1
|
Kınacı-Biber E, Yardımcı-Lokmanoğlu BN, Mutlu A. Early Motor Repertoire and Developmental Functioning at Later Age of Children Who Were Diagnosed with Autism Spectrum Disorder: A Pilot Study. Phys Occup Ther Pediatr 2025:1-15. [PMID: 39757348 DOI: 10.1080/01942638.2024.2447020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 12/06/2024] [Accepted: 12/09/2024] [Indexed: 01/07/2025]
Abstract
AIMS Autism Spectrum Disorder (ASD) may exhibit early motor delay, and long-term motor impairments in addition to social and communicative problems. This pilot study aimed to describe (i) the early motor repertoire using General Movements Assessment (GMA) of infants later diagnosed with ASD, (ii) the developmental outcomes in these children between 24- and 42-months, and (iii) the relationship between GMA and developmental outcomes. METHODS Ten children diagnosed with ASD were included. All infants were assessed using Motor Optimality Score for 3- to 5-month-old Infants-Revised score sheet for GMA, and the Bayley Scales of Infant and Toddler Development, Third Edition (Bayley-III) for developmental functioning aged between 24- and 42-months. RESULTS The median Motor Optimality Score-Revised (MOS-R) was 10 (range: 6-28), considered reduced optimal, and 80% of children had less than optimal MOS-R. 60% of the children had aberrant fidgety movements and abnormal postural patterns, and 80% had abnormal but not cramped-synchronized movement character. The mean composite scores of all subdomains in Bayley-III were below 69 (extremely low) in all children. CONCLUSIONS This study highlighted the importance of early motor repertoire and longitudinal developmental assessments in children with ASD. Further research is needed to explore the potential of this assessment as a screening tool.
Collapse
Affiliation(s)
- Esra Kınacı-Biber
- Graduate School of Health Sciences, Physical Therapy and Rehabilitation Division, Hacettepe University, Ankara, Türkiye
- Faculty of Health Sciences, Department of Physiotherapy and Rehabilitation, Düzce University, Düzce, Türkiye
| | | | - Akmer Mutlu
- Faculty of Physical Therapy and Rehabilitation, Hacettepe University, Ankara, Türkiye
| |
Collapse
|
2
|
Guo D, Yao B, Shao WW, Zuo JC, Chang ZH, Shi JX, Hu N, Bao SQ, Chen MM, Fan X, Li XH. The Critical Role of YAP/BMP/ID1 Axis on Simulated Microgravity-Induced Neural Tube Defects in Human Brain Organoids. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2410188. [PMID: 39656892 DOI: 10.1002/advs.202410188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 11/05/2024] [Indexed: 12/17/2024]
Abstract
Integrated biochemical and biophysical signals regulate embryonic development. Correct neural tube formation is critical for the development of central nervous system. However, the role of microgravity in neurodevelopment and its underlying molecular mechanisms remain unclear. In this study, the effects of stimulated microgravity (SMG) on the development of human brain organoids are investigated. SMG impairs N-cadherin-based adherens junction formation, leading to neural tube defects associated with dysregulated self-renewal capacity and neuroepithelial disorganization in human brain organoids. Bulk gene expression analyses reveal that SMG alters Hippo and BMP signaling in brain organoids. The neuropathological deficits in SMG-treated organoids can be rescued by regulating YAP/BMP/ID1 axis. Furthermore, sing-cell RNA sequencing data show that SMG results in perturbations in the number and function of neural stem and progenitor cell subpopulations. One of these subpopulations senses SMG cues and transmits BMP signals to the subpopulation responsible for tube morphogenesis, ultimately affecting the proliferating cell population. Finally, SMG intervention leads to persistent neurologic damage even after returning to normal gravity conditions. Collectively, this study reveals molecular and cellular abnormalities associated with SMG during human brain development, providing opportunities for countermeasures to maintain normal neurodevelopment in space.
Collapse
Affiliation(s)
- Di Guo
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin, 300072, China
- Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin, 300072, China
| | - Bin Yao
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin, 300072, China
- Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin, 300072, China
| | - Wen-Wei Shao
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin, 300072, China
- Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin, 300072, China
| | - Jia-Chen Zuo
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin, 300072, China
- Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin, 300072, China
| | - Zhe-Han Chang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin, 300072, China
- Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin, 300072, China
| | - Jian-Xin Shi
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin, 300072, China
- Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin, 300072, China
| | - Nan Hu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin, 300072, China
- Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin, 300072, China
| | - Shuang-Qing Bao
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin, 300072, China
- Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin, 300072, China
| | - Meng-Meng Chen
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin, 300072, China
- Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin, 300072, China
| | - Xiu Fan
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin, 300072, China
- Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin, 300072, China
| | - Xiao-Hong Li
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin, 300072, China
- Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin, 300072, China
| |
Collapse
|
3
|
Gaillard L, Tjaberinga MC, Dremmen MHG, Mathijssen IMJ, Vrooman HA. Brain volume in infants with metopic synostosis: Less white matter volume with an accelerated growth pattern in early life. J Anat 2024; 245:894-902. [PMID: 38417842 PMCID: PMC11547220 DOI: 10.1111/joa.14028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/30/2024] [Accepted: 02/05/2024] [Indexed: 03/01/2024] Open
Abstract
Metopic synostosis patients are at risk for neurodevelopmental disorders despite a negligible risk of intracranial hypertension. To gain insight into the underlying pathophysiology of metopic synostosis and associated neurodevelopmental disorders, we aimed to investigate brain volumes of non-syndromic metopic synostosis patients using preoperative MRI brain scans. MRI brain scans were processed with HyperDenseNet to calculate total intracranial volume (TIV), total brain volume (TBV), total grey matter volume (TGMV), total white matter volume (TWMV) and total cerebrospinal fluid volume (TCBFV). We compared global brain volumes of patients with controls corrected for age and sex using linear regression. Lobe-specific grey matter volumes were assessed in secondary analyses. We included 45 metopic synostosis patients and 14 controls (median age at MRI 0.56 years [IQR 0.36] and 1.1 years [IQR 0.47], respectively). We found no significant differences in TIV, TBV, TGMV or TCBFV in patients compared to controls. TWMV was significantly smaller in patients (-62,233 mm3 [95% CI = -96,968; -27,498], Holm-corrected p = 0.004), and raw data show an accelerated growth pattern of white matter in metopic synostosis patients. Grey matter volume analyses per lobe indicated increased cingulate (1378 mm3 [95% CI = 402; 2355]) and temporal grey matter (4747 [95% CI = 178; 9317]) volumes in patients compared to controls. To conclude, we found smaller TWMV with an accelerated white matter growth pattern in metopic synostosis patients, similar to white matter growth patterns seen in autism. TIV, TBV, TGMV and TCBFV were comparable in patients and controls. Secondary analyses suggest larger cingulate and temporal lobe volumes. These findings suggest a generalized intrinsic brain anomaly in the pathophysiology of neurodevelopmental disorders associated with metopic synostosis.
Collapse
Affiliation(s)
- L. Gaillard
- Department of Plastic and Reconstructive Surgery and Hand SurgeryErasmus MC—Sophia Children's Hospital, University Medical Center RotterdamRotterdamThe Netherlands
| | - M. C. Tjaberinga
- Department of Plastic and Reconstructive Surgery and Hand SurgeryErasmus MC—Sophia Children's Hospital, University Medical Center RotterdamRotterdamThe Netherlands
| | - M. H. G. Dremmen
- Department of Radiology and Nuclear MedicineErasmus MC—Sophia Children's Hospital, University Medical Center RotterdamRotterdamThe Netherlands
| | - I. M. J. Mathijssen
- Department of Plastic and Reconstructive Surgery and Hand SurgeryErasmus MC—Sophia Children's Hospital, University Medical Center RotterdamRotterdamThe Netherlands
| | - H. A. Vrooman
- Department of Radiology and Nuclear MedicineErasmus MC—Sophia Children's Hospital, University Medical Center RotterdamRotterdamThe Netherlands
| |
Collapse
|
4
|
Bindu, Pandey HS, Seth P. Interplay Between Zika Virus-Induced Autophagy and Neural Stem Cell Fate Determination. Mol Neurobiol 2024; 61:9927-9944. [PMID: 37910284 DOI: 10.1007/s12035-023-03704-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 10/09/2023] [Indexed: 11/03/2023]
Abstract
The Zika virus (ZIKV) outbreaks and its co-relation with microcephaly have become a global health concern. It is primarily transmitted by a mosquito, but can also be transmitted from an infected mother to her fetus causing impairment in brain development, leading to microcephaly. However, the underlying molecular mechanism of ZIKV-induced microcephaly is poorly understood. In this study, we explored the role of ZIKV non-structural protein NS4A and NS4B in ZIKV pathogenesis in a well-characterized primary culture of human fetal neural stem cells (fNSCs). We observed that the co-transfection of NS4A and NS4B altered the neural stem cell fate by arresting proliferation and inducing premature neurogenesis. NS4A + NS4B transfection in fNSCs increased autophagy and dysregulated notch signaling. Further, it also altered the regulation of downstream genes controlling cell proliferation. Additionally, we reported that 3 methyl-adenine (3-MA), a potent autophagy inhibitor, attenuated the deleterious effects of NS4A and NS4B as evidenced by the rescue in Notch1 expression, enhanced proliferation, and reduced premature neurogenesis. Our attempts to understand the mechanism of autophagy induction indicate the involvement of mitochondrial fission and ROS. Collectively, our findings highlight the novel role of NS4A and NS4B in mediating NSC fate alteration through autophagy-mediated notch degradation. The study also helps to advance our understanding of ZIKV-induced neuropathogenesis and suggests autophagy as a potential target for anti-ZIKV therapeutic intervention.
Collapse
Affiliation(s)
- Bindu
- Department of Cellular and Molecular Neuroscience, Neurovirology Section, National Brain Research Centre, Manesar, Gurgaon, Haryana, 122052, India
| | - Hriday Shanker Pandey
- Department of Cellular and Molecular Neuroscience, Neurovirology Section, National Brain Research Centre, Manesar, Gurgaon, Haryana, 122052, India
| | - Pankaj Seth
- Department of Cellular and Molecular Neuroscience, Neurovirology Section, National Brain Research Centre, Manesar, Gurgaon, Haryana, 122052, India.
| |
Collapse
|
5
|
Budisteanu M, Papuc SM, Erbescu A, Glangher A, Andrei E, Rad F, Hinescu ME, Arghir A. Review of structural neuroimaging and genetic findings in autism spectrum disorder - a clinical perspective. Rev Neurosci 2024:revneuro-2024-0106. [PMID: 39566028 DOI: 10.1515/revneuro-2024-0106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 10/03/2024] [Indexed: 11/22/2024]
Abstract
Autism spectrum disorders (ASDs) are neurodevelopmental conditions characterized by deficits in social relationships and communication and restrictive, repetitive behaviors and interests. ASDs form a heterogeneous group from a clinical and genetic perspective. Currently, ASDs diagnosis is based on the clinical observation of the individual's behavior. The subjective nature of behavioral diagnoses, in the context of ASDs heterogeneity, contributes to significant variation in the age at ASD diagnosis. Early detection has been proved to be critical in ASDs, as early start of appropriate therapeutic interventions greatly improve the outcome for some children. Structural magnetic resonance imaging (MRI) is widely used in the diagnostic work-up of neurodevelopmental conditions, including ASDs, mostly for brain malformations detection. Recently, the focus of brain imaging shifted towards quantitative MRI parameters, aiming to identify subtle changes that may establish early detection biomarkers. ASDs have a strong genetic component; deletions and duplications of several genomic loci have been strongly associated with ASDs risk. Consequently, a multitude of neuroimaging and genetic findings emerged in ASDs in the recent years. The association of gross or subtle changes in brain morphometry and volumes with different genetic defects has the potential to bring new insights regarding normal development and pathomechanisms of various disorders affecting the brain. Still, the clinical implications of these discoveries and the impact of genetic abnormalities on brain structure and function are unclear. Here we review the literature on brain imaging correlated with the most prevalent genomic imbalances in ASD, and discuss the potential clinical impact.
Collapse
Affiliation(s)
- Magdalena Budisteanu
- Alexandru Obregia Clinical Hospital of Psychiatry, 041914, Soseaua Berceni 10, Bucharest, Romania
- Victor Babes National Institute of Pathology, 050096, Splaiul Independentei 99-101, Bucharest, Romania
- Faculty of Medicine, Titu Maiorescu University, 031593, Calea Vacaresti 187, Bucharest, Romania
| | - Sorina Mihaela Papuc
- Victor Babes National Institute of Pathology, 050096, Splaiul Independentei 99-101, Bucharest, Romania
| | - Alina Erbescu
- Victor Babes National Institute of Pathology, 050096, Splaiul Independentei 99-101, Bucharest, Romania
| | - Adelina Glangher
- Alexandru Obregia Clinical Hospital of Psychiatry, 041914, Soseaua Berceni 10, Bucharest, Romania
| | - Emanuela Andrei
- Alexandru Obregia Clinical Hospital of Psychiatry, 041914, Soseaua Berceni 10, Bucharest, Romania
- Carol Davila University of Medicine and Pharmacy, 050474, Bulevardul Eroii Sanitari 8, Bucharest, Romania
| | - Florina Rad
- Alexandru Obregia Clinical Hospital of Psychiatry, 041914, Soseaua Berceni 10, Bucharest, Romania
- Carol Davila University of Medicine and Pharmacy, 050474, Bulevardul Eroii Sanitari 8, Bucharest, Romania
| | - Mihail Eugen Hinescu
- Victor Babes National Institute of Pathology, 050096, Splaiul Independentei 99-101, Bucharest, Romania
- Carol Davila University of Medicine and Pharmacy, 050474, Bulevardul Eroii Sanitari 8, Bucharest, Romania
| | - Aurora Arghir
- Victor Babes National Institute of Pathology, 050096, Splaiul Independentei 99-101, Bucharest, Romania
| |
Collapse
|
6
|
Zhang L, Geng C, Li S, Tang Q, Liu P, Liu W, Qiu G, Li A, Hu A, Chen F. Anterior piriform cortex dysfunction underlies autism spectrum disorders-related olfactory deficits in Fmr1 conditional deletion mice. Neuropsychopharmacology 2024:10.1038/s41386-024-02027-6. [PMID: 39550469 DOI: 10.1038/s41386-024-02027-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 11/01/2024] [Accepted: 11/04/2024] [Indexed: 11/18/2024]
Abstract
Previous studies indicated that ASD-related olfactory dysfunctions are rooted in the piriform cortex. However, the direct evidence supporting a causal link between the dysfunction of the piriform cortex and olfactory disorders in ASD is limited. In the present study, we explored the role of anterior piriform cortex (aPC) in ASD-related olfactory disorders by specifically ablating Fmr1, a leading known monogenic cause for ASD, in the pyramidal neurons. Our data demonstrated that the targeted deletion of Fmr1 in aPC pyramidal neurons was sufficient to induce deficits in olfactory detection. In vivo and in vitro electrophysiological recordings showed that the deletion of Fmr1 increased the activity of pyramidal neurons, exhibiting an enhanced excitatory response and a reduced inhibitory response upon odor stimulation. Furthermore, specific deletion of Fmr1 enhanced the power of beta oscillations during odor stimuli, meanwhile, disturbed excitatory and inhibitory synaptic transmission. The abnormal morphology of pyramidal neurons induced by the deletion of Fmr1 may be responsible for the impaired aPC neuronal function. These findings suggest that dysfunction of the aPC may play a role in olfactory impairments observed in ASD models related to Fmr1 deficiency.
Collapse
Affiliation(s)
- Lingzhi Zhang
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, China
- The Animal Facility of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China
| | - Chi Geng
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, China
| | - Shan Li
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, China
| | - Qingnan Tang
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, China
| | - Penglai Liu
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, China
| | - Wei Liu
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, China
| | - Gaoxue Qiu
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, China
| | - Anan Li
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, China
| | - Ankang Hu
- The Animal Facility of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China.
| | - Fengjiao Chen
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, China.
| |
Collapse
|
7
|
Libé-Philippot B, Iwata R, Recupero AJ, Wierda K, Bernal Garcia S, Hammond L, van Benthem A, Limame R, Ditkowska M, Beckers S, Gaspariunaite V, Peze-Heidsieck E, Remans D, Charrier C, Theys T, Polleux F, Vanderhaeghen P. Synaptic neoteny of human cortical neurons requires species-specific balancing of SRGAP2-SYNGAP1 cross-inhibition. Neuron 2024; 112:3602-3617.e9. [PMID: 39406239 PMCID: PMC11546603 DOI: 10.1016/j.neuron.2024.08.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/09/2024] [Accepted: 08/29/2024] [Indexed: 10/26/2024]
Abstract
Human-specific (HS) genes have been implicated in brain evolution, but their impact on human neuron development and diseases remains unclear. Here, we study SRGAP2B/C, two HS gene duplications of the ancestral synaptic gene SRGAP2A, in human cortical pyramidal neurons (CPNs) xenotransplanted in the mouse cortex. Downregulation of SRGAP2B/C in human CPNs led to strongly accelerated synaptic development, indicating their requirement for the neoteny that distinguishes human synaptogenesis. SRGAP2B/C genes promoted neoteny by reducing the synaptic levels of SRGAP2A,thereby increasing the postsynaptic accumulation of the SYNGAP1 protein, encoded by a major intellectual disability/autism spectrum disorder (ID/ASD) gene. Combinatorial loss-of-function experiments in vivo revealed that the tempo of synaptogenesis is set by the reciprocal antagonism between SRGAP2A and SYNGAP1, which in human CPNs is tipped toward neoteny by SRGAP2B/C. Thus, HS genes can modify the phenotypic expression of genetic mutations leading to ID/ASD through the regulation of human synaptic neoteny.
Collapse
Affiliation(s)
- Baptiste Libé-Philippot
- VIB-KULeuven Center for Brain & Disease Research, 3000 Leuven, Belgium; Department of Neurosciences, Leuven Brain Institute, KUL, 3000 Leuven, Belgium; Université Libre de Bruxelles (ULB), Institute for Interdisciplinary Research (IRIBHM), 1070 Brussels, Belgium
| | - Ryohei Iwata
- VIB-KULeuven Center for Brain & Disease Research, 3000 Leuven, Belgium; Department of Neurosciences, Leuven Brain Institute, KUL, 3000 Leuven, Belgium; Université Libre de Bruxelles (ULB), Institute for Interdisciplinary Research (IRIBHM), 1070 Brussels, Belgium
| | - Aleksandra J Recupero
- Department of Neuroscience, Columbia University, New York, NY, USA; Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Keimpe Wierda
- VIB-KULeuven Center for Brain & Disease Research, 3000 Leuven, Belgium; Electrophysiology Unit, VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium
| | - Sergio Bernal Garcia
- Department of Neuroscience, Columbia University, New York, NY, USA; Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Luke Hammond
- Department of Neuroscience, Columbia University, New York, NY, USA; Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA; Department of Neurology, The Ohio State University, Wexner Medical School, Columbus, OH, USA
| | - Anja van Benthem
- Université Libre de Bruxelles (ULB), Institute for Interdisciplinary Research (IRIBHM), 1070 Brussels, Belgium
| | - Ridha Limame
- VIB-KULeuven Center for Brain & Disease Research, 3000 Leuven, Belgium; Department of Neurosciences, Leuven Brain Institute, KUL, 3000 Leuven, Belgium; Université Libre de Bruxelles (ULB), Institute for Interdisciplinary Research (IRIBHM), 1070 Brussels, Belgium
| | - Martyna Ditkowska
- VIB-KULeuven Center for Brain & Disease Research, 3000 Leuven, Belgium; Department of Neurosciences, Leuven Brain Institute, KUL, 3000 Leuven, Belgium
| | - Sofie Beckers
- VIB-KULeuven Center for Brain & Disease Research, 3000 Leuven, Belgium; Department of Neurosciences, Leuven Brain Institute, KUL, 3000 Leuven, Belgium
| | - Vaiva Gaspariunaite
- VIB-KULeuven Center for Brain & Disease Research, 3000 Leuven, Belgium; Department of Neurosciences, Leuven Brain Institute, KUL, 3000 Leuven, Belgium
| | - Eugénie Peze-Heidsieck
- Department of Neuroscience, Columbia University, New York, NY, USA; Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Daan Remans
- VIB-KULeuven Center for Brain & Disease Research, 3000 Leuven, Belgium; Department of Neurosciences, Leuven Brain Institute, KUL, 3000 Leuven, Belgium
| | - Cécile Charrier
- Institut de Biologie de l'École Normale Supérieure (IBENS), CNRS, Inserm, École Normale Supérieure, PSL Research University, Paris 75005, France
| | - Tom Theys
- Department of Neurosciences, Leuven Brain Institute, KUL, 3000 Leuven, Belgium; Research Group Experimental Neurosurgery and Neuroanatomy, KUL, 3000 Leuven, Belgium
| | - Franck Polleux
- Department of Neuroscience, Columbia University, New York, NY, USA; Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Pierre Vanderhaeghen
- VIB-KULeuven Center for Brain & Disease Research, 3000 Leuven, Belgium; Department of Neurosciences, Leuven Brain Institute, KUL, 3000 Leuven, Belgium; Université Libre de Bruxelles (ULB), Institute for Interdisciplinary Research (IRIBHM), 1070 Brussels, Belgium.
| |
Collapse
|
8
|
Christensen ZP, Freedman EG, Foxe JJ. Autism is associated with in vivo changes in gray matter neurite architecture. Autism Res 2024; 17:2261-2277. [PMID: 39324563 DOI: 10.1002/aur.3239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/13/2024] [Indexed: 09/27/2024]
Abstract
Postmortem investigations in autism have identified anomalies in neural cytoarchitecture across limbic, cerebellar, and neocortical networks. These anomalies include narrow cell mini-columns and variable neuron density. However, difficulty obtaining sufficient post-mortem samples has often prevented investigations from converging on reproducible measures. Recent advances in processing magnetic resonance diffusion weighted images (DWI) make in vivo characterization of neuronal cytoarchitecture a potential alternative to post-mortem studies. Using extensive DWI data from the Adolescent Brain Cognitive Developmentsm (ABCD®) study 142 individuals with an autism diagnosis were compared with 8971 controls using a restriction spectrum imaging (RSI) framework that characterized total neurite density (TND), its component restricted normalized directional diffusion (RND), and restricted normalized isotropic diffusion (RNI). A significant decrease in TND was observed in autism in the right cerebellar cortex (β = -0.005, SE =0.0015, p = 0.0267), with significant decreases in RNI and significant increases in RND found diffusely throughout posterior and anterior aspects of the brain, respectively. Furthermore, these regions remained significant in post-hoc analysis when the autism sample was compared against a subset of 1404 individuals with other psychiatric conditions (pulled from the original 8971). These findings highlight the importance of characterizing neuron cytoarchitecture in autism and the significance of their incorporation as physiological covariates in future studies.
Collapse
Affiliation(s)
- Zachary P Christensen
- Frederick J. and Marion A. Schindler Cognitive Neurophysiology Laboratory, The Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Edward G Freedman
- Frederick J. and Marion A. Schindler Cognitive Neurophysiology Laboratory, The Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - John J Foxe
- Frederick J. and Marion A. Schindler Cognitive Neurophysiology Laboratory, The Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| |
Collapse
|
9
|
Assendorp N, Fossati M, Libé-Philippot B, Christopoulou E, Depp M, Rapone R, Dingli F, Loew D, Vanderhaeghen P, Charrier C. CTNND2 moderates the pace of synaptic maturation and links human evolution to synaptic neoteny. Cell Rep 2024; 43:114797. [PMID: 39352808 DOI: 10.1016/j.celrep.2024.114797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 05/01/2024] [Accepted: 09/10/2024] [Indexed: 10/04/2024] Open
Abstract
Human-specific genes are potential drivers of brain evolution. Among them, SRGAP2C has contributed to the emergence of features characterizing human cortical synapses, including their extended period of maturation. SRGAP2C inhibits its ancestral copy, the postsynaptic protein SRGAP2A, but the synaptic molecular pathways differentially regulated in humans by SRGAP2 proteins remain largely unknown. Here, we identify CTNND2, a protein implicated in severe intellectual disability (ID) in Cri-du-Chat syndrome, as a major partner of SRGAP2. We demonstrate that CTNND2 slows synaptic maturation and promotes neuronal integrity. During postnatal development, CTNND2 moderates neuronal excitation and excitability. In adults, it supports synapse maintenance. While CTNND2 deficiency is deleterious and results in synaptic loss of SYNGAP1, another major ID-associated protein, the human-specific protein SRGAP2C, enhances CTNND2 synaptic accumulation in human neurons. Our findings suggest that CTNND2 regulation by SRGAP2C contributes to synaptic neoteny in humans and link human-specific and ID genes at the synapse.
Collapse
Affiliation(s)
- Nora Assendorp
- Institut de Biologie de l'ENS (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, 75005 Paris, France
| | - Matteo Fossati
- Institut de Biologie de l'ENS (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, 75005 Paris, France
| | - Baptiste Libé-Philippot
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; Department of Neurosciences, Leuven Brain Institute, KUL, 3000 Leuven, Belgium
| | - Eirini Christopoulou
- Institut de Biologie de l'ENS (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, 75005 Paris, France
| | - Marine Depp
- Institut de Biologie de l'ENS (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, 75005 Paris, France
| | - Roberta Rapone
- Institut de Biologie de l'ENS (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, 75005 Paris, France
| | - Florent Dingli
- Institut Curie, PSL Research University, CurieCore Tech Mass Spectrometry Proteomics, 75005 Paris, France
| | - Damarys Loew
- Institut Curie, PSL Research University, CurieCore Tech Mass Spectrometry Proteomics, 75005 Paris, France
| | - Pierre Vanderhaeghen
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; Department of Neurosciences, Leuven Brain Institute, KUL, 3000 Leuven, Belgium
| | - Cécile Charrier
- Institut de Biologie de l'ENS (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, 75005 Paris, France.
| |
Collapse
|
10
|
Bury LAD, Fu S, Wynshaw-Boris A. Neuronal lineage tracing from progenitors in human cortical organoids reveals mechanisms of neuronal production, diversity, and disease. Cell Rep 2024; 43:114862. [PMID: 39395167 DOI: 10.1016/j.celrep.2024.114862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 08/14/2024] [Accepted: 09/25/2024] [Indexed: 10/14/2024] Open
Abstract
The contribution of progenitor subtypes to generating the billions of neurons produced during human cortical neurogenesis is not well understood. We developed the cortical organoid lineage-tracing (COR-LT) system for human cortical organoids. Differential fluorescent reporter activation in distinct progenitor cells leads to permanent reporter expression, enabling the progenitor cell lineage of neurons to be determined. Surprisingly, nearly all excitatory neurons produced in cortical organoids were generated indirectly from intermediate progenitor cells. Additionally, neurons of different progenitor lineages were transcriptionally distinct. Isogenic lines made from an autistic individual with and without a likely pathogenic CTNNB1 variant demonstrated that the variant substantially altered the proportion of neurons derived from specific progenitor cell lineages, as well as the lineage-specific transcriptional profiles of these neurons, suggesting a pathogenic mechanism for this mutation. These results suggest individual progenitor subtypes play roles in generating the diverse neurons of the human cerebral cortex.
Collapse
Affiliation(s)
- Luke A D Bury
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.
| | - Shuai Fu
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA; Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Cleveland, OH 44195, USA
| | - Anthony Wynshaw-Boris
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.
| |
Collapse
|
11
|
Lee GY, Youn YA, Jang YH, Kim H, Lee JY, Lee YJ, Jung M, Lee HJ. Structural development and brain asymmetry in the fronto-limbic regions in preschool-aged children. Front Pediatr 2024; 12:1362409. [PMID: 39411282 PMCID: PMC11473423 DOI: 10.3389/fped.2024.1362409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 09/04/2024] [Indexed: 10/19/2024] Open
Abstract
Early-life experiences play a crucial role in the development of the fronto-limbic regions, influencing both macro- and microstructural changes in the brain. These alterations profoundly impact cognitive, social-emotional functions. Recently, early limbic structural alterations have been associated with numerous neurological and psychiatric morbidities. Although identifying normative developmental trajectories is essential for determining brain alterations, only a few studies have focused on examining the normative trajectories in the fronto-limbic regions during preschool-aged children. The aim of this study was to investigate the structural-developmental trajectory of the fronto-limbic regions using the cortical thickness, volume, and subcortical volume in 57 healthy and typical preschool-aged children between 1 and 5 years and examined the early lateralization patterns during the development of the fronto-limbic regions. Regarding brain lateralization, remarkable asymmetry was detected in the volume of thalamus and the cortical regions excluding the lateral orbitofrontal cortex in the fronto-limbic regions. This study of preschool-aged children may fill the knowledge gaps regarding the developmental patterns and hemispheric asymmetries of the fronto-limbic regions between newborns and adolescents.
Collapse
Affiliation(s)
- Gang Yi Lee
- Department of Translational Medicine, Hanyang University Graduate School of Biomedical Science and Engineering, Seoul, Republic of Korea
| | - Young-Ah Youn
- Department of Pediatrics, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| | - Yong Hun Jang
- Department of Translational Medicine, Hanyang University Graduate School of Biomedical Science and Engineering, Seoul, Republic of Korea
| | - Hyuna Kim
- Department of Translational Medicine, Hanyang University Graduate School of Biomedical Science and Engineering, Seoul, Republic of Korea
| | - Joo Young Lee
- Department of Translational Medicine, Hanyang University Graduate School of Biomedical Science and Engineering, Seoul, Republic of Korea
| | - Young Jun Lee
- Department of Radiology, Hanyang University Hospital, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Minyoung Jung
- Cognitive Science Research Group, Korea Brain Research Institute, Daegu, Republic of Korea
| | - Hyun Ju Lee
- Department of Pediatrics, Hanyang University Hospital, Hanyang University College of Medicine, Seoul, Republic of Korea
- Division of Neonatology and Development Medicine, Hanyang University Hospital, Seoul, Republic of Korea
- Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul, Republic of Korea
| |
Collapse
|
12
|
Horata E, Ay H, Aslan D. Autistic-like behaviour and changes in thalamic cell numbers a rat model of valproic acid-induced autism; A behavioural and stereological study. Brain Res 2024; 1840:149047. [PMID: 38823508 DOI: 10.1016/j.brainres.2024.149047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/03/2024]
Abstract
The contribution of the thalamus to the development and behavioural changes in autism spectrum disorders (ASD), a neurodevelopmental syndrome, remains unclear. The aim of this study was to determine the changes in thalamic volume and cell number in the valproic acid (VPA)-induced ASD model using stereological methods and to clarify the relationship between thalamus and ASD-like behaviour. Ten pregnant rats were administered a single dose (600 mg/kg) of VPA intraperitoneally on G12.5 (VPA group), while five pregnant rats were injected with 5 ml saline (control group). Behavioural tests were performed to determine appropriate subjects and ASD-like behaviours. At P55, the brains of the subjects were removed. The sagittal sections were stained with cresyl violet and toluidine blue. The thalamic and hemispheric volumes with their ratios, the total number of thalamic cells, neurons and non-neuronal cells were calculated using stereological methods. Data were compared using a t-test and a Pearson correlation analysis was performed to examine the relationship between behaviour and stereological outcomes. VPA-treated rats had lower sociability and sociability indexes. There was no difference in social novelty preference and anxiety. The VPA group had larger hemispheric volume, lower thalamic volume, and fewer neurons. The highest percentage decrease was in non-neuronal cells. There was a moderate positive correlation between the number of non-neuronal cells and sociability, thalamic volume and the number of neurons as well as the time spent in the light box. The correlation between behaviour and stereological data suggests that the thalamus is associated with ASD-like behaviour.
Collapse
Affiliation(s)
- Erdal Horata
- Orthopedic Prosthesis Orthotics, Atatürk Health Services Vocational School, Afyonkarahisar Health Sciences University, Afyonkarahisar, Turkey.
| | - Hakan Ay
- Department of Anatomy, Faculty of Medicine, Eskişehir Osmangazi University, Eskişehir, Turkey
| | - Duygu Aslan
- Department of Anatomy, Faculty of Medicine, Kafkas University, Kars, Turkey
| |
Collapse
|
13
|
Zhou X, Lin WS, Zou FY, Zhong SS, Deng YY, Luo XW, Shen LS, Wang SH, Guo RM. Biomarkers of preschool children with autism spectrum disorder: quantitative analysis of whole-brain tissue component volumes, intelligence scores, ADOS-CSS, and ages of first-word production and walking onset. World J Pediatr 2024; 20:1059-1069. [PMID: 38526835 DOI: 10.1007/s12519-024-00800-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 02/06/2024] [Indexed: 03/27/2024]
Abstract
BACKGROUND Preschooling is a critical time for intervention in children with autism spectrum disorder (ASD); thus, we analyzed brain tissue component volumes (BTCVs) and clinical indicators in preschool children with ASD to identify new biomarkers for early screening. METHODS Eighty preschool children (3-6 years) with ASD were retrospectively included. The whole-brain myelin content (MyC), white matter (WM), gray matter (GM), cerebrospinal fluid (CSF), and non-WM/GM/MyC/CSF brain component volumes were obtained using synthetic magnetic resonance imaging (SyMRI). Clinical data, such as intelligence scores, autism diagnostic observation schedule-calibrated severity scores, age at first production of single words (AFSW), age at first production of phrases (AFP), and age at walking onset (AWO), were also collected. The correlation between the BTCV and clinical data was evaluated, and the effect of BTCVs on clinical data was assessed by a regression model. RESULTS WM and GM volumes were positively correlated with intelligence scores (both P < 0.001), but WM and GM did not affect intelligence scores (P = 0.116, P = 0.290). AWO was positively correlated with AFSW and AFP (both P < 0.001). The multivariate linear regression analysis revealed that MyC, AFSW, AFP, and AWO were significantly different (P = 0.005, P < 0.001, P < 0.001). CONCLUSIONS This study revealed positive correlations between WM and GM volumes and intelligence scores. Whole-brain MyC affected AFSW, AFP, and AWO in preschool children with ASD. Noninvasive quantification of BTCVs via SyMRI revealed a new visualizable and quantifiable biomarker (abnormal MyC) for early ASD screening in preschool children.
Collapse
Affiliation(s)
- Xiang Zhou
- Department of Radiology, The Third Affiliated Hospital of Sun Yat-Sen University, No. 600 Tianhe Road, Guangzhou, 510630, China
| | - Wu-Sheng Lin
- Department of Radiology, The Third Affiliated Hospital of Sun Yat-Sen University, No. 600 Tianhe Road, Guangzhou, 510630, China
| | - Feng-Yun Zou
- Department of Radiology, The Third Affiliated Hospital of Sun Yat-Sen University, No. 600 Tianhe Road, Guangzhou, 510630, China
| | - Shuang-Shuang Zhong
- Department of Radiology, The Third Affiliated Hospital of Sun Yat-Sen University, No. 600 Tianhe Road, Guangzhou, 510630, China
| | - Ya-Yin Deng
- Department of Radiology, The Third Affiliated Hospital of Sun Yat-Sen University, No. 600 Tianhe Road, Guangzhou, 510630, China
| | - Xiao-Wen Luo
- Department of Radiology, The Third Affiliated Hospital of Sun Yat-Sen University, No. 600 Tianhe Road, Guangzhou, 510630, China
| | - Li-Shan Shen
- Department of Radiology, The Third Affiliated Hospital of Sun Yat-Sen University, No. 600 Tianhe Road, Guangzhou, 510630, China
| | - Shi-Huan Wang
- Department of Child Development and Behavior Center, The Third Affiliated Hospital of Sun Yat-Sen University, No. 600 Tianhe Road, Guangzhou, 510630, China.
| | - Ruo-Mi Guo
- Department of Radiology, The Third Affiliated Hospital of Sun Yat-Sen University, No. 600 Tianhe Road, Guangzhou, 510630, China.
| |
Collapse
|
14
|
Vermaercke B, Iwata R, Wierda K, Boubakar L, Rodriguez P, Ditkowska M, Bonin V, Vanderhaeghen P. SYNGAP1 deficiency disrupts synaptic neoteny in xenotransplanted human cortical neurons in vivo. Neuron 2024; 112:3058-3068.e8. [PMID: 39111306 PMCID: PMC11446607 DOI: 10.1016/j.neuron.2024.07.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/31/2024] [Accepted: 07/10/2024] [Indexed: 09/28/2024]
Abstract
Human brain ontogeny is characterized by a considerably prolonged neotenic development of cortical neurons and circuits. Neoteny is thought to be essential for the acquisition of advanced cognitive functions, which are typically altered in intellectual disability (ID) and autism spectrum disorders (ASDs). Human neuronal neoteny could be disrupted in some forms of ID and/or ASDs, but this has never been tested. Here, we use xenotransplantation of human cortical neurons into the mouse brain to model SYNGAP1 haploinsufficiency, one of the most prevalent genetic causes of ID/ASDs. We find that SYNGAP1-deficient human neurons display strong acceleration of morphological and functional synaptic formation and maturation alongside disrupted synaptic plasticity. At the circuit level, SYNGAP1-haploinsufficient neurons display precocious acquisition of responsiveness to visual stimulation months ahead of time. Our findings indicate that SYNGAP1 is required cell autonomously for human neuronal neoteny, providing novel links between human-specific developmental mechanisms and ID/ASDs.
Collapse
Affiliation(s)
- Ben Vermaercke
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; KU Leuven, Department of Neurosciences & Leuven Brain Institute, 3000 Leuven, Belgium
| | - Ryohei Iwata
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; KU Leuven, Department of Neurosciences & Leuven Brain Institute, 3000 Leuven, Belgium
| | - Keimpe Wierda
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; Electrophysiology Unit, VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium
| | - Leïla Boubakar
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; KU Leuven, Department of Neurosciences & Leuven Brain Institute, 3000 Leuven, Belgium
| | - Paula Rodriguez
- Neuro-Electronics Research Flanders, Kapeldreef 75, 3001 Leuven, Belgium; Electrophysiology Unit, VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; imec, 3001 Leuven, Belgium
| | - Martyna Ditkowska
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; KU Leuven, Department of Neurosciences & Leuven Brain Institute, 3000 Leuven, Belgium
| | - Vincent Bonin
- Neuro-Electronics Research Flanders, Kapeldreef 75, 3001 Leuven, Belgium; Department of Biology, Leuven Brain Institute, KU Leuven, 3000 Leuven, Belgium; imec, 3001 Leuven, Belgium.
| | - Pierre Vanderhaeghen
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; KU Leuven, Department of Neurosciences & Leuven Brain Institute, 3000 Leuven, Belgium.
| |
Collapse
|
15
|
Liu Y, Tian X, Mao H, Cheng L, Wang P, Gao Y. Research on pragmatic impairment in autistic children during the past two decades (2001-2022): hot spots and frontiers-based on CiteSpace bibliometric analysis. Front Psychol 2024; 15:1276001. [PMID: 39328816 PMCID: PMC11424445 DOI: 10.3389/fpsyg.2024.1276001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 05/14/2024] [Indexed: 09/28/2024] Open
Abstract
Pragmatic impairment has become a critical aspect of language development in autistic children and has gained significant academic attention over the past two decades. This study leverages bibliometric methods to conduct an exhaustive analysis of literature derived from Web of Science database. Utilizing CiteSpace software, we construct a knowledge map to dissect the academic hotspots in research related to pragmatic impairment in autistic children. This enables us to delineate the evolutionary trajectory of this research domain, analyze the prevailing research dimensions, and anticipate potential future dimensions. Our findings indicate that research hotspots in this field over the past two decades predominantly concentrate on assessing and diagnosing pragmatic impairment in autistic children, intervention strategies, and theory of mind. The research scope on pragmatic impairment in autistic children has progressively broadened and deepened. Research has evolved from initial descriptions and interpretations of autism to exploring the theory of mind in high-functioning, school-aged children. The current emphasis is on examining the specific skills that these children possess.
Collapse
Affiliation(s)
- Yanqin Liu
- School of Foreign Studies, China University of Petroleum (East China), Qingdao, China
| | - Xin Tian
- Institute of Manchu Studies, Heilongjiang University, Harbin, China
- School of Foreign Languages, Jiamusi University, Jiamusi, China
| | - Haoran Mao
- School of Foreign Studies, China University of Petroleum (East China), Qingdao, China
| | - Lulu Cheng
- School of Foreign Studies, China University of Petroleum (East China), Qingdao, China
- Shanghai Center for Research in English Language Education, Shanghai International Studies University, Shanghai, China
| | - Peng Wang
- Department of Language, Literature and Communication, Faculty of Humanities, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Yang Gao
- Western Studies of Heilongjiang University, Harbin, China
- School of Foreign Languages, Harbin University of Commerce, Harbin, China
| |
Collapse
|
16
|
Ge LK, Man X, Cai K, Liu Z, Tsang WW, Chen A, Wei GX. Sharing Our World: Impact of Group Motor Skill Learning on Joint Attention in Children with Autism Spectrum Disorder. J Autism Dev Disord 2024:10.1007/s10803-024-06528-7. [PMID: 39230782 DOI: 10.1007/s10803-024-06528-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2024] [Indexed: 09/05/2024]
Abstract
Impaired joint attention is a common feature of autism spectrum disorder (ASD), affecting social interaction and communication. We explored if group basketball learning could enhance joint attention in autistic children, and how this relates to brain changes, particularly white matter development integrity. Forty-nine autistic children, aged 4-12 years, were recruited from special education centers. The experimental group underwent a 12-week basketball motor skill learning, while the control group received standard care. Eye-tracking and brain scans were conducted. The 12-week basketball motor skill learning improved joint attention in the experimental group, evidenced by better eye tracking metrics and enhanced white matter integrity. Moreover, reduced time to first fixation correlated positively with decreased mean diffusivity of the left superior corona radiata and left superior fronto-occipital fasciculus in the experimental group. Basketball-based motor skill intervention effectively improved joint attention in autistic children. Improved white matter fiber integrity related to sensory perception, spatial and early attention function may underlie this effect. These findings highlight the potential of group motor skill learning within clinical rehabilitation for treating ASD.
Collapse
Affiliation(s)
- Li-Kun Ge
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoxia Man
- Collaborative Innovation Center of Assessment for Basic Education Quality, Beijing Normal University, Beijing, 100875, China
- Shandong Sports Science Research Center, Jinan, 250100, China
| | - Kelong Cai
- College of Physical Education, Yangzhou University, Yangzhou, 225009, China
| | - Zhimei Liu
- College of Physical Education, Yangzhou University, Yangzhou, 225009, China
| | - William Wainam Tsang
- Department of Physiotherapy, School of Nursing and Health Studies, Hong Kong Metropolitan University, Kowloon, China
| | - Aiguo Chen
- Nanjing Institute of Physical Education, Nanjing, 210014, China
- Institute of Sports, Exercise and Brain, Yangzhou University, Yangzhou, 225127, China
| | - Gao-Xia Wei
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, 100101, China.
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
17
|
Nava A, Lugli F, Lemmers S, Cerrito P, Mahoney P, Bondioli L, Müller W. Reading children's teeth to reconstruct life history and the evolution of human cooperation and cognition: The role of dental enamel microstructure and chemistry. Neurosci Biobehav Rev 2024; 163:105745. [PMID: 38825260 DOI: 10.1016/j.neubiorev.2024.105745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 05/25/2024] [Accepted: 05/30/2024] [Indexed: 06/04/2024]
Abstract
Studying infants in the past is crucial for understanding the evolution of human life history and the evolution of cooperation, cognition, and communication. An infant's growth, health, and mortality can provide information about the dynamics and structure of a population, their cultural practices, and the adaptive capacity of a community. Skeletal remains provide one way of accessing this information for humans recovered prior to the historical periods. Teeth in particular, are retrospective archives of information that can be accessed through morphological, micromorphological, and biogeochemical methods. This review discusses how the microanatomy and formation of teeth, and particularly enamel, serve as archives of somatic growth, stress, and the environment. Examining their role in the broader context of human evolution, we discuss dental biogeochemistry and emphasize how the incremental growth of tooth microstructure facilitates the reconstruction of temporal data related to health, diet, mobility, and stress in past societies. The review concludes by considering tooth microstructure as a biomarker and the potential clinical applications.
Collapse
Affiliation(s)
- Alessia Nava
- Department of Odontostomatological and Maxillofacial Sciences, Sapienza University of Rome, via Caserta 6, Rome 00161, Italy.
| | - Federico Lugli
- Institut of Geosciences, Goethe University Frankfurt, 60438, Frankfurt, Frankfurt am Main, Germany; Frankfurt Isotope and Element Research Center (FIERCE), Goethe University Frankfurt, Frankfurt am Main, Germany; Department of Chemical and Geological Science, University of Modena and Reggio Emilia, via Giuseppe Campi, 103, Modena 41125, Italy
| | - Simone Lemmers
- Elettra Sincrotrone Trieste S.C.p.A., AREA Science Park, s.s. 14 km 163,500, Basovizza, Trieste, Italy; Department of Psychiatry, Harvard Medical School, 401 Park Drive, Boston, MA, USA; Center for Genomic Medicine, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA, USA
| | - Paola Cerrito
- Department of Evolutionary Anthropology, University of Zürich, Zürich, Switzerland
| | - Patrick Mahoney
- School of Anthropology and Conservation, University of Kent, Giles Ln, Giles Ln, Canterbury CT2 7NZ, UK
| | - Luca Bondioli
- Department of Cultural Heritage, University of Padua, Piazza Capitaniato, 7, Padua 35139, Italy
| | - Wolfgang Müller
- Institut of Geosciences, Goethe University Frankfurt, 60438, Frankfurt, Frankfurt am Main, Germany; Frankfurt Isotope and Element Research Center (FIERCE), Goethe University Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|
18
|
Kim IB, Kim MH, Jung S, Kim WK, Lee J, Ju YS, Webster MJ, Kim S, Kim JH, Kim HJ, Kim J, Kim S, Lee JH. Low-level brain somatic mutations in exonic regions are collectively implicated in autism with germline mutations in autism risk genes. Exp Mol Med 2024; 56:1750-1762. [PMID: 39085355 PMCID: PMC11372092 DOI: 10.1038/s12276-024-01284-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 04/15/2024] [Accepted: 05/12/2024] [Indexed: 08/02/2024] Open
Abstract
Low-level somatic mutations in the human brain are implicated in various neurological disorders. The contribution of low-level brain somatic mutations to autism spectrum disorder (ASD), however, remains poorly understood. Here, we performed high-depth exome sequencing with an average read depth of 559.3x in 181 cortical, cerebellar, and peripheral tissue samples to identify brain somatic single nucleotide variants (SNVs) in 24 ASD subjects and 31 controls. We detected ~2.4 brain somatic SNVs per exome per single brain region, with a variant allele frequency (VAF) as low as 0.3%. The mutational profiles, including the number, signature, and type, were not significantly different between the ASD patients and controls. Intriguingly, when considering genes with low-level brain somatic SNVs and ASD risk genes with damaging germline SNVs together, the merged set of genes carrying either somatic or germline SNVs in ASD patients was significantly involved in ASD-associated pathophysiology, including dendrite spine morphogenesis (p = 0.025), mental retardation (p = 0.012), and intrauterine growth retardation (p = 0.012). Additionally, the merged gene set showed ASD-associated spatiotemporal expression in the early and mid-fetal cortex, striatum, and thalamus (all p < 0.05). Patients with damaging mutations in the merged gene set had a greater ASD risk than did controls (odds ratio = 3.92, p = 0.025, 95% confidence interval = 1.12-14.79). The findings of this study suggest that brain somatic SNVs and germline SNVs may collectively contribute to ASD-associated pathophysiology.
Collapse
Affiliation(s)
- Il Bin Kim
- Department of Psychiatry, CHA Gangnam Medical Center, CHA University School of Medicine, Seoul, 06135, Republic of Korea
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Myeong-Heui Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Saehoon Jung
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Woo Kyeong Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Junehawk Lee
- Center for Supercomputing Applications, Division of National Supercomputing, Korea Institute of Science and Technology Information, Daejeon, 34141, Republic of Korea
| | - Young Seok Ju
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Maree J Webster
- Stanley Medical Research Institute, Laboratory of Brain Research, 9800 Medical Center Drive, Suite C-050, Rockville, MD, 20850, USA
| | - Sanghyeon Kim
- Stanley Medical Research Institute, Laboratory of Brain Research, 9800 Medical Center Drive, Suite C-050, Rockville, MD, 20850, USA
| | - Ja Hye Kim
- Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Hyun Jung Kim
- Department of Anatomy, Korea University College of Medicine, Seoul, 02841, Republic of Korea
| | - Junho Kim
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Sangwoo Kim
- Department of Biomedical Systems Informatics and Brain Korea 21 PLUS for Medical Science, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.
| | - Jeong Ho Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea.
- SoVarGen, SoVarGen, Inc., Daejeon, 34141, Republic of Korea.
| |
Collapse
|
19
|
Lagod PP, Abdelli LS, Naser SA. An In Vivo Model of Propionic Acid-Rich Diet-Induced Gliosis and Neuro-Inflammation in Mice (FVB/N-Tg(GFAPGFP)14Mes/J): A Potential Link to Autism Spectrum Disorder. Int J Mol Sci 2024; 25:8093. [PMID: 39125662 PMCID: PMC11311704 DOI: 10.3390/ijms25158093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/18/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
Evidence shows that Autism Spectrum Disorder (ASD) stems from an interplay of genetic and environmental factors, which may include propionic acid (PPA), a microbial byproduct and food preservative. We previously reported that in vitro treatment of neural stem cells with PPA leads to gliosis and neuroinflammation. In this study, mice were exposed ad libitum to a PPA-rich diet for four weeks before mating. The same diet was maintained through pregnancy and administered to the offspring after weaning. The brains of the offspring were studied at 1 and 5 months postpartum. Glial fibrillary acidic protein (astrocytic marker) was significantly increased (1.53 ± 0.56-fold at 1 M and 1.63 ± 0.49-fold at 5 M) in the PPA group brains. Tubulin IIIβ (neuronal marker) was significantly decreased in the 5 M group. IL-6 and TNF-α expression were increased in the brain of the PPA group (IL-6: 2.48 ± 1.25-fold at 5 M; TNF-α: 2.84 ± 1.16-fold at 1 M and 2.64 ± 1.42-fold, at 5 M), while IL-10 was decreased. GPR41 and p-Akt were increased, while PTEN (p-Akt inhibitor) was decreased in the PPA group. The data support the role of a PPA-rich diet in glia over-proliferation and neuro-inflammation mediated by the GPR41 receptor and PTEN/Akt pathway. These findings strongly support our earlier study on the role of PPA in ASD.
Collapse
Affiliation(s)
- Piotr P. Lagod
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816, USA;
| | - Latifa S. Abdelli
- Health Sciences Department, College of Health Professions and Sciences, University of Central Florida, Orlando, FL 32816, USA;
| | - Saleh A. Naser
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816, USA;
| |
Collapse
|
20
|
Guo BQ, Li HB, Zhai DS, Yang LQ. Prevalence of autism spectrum disorder diagnosis by birth weight, gestational age, and size for gestational age: a systematic review, meta-analysis, and meta-regression. Eur Child Adolesc Psychiatry 2024; 33:2035-2049. [PMID: 36066648 DOI: 10.1007/s00787-022-02078-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 08/31/2022] [Indexed: 11/03/2022]
Abstract
We aimed to comprehensively pool the prevalence of autism spectrum disorder (ASD) diagnosis by birth weight, gestational age, and size for gestational age. PubMed, EMBASE, Web of Science, Ovid PsycINFO, and Cochrane Library were searched up to December 22, 2021. We pooled data using the random-effects model and quantified heterogeneity using the I2 statistic. Of 66 643 records initially identified, 75 studies were included in the meta-analysis. The pooled prevalence estimates of ASD diagnosis are as follows: very-low-birth weight, 3.1% (912 ASD/66,445 individuals); low-birth weight, 2.3% (5672 ASD/593,927 individuals); normal-birth weight, 0.5% (17,361 ASD/2,378,933 individuals); high-birth weight, 0.6% (4505 ASD/430,699 individuals); very preterm, 2.8% (2113 ASD/128,513 individuals); preterm, 2.1% (19 672 ASD/1 725 244 individuals); term, 0.6% (113,261 ASD/15,297,259 individuals); postterm, 0.6% (9419 ASD/1,138,215 individuals); small-for-gestational-age, 1.9% (6314 ASD/796,550 individuals); appropriate-for-gestational-age, 0.7% (21,026 ASD/5,936,704 individuals); and large-for-gestational-age, 0.6% (2607 ASD/635,666 individuals). Compared with the reference prevalence (those in normal-birth weight, term, and appropriate-for-gestational-age individuals), the prevalence estimates of ASD diagnosis in very-low-birth weight, low-birth weight, very preterm, preterm, and small-for-gestational-age individuals increased significantly, while those in high-birth weight, postterm, and large-for-gestational-age individuals did not change significantly. There were geographical differences in the prevalence estimates. This meta-analysis provided reliable estimates of the prevalence of ASD diagnosis by birth weight, gestational age, and size for gestational age, and suggested that low-birth weight (especially very-low-birth weight), preterm (especially very preterm), and small-for-gestational-age births, rather than high-birth weight, postterm, and large-for-gestational-age births, were associated with increased risk of ASD diagnosis. However, in view of marked between-study heterogeneity in most conditions, unknown effects of certain important confounders associated with ASD due to limited information in original articles, and included studies from a relatively small number of countries, the findings of this study should be interpreted with caution.
Collapse
Affiliation(s)
- Bao-Qiang Guo
- School of Public Health, Xinxiang Medical University, 601 Jinsui Road, Xinxiang, Henan, 453003, China.
| | - Hong-Bin Li
- School of Public Health, Xinxiang Medical University, 601 Jinsui Road, Xinxiang, Henan, 453003, China
| | - De-Sheng Zhai
- School of Public Health, Xinxiang Medical University, 601 Jinsui Road, Xinxiang, Henan, 453003, China
| | - Li-Qiang Yang
- School of Public Health, Xinxiang Medical University, 601 Jinsui Road, Xinxiang, Henan, 453003, China
| |
Collapse
|
21
|
Duan K, Eyler L, Pierce K, Lombardo MV, Datko M, Hagler DJ, Taluja V, Zahiri J, Campbell K, Barnes CC, Arias S, Nalabolu S, Troxel J, Ji P, Courchesne E. Differences in regional brain structure in toddlers with autism are related to future language outcomes. Nat Commun 2024; 15:5075. [PMID: 38871689 PMCID: PMC11176156 DOI: 10.1038/s41467-024-48952-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 05/20/2024] [Indexed: 06/15/2024] Open
Abstract
Language and social symptoms improve with age in some autistic toddlers, but not in others, and such outcome differences are not clearly predictable from clinical scores alone. Here we aim to identify early-age brain alterations in autism that are prognostic of future language ability. Leveraging 372 longitudinal structural MRI scans from 166 autistic toddlers and 109 typical toddlers and controlling for brain size, we find that, compared to typical toddlers, autistic toddlers show differentially larger or thicker temporal and fusiform regions; smaller or thinner inferior frontal lobe and midline structures; larger callosal subregion volume; and smaller cerebellum. Most differences are replicated in an independent cohort of 75 toddlers. These brain alterations improve accuracy for predicting language outcome at 6-month follow-up beyond intake clinical and demographic variables. Temporal, fusiform, and inferior frontal alterations are related to autism symptom severity and cognitive impairments at early intake ages. Among autistic toddlers, brain alterations in social, language and face processing areas enhance the prediction of the child's future language ability.
Collapse
Affiliation(s)
- Kuaikuai Duan
- Autism Center of Excellence, Department of Neurosciences, University of California, San Diego, La Jolla, CA, 92037, USA.
| | - Lisa Eyler
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, 92093, USA
- VISN 22 Mental Illness Research, Education, and Clinical Center, VA San Diego Healthcare System, San Diego, CA, 92161, USA
| | - Karen Pierce
- Autism Center of Excellence, Department of Neurosciences, University of California, San Diego, La Jolla, CA, 92037, USA
| | - Michael V Lombardo
- Laboratory for Autism and Neurodevelopmental Disorders, Center for Neuroscience and Cognitive Systems @UniTn, Istituto Italiano di Tecnologia, Rovereto, 38068, Italy
| | - Michael Datko
- Autism Center of Excellence, Department of Neurosciences, University of California, San Diego, La Jolla, CA, 92037, USA
| | - Donald J Hagler
- Center for Multimodal Imaging and Genetics, Department of Radiology, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Vani Taluja
- Autism Center of Excellence, Department of Neurosciences, University of California, San Diego, La Jolla, CA, 92037, USA
| | - Javad Zahiri
- Autism Center of Excellence, Department of Neurosciences, University of California, San Diego, La Jolla, CA, 92037, USA
| | - Kathleen Campbell
- Autism Center of Excellence, Department of Neurosciences, University of California, San Diego, La Jolla, CA, 92037, USA
| | - Cynthia Carter Barnes
- Autism Center of Excellence, Department of Neurosciences, University of California, San Diego, La Jolla, CA, 92037, USA
| | - Steven Arias
- Autism Center of Excellence, Department of Neurosciences, University of California, San Diego, La Jolla, CA, 92037, USA
| | - Srinivasa Nalabolu
- Autism Center of Excellence, Department of Neurosciences, University of California, San Diego, La Jolla, CA, 92037, USA
| | - Jaden Troxel
- Autism Center of Excellence, Department of Neurosciences, University of California, San Diego, La Jolla, CA, 92037, USA
| | - Peng Ji
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Eric Courchesne
- Autism Center of Excellence, Department of Neurosciences, University of California, San Diego, La Jolla, CA, 92037, USA.
| |
Collapse
|
22
|
Ochi S, Manabe S, Kikkawa T, Ebrahimiazar S, Kimura R, Yoshizaki K, Osumi N. A Transcriptomic Dataset of Embryonic Murine Telencephalon. Sci Data 2024; 11:586. [PMID: 38839806 PMCID: PMC11153524 DOI: 10.1038/s41597-024-03421-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 05/24/2024] [Indexed: 06/07/2024] Open
Abstract
Sex bias is known in the prevalence/pathology of neurodevelopmental disorders. Sex-dependent differences of the certain brain areas are known to emerge perinatally through the exposure to sex hormones, while gene expression patterns in the rodent embryonic brain does not seem to be completely the same between male and female. To investigate potential sex differences in gene expression and cortical organization during the embryonic period in mice, we conducted a comprehensive analysis of gene expression for the telencephalon at embryonic day (E) 11.5 (a peak of neural stem cell expansion) and E14.5 (a peak of neurogenesis) using bulk RNA-seq data. As a result, our data showed the existence of notable sex differences in gene expression patterns not obviously at E11.5, but clearly at E14.5 when neurogenesis has become its peak. These data can be useful for exploring potential contribution of genes exhibiting sex differences to the divergence in brain development. Additionally, our data underscore the significance of studying the embryonic period to gain a deeper understanding of sex differences in brain development.
Collapse
Affiliation(s)
- Shohei Ochi
- Department of Developmental Neuroscience, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Shyu Manabe
- Department of Developmental Neuroscience, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Takako Kikkawa
- Department of Developmental Neuroscience, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Sara Ebrahimiazar
- Department of Developmental Neuroscience, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Ryuichi Kimura
- Department of Developmental Neuroscience, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
- Institute of Resource Development and Analysis, Kumamoto University, Kumamoto, 860-0811, Japan
| | - Kaichi Yoshizaki
- Department of Developmental Neuroscience, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
- Kobe University Graduate School of Medicine, Department of Future Medical Sciences, Division of Integrated Analysis of Bioresource and Health Care, Kobe, 650-0047, Japan
- Kobe University Hospital, Bioresource Center, Kobe, 650-0047, Japan
| | - Noriko Osumi
- Department of Developmental Neuroscience, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan.
| |
Collapse
|
23
|
Li F, Zhang S, Jiang L, Duan K, Feng R, Zhang Y, Zhang G, Zhang Y, Li P, Yao D, Xie J, Xu W, Xu P. Recognition of autism spectrum disorder in children based on electroencephalogram network topology. Cogn Neurodyn 2024; 18:1033-1045. [PMID: 38826670 PMCID: PMC11143134 DOI: 10.1007/s11571-023-09962-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 02/24/2023] [Accepted: 03/17/2023] [Indexed: 06/04/2024] Open
Abstract
Although our knowledge of autism spectrum disorder (ASD) has been deepened, the accurate diagnosis of ASD from normal individuals is still left behind. In this study, we proposed to apply the spatial pattern of the network topology (SPN) to identify children with ASD from normal ones. Based on two independent batches of electroencephalogram datasets collected separately, the accurate recognition of ASD from normal children was achieved by applying the proposed SPN features. Since decreased long-range connectivity was identified for children with ASD, the SPN features extracted from the distinctive topological architecture between two groups in the first dataset were used to validate the capacity of SPN in classifying ASD, and the SPN features achieved the highest accuracy of 92.31%, which outperformed the other features e.g., power spectrum density (84.62%), network properties (76.92%), and sample entropy (73.08%). Moreover, within the second dataset, by using the model trained in the first dataset, the SPN also acquired the highest sensitivity in recognizing ASD, when compared to the other features. These results consistently illustrated that the functional brain network, especially the intrinsic spatial network topology, might be the potential biomarker for the diagnosis of ASD.
Collapse
Affiliation(s)
- Fali Li
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, 611731 China
- School of Life Science and Technology, Center for Information in BioMedicine, University of Electronic Science and Technology of China, Chengdu, 611731 China
- Research Unit of NeuroInformation, 2019RU035, Chinese Academy of Medical Sciences, Chengdu, China
| | - Shu Zhang
- School of Life Science and Technology, Center for Information in BioMedicine, University of Electronic Science and Technology of China, Chengdu, 611731 China
| | - Lin Jiang
- School of Life Science and Technology, Center for Information in BioMedicine, University of Electronic Science and Technology of China, Chengdu, 611731 China
| | - Keyi Duan
- School of Life Science and Technology, Center for Information in BioMedicine, University of Electronic Science and Technology of China, Chengdu, 611731 China
| | - Rui Feng
- Rainbow Biotechnology Co., Ltd., Chengdu, 610041 China
| | - Yingli Zhang
- Rainbow Biotechnology Co., Ltd., Chengdu, 610041 China
| | - Gao Zhang
- The Preston Robert Tisch Brain Tumor Center, Department of Neurosurgery, Department of Pathology, Duke University School of Medicine, Durham, NC 27710 USA
| | - Yangsong Zhang
- School of Life Science and Technology, Center for Information in BioMedicine, University of Electronic Science and Technology of China, Chengdu, 611731 China
- School of Computer Science and Technology, Southwest University of Science and Technology, Mianyang, 621010 China
| | - Peiyang Li
- School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing, 400065 China
| | - Dezhong Yao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, 611731 China
- School of Life Science and Technology, Center for Information in BioMedicine, University of Electronic Science and Technology of China, Chengdu, 611731 China
- Research Unit of NeuroInformation, 2019RU035, Chinese Academy of Medical Sciences, Chengdu, China
- School of Electrical Engineering, Zhengzhou University, Zhengzhou, 450001 China
| | - Jiang Xie
- Chengdu Third People’s Hospital, Affiliated Hospital of Southwest JiaoTong University Medical School, Chengdu, 610031 China
| | - Wenming Xu
- Department of Obstetrics/Gynecology, Joint Laboratory of Reproductive Medicine (SCU-CUHK), Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041 China
| | - Peng Xu
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, 611731 China
- School of Life Science and Technology, Center for Information in BioMedicine, University of Electronic Science and Technology of China, Chengdu, 611731 China
- Research Unit of NeuroInformation, 2019RU035, Chinese Academy of Medical Sciences, Chengdu, China
- Radiation Oncology Key Laboratory of Sichuan Province, Chengdu, 610042 China
| |
Collapse
|
24
|
Wilson RB, Vangala S, Reetzke R, Pierges A, Ozonoff S, Miller M. Objective measurement of movement variability using wearable sensors predicts ASD outcomes in infants at high likelihood for ASD and ADHD. Autism Res 2024; 17:1094-1105. [PMID: 38747403 PMCID: PMC11338043 DOI: 10.1002/aur.3150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 05/05/2024] [Indexed: 05/21/2024]
Abstract
Early motor delays and differences are common among children with autism spectrum disorder (ASD) and attention-deficit/hyperactivity disorder (ADHD). Yet, little work has shown whether there are early atypical motor signs that differentiate these groups. Quantitative measures of movement variability hold promise for improving the identification of subtle and specific differences in motor function among infants and toddlers at high likelihood for ASD and ADHD. To this end, we created a novel quantitative measure of movement variability (movement curvature) and conducted a preliminary investigation as to whether this measure improves outcome predictions. We used a wearable triaxial accelerometer to evaluate continuous motion-based activity in infants at high and low likelihood for ASD and ADHD at 12, 18, 24, and 36 months of age. At 36 months, participants were categorized into three outcome groups: ASD (n = 19), ADHD concerns (n = 17), and a comparison group (n = 82). We examined group differences in movement curvature and whether movement curvature is predictive of a later ASD or ADHD concerns classification. We found that movement curvature was significantly lower in infants with later ASD diagnosis at 18, 24, and 36 months of age compared to infants with either ADHD concerns or those in the comparison group. Movement curvature was also a significant predictor of ASD at 18, 24, and 36 months (AUC 0.66-0.71; p = 0.005-0.039) and when adjusting for high ASD likelihood at 18 and 24 months (AUC 0.90, p = 0.05-0.019). These results indicate that lower movement curvature may be a feature of early motor differences in infants with later ASD diagnosis as early as 18 months of age.
Collapse
Affiliation(s)
- Rujuta B. Wilson
- UCLA Center for Autism Research and Treatment, Semel Institute for Neuroscience and Human Behavior, Los Angeles, California, USA
| | - Sitaram Vangala
- UCLA Department of Medicine Statistics Core, Los Angeles, California, USA
| | - Rachel Reetzke
- Center for Autism and Related Disorders, Kennedy Krieger Institute and Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Antonia Pierges
- UC Davis Department of Psychiatry & Biobehavioral Sciences and MIND Institute, Sacramento, California, USA
| | - Sally Ozonoff
- UC Davis Department of Psychiatry & Biobehavioral Sciences and MIND Institute, Sacramento, California, USA
| | - Meghan Miller
- UC Davis Department of Psychiatry & Biobehavioral Sciences and MIND Institute, Sacramento, California, USA
| |
Collapse
|
25
|
Courchesne E, Taluja V, Nazari S, Aamodt CM, Pierce K, Duan K, Stophaeros S, Lopez L, Barnes CC, Troxel J, Campbell K, Wang T, Hoekzema K, Eichler EE, Nani JV, Pontes W, Sanchez SS, Lombardo MV, de Souza JS, Hayashi MAF, Muotri AR. Embryonic origin of two ASD subtypes of social symptom severity: the larger the brain cortical organoid size, the more severe the social symptoms. Mol Autism 2024; 15:22. [PMID: 38790065 PMCID: PMC11127428 DOI: 10.1186/s13229-024-00602-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
BACKGROUND Social affective and communication symptoms are central to autism spectrum disorder (ASD), yet their severity differs across toddlers: Some toddlers with ASD display improving abilities across early ages and develop good social and language skills, while others with "profound" autism have persistently low social, language and cognitive skills and require lifelong care. The biological origins of these opposite ASD social severity subtypes and developmental trajectories are not known. METHODS Because ASD involves early brain overgrowth and excess neurons, we measured size and growth in 4910 embryonic-stage brain cortical organoids (BCOs) from a total of 10 toddlers with ASD and 6 controls (averaging 196 individual BCOs measured/subject). In a 2021 batch, we measured BCOs from 10 ASD and 5 controls. In a 2022 batch, we tested replicability of BCO size and growth effects by generating and measuring an independent batch of BCOs from 6 ASD and 4 control subjects. BCO size was analyzed within the context of our large, one-of-a-kind social symptom, social attention, social brain and social and language psychometric normative datasets ranging from N = 266 to N = 1902 toddlers. BCO growth rates were examined by measuring size changes between 1- and 2-months of organoid development. Neurogenesis markers at 2-months were examined at the cellular level. At the molecular level, we measured activity and expression of Ndel1; Ndel1 is a prime target for cell cycle-activated kinases; known to regulate cell cycle, proliferation, neurogenesis, and growth; and known to be involved in neuropsychiatric conditions. RESULTS At the BCO level, analyses showed BCO size was significantly enlarged by 39% and 41% in ASD in the 2021 and 2022 batches. The larger the embryonic BCO size, the more severe the ASD social symptoms. Correlations between BCO size and social symptoms were r = 0.719 in the 2021 batch and r = 0. 873 in the replication 2022 batch. ASD BCOs grew at an accelerated rate nearly 3 times faster than controls. At the cell level, the two largest ASD BCOs had accelerated neurogenesis. At the molecular level, Ndel1 activity was highly correlated with the growth rate and size of BCOs. Two BCO subtypes were found in ASD toddlers: Those in one subtype had very enlarged BCO size with accelerated rate of growth and neurogenesis; a profound autism clinical phenotype displaying severe social symptoms, reduced social attention, reduced cognitive, very low language and social IQ; and substantially altered growth in specific cortical social, language and sensory regions. Those in a second subtype had milder BCO enlargement and milder social, attention, cognitive, language and cortical differences. LIMITATIONS Larger samples of ASD toddler-derived BCO and clinical phenotypes may reveal additional ASD embryonic subtypes. CONCLUSIONS By embryogenesis, the biological bases of two subtypes of ASD social and brain development-profound autism and mild autism-are already present and measurable and involve dysregulated cell proliferation and accelerated neurogenesis and growth. The larger the embryonic BCO size in ASD, the more severe the toddler's social symptoms and the more reduced the social attention, language ability, and IQ, and the more atypical the growth of social and language brain regions.
Collapse
Affiliation(s)
- Eric Courchesne
- Autism Center of Excellence, Department of Neurosciences, University of California, San Diego, 8110 La Jolla Shores Dr., La Jolla, CA, 92037, USA.
| | - Vani Taluja
- Autism Center of Excellence, Department of Neurosciences, University of California, San Diego, 8110 La Jolla Shores Dr., La Jolla, CA, 92037, USA
| | - Sanaz Nazari
- Autism Center of Excellence, Department of Neurosciences, University of California, San Diego, 8110 La Jolla Shores Dr., La Jolla, CA, 92037, USA
| | - Caitlin M Aamodt
- Department of Pediatrics and Department of Molecular and Cellular Medicine, University of California, San Diego, Gilman Drive, La Jolla, CA, 92093, USA
| | - Karen Pierce
- Autism Center of Excellence, Department of Neurosciences, University of California, San Diego, 8110 La Jolla Shores Dr., La Jolla, CA, 92037, USA
| | - Kuaikuai Duan
- Autism Center of Excellence, Department of Neurosciences, University of California, San Diego, 8110 La Jolla Shores Dr., La Jolla, CA, 92037, USA
| | - Sunny Stophaeros
- Autism Center of Excellence, Department of Neurosciences, University of California, San Diego, 8110 La Jolla Shores Dr., La Jolla, CA, 92037, USA
| | - Linda Lopez
- Autism Center of Excellence, Department of Neurosciences, University of California, San Diego, 8110 La Jolla Shores Dr., La Jolla, CA, 92037, USA
| | - Cynthia Carter Barnes
- Autism Center of Excellence, Department of Neurosciences, University of California, San Diego, 8110 La Jolla Shores Dr., La Jolla, CA, 92037, USA
| | - Jaden Troxel
- Autism Center of Excellence, Department of Neurosciences, University of California, San Diego, 8110 La Jolla Shores Dr., La Jolla, CA, 92037, USA
| | - Kathleen Campbell
- Autism Center of Excellence, Department of Neurosciences, University of California, San Diego, 8110 La Jolla Shores Dr., La Jolla, CA, 92037, USA
| | - Tianyun Wang
- Department of Medical Genetics, Center for Medical Genetics, Peking University Health Science Center, Beijing, 100191, China
- Neuroscience Research Institute, Peking University, Key Laboratory for Neuroscience, Ministry of Education of China and National Health Commission of China, Beijing, 100191, China
| | - Kendra Hoekzema
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, 98195, USA
| | - Evan E Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, 98195, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, 98195, USA
| | - Joao V Nani
- Department of Pediatrics and Department of Molecular and Cellular Medicine, University of California, San Diego, Gilman Drive, La Jolla, CA, 92093, USA
- Department of Pharmacology, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Wirla Pontes
- Department of Pediatrics and Department of Molecular and Cellular Medicine, University of California, San Diego, Gilman Drive, La Jolla, CA, 92093, USA
| | - Sandra Sanchez Sanchez
- Department of Pediatrics and Department of Molecular and Cellular Medicine, University of California, San Diego, Gilman Drive, La Jolla, CA, 92093, USA
| | - Michael V Lombardo
- Laboratory for Autism and Neurodevelopmental Disorders, Center for Neuroscience and Cognitive Systems, Istituto Italiano di Tecnologia, Rovereto, Italy
| | - Janaina S de Souza
- Department of Pediatrics and Department of Molecular and Cellular Medicine, University of California, San Diego, Gilman Drive, La Jolla, CA, 92093, USA
| | - Mirian A F Hayashi
- Department of Pharmacology, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Alysson R Muotri
- Department of Pediatrics and Department of Molecular and Cellular Medicine, University of California, San Diego, Gilman Drive, La Jolla, CA, 92093, USA.
- Rady Children's Hospital, Center for Academic Research and Training in Anthropogeny (CARTA), Archealization Center (ArchC), Kavli Institute for Brain and Mind, La Jolla, CA, USA.
| |
Collapse
|
26
|
Vakilzadeh G, Maseko BC, Bartely TD, McLennan YA, Martínez-Cerdeño V. Increased number of excitatory synapsis and decreased number of inhibitory synapsis in the prefrontal cortex in autism. Cereb Cortex 2024; 34:121-128. [PMID: 38696601 PMCID: PMC11065106 DOI: 10.1093/cercor/bhad268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/15/2023] [Accepted: 07/16/2023] [Indexed: 05/04/2024] Open
Abstract
Previous studies in autism spectrum disorder demonstrated an increased number of excitatory pyramidal cells and a decreased number of inhibitory parvalbumin+ chandelier interneurons in the prefrontal cortex of postmortem brains. How these changes in cellular composition affect the overall abundance of excitatory and inhibitory synapses in the cortex is not known. Herein, we quantified the number of excitatory and inhibitory synapses in the prefrontal cortex of 10 postmortem autism spectrum disorder brains and 10 control cases. To identify excitatory synapses, we used VGlut1 as a marker of the presynaptic component and postsynaptic density protein-95 as marker of the postsynaptic component. To identify inhibitory synapses, we used the vesicular gamma-aminobutyric acid transporter as a marker of the presynaptic component and gephyrin as a marker of the postsynaptic component. We used Puncta Analyzer to quantify the number of co-localized pre- and postsynaptic synaptic components in each area of interest. We found an increase in the number of excitatory synapses in upper cortical layers and a decrease in inhibitory synapses in all cortical layers in autism spectrum disorder brains compared with control cases. The alteration in the number of excitatory and inhibitory synapses could lead to neuronal dysfunction and disturbed network connectivity in the prefrontal cortex in autism spectrum disorder.
Collapse
Affiliation(s)
- Gelareh Vakilzadeh
- Department of Pathology and Laboratory Medicine, University of California, Davis School of Medicine, Sacramento, CA, United States
- Institute for Pediatric Regenerative Medicine and Shriners Hospitals for Children, Sacramento, CA, United States
| | - Busisiwe C Maseko
- Faculty of health Sciences, School of Anatomical Sciences, University of the Witwatersrand, Johannesburg, The Republic of South Africa
| | - Trevor D Bartely
- Department of Pathology and Laboratory Medicine, University of California, Davis School of Medicine, Sacramento, CA, United States
- Institute for Pediatric Regenerative Medicine and Shriners Hospitals for Children, Sacramento, CA, United States
| | - Yingratana A McLennan
- Department of Pathology and Laboratory Medicine, University of California, Davis School of Medicine, Sacramento, CA, United States
- Institute for Pediatric Regenerative Medicine and Shriners Hospitals for Children, Sacramento, CA, United States
| | - Verónica Martínez-Cerdeño
- Department of Pathology and Laboratory Medicine, University of California, Davis School of Medicine, Sacramento, CA, United States
- Institute for Pediatric Regenerative Medicine and Shriners Hospitals for Children, Sacramento, CA, United States
- MIND Institute, UC Davis School of Medicine, Sacramento, CA, United States
| |
Collapse
|
27
|
Ma D, Badve C, Sun JEP, Hu S, Wang X, Chen Y, Nayate A, Wien M, Martin D, Singer LT, Durieux JC, Flask C, Costello DW. Motion Robust MR Fingerprinting Scan to Image Neonates With Prenatal Opioid Exposure. J Magn Reson Imaging 2024; 59:1758-1768. [PMID: 37515516 PMCID: PMC10823040 DOI: 10.1002/jmri.28907] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/31/2023] Open
Abstract
PURPOSE To explore whether MR fingerprinting (MRF) scans provide motion-robust and quantitative brain tissue measurements for non-sedated infants with prenatal opioid exposure (POE). STUDY TYPE Prospective. POPULATION 13 infants with POE (3 male; 12 newborns (age 7-65 days) and 1 infant aged 9-months). FIELD STRENGTH/SEQUENCE 3T, 3D T1-weighted MPRAGE, 3D T2-weighted TSE and MRF sequences. ASSESSMENT The image quality of MRF and MRI was assessed in a fully crossed, multiple-reader, multiple-case study. Sixteen image quality features in three types-image artifacts, structure and myelination visualization-were ranked by four neuroradiologists (8, 7, 5, and 8 years of experience respectively), using a 3-point scale. MRF T1 and T2 values in 8 white matter brain regions were compared between babies younger than 1 month and babies between 1 and 2 months. STATISTICAL TESTS Generalized estimating equations model to test the significance of differences of regional T1 and T2 values of babies under 1 month and those older. MRI and MRF image quality was assessed using Gwet's second order auto-correlation coefficient (AC2) with confidence levels. The Cochran-Mantel-Haenszel test was used to assess the difference in proportions between MRF and MRI for all features and stratified by the type of features. A P value <0.05 was considered statistically significant. RESULTS The MRF of two infants were excluded in T1 and T2 value analysis due to severe motion artifact but were included in the image quality assessment. In infants under 1 month of age (N = 6), the T1 and T2 values were significantly higher compared to those between 1 and 2 months of age (N = 4). MRF images showed significantly higher image quality ratings in all three feature types compared to MRI images. CONCLUSIONS MR Fingerprinting scans have potential to be a motion-robust and efficient method for nonsedated infants. LEVEL OF EVIDENCE 2 TECHNICAL EFFICACY STAGE: 1.
Collapse
Affiliation(s)
- Dan Ma
- Biomedical Engineering, Case Western Reserve University, Cleveland, OH
| | - Chaitra Badve
- Radiology, University Hospitals Cleveland Medical Center, Cleveland, OH
| | - Jessie EP Sun
- Radiology, Case Western Reserve University, Cleveland, OH
| | - Siyuan Hu
- Biomedical Engineering, Case Western Reserve University, Cleveland, OH
| | - Xiaofeng Wang
- Quantitative Health Science, Cleveland Clinic, Cleveland, OH
| | - Yong Chen
- Radiology, Case Western Reserve University, Cleveland, OH
| | - Ameya Nayate
- Radiology, University Hospitals Cleveland Medical Center, Cleveland, OH
| | - Michael Wien
- Radiology, University Hospitals Cleveland Medical Center, Cleveland, OH
| | - Douglas Martin
- Radiology, University Hospitals Cleveland Medical Center, Cleveland, OH
| | - Lynn T Singer
- Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland
| | - Jared C. Durieux
- Radiology, University Hospitals Cleveland Medical Center, Cleveland, OH
| | - Chris Flask
- Radiology, Case Western Reserve University, Cleveland, OH
| | | |
Collapse
|
28
|
Park SJ, Wang IH, Lee N, Jiang HC, Uemura T, Futai K, Kim D, Macosko E, Greer P. Combinatorial expression of neurexin genes regulates glomerular targeting by olfactory sensory neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.01.587570. [PMID: 38617205 PMCID: PMC11014570 DOI: 10.1101/2024.04.01.587570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Precise connectivity between specific neurons is essential for the formation of the complex neural circuitry necessary for executing intricate motor behaviors and higher cognitive functions. While trans -interactions between synaptic membrane proteins have emerged as crucial elements in orchestrating the assembly of these neural circuits, the synaptic surface proteins involved in neuronal wiring remain largely unknown. Here, using unbiased single-cell transcriptomic and mouse genetic approaches, we uncover that the neurexin family of genes enables olfactory sensory neuron (OSNs) axons to form appropriate synaptic connections with their mitral and tufted (M/T) cell synaptic partners, within the mammalian olfactory system. Neurexin isoforms are differentially expressed within distinct populations of OSNs, resulting in unique pattern of neurexin expression that is specific to each OSN type, and synergistically cooperate to regulate axonal innervation, guiding OSN axons to their designated glomeruli. This process is facilitated through the interactions of neurexins with their postsynaptic partners, including neuroligins, which have distinct expression patterns in M/T cells. Our findings suggest a novel mechanism underpinning the precise assembly of olfactory neural circuits, driven by the trans -interaction between neurexins and their ligands.
Collapse
|
29
|
Yoon CD, Xia Y, Terol AK, Meadan H, Lee JD. Correlation Between Gaze Behaviors and Social Communication Skills of Young Autistic Children: A Meta-Analysis of Eye-Tracking Studies. J Autism Dev Disord 2024:10.1007/s10803-024-06257-x. [PMID: 38400896 DOI: 10.1007/s10803-024-06257-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/17/2024] [Indexed: 02/26/2024]
Abstract
This meta-analysis examined correlations between eye-tracking measures of gaze behaviors manifested during dynamic salient social stimuli and behavioral assessment measures of social communication skills of young autistic children. We employed a multilevel model with random effects to perform three separate meta-analyses for correlation between social communication skills and (a) all gaze behaviors, (b) gaze duration, and (c) gaze transition. Subsequently, we performed meta-regression to assess the role of four moderators, including age, continuum of naturalness of stimuli, gaze metric, and area of interest, on correlation effect sizes that were heterogeneous at the population level. A total of 111 correlation coefficients from 17 studies for 1132 young autistic children or children with high-likelihood for autism (Mage range = 6-95 months) were included in this meta-analysis. The correlation effect sizes for all three meta-analyses were significant, supporting the relation between improved gaze behaviors and better social communication skills. In addition, age, gaze metric, and area of interest were significant moderators. This suggests the importance of identifying meaningful gaze behaviors related to social communication skills and the increasingly influential role of gaze behaviors in shaping social communication skills as young autistic children progress through the early childhood stage. The continuum of naturalness of stimuli, however, was revealed to trend towards having a significant moderating effect. Lastly, it is important to note the evidence of potential publication bias. Our findings are discussed in the context of early identification and intervention and unraveling the complex nature of autism.
Collapse
Affiliation(s)
- Christy D Yoon
- Department of Special Education, University of Illinois Urbana-Champaign, 1310 South Sixth Street, Champaign, IL, 61820, USA.
| | - Yan Xia
- Department of Educational Psychology, University of Illinois Urbana-Champaign, 1310 South Sixth Street, Champaign, IL, 61820, USA
| | - Adriana Kaori Terol
- Department of Special Education, University of Illinois Urbana-Champaign, 1310 South Sixth Street, Champaign, IL, 61820, USA
| | - Hedda Meadan
- Department of Special Education, University of Illinois Urbana-Champaign, 1310 South Sixth Street, Champaign, IL, 61820, USA
| | - James D Lee
- Department of Psychiatry and Behavioral Sciences, University of Washington, 6901 Sand Point Way NE, Seattle, WA, 98115, USA
| |
Collapse
|
30
|
Maillard AM, Romascano D, Villalón-Reina JE, Moreau CA, Almeida Osório JM, Richetin S, Junod V, Yu P, Misic B, Thompson PM, Fornari E, Gygax MJ, Jacquemont S, Chabane N, Rodríguez-Herreros B. Pervasive alterations of intra-axonal volume and network organization in young children with a 16p11.2 deletion. Transl Psychiatry 2024; 14:95. [PMID: 38355713 PMCID: PMC10866898 DOI: 10.1038/s41398-024-02810-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 12/04/2023] [Accepted: 01/29/2024] [Indexed: 02/16/2024] Open
Abstract
Reciprocal Copy Number Variants (CNVs) at the 16p11.2 locus confer high risk for autism spectrum disorder (ASD) and other neurodevelopmental disorders (NDDs). Morphometric MRI studies have revealed large and pervasive volumetric alterations in carriers of a 16p11.2 deletion. However, the specific neuroanatomical mechanisms underlying such alterations, as well as their developmental trajectory, are still poorly understood. Here we explored differences in microstructural brain connectivity between 24 children carrying a 16p11.2 deletion and 66 typically developing (TD) children between 2 and 8 years of age. We found a large pervasive increase of intra-axonal volume widespread over a high number of white matter tracts. Such microstructural alterations in 16p11.2 deletion children were already present at an early age, and led to significant changes in the global efficiency and integration of brain networks mainly associated to language, motricity and socio-emotional behavior, although the widespread pattern made it unlikely to represent direct functional correlates. Our results shed light on the neuroanatomical basis of the previously reported increase of white matter volume, and align well with analogous evidence of altered axonal diameter and synaptic function in 16p11.2 mice models. We provide evidence of a prevalent mechanistic deviation from typical maturation of brain structural connectivity associated with a specific biological risk to develop ASD. Future work is warranted to determine how this deviation contributes to the emergence of symptoms observed in young children diagnosed with ASD and other NDDs.
Collapse
Affiliation(s)
- Anne M Maillard
- Service des Troubles du Spectre de l'Autisme et apparentés, Département de psychiatrie, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - David Romascano
- Service des Troubles du Spectre de l'Autisme et apparentés, Département de psychiatrie, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Julio E Villalón-Reina
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California (USC), Marina del Rey, CA, USA
| | - Clara A Moreau
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California (USC), Marina del Rey, CA, USA
| | - Joana M Almeida Osório
- Service des Troubles du Spectre de l'Autisme et apparentés, Département de psychiatrie, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Sonia Richetin
- Service des Troubles du Spectre de l'Autisme et apparentés, Département de psychiatrie, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Vincent Junod
- Unité de Neurologie et neuroréhabilitation pédiatrique, Département femme-mère-enfant, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Paola Yu
- Service des Troubles du Spectre de l'Autisme et apparentés, Département de psychiatrie, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Bratislav Misic
- Department of Neurology and Neurosurgery, Montréal Neurological Institute, Montréal, QC, H3A 2B4, Canada
- McConnell Brain Imaging Center, McGill University, Montréal, QC, H3A 2B4, Canada
| | - Paul M Thompson
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California (USC), Marina del Rey, CA, USA
| | - Eleonora Fornari
- Biomedical Imaging Center (CIBM), Department of Radiology, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Marine Jequier Gygax
- Service des Troubles du Spectre de l'Autisme et apparentés, Département de psychiatrie, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Sébastien Jacquemont
- Sainte Justine Hospital Research Center, Montréal, QC, Canada
- Department of Pediatrics, University of Montréal, Montreal, QC, Canada
| | - Nadia Chabane
- Service des Troubles du Spectre de l'Autisme et apparentés, Département de psychiatrie, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Borja Rodríguez-Herreros
- Service des Troubles du Spectre de l'Autisme et apparentés, Département de psychiatrie, Lausanne University Hospital (CHUV), Lausanne, Switzerland.
| |
Collapse
|
31
|
Yilmaz Sukranli Z, Korkmaz Bayram K, Mehmetbeyoglu E, Doganyigit Z, Beyaz F, Sener EF, Taheri S, Ozkul Y, Rassoulzadegan M. Trans Species RNA Activity: Sperm RNA of the Father of an Autistic Child Programs Glial Cells and Behavioral Disorders in Mice. Biomolecules 2024; 14:201. [PMID: 38397438 PMCID: PMC10886764 DOI: 10.3390/biom14020201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/01/2024] [Accepted: 02/03/2024] [Indexed: 02/25/2024] Open
Abstract
Recently, we described the alteration of six miRNAs in the serum of autistic children, their fathers, mothers, siblings, and in the sperm of autistic mouse models. Studies in model organisms suggest that noncoding RNAs participate in transcriptional modulation pathways. Using mice, approaches to alter the amount of RNA in fertilized eggs enable in vivo intervention at an early stage of development. Noncoding RNAs are very numerous in spermatozoa. Our study addresses a fundamental question: can the transfer of RNA content from sperm to eggs result in changes in phenotypic traits, such as autism? To explore this, we used sperm RNA from a normal father but with autistic children to create mouse models for autism. Here, we induced, in a single step by microinjecting sperm RNA into fertilized mouse eggs, a transcriptional alteration with the transformation in adults of glial cells into cells affected by astrogliosis and microgliosis developing deficiency disorders of the 'autism-like' type in mice born following these manipulations. Human sperm RNA alters gene expression in mice, and validates the possibility of non-Mendelian inheritance in autism.
Collapse
Affiliation(s)
- Zeynep Yilmaz Sukranli
- Betul-Ziya Eren Genome and Stem Cell Center, Erciyes University, Kayseri 38039, Turkey
- Department of Medical Genetics, Faculty of Medicine, Erciyes University, Kayseri 38039, Turkey
| | - Keziban Korkmaz Bayram
- Betul-Ziya Eren Genome and Stem Cell Center, Erciyes University, Kayseri 38039, Turkey
- Department of Medical Genetics, Faculty of Medicine, Yıldırım Beyazıt University, Ankara 06010, Turkey
| | - Ecmel Mehmetbeyoglu
- Betul-Ziya Eren Genome and Stem Cell Center, Erciyes University, Kayseri 38039, Turkey
| | - Zuleyha Doganyigit
- Histology and Embryology Department, Medical Faculty, Yozgat Bozok University, Yozgat 66700, Turkey
| | - Feyzullah Beyaz
- Histology and Embryology Department, Faculty of Veterinary, Erciyes University, Kayseri 38039, Turkey
| | - Elif Funda Sener
- Betul-Ziya Eren Genome and Stem Cell Center, Erciyes University, Kayseri 38039, Turkey
- Department of Medical Biology, Faculty of Medicine, Erciyes University, Kayseri 38039, Turkey
| | - Serpil Taheri
- Betul-Ziya Eren Genome and Stem Cell Center, Erciyes University, Kayseri 38039, Turkey
- Department of Medical Biology, Faculty of Medicine, Erciyes University, Kayseri 38039, Turkey
| | - Yusuf Ozkul
- Betul-Ziya Eren Genome and Stem Cell Center, Erciyes University, Kayseri 38039, Turkey
- Department of Medical Genetics, Faculty of Medicine, Erciyes University, Kayseri 38039, Turkey
| | - Minoo Rassoulzadegan
- Betul-Ziya Eren Genome and Stem Cell Center, Erciyes University, Kayseri 38039, Turkey
- The National Institute of Health and Medical Research (INSERM)-Centre National de la Recherche Scientifique (CNRS), Université Côte d’Azur, Inserm, 06000 Nice, France
| |
Collapse
|
32
|
Tener SJ, Lin Z, Park SJ, Oraedu K, Ulgherait M, Van Beek E, Martínez-Muñiz A, Pantalia M, Gatto JA, Volpi J, Stavropoulos N, Ja WW, Canman JC, Shirasu-Hiza M. Neuronal knockdown of Cullin3 as a Drosophila model of autism spectrum disorder. Sci Rep 2024; 14:1541. [PMID: 38233464 PMCID: PMC10794434 DOI: 10.1038/s41598-024-51657-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 01/06/2024] [Indexed: 01/19/2024] Open
Abstract
Mutations in Cullin-3 (Cul3), a conserved gene encoding a ubiquitin ligase, are strongly associated with autism spectrum disorder (ASD). Here, we characterize ASD-related pathologies caused by neuron-specific Cul3 knockdown in Drosophila. We confirmed that neuronal Cul3 knockdown causes short sleep, paralleling sleep disturbances in ASD. Because sleep defects and ASD are linked to metabolic dysregulation, we tested the starvation response of neuronal Cul3 knockdown flies; they starved faster and had lower triacylglyceride levels than controls, suggesting defects in metabolic homeostasis. ASD is also characterized by increased biomarkers of oxidative stress; we found that neuronal Cul3 knockdown increased sensitivity to hyperoxia, an exogenous oxidative stress. Additional hallmarks of ASD are deficits in social interactions and learning. Using a courtship suppression assay that measures social interactions and memory of prior courtship, we found that neuronal Cul3 knockdown reduced courtship and learning compared to controls. Finally, we found that neuronal Cul3 depletion alters the anatomy of the mushroom body, a brain region required for memory and sleep. Taken together, the ASD-related phenotypes of neuronal Cul3 knockdown flies establish these flies as a genetic model to study molecular and cellular mechanisms underlying ASD pathology, including metabolic and oxidative stress dysregulation and neurodevelopment.
Collapse
Affiliation(s)
- Samantha J Tener
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Zhi Lin
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Scarlet J Park
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology, Jupiter, FL, 33458, USA
| | - Kairaluchi Oraedu
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Matthew Ulgherait
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Emily Van Beek
- Waksman Institute, Rutgers University, Piscataway, NJ, 08854, USA
| | - Andrés Martínez-Muñiz
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Meghan Pantalia
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Jared A Gatto
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Julia Volpi
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | | | - William W Ja
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology, Jupiter, FL, 33458, USA
| | - Julie C Canman
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Mimi Shirasu-Hiza
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, 10032, USA.
| |
Collapse
|
33
|
Kyselicová K, Dukonyová D, Belica I, Ballová DS, Jankovičová V, Ostatníková D. Fingerprint patterns in relation to an altered neurodevelopment in patients with autism spectrum disorder. Dev Psychobiol 2023; 65:e22432. [PMID: 38010306 DOI: 10.1002/dev.22432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 09/28/2023] [Accepted: 09/29/2023] [Indexed: 11/29/2023]
Abstract
Dermatoglyphic patterns are permanently established and matured before the 24th week of gestation. Their frequencies and localization might be a good indicator of developmental instability in individuals with an altered neurodevelopment and show potential as biomarkers of autism spectrum disorder (ASD). In this study, fingerprint pattern counts and fluctuating asymmetry in the distribution of patterns are compared between 67 boys diagnosed with ASD (aged 5.11 ± 2.51 years) and 83 control boys (aged 8.58 ± 3.14 years). Boys with ASD had a higher rate of discordance in their fingerprint patterns (p = .0026), showing more often bilateral differences in the occurrence of certain patterns. A chi-square test revealed that the difference in pattern frequencies between boys with ASD and the control group is the most significant in frequencies of whorls, tented arches, and ulnar loops. Boys with ASD have significantly fewer ulnar loops, significantly more whorls, and tented arches in the right hand. The achieved results are in favor of the suggestion that prenatal influences, which play a role in the development of bilateral differences in fingerprint patterns up to the 24th week of gestation, may be a potential cause of an altered neurodevelopment in ASD individuals.
Collapse
Affiliation(s)
- Klaudia Kyselicová
- Academic Research Center for Autism, Institute of Physiology, Faculty of Medicine, Comenius University Bratislava, Bratislava, Slovakia
| | - Dóra Dukonyová
- Academic Research Center for Autism, Institute of Physiology, Faculty of Medicine, Comenius University Bratislava, Bratislava, Slovakia
| | - Ivan Belica
- Academic Research Center for Autism, Institute of Physiology, Faculty of Medicine, Comenius University Bratislava, Bratislava, Slovakia
| | - Dominika Sónak Ballová
- Faculty of Civil Engineering, Slovak University of Technology in Bratislava, Bratislava, Slovakia
| | - Viktória Jankovičová
- Faculty of Natural Sciences, Comenius University Bratislava, Bratislava, Slovakia
| | - Daniela Ostatníková
- Academic Research Center for Autism, Institute of Physiology, Faculty of Medicine, Comenius University Bratislava, Bratislava, Slovakia
| |
Collapse
|
34
|
Huang X, Ming Y, Zhao W, Feng R, Zhou Y, Wu L, Wang J, Xiao J, Li L, Shan X, Cao J, Kang X, Chen H, Duan X. Developmental prediction modeling based on diffusion tensor imaging uncovering age-dependent heterogeneity in early childhood autistic brain. Mol Autism 2023; 14:41. [PMID: 37899464 PMCID: PMC10614412 DOI: 10.1186/s13229-023-00573-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 10/22/2023] [Indexed: 10/31/2023] Open
Abstract
OBJECTIVE There has been increasing evidence for atypical white matter (WM) microstructure in autistic people, but findings have been divergent. The development of autistic people in early childhood is clouded by the concurrently rapid brain growth, which might lead to the inconsistent findings of atypical WM microstructure in autism. Here, we aimed to reveal the developmental nature of autistic children and delineate atypical WM microstructure throughout early childhood while taking developmental considerations into account. METHOD In this study, diffusion tensor imaging was acquired from two independent cohorts, containing 91 autistic children and 100 typically developing children (TDC), aged 4-7 years. Developmental prediction modeling using support vector regression based on TDC participants was conducted to estimate the WM atypical development index of autistic children. Then, subgroups of autistic children were identified by using the k-means clustering method and were compared to each other on the basis of demographic information, WM atypical development index, and autistic trait by using two-sample t-test. Relationship of the WM atypical development index with age was estimated by using partial correlation. Furthermore, we performed threshold-free cluster enhancement-based two-sample t-test for the group comparison in WM microstructures of each subgroup of autistic children with the rematched subsets of TDC. RESULTS We clustered autistic children into two subgroups according to WM atypical development index. The two subgroups exhibited distinct developmental stages and age-dependent diversity. WM atypical development index was found negatively associated with age. Moreover, an inverse pattern of atypical WM microstructures and different clinical manifestations in the two stages, with subgroup 1 showing overgrowth with low level of autistic traits and subgroup 2 exhibiting delayed maturation with high level of autistic traits, were revealed. CONCLUSION This study illustrated age-dependent heterogeneity in early childhood autistic children and delineated developmental stage-specific difference that ranged from an overgrowth pattern to a delayed pattern. Trial registration This study has been registered at ClinicalTrials.gov (Identifier: NCT02807766) on June 21, 2016 ( https://clinicaltrials.gov/ct2/show/NCT02807766 ).
Collapse
Affiliation(s)
- Xinyue Huang
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, People's Republic of China
- MOE Key Lab for Neuro Information, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, 610054, People's Republic of China
| | - Yating Ming
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, People's Republic of China
- MOE Key Lab for Neuro Information, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, 610054, People's Republic of China
| | - Weixing Zhao
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, People's Republic of China
- MOE Key Lab for Neuro Information, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, 610054, People's Republic of China
| | - Rui Feng
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, People's Republic of China
- MOE Key Lab for Neuro Information, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, 610054, People's Republic of China
| | - Yuanyue Zhou
- Department of Medical Psychology, The First Affiliated Hospital, Hainan Medical University, Haikou, 571199, Hainan, People's Republic of China
| | - Lijie Wu
- Department of Children's and Adolescent Health, Public Health College of Harbin Medical University, Harbin, 150086, People's Republic of China
| | - Jia Wang
- Department of Children's and Adolescent Health, Public Health College of Harbin Medical University, Harbin, 150086, People's Republic of China
| | - Jinming Xiao
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, People's Republic of China
- MOE Key Lab for Neuro Information, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, 610054, People's Republic of China
| | - Lei Li
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, People's Republic of China
- MOE Key Lab for Neuro Information, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, 610054, People's Republic of China
| | - Xiaolong Shan
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, People's Republic of China
- MOE Key Lab for Neuro Information, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, 610054, People's Republic of China
| | - Jing Cao
- Child Rehabilitation Unit, Affiliated Sichuan Provincial Rehabilitation Hospital of Chengdu University of TCM, Sichuan Bayi Rehabilitation Center, Chengdu, 611135, People's Republic of China
| | - Xiaodong Kang
- Child Rehabilitation Unit, Affiliated Sichuan Provincial Rehabilitation Hospital of Chengdu University of TCM, Sichuan Bayi Rehabilitation Center, Chengdu, 611135, People's Republic of China
| | - Huafu Chen
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, People's Republic of China.
- MOE Key Lab for Neuro Information, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, 610054, People's Republic of China.
| | - Xujun Duan
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, People's Republic of China.
- MOE Key Lab for Neuro Information, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, 610054, People's Republic of China.
| |
Collapse
|
35
|
Wang M, Xu D, Zhang L, Jiang H. Application of Multimodal MRI in the Early Diagnosis of Autism Spectrum Disorders: A Review. Diagnostics (Basel) 2023; 13:3027. [PMID: 37835770 PMCID: PMC10571992 DOI: 10.3390/diagnostics13193027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/13/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder in children. Early diagnosis and intervention can remodel the neural structure of the brain and improve quality of life but may be inaccurate if based solely on clinical symptoms and assessment scales. Therefore, we aimed to analyze multimodal magnetic resonance imaging (MRI) data from the existing literature and review the abnormal changes in brain structural-functional networks, perfusion, neuronal metabolism, and the glymphatic system in children with ASD, which could help in early diagnosis and precise intervention. Structural MRI revealed morphological differences, abnormal developmental trajectories, and network connectivity changes in the brain at different ages. Functional MRI revealed disruption of functional networks, abnormal perfusion, and neurovascular decoupling associated with core ASD symptoms. Proton magnetic resonance spectroscopy revealed abnormal changes in the neuronal metabolites during different periods. Decreased diffusion tensor imaging signals along the perivascular space index reflected impaired glymphatic system function in children with ASD. Differences in age, subtype, degree of brain damage, and remodeling in children with ASD led to heterogeneity in research results. Multimodal MRI is expected to further assist in early and accurate clinical diagnosis of ASD through deep learning combined with genomics and artificial intelligence.
Collapse
Affiliation(s)
- Miaoyan Wang
- Department of Radiology, Affiliated Children’s Hospital of Jiangnan University, Wuxi 214000, China; (M.W.); (D.X.)
| | - Dandan Xu
- Department of Radiology, Affiliated Children’s Hospital of Jiangnan University, Wuxi 214000, China; (M.W.); (D.X.)
| | - Lili Zhang
- Department of Child Health Care, Affiliated Children’s Hospital of Jiangnan University, Wuxi 214000, China
| | - Haoxiang Jiang
- Department of Radiology, Affiliated Children’s Hospital of Jiangnan University, Wuxi 214000, China; (M.W.); (D.X.)
| |
Collapse
|
36
|
Manoharan TA, Radhakrishnan M. Region-Wise Brain Response Classification of ASD Children Using EEG and BiLSTM RNN. Clin EEG Neurosci 2023; 54:461-471. [PMID: 34791925 DOI: 10.1177/15500594211054990] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractAutism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by impairment in sensory modulation. These sensory modulation deficits would ultimately lead them to difficulties in adaptive behavior and intellectual functioning. The purpose of this study was to observe changes in the nervous system with responses to auditory/visual and only audio stimuli in children with autism and typically developing (TD) through electroencephalography (EEG). In this study, 20 children with ASD and 20 children with TD were considered to investigate the difference in the neural dynamics. The neural dynamics could be understood by non-linear analysis of the EEG signal. In this research to reveal the underlying nonlinear EEG dynamics, recurrence quantification analysis (RQA) is applied. RQA measures were analyzed using various parameter changes in RQA computations. In this research, the cosine distance metric was considered due to its capability of information retrieval and the other distance metrics parameters are compared for identifying the best biomarker. Each computational combination of the RQA measure and the responding channel was analyzed and discussed. To classify ASD and TD, the resulting features from RQA were fed to the designed BiLSTM (bi-long short-term memory) network. The classification accuracy was tested channel-wise for each combination. T3 and T5 channels with neighborhood selection as FAN (fixed amount of nearest neighbors) and distance metric as cosine is considered as the best-suited combination to discriminate between ASD and TD with the classification accuracy of 91.86%, respectively.
Collapse
Affiliation(s)
| | - Menaka Radhakrishnan
- Centre for Cyber Physical Systems, Vellore Institute of Technology, Chennai, TN, India
| |
Collapse
|
37
|
Martin GE, Lee M, Bicknell K, Goodkind A, Maltman N, Losh M. A longitudinal investigation of pragmatic language across contexts in autism and related neurodevelopmental conditions. Front Neurol 2023; 14:1155691. [PMID: 37545730 PMCID: PMC10402743 DOI: 10.3389/fneur.2023.1155691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 07/10/2023] [Indexed: 08/08/2023] Open
Abstract
Background Pragmatic language, or the use of language in social contexts, is a critical skill in daily life, supporting social interactions and the development of meaningful social relationships. Pragmatic language is universally impacted in autism spectrum disorder (ASD) and pragmatic deficits are also common in other neurodevelopmental conditions, particularly those related to ASD, such as fragile X syndrome (FXS). This study used a multi-method, longitudinal approach to characterize potentially unique pragmatic profiles across different neurodevelopmental disabilities, and across contexts that varied in degree of social demand. The utility of computational linguistic analyses, as an efficient tool for capturing pragmatic abilities, was also explored. Methods Pragmatic skills of boys with idiopathic ASD (ASD-O, n = 43), FXS with and without ASD (FXS-ASD, n = 57; FXS-O, n = 14), Down syndrome (DS, n = 22), and typical development (TD, n = 24) were compared using variables obtained from a standardized measure, narrative, and semi-naturalistic conversation at up to three time points. Results Pragmatic language was most significantly impacted among males with ASD-O and FXS-ASD across all three contexts, with more difficulties in the least structured context (conversation), and also some differences based on FXS comorbidity. Patterns of group differences were more nuanced for boys with FXS-O and DS, with context having less of an impact. Clinical groups demonstrated minimal changes in pragmatic skills with age, with some exceptions. Computational language measurement tools showed some utility for measuring pragmatic skills, but were not as successful as traditional methods at capturing differences between clinical groups. Conclusion Overlap and differences between ASD and other forms of neurodevelopmental disability in general, and between idiopathic and syndromic ASD in particular, have important implications for developing precisely tailored assessment and intervention approaches, consistent with a personalized medicine approach to clinical study and care in ASD.
Collapse
Affiliation(s)
- Gary E. Martin
- Department of Communication Sciences and Disorders, St. John’s University, Staten Island, NY, United States
| | - Michelle Lee
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, United States
- Department of Child and Adolescent Psychiatry, Child Study Center, Hassenfeld Children’s Hospital at NYU Langone, New York, NY, United States
| | - Klinton Bicknell
- Department of Linguistics, Northwestern University, Evanston, IL, United States
- Duolingo, Pittsburgh, PA, United States
| | - Adam Goodkind
- Department of Linguistics, Northwestern University, Evanston, IL, United States
- Department of Communication Studies, Northwestern University, Evanston, IL, United States
| | - Nell Maltman
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, United States
- Waisman Center, University of Wisconsin-Madison, Madison, WI, United States
| | - Molly Losh
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, United States
| |
Collapse
|
38
|
Statsenko Y, Habuza T, Smetanina D, Simiyu GL, Meribout S, King FC, Gelovani JG, Das KM, Gorkom KNV, Zaręba K, Almansoori TM, Szólics M, Ismail F, Ljubisavljevic M. Unraveling Lifelong Brain Morphometric Dynamics: A Protocol for Systematic Review and Meta-Analysis in Healthy Neurodevelopment and Ageing. Biomedicines 2023; 11:1999. [PMID: 37509638 PMCID: PMC10377186 DOI: 10.3390/biomedicines11071999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 06/27/2023] [Accepted: 06/30/2023] [Indexed: 07/30/2023] Open
Abstract
A high incidence and prevalence of neurodegenerative diseases and neurodevelopmental disorders justify the necessity of well-defined criteria for diagnosing these pathologies from brain imaging findings. No easy-to-apply quantitative markers of abnormal brain development and ageing are available. We aim to find the characteristic features of non-pathological development and degeneration in distinct brain structures and to work out a precise descriptive model of brain morphometry in age groups. We will use four biomedical databases to acquire original peer-reviewed publications on brain structural changes occurring throughout the human life-span. Selected publications will be uploaded to Covidence systematic review software for automatic deduplication and blinded screening. Afterwards, we will manually review the titles, abstracts, and full texts to identify the papers matching eligibility criteria. The relevant data will be extracted to a 'Summary of findings' table. This will allow us to calculate the annual rate of change in the volume or thickness of brain structures and to model the lifelong dynamics in the morphometry data. Finally, we will adjust the loss of weight/thickness in specific brain areas to the total intracranial volume. The systematic review will synthesise knowledge on structural brain change across the life-span.
Collapse
Affiliation(s)
- Yauhen Statsenko
- Radiology Department, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
- Medical Imaging Platform, ASPIRE Precision Medicine Research Institute Abu Dhabi, Al Ain P.O. Box 15551, United Arab Emirates
- Big Data Analytics Center, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Tetiana Habuza
- Big Data Analytics Center, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
- Department of Computer Science and Software Engineering, College of Information Technology, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Darya Smetanina
- Radiology Department, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Gillian Lylian Simiyu
- Radiology Department, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Sarah Meribout
- Radiology Department, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
- Medical Imaging Platform, ASPIRE Precision Medicine Research Institute Abu Dhabi, Al Ain P.O. Box 15551, United Arab Emirates
- Internal Medicine Department, Maimonides Medical Center, New York, NY 11219, USA
| | - Fransina Christina King
- Physiology Department, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
- Neuroscience Platform, ASPIRE Precision Medicine Research Institute Abu Dhabi, Al Ain P.O. Box 15551, United Arab Emirates
| | - Juri G Gelovani
- Radiology Department, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
- Biomedical Engineering Department, College of Engineering, Wayne State University, Detroit, MI 48202, USA
- Siriraj Hospital, Mahidol University, Nakhon Pathom 73170, Thailand
- Provost Office, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Karuna M Das
- Radiology Department, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Klaus N-V Gorkom
- Radiology Department, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Kornelia Zaręba
- Obstetrics & Gynecology Department, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Taleb M Almansoori
- Radiology Department, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Miklós Szólics
- Neurology Division, Medicine Department, Tawam Hospital, Al Ain, P.O. Box 15258, United Arab Emirates
- Internal Medicine Department, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Fatima Ismail
- Pediatric Department, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Milos Ljubisavljevic
- Physiology Department, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
- Neuroscience Platform, ASPIRE Precision Medicine Research Institute Abu Dhabi, Al Ain P.O. Box 15551, United Arab Emirates
| |
Collapse
|
39
|
Khan A, Kamal M, Alhothi A, Gad H, Adan MA, Ponirakis G, Petropoulos IN, Malik RA. Corneal confocal microscopy demonstrates sensory nerve loss in children with autism spectrum disorder. PLoS One 2023; 18:e0288399. [PMID: 37437060 DOI: 10.1371/journal.pone.0288399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 06/24/2023] [Indexed: 07/14/2023] Open
Abstract
Autism spectrum disorder (ASD) is a developmental disorder characterized by difficulty in communication and interaction with others. Postmortem studies have shown cerebral neuronal loss and neuroimaging studies show neuronal loss in the amygdala, cerebellum and inter-hemispheric regions of the brain. Recent studies have shown altered tactile discrimination and allodynia on the face, mouth, hands and feet and intraepidermal nerve fiber loss in the legs of subjects with ASD. Fifteen children with ASD (age: 12.00 ± 3.55 years) and twenty age-matched healthy controls (age: 12.83 ± 1.91 years) underwent corneal confocal microscopy (CCM) and quantification of corneal nerve fiber morphology. Corneal nerve fibre density (fibers/mm2) (28.61 ± 5.74 vs. 40.42 ± 8.95, p = 0.000), corneal nerve fibre length (mm/mm2) (16.61 ± 3.26 vs. 21.44 ± 4.44, p = 0.001), corneal nerve branch density (branches/mm2) (43.68 ± 22.71 vs. 62.39 ± 21.58, p = 0.018) and corneal nerve fibre tortuosity (0.037 ± 0.023 vs. 0.074 ± 0.017, p = 0.000) were significantly lower and inferior whorl length (mm/mm2) (21.06 ± 6.12 vs. 23.43 ± 3.95, p = 0.255) was comparable in children with ASD compared to controls. CCM identifies central corneal nerve fiber loss in children with ASD. These findings, urge the need for larger longitudinal studies to determine the utility of CCM as an imaging biomarker for neuronal loss in different subtypes of ASD and in relation to disease progression.
Collapse
Affiliation(s)
- Adnan Khan
- Research Division, Weill Cornell Medicine-Qatar, Doha, Qatar
- Faculty of Health Sciences, Khyber Medical University, Peshawar, Pakistan
| | - Madeeha Kamal
- Department of Pediatrics, Sidra Medicine, Doha, Qatar
| | - Abdula Alhothi
- Department of Pediatrics, Hamad General Hospital, Doha, Qatar
| | - Hoda Gad
- Research Division, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Marian A Adan
- Department of Pediatrics, Hamad General Hospital, Doha, Qatar
| | | | | | - Rayaz A Malik
- Research Division, Weill Cornell Medicine-Qatar, Doha, Qatar
| |
Collapse
|
40
|
Yamada T, Watanabe T, Sasaki Y. Are sleep disturbances a cause or consequence of autism spectrum disorder? Psychiatry Clin Neurosci 2023; 77:377-385. [PMID: 36949621 PMCID: PMC10871071 DOI: 10.1111/pcn.13550] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/10/2023] [Accepted: 03/17/2023] [Indexed: 03/24/2023]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by core symptoms such as atypical social communication, stereotyped behaviors, and restricted interests. One of the comorbid symptoms of individuals with ASD is sleep disturbance. There are two major hypotheses regarding the neural mechanism underlying ASD, i.e., the excitation/inhibition (E/I) imbalance and the altered neuroplasticity hypotheses. However, the pathology of ASD remains unclear due to inconsistent research results. This paper argues that sleep is a confounding factor, thus, must be considered when examining the pathology of ASD because sleep plays an important role in modulating the E/I balance and neuroplasticity in the human brain. Investigation of the E/I balance and neuroplasticity during sleep might enhance our understanding of the neural mechanisms of ASD. It may also lead to the development of neurobiologically informed interventions to supplement existing psychosocial therapies.
Collapse
Affiliation(s)
- Takashi Yamada
- Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, Providence, 02912, USA
| | - Takeo Watanabe
- Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, Providence, 02912, USA
| | - Yuka Sasaki
- Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, Providence, 02912, USA
| |
Collapse
|
41
|
Pretzsch CM, Ecker C. Structural neuroimaging phenotypes and associated molecular and genomic underpinnings in autism: a review. Front Neurosci 2023; 17:1172779. [PMID: 37457001 PMCID: PMC10347684 DOI: 10.3389/fnins.2023.1172779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 06/09/2023] [Indexed: 07/18/2023] Open
Abstract
Autism has been associated with differences in the developmental trajectories of multiple neuroanatomical features, including cortical thickness, surface area, cortical volume, measures of gyrification, and the gray-white matter tissue contrast. These neuroimaging features have been proposed as intermediate phenotypes on the gradient from genomic variation to behavioral symptoms. Hence, examining what these proxy markers represent, i.e., disentangling their associated molecular and genomic underpinnings, could provide crucial insights into the etiology and pathophysiology of autism. In line with this, an increasing number of studies are exploring the association between neuroanatomical, cellular/molecular, and (epi)genetic variation in autism, both indirectly and directly in vivo and across age. In this review, we aim to summarize the existing literature in autism (and neurotypicals) to chart a putative pathway from (i) imaging-derived neuroanatomical cortical phenotypes to (ii) underlying (neuropathological) biological processes, and (iii) associated genomic variation.
Collapse
Affiliation(s)
- Charlotte M. Pretzsch
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology, and Neuroscience, King’s College London, London, United Kingdom
| | - Christine Ecker
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| |
Collapse
|
42
|
Porter M, Sugden-Lingard S, Brunsdon R, Benson S. Autism Spectrum Disorder in Children with an Early History of Paediatric Acquired Brain Injury. J Clin Med 2023; 12:4361. [PMID: 37445396 DOI: 10.3390/jcm12134361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/03/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental condition that arises from a combination of both genetic and environmental risk factors. There is a lack of research investigating whether early acquired brain injury (ABI) may be a risk factor for ASD. The current study comprehensively reviewed all hospital records at The Brain Injury Service, Kids Rehab at the Children's Hospital at Westmead (Australia) from January 2000 to January 2020. Of the approximately 528 cases, 14 children with paediatric ABI were subsequently given an ASD diagnosis (2.7%). For this ASD sample, the mean age at the time of the ABI was 1.55 years, indicating a high prevalence of early ABI in this diagnostic group. The mean age of ASD diagnosis was, on average, 5 years later than the average ASD diagnosis in the general population. Furthermore, 100% of children had at least one medical comorbidity and 73% had three or more co-occurring DSM-5 diagnoses. Although based on a small data set, results highlight early paediatric ABI as a potential risk factor for ASD and the potential for a delayed ASD diagnosis following early ABI, with comorbidities possibly masking symptoms. This study was limited by its exploratory case series design and small sample size. Nonetheless, this study highlights the need for longitudinal investigation into the efficacy of early screening for ASD symptomatology in children who have sustained an early ABI to maximise potential intervention.
Collapse
Affiliation(s)
- Melanie Porter
- School of Psychology, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Sindella Sugden-Lingard
- School of Psychology, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Ruth Brunsdon
- Kids Rehab, The Children's Hospital at Westmead, SCHN, Westmead, NSW 2145, Australia
| | - Suzanne Benson
- Kids Rehab, The Children's Hospital at Westmead, SCHN, Westmead, NSW 2145, Australia
| |
Collapse
|
43
|
Matthiesen M, Khlaifia A, Steininger CFD, Dadabhoy M, Mumtaz U, Arruda-Carvalho M. Maturation of nucleus accumbens synaptic transmission signals a critical period for the rescue of social deficits in a mouse model of autism spectrum disorder. Mol Brain 2023; 16:46. [PMID: 37226266 DOI: 10.1186/s13041-023-01028-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/20/2023] [Indexed: 05/26/2023] Open
Abstract
Social behavior emerges early in development, a time marked by the onset of neurodevelopmental disorders featuring social deficits, including autism spectrum disorder (ASD). Although social deficits are at the core of the clinical diagnosis of ASD, very little is known about their neural correlates at the time of clinical onset. The nucleus accumbens (NAc), a brain region extensively implicated in social behavior, undergoes synaptic, cellular and molecular alterations in early life, and is particularly affected in ASD mouse models. To explore a link between the maturation of the NAc and neurodevelopmental deficits in social behavior, we compared spontaneous synaptic transmission in NAc shell medium spiny neurons (MSNs) between the highly social C57BL/6J and the idiopathic ASD mouse model BTBR T+Itpr3tf/J at postnatal day (P) 4, P6, P8, P12, P15, P21 and P30. BTBR NAc MSNs display increased spontaneous excitatory transmission during the first postnatal week, and increased inhibition across the first, second and fourth postnatal weeks, suggesting accelerated maturation of excitatory and inhibitory synaptic inputs compared to C57BL/6J mice. BTBR mice also show increased optically evoked medial prefrontal cortex-NAc paired pulse ratios at P15 and P30. These early changes in synaptic transmission are consistent with a potential critical period, which could maximize the efficacy of rescue interventions. To test this, we treated BTBR mice in either early life (P4-P8) or adulthood (P60-P64) with the mTORC1 antagonist rapamycin, a well-established intervention for ASD-like behavior. Rapamycin treatment rescued social interaction deficits in BTBR mice when injected in infancy, but did not affect social interaction in adulthood.
Collapse
Affiliation(s)
- Melina Matthiesen
- Department of Psychology, University of Toronto Scarborough, Toronto, ON, M1C1A4, Canada
| | - Abdessattar Khlaifia
- Department of Psychology, University of Toronto Scarborough, Toronto, ON, M1C1A4, Canada
| | | | - Maryam Dadabhoy
- Department of Psychology, University of Toronto Scarborough, Toronto, ON, M1C1A4, Canada
| | - Unza Mumtaz
- Department of Psychology, University of Toronto Scarborough, Toronto, ON, M1C1A4, Canada
| | - Maithe Arruda-Carvalho
- Department of Psychology, University of Toronto Scarborough, Toronto, ON, M1C1A4, Canada.
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, M5S3G5, Canada.
| |
Collapse
|
44
|
Wang S, Li X. A revisit of the amygdala theory of autism: Twenty years after. Neuropsychologia 2023; 183:108519. [PMID: 36803966 PMCID: PMC10824605 DOI: 10.1016/j.neuropsychologia.2023.108519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 01/23/2023] [Accepted: 02/16/2023] [Indexed: 02/19/2023]
Abstract
The human amygdala has long been implicated to play a key role in autism spectrum disorder (ASD). Yet it remains unclear to what extent the amygdala accounts for the social dysfunctions in ASD. Here, we review studies that investigate the relationship between amygdala function and ASD. We focus on studies that employ the same task and stimuli to directly compare people with ASD and patients with focal amygdala lesions, and we also discuss functional data associated with these studies. We show that the amygdala can only account for a limited number of deficits in ASD (primarily face perception tasks but not social attention tasks), a network view is, therefore, more appropriate. We next discuss atypical brain connectivity in ASD, factors that can explain such atypical brain connectivity, and novel tools to analyze brain connectivity. Lastly, we discuss new opportunities from multimodal neuroimaging with data fusion and human single-neuron recordings that can enable us to better understand the neural underpinnings of social dysfunctions in ASD. Together, the influential amygdala theory of autism should be extended with emerging data-driven scientific discoveries such as machine learning-based surrogate models to a broader framework that considers brain connectivity at the global scale.
Collapse
Affiliation(s)
- Shuo Wang
- Department of Radiology, Washington University in St. Louis, St. Louis, MO 63110, USA; Lane Department of Computer Science and Electrical Engineering, West Virginia University, Morgantown, WV 26506, USA.
| | - Xin Li
- Lane Department of Computer Science and Electrical Engineering, West Virginia University, Morgantown, WV 26506, USA.
| |
Collapse
|
45
|
Zengeler KE, Lukens JR. Misguided antibodies change the course of brain development. Mol Psychiatry 2023; 28:1833-1835. [PMID: 36973346 DOI: 10.1038/s41380-023-02042-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Affiliation(s)
- Kristine E Zengeler
- Center for Brain Immunology and Glia (BIG), Department of Neuroscience, Charlottesville, VA, USA.
- Neuroscience Graduate Program, Charlottesville, VA, USA.
- Cell and Molecular Biology Training Program, School of Medicine, University of Virginia, Charlottesville, VA, USA.
| | - John R Lukens
- Center for Brain Immunology and Glia (BIG), Department of Neuroscience, Charlottesville, VA, USA.
- Neuroscience Graduate Program, Charlottesville, VA, USA.
- Cell and Molecular Biology Training Program, School of Medicine, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
46
|
Mitsuhashi T, Hattori S, Fujimura K, Shibata S, Miyakawa T, Takahashi T. In utero Exposure to Valproic Acid throughout Pregnancy Causes Phenotypes of Autism in Offspring Mice. Dev Neurosci 2023; 45:223-233. [PMID: 37044070 DOI: 10.1159/000530452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 03/24/2023] [Indexed: 04/14/2023] Open
Abstract
Valproic acid (VPA) is an antiepileptic drug that inhibits the epileptic activity of neurons mainly by inhibiting sodium channels and GABA transaminase. VPA is also known to inhibit histone deacetylases, which epigenetically modify the cell proliferation/differentiation characteristics of stem/progenitor cells within developing tissues. Recent clinical studies in humans have indicated that VPA exposure in utero increases the risk of autistic features and intellectual disabilities in offspring; we have previously reported that low-dose VPA exposure in utero throughout pregnancy increases the production of projection neurons from neuronal stem/progenitor cells that are distributed in the superficial neocortical layers of the fetal brain. In the present study, we found that in utero VPA-exposed mice exhibited abnormal social interaction, changes in cognitive function, hypersensitivity to pain/heat, and impaired locomotor activity, all of which are characteristic symptoms of autism spectrum disorder in humans. Taken together, our findings indicate that VPA exposure in utero throughout pregnancy alters higher brain function and predisposes individuals to phenotypes that resemble autism and intellectual disability. Furthermore, these symptoms are likely to be due to neocortical dysgenesis that was caused by an increased number of projection neurons in specific layers of the neocortex.
Collapse
Affiliation(s)
| | - Satoko Hattori
- Division of Systems Medical Science, Center for Medical Science, Fujita Health University, Aichi, Japan
| | - Kimino Fujimura
- Departments of Pediatrics, Keio University School of Medicine, Tokyo, Japan
| | - Shinsuke Shibata
- Departments of Physiology, Keio University School of Medicine, Tokyo, Japan
- Division of Microscopic Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Tsuyoshi Miyakawa
- Division of Systems Medical Science, Center for Medical Science, Fujita Health University, Aichi, Japan
| | - Takao Takahashi
- Departments of Pediatrics, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
47
|
Kumar M, Hiremath C, Khokhar SK, Bansal E, Sagar KJV, Padmanabha H, Girimaji AS, Narayan S, Kishore MT, Yamini BK, Jac Fredo AR, Saini J, Bharath RD. Altered cerebellar lobular volumes correlate with clinical deficits in siblings and children with ASD: evidence from toddlers. J Transl Med 2023; 21:246. [PMID: 37029372 PMCID: PMC10080978 DOI: 10.1186/s12967-023-04090-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 03/26/2023] [Indexed: 04/09/2023] Open
Abstract
BACKGROUND Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder characterized by impaired social and communication skills, narrow interests, and repetitive behavior. It is known that the cerebellum plays a vital role in controlling movement and gait posture. However, recently, researchers have reported that the cerebellum may also be responsible for other functions, such as social cognition, reward, anxiety, language, and executive functions. METHODS In this study, we ascertained volumetric differences from cerebellar lobular analysis from children with ASD, ASD siblings, and typically developing healthy controls. In this cross-sectional study, a total of 30 children were recruited, including children with ASD (N = 15; mean age = 27.67 ± 5.1 months), ASD siblings (N = 6; mean age = 17.5 ± 3.79 months), and typically developing children (N = 9; mean age = 17.67 ± 3.21 months). All the MRI data was acquired under natural sleep without using any sedative medication. We performed a correlation analysis with volumetric data and developmental and behavioral measures obtained from these children. Two-way ANOVA and Pearson correlation was performed for statistical data analysis. RESULTS We observed intriguing findings from this study, including significantly increased gray matter lobular volumes in multiple cerebellar regions including; vermis, left and right lobule I-V, right CrusII, and right VIIb and VIIIb, respectively, in children with ASD, compared to typically developing healthy controls and ASD siblings. Multiple cerebellar lobular volumes were also significantly correlated with social quotient, cognition, language, and motor scores with children with ASD, ASD siblings, and healthy controls, respectively. CONCLUSIONS This research finding helps us understand the neurobiology of ASD and ASD-siblings, and critically advances current knowledge about the cerebellar role in ASD. However, results need to be replicated for a larger cohort from longitudinal research study in future.
Collapse
Affiliation(s)
- Manoj Kumar
- Department of Neuroimaging and Interventional Radiology, National Institute of Mental Health and Neurosciences (NIMHANS), Hosur Road, Bengaluru, 560029, India.
| | - Chandrakanta Hiremath
- Department of Neuroimaging and Interventional Radiology, National Institute of Mental Health and Neurosciences (NIMHANS), Hosur Road, Bengaluru, 560029, India
| | - Sunil Kumar Khokhar
- Department of Neuroimaging and Interventional Radiology, National Institute of Mental Health and Neurosciences (NIMHANS), Hosur Road, Bengaluru, 560029, India
| | - Eshita Bansal
- Department of Neuroimaging and Interventional Radiology, National Institute of Mental Health and Neurosciences (NIMHANS), Hosur Road, Bengaluru, 560029, India
| | - Kommu John Vijay Sagar
- Department of Child and Adolescent Psychiatry, National Institute of Mental Health and Neurosciences (NIMHANS), Hosur Road, Bengaluru, India
| | - Hansashree Padmanabha
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Hosur Road, Bengaluru, India
| | - Akhila S Girimaji
- Department of Speech Pathology and Audiology, National Institute of Mental Health and Neurosciences (NIMHANS), Hosur Road, Bengaluru, India
| | - Shweta Narayan
- Department of Clinical Psychology, National Institute of Mental Health and Neurosciences (NIMHANS), Hosur Road, Bengaluru, India
| | - M Thomas Kishore
- Department of Clinical Psychology, National Institute of Mental Health and Neurosciences (NIMHANS), Hosur Road, Bengaluru, India
| | - B K Yamini
- Department of Speech Pathology and Audiology, National Institute of Mental Health and Neurosciences (NIMHANS), Hosur Road, Bengaluru, India
| | - A R Jac Fredo
- School of Biomedical Engineering, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, India
| | - Jitender Saini
- Department of Neuroimaging and Interventional Radiology, National Institute of Mental Health and Neurosciences (NIMHANS), Hosur Road, Bengaluru, 560029, India
| | - Rose Dawn Bharath
- Department of Neuroimaging and Interventional Radiology, National Institute of Mental Health and Neurosciences (NIMHANS), Hosur Road, Bengaluru, 560029, India
| |
Collapse
|
48
|
Cohen AL, Kroeck MR, Wall J, McManus P, Ovchinnikova A, Sahin M, Krueger DA, Bebin EM, Northrup H, Wu JY, Warfield SK, Peters JM, Fox MD. Tubers Affecting the Fusiform Face Area Are Associated with Autism Diagnosis. Ann Neurol 2023; 93:577-590. [PMID: 36394118 PMCID: PMC9974824 DOI: 10.1002/ana.26551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 11/11/2022] [Accepted: 11/13/2022] [Indexed: 11/18/2022]
Abstract
OBJECTIVE Tuberous sclerosis complex (TSC) is associated with focal brain "tubers" and a high incidence of autism spectrum disorder (ASD). The location of brain tubers associated with autism may provide insight into the neuroanatomical substrate of ASD symptoms. METHODS We delineated tuber locations for 115 TSC participants with ASD (n = 31) and without ASD (n = 84) from the Tuberous Sclerosis Complex Autism Center of Excellence Research Network. We tested for associations between ASD diagnosis and tuber burden within the whole brain, specific lobes, and at 8 regions of interest derived from the ASD neuroimaging literature, including the anterior cingulate, orbitofrontal and posterior parietal cortices, inferior frontal and fusiform gyri, superior temporal sulcus, amygdala, and supplemental motor area. Next, we performed an unbiased data-driven voxelwise lesion symptom mapping (VLSM) analysis. Finally, we calculated the risk of ASD associated with positive findings from the above analyses. RESULTS There were no significant ASD-related differences in tuber burden across the whole brain, within specific lobes, or within a priori regions derived from the ASD literature. However, using VLSM analysis, we found that tubers involving the right fusiform face area (FFA) were associated with a 3.7-fold increased risk of developing ASD. INTERPRETATION Although TSC is a rare cause of ASD, there is a strong association between tuber involvement of the right FFA and ASD diagnosis. This highlights a potentially causative mechanism for developing autism in TSC that may guide research into ASD symptoms more generally. ANN NEUROL 2023;93:577-590.
Collapse
Affiliation(s)
- Alexander L Cohen
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Computational Radiology Laboratory, Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Center for Brain Circuit Therapeutics, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Mallory R Kroeck
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Center for Brain Circuit Therapeutics, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Juliana Wall
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Computational Radiology Laboratory, Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Center for Brain Circuit Therapeutics, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Peter McManus
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Center for Brain Circuit Therapeutics, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Arina Ovchinnikova
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Mustafa Sahin
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Harvard Medical School, Harvard University, Boston, MA, USA
| | - Darcy A Krueger
- Department of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - E Martina Bebin
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Hope Northrup
- Department of Pediatrics, McGovern Medical School at University of Texas Health Science Center at Houston and Children's Memorial Hermann Hospital, Houston, TX, USA
| | - Joyce Y Wu
- Division of Neurology & Epilepsy, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Simon K Warfield
- Computational Radiology Laboratory, Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jurriaan M Peters
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Computational Radiology Laboratory, Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Michael D Fox
- Center for Brain Circuit Therapeutics, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
| |
Collapse
|
49
|
Marmor-Kollet N, Berkun V, Cummings G, Keren-Shaul H, David E, Addadi Y, Schuldiner O. Actin-dependent astrocytic infiltration is a key step for axon defasciculation during remodeling. Cell Rep 2023; 42:112117. [PMID: 36790930 PMCID: PMC9989824 DOI: 10.1016/j.celrep.2023.112117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 10/17/2022] [Accepted: 01/28/2023] [Indexed: 02/16/2023] Open
Abstract
Astrocytes are essential for synapse formation, maturation, and plasticity; however, their function during developmental neuronal remodeling is largely unknown. To identify astrocytic molecules required for axon pruning of mushroom body (MB) γ neurons in Drosophila, we profiled astrocytes before (larva) and after (adult) remodeling. Focusing on genes enriched in larval astrocytes, we identified 12 astrocytic genes that are required for axon pruning, including the F-actin regulators Actin-related protein 2/3 complex, subunit 1 (Arpc1) and formin3 (form3). Interestingly, perturbing astrocytic actin dynamics does not affect their gross morphology, migration, or transforming growth factor β (TGF-β) secretion. In contrast, actin dynamics is required for astrocyte infiltration into the axon bundle at the onset of pruning. Remarkably, decreasing axonal adhesion facilitates infiltration by Arpc1 knockdown (KD) astrocytes and promotes axon pruning. Conversely, increased axonal adhesion reduces lobe infiltration by wild-type (WT) astrocytes. Together, our findings suggest that actin-dependent astrocytic infiltration is a key step in axon pruning, thus promoting our understanding of neuron-glia interactions during remodeling.
Collapse
Affiliation(s)
- Neta Marmor-Kollet
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel; Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Victoria Berkun
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Gideon Cummings
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Hadas Keren-Shaul
- Department of Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Eyal David
- Department of Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Yoseph Addadi
- Weizmann Institute of Science, Life Sciences Core Facilities, Rehovot 7610001, Israel
| | - Oren Schuldiner
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel; Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot 7610001, Israel.
| |
Collapse
|
50
|
Lockhart AK, Sharpley CF, Bitsika V. Mu Desynchronisation in Autistic Individuals: What We Know and What We Need to Know. REVIEW JOURNAL OF AUTISM AND DEVELOPMENTAL DISORDERS 2023. [DOI: 10.1007/s40489-023-00354-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
AbstractAutism spectrum disorder (ASD) is a neurodevelopmental condition that includes social-communication deficits and repetitive and stereotypical behaviours (APA 2022). Neurobiological methods of studying ASD are a promising methodology for identifying ASD biomarkers. Mu rhythms (Mu) have the potential to shed light on the socialisation deficits that characterise ASD; however, Mu/ASD studies thus far have yielded inconsistent results. This review examines the existing Mu/ASD studies to determine where this variability lies to elucidate potential factors that can be addressed in future studies.
Collapse
|