1
|
Antony P, Baby B, Vijayan R. Insights into the interaction between hemorphins and δ-opioid receptor from molecular modeling. Front Mol Biosci 2024; 11:1514759. [PMID: 39726435 PMCID: PMC11669586 DOI: 10.3389/fmolb.2024.1514759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 11/26/2024] [Indexed: 12/28/2024] Open
Abstract
Hemorphins are short atypical opioid peptide fragments embedded in the β-chain of hemoglobin. They have received considerable attention recently due to their interaction with opioid receptors. The affinity of hemorphins to opioid receptors μ-opioid receptor (MOR), δ-opioid receptor (DOR), and κ-opioid receptor (KOR) has been well established. However, the underlying binding mode and molecular interactions of hemorphins in opioid receptors remain largely unknown. Here, we report the pattern of interaction of camel and other mammalian hemorphins with DOR. Extensive in silico docking and molecular dynamics simulations were employed to identify intermolecular interactions and binding energies were calculated to determine the affinity of these peptides for DOR. Longer forms of hemorphins - hemorphin-7, hemorphin-6, camel hemorphin-7, and camel hemorphin-6 had strong interactions with DOR. However, camel hemorphin-7 and camel hemorphin-6 had high binding affinity towards DOR. Thus, the findings of this study provide molecular insights into how hemorphins, particularly camel hemorphin variants, could be a therapeutic agent for pain regulation, stress management, and analgesia.
Collapse
Affiliation(s)
- Priya Antony
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Bincy Baby
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Ranjit Vijayan
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
- The Big Data Analytics Center, United Arab Emirates University, Al Ain, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
2
|
Mei C, Zhang J, Niu Z, Simon JP, Yang T, Huang M, Zhang Z, Zhou L, Dong S. MP-13, a novel chimeric peptide of morphiceptin and pepcan-9, produces potent antinociception with limited side effects. Neuropeptides 2024; 107:102440. [PMID: 38875739 DOI: 10.1016/j.npep.2024.102440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/16/2024]
Abstract
Pharmacological investigations have substantiated the potential of bifunctional opioid/cannabinoid agonists in delivering potent analgesia while minimizing adverse reactions. Peptide modulators of cannabinoid receptors, known as pepcans, have been investigated before. In this study, we designed a series of chimeric peptides based on pepcans and morphiceptin (YPFP-NH2). Here, we combined injections of pepcans and morphiceptin to investigate the combination treatment of opioids and cannabis and compared the analgesic effect with chimeric compounds. Subsequently, we employed computational docking to screen the compounds against opioid and cannabinoid receptors, along with an acute pain model, to identify the most promising peptide. Among these peptides, MP-13, a morphiceptin and pepcan-9 (PVNFKLLSH) construct, exhibited superior supraspinal analgesic efficacy in the tail-flick test, with an ED50 value at 1.43 nmol/mouse, outperforming its parent peptides and other chimeric analogs. Additionally, MP-13 displayed potent analgesic activity mediated by mu-opioid receptor (MOR), delta-opioid receptor (DOR), and cannabinoid type 1 (CB1) receptor pathways. Furthermore, MP-13 did not induce psychological dependence and gastrointestinal motility inhibition at the effective analgesic doses, and it maintained non-tolerance-forming antinociception throughout a 7-day treatment regimen, with an unaltered count of microglial cells in the periaqueductal gray region, supporting this observation. Moreover, intracerebroventricular administration of MP-13 demonstrated dose-dependent antinociception in murine models of neuropathic, inflammatory, and visceral pain. Our findings provide promising insights for the development of opioid/cannabinoid peptide agonists, addressing a crucial gap in the field and holding significant potential for future research and development. PERSPECTIVE: This article offers insights into the combination treatment of pepcans with morphiceptin. Among the chimeric peptides, MP-13 exhibited potent analgesic effects in a series of preclinical pain models with a favorable side-effect profile.
Collapse
Affiliation(s)
- Chenxi Mei
- Department of Animal and Biomedical Sciences, School of Life Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China
| | - Jing Zhang
- Department of Animal and Biomedical Sciences, School of Life Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China
| | - Zhanyu Niu
- Department of Animal and Biomedical Sciences, School of Life Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China
| | - Jerine Peter Simon
- Department of Animal and Biomedical Sciences, School of Life Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China
| | - Tong Yang
- Department of Animal and Biomedical Sciences, School of Life Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China
| | - Mingmin Huang
- Department of Animal and Biomedical Sciences, School of Life Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China
| | - Zhonghua Zhang
- Department of Animal and Biomedical Sciences, School of Life Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China
| | - Lanxia Zhou
- Laboratory of Clinical Molecular Cytogenetics and Immunology, the First Hospital, Lanzhou University, 1 Donggang West Road, Lanzhou 730000, China
| | - Shouliang Dong
- Department of Animal and Biomedical Sciences, School of Life Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China; Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China.
| |
Collapse
|
3
|
Toniolo EF, Gupta A, Franciosi AC, Gomes I, Devi LA, Dale CS. Interactions between cannabinoid and opioid receptors in a mouse model of diabetic neuropathy. Pain 2022; 163:1414-1423. [PMID: 34724682 PMCID: PMC9043031 DOI: 10.1097/j.pain.0000000000002527] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/19/2021] [Indexed: 11/25/2022]
Abstract
ABSTRACT Diabetic neuropathy, often associated with diabetes mellitus, is a painful condition with no known effective treatment except glycemic control. Studies with neuropathic pain models report alterations in cannabinoid and opioid receptor expression levels; receptors whose activation induces analgesia. We examined whether interactions between CB1R and opioid receptors could be targeted for the treatment of diabetic neuropathy. For this, we generated antibodies that selectively recognize native CB1R-MOR and CB1R-DOR heteromers using a subtractive immunization strategy. We assessed the levels of CB1R, MOR, DOR, and interacting complexes using a model of streptozotocin-induced diabetic neuropathy and detected increased levels of CB1R, MOR, DOR, and CB1R-MOR complexes compared with those in controls. An examination of G-protein signaling revealed that activity induced by the MOR, but not the DOR agonist, was potentiated by low nanomolar doses of CB1R ligands, including antagonists, suggesting an allosteric modulation of MOR signaling by CB1R ligands within CB1R-MOR complexes. Because the peptide endocannabinoid, hemopressin, caused a significant potentiation of MOR activity, we examined its effect on mechanical allodynia and found that it blocked allodynia in wild-type mice and mice with diabetic neuropathy lacking DOR (but have CB1R-MOR complexes). However, hemopressin does not alter the levels of CB1R-MOR complexes in diabetic mice lacking DOR but increases the levels of CB1R-DOR complexes in diabetic mice lacking MOR. Together, these results suggest the involvement of CB1R-MOR and CB1R-DOR complexes in diabetic neuropathy and that hemopressin could be developed as a potential therapeutic for the treatment of this painful condition.
Collapse
Affiliation(s)
- Elaine F. Toniolo
- Department of Pharmacology, University of Sao Paulo, Sao Paulo, Brazil
- Department of Anatomy, Laboratory of Neuromodulation and Experimental Pain, University of Sao Paulo, Sao Paulo, Brazil
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Hospital Sírio-Libanês, São Paulo, Brasil
| | - Achla Gupta
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Adriano C. Franciosi
- Department of Pharmacology, University of Sao Paulo, Sao Paulo, Brazil
- Department of Anatomy, Laboratory of Neuromodulation and Experimental Pain, University of Sao Paulo, Sao Paulo, Brazil
- Hospital Sírio-Libanês, São Paulo, Brasil
| | - Ivone Gomes
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Lakshmi A. Devi
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Camila S. Dale
- Department of Anatomy, Laboratory of Neuromodulation and Experimental Pain, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
4
|
Silvério R, Barth R, Heimann AS, Reckziegel P, dos Santos GJ, Romero-Zerbo SY, Bermúdez-Silva FJ, Rafacho A, Ferro ES. Pep19 Has a Positive Effect on Insulin Sensitivity and Ameliorates Both Hepatic and Adipose Tissue Phenotype of Diet-Induced Obese Mice. Int J Mol Sci 2022; 23:ijms23084082. [PMID: 35456900 PMCID: PMC9030859 DOI: 10.3390/ijms23084082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/29/2022] [Accepted: 04/01/2022] [Indexed: 12/10/2022] Open
Abstract
Peptide DIIADDEPLT (Pep19) has been previously suggested to improve metabolic parameters, without adverse central nervous system effects, in a murine model of diet-induced obesity. Here, we aimed to further evaluate whether Pep19 oral administration has anti-obesogenic effects, in a well-established high-fat diet-induced obesity model. Male Swiss mice, fed either a standard diet (SD) or high-fat diet (HFD), were orally administrated for 30 consecutive days, once a day, with saline vehicle or Pep19 (1 mg/kg). Next, several metabolic, morphological, and behavioral parameters were evaluated. Oral administration of Pep19 attenuated HFD body-weight gain, reduced in approximately 40% the absolute mass of the endocrine pancreas, and improved the relationship between circulating insulin and peripheral insulin sensitivity. Pep19 treatment of HFD-fed mice attenuated liver inflammation, hepatic fat distribution and accumulation, and lowered plasma alanine aminotransferase activity. The inguinal fat depot from the SD group treated with Pep19 showed multilocular brown-fat-like cells and increased mRNA expression of uncoupling protein 1 (UCP1), suggesting browning on inguinal white adipose cells. Morphological analysis of brown adipose tissue (BAT) from HFD mice showed the presence of larger white-like unilocular cells, compared to BAT from SD, Pep19-treated SD or HFD mice. Pep19 treatment produced no alterations in mice behavior. Oral administration of Pep19 ameliorates some metabolic traits altered by diet-induced obesity in a Swiss mice model.
Collapse
Affiliation(s)
- Renata Silvério
- Graduate Program in Pharmacology, Federal University of Santa Catarina (UFSC), Florianópolis 88040-900, Brazil;
- Laboratory of Investigation in Chronic Diseases, Department of Physiological Sciences, Federal University of Santa Catarina (UFSC), Florianópolis 88040-900, Brazil; (R.B.); (G.J.d.S.)
| | - Robson Barth
- Laboratory of Investigation in Chronic Diseases, Department of Physiological Sciences, Federal University of Santa Catarina (UFSC), Florianópolis 88040-900, Brazil; (R.B.); (G.J.d.S.)
- Multicenter Graduate Program in Physiological Sciences, Federal University of Santa Catarina (UFSC), Florianópolis 88040-900, Brazil
| | - Andrea S. Heimann
- Proteimax BioTechnology Israel LTD, 4 Duvdevan Street, Pardes Hana, Haifa 3708973, Israel;
| | - Patrícia Reckziegel
- Department of Pharmacology, Biomedical Science Institute, University of São Paulo (USP), São Paulo 05508-000, Brazil;
| | - Gustavo J. dos Santos
- Laboratory of Investigation in Chronic Diseases, Department of Physiological Sciences, Federal University of Santa Catarina (UFSC), Florianópolis 88040-900, Brazil; (R.B.); (G.J.d.S.)
- Multicenter Graduate Program in Physiological Sciences, Federal University of Santa Catarina (UFSC), Florianópolis 88040-900, Brazil
| | - Silvana Y. Romero-Zerbo
- Instituto de Investigación Biomédica de Málaga-IBIMA, UGC Endocrinología y Nutrición Hospital Regional Universitario de Málaga, Universidad de Málaga, 29009 Málaga, Spain; (S.Y.R.-Z.); (F.J.B.-S.)
- Biomedical Research Center for Diabetes and Associated Metabolic Diseases (CIBERDEM), 28029 Madrid, Spain
| | - Francisco J. Bermúdez-Silva
- Instituto de Investigación Biomédica de Málaga-IBIMA, UGC Endocrinología y Nutrición Hospital Regional Universitario de Málaga, Universidad de Málaga, 29009 Málaga, Spain; (S.Y.R.-Z.); (F.J.B.-S.)
- Biomedical Research Center for Diabetes and Associated Metabolic Diseases (CIBERDEM), 28029 Madrid, Spain
| | - Alex Rafacho
- Graduate Program in Pharmacology, Federal University of Santa Catarina (UFSC), Florianópolis 88040-900, Brazil;
- Laboratory of Investigation in Chronic Diseases, Department of Physiological Sciences, Federal University of Santa Catarina (UFSC), Florianópolis 88040-900, Brazil; (R.B.); (G.J.d.S.)
- Multicenter Graduate Program in Physiological Sciences, Federal University of Santa Catarina (UFSC), Florianópolis 88040-900, Brazil
- Correspondence: (A.R.); (E.S.F.)
| | - Emer S. Ferro
- Department of Pharmacology, Biomedical Science Institute, University of São Paulo (USP), São Paulo 05508-000, Brazil;
- Correspondence: (A.R.); (E.S.F.)
| |
Collapse
|
5
|
Glasmacher S, Gertsch J. Characterization of pepcan-23 as pro-peptide of RVD-hemopressin (pepcan-12) and stability of hemopressins in mice. Adv Biol Regul 2021; 80:100808. [PMID: 33799079 DOI: 10.1016/j.jbior.2021.100808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/02/2021] [Accepted: 03/18/2021] [Indexed: 11/26/2022]
Abstract
Hemopressins ((x)-PVNFKLLSH) or peptide endocannabinoids (pepcans) can bind to cannabinoid receptors. RVD-hemopressin (pepcan-12) was shown to act as endogenous allosteric modulator of cannabinoid receptors, with opposite effects on CB1 and CB2, respectively. Moreover, the N-terminally elongated pepcan-23 was detected in different tissues and was postulated to be the pro-peptide of RVD-hemopressin. Currently, data about the pharmacokinetics, tissue distribution and stability of hemopressin-type peptides are lacking. Here we investigated the secondary structure and physiological role of pepcan-23 as precursor of RVD-hemopressin. We assessed the metabolic stability of these peptides, including hemopressin. Using LC-ESI-MS/MS, pepcan-23 was measured in mouse tissues and human whole blood (~50 pmol/mL) and in plasma was the most stable endogenous peptide containing the hemopressin sequence. Using peptide spiked human whole blood, mouse adrenal gland and liver homogenates demonstrate that pepcan-23 acts as endogenous pro-peptide of RVD-hemopressin. Furthermore, administered pepcan-23 converted to RVD-hemopressin in mice. In circular dichroism spectroscopy, pepcan-23 showed a helix-unordered-helix structure and efficiently formed complexes with divalent metal ions, in particular Cu(II) and Ni(II). Hemopressin and RVD-hemopressin were not bioavailable to the brain and showed poor stability in plasma, in agreement with their overall poor biodistribution. Acute hemopressin administration (100 mg/kg) did not modulate endogenous RVD-hemopressin/pepcan-23 levels or influence the endocannabinoid lipidome but increased 1-stearoyl-2-arachidonoyl-sn-glycerol. Overall, we show that pepcan-23 is a biological pro-peptide of RVD-hemopressin and divalent metal ions may regulate this process. Given the lack of metabolic stability of hemopressins, administration of pepcan-23 as pro-peptide may be suitable in pharmacological experiments as it is converted to RVD-hemopressin in vivo.
Collapse
Affiliation(s)
- Sandra Glasmacher
- Institute of Biochemistry and Molecular Medicine, University of Bern, CH-3012, Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences (GCB), University of Bern, Switzerland
| | - Jürg Gertsch
- Institute of Biochemistry and Molecular Medicine, University of Bern, CH-3012, Bern, Switzerland.
| |
Collapse
|
6
|
Jergova S, Perez C, Imperial JS, Gajavelli S, Jain A, Abin A, Olivera BM, Sagen J. Cannabinoid receptor agonists from Conus venoms alleviate pain-related behavior in rats. Pharmacol Biochem Behav 2021; 205:173182. [PMID: 33774007 DOI: 10.1016/j.pbb.2021.173182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 02/18/2021] [Accepted: 03/18/2021] [Indexed: 11/28/2022]
Abstract
Cannabinoid (CB) receptor agonists show robust antinociceptive effects in various pain models. However, most of the clinically potent CB1 receptor-active drugs derived from cannabis are considered concerning due to psychotomimetic side effects. Selective CB receptor ligands that do not induce CNS side effects are of clinical interest. The venoms of marine snail Conus are a natural source of various potent analgesic peptides, some of which are already FDA approved. In this study we evaluated the ability of several Conus venom extracts to interact with CB1 receptor. HEK293 cells expressing CB1 receptors were treated with venom extracts and CB1 receptor internalization was analyzed by immunofluorescence. Results showed C. textile (C. Tex) and C. miles (C. Mil) samples as the most potent. These were serially subfractionated by HPLC for subsequent analysis by internalization assays and for analgesic potency evaluated in the formalin test and after peripheral nerve injury. Intrathecal injection of C. Tex and C. Mil subfractions reduced flinching/licking behavior during the second phase of formalin test and attenuated thermal and mechanical allodynia in nerve injury model. Treatment with proteolytic enzymes reduced CB1 internalization of subfractions, indicating the peptidergic nature of CB1 active component. Further HPLC purification revealed two potent antinociceptive subfractions within C. Tex with CB1 and possible CB2 activity, with mild to no side effects in the CB tetrad assessment. CB conopeptides can be isolated from these active Conus venom-derived samples and further developed as novel analgesic agents for the treatment of chronic pain using cell based or gene therapy approaches.
Collapse
Affiliation(s)
- Stanislava Jergova
- University of Miami, Miller School of Medicine, Miami Project, 1095 NW 14(th) terrace, Miami, FL 33136, USA.
| | - Cecilia Perez
- University of Miami, Miller School of Medicine, Miami Project, 1095 NW 14(th) terrace, Miami, FL 33136, USA
| | - Julita S Imperial
- University of Utah, School of Biological Sciences, 257 South 1400 East, Salt Lake City, UT 84112, USA
| | - Shyam Gajavelli
- University of Miami, Miller School of Medicine, Miami Project, 1095 NW 14(th) terrace, Miami, FL 33136, USA
| | - Aakangsha Jain
- University of Miami, Miller School of Medicine, Miami Project, 1095 NW 14(th) terrace, Miami, FL 33136, USA
| | - Adam Abin
- University of Miami, Miller School of Medicine, Miami Project, 1095 NW 14(th) terrace, Miami, FL 33136, USA
| | - Baldomero M Olivera
- University of Utah, School of Biological Sciences, 257 South 1400 East, Salt Lake City, UT 84112, USA
| | - Jacqueline Sagen
- University of Miami, Miller School of Medicine, Miami Project, 1095 NW 14(th) terrace, Miami, FL 33136, USA
| |
Collapse
|
7
|
Hemorphins Targeting G Protein-Coupled Receptors. Pharmaceuticals (Basel) 2021; 14:ph14030225. [PMID: 33799973 PMCID: PMC7998264 DOI: 10.3390/ph14030225] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 02/28/2021] [Accepted: 03/03/2021] [Indexed: 12/22/2022] Open
Abstract
Hemorphins are short peptides produced by the proteolysis of the beta subunit of hemoglobin. These peptides have diverse physiological effects especially in the nervous and the renin-angiotensin systems. Such effects occur through the modulation of a diverse range of proteins including enzymes and receptors. In this review, we focus on pharmacological and functional targeting of G protein-coupled receptors (GPCRs) by hemorphins and their implication in physiology and pathophysiology. Among GPCRs, the opioid receptors constitute the first set of targets of hemorphins with implication in analgesia. Subsequently, several other GPCRs have been reported to be directly or indirectly involved in hemorphins’ action. This includes the receptors for angiotensin II, oxytocin, bombesin, and bradykinin, as well as the human MAS-related G protein-coupled receptor X1. Interestingly, both orthosteric activation and allosteric modulation of GPCRs by hemorphins have been reported. This review links hemorphins with GPCR pharmacology and signaling, supporting the implication of GPCRs in hemorphins’ effects. Thus, this aids a better understanding of the molecular basis of the action of hemorphins and further demonstrates that hemorphin-GPCR axis constitutes a valid target for therapeutic intervention in different systems.
Collapse
|
8
|
Heimann AS, Dale CS, Guimarães FS, Reis RAM, Navon A, Shmuelov MA, Rioli V, Gomes I, Devi LL, Ferro ES. Hemopressin as a breakthrough for the cannabinoid field. Neuropharmacology 2021; 183:108406. [PMID: 33212113 PMCID: PMC8609950 DOI: 10.1016/j.neuropharm.2020.108406] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 11/06/2020] [Accepted: 11/11/2020] [Indexed: 12/14/2022]
Abstract
Hemopressin (PVNFKFLSH in rats, and PVNFKLLSH in humans and mice), a fragment derived from the α-chain of hemoglobin, was the first peptide described to have type 1 cannabinoid receptor activity. While hemopressin was shown to have inverse agonist/antagonistic activity, extended forms of hemopressin (i.e. RVD-hemopressin, also called pepcan-12) exhibit type 1 and type 2 cannabinoid receptor agonistic/allosteric activity, and recent studies suggest that they can activate intracellular mitochondrial cannabinoid receptors. Therefore, hemopressin and hemopressin-related peptides could have location-specific and biased pharmacological action, which would increase the possibilities for fine-tunning and broadening cannabinoid receptor signal transduction. Consistent with this, hemopressins were shown to play a role in a number of physiological processes including antinociceptive and anti-inflammatory activity, regulation of food intake, learning and memory. The shortest active hemopressin fragment, NFKF, delays the first seizure induced by pilocarpine, and prevents neurodegeneration in an experimental model of autoimmune encephalomyelitis. These functions of hemopressins could be due to engagement of both cannabinoid and non-cannabinoid receptor systems. Self-assembled nanofibrils of hemopressin have pH-sensitive switchable surface-active properties, and show potential as inflammation and cancer targeted drug-delivery systems. Upon disruption of the self-assembled hemopressin nanofibril emulsion, the intrinsic analgesic and anti-inflammatory properties of hemopressin could help bolster the therapeutic effect of anti-inflammatory or anti-cancer formulations. In this article, we briefly review the molecular and behavioral pharmacological properties of hemopressins, and summarize studies on the intricate and unique mode of generation and binding of these peptides to cannabinoid receptors. Thus, the review provides a window into the current status of hemopressins in expanding the repertoire of signaling and activity by the endocannabinoid system, in addition to their new potential for pharmaceutic formulations.
Collapse
Affiliation(s)
| | - Camila S Dale
- Department of Anatomy, Biomedical Science Institute, University of São Paulo, 05508-000, São Paulo, SP, Brazil
| | - Francisco S Guimarães
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, 14025-600, Ribeirão Preto, SP, Brazil; Department of Neuroscience and Behavior, Ribeirão Preto Medical School, University of São Paulo, 14025-600, Ribeirão Preto, SP, Brazil
| | - Ricardo A M Reis
- Laboratory of Neurochemistry, Institute of Biophysics Carlos Chagas Filho, Rio de Janeiro, Federal University, 21949-900, Rio de Janeiro, RJ, Brazil
| | - Ami Navon
- Department of Biological Regulation, The Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Michal A Shmuelov
- Department of Biological Regulation, The Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Vanessa Rioli
- Special Laboratory of Applied Toxinology (LETA), Center of Toxins, Immune Response and Cell Signaling (CETICS), Butantan Institute, São Paulo, 05503-900, Brazil
| | - Ivone Gomes
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, 10029, New York, NY, United States
| | - Lakshmi L Devi
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, 10029, New York, NY, United States
| | - Emer S Ferro
- Department of Biological Regulation, The Weizmann Institute of Science, Rehovot, 7610001, Israel; Department of Pharmacology, Biomedical Science Institute, University of São Paulo, 05508-000, São Paulo, SP, Brazil.
| |
Collapse
|
9
|
Camargo LL, Denadai-Souza A, Yshii LM, Lima C, Teixeira SA, Cerqueira ARA, Gewehr MCF, Fernandes ES, Schenka AA, Muscará MN, Ferro ES, Costa SKP. The potential anti-inflammatory and anti-nociceptive effects of rat hemopressin (PVNFKFLSH) in experimental arthritis. Eur J Pharmacol 2021; 890:173636. [PMID: 33053380 DOI: 10.1016/j.ejphar.2020.173636] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/01/2020] [Accepted: 10/05/2020] [Indexed: 02/07/2023]
Abstract
Inflammatory arthritis, such as rheumatoid arthritis (RA), stands out as one of the main sources of pain and impairment to the quality of life. The use of hemopressin (PVNFKFLSH; Hp), an inverse agonist of type 1 cannabinoid receptor, has proven to be effective in producing analgesia in pain models, but its effect on neuro-inflammatory aspects of RA is limited. In this study, antigen-induced arthritis (AIA) was evoked by the intraarticular (i.art.) injection of methylated bovine serum albumin (mBSA) in male Sprague Dawley rats. Phosphate buffered saline (PBS)-injected ipsilateral knee joints or AIA contralateral were used as control. Nociceptive and inflammatory parameters such as knee joint oedema and leukocyte influx and histopathological changes were carried out in addition to the local measurement of interleukins (IL) IL-6, IL-1β, tumor necrosis factor-α and the immunoreactivity of the neuropeptides substance P (SP) and calcitonin gene related peptide (CGRP) in the spinal cord (lumbar L3-5 segments) of AIA rats. For 4 days, AIA rats were treated daily with a single administration of saline, Hp injected (10 or 20 μg/day, i.art.), Hp given orally (20 μg/Kg, p.o.) or indomethacin (Indo; 5 mg/Kg, i.p.). In comparison to the PBS control group, the induction of AIA produced a significant and progressive mono-arthritis condition. The degree of AIA severity progressively compromised the normal walking pattern and impaired mobility over the next four days in relation to PBS-injected rats or contralateral knee joints. In AIA rats, the reduction of the distance between footprints and disturbances of gait evidenced signs of nociception. This response worsened at day 4, and a loss of footprint from the ipsilateral hind paw was evident. Daily treatment of the animals with Hp either i.art. (10 and 20 μg/knee) or p.o. (20 μg/Kg) as well as Indo (5 mg/Kg, i.p.) ameliorated the impaired mobility in a time-dependent manner (P < 0.05). In parallel, the AIA-injected ipsilateral knee joints reach a peak of swelling 24 h after AIA induction, which persisted over the next four days in relation to PBS-injected rats or contralateral knee joints. There was a significant but not dose-dependent inhibitory effect produced by all dosages and routes of Hp treatments on AIA-induced knee joint swelling (P < 0.05). In addition, the increased synovial levels of MPO activity, total leukocytes number and IL-6, but not IL-1β, were significantly reduced by the lower i.art. dose of Hp. In conclusion, these results successfully demonstrate that Hp may represent a novel therapeutic strategy to treat RA, an effect which is unrelated to the proinflammatory actions of the neuropeptides CGRP and SP.
Collapse
Affiliation(s)
- Livia L Camargo
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom; Department of Pharmacology, Biomedical Sciences Institute (ICB-I), University of São Paulo (USP), São Paulo, 05508-900, SP, Brazil
| | - Alexandre Denadai-Souza
- INSERM UMR U1043 - CNRS U5282, Université de Toulouse, UPS, Centre de Physiopathologie de Toulouse Purpan, Toulouse, 31300, France; KU Leuven, Department of Chronic Diseases, Metabolism and Ageing, Translational Research Center for Gastrointestinal Disorders, Laboratory for Intestinal Neuroimmune Interactions, Leuven, Belgium; Department of Pharmacology, Biomedical Sciences Institute (ICB-I), University of São Paulo (USP), São Paulo, 05508-900, SP, Brazil
| | - Lidia M Yshii
- INSERM UMR U1043 - CNRS U5282, Université de Toulouse, UPS, Centre de Physiopathologie de Toulouse Purpan, Toulouse, 31300, France; VIB Center for Brain & Disease Research and KU Leuven, Department of Microbiology and Immunology, Leuven, Belgium; Department of Pharmacology, Biomedical Sciences Institute (ICB-I), University of São Paulo (USP), São Paulo, 05508-900, SP, Brazil
| | - Carla Lima
- Special Laboratory of Applied Toxicology (CAT/CEPID), Butantan Institute, Avenue Vital Brazil, 1500, Butantan, 05503-009, Sao Paulo, Brazil
| | - Simone A Teixeira
- Department of Pharmacology, Biomedical Sciences Institute (ICB-I), University of São Paulo (USP), São Paulo, 05508-900, SP, Brazil
| | - Anderson R A Cerqueira
- Department of Pharmacology, Biomedical Sciences Institute (ICB-I), University of São Paulo (USP), São Paulo, 05508-900, SP, Brazil
| | - Mayara C F Gewehr
- Department of Pharmacology, Biomedical Sciences Institute (ICB-I), University of São Paulo (USP), São Paulo, 05508-900, SP, Brazil
| | - Elizabeth S Fernandes
- Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, 80250-060, PR, Brazil; Faculdades Pequeno Príncipe, Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Curitiba, 80230-020, PR, Brazil
| | - André A Schenka
- Faculty of Medical Sciences- Department of Pharmacology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Marcelo N Muscará
- Department of Pharmacology, Biomedical Sciences Institute (ICB-I), University of São Paulo (USP), São Paulo, 05508-900, SP, Brazil
| | - Emer S Ferro
- Department of Pharmacology, Biomedical Sciences Institute (ICB-I), University of São Paulo (USP), São Paulo, 05508-900, SP, Brazil; Department of Biological Regulation, The Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Soraia K P Costa
- Department of Pharmacology, Biomedical Sciences Institute (ICB-I), University of São Paulo (USP), São Paulo, 05508-900, SP, Brazil.
| |
Collapse
|
10
|
Riquelme-Sandoval A, de Sá-Ferreira CO, Miyakoshi LM, Hedin-Pereira C. New Insights Into Peptide Cannabinoids: Structure, Biosynthesis and Signaling. Front Pharmacol 2020; 11:596572. [PMID: 33362550 PMCID: PMC7759141 DOI: 10.3389/fphar.2020.596572] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 10/19/2020] [Indexed: 01/01/2023] Open
Abstract
Classically, the endocannabinoid system (ECS) consists of endogenous lipids, of which the best known are anandamide (AEA) and 2 arachidonoylglycerol (2-AG), their enzyme machinery for synthesis and degradation and their specific receptors, cannabinoid receptor one (CB1) and cannabinoid receptor two (CB2). However, endocannabinoids also bind to other groups of receptors. Furthermore, another group of lipids are considered to be endocannabinoids, such as the fatty acid ethanolamides, the fatty acid primary amides and the monoacylglycerol related molecules. Recently, it has been shown that the hemopressin peptide family, derived from α and β chains of hemoglobins, is a new family of cannabinoids. Some studies indicate that hemopressin peptides are expressed in the central nervous system and peripheral tissues and act as ligands of these receptors, thus suggesting that they play a physiological role. In this review, we examine new evidence on lipid endocannabinoids, cannabinoid receptors and the modulation of their signaling pathways. We focus our discussion on the current knowledge of the pharmacological effects, the biosynthesis of the peptide cannabinoids and the new insights on the activation and modulation of cannabinoid receptors by these peptides. The novel peptide compounds derived from hemoglobin chains and their non-classical activation of cannabinoid receptors are only starting to be uncovered. It will be exciting to follow the ensuing discoveries, not only in reference to what is already known of the classical lipid endocannabinoids revealing more complex aspects of endocannabinoid system, but also as to its possibilities as a future therapeutic tool.
Collapse
Affiliation(s)
- Agustín Riquelme-Sandoval
- Laboratory of Cellular Neuroanatomy, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Caio O de Sá-Ferreira
- Laboratory of Cellular Neuroanatomy, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Leo M Miyakoshi
- Laboratory of Cellular Neuroanatomy, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Cecilia Hedin-Pereira
- Laboratory of Cellular Neuroanatomy, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,VPPCB-Fiocruz, Rio de Janeiro, Brazil.,National Institute of Science and Technology in Neuroimmunomodulation (INCT-NIM), Rio de Janeiro, Brazil
| |
Collapse
|
11
|
Thimet Oligopeptidase Biochemical and Biological Significances: Past, Present, and Future Directions. Biomolecules 2020; 10:biom10091229. [PMID: 32847123 PMCID: PMC7565970 DOI: 10.3390/biom10091229] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/15/2020] [Accepted: 08/21/2020] [Indexed: 12/14/2022] Open
Abstract
Thimet oligopeptidase (EC 3.4.24.15; EP24.15, THOP1) is a metallopeptidase ubiquitously distributed in mammalian tissues. Beyond its previously well characterized role in major histocompatibility class I (MHC-I) antigen presentation, the recent characterization of the THOP1 C57BL6/N null mice (THOP1−/−) phenotype suggests new key functions for THOP1 in hyperlipidic diet-induced obesity, insulin resistance and non-alcoholic liver steatosis. Distinctive levels of specific intracellular peptides (InPeps), genes and microRNAs were observed when comparing wild type C57BL6/N to THOP1−/− fed either standard or hyperlipidic diets. A possible novel mechanism of action was suggested for InPeps processed by THOP1, which could be modulating protein-protein interactions and microRNA processing, thus affecting the phenotype. Together, research into the biochemical and biomedical significance of THOP1 suggests that degradation by the proteasome is a step in the processing of various proteins, not merely for ending their existence. This allows many functional peptides to be generated by proteasomal degradation in order to, for example, control mRNA translation and the formation of protein complexes.
Collapse
|
12
|
Xu B, Xiao J, Xu K, Zhang Q, Chen D, Zhang R, Zhang M, Zhu H, Niu J, Zheng T, Li N, Zhang X, Fang Q. VF-13, a chimeric peptide of VD-hemopressin(α) and neuropeptide VF, produces potent antinociception with reduced cannabinoid-related side effects. Neuropharmacology 2020; 175:108178. [PMID: 32544481 DOI: 10.1016/j.neuropharm.2020.108178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 05/05/2020] [Accepted: 05/31/2020] [Indexed: 01/13/2023]
Abstract
Pharmacological evidence indicated a functional interaction between neuropeptide FF (NPFF) and cannabinoid systems, and the cannabinoids combined with the NPFF receptor agonist neuropeptide VF (NPVF) produced antinociception without tolerance. In the present study, VF-13, a chimeric peptide containing the pharmacophores of the endogenous cannabinoid peptide VD-hemopressin(α) (VD-Hpα) and NPVF, was synthesized and pharmacologically evaluated. In vitro, VF-13 significantly upregulated the phosphorylated level of extracellular signal-regulated kinase 1/2 (ERK1/2) in CHO cells stably expressing CB1 receptors and inhibited forskolin-induced cAMP accumulation in HEK293 cells stably expressing NPFF1 or NPFF2 receptors. Moreover, VF-13 induced neurite outgrowth in Neuro 2A cells via CB1 and NPFF receptors. These results suggest that VF-13 exhibits multifunctional agonism at CB1, NPFF1 and NPFF2 receptors in vitro. Interestingly, intracerebroventricular VF-13 produced dose-dependent antinociception in mouse models of tail-flick and carrageenan-induced inflammatory pain via the TRPV1 receptor. In contrast, the reference compound (m)VD-Hpα-NH2 induced CB1 receptor-mediated supraspinal antinociception. Additionally, subcutaneous injection of (m)VD-Hpα-NH2 and VF-13 produced significant antinociception in carrageenan-induced inflammatory pain model. In the tetrad assay, our data demonstrated that VF-13 elicited hypothermia, but not catalepsy and hypoactivity after intracerebroventricular injection. Notably, VF-13 produced non-tolerance forming antinociception over 6 days treatment in both acute and inflammatory pain models. Furthermore, VF-13 had no apparent effects on gastrointestinal transit, pentobarbitone-induced sedation, food intake, and motor coordination at the supraspinal level. In summary, VF-13, a novel chimeric peptide of VD-Hpα and NPVF, produced non-tolerance forming antinociception in preclinical pain models with reduced cannabinoid-related side effects.
Collapse
Affiliation(s)
- Biao Xu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, And Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Jian Xiao
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, And Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Kangtai Xu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, And Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Qinqin Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, And Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Dan Chen
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, And Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Run Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, And Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Mengna Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, And Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Hanwen Zhu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, And Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Jiandong Niu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, And Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Ting Zheng
- Department of Clinical Medicine, Gansu Health Vocational College, 60 Donggang West Road, Lanzhou, 730000, PR China
| | - Ning Li
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, And Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Xiaoyu Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, And Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Quan Fang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, And Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China.
| |
Collapse
|
13
|
Gewehr MCF, Silverio R, Rosa-Neto JC, Lira FS, Reckziegel P, Ferro ES. Peptides from Natural or Rationally Designed Sources Can Be Used in Overweight, Obesity, and Type 2 Diabetes Therapies. Molecules 2020; 25:E1093. [PMID: 32121443 PMCID: PMC7179135 DOI: 10.3390/molecules25051093] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/20/2020] [Accepted: 02/25/2020] [Indexed: 12/18/2022] Open
Abstract
Overweight and obesity are among the most prominent health problems in the modern world, mostly because they are either associated with or increase the risk of other diseases such as type 2 diabetes, hypertension, and/or cancer. Most professional organizations define overweight and obesity according to individual body-mass index (BMI, weight in kilograms divided by height squared in meters). Overweight is defined as individuals with BMI from 25 to 29, and obesity as individuals with BMI ≥30. Obesity is the result of genetic, behavioral, environmental, physiological, social, and cultural factors that result in energy imbalance and promote excessive fat deposition. Despite all the knowledge concerning the pathophysiology of obesity, which is considered a disease, none of the existing treatments alone or in combination can normalize blood glucose concentration and prevent debilitating complications from obesity. This review discusses some new perspectives for overweight and obesity treatments, including the use of the new orally active cannabinoid peptide Pep19, the advantage of which is the absence of undesired central nervous system effects usually experienced with other cannabinoids.
Collapse
Affiliation(s)
- Mayara C. F. Gewehr
- Department of Pharmacology, Biomedical Sciences Institute, University of São Paulo (USP), São Paulo 05508-000, Brazil;
| | - Renata Silverio
- Department of Pharmacology, Center of Biological Sciences, Federal University of Santa Catarina (UFSC), Florianópolis 88040-900, Brazil;
| | - José Cesar Rosa-Neto
- Department of Cell and Developmental Biology, Biomedical Sciences Institute, University of São Paulo (USP), São Paulo 05508-000, Brazil;
| | - Fabio S. Lira
- Department of Physical Education, São Paulo State University (UNESP), Presidente Prudente 19060-900, Brazil;
| | - Patrícia Reckziegel
- Department of Pharmacology, National Institute of Pharmacology and Molecular Biology (INFAR), Federal University of São Paulo (UNIFESP), São Paulo 05508-000, Brazil;
| | - Emer S. Ferro
- Department of Pharmacology, Biomedical Sciences Institute, University of São Paulo (USP), São Paulo 05508-000, Brazil;
| |
Collapse
|
14
|
Wei F, Zhao L, Jing Y. Hemoglobin-derived peptides and mood regulation. Peptides 2020; 127:170268. [PMID: 32070683 DOI: 10.1016/j.peptides.2020.170268] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 02/02/2020] [Accepted: 02/04/2020] [Indexed: 12/12/2022]
Abstract
Evidence accumulated over the past decades has revealed that red blood cells and hemoglobin (Hb) in the blood play important roles in modulating moods and emotions. The number of red blood cells affects the mood. Hb is the principal content in the red blood cells besides water. Denatured Hb is hydrolyzed to produce bioactive peptides. RVD-hemopressin α (RVD-Hpα), which is a fragment of α-chain (95-103) in Hb, functions as a negative allosteric modulator of cannabinoid receptor 1 and a positive allosteric modulator of cannabinoid receptor 2. Hemorphins, which are fragments of β-chain in Hb, exert their effects on opioid receptors. Two hemorphins, namely, LVV-hemorphin-6 and LVV-hemorphin-7, could induce anxiolytic-like effects. The use of Hb-derived bioactive peptides for the treatment of mood disorders is desirable due to cannabinoid-opioid cross modulation and the critical roles of the two systems in physiological processes, such as memory, mood and emotion.
Collapse
Affiliation(s)
- Fengmei Wei
- Department of Physiology and Psychology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, 730000, PR China
| | - Long Zhao
- Department of Orthopaedics, Lanzhou University First Affiliated Hospital, Lanzhou, Gansu, 730000, PR China
| | - Yuhong Jing
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, 730000, PR China; Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Lanzhou University, Lanzhou, Gansu, 730000, PR China.
| |
Collapse
|
15
|
Wei F, Zhao L, Jing Y. Signaling molecules targeting cannabinoid receptors: Hemopressin and related peptides. Neuropeptides 2020; 79:101998. [PMID: 31831183 DOI: 10.1016/j.npep.2019.101998] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 11/21/2019] [Accepted: 11/21/2019] [Indexed: 12/23/2022]
Abstract
Cannabinoid receptors (CBRs) are part of the endocannabinoid system, which is involved in various physiological processes such as nociception, inflammation, appetite, stress, and emotion regulation. Many studies have linked the endocannabinoid system to neuroinflammatory and neurodegenerative disorders such as Parkinson's disease, Huntington's chorea, Alzheimer's disease, and multiple sclerosis. Hemopressin [Hp; a fragment of the hemoglobin α1 chain (95-103 amino acids)] and related peptides [VD-Hpα and RVD-Hpα] are peptides that bind to CBRs. Hp acts as an inverse agonist to CB1 receptor (CB1R), VD-Hpα acts as an agonist to CB1R, and RVD-Hpα acts as a negative allosteric modulator of CB1R and a positive allosteric modulator of CB2R. Because of the critical roles of CBRs in numerous physiological processes, it is appealing to use Hp and related peptides for therapeutic purposes. This review discusses their discovery, structure, metabolism, brain exposure, self-assembly characteristics, pharmacological characterization, and pharmacological activities.
Collapse
Affiliation(s)
- Fengmei Wei
- Department of Physiology and Psychology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu Province 730000, PR China
| | - Long Zhao
- Department of Orthopaedics, Lanzhou University First Affiliated Hospital, Lanzhou, Gansu Province 730000, PR China
| | - Yuhong Jing
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, PR China; Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Lanzhou University, Lanzhou, Gansu 730000, PR China.
| |
Collapse
|
16
|
Teixeira CMM, Correa CN, Iwai LK, Ferro ES, Castro LMD. Characterization of Intracellular Peptides from Zebrafish (Danio rerio) Brain. Zebrafish 2019; 16:240-251. [DOI: 10.1089/zeb.2018.1718] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
| | | | - Leo Kei Iwai
- Special Laboratory of Applied Toxinology, Center of Toxins, Immune Response and Cell Signaling, Butantan Institute, São Paulo, Brazil
| | - Emer Suavinho Ferro
- Department of Pharmacology, Biomedical Science Institute, University of São Paulo, São Paulo, Brazil
| | | |
Collapse
|
17
|
de Araujo CB, Heimann AS, Remer RA, Russo LC, Colquhoun A, Forti FL, Ferro ES. Intracellular Peptides in Cell Biology and Pharmacology. Biomolecules 2019; 9:biom9040150. [PMID: 30995799 PMCID: PMC6523763 DOI: 10.3390/biom9040150] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/02/2019] [Accepted: 04/12/2019] [Indexed: 12/11/2022] Open
Abstract
Intracellular peptides are produced by proteasomes following degradation of nuclear, cytosolic, and mitochondrial proteins, and can be further processed by additional peptidases generating a larger pool of peptides within cells. Thousands of intracellular peptides have been sequenced in plants, yeast, zebrafish, rodents, and in human cells and tissues. Relative levels of intracellular peptides undergo changes in human diseases and also when cells are stimulated, corroborating their biological function. However, only a few intracellular peptides have been pharmacologically characterized and their biological significance and mechanism of action remains elusive. Here, some historical and general aspects on intracellular peptides' biology and pharmacology are presented. Hemopressin and Pep19 are examples of intracellular peptides pharmacologically characterized as inverse agonists to cannabinoid type 1 G-protein coupled receptors (CB1R), and hemopressin fragment NFKF is shown herein to attenuate the symptoms of pilocarpine-induced epileptic seizures. Intracellular peptides EL28 (derived from proteasome 26S protease regulatory subunit 4; Rpt2), PepH (derived from Histone H2B type 1-H), and Pep5 (derived from G1/S-specific cyclin D2) are examples of peptides that function intracellularly. Intracellular peptides are suggested as biological functional molecules, and are also promising prototypes for new drug development.
Collapse
Affiliation(s)
- Christiane B de Araujo
- Special Laboratory of Cell Cycle, Center of Toxins, Immune Response and Cell Signaling - CeTICS, Butantan Institute, São Paulo SP 05503-900, Brazil.
| | | | | | - Lilian C Russo
- Department of Biochemistry, Chemistry Institute, University of São Paulo 1111, São Paulo 05508-000, Brazil.
| | - Alison Colquhoun
- Department of Cell and Developmental Biology, University of São Paulo (USP), São Paulo 05508-000, Brazil.
| | - Fábio L Forti
- Department of Biochemistry, Chemistry Institute, University of São Paulo 1111, São Paulo 05508-000, Brazil.
| | - Emer S Ferro
- Department of Pharmacology, Biomedical Sciences Institute, University of São Paulo (USP), São Paulo 05508-000, Brazil.
| |
Collapse
|
18
|
Pérez de Vega MJ, Ferrer-Montiel A, González-Muñiz R. Recent progress in non-opioid analgesic peptides. Arch Biochem Biophys 2018; 660:36-52. [DOI: 10.1016/j.abb.2018.10.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/15/2018] [Accepted: 10/16/2018] [Indexed: 02/08/2023]
|
19
|
Dao HM, Chen J, Tucker BS, Thomas V, Jun HW, Li XC, Jo S. Hemopressin-Based pH-Sensitive Hydrogel: A Potential Bioactive Platform for Drug Delivery. ACS Biomater Sci Eng 2018; 4:2435-2442. [DOI: 10.1021/acsbiomaterials.8b00423] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Huy Minh Dao
- Department of Pharmaceutics and Drug Delivery, University of Mississippi, Oxford, Mississippi 38677, United States
| | - Jun Chen
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - Bernabe S. Tucker
- Department of Materials Science and Engineering, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - Vinoy Thomas
- Department of Materials Science and Engineering, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - Ho-Wook Jun
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - Xing-Cong Li
- National Center for Natural Products Research, University of Mississippi, Oxford, Mississippi 38677, United States
| | - Seongbong Jo
- Department of Pharmaceutics and Drug Delivery, University of Mississippi, Oxford, Mississippi 38677, United States
| |
Collapse
|
20
|
Remelli M, Ceciliato C, Guerrini R, Kolkowska P, Krzywoszynska K, Salvadori S, Valensin D, Watly J, Kozlowski H. DOES hemopressin bind metal ions in vivo? Dalton Trans 2018; 45:18267-18280. [PMID: 27801457 DOI: 10.1039/c6dt03598a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hemopressin is a neuropeptide, derived from the degradation of the α(1)-chain of hemoglobin, and possesses several pharmacologic properties, such as the ability to block cannabinoid CB1 receptor activity, to cause dose-dependent hypotension and to inhibit food intake. Actually, human hemopressin (PVNFKLLSH) is only the precursor of a class of longer peptides, called "Pepcans", which bear additional residues at their amino-terminus and possess slightly different chemical and biological properties with respect to hemopressin. The presence of a histidyl residue and the free terminal amine imparts to hemopressin and its derivatives good binding properties towards transition metal ions. In this paper, we present a wide investigation on the complex-formation equilibria of human hemopressin and three analogues towards the Cu(ii) and Ni(ii) ions. The study showed that the main coordination site is always the amino terminus (if not protected), while the C-terminal histidine acts only as an anchoring site for the metal ions at acidic pH, with the formation of a macrochelate complex. The presence of additional residues in N-terminal position produces significant differences in the protonation and complex-formation behaviors of these peptides, which can be explained in terms of charge of the ligand and coordination environment. Although the participation of metal ions in the biological activity of hemopressin and Pepcans has not yet been demonstrated, the data reported here can help to shed light on the mechanisms governing the action of these neuropeptides in vivo.
Collapse
Affiliation(s)
- Maurizio Remelli
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Via Fossato di Mortara 17, 44121 Ferrara, Italy.
| | - Carlo Ceciliato
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Via Fossato di Mortara 17, 44121 Ferrara, Italy.
| | - Remo Guerrini
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Via Fossato di Mortara 17, 44121 Ferrara, Italy.
| | - Paulina Kolkowska
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wroclaw, Poland. and Department of Biotechnology, Chemistry, and Pharmacy, University of Siena, Via Aldo Moro 2, Siena, Italy
| | - Karolina Krzywoszynska
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wroclaw, Poland.
| | - Severo Salvadori
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Via Fossato di Mortara 17, 44121 Ferrara, Italy.
| | - Daniela Valensin
- Department of Biotechnology, Chemistry, and Pharmacy, University of Siena, Via Aldo Moro 2, Siena, Italy
| | - Joanna Watly
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wroclaw, Poland.
| | - Henryk Kozlowski
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wroclaw, Poland.
| |
Collapse
|
21
|
Zheng T, Zhang R, Zhang T, Zhang MN, Xu B, Song JJ, Li N, Tang HH, Wang P, Wang R, Fang Q. CB 1 cannabinoid receptor agonist mouse VD-hemopressin(α) produced supraspinal analgesic activity in the preclinical models of pain. Brain Res 2017; 1680:155-164. [PMID: 29274880 DOI: 10.1016/j.brainres.2017.12.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 10/15/2017] [Accepted: 12/12/2017] [Indexed: 12/24/2022]
Abstract
Mouse VD-hemopressin(α) (VD-Hpα) is an undecapeptide that selectively activates CB1 cannabinoid receptor in in vitro functional tests, and exerts CB1-mediated central antinociception in the mouse tail-flick assay. The aim of the present study was to further investigate the analgesic properties of supraspinal mouse VD-Hpα in a range of preclinical pain models. Our results indicated that the classical cannabinoid agonist WIN 55,212-2 produced supraspinal analgesia in preclinical pain models, which was selectively antagonized by the CB1 antagonist/inverse agonist AM251, but not by the CB2 antagonist AM630. In contrast, in post-operative pain model and phase I of formalin test, intracerebroventricular administration of mouse VD-Hpα induced dose-related analgesia in mice, which were markedly reduced by pretreatment with the CB1 neutral antagonist AM4113, but not AM251, AM630 and the selective antagonists of opioid and Transient Receptor Potential Vanilloid Type 1 (TRPV1) receptors. Furthermore, in the acetic acid-induced visceral pain model, supraspinal administration of mouse VD-Hpα dose-dependently produced analgesic activities and the effects were significantly antagonized by both AM4113 and the TRPV1 receptor antagonist SB366791, but not AM251, AM630 and naloxone. In addition, central injection of mouse VD-Hpα did not have significant effect in phase II of formalin test. Taken together, the present work suggests that the CB1 receptor peptidic agonist mouse VD-Hpα produces supraspinal analgesia in preclinical pain models via a novel CB1 receptor-mediated mechanism, in a manner pharmacologically dissociable from WIN 55,212-2. In addition, TRPV1 receptor might also be involved in mouse VD-Hpα-induced analgesia in a visceral pain model.
Collapse
Affiliation(s)
- Ting Zheng
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, China; Department of Clinical Medicine, Gansu Health Vocational College, 60 Donggang West Road, Lanzhou 730000, China
| | - Run Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, China; Department of Clinical Medicine, Gansu Health Vocational College, 60 Donggang West Road, Lanzhou 730000, China
| | - Ting Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, China
| | - Meng-Na Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, China
| | - Biao Xu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, China
| | - Jing-Jing Song
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, China
| | - Ning Li
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, China
| | - Hong-Hai Tang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, China
| | - Pei Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, China
| | - Rui Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, China.
| | - Quan Fang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, China.
| |
Collapse
|
22
|
A novel peptide that improves metabolic parameters without adverse central nervous system effects. Sci Rep 2017; 7:14781. [PMID: 29093454 PMCID: PMC5665932 DOI: 10.1038/s41598-017-13690-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 09/29/2017] [Indexed: 01/22/2023] Open
Abstract
Intracellular peptides generated by limited proteolysis are likely to function inside and outside cells and could represent new possibilities for drug development. Here, we used several conformational-sensitive antibodies targeting G-protein coupled receptors to screen for novel pharmacological active peptides. We find that one of these peptides, DITADDEPLT activates cannabinoid type 1 receptors. Single amino acid modifications identified a novel peptide, DIIADDEPLT (Pep19), with slightly better inverse agonist activity at cannabinoid type 1 receptors. Pep19 induced uncoupling protein 1 expression in both white adipose tissue and 3T3-L1 differentiated adipocytes; in the latter, Pep19 activates pERK1/2 and AKT signaling pathways. Uncoupling protein 1 expression induced by Pep19 in 3T3-L1 differentiated adipocytes is blocked by AM251, a cannabinoid type 1 receptors antagonist. Oral administration of Pep19 into diet-induced obese Wistar rats significantly reduces adiposity index, whole body weight, glucose, triacylglycerol, cholesterol and blood pressure, without altering heart rate; changes in the number and size of adipocytes were also observed. Pep19 has no central nervous system effects as suggested by the lack of brain c-Fos expression, cell toxicity, induction of the cannabinoid tetrad, depressive- and anxiety-like behaviors. Therefore, Pep19 has several advantages over previously identified peripherally active cannabinoid compounds, and could have clinical applications.
Collapse
|
23
|
Zheng T, Zhang T, Zhang R, Wang ZL, Han ZL, Li N, Li XH, Zhang MN, Xu B, Yang XL, Fang Q, Wang R. Pharmacological characterization of rat VD-hemopressin(α), an α-hemoglobin-derived peptide exhibiting cannabinoid agonist-like effects in mice. Neuropeptides 2017; 63:83-90. [PMID: 28010996 DOI: 10.1016/j.npep.2016.12.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Revised: 12/08/2016] [Accepted: 12/14/2016] [Indexed: 12/30/2022]
Abstract
Hemopressin and related peptides have shown to function as the endogenous ligands or the regulator of cannabinoid receptors. Moreover, hemopressin and its truncated peptides were also reported to produce a slight modulatory effect on opioid system. In the present work, based on the amino acid sequence analyses of hemoglobin subunit α, rat VD-hemopressin(α) [(r)VD-Hpα] was predicted as a cannabinoid peptide derived from rat α-hemoglobin. Furthermore, (r)VD-Hpα was synthesized and characterized in a series of in vitro and in vivo assays. Our results demonstrated that (r)VD-Hpα induced neurite outgrowth in Neuro 2A cells via CB1 receptor. In the tail-flick assay, (r)VD-Hpα dose-dependently exerted central antinociception through CB1 receptor, but not CB2 and opioid receptors. In mice, supraspinal administration of (r)VD-Hpα produced dose-dependent hypothermia, which was partially reduced by the CB1 receptor antagonist AM251, but not by the antagonists of CB2 and opioid receptors. In addition, (r)VD-Hpα caused hypoactivity after intracerebroventricular injection, and this effect was insensitive to the antagonists of cannabinoid and opioid receptors. Further assessment of the side-effects demonstrated that (r)VD-Hpα evoked the limited effects on gastrointestinal transit at antinociceptive doses, but repeated i.c.v. injection of (r)VD-Hpα induced development of antinociceptive tolerance. Taken together, these data suggest that the predicted peptide (r)VD-Hpα produces antinociception, hypothermia and hypoactivity via different pharmacological mechanisms, at least partially, which may offer an attractive strategy for separating cannabinoid analgesia from hypoactivity. Moreover, it implies that (r)VD-Hpα has therapeutic potential in pain management with limited side-effects.
Collapse
Affiliation(s)
- Ting Zheng
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, PR China
| | - Ting Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, PR China
| | - Run Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, PR China
| | - Zi-Long Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, PR China
| | - Zheng-Lan Han
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, PR China
| | - Ning Li
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, PR China
| | - Xu-Hui Li
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, PR China
| | - Meng-Na Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, PR China
| | - Biao Xu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, PR China
| | - Xiong-Li Yang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, PR China
| | - Quan Fang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, PR China.
| | - Rui Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, PR China.
| |
Collapse
|
24
|
Effects of the cannabinoid 1 receptor peptide ligands hemopressin, (m)RVD-hemopressin(α) and (m)VD-hemopressin(α) on memory in novel object and object location recognition tasks in normal young and Aβ 1–42 -treated mice. Neurobiol Learn Mem 2016; 134 Pt B:264-74. [DOI: 10.1016/j.nlm.2016.07.030] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 05/25/2016] [Accepted: 07/28/2016] [Indexed: 12/11/2022]
|
25
|
Dvorácskó S, Tömböly C, Berkecz R, Keresztes A. Investigation of receptor binding and functional characteristics of hemopressin(1-7). Neuropeptides 2016; 58:15-22. [PMID: 26895730 DOI: 10.1016/j.npep.2016.02.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 02/01/2016] [Accepted: 02/01/2016] [Indexed: 11/23/2022]
Abstract
The orally active, α-hemoglobin derived hemopressin (PVNFKFLSH, Hp(1-9)) and its truncated (PVNFKFL, Hp(1-7) and PVNFKF, Hp(1-6)) and extended ((R)VDPVNFKFLSH, VD-Hp(1-9) and RVD-Hp(1-9)) derivatives have been postulated to be the endogenous peptide ligands of the cannabinoid receptor type 1 (CB1). In an attempt to create a versatile peptidic research tool for the direct study of the CB1 receptor-peptide ligand interactions, Hp(1-7) was radiolabeled and in vitro characterized in rat and CB1 knockout mouse brain membrane homogenates. In saturation and competition radioligand binding studies, [(3)H]Hp(1-7) labeled membrane receptors with high densities and displayed specific binding to a receptor protein, but seemingly not to the cannabinoid type 1, in comparison the results with the prototypic JWH-018, AM251, rimonabant, Hp(1-9) and RVD-Hp(1-9) (pepcan 12) ligands in both rat brain and CB1 knockout mouse brain homogenates. Furthermore, functional [(35)S]GTP γS binding studies revealed that Hp(1-7) and Hp(1-9) only weakly activated G-proteins in both brain membrane homogenates. Based on our findings and the latest literature data, we assume that the Hp(1-7) peptide fragment may be an allosteric ligand or indirect regulator of the endocannabinoid system rather than an endogenous ligand of the CB1 receptor.
Collapse
Affiliation(s)
- Szabolcs Dvorácskó
- Laboratory of Chemical Biology, Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
| | - Csaba Tömböly
- Laboratory of Chemical Biology, Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
| | - Róbert Berkecz
- Department of Medical Chemistry, University of Szeged, Szeged, Hungary
| | - Attila Keresztes
- Laboratory of Chemical Biology, Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary.
| |
Collapse
|
26
|
Szlavicz E, Perera PS, Tomboly C, Helyes Z, Zador F, Benyhe S, Borsodi A, Bojnik E. Further Characterization of Hemopressin Peptide Fragments in the Opioid and Cannabinoid Systems. Anesth Analg 2016; 121:1488-94. [PMID: 26465932 DOI: 10.1213/ane.0000000000000964] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Hemopressin, so-called because of its hypotensive effect, belongs to the derivatives of the hemoglobin α-chain. It was isolated from rat brain membrane homogenate by the use of catalytically inactive forms of endopeptidase 24.15 and neurolysin. Hemopressin has antihyperalgesic features that cannot be prevented by the opioid receptor antagonist, naloxone. METHODS In the present study, we investigated whether hemopressin (PVNFKFLSH) and its C-terminally truncated fragment hemopressin 1-7 (PVNFKFL) have any influence on opioid-dependent signaling. Peptides have been analyzed using G-protein-stimulating functional and receptor bindings in this experimental setup. RESULTS These 2 compounds efficiently activated the G-proteins, and naloxone slightly blocked this stimulation. At the same time, they were able to displace radiolabeled [3H]DAMGO, a selective ligand for μ-opioid system, at micromolar concentrations. Displacement caused by the heptapeptide was more modest compared with hemopressin. Experiments performed on cell lines overexpressing μ-opioid receptors verified the opioid activity of both hemopressins. Moreover, the CB1 cannabinoid receptor antagonist, AM251, significantly decreased their G-protein stimulatory effect. CONCLUSIONS Here, we further confirm that hemopressins can modulate CB1 receptors and can have a slight modulatory effect on the opioid system.
Collapse
Affiliation(s)
- Eszter Szlavicz
- From the *Laboratory of Opioid Research, Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary; †Faculty of Medicine, University of Kelaniya, Ragama, Sri Lanka; and ‡Department of Pharmacology and Pharmacotherapy, Medical School Pecs, Pecs, Hungary
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Anxiogenic-like effects induced by hemopressin in rats. Pharmacol Biochem Behav 2015; 129:7-13. [DOI: 10.1016/j.pbb.2014.11.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 11/13/2014] [Accepted: 11/17/2014] [Indexed: 02/07/2023]
|
28
|
Cajado Carvalho D, Kuniyoshi AK, Kodama RT, Oliveira AK, Serrano SMT, Tambourgi DV, Portaro FV. Neuropeptide Y family-degrading metallopeptidases in the Tityus serrulatus venom partially blocked by commercial antivenoms. Toxicol Sci 2014; 142:418-26. [PMID: 25239630 DOI: 10.1093/toxsci/kfu193] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Accidents caused by scorpions represent a relevant public health issue in Brazil, being more recurring than incidents with snakes and spiders. The main species responsible for this situation is the yellow scorpion, Tityus serrulatus, due especially to the great frequency with which accidents occur and the potential of its venom to induce severe clinical manifestations, even death, mainly among children. Although neurotoxins are well characterized, little information is known about other components of scorpion venoms, such as peptidases, and their effect on envenomation. Previous results from our group showed that the metallopeptidases present in this venom are capable of hydrolyzing the neuropeptide dynorphin 1-13 in vitro, releasing Leu-enkephalin, which may interact with ion channels and promote indirect neurotoxicity. Thus, this study aims to get more information about the effect of toxic peptidase activity present in the venom on biologically active peptides, and to evaluate the in vitro neutralizing potential of commercial antivenoms produced by the Butantan Institute. A set of human bioactive peptides were studied as substrates for the peptidases, and the members of the neuropeptide Y family were found to be the most susceptible ones. All new substrate hydrolyses were totally inhibited by ethylenediaminetetracetic and not blocked by phenylmethanesulfonylfluoride, indicating that metallopeptidases were responsible for the peptidase activity. Also, peptidase activities were only partially inhibited by therapeutic Brazilian scorpion antivenom (SAV) and arachnid antivenom (AAV). The dose-response inhibition by both antivenoms indicates that AAV neutralizes better than SAV at the used doses. These characterizations, unpublished until now, can contribute to the improvement of our knowledge about the venom and envenomation processes by T. serrulatus.
Collapse
Affiliation(s)
- Daniela Cajado Carvalho
- *Immunochemistry Laboratory, Butantan Institute, São Paulo, SP, Brazil and Special Laboratory of Applied Toxinology, Center of Toxins, Immune-response and Cell Signaling-CeTICS, Instituto Butantan, Brazil
| | - Alexandre K Kuniyoshi
- *Immunochemistry Laboratory, Butantan Institute, São Paulo, SP, Brazil and Special Laboratory of Applied Toxinology, Center of Toxins, Immune-response and Cell Signaling-CeTICS, Instituto Butantan, Brazil
| | - Roberto T Kodama
- *Immunochemistry Laboratory, Butantan Institute, São Paulo, SP, Brazil and Special Laboratory of Applied Toxinology, Center of Toxins, Immune-response and Cell Signaling-CeTICS, Instituto Butantan, Brazil
| | - Ana K Oliveira
- *Immunochemistry Laboratory, Butantan Institute, São Paulo, SP, Brazil and Special Laboratory of Applied Toxinology, Center of Toxins, Immune-response and Cell Signaling-CeTICS, Instituto Butantan, Brazil
| | - Solange M T Serrano
- *Immunochemistry Laboratory, Butantan Institute, São Paulo, SP, Brazil and Special Laboratory of Applied Toxinology, Center of Toxins, Immune-response and Cell Signaling-CeTICS, Instituto Butantan, Brazil
| | - Denise V Tambourgi
- *Immunochemistry Laboratory, Butantan Institute, São Paulo, SP, Brazil and Special Laboratory of Applied Toxinology, Center of Toxins, Immune-response and Cell Signaling-CeTICS, Instituto Butantan, Brazil
| | - Fernanda V Portaro
- *Immunochemistry Laboratory, Butantan Institute, São Paulo, SP, Brazil and Special Laboratory of Applied Toxinology, Center of Toxins, Immune-response and Cell Signaling-CeTICS, Instituto Butantan, Brazil
| |
Collapse
|
29
|
Pan JX, Wang ZL, Li N, Han ZL, Li XH, Tang HH, Wang P, Zheng T, Fang Q, Wang R. Analgesic tolerance and cross-tolerance to the cannabinoid receptors ligands hemopressin, VD-hemopressin(α) and WIN55,212-2 at the supraspinal level in mice. Neurosci Lett 2014; 578:187-91. [DOI: 10.1016/j.neulet.2014.06.058] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 06/25/2014] [Accepted: 06/27/2014] [Indexed: 12/28/2022]
|
30
|
Toniolo EF, Maique ET, Ferreira WA, Heimann AS, Ferro ES, Ramos-Ortolaza DL, Miller L, Devi LA, Dale CS. Hemopressin, an inverse agonist of cannabinoid receptors, inhibits neuropathic pain in rats. Peptides 2014; 56:125-31. [PMID: 24703998 PMCID: PMC4112957 DOI: 10.1016/j.peptides.2014.03.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 03/19/2014] [Accepted: 03/21/2014] [Indexed: 01/05/2023]
Abstract
Direct-acting cannabinoid receptor ligands are well known to reduce hyperalgesic responses after nerve injury, although their psychoactive side effects have damped enthusiasm for their therapeutic development. Hemopressin (Hp) is a nonapeptide that selectively binds CB1 cannabinoid receptors (CB1 receptors) and exerts antinociceptive action in inflammatory pain models. We investigated the effect of Hp on neuropathic pain in rats subjected to chronic constriction injury (CCI) of the sciatic nerve, and explored the mechanisms involved. Oral administration of Hp inhibits mechanical hyperalgesia of CCI-rats up to 6h. Hp treatment also decreases Egr-1 immunoreactivity (Egr-1Ir) in the superficial layer of the dorsal horn of the spinal cord of CCI rats. The antinociceptive effect of Hp seems to be independent of inhibitory descending pain pathway since methysergide (5HT1A receptor antagonist) and yohimbine (α-2 adrenergic receptor antagonist) were unable to prevent Hp antinociceptive effect. Hp decreased calcium flux on DRG neurons from CCI rats, similarly to that observed for AM251, a CB1 receptor antagonist. We also investigated the effect of Hp on potassium channels of CCI rats using UCL 1684 (a blocker of Ca(2+)-activated K(+) channels) which reversed Hp-induced antinociception. Furthermore, concomitant administration of URB-584 (FAAH inhibitor) but not JZL-184 (MAGL inhibitor) potentiates antinociceptive effect of Hp in CCI rats indicating an involvement of anadamide on HP-induced antinociception. Together, these data demonstrate that Hp displays antinociception in pain from neuropathic etiology through local effects. The release of anandamide and the opening of peripheral K(+) channels are involved in the antinociceptive effect.
Collapse
Affiliation(s)
- Elaine F Toniolo
- Laboratory of Neuromodulation and Experimental Pain, Hospital Sírio-Libanês, São Paulo, Brazil
| | - Estêfani T Maique
- Laboratory of Neuromodulation and Experimental Pain, Hospital Sírio-Libanês, São Paulo, Brazil
| | - Wilson A Ferreira
- Department of Pharmacology, University of São Paulo, São Paulo, Brazil
| | | | - Emer S Ferro
- Department of Pharmacology, University of São Paulo, São Paulo, Brazil
| | - Dinah L Ramos-Ortolaza
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, USA
| | - Lydia Miller
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, USA
| | - Lakshmi A Devi
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, USA
| | - Camila S Dale
- Laboratory of Neuromodulation and Experimental Pain, Department of Anatomy, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
31
|
Peptidomic analysis of the neurolysin-knockout mouse brain. J Proteomics 2014; 111:238-48. [PMID: 24727097 DOI: 10.1016/j.jprot.2014.03.043] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Revised: 03/20/2014] [Accepted: 03/31/2014] [Indexed: 12/12/2022]
Abstract
UNLABELLED A large number of intracellular peptides are constantly produced following protein degradation by the proteasome. A few of these peptides function in cell signaling and regulate protein-protein interactions. Neurolysin (Nln) is a structurally defined and biochemically well-characterized endooligopeptidase, and its subcellular distribution and biological activity in the vertebrate brain have been previously investigated. However, the contribution of Nln to peptide metabolism in vivo is poorly understood. In this study, we used quantitative mass spectrometry to investigate the brain peptidome of Nln-knockout mice. An additional in vitro digestion assay with recombinant Nln was also performed to confirm the identification of the substrates and/or products of Nln. Altogether, the data presented suggest that Nln is a key enzyme in the in vivo degradation of only a few peptides derived from proenkephalin, such as Met-enkephalin and octapeptide. Nln was found to have only a minor contribution to the intracellular peptide metabolism in the entire mouse brain. However, further studies appear necessary to investigate the contribution of Nln to the peptide metabolism in specific areas of the murine brain. BIOLOGICAL SIGNIFICANCE Neurolysin was first identified in the synaptic membranes of the rat brain in the middle 80's by Frederic Checler and colleagues. Neurolysin was well characterized biochemically, and its brain distribution has been confirmed by immunohistochemical methods. The neurolysin contribution to the central and peripheral neurotensin-mediated functions in vivo has been delineated through inhibitor-based pharmacological approaches, but its genuine contribution to the physiological inactivation of neuropeptides remains to be firmly established. As a result, the main significance of this work is the first characterization of the brain peptidome of the neurolysin-knockout mouse. This article is part of a Special Issue entitled: Proteomics, mass spectrometry and peptidomics, Cancun 2013. Guest Editors: César López-Camarillo, Victoria Pando-Robles and Bronwyn Jane Barkla.
Collapse
|
32
|
Han ZL, Fang Q, Wang ZL, Li XH, Li N, Chang XM, Pan JX, Tang HZ, Wang R. Antinociceptive effects of central administration of the endogenous cannabinoid receptor type 1 agonist VDPVNFKLLSH-OH [(m)VD-hemopressin(α)], an N-terminally extended hemopressin peptide. J Pharmacol Exp Ther 2013; 348:316-23. [PMID: 24307201 DOI: 10.1124/jpet.113.209866] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The cannabinoid system has been demonstrated to modulate the acute and chronic pain of multiple origins. Mouse VD-hemopressin(α) [(m)VD-Hpα], an 11-residue α-hemoglobin-derived peptide, was recently reported to function as a selective agonist of the cannabinoid receptor type 1 (CB₁) in vitro. To characterize its behavioral and physiological properties, we investigated the in vivo effects of (m)VD-Hpα in mice. In the mouse tail-flick test, (m)VD-Hpα dose-dependently induced antinociception after supraspinal (EC₅₀ = 6.69 nmol) and spinal (EC₅₀ = 2.88 nmol) administration. The antinociceptive effects of (m)VD-Hpα (intracerebroventricularly and intrathecally) were completely blocked by N-(piperidin-1-yl)-5-(4-iodophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3- carboxamide (AM251; CB₁ antagonist), but not by 6-iodo-2-methyl-1-[2-(4-morpholinyl)ethyl]-1H-indol-3-yl(4-methoxyphenyl)-methanone (AM630; CB₂ antagonist) or naloxone (opioid antagonist), showing its selectivity to the CB₁ receptor. Furthermore, the central nervous system (CNS) effects of (m)VD-Hpα were evaluated in body temperature, locomotor activity, tolerance development, reward, and food intake assays. At the highly antinociceptive dose (3 × EC₅₀), (m)VD-Hpα markedly exerted hypothermia and hypoactivity after supraspinal administration. Repeated intracerebroventricular injection of (m)VD-Hpα resulted in both development of tolerance to antinociception and conditioned place aversion. In addition, central injection of (m)VD-Hpα dose-dependently stimulated food consumption. These findings demonstrate that this novel cannabinoid peptide agonist induces CB₁-mediated central antinociception with some CNS effects, which further supports a CB₁ agonist character of (m)VD-Hpα. Moreover, the current study will be helpful to understand the in vivo properties of the endogenous peptide agonist of the cannabinoid CB₁ receptor.
Collapse
Affiliation(s)
- Zheng-lan Han
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Ribeiro NM, Toniolo EF, Castro LM, Russo LC, Rioli V, Ferro ES, Dale CS. AGH is a new hemoglobin alpha-chain fragment with antinociceptive activity. Peptides 2013; 48:10-20. [PMID: 23911313 DOI: 10.1016/j.peptides.2013.07.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2012] [Revised: 07/14/2013] [Accepted: 07/15/2013] [Indexed: 01/24/2023]
Abstract
Limited proteolysis of certain proteins leads to the release of endogenous bioactive peptides. Hemoglobin-derived peptides such as hemorphins and hemopressins are examples of intracellular protein-derived peptides that have antinociceptive effects by modulating G-protein coupled receptors activities. In the present study, a previously characterized substrate capture assay that uses a catalytically inactive form of the thimet oligopeptidase was combined with isotopic labeling and mass spectrometry in order to identify new bioactive peptides. Indeed, we have identified the peptide AGHLDDLPGALSAL (AGH), a fragment of the hemoglobin alpha-chain, which specifically bind to the inactive thimet oligopeptidase in the substrate capture assay. Previous peptidomics studies have identified the AGH as well as many other natural peptides derived from hemoglobin alpha-chain containing this sequence, further suggesting that AGH is a natural endogenous peptide. Pharmacological assays suggest that AGH inhibits peripheral inflammatory hyperalgesic responses through indirect activation of mu opioid receptors, without having a central nervous system activity. Therefore, we have successfully used the substrate capture assay to identify a new endogenous bioactive peptide derived from hemoglobin alpha-chain.
Collapse
Affiliation(s)
- Natalia M Ribeiro
- Department of Cell Biology and Development, Biomedical Sciences Institute (ICB), University of São Paulo (USP), Av. Prof. Lineu Prestes, 1524, S435, São Paulo, SP 05508-00, Brazil.
| | | | | | | | | | | | | |
Collapse
|
34
|
Song CZ, Wang QW, Song CC. Erythrocyte-based analgesic peptides. ACTA ACUST UNITED AC 2012; 180:58-61. [PMID: 23220007 DOI: 10.1016/j.regpep.2012.11.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2012] [Revised: 10/25/2012] [Accepted: 11/13/2012] [Indexed: 11/24/2022]
Abstract
Human erythrocyte discards the major organelles in a bid to maximize cellular hemoglobin. Hemoglobin, approximately 98% of the intraerythrocytic protein, serves as the principle transport medium of gaseous conveyance. The accumulated data speaks in favor of erythrocyte not merely engaging in gas exchange, but building molecular signaling as a side job during its 4-month sojourn in blood circulation. The production mechanism of erythrocyte-based bioactive peptides is not clear. Recent studies indicate that proteasome and its subunits persist in mature erythrocyte. The intraerythrocytic proteasome is involved in the formation of hemoglobin-derived analgesic peptides and enables erythrocyte to exert the erythrocrine function. Erythrocrine describes erythrocyte for generation and excretion of signaling molecules and has the potential of shedding light on our understanding of novel actions of erythrocyte. Different types of erythrocrine analgesic peptides are originated from the intraerythrocytic degradation of hemoglobin and manifest the systemic influence in physiology and pathophysiology along its travel through the body via the bloodstream. Translational research from bench to bedside will expand our knowledge of erythrocrine concept and facilitate the development of therapeutic strategies for clinical pain.
Collapse
Affiliation(s)
- Chang Zheng Song
- Erythrocrine Project of Translational Medicine, Shandong Academy of Medical Sciences, Jinan, China.
| | | | | |
Collapse
|
35
|
Zhou L, Jin Q, Yang Y, Liu Z, Li X, Dong S, Zhao L. Effects of endokinin A/B and endokinin C/D on the antinociception properties of hemopressin in mice. Peptides 2012; 38:70-80. [PMID: 22951322 DOI: 10.1016/j.peptides.2012.08.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 08/07/2012] [Accepted: 08/07/2012] [Indexed: 11/29/2022]
Abstract
The current study evaluated the effects of hemopressin (HP) on pain modulation by endokinin A/B (EKA/B) and endokinin C/D (EKC/D) at the supraspinal level in mice. Intracerebroventricular administration of HP (10 nmol) fully antagonized the hyperalgesia induced by EKA/B (10, 30, and 100 pmol), and induced a dose-dependent potent analgesic effect. HP at different concentrations (10 pmol, 100 pmol, and 1 nmol) showed varying effects on the analgesic effect of EKA/B (3 nmol). HP extended the duration of the analgesic effect of EKC/D (3 nmol). Moreover, HP at different concentrations (10 pmol, 5 pmol, 1 pmol, and 100 fmol) co-administered with EKC/D (30 pmol) induced significant analgesia at two different time points: 5 min and 50 min. To investigate the antinociceptive mechanism, we used SR140333B and SR142801. HP (1 pmol) potentiated the analgesic effect of SR140333B (100 pmol)+EKA/B (30 pmol) in 5-10 min, while HP (100 pmol) had no effect in the analgesia induced by SR140333B (3 nmol)+EKA/B (3 nmol). HP (1 nmol) fully inhibited the analgesic effect of SR140333B (3 nmol)+EKC/D (3 nmol) or SR142801 (3 nmol)+EKC/D (3 nmol). HP (1 pmol) weakened the analgesic effect of SR142801 (100 pmol)+EKA/B (30 pmol), but HP (100pmol) strengthened the analgesic effect of SR142801 (3 nmol)+EKA/B (3 nmol). These findings may pave the way for a new strategy on investigating the interaction between tachykinins and opioids on pain modulation.
Collapse
Affiliation(s)
- Lanxia Zhou
- The Core Laboratory of the First Affiliated Hospital, Key Laboratory for Gastrointestinal Diseases of Gansu Province, Lanzhou University, Lanzhou 730000, China
| | | | | | | | | | | | | |
Collapse
|
36
|
Bomar MG, Galande AK. Modulation of the cannabinoid receptors by hemopressin peptides. Life Sci 2012; 92:520-4. [PMID: 22884803 DOI: 10.1016/j.lfs.2012.07.028] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 07/09/2012] [Accepted: 07/16/2012] [Indexed: 12/12/2022]
Abstract
Changes in the endocannabinoid system are implicated in numerous diseases, making it an attractive target for pharmaceutical development. The endocannabinoid receptors have traditionally been thought to act through the effects of lipophilic messengers called cannabinoids. The exciting finding of endocannabinoid system modulation by the nonapeptide hemopressin and its N-terminal extensions has highlighted the complexity of cannabinoid biology and pharmacology and sparked interest for therapeutic purposes. However, many questions surrounding the generation and regulation of the hemopressin peptides, the self-assembly of hemopressin and the potential for drug development based on hemopressin remain and are discussed in this review.
Collapse
Affiliation(s)
- Martha G Bomar
- Center for Advanced Drug Research (CADRE), SRI International, United States
| | | |
Collapse
|
37
|
Hama A, Sagen J. Activation of spinal and supraspinal cannabinoid-1 receptors leads to antinociception in a rat model of neuropathic spinal cord injury pain. Brain Res 2011; 1412:44-54. [PMID: 21813113 DOI: 10.1016/j.brainres.2011.07.031] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Revised: 07/12/2011] [Accepted: 07/13/2011] [Indexed: 12/21/2022]
Abstract
Activation of CNS cannabinoid subtype-1 (CB1) receptors has been shown to mediate the antinociceptive and other effects of systemically administered CB receptor agonists. The endogenous peptide CB receptor ligand hemopressin (HE) has previously demonstrated an antinociceptive effect in rats with a hind paw inflammation, without exhibiting characteristic CB1 receptor-mediated side-effects. The current study evaluated the effect of intrathecal (i.t.) and intracerebroventricular (i.c.v.) injection of HE in a rat model of neuropathic spinal cord injury (SCI) pain. The non-subtype selective CB receptor agonist WIN 55,212-2 was also centrally administered in SCI rats as a comparator. Four weeks following an acute compression of the mid-thoracic spinal cord, rats displayed markedly decreased hind paw withdrawal thresholds, indicative of below-level neuropathic pain. Central administration of WIN 55,212-2 significantly increased withdrawal thresholds, whereas HE did not. Hemopressin has been reported to block CB1 receptors in vitro, similar to the CB1 receptor antagonist rimonabant. Pretreatment with rimonabant completely blocked the antinociceptive effect of centrally administered WIN 55,212-2, but pretreatment with HE did not. While the data confirm that activation of either supraspinal or spinal CB1 receptors leads to significant antinociception in SCI rats, the current data do not support an antinociceptive effect from an acute blockade of central CB1 receptors, HE's putative antinociceptive mechanism, in neuropathic SCI rats. Although such a mechanism could be useful in other models of pain with a significant inflammatory component, the current data indicate that activation of CB1 receptors is needed to ameliorate neuropathic SCI pain.
Collapse
Affiliation(s)
- Aldric Hama
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| | | |
Collapse
|
38
|
Scrima M, Di Marino S, Grimaldi M, Mastrogiacomo A, Novellino E, Bifulco M, D'Ursi AM. Binding of the hemopressin peptide to the cannabinoid CB1 receptor: structural insights. Biochemistry 2010; 49:10449-57. [PMID: 21062041 DOI: 10.1021/bi1011833] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Hemopressin, a bioactive nonapeptide derived from the α1 chain of hemoglobin, was recently shown to possess selective antagonist activity at the cannabinoid CB(1) receptor [Heimann, A. S., et al. (2007) Proc. Natl. Acad. Sci. U.S.A. 104, 20588-20593]. CB(1) receptor antagonists have been extensively studied for their possible therapeutic use in the treatment of obesity, drug abuse, and heroin addiction. In particular, many compounds acting as CB(1) receptor antagonists have been synthesized and subjected to experiments as possible anti-obesity drugs, but their therapeutic application is still complicated by important side effects. Using circular dichroism and nuclear magnetic resonance spectroscopy, this work reports the conformational analysis of hemopressin and its truncated, biologically active fragment hemopressin(1-6). The binding modes of both hemopressin and hemopressin(1-6) are investigated by molecular docking calculations. Our conformational data indicate that regular turn structures in the central portion of hemopressin and hemopressin(1-6) are critical for an effective interaction with the receptor. The results of molecular docking calculations, indicating similarities and differences in comparison to the most accepted CB(1) pharmacophore model, suggest the possibility of new chemical scaffolds for the design of new CB(1) antagonist lead compounds.
Collapse
Affiliation(s)
- Mario Scrima
- Department of Pharmaceutical Sciences, University of Salerno, I-84084 Fisciano, Italy
| | | | | | | | | | | | | |
Collapse
|
39
|
Gomes I, Dale CS, Casten K, Geigner MA, Gozzo FC, Ferro ES, Heimann AS, Devi LA. Hemoglobin-derived peptides as novel type of bioactive signaling molecules. AAPS JOURNAL 2010; 12:658-69. [PMID: 20811967 DOI: 10.1208/s12248-010-9217-x] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2010] [Accepted: 06/22/2010] [Indexed: 01/08/2023]
Abstract
Most bioactive peptides are generated by proteolytic cleavage of large precursor proteins followed by storage in secretory vesicles from where they are released upon cell stimulation. Examples of such bioactive peptides include peptide neurotransmitters, classical neuropeptides, and peptide hormones. In the last decade, it has become apparent that the breakdown of cytosolic proteins can generate peptides that have biological activity. A case in point and the focus of this review are hemoglobin-derived peptides. In vertebrates, hemoglobin (Hb) consists of a tetramer of two α- and two β-globin chains each containing a prosthetic heme group, and is primarily involved in oxygen delivery to tissues and in redox reactions (Schechter Blood 112:3927-3938, 2008). The presence of α- and/or β-globin chain in tissues besides red blood cells including rodent and human brain and peripheral tissues (Liu et al. Proc Natl Acad Sci USA 96:6643-6647, 1999; Newton et al. J Biol Chem 281:5668-5676, 2006; Wride et al. Mol Vis 9:360-396, 2003; Setton-Avruj Exp Neurol 203:568-578, 2007; Ohyagi et al. Brain Res 635:323-327, 1994; Schelshorn et al. J Cereb Blood Flow Metab 29:585-595, 2009; Richter et al. J Comp Neurol 515:538-547, 2009) suggests that globins and/or derived peptidic fragments might play additional physiological functions in different tissues. In support of this hypothesis, a number of Hb-derived peptides have been identified and shown to have diverse functions (Ivanov et al. Biopoly 43:171-188, 1997; Karelin et al. Neurochem Res 24:1117-1124, 1999). Modern mass spectrometric analyses have helped in the identification of additional Hb peptides (Newton et al. J Biol Chem 281:5668-5676, 2006; Setton-Avruj Exp Neurol 203:568-578, 2007; Gomes et al. FASEB J 23:3020-3029, 2009); the molecular targets for these are only recently beginning to be revealed. Here, we review the status of the Hb peptide field and highlight recent reports on the identification of a molecular target for a novel set of Hb peptides, hemopressins, and the implication of these peptides to normal cell function and disease. The potential therapeutic applications for these Hb-derived hemopressin peptides will also be discussed.
Collapse
Affiliation(s)
- Ivone Gomes
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Dodd GT, Mancini G, Lutz B, Luckman SM. The peptide hemopressin acts through CB1 cannabinoid receptors to reduce food intake in rats and mice. J Neurosci 2010; 30:7369-76. [PMID: 20505104 PMCID: PMC6632410 DOI: 10.1523/jneurosci.5455-09.2010] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Revised: 04/07/2010] [Accepted: 04/12/2010] [Indexed: 11/21/2022] Open
Abstract
Hemopressin is a short, nine amino acid peptide (H-Pro-Val-Asn-Phe-Lys-Leu-Leu-Ser-His-OH) isolated from rat brain that behaves as an inverse agonist at the cannabinoid receptor CB(1), and is shown here to inhibit agonist-induced receptor internalization in a heterologous cell model. Since this peptide occurs naturally in the rodent brain, we determined its effect on appetite, an established central target of cannabinoid signaling. Hemopressin dose-dependently decreases night-time food intake in normal male rats and mice, as well as in obese ob/ob male mice, when administered centrally or systemically, without causing any obvious adverse side effects. The normal, behavioral satiety sequence is maintained in male mice fasted overnight, though refeeding is attenuated. The anorectic effect is absent in CB(1) receptor null mutant male mice, and hemopressin can block CB(1) agonist-induced hyperphagia in male rats, providing strong evidence for antagonism of the CB(1) receptor in vivo. We speculate that hemopressin may act as an endogenous functional antagonist at CB(1) receptors and modulate the activity of appetite pathways in the brain.
Collapse
MESH Headings
- Analysis of Variance
- Animals
- Behavior, Animal
- Benzoxazines/pharmacology
- COS Cells
- Chlorocebus aethiops
- Circadian Rhythm/drug effects
- Circadian Rhythm/physiology
- Cyclohexanols
- Dose-Response Relationship, Drug
- Drinking Behavior/drug effects
- Dronabinol/pharmacology
- Drug Administration Routes
- Eating/drug effects
- Eating/genetics
- Food Deprivation/physiology
- Green Fluorescent Proteins/genetics
- Hemoglobins/pharmacology
- Hyperphagia/chemically induced
- Hyperphagia/drug therapy
- Leptin/deficiency
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Morpholines/pharmacology
- Naphthalenes/pharmacology
- Peptide Fragments/pharmacology
- Piperidines/pharmacology
- Protein Transport/drug effects
- Psychotropic Drugs/pharmacology
- Pyrazoles/pharmacology
- Rats
- Rats, Sprague-Dawley
- Receptor, Cannabinoid, CB1/agonists
- Receptor, Cannabinoid, CB1/antagonists & inhibitors
- Receptor, Cannabinoid, CB1/deficiency
- Receptor, Cannabinoid, CB1/metabolism
- Rimonabant
- Time Factors
- Transfection/methods
Collapse
Affiliation(s)
- Garron T. Dodd
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom, and
| | - Giacomo Mancini
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University of Mainz, Duesbergweg 6, D-55099 Mainz, Germany
| | - Beat Lutz
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University of Mainz, Duesbergweg 6, D-55099 Mainz, Germany
| | - Simon M. Luckman
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom, and
| |
Collapse
|
41
|
Gelman JS, Fricker LD. Hemopressin and other bioactive peptides from cytosolic proteins: are these non-classical neuropeptides? AAPS JOURNAL 2010; 12:279-89. [PMID: 20383670 DOI: 10.1208/s12248-010-9186-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Accepted: 03/22/2010] [Indexed: 12/31/2022]
Abstract
Peptides perform many roles in cell-cell signaling; examples include neuropeptides, hormones, and growth factors. Although the vast majority of known neuropeptides are produced in the secretory pathway, a number of bioactive peptides are derived from cytosolic proteins. For example, the hemopressins are a family of peptides derived from alpha and beta hemoglobin which bind to the CB1 cannabinoid receptor, functioning as agonists or antagonists/inverse agonists depending on the size of the peptide. However, the finding that peptides derived from cytosolic proteins can affect receptors does not prove that these peptides are true endogenous signaling molecules. In order for the hemopressins and other peptides derived from cytosolic proteins to be considered neuropeptide-like signaling molecules, they must be synthesized in brain, they must be secreted in levels sufficient to produce effects, and either their synthesis or secretion should be regulated. If these criteria are met, we propose the name "non-classical neuropeptide" for this category of cytosolic bioactive peptide. This would be analogous to the non-classical neurotransmitters, such as nitric oxide and anandamide, which are not stored in secretory vesicles and released upon stimulation but are synthesized upon stimulation and constitutively released. We review some examples of cytosolic peptides from various protein precursors, describe potential mechanisms of their biosynthesis and secretion, and discuss the possibility that these peptides are signaling molecules in the brain, focusing on the criteria that these peptides would have to fill in order to be considered non-classical neuropeptides.
Collapse
Affiliation(s)
- Julia S Gelman
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | |
Collapse
|
42
|
Gelman JS, Sironi J, Castro LM, Ferro ES, Fricker LD. Hemopressins and other hemoglobin-derived peptides in mouse brain: comparison between brain, blood, and heart peptidome and regulation in Cpefat/fat mice. J Neurochem 2010; 113:871-80. [PMID: 20202081 DOI: 10.1111/j.1471-4159.2010.06653.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Many hemoglobin-derived peptides are present in mouse brain, and several of these have bioactive properties including the hemopressins, a related series of peptides that bind to cannabinoid CB1 receptors. Although hemoglobin is a major component of red blood cells, it is also present in neurons and glia. To examine whether the hemoglobin-derived peptides in brain are similar to those present in blood and heart, we used a peptidomics approach involving mass spectrometry. Many hemoglobin-derived peptides are found only in brain and not in blood, whereas all hemoglobin-derived peptides found in heart were also seen in blood. Thus, it is likely that the majority of the hemoglobin-derived peptides detected in brain are produced from brain hemoglobin and not erythrocytes. We also examined if the hemopressins and other major hemoglobin-derived peptides were regulated in the Cpe(fat/fat) mouse; previously these mice were reported to have elevated levels of several hemoglobin-derived peptides. Many, but not all of the hemoglobin-derived peptides were elevated in several brain regions of the Cpe(fat/fat) mouse. Taken together, these findings suggest that the post-translational processing of alpha and beta hemoglobin into the hemopressins, as well as other peptides, is up-regulated in some but not all Cpe(fat/fat) mouse brain regions.
Collapse
Affiliation(s)
- Julia S Gelman
- Dominic P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | |
Collapse
|
43
|
Rioli V, Prezoto BC, Konno K, Melo RL, Klitzke CF, Ferro ES, Ferreira-Lopes M, Camargo ACM, Portaro FCV. A novel bradykinin potentiating peptide isolated from Bothrops jararacussu venom using catallytically inactive oligopeptidase EP24.15. FEBS J 2008; 275:2442-54. [PMID: 18400032 DOI: 10.1111/j.1742-4658.2008.06389.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Characterization of the peptide content of venoms has a number of potential benefits for basic research, clinical diagnosis, development of new therapeutic agents, and production of antiserum. Here, we use a substrate-capture assay that employs a catalytically inactive mutant of thimet oligopeptidase (EC 3.4.24.15; EP24.15) to identify novel bioactive peptides in Bothrops jararacussu venom. Of the peptides captured with inactive EP24.15 and identified by mass spectrometry, three were previously identified bradykinin-potentiating peptides (BPP), <ENWPHPQIPP (Xc), <EGGWPRPGPEIPP (XIIIa) and <EARPPHPPIPP (XIe) (where <E is a pyroglutamyl residue). In addition, we identified a novel BPP peptide containing additional AP amino acids in the C-terminus (<EARPPHPPIPPAP); this novel peptide was named BPP-AP. Next, dermal and muscle microcirculations were visualized using intravital microscopy to establish the roles of peptides BPP-XIe and BPP-AP in this process. After local administration of peptide BPP-XIe (0.5 microg.microL(-1)), leukocyte rolling flux and adhesion were increased by fivefold in post-capillary venules, without any increments in vasodilatation of arterioles compared to control experiments. In contrast, local administration of BPP-AP (0.5 microg.microL(-1)) potently induced vasodilatation of arterioles (nearly 100% increase compared with the vehicle saline control), with only a small increase in leukocyte rolling flux. Therefore, the novel BPP-AP described herein has pharmacological advantages compared to the BPP-XIe. The present study further suggests that inactive oligopeptidase EP24.15 is a useful tool for the isolation of bioactive peptides from crude biological samples.
Collapse
Affiliation(s)
- Vanessa Rioli
- Laboratório Especial de Toxinologia Aplicada-CAT/CEPID, Instituto Butantan, São Paulo, Brazil.
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
To date, the endogenous ligands described for cannabinoid receptors have been derived from membrane lipids. To identify a peptide ligand for CB(1) cannabinoid receptors, we used the recently described conformation-state sensitive antibodies and screened a panel of endogenous peptides from rodent brain or adipose tissue. This led to the identification of hemopressin (PVNFKFLSH) as a peptide ligand that selectively binds CB(1) cannabinoid receptors. We find that hemopressin is a CB(1) receptor-selective antagonist, because it is able to efficiently block signaling by CB(1) receptors but not by other members of family A G protein-coupled receptors (including the closely related CB(2) receptors). Hemopressin also behaves as an inverse agonist of CB(1) receptors, because it is able to block the constitutive activity of these receptors to the same extent as its well characterized antagonist, rimonabant. Finally, we examine the activity of hemopressin in vivo using different models of pain and find that it exhibits antinociceptive effects when administered by either intrathecal, intraplantar, or oral routes, underscoring hemopressin's therapeutic potential. These results represent a demonstration of a peptide ligand for CB(1) cannabinoid receptors that also exhibits analgesic properties. These findings are likely to have a profound impact on the development of novel therapeutics targeting CB(1) receptors.
Collapse
|
45
|
Abstract
This paper is the 28th consecutive installment of the annual review of research concerning the endogenous opioid system, now spanning over a quarter-century of research. It summarizes papers published during 2005 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (Section 2), and the roles of these opioid peptides and receptors in pain and analgesia (Section 3); stress and social status (Section 4); tolerance and dependence (Section 5); learning and memory (Section 6); eating and drinking (Section 7); alcohol and drugs of abuse (Section 8); sexual activity and hormones, pregnancy, development and endocrinology (Section 9); mental illness and mood (Section 10); seizures and neurologic disorders (Section 11); electrical-related activity, neurophysiology and transmitter release (Section 12); general activity and locomotion (Section 13); gastrointestinal, renal and hepatic functions (Section 14); cardiovascular responses (Section 15); respiration and thermoregulation (Section 16); immunological responses (Section 17).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, 65-30 Kissena Blvd., Flushing, NY 11367, USA.
| | | |
Collapse
|
46
|
Lippton H, Lin B, Gumusel B, Witriol N, Wasserman A, Knight M. Hemopressin, a hemoglobin fragment, dilates the rat systemic vascular bed through release of nitric oxide. Peptides 2006; 27:2284-8. [PMID: 16713023 DOI: 10.1016/j.peptides.2006.04.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2006] [Revised: 04/13/2006] [Accepted: 04/13/2006] [Indexed: 10/24/2022]
Abstract
The present study was undertaken to investigate the effects of intravenous (i.v.) administration of rat hemopressin (rHP), 30-1000 microg/kg, on systemic arterial pressure (SAP), cardiac output (CO) and systemic vascular resistance (SVR) in the anesthetized rat. Bolus i.v. injections of rHP produced mild decreases in SAP that were dose-dependent. Since CO was not altered, the decreases in SAP reflect reductions in SVR. The systemic vasodilator response to rHP was not subject to tachyphylaxis. The systemic vasodilator response to rHP was abolished by L-nitro-arginine methylester (L-NAME) but was not altered by meclofenamate. In addition, rHP lacked direct contractile and relaxant activity on isolated rat aortic rings (AA) and pulmonary arterial rings (PA). The present data suggest rHP dilates the rat systemic vascular bed through the endogenous release of nitric oxide (NO) independent of the formation of cyclooxygenase products including prostacyclin. It is possible rHP acts as an endogenous vasodilator substance to regulate local blood flow during clinical states of altered red cell turnover, microvascular disease and hemolysis.
Collapse
|
47
|
Machado MFM, Cunha FM, Berti DA, Heimann AS, Klitzke CF, Rioli V, Oliveira V, Ferro ES. Substrate phosphorylation affects degradation and interaction to endopeptidase 24.15, neurolysin, and angiotensin-converting enzyme. Biochem Biophys Res Commun 2005; 339:520-5. [PMID: 16300734 DOI: 10.1016/j.bbrc.2005.11.041] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2005] [Accepted: 11/05/2005] [Indexed: 11/16/2022]
Abstract
Recent findings from our laboratory suggest that intracellular peptides containing putative post-translational modification sites (i.e., phosphorylation) could regulate specific protein interactions. Here, we extend our previous observations showing that peptide phosphorylation changes the kinetic parameters of structurally related endopeptidase EP24.15 (EC 3.4.24.15), neurolysin (EC 3.4.24.16), and angiotensin-converting enzyme (EC 3.4.15.1). Phosphorylation of peptides that are degraded by these enzymes leads to reduced degradation, whereas phosphorylation of peptides that interacted as competitive inhibitors of these enzymes alters only the K(i)'s. These data suggest that substrate phosphorylation could be one of the mechanisms whereby some intracellular peptides would escape degradation and could be regulating protein interactions within cells.
Collapse
Affiliation(s)
- M F M Machado
- Laboratório de Neurociências, Universidade da Cidade de São Paulo, 03071-000, São Paulo, SP, Brazil
| | | | | | | | | | | | | | | |
Collapse
|