultra-Weak Magnetic-Field Space and Applied Technology, Hangzhou Innovation Institute of Beihang University, Hangzhou 310000, China
| | - Yi Liu
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China
- Zhejiang Provincial Key Laboratory of Ultra-Weak Magnetic-Field Space and Applied Technology, Hangzhou Innovation Institute of Beihang University, Hangzhou 310000, China
| |
Collapse
|
13
|
Rier L, Rhodes N, Pakenham DO, Boto E, Holmes N, Hill RM, Reina Rivero G, Shah V, Doyle C, Osborne J, Bowtell RW, Taylor M, Brookes MJ. Tracking the neurodevelopmental trajectory of beta band oscillations with optically pumped magnetometer-based magnetoencephalography. eLife 2024; 13:RP94561. [PMID: 38831699 PMCID: PMC11149934 DOI: 10.7554/elife.94561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024] Open
Abstract
Neural oscillations mediate the coordination of activity within and between brain networks, supporting cognition and behaviour. How these processes develop throughout childhood is not only an important neuroscientific question but could also shed light on the mechanisms underlying neurological and psychiatric disorders. However, measuring the neurodevelopmental trajectory of oscillations has been hampered by confounds from instrumentation. In this paper, we investigate the suitability of a disruptive new imaging platform - optically pumped magnetometer-based magnetoencephalography (OPM-MEG) - to study oscillations during brain development. We show how a unique 192-channel OPM-MEG device, which is adaptable to head size and robust to participant movement, can be used to collect high-fidelity electrophysiological data in individuals aged between 2 and 34 years. Data were collected during a somatosensory task, and we measured both stimulus-induced modulation of beta oscillations in sensory cortex, and whole-brain connectivity, showing that both modulate significantly with age. Moreover, we show that pan-spectral bursts of electrophysiological activity drive task-induced beta modulation, and that their probability of occurrence and spectral content change with age. Our results offer new insights into the developmental trajectory of beta oscillations and provide clear evidence that OPM-MEG is an ideal platform for studying electrophysiology in neurodevelopment.
Collapse
Affiliation(s)
- Lukas Rier
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University ParkNottinghamUnited Kingdom
| | - Natalie Rhodes
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University ParkNottinghamUnited Kingdom
- Diagnostic Imaging, The Hospital for Sick ChildrenTorontoCanada
| | - Daisie O Pakenham
- Clinical Neurophysiology, Nottingham University Hospitals NHS Trust, Queens Medical CentreNottinghamUnited States
| | - Elena Boto
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University ParkNottinghamUnited Kingdom
- Cerca Magnetics Limited, 7-8 Castlebridge Office Village, Kirtley DriveNottinghamUnited Kingdom
| | - Niall Holmes
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University ParkNottinghamUnited Kingdom
- Cerca Magnetics Limited, 7-8 Castlebridge Office Village, Kirtley DriveNottinghamUnited Kingdom
| | - Ryan M Hill
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University ParkNottinghamUnited Kingdom
- Cerca Magnetics Limited, 7-8 Castlebridge Office Village, Kirtley DriveNottinghamUnited Kingdom
| | - Gonzalo Reina Rivero
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University ParkNottinghamUnited Kingdom
| | | | | | | | - Richard W Bowtell
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University ParkNottinghamUnited Kingdom
| | - Margot Taylor
- Diagnostic Imaging, The Hospital for Sick ChildrenTorontoCanada
| | - Matthew J Brookes
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University ParkNottinghamUnited Kingdom
- Cerca Magnetics Limited, 7-8 Castlebridge Office Village, Kirtley DriveNottinghamUnited Kingdom
| |
Collapse
|
14
|
Wu H, Liang X, Wang R, Ma Y, Gao Y, Ning X. A Multivariate analysis on evoked components of Chinese semantic congruity: an OP-MEG study with EEG. Cereb Cortex 2024; 34:bhae108. [PMID: 38610084 DOI: 10.1093/cercor/bhae108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 04/14/2024] Open
Abstract
The application of wearable magnetoencephalography using optically-pumped magnetometers has drawn extensive attention in the field of neuroscience. Electroencephalogram system can cover the whole head and reflect the overall activity of a large number of neurons. The efficacy of optically-pumped magnetometer in detecting event-related components can be validated through electroencephalogram results. Multivariate pattern analysis is capable of tracking the evolution of neurocognitive processes over time. In this paper, we adopted a classical Chinese semantic congruity paradigm and separately collected electroencephalogram and optically-pumped magnetometer signals. Then, we verified the consistency of optically-pumped magnetometer and electroencephalogram in detecting N400 using mutual information index. Multivariate pattern analysis revealed the difference in decoding performance of these two modalities, which can be further validated by dynamic/stable coding analysis on the temporal generalization matrix. The results from searchlight analysis provided a neural basis for this dissimilarity at the magnetoencephalography source level and the electroencephalogram sensor level. This study opens a new avenue for investigating the brain's coding patterns using wearable magnetoencephalography and reveals the differences in sensitivity between the two modalities in reflecting neuron representation patterns.
Collapse
Affiliation(s)
- Huanqi Wu
- Key Laboratory of Ultra-Weak Magnetic Field Measurement Technology, Ministry of Education, School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China
- Hangzhou Institute of National Extremely-weak Magnetic Field Infrastructure, Hangzhou 310051, China
- Zhejiang Provincial Key Laboratory of Ultra-Weak Magnetic-Field Space and Applied Technology, Hangzhou Innovation Institute, Beihang University, Beijing 100191, China
| | - Xiaoyu Liang
- Key Laboratory of Ultra-Weak Magnetic Field Measurement Technology, Ministry of Education, School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China
- Hangzhou Institute of National Extremely-weak Magnetic Field Infrastructure, Hangzhou 310051, China
- Zhejiang Provincial Key Laboratory of Ultra-Weak Magnetic-Field Space and Applied Technology, Hangzhou Innovation Institute, Beihang University, Beijing 100191, China
| | - Ruonan Wang
- Key Laboratory of Ultra-Weak Magnetic Field Measurement Technology, Ministry of Education, School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China
- Hangzhou Institute of National Extremely-weak Magnetic Field Infrastructure, Hangzhou 310051, China
- Zhejiang Provincial Key Laboratory of Ultra-Weak Magnetic-Field Space and Applied Technology, Hangzhou Innovation Institute, Beihang University, Beijing 100191, China
| | - Yuyu Ma
- Key Laboratory of Ultra-Weak Magnetic Field Measurement Technology, Ministry of Education, School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China
- Hangzhou Institute of National Extremely-weak Magnetic Field Infrastructure, Hangzhou 310051, China
- Zhejiang Provincial Key Laboratory of Ultra-Weak Magnetic-Field Space and Applied Technology, Hangzhou Innovation Institute, Beihang University, Beijing 100191, China
| | - Yang Gao
- Key Laboratory of Ultra-Weak Magnetic Field Measurement Technology, Ministry of Education, School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China
- Hangzhou Institute of National Extremely-weak Magnetic Field Infrastructure, Hangzhou 310051, China
- Zhejiang Provincial Key Laboratory of Ultra-Weak Magnetic-Field Space and Applied Technology, Hangzhou Innovation Institute, Beihang University, Beijing 100191, China
| | - Xiaolin Ning
- Key Laboratory of Ultra-Weak Magnetic Field Measurement Technology, Ministry of Education, School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China
- Hangzhou Institute of National Extremely-weak Magnetic Field Infrastructure, Hangzhou 310051, China
- Zhejiang Provincial Key Laboratory of Ultra-Weak Magnetic-Field Space and Applied Technology, Hangzhou Innovation Institute, Beihang University, Beijing 100191, China
- Shandong Key Laboratory for Magnetic Field-free Medicine & Functional Imaging, Institute of Magnetic Field-free Medicine & Functional Imaging, Shandong University, Shandong 264209, China
- Hefei National Laboratory, Anhui 230026, China
| |
Collapse
|
15
|
Rier L, Rhodes N, Pakenham D, Boto E, Holmes N, Hill RM, Rivero GR, Shah V, Doyle C, Osborne J, Bowtell R, Taylor MJ, Brookes MJ. The neurodevelopmental trajectory of beta band oscillations: an OPM-MEG study. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.04.573933. [PMID: 38260246 PMCID: PMC10802362 DOI: 10.1101/2024.01.04.573933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Neural oscillations mediate the coordination of activity within and between brain networks, supporting cognition and behaviour. How these processes develop throughout childhood is not only an important neuroscientific question but could also shed light on the mechanisms underlying neurological and psychiatric disorders. However, measuring the neurodevelopmental trajectory of oscillations has been hampered by confounds from instrumentation. In this paper, we investigate the suitability of a disruptive new imaging platform - Optically Pumped Magnetometer-based magnetoencephalography (OPM-MEG) - to study oscillations during brain development. We show how a unique 192-channel OPM-MEG device, which is adaptable to head size and robust to participant movement, can be used to collect high-fidelity electrophysiological data in individuals aged between 2 and 34 years. Data were collected during a somatosensory task, and we measured both stimulus-induced modulation of beta oscillations in sensory cortex, and whole-brain connectivity, showing that both modulate significantly with age. Moreover, we show that pan-spectral bursts of electrophysiological activity drive task-induced beta modulation, and that their probability of occurrence and spectral content change with age. Our results offer new insights into the developmental trajectory of beta oscillations and provide clear evidence that OPM-MEG is an ideal platform for studying electrophysiology in neurodevelopment.
Collapse
Affiliation(s)
- Lukas Rier
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Natalie Rhodes
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
- Diagnostic Imaging,The Hospital for Sick Children, 555 University Avenue, Toronto, M5G 1X8, Canada
| | - Daisie Pakenham
- Clinical Neurophysiology, Nottingham University Hospitals NHS Trust, Queens Medical Centre, Derby Rd, Lenton, Nottingham NG7 2UH, UK
| | - Elena Boto
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
- Cerca Magnetics Limited, 7-8 Castlebridge Office Village, Kirtley Drive, Nottingham, NG7 1LD, Nottingham, UK
| | - Niall Holmes
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
- Cerca Magnetics Limited, 7-8 Castlebridge Office Village, Kirtley Drive, Nottingham, NG7 1LD, Nottingham, UK
| | - Ryan M. Hill
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
- Cerca Magnetics Limited, 7-8 Castlebridge Office Village, Kirtley Drive, Nottingham, NG7 1LD, Nottingham, UK
| | - Gonzalo Reina Rivero
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Vishal Shah
- QuSpin Inc. 331 South 104th Street, Suite 130, Louisville, Colorado, 80027, USA
| | - Cody Doyle
- QuSpin Inc. 331 South 104th Street, Suite 130, Louisville, Colorado, 80027, USA
| | - James Osborne
- QuSpin Inc. 331 South 104th Street, Suite 130, Louisville, Colorado, 80027, USA
| | - Richard Bowtell
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Margot J. Taylor
- Diagnostic Imaging,The Hospital for Sick Children, 555 University Avenue, Toronto, M5G 1X8, Canada
| | - Matthew J. Brookes
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
- Cerca Magnetics Limited, 7-8 Castlebridge Office Village, Kirtley Drive, Nottingham, NG7 1LD, Nottingham, UK
| |
Collapse
|
16
|
Safar K, Vandewouw MM, Sato J, Devasagayam J, Hill RM, Rea M, Brookes MJ, Taylor MJ. Using optically pumped magnetometers to replicate task-related responses in next generation magnetoencephalography. Sci Rep 2024; 14:6513. [PMID: 38499615 PMCID: PMC10948796 DOI: 10.1038/s41598-024-56878-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 03/12/2024] [Indexed: 03/20/2024] Open
Abstract
Optically pumped magnetometers (OPMs) offer a new wearable means to measure magnetoencephalography (MEG) signals, with many advantages compared to conventional systems. However, OPMs are an emerging technology, thus characterizing and replicating MEG recordings is essential. Using OPM-MEG and SQUID-MEG, this study investigated evoked responses, oscillatory power, and functional connectivity during emotion processing in 20 adults, to establish replicability across the two technologies. Five participants with dental fixtures were included to assess the validity of OPM-MEG recordings in those with irremovable metal. Replicable task-related evoked responses were observed in both modalities. Similar patterns of oscillatory power to faces were observed in both systems. Increased connectivity was found in SQUID-versus OPM-MEG in an occipital and parietal anchored network. Notably, high quality OPM-MEG data were retained in participants with metallic fixtures, from whom no useable data were collected using conventional MEG.
Collapse
Affiliation(s)
- Kristina Safar
- Department of Diagnostic Imaging, Hospital for Sick Children, 555 University Avenue, Toronto, ON, M5G 1X8, Canada.
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, Canada.
| | - Marlee M Vandewouw
- Department of Diagnostic Imaging, Hospital for Sick Children, 555 University Avenue, Toronto, ON, M5G 1X8, Canada
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, Canada
- Autism Research Centre, Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, Canada
| | - Julie Sato
- Department of Diagnostic Imaging, Hospital for Sick Children, 555 University Avenue, Toronto, ON, M5G 1X8, Canada
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, Canada
| | - Jasen Devasagayam
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, Canada
| | - Ryan M Hill
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
- Cerca Magnetics Limited, Castlebridge Office Village, Kirtley Drive, Nottingham, UK
| | - Molly Rea
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
- Cerca Magnetics Limited, Castlebridge Office Village, Kirtley Drive, Nottingham, UK
| | - Matthew J Brookes
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
- Cerca Magnetics Limited, Castlebridge Office Village, Kirtley Drive, Nottingham, UK
| | - Margot J Taylor
- Department of Diagnostic Imaging, Hospital for Sick Children, 555 University Avenue, Toronto, ON, M5G 1X8, Canada
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, Canada
- Department of Medical Imaging, University of Toronto, Toronto, Canada
- Department of Psychology, University of Toronto, Toronto, Canada
| |
Collapse
|
17
|
Schofield H, Hill RM, Feys O, Holmes N, Osborne J, Doyle C, Bobela D, Corvilian P, Wens V, Rier L, Bowtell R, Ferez M, Mullinger KJ, Coleman S, Rhodes N, Rea M, Tanner Z, Boto E, de Tiège X, Shah V, Brookes MJ. A Novel, Robust, and Portable Platform for Magnetoencephalography using Optically Pumped Magnetometers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.06.583313. [PMID: 38558964 PMCID: PMC10979878 DOI: 10.1101/2024.03.06.583313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Magnetoencephalography (MEG) measures brain function via assessment of magnetic fields generated by neural currents. Conventional MEG uses superconducting sensors, which place significant limitations on performance, practicality, and deployment; however, the field has been revolutionised in recent years by the introduction of optically-pumped-magnetometers (OPMs). OPMs enable measurement of the MEG signal without cryogenics, and consequently the conception of 'OPM-MEG' systems which ostensibly allow increased sensitivity and resolution, lifespan compliance, free subject movement, and lower cost. However, OPM-MEG remains in its infancy with limitations on both sensor and system design. Here, we report a new OPM-MEG design with miniaturised and integrated electronic control, a high level of portability, and improved sensor dynamic range (arguably the biggest limitation of existing instrumentation). We show that this system produces equivalent measures when compared to an established instrument; specifically, when measuring task-induced beta-band, gamma-band and evoked neuro-electrical responses, source localisations from the two systems were highly comparable and temporal correlation was >0.7 at the individual level and >0.9 for groups. Using an electromagnetic phantom, we demonstrate improved dynamic range by running the system in background fields up to 8 nT. We show that the system is effective in gathering data during free movement (including a sitting-to-standing paradigm) and that it is compatible with simultaneous electroencephalography (EEG - the clinical standard). Finally, we demonstrate portability by moving the system between two laboratories. Overall, our new system is shown to be a significant step forward for OPM-MEG technology and offers an attractive platform for next generation functional medical imaging.
Collapse
Affiliation(s)
- Holly Schofield
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
- Cerca Magnetics Limited, 2 Castlebridge Office Village, Kirtley Drive, Nottingham, NG7 1LD, Nottingham, UK
| | - Ryan M. Hill
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
- Cerca Magnetics Limited, 2 Castlebridge Office Village, Kirtley Drive, Nottingham, NG7 1LD, Nottingham, UK
| | - Odile Feys
- Université libre de Bruxelles, ULB Neuroscience Institute, Laboratoire de neuroanatomie et neuroimagerie translationelles, Brussels, Belgium
- Université libre de Bruxelles, Hôpital Universitaire de Bruxelles, Hôpital Erasme, Department of neurology, Brussels, Belgium
| | - Niall Holmes
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
- Cerca Magnetics Limited, 2 Castlebridge Office Village, Kirtley Drive, Nottingham, NG7 1LD, Nottingham, UK
| | - James Osborne
- QuSpin Inc. 331 South 104 Street, Suite 130, Louisville, Colorado, 80027, USA
| | - Cody Doyle
- QuSpin Inc. 331 South 104 Street, Suite 130, Louisville, Colorado, 80027, USA
| | - David Bobela
- QuSpin Inc. 331 South 104 Street, Suite 130, Louisville, Colorado, 80027, USA
| | - Pierre Corvilian
- Université libre de Bruxelles, ULB Neuroscience Institute, Laboratoire de neuroanatomie et neuroimagerie translationelles, Brussels, Belgium
| | - Vincent Wens
- Université libre de Bruxelles, ULB Neuroscience Institute, Laboratoire de neuroanatomie et neuroimagerie translationelles, Brussels, Belgium
- Université libre de Bruxelles, Hôpital Universitaire de Bruxelles, Hôpital Erasme, Department of translational neuroimaging, Brussels, Belgium
| | - Lukas Rier
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Richard Bowtell
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Maxime Ferez
- Université libre de Bruxelles, ULB Neuroscience Institute, Laboratoire de neuroanatomie et neuroimagerie translationelles, Brussels, Belgium
| | - Karen J. Mullinger
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
- Centre for Human Brain Health, School of Psychology, University of Birmingham, UK
| | - Sebastian Coleman
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Natalie Rhodes
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Molly Rea
- Cerca Magnetics Limited, 2 Castlebridge Office Village, Kirtley Drive, Nottingham, NG7 1LD, Nottingham, UK
| | - Zoe Tanner
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
- Cerca Magnetics Limited, 2 Castlebridge Office Village, Kirtley Drive, Nottingham, NG7 1LD, Nottingham, UK
| | - Elena Boto
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
- Cerca Magnetics Limited, 2 Castlebridge Office Village, Kirtley Drive, Nottingham, NG7 1LD, Nottingham, UK
| | - Xavier de Tiège
- Université libre de Bruxelles, ULB Neuroscience Institute, Laboratoire de neuroanatomie et neuroimagerie translationelles, Brussels, Belgium
- Université libre de Bruxelles, Hôpital Universitaire de Bruxelles, Hôpital Erasme, Department of translational neuroimaging, Brussels, Belgium
| | - Vishal Shah
- QuSpin Inc. 331 South 104 Street, Suite 130, Louisville, Colorado, 80027, USA
| | - Matthew J. Brookes
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
- Cerca Magnetics Limited, 2 Castlebridge Office Village, Kirtley Drive, Nottingham, NG7 1LD, Nottingham, UK
| |
Collapse
|
18
|
Hirata A, Niitsu M, Phang CR, Kodera S, Kida T, Rashed EA, Fukunaga M, Sadato N, Wasaka T. High-resolution EEG source localization in personalized segmentation-free head model with multi-dipole fitting. Phys Med Biol 2024; 69:055013. [PMID: 38306964 DOI: 10.1088/1361-6560/ad25c3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 02/02/2024] [Indexed: 02/04/2024]
Abstract
Objective. Electroencephalograms (EEGs) are often used to monitor brain activity. Several source localization methods have been proposed to estimate the location of brain activity corresponding to EEG readings. However, only a few studies evaluated source localization accuracy from measured EEG using personalized head models in a millimeter resolution. In this study, based on a volume conductor analysis of a high-resolution personalized human head model constructed from magnetic resonance images, a finite difference method was used to solve the forward problem and to reconstruct the field distribution.Approach. We used a personalized segmentation-free head model developed using machine learning techniques, in which the abrupt change of electrical conductivity occurred at the tissue interface is suppressed. Using this model, a smooth field distribution was obtained to address the forward problem. Next, multi-dipole fitting was conducted using EEG measurements for each subject (N= 10 male subjects, age: 22.5 ± 0.5), and the source location and electric field distribution were estimated.Main results.For measured somatosensory evoked potential for electrostimulation to the wrist, a multi-dipole model with lead field matrix computed with the volume conductor model was found to be superior than a single dipole model when using personalized segmentation-free models (6/10). The correlation coefficient between measured and estimated scalp potentials was 0.89 for segmentation-free head models and 0.71 for conventional segmented models. The proposed method is straightforward model development and comparable localization difference of the maximum electric field from the target wrist reported using fMR (i.e. 16.4 ± 5.2 mm) in previous study. For comparison, DUNEuro based on sLORETA was (EEG: 17.0 ± 4.0 mm). In addition, somatosensory evoked magnetic fields obtained by Magnetoencephalography was 25.3 ± 8.5 mm using three-layer sphere and sLORETA.Significance. For measured EEG signals, our procedures using personalized head models demonstrated that effective localization of the somatosensory cortex, which is located in a non-shallower cortex region. This method may be potentially applied for imaging brain activity located in other non-shallow regions.
Collapse
Affiliation(s)
- Akimasa Hirata
- Department of Electrical and Mechanical Engineering, Nagoya Institute of Technology, Nagoya 466-8555, Japan
- Center of Biomedical Physics and Information Technology, Nagoya Institute of Technology, Nagoya 466-8555, Japan
| | - Masamune Niitsu
- Department of Electrical and Mechanical Engineering, Nagoya Institute of Technology, Nagoya 466-8555, Japan
| | - Chun Ren Phang
- Department of Electrical and Mechanical Engineering, Nagoya Institute of Technology, Nagoya 466-8555, Japan
- Center of Biomedical Physics and Information Technology, Nagoya Institute of Technology, Nagoya 466-8555, Japan
| | - Sachiko Kodera
- Department of Electrical and Mechanical Engineering, Nagoya Institute of Technology, Nagoya 466-8555, Japan
- Center of Biomedical Physics and Information Technology, Nagoya Institute of Technology, Nagoya 466-8555, Japan
| | - Tetsuo Kida
- Department of Functioning and Disability, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai 480-0392, Japan
| | - Essam A Rashed
- Graduate School of Information Science, University of Hyogo, Kobe 650-0047, Japan
| | - Masaki Fukunaga
- Division of Cerebral Integration, National Institute for Physiological Sciences, Okazaki, Aichi 444-8585, Japan
| | - Norihiro Sadato
- Division of Cerebral Integration, National Institute for Physiological Sciences, Okazaki, Aichi 444-8585, Japan
| | - Toshiaki Wasaka
- Department of Electrical and Mechanical Engineering, Nagoya Institute of Technology, Nagoya 466-8555, Japan
- Center of Biomedical Physics and Information Technology, Nagoya Institute of Technology, Nagoya 466-8555, Japan
| |
Collapse
|
19
|
Mellor S, Timms RC, O'Neill GC, Tierney TM, Spedden ME, Brookes MJ, Wagstyl K, Barnes GR. Combining OPM and lesion mapping data for epilepsy surgery planning: a simulation study. Sci Rep 2024; 14:2882. [PMID: 38311614 PMCID: PMC10838931 DOI: 10.1038/s41598-024-51857-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/10/2024] [Indexed: 02/06/2024] Open
Abstract
When planning for epilepsy surgery, multiple potential sites for resection may be identified through anatomical imaging. Magnetoencephalography (MEG) using optically pumped sensors (OP-MEG) is a non-invasive functional neuroimaging technique which could be used to help identify the epileptogenic zone from these candidate regions. Here we test the utility of a-priori information from anatomical imaging for differentiating potential lesion sites with OP-MEG. We investigate a number of scenarios: whether to use rigid or flexible sensor arrays, with or without a-priori source information and with or without source modelling errors. We simulated OP-MEG recordings for 1309 potential lesion sites identified from anatomical images in the Multi-centre Epilepsy Lesion Detection (MELD) project. To localise the simulated data, we used three source inversion schemes: unconstrained, prior source locations at centre of the candidate sites, and prior source locations within a volume around the lesion location. We found that prior knowledge of the candidate lesion zones made the inversion robust to errors in sensor gain, orientation and even location. When the reconstruction was too highly restricted and the source assumptions were inaccurate, the utility of this a-priori information was undermined. Overall, we found that constraining the reconstruction to the region including and around the participant's potential lesion sites provided the best compromise of robustness against modelling or measurement error.
Collapse
Affiliation(s)
- Stephanie Mellor
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3AR, UK.
| | - Ryan C Timms
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3AR, UK
| | - George C O'Neill
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Tim M Tierney
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3AR, UK
| | - Meaghan E Spedden
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3AR, UK
| | - Matthew J Brookes
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | - Konrad Wagstyl
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3AR, UK
- UCL Great Ormond Street Institute for Child Health, University College London, 30 Guilford St, London, WC1N 1EH, UK
| | - Gareth R Barnes
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3AR, UK
| |
Collapse
|
20
|
Gu W, Li D, Gao JH. Non-rigid-registration-based positioning and labelling of triaxial OPMs on a flexible cap for wearable magnetoencephalography. J Neurosci Methods 2024; 401:110010. [PMID: 37956928 DOI: 10.1016/j.jneumeth.2023.110010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/04/2023] [Accepted: 11/09/2023] [Indexed: 11/21/2023]
Abstract
BACKGROUND Recent advances in highly sensitive miniaturized optically pumped magnetometers (OPMs) have enabled the development of wearable magnetoencephalography (MEG) offering great flexibility in experimental setting. The OPM array for wearable MEG is typically attached to a flexible cap and exhibits a variable spatial layout across different subjects, which imposes challenges concerning the efficient positioning and labelling of OPMs. NEW METHOD A pair of reflective markers are affixed to each triaxial OPM sensor above its cable to determine its location and sensitive axes. A non-rigid registration of optically digitized marker locations with a pre-labelled template of marker locations is performed to map newly digitized markers to OPMs. RESULTS The positioning and labelling of 66 OPM sensors could be completed within 35 s. Across ten experiments, all OPMs were accurately labelled, and the mean test-retest errors were 0.48 mm for sensor locations and 0.20 degree for sensitive axes. By combining six OPMs' positions with their respective recordings, magnetic dipoles inside a phantom were located with a mean error of 5.5 mm, and the best fitted dipole for MEG with auditory stimuli presented was located on a subject's primary auditory cortex. COMPARISON WITH EXISTING METHODS The proposed method reduces the reliance on error-prone and laborious manual operations inherent in existing methods, therefore significantly improving the efficiency of OPM positioning and labelling on a flexible cap. CONCLUSION We developed a method for the precise and rapid positioning and labelling triaxial OPMs on a flexible cap, thereby facilitating the practical implementation of wearable OPM-MEG.
Collapse
Affiliation(s)
- Wenyu Gu
- Center for MRI Research, Peking University, Beijing 100871, China; Beijing City Key Laboratory for Medical Physics and Engineering, Institution of Heavy Ion Physics, School of Physics, Peking University, Beijing 100871, China; Changping Laboratory, Beijing 102206, China
| | - Dongxu Li
- Center for MRI Research, Peking University, Beijing 100871, China; Beijing City Key Laboratory for Medical Physics and Engineering, Institution of Heavy Ion Physics, School of Physics, Peking University, Beijing 100871, China; Changping Laboratory, Beijing 102206, China
| | - Jia-Hong Gao
- Center for MRI Research, Peking University, Beijing 100871, China; Beijing City Key Laboratory for Medical Physics and Engineering, Institution of Heavy Ion Physics, School of Physics, Peking University, Beijing 100871, China; Changping Laboratory, Beijing 102206, China; McGovern Institute for Brain Research, Peking University, Beijing 100871, China; National Biomedical Imaging Center, Peking University, Beijing 100871, China.
| |
Collapse
|
21
|
Han X, Pang J, Xu D, Wang R, Xie F, Yang Y, Sun J, Li Y, Li R, Yin X, Xu Y, Fan J, Dong Y, Wu X, Yang X, Yu D, Wang D, Gao Y, Xiang M, Xu F, Sun J, Chen Y, Ning X. Magnetocardiography-based coronary artery disease severity assessment and localization using spatiotemporal features. Physiol Meas 2023; 44:125002. [PMID: 37995382 DOI: 10.1088/1361-6579/ad0f70] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 11/23/2023] [Indexed: 11/25/2023]
Abstract
Objective.This study aimed to develop an automatic and accurate method for severity assessment and localization of coronary artery disease (CAD) based on an optically pumped magnetometer magnetocardiography (MCG) system.Approach.We proposed spatiotemporal features based on the MCG one-dimensional signals, including amplitude, correlation, local binary pattern, and shape features. To estimate the severity of CAD, we classified the stenosis as absence or mild, moderate, or severe cases and extracted a subset of features suitable for assessment. To localize CAD, we classified CAD groups according to the location of the stenosis, including the left anterior descending artery (LAD), left circumflex artery (LCX), and right coronary artery (RCA), and separately extracted a subset of features suitable for determining the three CAD locations.Main results.For CAD severity assessment, a support vector machine (SVM) achieved the best result, with an accuracy of 75.1%, precision of 73.9%, sensitivity of 67.0%, specificity of 88.8%, F1-score of 69.8%, and area under the curve of 0.876. The highest accuracy and corresponding model for determining locations LAD, LCX, and RCA were 94.3% for the SVM, 84.4% for a discriminant analysis model, and 84.9% for the discriminant analysis model.Significance. The developed method enables the implementation of an automated system for severity assessment and localization of CAD. The amplitude and correlation features were key factors for severity assessment and localization. The proposed machine learning method can provide clinicians with an automatic and accurate diagnostic tool for interpreting MCG data related to CAD, possibly promoting clinical acceptance.
Collapse
Affiliation(s)
- Xiaole Han
- Key Laboratory of Ultra-Weak Magnetic Field Measurement Technology, Ministry of Education, School of Instrumentation and Optoelectronic Engineering, Beihang University, People's Republic of China
- Zhejiang Provincial Key Laboratory of Ultra-Weak Magnetic-Field Space and Applied Technology, Hangzhou Innovation Institute, Beihang University, Hangzhou 310051, People's Republic of China
| | - Jiaojiao Pang
- Shandong Key Laboratory for Magnetic Field-free Medicine & Functional Imaging, Institute of Magnetic Field-free Medicine & Functional Imaging, Shandong University, People's Republic of China
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, People's Republic of China
- National Innovation Platform for Industry-Education Intearation in Medicine-Engineering Interdisciplinary, Shandong University, People's Republic of China
| | - Dong Xu
- National Institute of Extremely-Weak Magnetic Field Infrastructure, Hangzhou, People's Republic of China
| | - Ruizhe Wang
- Key Laboratory of Ultra-Weak Magnetic Field Measurement Technology, Ministry of Education, School of Instrumentation and Optoelectronic Engineering, Beihang University, People's Republic of China
- Zhejiang Provincial Key Laboratory of Ultra-Weak Magnetic-Field Space and Applied Technology, Hangzhou Innovation Institute, Beihang University, Hangzhou 310051, People's Republic of China
| | - Fei Xie
- Shandong Key Laboratory for Magnetic Field-free Medicine & Functional Imaging, Institute of Magnetic Field-free Medicine & Functional Imaging, Shandong University, People's Republic of China
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, People's Republic of China
- National Innovation Platform for Industry-Education Intearation in Medicine-Engineering Interdisciplinary, Shandong University, People's Republic of China
| | - Yanfei Yang
- Key Laboratory of Ultra-Weak Magnetic Field Measurement Technology, Ministry of Education, School of Instrumentation and Optoelectronic Engineering, Beihang University, People's Republic of China
- Zhejiang Provincial Key Laboratory of Ultra-Weak Magnetic-Field Space and Applied Technology, Hangzhou Innovation Institute, Beihang University, Hangzhou 310051, People's Republic of China
| | - Jiguang Sun
- Hangzhou Nuochi Life Science Co., Ltd, People's Republic of China
| | - Yu Li
- Shandong Key Laboratory for Magnetic Field-free Medicine & Functional Imaging, Institute of Magnetic Field-free Medicine & Functional Imaging, Shandong University, People's Republic of China
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, People's Republic of China
- National Innovation Platform for Industry-Education Intearation in Medicine-Engineering Interdisciplinary, Shandong University, People's Republic of China
| | - Ruochuan Li
- Shandong Key Laboratory for Magnetic Field-free Medicine & Functional Imaging, Institute of Magnetic Field-free Medicine & Functional Imaging, Shandong University, People's Republic of China
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, People's Republic of China
- National Innovation Platform for Industry-Education Intearation in Medicine-Engineering Interdisciplinary, Shandong University, People's Republic of China
| | - Xiaofei Yin
- Shandong Key Laboratory for Magnetic Field-free Medicine & Functional Imaging, Institute of Magnetic Field-free Medicine & Functional Imaging, Shandong University, People's Republic of China
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, People's Republic of China
- National Innovation Platform for Industry-Education Intearation in Medicine-Engineering Interdisciplinary, Shandong University, People's Republic of China
| | - Yansong Xu
- Shandong Key Laboratory for Magnetic Field-free Medicine & Functional Imaging, Institute of Magnetic Field-free Medicine & Functional Imaging, Shandong University, People's Republic of China
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, People's Republic of China
- National Innovation Platform for Industry-Education Intearation in Medicine-Engineering Interdisciplinary, Shandong University, People's Republic of China
| | - Jiaxin Fan
- Shandong Key Laboratory for Magnetic Field-free Medicine & Functional Imaging, Institute of Magnetic Field-free Medicine & Functional Imaging, Shandong University, People's Republic of China
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, People's Republic of China
- National Innovation Platform for Industry-Education Intearation in Medicine-Engineering Interdisciplinary, Shandong University, People's Republic of China
| | - Yiming Dong
- Shandong Key Laboratory for Magnetic Field-free Medicine & Functional Imaging, Institute of Magnetic Field-free Medicine & Functional Imaging, Shandong University, People's Republic of China
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, People's Republic of China
- National Innovation Platform for Industry-Education Intearation in Medicine-Engineering Interdisciplinary, Shandong University, People's Republic of China
| | - Xiaohui Wu
- Shandong Key Laboratory for Magnetic Field-free Medicine & Functional Imaging, Institute of Magnetic Field-free Medicine & Functional Imaging, Shandong University, People's Republic of China
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, People's Republic of China
- National Innovation Platform for Industry-Education Intearation in Medicine-Engineering Interdisciplinary, Shandong University, People's Republic of China
| | - Xiaoyun Yang
- Shandong Key Laboratory for Magnetic Field-free Medicine & Functional Imaging, Institute of Magnetic Field-free Medicine & Functional Imaging, Shandong University, People's Republic of China
- National Innovation Platform for Industry-Education Intearation in Medicine-Engineering Interdisciplinary, Shandong University, People's Republic of China
- Department of Gastroenterology, Qilu Hospital of Shandong University, Shandong Provincial Clinical Research Center for Digestive Disease, People's Republic of China
| | - Dexin Yu
- Shandong Key Laboratory for Magnetic Field-free Medicine & Functional Imaging, Institute of Magnetic Field-free Medicine & Functional Imaging, Shandong University, People's Republic of China
- National Innovation Platform for Industry-Education Intearation in Medicine-Engineering Interdisciplinary, Shandong University, People's Republic of China
- Department of Radiology, Qilu Hospital of Shandong University, People's Republic of China
| | - Dawei Wang
- Shandong Key Laboratory for Magnetic Field-free Medicine & Functional Imaging, Institute of Magnetic Field-free Medicine & Functional Imaging, Shandong University, People's Republic of China
- National Innovation Platform for Industry-Education Intearation in Medicine-Engineering Interdisciplinary, Shandong University, People's Republic of China
- Department of Radiology, Qilu Hospital of Shandong University, People's Republic of China
| | - Yang Gao
- Key Laboratory of Ultra-Weak Magnetic Field Measurement Technology, Ministry of Education, School of Instrumentation and Optoelectronic Engineering, Beihang University, People's Republic of China
- Zhejiang Provincial Key Laboratory of Ultra-Weak Magnetic-Field Space and Applied Technology, Hangzhou Innovation Institute, Beihang University, Hangzhou 310051, People's Republic of China
- National Institute of Extremely-Weak Magnetic Field Infrastructure, Hangzhou, People's Republic of China
- Institute of Large-Scale Scientific Facility and Centre for Zero Magnetic Field Science, Beihang University, People's Republic of China
| | - Min Xiang
- Key Laboratory of Ultra-Weak Magnetic Field Measurement Technology, Ministry of Education, School of Instrumentation and Optoelectronic Engineering, Beihang University, People's Republic of China
- Zhejiang Provincial Key Laboratory of Ultra-Weak Magnetic-Field Space and Applied Technology, Hangzhou Innovation Institute, Beihang University, Hangzhou 310051, People's Republic of China
- National Institute of Extremely-Weak Magnetic Field Infrastructure, Hangzhou, People's Republic of China
- Institute of Large-Scale Scientific Facility and Centre for Zero Magnetic Field Science, Beihang University, People's Republic of China
- Hefei National Laboratory, People's Republic of China
| | - Feng Xu
- Shandong Key Laboratory for Magnetic Field-free Medicine & Functional Imaging, Institute of Magnetic Field-free Medicine & Functional Imaging, Shandong University, People's Republic of China
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, People's Republic of China
- National Innovation Platform for Industry-Education Intearation in Medicine-Engineering Interdisciplinary, Shandong University, People's Republic of China
| | - Jinji Sun
- Key Laboratory of Ultra-Weak Magnetic Field Measurement Technology, Ministry of Education, School of Instrumentation and Optoelectronic Engineering, Beihang University, People's Republic of China
- Zhejiang Provincial Key Laboratory of Ultra-Weak Magnetic-Field Space and Applied Technology, Hangzhou Innovation Institute, Beihang University, Hangzhou 310051, People's Republic of China
- National Institute of Extremely-Weak Magnetic Field Infrastructure, Hangzhou, People's Republic of China
- Institute of Large-Scale Scientific Facility and Centre for Zero Magnetic Field Science, Beihang University, People's Republic of China
- Hefei National Laboratory, People's Republic of China
| | - Yuguo Chen
- Shandong Key Laboratory for Magnetic Field-free Medicine & Functional Imaging, Institute of Magnetic Field-free Medicine & Functional Imaging, Shandong University, People's Republic of China
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, People's Republic of China
- National Innovation Platform for Industry-Education Intearation in Medicine-Engineering Interdisciplinary, Shandong University, People's Republic of China
| | - Xiaolin Ning
- Key Laboratory of Ultra-Weak Magnetic Field Measurement Technology, Ministry of Education, School of Instrumentation and Optoelectronic Engineering, Beihang University, People's Republic of China
- Zhejiang Provincial Key Laboratory of Ultra-Weak Magnetic-Field Space and Applied Technology, Hangzhou Innovation Institute, Beihang University, Hangzhou 310051, People's Republic of China
- National Institute of Extremely-Weak Magnetic Field Infrastructure, Hangzhou, People's Republic of China
- Institute of Large-Scale Scientific Facility and Centre for Zero Magnetic Field Science, Beihang University, People's Republic of China
- Hefei National Laboratory, People's Republic of China
| |
Collapse
|
22
|
Westin K, Beniczky S, Pfeiffer C, Hämäläinen M, Lundqvist D. On the clinical utility of on-scalp MEG: A modeling study of epileptic activity source estimation. Clin Neurophysiol 2023; 156:143-155. [PMID: 37951041 DOI: 10.1016/j.clinph.2023.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 10/06/2023] [Accepted: 10/21/2023] [Indexed: 11/13/2023]
Abstract
OBJECTIVE Epilepsy surgery requires localization of the seizure onset zone (SOZ). Today this can only be achieved by intracranial electroencephalography (iEEG). The iEEG electrode placement is guided by findings from non-invasive modalities that cannot themselves detect SOZ-generated initial seizure activity. On scalp magnetoencephalography (osMEG), with sensors placed on the scalp, demonstrates higher sensitivity than conventional MEG (convMEG) and could potentially detect early seizure activity. Here, we modeled EEG, convMEG and osMEG to compare the modalities' ability to localize SOZ activity and to detect epileptic spikes. METHODS We modeled seizure propagation within ten epileptic networks located in the mesial and lateral temporal lobe; basal, dorsal, central and frontopolar frontal lobe; parietal and occipital lobe as well as insula and cingulum. The networks included brain regions often involved in focal epilepsy. 128-channel osMEG, convMEG, EEG and combined osMEG + EEG and convMEG + EEG were modeled, and the SOZ source estimation accuracy was quantified and compared using Student's t-test. RESULTS OsMEG was significantly (p-value <0.01) better than both convMEG and EEG at detecting the earliest SOZ-generated seizure activity and epileptic spikes, and better at localizing seizure activity from all epileptic networks (p < 0.01). CONCLUSIONS Our modeling results clearly show that osMEG has an unsurpassed potential to detect both epileptic spikes and seizure activity from all simulated anatomical sites. SIGNIFICANCE No clinically available non-invasive technique can detect SOZ activity from all brain regions. Our study indicates that osMEG has the potential to become an important clinical tool, improving both non-invasive SOZ localization and iEEG electrode placement accuracy.
Collapse
Affiliation(s)
- Karin Westin
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Clinical Neurophysiology, Karolinska University Hospital, Stockholm, Sweden.
| | - Sándor Beniczky
- Department of Clinical Neurophysiology, Aarhus University Hospital, Denmark and Danish Epilepsy Centre, Dianalund, Denmark
| | - Christoph Pfeiffer
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Matti Hämäläinen
- Department of Neuroscience and Biomedical Engineering, School of Science, Aalto University, Espoo, Finland
| | - Daniel Lundqvist
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
23
|
Feys O, Wens V, Corvilain P, Ferez M, Holmes N, Brookes M, De Tiège X. Where do we stand exactly with on-scalp magnetoencephalography in the presurgical evaluation of refractory focal epilepsy? Epilepsia 2023; 64:3414-3417. [PMID: 37863642 DOI: 10.1111/epi.17806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 10/17/2023] [Indexed: 10/22/2023]
Affiliation(s)
- Odile Feys
- Department of Neurology, Université libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (HUB), Hôpital Erasme, Brussels, Belgium
- Laboratoire de Neuroimagerie et Neuroanatomie translationnelles (LN2T), ULB Neuroscience Institute (UNI), Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Vincent Wens
- Laboratoire de Neuroimagerie et Neuroanatomie translationnelles (LN2T), ULB Neuroscience Institute (UNI), Université libre de Bruxelles (ULB), Brussels, Belgium
- Department of Translational Neuroimaging, Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (HUB), Hôpital Erasme, Brussels, Belgium
| | - Pierre Corvilain
- Laboratoire de Neuroimagerie et Neuroanatomie translationnelles (LN2T), ULB Neuroscience Institute (UNI), Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Maxime Ferez
- Laboratoire de Neuroimagerie et Neuroanatomie translationnelles (LN2T), ULB Neuroscience Institute (UNI), Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Niall Holmes
- School of Physics and Astronomy, Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham, UK
- Cerca Magnetics Ltd, Nottingham, UK
| | - Matthew Brookes
- School of Physics and Astronomy, Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham, UK
- Cerca Magnetics Ltd, Nottingham, UK
| | - Xavier De Tiège
- Laboratoire de Neuroimagerie et Neuroanatomie translationnelles (LN2T), ULB Neuroscience Institute (UNI), Université libre de Bruxelles (ULB), Brussels, Belgium
- Department of Translational Neuroimaging, Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (HUB), Hôpital Erasme, Brussels, Belgium
| |
Collapse
|
24
|
Mason K, Aristovich K, Holder D. Non-invasive imaging of neural activity with magnetic detection electrical impedance tomography (MDEIT): a modelling study. Physiol Meas 2023; 44:114003. [PMID: 37832564 DOI: 10.1088/1361-6579/ad0358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 10/13/2023] [Indexed: 10/15/2023]
Abstract
Objectives.(1) Develop a computational pipeline for three-dimensional fast neural magnetic detection electrical impedance tomography (MDEIT), (2) determine whether constant current or constant voltage is preferable for MDEIT, (3) perform reconstructions of simulated neural activity in a human head model with realistic noise and compare MDEIT to EIT and (4) perform a two-dimensional study in a saline tank for MDEIT with optically pumped magnetometers (OPMs) and compare reconstruction algorithms.Approach.Forward modelling and image reconstruction were performed with a realistic model of a human head in three dimensions and at three noise levels for four perturbations representing neural activity. Images were compared using the error in the position and size of the reconstructed perturbations. Two-dimensional MDEIT was performed in a saline tank with a resistive perturbation and one OPM. Six reconstruction algorithms were compared using the error in the position and size of the reconstructed perturbations.Main results.A computational pipeline was developed in COMSOL Multiphysics, reducing the Jacobian calculation time from months to days. MDEIT reconstructed images with a lower reconstruction error than EIT with a mean difference of 7.0%, 5.5% and 11% for three noise cases representing current noise, reduced current source noise and reduced current source and magnetometer noise. A rank analysis concluded that the MDEIT Jacobian was less rank-deficient than the EIT Jacobian. Reconstructions of a phantom in a saline tank had a best reconstruction error of 13%, achieved using 0th-order Tikhonov regularisation with simulated noise-based correction.Significance.This study demonstrated that three-dimensional MDEIT for neural imaging is feasible and that MDEIT reconstructed superior images to EIT, which can be explained by the lesser rank deficiency of the MDEIT Jacobian. Reconstructions of a perturbation in a saline tank demonstrated a proof of principle for two-dimensional MDEIT with OPMs and identified the best reconstruction algorithm.
Collapse
Affiliation(s)
- Kai Mason
- Dept. of Medical Physics and Biomedical Engineering, University College London, Gower St, London, United Kingdom
| | - Kirill Aristovich
- Dept. of Medical Physics and Biomedical Engineering, University College London, Gower St, London, United Kingdom
| | - David Holder
- Dept. of Medical Physics and Biomedical Engineering, University College London, Gower St, London, United Kingdom
| |
Collapse
|
25
|
Iivanainen J, Carter TR, Trumbo MCS, McKay J, Taulu S, Wang J, Stephen JM, Schwindt PDD, Borna A. Single-trial classification of evoked responses to auditory tones using OPM- and SQUID-MEG. J Neural Eng 2023; 20:056032. [PMID: 37748476 DOI: 10.1088/1741-2552/acfcd9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 09/25/2023] [Indexed: 09/27/2023]
Abstract
Objective.Optically pumped magnetometers (OPMs) are emerging as a near-room-temperature alternative to superconducting quantum interference devices (SQUIDs) for magnetoencephalography (MEG). In contrast to SQUIDs, OPMs can be placed in a close proximity to subject's scalp potentially increasing the signal-to-noise ratio and spatial resolution of MEG. However, experimental demonstrations of these suggested benefits are still scarce. Here, to compare a 24-channel OPM-MEG system to a commercial whole-head SQUID system in a data-driven way, we quantified their performance in classifying single-trial evoked responses.Approach.We measured evoked responses to three auditory tones in six participants using both OPM- and SQUID-MEG systems. We performed pairwise temporal classification of the single-trial responses with linear discriminant analysis as well as multiclass classification with both EEGNet convolutional neural network and xDAWN decoding.Main results.OPMs provided higher classification accuracies than SQUIDs having a similar coverage of the left hemisphere of the participant. However, the SQUID sensors covering the whole helmet had classification scores larger than those of OPMs for two of the tone pairs, demonstrating the benefits of a whole-head measurement.Significance.The results demonstrate that the current OPM-MEG system provides high-quality data about the brain with room for improvement for high bandwidth non-invasive brain-computer interfacing.
Collapse
Affiliation(s)
- Joonas Iivanainen
- Sandia National Laboratories, Albuquerque, NM 87185, United States of America
| | - Tony R Carter
- Sandia National Laboratories, Albuquerque, NM 87185, United States of America
| | - Michael C S Trumbo
- Sandia National Laboratories, Albuquerque, NM 87185, United States of America
| | - Jim McKay
- Candoo Systems Inc, Port Coquitlam, BC, Canada
| | - Samu Taulu
- University of Washington, Seattle, WA, United States of America
| | - Jun Wang
- Department of Speech, Language, and Hearing Sciences, The University of Texas at Austin, Austin, TX, United States of America
- Department of Neurology, The University of Texas at Austin, Austin, TX, United States of America
| | - Julia M Stephen
- The Mind Research Network a Division of Lovelace Biomedical Research Institute, Albuquerque, NM 87106, United States of America
| | - Peter D D Schwindt
- Sandia National Laboratories, Albuquerque, NM 87185, United States of America
| | - Amir Borna
- Sandia National Laboratories, Albuquerque, NM 87185, United States of America
| |
Collapse
|
26
|
Shafiei G, Fulcher BD, Voytek B, Satterthwaite TD, Baillet S, Misic B. Neurophysiological signatures of cortical micro-architecture. Nat Commun 2023; 14:6000. [PMID: 37752115 PMCID: PMC10522715 DOI: 10.1038/s41467-023-41689-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 09/11/2023] [Indexed: 09/28/2023] Open
Abstract
Systematic spatial variation in micro-architecture is observed across the cortex. These micro-architectural gradients are reflected in neural activity, which can be captured by neurophysiological time-series. How spontaneous neurophysiological dynamics are organized across the cortex and how they arise from heterogeneous cortical micro-architecture remains unknown. Here we extensively profile regional neurophysiological dynamics across the human brain by estimating over 6800 time-series features from the resting state magnetoencephalography (MEG) signal. We then map regional time-series profiles to a comprehensive multi-modal, multi-scale atlas of cortical micro-architecture, including microstructure, metabolism, neurotransmitter receptors, cell types and laminar differentiation. We find that the dominant axis of neurophysiological dynamics reflects characteristics of power spectrum density and linear correlation structure of the signal, emphasizing the importance of conventional features of electromagnetic dynamics while identifying additional informative features that have traditionally received less attention. Moreover, spatial variation in neurophysiological dynamics is co-localized with multiple micro-architectural features, including gene expression gradients, intracortical myelin, neurotransmitter receptors and transporters, and oxygen and glucose metabolism. Collectively, this work opens new avenues for studying the anatomical basis of neural activity.
Collapse
Affiliation(s)
- Golia Shafiei
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, Canada
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Ben D Fulcher
- School of Physics, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - Bradley Voytek
- Department of Cognitive Science, Halıcıoğlu Data Science Institute, University of California, San Diego, La Jolla, CA, USA
| | - Theodore D Satterthwaite
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Sylvain Baillet
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, Canada
| | - Bratislav Misic
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, Canada.
| |
Collapse
|
27
|
Cao F, An N, Xu W, Wang W, Li W, Wang C, Xiang M, Gao Y, Ning X. Optical Co-Registration Method of Triaxial OPM-MEG and MRI. IEEE TRANSACTIONS ON MEDICAL IMAGING 2023; 42:2706-2713. [PMID: 37015113 DOI: 10.1109/tmi.2023.3263167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The advent of optically pumped magnetometers (OPMs) facilitates the development of on-scalp magnetoencephalography (MEG). In particular, the triaxial OPM emerged recently, making simultaneous measurements of all three orthogonal components of vector fields possible. The detection of triaxial magnetic fields improves the interference suppression capability and achieves higher source localization accuracy using fewer sensors. The source localization accuracy of MEG is based on the accurate co-registration of MEG and MRI. In this study, we proposed a triaxial co-registration method according to combined principal component analysis and iterative closest point algorithms for use of a flexible cap. A reference phantom with known sensor positions and orientations was designed and constructed to evaluate the accuracy of the proposed method. Experiments showed that the average co-registered position errors of all sensors were approximately 1 mm and average orientation errors were less than 2.5° in the X -and Y orientations and less than 1.6° in the Z orientation. Furthermore, we assessed the influence of co-registration errors on the source localization using simulations. The average source localization error of approximately 1 mm reflects the effectiveness of the co-registration method. The proposed co-registration method facilitates future applications of triaxial sensors on flexible caps.
Collapse
|
28
|
De Cock A, Van Ranst A, Costers L, Keytsman E, D'Hooghe MB, D'Haeseleer M, Nagels G, Van Schependom J. Reduced alpha2 power is associated with slowed information processing speed in multiple sclerosis. Eur J Neurol 2023; 30:2793-2800. [PMID: 37326133 DOI: 10.1111/ene.15927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 06/08/2023] [Accepted: 06/12/2023] [Indexed: 06/17/2023]
Abstract
OBJECTIVE Cognitive impairment is common in multiple sclerosis (MS), significantly impacts daily functioning, is time-consuming to assess, and is prone to practice effects. We examined whether the alpha band power measured with magnetoencephalography (MEG) is associated with the different cognitive domains affected by MS. METHODS Sixty-eight MS patients and 47 healthy controls underwent MEG, T1- and FLAIR-weighted magnetic resonance imaging (MRI), and neuropsychological testing. Alpha power in the occipital cortex was quantified in the alpha1 (8-10 Hz) and alpha2 (10-12 Hz) bands. Next, we performed best subset regression to assess the added value of neurophysiological measures to commonly available MRI measures. RESULTS Alpha2 power significantly correlated with information processing speed (p < 0.001) and was always retained in all multilinear models, whereas thalamic volume was retained in 80% of all models. Alpha1 power was correlated with visual memory (p < 0.001) but only retained in 38% of all models. CONCLUSIONS Alpha2 (10-12 Hz) power in rest is associated with IPS, independent of standard MRI parameters. This study stresses that a multimodal assessment, including structural and functional biomarkers, is likely required to characterize cognitive impairment in MS. Resting-state neurophysiology is thus a promising tool to understand and follow up changes in IPS.
Collapse
Affiliation(s)
- Alexander De Cock
- Nationaal Multiple Sclerose Centrum, Melsbroek, Belgium
- Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Brussels, Belgium
- AIMS Lab, Center for Neurosciences, UZ Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Alexander Van Ranst
- Neurology Department, Universitair Ziekenhuis Brussel, Brussels, Belgium
- Center for Neurosciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Lars Costers
- AIMS Lab, Center for Neurosciences, UZ Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Eva Keytsman
- AIMS Lab, Center for Neurosciences, UZ Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Marie B D'Hooghe
- Nationaal Multiple Sclerose Centrum, Melsbroek, Belgium
- Neurology Department, Universitair Ziekenhuis Brussel, Brussels, Belgium
- Center for Neurosciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Miguel D'Haeseleer
- Nationaal Multiple Sclerose Centrum, Melsbroek, Belgium
- Neurology Department, Universitair Ziekenhuis Brussel, Brussels, Belgium
- Center for Neurosciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Guy Nagels
- Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Brussels, Belgium
- AIMS Lab, Center for Neurosciences, UZ Brussel, Vrije Universiteit Brussel, Brussels, Belgium
- Neurology Department, Universitair Ziekenhuis Brussel, Brussels, Belgium
- Center for Neurosciences, Vrije Universiteit Brussel, Brussels, Belgium
- St Edmund Hall, University of Oxford, Oxford, UK
| | - Jeroen Van Schependom
- AIMS Lab, Center for Neurosciences, UZ Brussel, Vrije Universiteit Brussel, Brussels, Belgium
- Department of Electronics and Informatics (ETRO), Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
29
|
Nebe S, Reutter M, Baker DH, Bölte J, Domes G, Gamer M, Gärtner A, Gießing C, Gurr C, Hilger K, Jawinski P, Kulke L, Lischke A, Markett S, Meier M, Merz CJ, Popov T, Puhlmann LMC, Quintana DS, Schäfer T, Schubert AL, Sperl MFJ, Vehlen A, Lonsdorf TB, Feld GB. Enhancing precision in human neuroscience. eLife 2023; 12:e85980. [PMID: 37555830 PMCID: PMC10411974 DOI: 10.7554/elife.85980] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 07/23/2023] [Indexed: 08/10/2023] Open
Abstract
Human neuroscience has always been pushing the boundary of what is measurable. During the last decade, concerns about statistical power and replicability - in science in general, but also specifically in human neuroscience - have fueled an extensive debate. One important insight from this discourse is the need for larger samples, which naturally increases statistical power. An alternative is to increase the precision of measurements, which is the focus of this review. This option is often overlooked, even though statistical power benefits from increasing precision as much as from increasing sample size. Nonetheless, precision has always been at the heart of good scientific practice in human neuroscience, with researchers relying on lab traditions or rules of thumb to ensure sufficient precision for their studies. In this review, we encourage a more systematic approach to precision. We start by introducing measurement precision and its importance for well-powered studies in human neuroscience. Then, determinants for precision in a range of neuroscientific methods (MRI, M/EEG, EDA, Eye-Tracking, and Endocrinology) are elaborated. We end by discussing how a more systematic evaluation of precision and the application of respective insights can lead to an increase in reproducibility in human neuroscience.
Collapse
Affiliation(s)
- Stephan Nebe
- Zurich Center for Neuroeconomics, Department of Economics, University of ZurichZurichSwitzerland
| | - Mario Reutter
- Department of Psychology, Julius-Maximilians-UniversityWürzburgGermany
| | - Daniel H Baker
- Department of Psychology and York Biomedical Research Institute, University of YorkYorkUnited Kingdom
| | - Jens Bölte
- Institute for Psychology, University of Münster, Otto-Creuzfeldt Center for Cognitive and Behavioral NeuroscienceMünsterGermany
| | - Gregor Domes
- Department of Biological and Clinical Psychology, University of TrierTrierGermany
- Institute for Cognitive and Affective NeuroscienceTrierGermany
| | - Matthias Gamer
- Department of Psychology, Julius-Maximilians-UniversityWürzburgGermany
| | - Anne Gärtner
- Faculty of Psychology, Technische Universität DresdenDresdenGermany
| | - Carsten Gießing
- Biological Psychology, Department of Psychology, School of Medicine and Health Sciences, Carl von Ossietzky University of OldenburgOldenburgGermany
| | - Caroline Gurr
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital, Goethe UniversityFrankfurtGermany
- Brain Imaging Center, Goethe UniversityFrankfurtGermany
| | - Kirsten Hilger
- Department of Psychology, Julius-Maximilians-UniversityWürzburgGermany
- Department of Psychology, Psychological Diagnostics and Intervention, Catholic University of Eichstätt-IngolstadtEichstättGermany
| | - Philippe Jawinski
- Department of Psychology, Humboldt-Universität zu BerlinBerlinGermany
| | - Louisa Kulke
- Department of Developmental with Educational Psychology, University of BremenBremenGermany
| | - Alexander Lischke
- Department of Psychology, Medical School HamburgHamburgGermany
- Institute of Clinical Psychology and Psychotherapy, Medical School HamburgHamburgGermany
| | - Sebastian Markett
- Department of Psychology, Humboldt-Universität zu BerlinBerlinGermany
| | - Maria Meier
- Department of Psychology, University of KonstanzKonstanzGermany
- University Psychiatric Hospitals, Child and Adolescent Psychiatric Research Department (UPKKJ), University of BaselBaselSwitzerland
| | - Christian J Merz
- Department of Cognitive Psychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University BochumBochumGermany
| | - Tzvetan Popov
- Department of Psychology, Methods of Plasticity Research, University of ZurichZurichSwitzerland
| | - Lara MC Puhlmann
- Leibniz Institute for Resilience ResearchMainzGermany
- Max Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
| | - Daniel S Quintana
- Max Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
- NevSom, Department of Rare Disorders & Disabilities, Oslo University HospitalOsloNorway
- KG Jebsen Centre for Neurodevelopmental Disorders, University of OsloOsloNorway
- Norwegian Centre for Mental Disorders Research (NORMENT), University of OsloOsloNorway
| | - Tim Schäfer
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital, Goethe UniversityFrankfurtGermany
- Brain Imaging Center, Goethe UniversityFrankfurtGermany
| | | | - Matthias FJ Sperl
- Department of Clinical Psychology and Psychotherapy, University of GiessenGiessenGermany
- Center for Mind, Brain and Behavior, Universities of Marburg and GiessenGiessenGermany
| | - Antonia Vehlen
- Department of Biological and Clinical Psychology, University of TrierTrierGermany
| | - Tina B Lonsdorf
- Department of Systems Neuroscience, University Medical Center Hamburg-EppendorfHamburgGermany
- Department of Psychology, Biological Psychology and Cognitive Neuroscience, University of BielefeldBielefeldGermany
| | - Gordon B Feld
- Department of Clinical Psychology, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg UniversityMannheimGermany
- Department of Psychology, Heidelberg UniversityHeidelbergGermany
- Department of Addiction Behavior and Addiction Medicine, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg UniversityMannheimGermany
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg UniversityMannheimGermany
| |
Collapse
|
30
|
Holmes N, Bowtell R, Brookes MJ, Taulu S. An Iterative Implementation of the Signal Space Separation Method for Magnetoencephalography Systems with Low Channel Counts. SENSORS (BASEL, SWITZERLAND) 2023; 23:6537. [PMID: 37514831 PMCID: PMC10385807 DOI: 10.3390/s23146537] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/14/2023] [Accepted: 07/16/2023] [Indexed: 07/30/2023]
Abstract
The signal space separation (SSS) method is routinely employed in the analysis of multichannel magnetic field recordings (such as magnetoencephalography (MEG) data). In the SSS method, signal vectors are posed as a multipole expansion of the magnetic field, allowing contributions from sources internal and external to a sensor array to be separated via computation of the pseudo-inverse of a matrix of the basis vectors. Although powerful, the standard implementation of the SSS method on MEG systems based on optically pumped magnetometers (OPMs) is unstable due to the approximate parity of the required number of dimensions of the SSS basis and the number of channels in the data. Here we exploit the hierarchical nature of the multipole expansion to perform a stable, iterative implementation of the SSS method. We describe the method and investigate its performance via a simulation study on a 192-channel OPM-MEG helmet. We assess performance for different levels of truncation of the SSS basis and a varying number of iterations. Results show that the iterative method provides stable performance, with a clear separation of internal and external sources.
Collapse
Affiliation(s)
- Niall Holmes
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD, UK; (R.B.); (M.J.B.)
- Cerca Magnetics Limited, Unit 2 Castlebridge Office Village, Kirtley Drive, Nottingham NG7 1LD, UK
| | - Richard Bowtell
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD, UK; (R.B.); (M.J.B.)
| | - Matthew J Brookes
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD, UK; (R.B.); (M.J.B.)
- Cerca Magnetics Limited, Unit 2 Castlebridge Office Village, Kirtley Drive, Nottingham NG7 1LD, UK
| | - Samu Taulu
- Department of Physics, University of Washington, Seattle, WA 98195, USA;
- Institute for Learning and Brain Sciences, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
31
|
Holmes N, Rea M, Hill RM, Leggett J, Edwards LJ, Hobson PJ, Boto E, Tierney TM, Rier L, Rivero GR, Shah V, Osborne J, Fromhold TM, Glover P, Brookes MJ, Bowtell R. Enabling ambulatory movement in wearable magnetoencephalography with matrix coil active magnetic shielding. Neuroimage 2023; 274:120157. [PMID: 37149237 PMCID: PMC10465235 DOI: 10.1016/j.neuroimage.2023.120157] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/13/2023] [Accepted: 05/03/2023] [Indexed: 05/08/2023] Open
Abstract
The ability to collect high-quality neuroimaging data during ambulatory participant movement would enable a wealth of neuroscientific paradigms. Wearable magnetoencephalography (MEG) based on optically pumped magnetometers (OPMs) has the potential to allow participant movement during a scan. However, the strict zero magnetic field requirement of OPMs means that systems must be operated inside a magnetically shielded room (MSR) and also require active shielding using electromagnetic coils to cancel residual fields and field changes (due to external sources and sensor movements) that would otherwise prevent accurate neuronal source reconstructions. Existing active shielding systems only compensate fields over small, fixed regions and do not allow ambulatory movement. Here we describe the matrix coil, a new type of active shielding system for OPM-MEG which is formed from 48 square unit coils arranged on two planes which can compensate magnetic fields in regions that can be flexibly placed between the planes. Through the integration of optical tracking with OPM data acquisition, field changes induced by participant movement are cancelled with low latency (25 ms). High-quality MEG source data were collected despite the presence of large (65 cm translations and 270° rotations) ambulatory participant movements.
Collapse
Affiliation(s)
- Niall Holmes
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD, UK; Cerca Magnetics Limited, Unit 2 Castlebridge Office Village, Kirtley Drive, Nottingham NG7 1LD, UK.
| | - Molly Rea
- Cerca Magnetics Limited, Unit 2 Castlebridge Office Village, Kirtley Drive, Nottingham NG7 1LD, UK; Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Ryan M Hill
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD, UK; Cerca Magnetics Limited, Unit 2 Castlebridge Office Village, Kirtley Drive, Nottingham NG7 1LD, UK
| | - James Leggett
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Lucy J Edwards
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Peter J Hobson
- School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Elena Boto
- Cerca Magnetics Limited, Unit 2 Castlebridge Office Village, Kirtley Drive, Nottingham NG7 1LD, UK; Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Tim M Tierney
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London WC1N 3AR, UK
| | - Lukas Rier
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Gonzalo Reina Rivero
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD, UK; Cerca Magnetics Limited, Unit 2 Castlebridge Office Village, Kirtley Drive, Nottingham NG7 1LD, UK
| | - Vishal Shah
- QuSpin Inc., 331 South 104th Street, Suite 130, Louisville, CO 80027, USA
| | - James Osborne
- QuSpin Inc., 331 South 104th Street, Suite 130, Louisville, CO 80027, USA
| | - T Mark Fromhold
- School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Paul Glover
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Matthew J Brookes
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD, UK; Cerca Magnetics Limited, Unit 2 Castlebridge Office Village, Kirtley Drive, Nottingham NG7 1LD, UK
| | - Richard Bowtell
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| |
Collapse
|
32
|
Takeda Y, Gomi T, Umebayashi R, Tomita S, Suzuki K, Hiroe N, Saikawa J, Munaka T, Yamashita O. Sensor array design of optically pumped magnetometers for accurately estimating source currents. Neuroimage 2023:120257. [PMID: 37392806 DOI: 10.1016/j.neuroimage.2023.120257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 04/21/2023] [Accepted: 06/28/2023] [Indexed: 07/03/2023] Open
Abstract
An optically pumped magnetometer (OPM) is a new generation of magnetoencephalography (MEG) devices that is small, light, and works at room temperature. Due to these characteristics, OPMs enable flexible and wearable MEG systems. On the other hand, if we have a limited number of OPM sensors, we need to carefully design their sensor arrays depending on our purposes and regions of interests (ROIs). In this study, we propose a method that designs OPM sensor arrays for accurately estimating the cortical currents at the ROIs. Based on the resolution matrix of minimum norm estimate (MNE), our method sequentially determines the position of each sensor to optimize its inverse filter pointing to the ROIs and suppressing the signal leakage from the other areas. We call this method the Sensor array Optimization based on Resolution Matrix (SORM). We conducted simple and realistic simulation tests to evaluate its characteristics and efficacy for real OPM-MEG data. SORM designed the sensor arrays so that their leadfield matrices had high effective ranks as well as high sensitivities to ROIs. Although SORM is based on MNE, the sensor arrays designed by SORM were effective not only when we estimated the cortical currents by MNE but also when we did so by other methods. With real OPM-MEG data we confirmed its validity for real data. These analyses suggest that SORM is especially useful when we want to accurately estimate ROIs' activities with a limited number of OPM sensors, such as brain-machine interfaces and diagnosing brain diseases.
Collapse
Affiliation(s)
- Yusuke Takeda
- Computational Brain Dynamics Team, RIKEN Center for Advanced Intelligence Project, 2-2-2 Hikaridai, Seika-cho, Soraku-gun, Kyoto, 619-0288, Japan; Department of Computational Brain Imaging, ATR Neural Information Analysis Laboratories, 2-2-2 Hikaridai, Seika-cho, Soraku-gun, Kyoto, 619-0288, Japan.
| | - Tomohiro Gomi
- Technology Research Laboratory, Shimadzu Corporation, 3-9-4 Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-0237, Japan
| | - Ryu Umebayashi
- Technology Research Laboratory, Shimadzu Corporation, 3-9-4 Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-0237, Japan
| | - Sadamu Tomita
- Technology Research Laboratory, Shimadzu Corporation, 3-9-4 Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-0237, Japan
| | - Keita Suzuki
- Department of Computational Brain Imaging, ATR Neural Information Analysis Laboratories, 2-2-2 Hikaridai, Seika-cho, Soraku-gun, Kyoto, 619-0288, Japan
| | - Nobuo Hiroe
- Department of Computational Brain Imaging, ATR Neural Information Analysis Laboratories, 2-2-2 Hikaridai, Seika-cho, Soraku-gun, Kyoto, 619-0288, Japan
| | - Jiro Saikawa
- Technology Research Laboratory, Shimadzu Corporation, 3-9-4 Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-0237, Japan
| | - Tatsuya Munaka
- Technology Research Laboratory, Shimadzu Corporation, 3-9-4 Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-0237, Japan
| | - Okito Yamashita
- Computational Brain Dynamics Team, RIKEN Center for Advanced Intelligence Project, 2-2-2 Hikaridai, Seika-cho, Soraku-gun, Kyoto, 619-0288, Japan; Department of Computational Brain Imaging, ATR Neural Information Analysis Laboratories, 2-2-2 Hikaridai, Seika-cho, Soraku-gun, Kyoto, 619-0288, Japan
| |
Collapse
|
33
|
Holmes N, Rea M, Hill RM, Boto E, Leggett J, Edwards LJ, Rhodes N, Shah V, Osborne J, Fromhold TM, Glover P, Montague PR, Brookes MJ, Bowtell R. Naturalistic Hyperscanning with Wearable Magnetoencephalography. SENSORS (BASEL, SWITZERLAND) 2023; 23:5454. [PMID: 37420622 PMCID: PMC10304205 DOI: 10.3390/s23125454] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/31/2023] [Accepted: 06/06/2023] [Indexed: 07/09/2023]
Abstract
The evolution of human cognitive function is reliant on complex social interactions which form the behavioural foundation of who we are. These social capacities are subject to dramatic change in disease and injury; yet their supporting neural substrates remain poorly understood. Hyperscanning employs functional neuroimaging to simultaneously assess brain activity in two individuals and offers the best means to understand the neural basis of social interaction. However, present technologies are limited, either by poor performance (low spatial/temporal precision) or an unnatural scanning environment (claustrophobic scanners, with interactions via video). Here, we describe hyperscanning using wearable magnetoencephalography (MEG) based on optically pumped magnetometers (OPMs). We demonstrate our approach by simultaneously measuring brain activity in two subjects undertaking two separate tasks-an interactive touching task and a ball game. Despite large and unpredictable subject motion, sensorimotor brain activity was delineated clearly, and the correlation of the envelope of neuronal oscillations between the two subjects was demonstrated. Our results show that unlike existing modalities, OPM-MEG combines high-fidelity data acquisition and a naturalistic setting and thus presents significant potential to investigate neural correlates of social interaction.
Collapse
Affiliation(s)
- Niall Holmes
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD, UK; (R.M.H.); (J.L.); (L.J.E.); (N.R.); (P.G.); (M.J.B.); (R.B.)
- Cerca Magnetics Limited, Unit 2 Castlebridge Office Village, Kirtley Drive, Nottingham NG7 1LD, UK; (M.R.); (E.B.)
| | - Molly Rea
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD, UK; (R.M.H.); (J.L.); (L.J.E.); (N.R.); (P.G.); (M.J.B.); (R.B.)
- Cerca Magnetics Limited, Unit 2 Castlebridge Office Village, Kirtley Drive, Nottingham NG7 1LD, UK; (M.R.); (E.B.)
| | - Ryan M. Hill
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD, UK; (R.M.H.); (J.L.); (L.J.E.); (N.R.); (P.G.); (M.J.B.); (R.B.)
- Cerca Magnetics Limited, Unit 2 Castlebridge Office Village, Kirtley Drive, Nottingham NG7 1LD, UK; (M.R.); (E.B.)
| | - Elena Boto
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD, UK; (R.M.H.); (J.L.); (L.J.E.); (N.R.); (P.G.); (M.J.B.); (R.B.)
- Cerca Magnetics Limited, Unit 2 Castlebridge Office Village, Kirtley Drive, Nottingham NG7 1LD, UK; (M.R.); (E.B.)
| | - James Leggett
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD, UK; (R.M.H.); (J.L.); (L.J.E.); (N.R.); (P.G.); (M.J.B.); (R.B.)
| | - Lucy J. Edwards
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD, UK; (R.M.H.); (J.L.); (L.J.E.); (N.R.); (P.G.); (M.J.B.); (R.B.)
| | - Natalie Rhodes
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD, UK; (R.M.H.); (J.L.); (L.J.E.); (N.R.); (P.G.); (M.J.B.); (R.B.)
| | - Vishal Shah
- QuSpin Inc., 331 South 104th Street, Suite 130, Louisville, CO 80027, USA; (V.S.); (J.O.)
| | - James Osborne
- QuSpin Inc., 331 South 104th Street, Suite 130, Louisville, CO 80027, USA; (V.S.); (J.O.)
| | - T. Mark Fromhold
- School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD, UK;
| | - Paul Glover
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD, UK; (R.M.H.); (J.L.); (L.J.E.); (N.R.); (P.G.); (M.J.B.); (R.B.)
| | - P. Read Montague
- Fralin Biomedical Research Institute, Department of Physics, Virginia Tech, Roanoke, VA 24016, USA;
| | - Matthew J. Brookes
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD, UK; (R.M.H.); (J.L.); (L.J.E.); (N.R.); (P.G.); (M.J.B.); (R.B.)
- Cerca Magnetics Limited, Unit 2 Castlebridge Office Village, Kirtley Drive, Nottingham NG7 1LD, UK; (M.R.); (E.B.)
| | - Richard Bowtell
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD, UK; (R.M.H.); (J.L.); (L.J.E.); (N.R.); (P.G.); (M.J.B.); (R.B.)
| |
Collapse
|
34
|
Ghahremani Arekhloo N, Parvizi H, Zuo S, Wang H, Nazarpour K, Marquetand J, Heidari H. Alignment of magnetic sensing and clinical magnetomyography. Front Neurosci 2023; 17:1154572. [PMID: 37274205 PMCID: PMC10232862 DOI: 10.3389/fnins.2023.1154572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/24/2023] [Indexed: 06/06/2023] Open
Abstract
Neuromuscular diseases are a prevalent cause of prolonged and severe suffering for patients, and with the global population aging, it is increasingly becoming a pressing concern. To assess muscle activity in NMDs, clinicians and researchers typically use electromyography (EMG), which can be either non-invasive using surface EMG, or invasive through needle EMG. Surface EMG signals have a low spatial resolution, and while the needle EMG provides a higher resolution, it can be painful for the patients, with an additional risk of infection. The pain associated with the needle EMG can pose a risk for certain patient groups, such as children. For example, children with spinal muscular atrophy (type of NMD) require regular monitoring of treatment efficacy through needle EMG; however, due to the pain caused by the procedure, clinicians often rely on a clinical assessment rather than needle EMG. Magnetomyography (MMG), the magnetic counterpart of the EMG, measures muscle activity non-invasively using magnetic signals. With super-resolution capabilities, MMG has the potential to improve spatial resolution and, in the meantime, address the limitations of EMG. This article discusses the challenges in developing magnetic sensors for MMG, including sensor design and technology advancements that allow for more specific recordings, targeting of individual motor units, and reduction of magnetic noise. In addition, we cover the motor unit behavior and activation pattern, an overview of magnetic sensing technologies, and evaluations of wearable, non-invasive magnetic sensors for MMG.
Collapse
Affiliation(s)
- Negin Ghahremani Arekhloo
- Microelectronics Lab, James Watt School of Engineering, The University of Glasgow, Glasgow, United Kingdom
- Neuranics Ltd., Glasgow, United Kingdom
| | - Hossein Parvizi
- Microelectronics Lab, James Watt School of Engineering, The University of Glasgow, Glasgow, United Kingdom
| | - Siming Zuo
- Microelectronics Lab, James Watt School of Engineering, The University of Glasgow, Glasgow, United Kingdom
- Neuranics Ltd., Glasgow, United Kingdom
| | - Huxi Wang
- Microelectronics Lab, James Watt School of Engineering, The University of Glasgow, Glasgow, United Kingdom
- Neuranics Ltd., Glasgow, United Kingdom
| | - Kianoush Nazarpour
- Neuranics Ltd., Glasgow, United Kingdom
- School of Informatics, The University of Edinburgh, Edinburgh, United Kingdom
| | - Justus Marquetand
- Department of Neural Dynamics and Magnetoencephalography, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- MEG Centre, University of Tübingen, Tübingen, Germany
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Hadi Heidari
- Microelectronics Lab, James Watt School of Engineering, The University of Glasgow, Glasgow, United Kingdom
- Neuranics Ltd., Glasgow, United Kingdom
| |
Collapse
|
35
|
Rhodes N, Rea M, Boto E, Rier L, Shah V, Hill RM, Osborne J, Doyle C, Holmes N, Coleman SC, Mullinger K, Bowtell R, Brookes MJ. Measurement of Frontal Midline Theta Oscillations using OPM-MEG. Neuroimage 2023; 271:120024. [PMID: 36918138 PMCID: PMC10465234 DOI: 10.1016/j.neuroimage.2023.120024] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/10/2023] [Accepted: 03/11/2023] [Indexed: 03/14/2023] Open
Abstract
Optically pumped magnetometers (OPMs) are an emerging lightweight and compact sensor that can measure magnetic fields generated by the human brain. OPMs enable construction of wearable magnetoencephalography (MEG) systems, which offer advantages over conventional instrumentation. However, when trying to measure signals at low frequency, higher levels of inherent sensor noise, magnetic interference and movement artefact introduce a significant challenge. Accurate characterisation of low frequency brain signals is important for neuroscientific, clinical, and paediatric MEG applications and consequently, demonstrating the viability of OPMs in this area is critical. Here, we undertake measurement of theta band (4-8 Hz) neural oscillations and contrast a newly developed 174 channel triaxial wearable OPM-MEG system with conventional (cryogenic-MEG) instrumentation. Our results show that visual steady state responses at 4 Hz, 6 Hz and 8 Hz can be recorded using OPM-MEG with a signal-to-noise ratio (SNR) that is not significantly different to conventional MEG. Moreover, we measure frontal midline theta oscillations during a 2-back working memory task, again demonstrating comparable SNR for both systems. We show that individual differences in both the amplitude and spatial signature of induced frontal-midline theta responses are maintained across systems. Finally, we show that our OPM-MEG results could not have been achieved without a triaxial sensor array, or the use of postprocessing techniques. Our results demonstrate the viability of OPMs for characterising theta oscillations and add weight to the argument that OPMs can replace cryogenic sensors as the fundamental building block of MEG systems.
Collapse
Affiliation(s)
- Natalie Rhodes
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Molly Rea
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Elena Boto
- Cerca Magnetics Ltd. 2, Castlebridge Office Village, Kirtley Dr, Nottingham NG7 1LD; Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Lukas Rier
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Vishal Shah
- QuSpin Inc. 331 South 104th Street, Suite 130, Louisville, Colorado, 80027, USA
| | - Ryan M Hill
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK; Cerca Magnetics Ltd. 2, Castlebridge Office Village, Kirtley Dr, Nottingham NG7 1LD
| | - James Osborne
- QuSpin Inc. 331 South 104th Street, Suite 130, Louisville, Colorado, 80027, USA
| | - Cody Doyle
- QuSpin Inc. 331 South 104th Street, Suite 130, Louisville, Colorado, 80027, USA
| | - Niall Holmes
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK; Cerca Magnetics Ltd. 2, Castlebridge Office Village, Kirtley Dr, Nottingham NG7 1LD
| | - Sebastian C Coleman
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Karen Mullinger
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK; Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham, B15 2TT, UK
| | - Richard Bowtell
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Matthew J Brookes
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK; Cerca Magnetics Ltd. 2, Castlebridge Office Village, Kirtley Dr, Nottingham NG7 1LD.
| |
Collapse
|
36
|
Skidchenko E, Butorina A, Ostras M, Vetoshko P, Kuzmichev A, Yavich N, Malovichko M, Koshev N. Yttrium-Iron Garnet Magnetometer in MEG: Advance towards Multi-Channel Arrays. SENSORS (BASEL, SWITZERLAND) 2023; 23:s23094256. [PMID: 37177460 PMCID: PMC10181089 DOI: 10.3390/s23094256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/17/2023] [Accepted: 04/23/2023] [Indexed: 05/15/2023]
Abstract
Recently, a new kind of sensor applicable in magnetoencephalography (MEG) has been presented: a solid-state yttrium-iron garnet magnetometer (YIGM). The feasibility of yttrium-iron garnet magnetometers (YIGMs) was demonstrated in an alpha-rhythm registration experiment. In this paper, we propose the analysis of lead-field matrices for different possible multi-channel on-scalp sensor layouts using YIGMs with respect to information theory. Real noise levels of the new sensor were used to compute signal-to-noise ratio (SNR) and total information capacity (TiC), and compared with corresponding metrics that can be obtained with well-established MEG systems based on superconducting quantum interference devices (SQUIDs) and optically pumped magnetometers (OPMs). The results showed that due to YIGMs' proximity to the subject's scalp, they outperform SQUIDs and OPMs at their respective noise levels in terms of SNR and TiC. However, the current noise levels of YIGM sensors are unfortunately insufficient for constructing a multichannel YIG-MEG system. This simulation study provides insight into the direction for further development of YIGM sensors to create a multi-channel MEG system, namely, by decreasing the noise levels of sensors.
Collapse
Affiliation(s)
| | - Anna Butorina
- CNBR, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
| | - Maxim Ostras
- M-Granat, Russian Quantum Center, 121205 Moscow, Russia
| | - Petr Vetoshko
- M-Granat, Russian Quantum Center, 121205 Moscow, Russia
- Laboratory of Magnetic Phenomena in Microelectronics, Kotelnikov Institute of Radioengineering and Electronics of RAS, 125009 Moscow, Russia
| | | | - Nikolay Yavich
- CNBR, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
- Computational Geophysics Lab, Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
| | - Mikhail Malovichko
- Computational Geophysics Lab, Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
| | - Nikolay Koshev
- CNBR, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
| |
Collapse
|
37
|
Xiang J, Yu X, Bonnette S, Anand M, Riehm CD, Schlink B, Diekfuss JA, Myer GD, Jiang Y. Improved Biomagnetic Signal-To-Noise Ratio and Source Localization Using Optically Pumped Magnetometers with Synthetic Gradiometers. Brain Sci 2023; 13:663. [PMID: 37190628 PMCID: PMC10136792 DOI: 10.3390/brainsci13040663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/10/2023] [Accepted: 04/13/2023] [Indexed: 05/17/2023] Open
Abstract
Optically pumped magnetometers (OPMs) can capture brain activity but are susceptible to magnetic noise. The objective of this study was to evaluate a novel methodology used to reduce magnetic noise in OPM measurements. A portable magnetoencephalography (MEG) prototype was developed with OPMs. The OPMs were divided into primary sensors and reference sensors. For each primary sensor, a synthetic gradiometer (SG) was constructed by computing a secondary sensor that simulated noise with signals from the reference sensors. MEG data from a phantom with known source signals and six human participants were used to assess the efficacy of the SGs. Magnetic noise in the OPM data appeared predominantly in a low frequency range (<4 Hz) and varied among OPMs. The SGs significantly reduced magnetic noise (p < 0.01), enhanced the signal-to-noise ratio (SNR) (p < 0.001) and improved the accuracy of source localization (p < 0.02). The SGs precisely revealed movement-evoked magnetic fields in MEG data recorded from human participants. SGs provided an effective method to enhance SNR and improve the accuracy of source localization by suppressing noise. Software-simulated SGs may provide new opportunities regarding the use of OPM measurements in various clinical and research applications, especially those in which movement is relevant.
Collapse
Affiliation(s)
- Jing Xiang
- MEG Center, Division of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Xiaoqian Yu
- Laureate Institute for Brain Research, 6655 S Yale Ave., Tulsa, OK 74136, USA
| | - Scott Bonnette
- Division of Sports Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Manish Anand
- Emory Sport Performance and Research Center (SPARC), Emory University, Flowery Branch, GA 30542, USA
- Emory Sports Medicine Center, Emory Healthcare, Atlanta, GA 30329, USA
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA 45267, USA
| | - Christopher D. Riehm
- Emory Sport Performance and Research Center (SPARC), Emory University, Flowery Branch, GA 30542, USA
- Emory Sports Medicine Center, Emory Healthcare, Atlanta, GA 30329, USA
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA 45267, USA
| | - Bryan Schlink
- Emory Sport Performance and Research Center (SPARC), Emory University, Flowery Branch, GA 30542, USA
| | - Jed A. Diekfuss
- Emory Sport Performance and Research Center (SPARC), Emory University, Flowery Branch, GA 30542, USA
- Emory Sports Medicine Center, Emory Healthcare, Atlanta, GA 30329, USA
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA 45267, USA
| | - Gregory D. Myer
- Emory Sport Performance and Research Center (SPARC), Emory University, Flowery Branch, GA 30542, USA
- Emory Sports Medicine Center, Emory Healthcare, Atlanta, GA 30329, USA
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA 45267, USA
- The Micheli Center for Sports Injury Prevention, Waltham, MA 02453, USA
| | - Yang Jiang
- Department of Behavioral Science, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| |
Collapse
|
38
|
Wens V. Exploring the limits of MEG spatial resolution with multipolar expansions. Neuroimage 2023; 270:119953. [PMID: 36842521 DOI: 10.1016/j.neuroimage.2023.119953] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/17/2023] [Indexed: 02/26/2023] Open
Abstract
The advent of scalp magnetoencephalography (MEG) based on optically pumped magnetometers (OPMs) may represent a step change in the field of human electrophysiology. Compared to cryogenic MEG based on superconducting quantum interference devices (SQUIDs, placed 2-4 cm above scalp), scalp MEG promises significantly higher spatial resolution imaging but it also comes with numerous challenges regarding how to optimally design OPM arrays. In this context, we sought to provide a systematic description of MEG spatial resolution as a function of the number of sensors (allowing comparison of low- vs. high-density MEG), sensor-to-brain distance (cryogenic SQUIDs vs. scalp OPM), sensor type (magnetometers vs. gradiometers; single- vs. multi-component sensors), and signal-to-noise ratio. To that aim, we present an analytical theory based on MEG multipolar expansions that enables, once supplemented with experimental input and simulations, quantitative assessment of the limits of MEG spatial resolution in terms of two qualitatively distinct regimes. In the regime of asymptotically high-density MEG, we provide a mathematically rigorous description of how magnetic field smoothness constraints spatial resolution to a slow, logarithmic divergence. In the opposite regime of low-density MEG, it is sensor density that constraints spatial resolution to a faster increase following a square-root law. The transition between these two regimes controls how MEG spatial resolution saturates as sensors approach sources of neural activity. This two-regime model of MEG spatial resolution integrates known observations (e.g., the difficulty of improving spatial resolution by increasing sensor density, the gain brought by moving sensors on scalp, or the usefulness of multi-component sensors) and gathers them under a unifying theoretical framework that highlights the underlying physics and reveals properties inaccessible to simulations. We propose that this framework may find useful applications to benchmark the design of future OPM-based scalp MEG systems.
Collapse
Affiliation(s)
- Vincent Wens
- LN(2)T - Laboratoire de Neuroanatomie et Neuroimagerie translationnelles, UNI - ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Brussels, Belgium; Department of Translational Neuroimaging, H.U.B. - Hôpital Erasme, Brussels, Belgium.
| |
Collapse
|
39
|
Everaert K, Sander T, Körber R, Löwa N, Van Waeyenberge B, Leliaert J, Wiekhorst F. Monitoring magnetic nanoparticle clustering and immobilization with thermal noise magnetometry using optically pumped magnetometers. NANOSCALE ADVANCES 2023; 5:2341-2351. [PMID: 37056624 PMCID: PMC10089116 DOI: 10.1039/d3na00016h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 03/15/2023] [Indexed: 06/19/2023]
Abstract
Thermal noise magnetometry (TNM) is a recently developed magnetic characterization technique where thermally induced fluctuations in magnetization are measured to gain insight into nanomagnetic structures like magnetic nanoparticles (MNPs). Due to the stochastic nature of the method, its signal amplitude scales with the square of the volume of the individual fluctuators, which makes the method therefore extra attractive to study MNP clustering and aggregation processes. Until now, TNM signals have exclusively been detected by using a superconducting quantum interference device (SQUID) sensor. In contrast, we present here a tabletop setup using optically pumped magnetometers (OPMs) in a compact magnetic shield, as a flexible alternative. The agreement between results obtained with both measurement systems is shown for different commercially available MNP samples. We argue that the OPM setup with low complexity complements the SQUID setup with high sensitivity and bandwidth. Furthermore, the OPM tabletop setup is well suited to monitor aggregation processes because of its excellent sensitivity in lower frequencies. As a proof of concept, we show the changes in the noise spectrum for three different MNP immobilization and clustering processes. From our results, we conclude that the tabletop setup offers a flexible and widely adoptable measurement unit to monitor the immobilization, aggregation, and clustering of MNPs for different applications, including interactions of the particles with biological systems and the long-term stability of magnetic samples.
Collapse
Affiliation(s)
- Katrijn Everaert
- Department of Biosignals, Physikalisch-Technische Bundesanstalt Abbestraße 2-12 10587 Berlin Germany
- Ghent University, Department of Solid State Sciences Krijgslaan 281/S1 9000 Gent Belgium
| | - Tilmann Sander
- Department of Biosignals, Physikalisch-Technische Bundesanstalt Abbestraße 2-12 10587 Berlin Germany
| | - Rainer Körber
- Department of Biosignals, Physikalisch-Technische Bundesanstalt Abbestraße 2-12 10587 Berlin Germany
| | - Norbert Löwa
- Department of Biosignals, Physikalisch-Technische Bundesanstalt Abbestraße 2-12 10587 Berlin Germany
| | - Bartel Van Waeyenberge
- Ghent University, Department of Solid State Sciences Krijgslaan 281/S1 9000 Gent Belgium
| | - Jonathan Leliaert
- Ghent University, Department of Solid State Sciences Krijgslaan 281/S1 9000 Gent Belgium
| | - Frank Wiekhorst
- Department of Biosignals, Physikalisch-Technische Bundesanstalt Abbestraße 2-12 10587 Berlin Germany
| |
Collapse
|
40
|
Schofield H, Boto E, Shah V, Hill RM, Osborne J, Rea M, Doyle C, Holmes N, Bowtell R, Woolger D, Brookes MJ. Quantum enabled functional neuroimaging: the why and how of magnetoencephalography using optically pumped magnetometers. CONTEMPORARY PHYSICS 2023; 63:161-179. [PMID: 38463461 PMCID: PMC10923587 DOI: 10.1080/00107514.2023.2182950] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 02/06/2023] [Indexed: 03/12/2024]
Abstract
Non-invasive imaging has transformed neuroscientific discovery and clinical practice, providing a non-invasive window into the human brain. However, whilst techniques like MRI generate ever more precise images of brain structure, in many cases, it's the function within neural networks that underlies disease. Here, we review the potential for quantum-enabled magnetic field sensors to shed light on such activity. Specifically, we describe how optically pumped magnetometers (OPMs) enable magnetoencephalographic (MEG) recordings with higher accuracy and improved practicality compared to the current state-of-the-art. The paper is split into two parts: first, we describe the work to date on OPM-MEG, detailing why this novel biomagnetic imaging technique is proving disruptive. Second, we explain how fundamental physics, including quantum mechanics and electromagnetism, underpins this developing technology. We conclude with a look to the future, outlining the potential for OPM-MEG to initiate a step change in the understanding and management of brain health.
Collapse
Affiliation(s)
- Holly Schofield
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
- Cerca Magnetics Limited, Nottingham, UK
| | - Elena Boto
- Cerca Magnetics Limited, Nottingham, UK
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | | | - Ryan M Hill
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
- Cerca Magnetics Limited, Nottingham, UK
| | | | - Molly Rea
- Cerca Magnetics Limited, Nottingham, UK
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | | | - Niall Holmes
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
- Cerca Magnetics Limited, Nottingham, UK
| | - Richard Bowtell
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | | | - Matthew J Brookes
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
- Cerca Magnetics Limited, Nottingham, UK
| |
Collapse
|
41
|
Gutteling TP, Bonnefond M, Clausner T, Daligault S, Romain R, Mitryukovskiy S, Fourcault W, Josselin V, Le Prado M, Palacios-Laloy A, Labyt E, Jung J, Schwartz D. A New Generation of OPM for High Dynamic and Large Bandwidth MEG: The 4He OPMs-First Applications in Healthy Volunteers. SENSORS (BASEL, SWITZERLAND) 2023; 23:s23052801. [PMID: 36905007 PMCID: PMC10006929 DOI: 10.3390/s23052801] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/16/2023] [Accepted: 02/24/2023] [Indexed: 06/06/2023]
Abstract
MagnetoEncephaloGraphy (MEG) provides a measure of electrical activity in the brain at a millisecond time scale. From these signals, one can non-invasively derive the dynamics of brain activity. Conventional MEG systems (SQUID-MEG) use very low temperatures to achieve the necessary sensitivity. This leads to severe experimental and economical limitations. A new generation of MEG sensors is emerging: the optically pumped magnetometers (OPM). In OPM, an atomic gas enclosed in a glass cell is traversed by a laser beam whose modulation depends on the local magnetic field. MAG4Health is developing OPMs using Helium gas (4He-OPM). They operate at room temperature with a large dynamic range and a large frequency bandwidth and output natively a 3D vectorial measure of the magnetic field. In this study, five 4He-OPMs were compared to a classical SQUID-MEG system in a group of 18 volunteers to evaluate their experimental performances. Considering that the 4He-OPMs operate at real room temperature and can be placed directly on the head, our assumption was that 4He-OPMs would provide a reliable recording of physiological magnetic brain activity. Indeed, the results showed that the 4He-OPMs showed very similar results to the classical SQUID-MEG system by taking advantage of a shorter distance to the brain, despite having a lower sensitivity.
Collapse
Affiliation(s)
- Tjerk P. Gutteling
- CERMEP-Imagerie du Vivant, MEG Departement, 69000 Lyon, France
- CRNL, UMR_S 1028, HCL, Université Lyon 1, 69000 Lyon, France
| | | | - Tommy Clausner
- CRNL, UMR_S 1028, HCL, Université Lyon 1, 69000 Lyon, France
| | | | | | | | - William Fourcault
- CEA LETI, Minatec Campus, Université Grenoble Alpes, 38000 Grenoble, France
| | - Vincent Josselin
- CEA LETI, Minatec Campus, Université Grenoble Alpes, 38000 Grenoble, France
| | | | | | | | - Julien Jung
- CRNL, UMR_S 1028, HCL, Université Lyon 1, 69000 Lyon, France
| | - Denis Schwartz
- CERMEP-Imagerie du Vivant, MEG Departement, 69000 Lyon, France
- CRNL, UMR_S 1028, HCL, Université Lyon 1, 69000 Lyon, France
| |
Collapse
|
42
|
Aslam N, Zhou H, Urbach EK, Turner MJ, Walsworth RL, Lukin MD, Park H. Quantum sensors for biomedical applications. NATURE REVIEWS. PHYSICS 2023; 5:157-169. [PMID: 36776813 PMCID: PMC9896461 DOI: 10.1038/s42254-023-00558-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/10/2023] [Indexed: 05/09/2023]
Abstract
Quantum sensors are finding their way from laboratories to the real world, as witnessed by the increasing number of start-ups in this field. The atomic length scale of quantum sensors and their coherence properties enable unprecedented spatial resolution and sensitivity. Biomedical applications could benefit from these quantum technologies, but it is often difficult to evaluate the potential impact of the techniques. This Review sheds light on these questions, presenting the status of quantum sensing applications and discussing their path towards commercialization. The focus is on two promising quantum sensing platforms: optically pumped atomic magnetometers, and nitrogen-vacancy centres in diamond. The broad spectrum of biomedical applications is highlighted by four case studies ranging from brain imaging to single-cell spectroscopy.
Collapse
Affiliation(s)
- Nabeel Aslam
- Department of Physics, Harvard University, Cambridge, MA USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA USA
- Institute of Condensed Matter Physics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Hengyun Zhou
- Department of Physics, Harvard University, Cambridge, MA USA
| | - Elana K. Urbach
- Department of Physics, Harvard University, Cambridge, MA USA
| | - Matthew J. Turner
- Quantum Technology Center, University of Maryland, College Park, MD USA
- Department of Electrical and Computer Engineering, University of Maryland, College Park, MD USA
| | - Ronald L. Walsworth
- Quantum Technology Center, University of Maryland, College Park, MD USA
- Department of Electrical and Computer Engineering, University of Maryland, College Park, MD USA
- Department of Physics, University of Maryland, College Park, MD USA
| | | | - Hongkun Park
- Department of Physics, Harvard University, Cambridge, MA USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA USA
| |
Collapse
|
43
|
Rädler M, Buizza G, Kawula M, Palaniappan P, Gianoli C, Baroni G, Paganelli C, Parodi K, Riboldi M. Impact of secondary particles on the magnetic field generated by a proton pencil beam: a finite-element analysis based on Geant4-DNA simulations. Med Phys 2023; 50:1000-1018. [PMID: 36346042 DOI: 10.1002/mp.16062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 09/22/2022] [Accepted: 09/27/2022] [Indexed: 11/11/2022] Open
Abstract
PURPOSE To investigate the static magnetic field generated by a proton pencil beam as a candidate for range verification by means of Monte Carlo simulations, thereby improving upon existing analytical calculations. We focus on the impact of statistical current fluctuations and secondary protons and electrons. METHODS We considered a pulsed beam (10 μ ${\umu}$ s pulse duration) during the duty cycle with a peak beam current of 0.2 μ $\umu$ A and an initial energy of 100 MeV. We ran Geant4-DNA Monte Carlo simulations of a proton pencil beam in water and extracted independent particle phase spaces. We calculated longitudinal and radial current density of protons and electrons, serving as an input for a magnetic field estimation based on a finite element analysis in a cylindrical geometry. We made sure to allow for non-solenoidal current densities as is the case of a stopping proton beam. RESULTS The rising proton charge density toward the range is not perturbed by energy straggling and only lowered through nuclear reactions by up to 15%, leading to an approximately constant longitudinal current. Their relative low density however (at most 0.37 protons/mm3 for the 0.2 μ ${\umu}$ A current and a beam cross-section of 2.5 mm), gives rise to considerable current density fluctuations. The radial proton current resulting from lateral scattering and being two orders of magnitude weaker than the longitudinal current is subject to even stronger fluctuations. Secondary electrons with energies above 10 eV, that far outnumber the primary protons, reduce the primary proton current by only 10% due to their largely isotropic flow. A small fraction of electrons (<1%), undergoing head-on collisions, constitutes the relevant electron current. In the far-field, both contributions to the magnetic field strength (longitudinal and lateral) are independent of the beam spot size. We also find that the nuclear reaction-related losses cause a shift of 1.3 mm to the magnetic field profile relative to the actual range, which is further enlarged to 2.4 mm by the electron current (at a distance of ρ = 50 $\rho =50$ mm away from the central beam axis). For ρ > 45 $\rho >45$ mm, the shift increases linearly. While the current density variations cause significant magnetic field uncertainty close to the central beam axis with a relative standard deviation (RSD) close to 100%, they average out at a distance of 10 cm, where the RSD of the total magnetic field drops below 2%. CONCLUSIONS With the small influence of the secondary electrons together with the low RSD, our analysis encourages an experimental detection of the magnetic field through sensitive instrumentation, such as optical magnetometry or SQUIDs.
Collapse
Affiliation(s)
- Martin Rädler
- Department of Medical Physics, Faculty of Physics, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Giulia Buizza
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Piazza Leonardo da Vinci, Milan, Italy
| | - Maria Kawula
- Department of Radiation Oncology, LMU Hospital, Munich, Germany
| | - Prasannakumar Palaniappan
- Department of Medical Physics, Faculty of Physics, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Chiara Gianoli
- Department of Medical Physics, Faculty of Physics, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Guido Baroni
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Piazza Leonardo da Vinci, Milan, Italy
| | - Chiara Paganelli
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Piazza Leonardo da Vinci, Milan, Italy
| | - Katia Parodi
- Department of Medical Physics, Faculty of Physics, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Marco Riboldi
- Department of Medical Physics, Faculty of Physics, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
44
|
Gross J, Junghöfer M, Wolters C. Bioelectromagnetism in Human Brain Research: New Applications, New Questions. Neuroscientist 2023; 29:62-77. [PMID: 34873945 PMCID: PMC9902961 DOI: 10.1177/10738584211054742] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Bioelectromagnetism has contributed some of the most commonly used techniques to human neuroscience such as magnetoencephalography (MEG), electroencephalography (EEG), transcranial magnetic stimulation (TMS), and transcranial electric stimulation (TES). The considerable differences in their technical design and practical use give rise to the impression that these are quite different techniques altogether. Here, we review, discuss and illustrate the fundamental principle of Helmholtz reciprocity that provides a common ground for all four techniques. We show that, more than 150 years after its discovery by Helmholtz in 1853, reciprocity is important to appreciate the strengths and limitations of these four classical tools in neuroscience. We build this case by explaining the concept of Helmholtz reciprocity, presenting a methodological account of this principle for all four methods and, finally, by illustrating its application in practical clinical studies.
Collapse
Affiliation(s)
- Joachim Gross
- Institute for Biomagnetism and Biosignalanalysis, University of Münster, Münster, Germany,Joachim Gross, Institute for Biomagnetism and Biosignalanalysis, University of Münster, Malmedyweg 15, Münster, 48149, Germany.
| | - Markus Junghöfer
- Institute for Biomagnetism and Biosignalanalysis, University of Münster, Münster, Germany
| | - Carsten Wolters
- Institute for Biomagnetism and Biosignalanalysis, University of Münster, Münster, Germany
| |
Collapse
|
45
|
Mrozowski MS, Chalmers IC, Ingleby SJ, Griffin PF, Riis E. Ultra-low noise, bi-polar, programmable current sources. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2023; 94:014701. [PMID: 36725565 DOI: 10.1063/5.0114760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 12/07/2022] [Indexed: 06/18/2023]
Abstract
We present the design process and implementation of fully open-source, ultra-low noise programmable current source systems in two configurations. Although originally designed as coil drivers for Optically Pumped Magnetometers (OPMs), the device specifications make them potentially useful in a range of applications. The devices feature a bi-directional current range of ±10 and ±250 mA on three independent channels with 16-bit resolution. Both devices feature a narrow 1/f noise bandwidth of 1 Hz, enabling magnetic field manipulation for high-performance OPMs. They exhibit a low noise of 146 pA/Hz and 4.1 nA/Hz, which translates to 15 and 16 ppb/Hz noise relative to full scale.
Collapse
Affiliation(s)
- M S Mrozowski
- Department of Physics, SUPA, University of Strathclyde, Glasgow G4 0NG, United Kingdom
| | - I C Chalmers
- Department of Physics, SUPA, University of Strathclyde, Glasgow G4 0NG, United Kingdom
| | - S J Ingleby
- Department of Physics, SUPA, University of Strathclyde, Glasgow G4 0NG, United Kingdom
| | - P F Griffin
- Department of Physics, SUPA, University of Strathclyde, Glasgow G4 0NG, United Kingdom
| | - E Riis
- Department of Physics, SUPA, University of Strathclyde, Glasgow G4 0NG, United Kingdom
| |
Collapse
|
46
|
Bezsudnova Y, Koponen LM, Barontini G, Jensen O, Kowalczyk AU. Optimising the sensing volume of OPM sensors for MEG source reconstruction. Neuroimage 2022; 264:119747. [PMID: 36403733 PMCID: PMC7615061 DOI: 10.1016/j.neuroimage.2022.119747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 10/17/2022] [Accepted: 11/08/2022] [Indexed: 11/19/2022] Open
Abstract
Magnetoencephalography (MEG) based on optically pumped magnetometers (OPMs) has been hailed as the future of electrophysiological recordings from the human brain. In this work, we investigate how the dimensions of the sensing volume (the vapour cell) affect the performance of both a single OPM-MEG sensor and a multi-sensor OPM-MEG system. We consider a realistic noise model that accounts for background brain activity and residual noise. By using source reconstruction metrics such as localization accuracy and time-course reconstruction accuracy, we demonstrate that the best overall sensitivity and reconstruction accuracy are achieved with cells that are significantly longer and wider that those of the majority of current commercial OPM sensors. Our work provides useful tools to optimise the cell dimensions of OPM sensors in a wide range of environments.
Collapse
Affiliation(s)
- Yulia Bezsudnova
- School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | - Lari M Koponen
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Edgbaston, Birmingham, B15 2SA, United Kingdom
| | - Giovanni Barontini
- School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom; Centre for Human Brain Health, School of Psychology, University of Birmingham, Edgbaston, Birmingham, B15 2SA, United Kingdom
| | - Ole Jensen
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Edgbaston, Birmingham, B15 2SA, United Kingdom
| | - Anna U Kowalczyk
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Edgbaston, Birmingham, B15 2SA, United Kingdom.
| |
Collapse
|
47
|
Rushton LM, Pyragius T, Meraki A, Elson L, Jensen K. Unshielded portable optically pumped magnetometer for the remote detection of conductive objects using eddy current measurements. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2022; 93:125103. [PMID: 36586912 DOI: 10.1063/5.0102402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 11/06/2022] [Indexed: 06/17/2023]
Abstract
Electrically conductive objects can be detected using the principle of electromagnetic induction, where a primary oscillating magnetic field induces eddy currents in the object, which in turn produce a secondary magnetic field that can be measured with a magnetometer. We have developed a portable radio-frequency optically pumped magnetometer (RF OPM) working in unshielded conditions with sub-pT/Hz magnetic field sensitivity when used for the detection of small oscillating magnetic fields, setting a new benchmark for the sensitivity of a portable RF OPM in unshielded conditions. Using this OPM, we have detected the induced magnetic field from aluminum disks with diameters as small as 1.5 cm and with the disks being ∼25 cm from both the excitation coil and the magnetometer. When used for eddy current detection, our magnetometer achieves a sensitivity of a 2-6 pT/Hz. We have also detected a moving aluminum disk using our RF OPM and analyzed the magnetometer signals, which depend on the position of the disk, illustrating the potential of high sensitivity RF OPMs for remote sensing applications.
Collapse
Affiliation(s)
- L M Rushton
- School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - T Pyragius
- School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - A Meraki
- School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - L Elson
- School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - K Jensen
- School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| |
Collapse
|
48
|
Zhou P, Quan W, Wei K, Liang Z, Hu J, Liu L, Hu G, Wang A, Ye M. Application of VCSEL in Bio-Sensing Atomic Magnetometers. BIOSENSORS 2022; 12:1098. [PMID: 36551063 PMCID: PMC9775631 DOI: 10.3390/bios12121098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/27/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Recent years have seen rapid development of chip-scale atomic devices due to their great potential in the field of biomedical imaging, namely chip-scale atomic magnetometers that enable high resolution magnetocardiography (MCG) and magnetoencephalography (MEG). For atomic devices of this kind, vertical cavity surface emitting lasers (VCSELs) have become the most crucial components as integrated pumping sources, which are attracting growing interest. In this paper, the application of VCSELs in chip-scale atomic devices are reviewed, where VCSELs are integrated in various atomic bio-sensing devices with different operating environments. Secondly, the mode and polarization control of VCSELs in the specific applications are reviewed with their pros and cons discussed. In addition, various packaging of VCSEL based on different atomic devices in pursuit of miniaturization and precision measurement are reviewed and discussed. Finally, the VCSEL-based chip-scale atomic magnetometers utilized for cardiac and brain magnetometry are reviewed in detail. Nowadays, biosensors with chip integration, low power consumption, and high sensitivity are undergoing rapid industrialization, due to the growing market of medical instrumentation and portable health monitoring. It is promising that VCSEL-integrated chip-scale atomic biosensors as featured applications of this kind may experience extensive development in the near future.
Collapse
Affiliation(s)
- Peng Zhou
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China
- Beihang Hangzhou Innovation Institute Yuhang, Xixi Octagon City, Yuhang District, Hangzhou 310023, China
| | - Wei Quan
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China
- Beihang Hangzhou Innovation Institute Yuhang, Xixi Octagon City, Yuhang District, Hangzhou 310023, China
| | - Kai Wei
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China
- Beihang Hangzhou Innovation Institute Yuhang, Xixi Octagon City, Yuhang District, Hangzhou 310023, China
| | - Zihua Liang
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China
- Beihang Hangzhou Innovation Institute Yuhang, Xixi Octagon City, Yuhang District, Hangzhou 310023, China
| | - Jinsheng Hu
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China
- Beihang Hangzhou Innovation Institute Yuhang, Xixi Octagon City, Yuhang District, Hangzhou 310023, China
| | - Lu Liu
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China
- Beihang Hangzhou Innovation Institute Yuhang, Xixi Octagon City, Yuhang District, Hangzhou 310023, China
| | - Gen Hu
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China
- Beihang Hangzhou Innovation Institute Yuhang, Xixi Octagon City, Yuhang District, Hangzhou 310023, China
| | - Ankang Wang
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China
- Beihang Hangzhou Innovation Institute Yuhang, Xixi Octagon City, Yuhang District, Hangzhou 310023, China
| | - Mao Ye
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China
- Beihang Hangzhou Innovation Institute Yuhang, Xixi Octagon City, Yuhang District, Hangzhou 310023, China
| |
Collapse
|
49
|
Rea M, Boto E, Holmes N, Hill R, Osborne J, Rhodes N, Leggett J, Rier L, Bowtell R, Shah V, Brookes MJ. A 90-channel triaxial magnetoencephalography system using optically pumped magnetometers. Ann N Y Acad Sci 2022; 1517:107-124. [PMID: 36065147 PMCID: PMC9826099 DOI: 10.1111/nyas.14890] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Magnetoencephalography (MEG) measures the small magnetic fields generated by current flow in neural networks, providing a noninvasive metric of brain function. MEG is well established as a powerful neuroscientific and clinical tool. However, current instrumentation is hampered by cumbersome cryogenic field-sensing technologies. In contrast, MEG using optically pumped magnetometers (OPM-MEG) employs small, lightweight, noncryogenic sensors that provide data with higher sensitivity and spatial resolution, a natural scanning environment (including participant movement), and adaptability to any age. However, OPM-MEG is new and the optimum way to design a system is unknown. Here, we construct a novel, 90-channel triaxial OPM-MEG system and use it to map motor function during a naturalistic handwriting task. Results show that high-precision magnetic field control reduced background fields to ∼200 pT, enabling free participant movement. Our triaxial array offered twice the total measured signal and better interference rejection compared to a conventional (single-axis) design. We mapped neural oscillatory activity to the sensorimotor network, demonstrating significant differences in motor network activity and connectivity for left-handed versus right-handed handwriting. Repeatability across scans showed that we can map electrophysiological activity with an accuracy ∼4 mm. Overall, our study introduces a novel triaxial OPM-MEG design and confirms its potential for high-performance functional neuroimaging.
Collapse
Affiliation(s)
- Molly Rea
- Sir Peter Mansfield Imaging Centre, School of Physics and AstronomyUniversity of NottinghamNottinghamUK
| | - Elena Boto
- Sir Peter Mansfield Imaging Centre, School of Physics and AstronomyUniversity of NottinghamNottinghamUK
| | - Niall Holmes
- Sir Peter Mansfield Imaging Centre, School of Physics and AstronomyUniversity of NottinghamNottinghamUK
| | - Ryan Hill
- Sir Peter Mansfield Imaging Centre, School of Physics and AstronomyUniversity of NottinghamNottinghamUK
| | | | - Natalie Rhodes
- Sir Peter Mansfield Imaging Centre, School of Physics and AstronomyUniversity of NottinghamNottinghamUK
| | - James Leggett
- Sir Peter Mansfield Imaging Centre, School of Physics and AstronomyUniversity of NottinghamNottinghamUK
| | - Lukas Rier
- Sir Peter Mansfield Imaging Centre, School of Physics and AstronomyUniversity of NottinghamNottinghamUK
| | - Richard Bowtell
- Sir Peter Mansfield Imaging Centre, School of Physics and AstronomyUniversity of NottinghamNottinghamUK
| | | | - Matthew J. Brookes
- Sir Peter Mansfield Imaging Centre, School of Physics and AstronomyUniversity of NottinghamNottinghamUK
| |
Collapse
|
50
|
Billig AJ, Lad M, Sedley W, Griffiths TD. The hearing hippocampus. Prog Neurobiol 2022; 218:102326. [PMID: 35870677 PMCID: PMC10510040 DOI: 10.1016/j.pneurobio.2022.102326] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/08/2022] [Accepted: 07/18/2022] [Indexed: 11/17/2022]
Abstract
The hippocampus has a well-established role in spatial and episodic memory but a broader function has been proposed including aspects of perception and relational processing. Neural bases of sound analysis have been described in the pathway to auditory cortex, but wider networks supporting auditory cognition are still being established. We review what is known about the role of the hippocampus in processing auditory information, and how the hippocampus itself is shaped by sound. In examining imaging, recording, and lesion studies in species from rodents to humans, we uncover a hierarchy of hippocampal responses to sound including during passive exposure, active listening, and the learning of associations between sounds and other stimuli. We describe how the hippocampus' connectivity and computational architecture allow it to track and manipulate auditory information - whether in the form of speech, music, or environmental, emotional, or phantom sounds. Functional and structural correlates of auditory experience are also identified. The extent of auditory-hippocampal interactions is consistent with the view that the hippocampus makes broad contributions to perception and cognition, beyond spatial and episodic memory. More deeply understanding these interactions may unlock applications including entraining hippocampal rhythms to support cognition, and intervening in links between hearing loss and dementia.
Collapse
Affiliation(s)
| | - Meher Lad
- Translational and Clinical Research Institute, Newcastle University Medical School, Newcastle upon Tyne, UK
| | - William Sedley
- Translational and Clinical Research Institute, Newcastle University Medical School, Newcastle upon Tyne, UK
| | - Timothy D Griffiths
- Biosciences Institute, Newcastle University Medical School, Newcastle upon Tyne, UK; Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London, UK; Human Brain Research Laboratory, Department of Neurosurgery, University of Iowa Hospitals and Clinics, Iowa City, USA
| |
Collapse
|