1
|
Walker SL, Glasper ER. Unraveling sex differences in maternal and paternal care impacts on social behaviors and neurobiological responses to early-life adversity. Front Neuroendocrinol 2024; 76:101162. [PMID: 39561882 DOI: 10.1016/j.yfrne.2024.101162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 11/11/2024] [Accepted: 11/11/2024] [Indexed: 11/21/2024]
Abstract
Early-life stress (ELS) affects the development of prosocial behaviors and social-cognitive function, often leading to structural brain changes and increased psychosocial disorders. Recent studies suggest that mother- and father-child relationships independently influence social development in a sex-specific manner, but the effects of impaired father-child relationships are often overlooked. This review examines preclinical rodent studies to explore how parental neglect impacts neuroplasticity and social behaviors in offspring. We highlight that disruptions in maternal interactions may affect male pups more in uniparental rodents, while impaired paternal interactions in biparental rodents tend to impact female pups more. Due to limited research, the separate effects of maternal and paternal neglect on brain development and social behaviors in biparental species remain unclear. Addressing these gaps could clarify the sex-specific mechanisms underlying social and neurobiological deficits following parental neglect.
Collapse
Affiliation(s)
- Shakeera L Walker
- Department of Neuroscience, The Ohio State University, Columbus, OH, 43210, United States; Neuroscience Graduate Program, The Ohio State University, Columbus, OH, 43210, United States
| | - Erica R Glasper
- Department of Neuroscience, The Ohio State University, Columbus, OH, 43210, United States; Neuroscience Graduate Program, The Ohio State University, Columbus, OH, 43210, United States; Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, 43210, United States.
| |
Collapse
|
2
|
Goodman EJ, DiSabato DJ, Sheridan JF, Godbout JP. Novel microglial transcriptional signatures promote social and cognitive deficits following repeated social defeat. Commun Biol 2024; 7:1199. [PMID: 39341879 PMCID: PMC11438916 DOI: 10.1038/s42003-024-06898-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 09/13/2024] [Indexed: 10/01/2024] Open
Abstract
Chronic stress is associated with anxiety and cognitive impairment. Repeated social defeat (RSD) in mice induces anxiety-like behavior driven by microglia and the recruitment of inflammatory monocytes to the brain. Nonetheless, it is unclear how microglia communicate with other cells to modulate the physiological and behavioral responses to stress. Using single-cell (sc)RNAseq, we identify novel, to the best of our knowledge, stress-associated microglia in the hippocampus defined by RNA profiles of cytokine/chemokine signaling, cellular stress, and phagocytosis. Microglia depletion with a CSF1R antagonist (PLX5622) attenuates the stress-associated profile of leukocytes, endothelia, and astrocytes. Furthermore, RSD-induced social withdrawal and cognitive impairment are microglia-dependent, but social avoidance is microglia-independent. Furthermore, single-nuclei (sn)RNAseq shows robust responses to RSD in hippocampal neurons that are both microglia-dependent and independent. Notably, stress-induced CREB, oxytocin, and glutamatergic signaling in neurons are microglia-dependent. Collectively, these stress-associated microglia influence transcriptional profiles in the hippocampus related to social and cognitive deficits.
Collapse
Affiliation(s)
- Ethan J Goodman
- Department of Neuroscience, Wexner Medical Center, The Ohio State University, Columbus, Ohio, 43210, USA
- Institute for Behavioral Medicine Research, College of Medicine, The Ohio State University, Columbus, Ohio, 43210, USA
| | - Damon J DiSabato
- Department of Neuroscience, Wexner Medical Center, The Ohio State University, Columbus, Ohio, 43210, USA
| | - John F Sheridan
- Institute for Behavioral Medicine Research, College of Medicine, The Ohio State University, Columbus, Ohio, 43210, USA.
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, Ohio, 43210, USA.
| | - Jonathan P Godbout
- Department of Neuroscience, Wexner Medical Center, The Ohio State University, Columbus, Ohio, 43210, USA.
- Institute for Behavioral Medicine Research, College of Medicine, The Ohio State University, Columbus, Ohio, 43210, USA.
| |
Collapse
|
3
|
Li H, Li Y, Wang T, Li S, Liu H, Ning S, Shen W, Zhao Z, Wu H. Spatiotemporal Mapping of the Oxytocin Receptor at Single-Cell Resolution in the Postnatally Developing Mouse Brain. Neurosci Bull 2024:10.1007/s12264-024-01296-x. [PMID: 39277552 DOI: 10.1007/s12264-024-01296-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/24/2024] [Indexed: 09/17/2024] Open
Abstract
The oxytocin receptor (OXTR) has garnered increasing attention for its role in regulating both mature behaviors and brain development. It has been established that OXTR mediates a range of effects that are region-specific or period-specific. However, the current studies of OXTR expression patterns in mice only provide limited help due to limitations in resolution. Therefore, our objective was to generate a comprehensive, high-resolution spatiotemporal expression map of Oxtr mRNA across the entire developing mouse brain. We applied RNAscope in situ hybridization to investigate the spatiotemporal expression pattern of Oxtr in the brains of male mice at six distinct postnatal developmental stages (P7, P14, P21, P28, P42, P56). We provide detailed descriptions of Oxtr expression patterns in key brain regions, including the cortex, basal forebrain, hippocampus, and amygdaloid complex, with a focus on the precise localization of Oxtr+ cells and the variance of expression between different neurons. Furthermore, we identified some neuronal populations with high Oxtr expression levels that have been little studied, including glutamatergic neurons in the ventral dentate gyrus, Vgat+Oxtr+ cells in the basal forebrain, and GABAergic neurons in layers 4/5 of the cortex. Our study provides a novel perspective for understanding the distribution of Oxtr and encourages further investigations into its functions.
Collapse
Affiliation(s)
- Hao Li
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Ying Li
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Ting Wang
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Shen Li
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Heli Liu
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Shuyi Ning
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Wei Shen
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Zhe Zhao
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Haitao Wu
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China.
- Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226019, China.
- Chinese Institute for Brain Research, Beijing, 102206, China.
| |
Collapse
|
4
|
Zhang S, Zhou Y, Shen J, Wang Y, Xia J, Li C, Liu W, Hayat K, Qian M. Early-Life Exposure to 4-Hydroxy-4'-Isopropoxydiphenylsulfone Induces Behavioral Deficits Associated with Autism Spectrum Disorders in Mice. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:15984-15996. [PMID: 39194383 DOI: 10.1021/acs.est.4c04760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Exposure to bisphenol A (BPA) during gestation and lactation is considered to be a potential risk factor for autism spectrum disorder (ASD) in both humans and animals. As a novel alternative to BPA, 4-hydroxy-4'-isopropoxydiphenylsulfone (BPSIP) is frequently detected in breast milk and placental barrier systems, suggesting potential transmission from the mother to offspring and increased risk of exposure. Gestation and lactation are critical periods for central nervous system development, which are vulnerable to certain environmental pollutants. Herein, we investigated the behavioral impacts and neurobiological effects of early-life exposure to BPSIP (0.02, 0.1, and 0.5 mg/kg body weight/day) in mice offspring. Behavioral studies indicated that BPSIP exposure induced ASD-like behaviors, including elevated anxiety-related behavior and decreased spatial memory, in both male and female pups. A distinct pattern of reduced social novelty was observed only in female offspring, accompanied by significant alterations in antioxidant levels. Transcriptome analysis demonstrated that differentially expressed genes (DEGs) were mainly enriched in pathways related to behaviors and neurodevelopment, which were consistent with the observed phenotype. Besides, a decrease in the protein levels of complex IV (COX IV) across all tested populations suggests a profound impact on mitochondrial function, potentially leading to abnormal energy metabolism in individuals with autism. Additionally, changes in synaptic proteins, evidenced by alterations in synapsin 1 (SYN1) and postsynaptic density protein-95 (PSD95) levels in the cerebellum and hippocampus, support the notion of synaptic involvement. These findings suggest that BPSIP may induce sex-specific neurotoxic effects that involve oxidative stress, energy generation, and synaptic plasticity.
Collapse
Affiliation(s)
- Shengnan Zhang
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China
| | - Yitong Zhou
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China
| | - Jiatong Shen
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China
| | - Yumeng Wang
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China
| | - Jun Xia
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China
| | - Chenghan Li
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China
| | - Weiping Liu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China
| | - Kashif Hayat
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China
| | - Mingrong Qian
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China
| |
Collapse
|
5
|
Castagno AN, Spaiardi P, Trucco A, Maniezzi C, Raffin F, Mancini M, Nicois A, Cazzola J, Pedrinazzi M, Del Papa P, Pisani A, Talpo F, Biella GR. Oxytocin Modifies the Excitability and the Action Potential Shape of the Hippocampal CA1 GABAergic Interneurons. Int J Mol Sci 2024; 25:2613. [PMID: 38473860 DOI: 10.3390/ijms25052613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Oxytocin (OT) is a neuropeptide that modulates social-related behavior and cognition in the central nervous system of mammals. In the CA1 area of the hippocampus, the indirect effects of the OT on the pyramidal neurons and their role in information processing have been elucidated. However, limited data are available concerning the direct modulation exerted by OT on the CA1 interneurons (INs) expressing the oxytocin receptor (OTR). Here, we demonstrated that TGOT (Thr4,Gly7-oxytocin), a selective OTR agonist, affects not only the membrane potential and the firing frequency but also the neuronal excitability and the shape of the action potentials (APs) of these INs in mice. Furthermore, we constructed linear mixed-effects models (LMMs) to unravel the dependencies between the AP parameters and the firing frequency, also considering how TGOT can interact with them to strengthen or weaken these influences. Our analyses indicate that OT regulates the functionality of the CA1 GABAergic INs through different and independent mechanisms. Specifically, the increase in neuronal firing rate can be attributed to the depolarizing effect on the membrane potential and the related enhancement in cellular excitability by the peptide. In contrast, the significant changes in the AP shape are directly linked to oxytocinergic modulation. Importantly, these alterations in AP shape are not associated with the TGOT-induced increase in neuronal firing rate, being themselves critical for signal processing.
Collapse
Affiliation(s)
- Antonio Nicolas Castagno
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, 27100 Pavia, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy
- IRCCS Mondino Foundation, 27100 Pavia, Italy
| | - Paolo Spaiardi
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, 27100 Pavia, Italy
- INFN-Pavia Section, 27100 Pavia, Italy
| | - Arianna Trucco
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Claudia Maniezzi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milano, Italy
| | - Francesca Raffin
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Maria Mancini
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy
| | - Alessandro Nicois
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, 27100 Pavia, Italy
- Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche (CNR), 80078 Pozzuoli, Italy
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Jessica Cazzola
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Matilda Pedrinazzi
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Paola Del Papa
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Antonio Pisani
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy
- IRCCS Mondino Foundation, 27100 Pavia, Italy
| | - Francesca Talpo
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Gerardo Rosario Biella
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, 27100 Pavia, Italy
- INFN-Pavia Section, 27100 Pavia, Italy
| |
Collapse
|
6
|
Zhou M, Zhu S, Xu T, Wang J, Zhuang Q, Zhang Y, Becker B, Kendrick KM, Yao S. Neural and behavioral evidence for oxytocin's facilitatory effects on learning in volatile and stable environments. Commun Biol 2024; 7:109. [PMID: 38242969 PMCID: PMC10799007 DOI: 10.1038/s42003-024-05792-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 01/08/2024] [Indexed: 01/21/2024] Open
Abstract
Outcomes of past decisions profoundly shape our behavior. However, choice-outcome associations can become volatile and adaption to such changes is of importance. The present study combines pharmaco-electroencephalography with computational modeling to examine whether intranasal oxytocin can modulate reinforcement learning under a volatile vs. a stable association. Results show that oxytocin increases choice accuracy independent of learning context, which is paralleled by a larger N2pc and a smaller P300. Model-based analyses reveal that while oxytocin promotes learning by accelerating value update of outcomes in the volatile context, in the stable context it does so by improving choice consistency. These findings suggest that oxytocin's facilitatory effects on learning may be exerted via improving early attentional selection and late neural processing efficiency, although at the computational level oxytocin's actions are highly adaptive between learning contexts. Our findings provide proof of concept for oxytocin's therapeutic potential in mental disorders with adaptive learning dysfunction.
Collapse
Affiliation(s)
- Menghan Zhou
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, China
- The MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Siyu Zhu
- School of Sport Training, Chengdu Sport University, Chengdu, 610041, Sichuan, China
| | - Ting Xu
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, China
- The MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Jiayuan Wang
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, China
- The MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Qian Zhuang
- The MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang Province, China
| | - Yuan Zhang
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, China
- The MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Benjamin Becker
- The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, Pokfulam, China
- Department of Psychology, The University of Hong Kong, Hong Kong, Pokfulam, China
| | - Keith M Kendrick
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, China
- The MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Shuxia Yao
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, China.
- The MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
7
|
Selles MC, Oliveira MM. The Oxytocin Puzzle: Unlocking Alzheimer's Disease. J Alzheimers Dis 2024; 97:1101-1104. [PMID: 38189754 DOI: 10.3233/jad-231127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Alzheimer's disease is a multi-factorial disease that disrupts many aspects of human behavior. In this comment, we highlight the work by Koulousakis et al. published in a recent issue of the Journal of Alzheimer's Disease. In this study, the authors tested the therapeutic potential of the neuropeptide oxytocin in a pre-clinical model of Alzheimer's disease and found positive behavioral outcomes on memory assessments. We discuss these findings in the context of oxytocin research in the field of Alzheimer's disease and the literature regarding oxytocin-based therapeutics, including administration protocols and potential underlying cellular and molecular mechanisms.
Collapse
Affiliation(s)
- Maria Clara Selles
- Neuroscience Institute, New York University School of Medicine, New York, NY, USA
| | | |
Collapse
|
8
|
Monari PK, Herro ZJ, Bymers J, Marler CA. Chronic intranasal oxytocin increases acoustic eavesdropping and adult neurogenesis. Horm Behav 2023; 156:105443. [PMID: 37871536 DOI: 10.1016/j.yhbeh.2023.105443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 10/25/2023]
Abstract
Social information gathering is a complex process influenced by neuroendocrine-modulated neural plasticity. Oxytocin (OXT) is a key regulator of social decision-making processes such as information gathering, as it contextually modulates social salience and can induce long-term structural plasticity, including neurogenesis. Understanding the link between OXT-induced plasticity and communicative awareness is crucial, particularly because OXT is being considered for treatment of social pathologies. We investigated the role of chronic OXT-dependent plasticity in attention to novel social information by manipulating the duration of time following cessation of intranasal treatment to allow for the functional integration of adult-born neurons resulting from OXT treatment. Following a 3-week delay, chronic intranasal OXT (IN-OXT) increased approach behavior of both female and male mice towards aggressive vocal playbacks of two unseen novel conspecifics, while no effect was observed after a 3-day delay. Immature neurons increased in the ventral hippocampus of females and males treated with chronic IN-OXT after the 3-week delay, indicating a potential association between ventral hippocampal neurogenesis and approach/acoustic eavesdropping. The less the mouse approached, the higher the level of neurogenesis. Contrary to expectations, the correlation between ventral hippocampal neurogenesis and approach behavior was not affected by IN-OXT, suggesting that other plasticity mechanisms underlie the long-term effects of chronic OXT on social approach. Furthermore, we found a negative correlation between ventral hippocampal neurogenesis and freezing behavior. Overall, our results demonstrate that chronic IN-OXT-induced long-term plasticity can influence approach to vocal information and we further reinforced the link between neurogenesis and anxiety.
Collapse
Affiliation(s)
- Patrick K Monari
- Department of Psychology, University of Wisconsin-Madison, WI, USA.
| | - Zachary J Herro
- Department of Psychology, University of Wisconsin-Madison, WI, USA
| | - Jessica Bymers
- Department of Psychology, University of Wisconsin-Madison, WI, USA
| | | |
Collapse
|
9
|
Hung YC, Wu YJ, Chien ME, Lin YT, Tsai CF, Hsu KS. Loss of oxytocin receptors in hilar mossy cells impairs social discrimination. Neurobiol Dis 2023; 187:106311. [PMID: 37769745 DOI: 10.1016/j.nbd.2023.106311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 09/24/2023] [Accepted: 09/25/2023] [Indexed: 10/02/2023] Open
Abstract
Hippocampal oxytocin receptor (OXTR) signaling is crucial for discrimination of social stimuli to guide social recognition, but circuit mechanisms and cell types involved remain incompletely understood. Here, we report a role for OXTR-expressing hilar mossy cells (MCs) of the dentate gyrus in social stimulus discrimination by regulating granule cell (GC) activity. Using a Cre-loxP recombination approach, we found that ablation of Oxtr from MCs impairs discrimination of social, but not object, stimuli in adult male mice. Ablation of MC Oxtr increases spontaneous firing rate of GCs, synaptic excitation to inhibition ratio of MC-to-GC circuit, and GC firing when temporally associated with the lateral perforant path inputs. Using mouse hippocampal slices, we found that bath application of OXTR agonist [Thr4,Gly7]-oxytocin causes membrane depolarization and increases MC firing activity. Optogenetic activation of MC-to-GC circuit ameliorates social discrimination deficit in MC OXTR deficient mice. Together, our results uncover a previously unknown role of MC OXTR signaling for discrimination of social stimuli and delineate a MC-to-GC circuit responsible for social information processing.
Collapse
Affiliation(s)
- Yu-Chieh Hung
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Yi-Jen Wu
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 70457, Taiwan; Department of Neurology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan
| | - Miao-Er Chien
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 70457, Taiwan
| | - Yu-Ting Lin
- Institute of Systems Neuroscience, College of Life Science, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Cheng-Fang Tsai
- Department of Physical Medicine and Rehabilitation, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 60002, Taiwan; Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan.
| | - Kuei-Sen Hsu
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan; Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan.
| |
Collapse
|
10
|
Kamrani-Sharif R, Hayes AW, Gholami M, Salehirad M, Allahverdikhani M, Motaghinejad M, Emanuele E. Oxytocin as neuro-hormone and neuro-regulator exert neuroprotective properties: A mechanistic graphical review. Neuropeptides 2023; 101:102352. [PMID: 37354708 DOI: 10.1016/j.npep.2023.102352] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 03/28/2023] [Accepted: 06/12/2023] [Indexed: 06/26/2023]
Abstract
BACKGROUND Neurodegeneration is progressive cell loss in specific neuronal populations, often resulting in clinical consequences with significant medical, societal, and economic implications. Because of its antioxidant, anti-inflammatory, and anti-apoptotic properties, oxytocin has been proposed as a potential neuroprotective and neurobehavioral therapeutic agent, including modulating mood disturbances and cognitive enchantment. METHODS Literature searches were conducted using the following databases Web of Science, PubMed, Elsevier Science Direct, Google Scholar, the Core Collection, and Cochrane from January 2000 to February 2023 for articles dealing with oxytocin neuroprotective properties in preventing or treating neurodegenerative disorders and diseases with a focus on oxidative stress, inflammation, and apoptosis/cell death. RESULTS The neuroprotective effects of oxytocin appears to be mediated by its anti-inflammatory properties, inhibition of neuro inflammation, activation of several antioxidant enzymes, inhibition of oxidative stress and free radical formation, activation of free radical scavengers, prevent of mitochondrial dysfunction, and inhibition of apoptosis. CONCLUSION Oxytocin acts as a neuroprotective agent by preventing neuro-apoptosis, neuro-inflammation, and neuronal oxidative stress, and by restoring mitochondrial function.
Collapse
Affiliation(s)
- Roya Kamrani-Sharif
- Chronic Respiratory Disease Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - A Wallace Hayes
- University of South Florida College of Public Health, Tampa, FL, USA; Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, USA
| | - Mina Gholami
- Chronic Respiratory Disease Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahsa Salehirad
- Cognitive and Neuroscience Research Center (CNRC), Amir-Almomenin Hospital, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Maryam Allahverdikhani
- Chronic Respiratory Disease Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Majid Motaghinejad
- Chronic Respiratory Disease Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | | |
Collapse
|
11
|
Ling W, Ren Z, Wang W, Lu D, Zhou Q, Liu Q, Jiang G. Chronic Ambient Ozone Exposure Aggravates Autism-Like Symptoms in a Susceptible Mouse Model. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:14248-14259. [PMID: 37676697 DOI: 10.1021/acs.est.3c00607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Although there is evidence that exposure to ground-level ozone (O3) may cause an increased risk of neurological disorders (e.g., autistic spectrum disorder), low-dose chronic ozone exposure and its adverse effects on the nervous system have not been fully understood. Here, we evaluated the potential neurotoxic effects of long-term exposure to environmentally relevant O3 concentration (200 μg/m3 via a whole-body inhalation system, 12 h/day for 5 days/week) using a susceptible mouse model of autism induced by valproic acid. Various indicators of oxidative stress, mitochondria, and synapse in the brain tissues were then measured to determine the overall damage of O3 to the mouse brain. The results showed an aggravated risk of autism in mice offspring, which was embodied in decreased antioxidant contents, disturbed energy generation in mitochondria, as well as reduced expressions of protein kinase Mζ (PKMζ) and synaptic proteins [e.g., Synapsin 1 (SYN 1), postsynaptic density protein-95 (PSD-95)]. Overall, our study indicates that prenatal exposure to environmentally relevant O3 may exacerbate the symptoms of autism, shedding light on possible molecular mechanisms and providing valuable insights into the pathogenesis of autism, especially concerning low-dose levels of those pollutants.
Collapse
Affiliation(s)
- Weibo Ling
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhihua Ren
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan 030006, China
| | - Weichao Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Dawei Lu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Qunfang Zhou
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Qian Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Taishan Institute for Ecology and Environment (TIEE), Jinan 250100, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
12
|
Effects of exogenous oxytocin and estradiol on resting-state functional connectivity in women and men. Sci Rep 2023; 13:3113. [PMID: 36813823 PMCID: PMC9947123 DOI: 10.1038/s41598-023-29754-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 02/09/2023] [Indexed: 02/24/2023] Open
Abstract
Possible interactions of the neuropeptide oxytocin and the sex hormone estradiol may contribute to previously observed sex-specific effects of oxytocin on resting-state functional connectivity (rsFC) of the amygdala and hippocampus. Therefore, we used a placebo-controlled, randomized, parallel-group functional magnetic resonance imaging study design and measured amygdala and hippocampus rsFC in healthy men (n = 116) and free-cycling women (n = 111), who received estradiol gel (2 mg) or placebo before the intranasal administration of oxytocin (24 IU) or placebo. Our results reveal significant interaction effects of sex and treatments on rsFC of the amygdala and hippocampus in a seed-to-voxel analysis. In men, both oxytocin and estradiol significantly decreased rsFC between the left amygdala and the right and left lingual gyrus, the right calcarine fissure, and the right superior parietal gyrus compared to placebo, while the combined treatment produced a significant increase in rsFC. In women, the single treatments significantly increased the rsFC between the right hippocampus and the left anterior cingulate gyrus, whereas the combined treatment had the opposite effect. Collectively, our study indicates that exogenous oxytocin and estradiol have different region-specific effects on rsFC in women and men and that the combined treatment may produce antagonistic effects.
Collapse
|
13
|
Pierzynowska K, Gaffke L, Żabińska M, Cyske Z, Rintz E, Wiśniewska K, Podlacha M, Węgrzyn G. Roles of the Oxytocin Receptor (OXTR) in Human Diseases. Int J Mol Sci 2023; 24:ijms24043887. [PMID: 36835321 PMCID: PMC9966686 DOI: 10.3390/ijms24043887] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/06/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
The oxytocin receptor (OXTR), encoded by the OXTR gene, is responsible for the signal transduction after binding its ligand, oxytocin. Although this signaling is primarily involved in controlling maternal behavior, it was demonstrated that OXTR also plays a role in the development of the nervous system. Therefore, it is not a surprise that both the ligand and the receptor are involved in the modulation of behaviors, especially those related to sexual, social, and stress-induced activities. As in the case of every regulatory system, any disturbances in the structures or functions of oxytocin and OXTR may lead to the development or modulation of various diseases related to the regulated functions, which in this case include either mental problems (autism, depression, schizophrenia, obsessive-compulsive disorders) or those related to the functioning of reproductive organs (endometriosis, uterine adenomyosis, premature birth). Nevertheless, OXTR abnormalities are also connected to other diseases, including cancer, cardiac disorders, osteoporosis, and obesity. Recent reports indicated that the changes in the levels of OXTR and the formation of its aggregates may influence the course of some inherited metabolic diseases, such as mucopolysaccharidoses. In this review, the involvement of OXTR dysfunctions and OXTR polymorphisms in the development of different diseases is summarized and discussed. The analysis of published results led us to suggest that changes in OXTR expression and OXTR abundance and activity are not specific to individual diseases, but rather they influence processes (mostly related to behavioral changes) that might modulate the course of various disorders. Moreover, a possible explanation of the discrepancies in the published results of effects of the OXTR gene polymorphisms and methylation on different diseases is proposed.
Collapse
|
14
|
Talpo F, Spaiardi P, Castagno AN, Maniezzi C, Raffin F, Terribile G, Sancini G, Pisani A, Biella GR. Neuromodulatory functions exerted by oxytocin on different populations of hippocampal neurons in rodents. Front Cell Neurosci 2023; 17:1082010. [PMID: 36816855 PMCID: PMC9932910 DOI: 10.3389/fncel.2023.1082010] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 01/16/2023] [Indexed: 02/05/2023] Open
Abstract
Oxytocin (OT) is a neuropeptide widely known for its peripheral hormonal effects (i.e., parturition and lactation) and central neuromodulatory functions, related especially to social behavior and social, spatial, and episodic memory. The hippocampus is a key structure for these functions, it is innervated by oxytocinergic fibers, and contains OT receptors (OTRs). The hippocampal OTR distribution is not homogeneous among its subregions and types of neuronal cells, reflecting the specificity of oxytocin's modulatory action. In this review, we describe the most recent discoveries in OT/OTR signaling in the hippocampus, focusing primarily on the electrophysiological oxytocinergic modulation of the OTR-expressing hippocampal neurons. We then look at the effect this modulation has on the balance of excitation/inhibition and synaptic plasticity in each hippocampal subregion. Additionally, we review OTR downstream signaling, which underlies the OT effects observed in different types of hippocampal neuron. Overall, this review comprehensively summarizes the advancements in unraveling the neuromodulatory functions exerted by OT on specific hippocampal networks.
Collapse
Affiliation(s)
- Francesca Talpo
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, Pavia, Italy
| | - Paolo Spaiardi
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, Pavia, Italy,Istituto Nazionale di Fisica Nucleare, Sezione di Pavia, Pavia, Italy
| | - Antonio Nicolas Castagno
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, Pavia, Italy
| | - Claudia Maniezzi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Francesca Raffin
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, Pavia, Italy
| | - Giulia Terribile
- Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Giulio Sancini
- Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy,Nanomedicine Center, Neuroscience Center, School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Antonio Pisani
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy,Neurological Institute Foundation Casimiro Mondino (IRCCS), Pavia, Italy
| | - Gerardo Rosario Biella
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, Pavia, Italy,Istituto Nazionale di Fisica Nucleare, Sezione di Pavia, Pavia, Italy,*Correspondence: Gerardo Rosario Biella,
| |
Collapse
|
15
|
Černotová D, Hrůzová K, Levčík D, Svoboda J, Stuchlík A. Linking Social Cognition, Parvalbumin Interneurons, and Oxytocin in Alzheimer's Disease: An Update. J Alzheimers Dis 2023; 96:861-875. [PMID: 37980658 PMCID: PMC10741376 DOI: 10.3233/jad-230333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/11/2023] [Indexed: 11/21/2023]
Abstract
Finding a cure for Alzheimer's disease (AD) has been notoriously challenging for many decades. Therefore, the current focus is mainly on prevention, timely intervention, and slowing the progression in the earliest stages. A better understanding of underlying mechanisms at the beginning of the disease could aid in early diagnosis and intervention, including alleviating symptoms or slowing down the disease progression. Changes in social cognition and progressive parvalbumin (PV) interneuron dysfunction are among the earliest observable effects of AD. Various AD rodent models mimic these early alterations, but only a narrow field of study has considered their mutual relationship. In this review, we discuss current knowledge about PV interneuron dysfunction in AD and emphasize their importance in social cognition and memory. Next, we propose oxytocin (OT) as a potent modulator of PV interneurons and as a promising treatment for managing some of the early symptoms. We further discuss the supporting evidence on its beneficial effects on AD-related pathology. Clinical trials have employed the use of OT in various neuropsychiatric diseases with promising results, but little is known about its prospective impacts on AD. On the other hand, the modulatory effects of OT in specific structures and local circuits need to be clarified in future studies. This review highlights the connection between PV interneurons and social cognition impairment in the early stages of AD and considers OT as a promising therapeutic agent for addressing these early deficits.
Collapse
Affiliation(s)
- Daniela Černotová
- Laboratory of Neurophysiology of Memory, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
- Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Karolína Hrůzová
- Laboratory of Neurophysiology of Memory, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
- Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - David Levčík
- Laboratory of Neurophysiology of Memory, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jan Svoboda
- Laboratory of Neurophysiology of Memory, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Aleš Stuchlík
- Laboratory of Neurophysiology of Memory, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
16
|
Kunitake Y, Mizoguchi Y, Imamura Y, Kunitake H, Orihashi R, Matsushima J, Tateishi H, Murakawa-Hirachi T, Yamada S, Monji A. Serum oxytocin correlated with later logical memory in older Japanese women: A 7-year follow-up study. COMPREHENSIVE PSYCHONEUROENDOCRINOLOGY 2022; 13:100166. [PMID: 36605539 PMCID: PMC9807821 DOI: 10.1016/j.cpnec.2022.100166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/26/2022] [Accepted: 12/27/2022] [Indexed: 12/29/2022] Open
Abstract
Objectives This study aimed to investigate the longitudinal relationship between serum oxytocin and logical memory among older adults in rural Japan and clarify sex differences in this relationship. Measurements The first survey was conducted from October 2009 to March 2011 (Time 1) and the second from November 2016 to September 2017 (Time 2). The final analysis for Time 1 included 385 participants (median age 75 years, interquartile range [IQR] 70-81 years) and that for Time 2 included 76 participants (median age 80 years, IQR 76-83 years). We assessed cognition, logical memory, and living conditions, and measured serum oxytocin levels. Logical memory was evaluated using the Wechsler Memory Scale-Revised Logical Memory II delayed recall part A (LM II-DR). Serum oxytocin was measured using the enzyme immunoassay method. Results The median (IQR) oxytocin level among men (n = 20) was 34 (16-78) pg/mL at Time 1 and 53 (28-140) pg/mL at Time 2. The median (IQR) oxytocin level among women (n = 56) was 117 (35-412) pg/mL at Time 1 and 76 (32-145) pg/mL at Time 2. The median oxytocin level among women at Time 2 was significantly lower than that at Time 1 (p = 0.004). The multivariate analysis showed that for women, LM II-DR score at Time 2 was positively associated with oxytocin level at Time 1 (p = 0.042) and negatively associated with age (p = 0.02). Conclusions Our study suggests that maintaining high oxytocin levels in older women may prevent age-related decline in logical memory.
Collapse
Affiliation(s)
- Yutaka Kunitake
- Department of Psychiatry, Faculty of Medicine, Saga University, Saga, Japan,Corresponding author. 5-1-1 Nabeshima, Saga, 849-8501, Japan.
| | - Yoshito Mizoguchi
- Department of Psychiatry, Faculty of Medicine, Saga University, Saga, Japan
| | - Yoshiomi Imamura
- Department of Psychiatry, Faculty of Medicine, Saga University, Saga, Japan,Institute of Comparative Studies of International Cultures and Societies, Kurume University, Kurume, Fukuoka, Japan
| | - Hiroko Kunitake
- Department of Psychiatry, Faculty of Medicine, Saga University, Saga, Japan
| | - Ryuzo Orihashi
- Department of Psychiatry, Faculty of Medicine, Saga University, Saga, Japan,School of Nursing, Faculty of Medicine, Oita University, Yufu, Oita, Japan
| | - Jun Matsushima
- Department of Psychiatry, Faculty of Medicine, Saga University, Saga, Japan
| | - Hiroshi Tateishi
- Department of Psychiatry, Faculty of Medicine, Saga University, Saga, Japan
| | | | | | - Akira Monji
- Department of Psychiatry, Faculty of Medicine, Saga University, Saga, Japan,Wakahisa Hospital, Fukuoka, Japan
| |
Collapse
|
17
|
Coenjaerts M, Trimborn I, Adrovic B, Stoffel-Wagner B, Cahill L, Philipsen A, Hurlemann R, Scheele D. Exogenous estradiol and oxytocin modulate sex differences in hippocampal reactivity during the encoding of episodic memories. Neuroimage 2022; 264:119689. [PMID: 36349596 DOI: 10.1016/j.neuroimage.2022.119689] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/04/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022] Open
Abstract
Considerable evidence supports sex differences in episodic memory. The hormones estradiol and oxytocin both affect episodic memory and may contribute to these sex differences, but possible underlying hormonal interactions have not been tested in a sample involving both sexes. To this end, we conducted a randomized, placebo-controlled, parallel-group functional magnetic resonance imaging (fMRI) study including healthy free-cycling women (n = 111) and men (n = 115). The fMRI session was conducted under four experimental conditions: 1. transdermal estradiol (2 mg) and intranasal oxytocin (24 IU), 2. transdermal placebo and intranasal oxytocin, 3. transdermal estradiol and intranasal placebo, 4. transdermal placebo and intranasal placebo. Participants were scanned during the encoding of positive, neutral, and negative scenes. Recognition memory was tested three days following the scanning sessions without additional treatments. Under placebo, women showed a significantly better recognition memory and increased hippocampal responses to subsequently remembered items independent of the emotional valence compared to men. The separate treatments with either hormone significantly diminished this mnemonic sex difference and reversed the hippocampal activation pattern. However, the combined treatments produced no significant effect. Collectively, the results suggest that both hormones play a crucial role in modulating sex differences in episodic memory. Furthermore, possible antagonistic interactions between estradiol and oxytocin could explain previously observed opposing hormonal effects in women and men.
Collapse
Affiliation(s)
- Marie Coenjaerts
- Division of Medical Psychology, Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn 53105, Germany.
| | - Isabelle Trimborn
- Division of Medical Psychology, Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn 53105, Germany
| | - Berina Adrovic
- Division of Medical Psychology, Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn 53105, Germany
| | - Birgit Stoffel-Wagner
- Institute for Clinical Chemistry and Clinical Pharmacology, University of Bonn, Bonn 53105, Germany
| | - Larry Cahill
- Department of Neurobiology and Behavior, University of California, Irvine, CA 92697-3800, United States
| | - Alexandra Philipsen
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn 53105, Germany
| | - René Hurlemann
- Department of Psychiatry, School of Medicine & Health Sciences, University of Oldenburg, Oldenburg 26129, Germany; Research Center Neurosensory Science, University of Oldenburg, Oldenburg 26129, Germany
| | - Dirk Scheele
- Department of Social Neuroscience, Faculty of Psychology, Ruhr-University Bochum, Bochum 44780, Germany.
| |
Collapse
|
18
|
Manjila SB, Betty R, Kim Y. Missing pieces in decoding the brain oxytocin puzzle: Functional insights from mouse brain wiring diagrams. Front Neurosci 2022; 16:1044736. [PMID: 36389241 PMCID: PMC9643707 DOI: 10.3389/fnins.2022.1044736] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 10/06/2022] [Indexed: 10/24/2023] Open
Abstract
The hypothalamic neuropeptide, oxytocin (Oxt), has been the focus of research for decades due to its effects on body physiology, neural circuits, and various behaviors. Oxt elicits a multitude of actions mainly through its receptor, the Oxt receptor (OxtR). Despite past research to understand the central projections of Oxt neurons and OxtR- coupled signaling pathways in different brain areas, it remains unclear how this nonapeptide exhibits such pleiotropic effects while integrating external and internal information. Most reviews in the field either focus on neuroanatomy of the Oxt-OxtR system, or on the functional effects of Oxt in specific brain areas. Here, we provide a review by integrating brain wide connectivity of Oxt neurons and their downstream circuits with OxtR expression in mice. We categorize Oxt connected brain regions into three functional modules that regulate the internal state, somatic visceral, and cognitive response. Each module contains three neural circuits that process distinct behavioral effects. Broad innervations on functional circuits (e.g., basal ganglia for motor behavior) enable Oxt signaling to exert coordinated modulation in functionally inter-connected circuits. Moreover, Oxt acts as a neuromodulator of neuromodulations to broadly control the overall state of the brain. Lastly, we discuss the mismatch between Oxt projections and OxtR expression across various regions of the mouse brain. In summary, this review brings forth functional circuit-based analysis of Oxt connectivity across the whole brain in light of Oxt release and OxtR expression and provides a perspective guide to future studies.
Collapse
Affiliation(s)
| | | | - Yongsoo Kim
- Department of Neural and Behavioral Sciences, The Pennsylvania State University, Hershey, PA, United States
| |
Collapse
|
19
|
Experiences Shape Hippocampal Neuron Morphology and the Local Levels of CRHR1 and OTR. Cell Mol Neurobiol 2022:10.1007/s10571-022-01292-7. [PMID: 36239833 DOI: 10.1007/s10571-022-01292-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 09/26/2022] [Indexed: 11/03/2022]
Abstract
The dorsal hippocampus is involved in behavioral avoidance regulation. It is unclear how experiences such as the neonatal stress of maternal deprivation (MD) and post-weaning environmental enrichment (EE) affect avoidance behavior and the dorsal hippocampal parameters, including neuronal morphology, corticotrophin-releasing hormone (CRH) signaling, and oxytocin receptor (OTR) level. In male BALB/c mice, we found that MD impaired avoidance behavior in the step-on test compared to non-MD and EE rearing conditions could alleviate that partially. MD increased neuronal branches in the CA1 but decreased synaptic connection levels in the CA2, CA3, and DG. Meanwhile, MD increased the CA1's OTR levels, which negatively correlated with nucleus densities. MD also increased the CA1's and CA2's CRH levels, which positively correlated with CRHR1 levels. However, MD statistically elevated the CA3's CRH receptor 1 (CRHR1) levels, which negatively correlated with nucleus densities and, probably, synaptic connection levels in the CA3. The additive effects of MD and EE maintained similar CRH levels and CRHR1 levels as well as OTR levels in the hippocampal areas as the additive of non-MD and non-EE. However, the presence of MD and EE still decreased the CA1's neuronal branches and the CA2's and DG's synaptic connection levels. The study illustrates how MD and EE affect avoidance behaviors, hippocampal neuron morphology, and CRH and OTR levels. The results indicate that the late-life environmental improvement partially restores the alterations in dorsal hippocampal areas induced by early life stress.
Collapse
|
20
|
Mori M, Shizunaga H, Harada H, Tajiri Y, Murata Y, Terada K, Ohe K, Enjoji M. Oxytocin treatment improves dexamethasone‐induced depression‐like symptoms associated with enhancement of hippocampal
CREB‐BDNF
signaling in female mice. Neuropsychopharmacol Rep 2022; 42:356-361. [PMID: 35730145 PMCID: PMC9515699 DOI: 10.1002/npr2.12271] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 04/18/2022] [Accepted: 05/14/2022] [Indexed: 11/30/2022] Open
Abstract
Aims Chronic stress and glucocorticoid exposure are risk factors for depression. Oxytocin (OT) has been shown to have antistress and antidepressant‐like effects in male rodents. However, depression is twice as common in women than in men, and it remains unclear whether OT exerts antidepressant‐like effects in women with depression. Therefore, in this study, we investigated the therapeutic effect of chronic OT administration in a female mouse model of dexamethasone (DEX)‐induced depression. Methods Female C57BL/6J mice were administered saline (vehicle, s.c.), DEX (s.c.), or OT (i.p.) + DEX (s.c.) daily for 8 weeks, and then assessed for anxiety‐ and depression‐like behaviors. We also examined the hippocampal levels of phosphorylated cAMP response element‐binding protein (p‐CREB) and brain‐derived neurotrophic factor (BDNF), which are important mediators of the response to antidepressants. Results Simultaneous OT treatment blocked the adverse effects of DEX on emotional behaviors. Furthermore, it upregulated p‐CREB and BDNF in the hippocampus. Conclusion OT may exert antidepressant‐like effects by activating hippocampal CREB‐BDNF signaling in a female mouse model of depression.
Collapse
Affiliation(s)
- Masayoshi Mori
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical SciencesFukuoka UniversityFukuokaJapan
| | - Hiromi Shizunaga
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical SciencesFukuoka UniversityFukuokaJapan
| | - Hiroyoshi Harada
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical SciencesFukuoka UniversityFukuokaJapan
| | - Yuki Tajiri
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical SciencesFukuoka UniversityFukuokaJapan
| | - Yusuke Murata
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical SciencesFukuoka UniversityFukuokaJapan
| | - Kazuki Terada
- Division of Pharmacotherapeutics, Faculty of Pharmaceutical SciencesHimeji Dokkyo UniversityHimejiJapan
| | - Kenji Ohe
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical SciencesFukuoka UniversityFukuokaJapan
| | - Munechika Enjoji
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical SciencesFukuoka UniversityFukuokaJapan
| |
Collapse
|
21
|
Sened H, Zilcha-Mano S, Shamay-Tsoory S. Inter-brain plasticity as a biological mechanism of change in psychotherapy: A review and integrative model. Front Hum Neurosci 2022; 16:955238. [PMID: 36092652 PMCID: PMC9458846 DOI: 10.3389/fnhum.2022.955238] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 08/04/2022] [Indexed: 11/26/2022] Open
Abstract
Recent models of psychopathology and psychotherapy highlight the importance of interpersonal factors. The current review offers a biological perspective on these interpersonal processes by examining inter-brain synchrony-the coupling of brain activity between people interacting with one another. High inter-brain synchrony is associated with better relationships in therapy and in daily life, while deficits in the ability to achieve inter-brain synchrony are associated with a variety of psychological and developmental disorders. The review suggests that therapy improves patients' ability to achieve such synchrony through inter-brain plasticity-a process by which recurring exposure to high inter-brain synchrony leads to lasting change in a person's overall ability to synchronize. Therapeutic sessions provide repeated situations with high inter-brain synchrony. This can lead to a long-term increase in the ability to synchronize, first with the therapist, then generalized to other interpersonal relationships, ultimately leading to symptom reduction. The proposed inter-brain plasticity model offers a novel biological framework for understanding relational change in psychotherapy and its links to various forms of psychopathology and provides testable hypotheses for future research. Understanding this mechanism may help improve existing psychotherapy methods and develop new ones.
Collapse
Affiliation(s)
- Haran Sened
- Department of Psychology, University of Haifa, Haifa, Israel
| | | | | |
Collapse
|
22
|
Althammer F, Roy RK, Lefevre A, Najjar RS, Schoenig K, Bartsch D, Eliava M, Feresin RG, Hammock EA, Murphy AZ, Charlet A, Grinevich V, Stern JE. Altered PVN-to-CA2 hippocampal oxytocin pathway and reduced number of oxytocin-receptor expressing astrocytes in heart failure rats. J Neuroendocrinol 2022; 34:e13166. [PMID: 35657290 PMCID: PMC9495289 DOI: 10.1111/jne.13166] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 11/28/2022]
Abstract
Oxytocinergic actions within the hippocampal CA2 are important for neuromodulation, memory processing and social recognition. However, the source of the OTergic innervation, the cellular targets expressing the OT receptors (OTRs) and whether the PVN-to-CA2 OTergic system is altered during heart failure (HF), a condition recently associated with cognitive and mood decline, remains unknown. Using immunohistochemistry along with retrograde monosynaptic tracing, RNAscope and a novel OTR-Cre rat line, we show that the PVN (but not the supraoptic nucleus) is an important source of OTergic innervation to the CA2. These OTergic fibers were found in many instances in close apposition to OTR expressing cells within the CA2. Interestingly, while only a small proportion of neurons were found to express OTRs (~15%), this expression was much more abundant in CA2 astrocytes (~40%), an even higher proportion that was recently reported for astrocytes in the central amygdala. Using an established ischemic rat heart failure (HF) model, we found that HF resulted in robust changes in the PVN-to-CA2 OTergic system, both at the source and target levels. Within the PVN, we found an increased OT immunoreactivity, along with a diminished OTR expression in PVN neurons. Within the CA2 of HF rats, we observed a blunted OTergic innervation, along with a diminished OTR expression, which appeared to be restricted to CA2 astrocytes. Taken together, our studies highlight astrocytes as key cellular targets mediating OTergic PVN inputs to the CA2 hippocampal region. Moreover, they provide the first evidence for an altered PVN-to-CA2 OTergic system in HF rats, which could potentially contribute to previously reported cognitive and mood impairments in this animal model.
Collapse
Affiliation(s)
- Ferdinand Althammer
- Center for Neuroinflammation and Cardiometabolic Diseases, Georgia State University, Atlanta, GA, USA
| | - Ranjan K. Roy
- Center for Neuroinflammation and Cardiometabolic Diseases, Georgia State University, Atlanta, GA, USA
| | - Arthur Lefevre
- Department of Neuropeptide Research in Psychiatry, Central Institute of Mental Health, University of Heidelberg, Mannheim 68159, Germany
| | - Rami S. Najjar
- Department of Nutrition, Georgia State University, Atlanta, GA 30302, USA
| | - Kai Schoenig
- Department of Molecular Biology Central Institute of Mental Health J5 68159 Mannheim Germany
| | - Dusan Bartsch
- Department of Molecular Biology Central Institute of Mental Health J5 68159 Mannheim Germany
| | - Marina Eliava
- Department of Neuropeptide Research in Psychiatry, Central Institute of Mental Health, University of Heidelberg, Mannheim 68159, Germany
| | - Rafaela G. Feresin
- Department of Nutrition, Georgia State University, Atlanta, GA 30302, USA
| | - Elizabeth A.D. Hammock
- Department of Psychology and Program in Neuroscience, The Florida State University, Tallahassee, FL 32306, USA
| | - Anne Z. Murphy
- Neuroscience Institute, Georgia State University, Atlanta, USA
| | - Alexandre Charlet
- Centre National de la Recherche Scientifique and University of Strasbourg, Institute of Cellular and Integrative Neuroscience, 67000 Strasbourg, France
| | - Valery Grinevich
- Center for Neuroinflammation and Cardiometabolic Diseases, Georgia State University, Atlanta, GA, USA
- Department of Neuropeptide Research in Psychiatry, Central Institute of Mental Health, University of Heidelberg, Mannheim 68159, Germany
| | - Javier E. Stern
- Center for Neuroinflammation and Cardiometabolic Diseases, Georgia State University, Atlanta, GA, USA
| |
Collapse
|
23
|
Ye C, Cheng M, Ma L, Zhang T, Sun Z, Yu C, Wang J, Dou Y. Oxytocin Nanogels Inhibit Innate Inflammatory Response for Early Intervention in Alzheimer's Disease. ACS APPLIED MATERIALS & INTERFACES 2022; 14:21822-21835. [PMID: 35510352 DOI: 10.1021/acsami.2c00007] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Prevention of Alzheimer's disease (AD) is a global imperative, but reliable early interventions are currently lacking. Microglia-mediated chronic neuroinflammation is thought to occur in the early stage of AD and plays a critical role in AD pathogenesis. Here, oxytocin (OT)-loaded angiopep-2-modified chitosan nanogels (AOC NGs) were designed for early treatment of AD via inhibiting innate inflammatory response. Through the effective transcytosis of angiopep-2, AOC NGs were driven intravenously to cross the blood-brain barrier, enter the brain, and enrich in brain areas affected by AD. A large amount of OT was then released and specifically bound to the pathological upregulated OT receptor, thus effectively inhibiting microglial activation and reducing inflammatory cytokine levels through blocking the ERK/p38 MAPK and COX-2/iNOS NF-κB signaling pathways. Consecutive weekly intravenous administration of AOC NGs into 12-week-old young APP/PS1 mice, representing the early stage of AD, remarkably slowed the progression of Aβ deposition and neuronal apoptosis in the APP/PS1 mice as they aged and ultimately prevented cognitive impairment and delayed hippocampal atrophy. Together, the findings suggest that AOC NGs, which show good biosafety, can serve as a promising therapeutic candidate to combat neuroinflammation for early prevention of AD.
Collapse
Affiliation(s)
- Caihua Ye
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, P. R. China
| | - Meng Cheng
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, P. R. China
| | - Lin Ma
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, P. R. China
| | - Tianzhu Zhang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, P. R. China
| | - Zuhao Sun
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, P. R. China
| | - Chunshui Yu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, P. R. China
| | - Junping Wang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, P. R. China
| | - Yan Dou
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, P. R. China
| |
Collapse
|
24
|
Zagrean AM, Georgescu IA, Iesanu MI, Ionescu RB, Haret RM, Panaitescu AM, Zagrean L. Oxytocin and vasopressin in the hippocampus. VITAMINS AND HORMONES 2022; 118:83-127. [PMID: 35180939 DOI: 10.1016/bs.vh.2021.11.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Oxytocin (OXT) and vasopressin (AVP) are related neuropeptides that exert a wide range of effects on general health, homeostasis, development, reproduction, adaptability, cognition, social and nonsocial behaviors. The two peptides are mainly of hypothalamic origin and execute their peripheral and central physiological roles via OXT and AVP receptors, which are members of the G protein-coupled receptor family. These receptors, largely distributed in the body, are abundantly expressed in the hippocampus, a brain region particularly vulnerable to stress exposure and various lesions. OXT and AVP have important roles in the hippocampus, by modulating important processes like neuronal excitability, network oscillatory activity, synaptic plasticity, and social recognition memory. This chapter includes an overview regarding OXT and AVP structure, synthesis, receptor distribution, and functions, focusing on their relationship with the hippocampus and mechanisms by which they influence hippocampal activity. Brief information regarding hippocampal structure and susceptibility to lesions is also provided. The roles of OXT and AVP in neurodevelopment and adult central nervous system function and disorders are highlighted, discussing their potential use as targeted therapeutic tools in neuropsychiatric diseases.
Collapse
Affiliation(s)
- Ana-Maria Zagrean
- Division of Physiology and Neuroscience, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania.
| | - Ioana-Antoaneta Georgescu
- Division of Physiology and Neuroscience, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Mara Ioana Iesanu
- Division of Physiology and Neuroscience, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Rosana-Bristena Ionescu
- Division of Physiology and Neuroscience, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania; Department of Clinical Neurosciences and National Institute for Health Research (NIHR), Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom
| | - Robert Mihai Haret
- Division of Physiology and Neuroscience, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Anca Maria Panaitescu
- Filantropia Clinical Hospital Bucharest, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Leon Zagrean
- Division of Physiology and Neuroscience, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| |
Collapse
|
25
|
Amato S, Averna M, Guidolin D, Pedrazzi M, Pelassa S, Capraro M, Passalacqua M, Bozzo M, Gatta E, Anderlini D, Maura G, Agnati LF, Cervetto C, Marcoli M. Heterodimer of A2A and Oxytocin Receptors Regulating Glutamate Release in Adult Striatal Astrocytes. Int J Mol Sci 2022; 23:ijms23042326. [PMID: 35216441 PMCID: PMC8879615 DOI: 10.3390/ijms23042326] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/16/2022] [Accepted: 02/18/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Roles of astrocytes in the modulatory effects of oxytocin (OT) in central nervous system are increasingly considered. Nevertheless, OT effects on gliotransmitter release have been neglected. METHODS In purified astrocyte processes from adult rat striatum, we assessed OT receptor (OTR) and adenosine A2A receptor expression by confocal analysis. The effects of receptors activation on glutamate release from the processes were evaluated; A2A-OTR heteromerization was assessed by co-immunoprecipitation and PLA. Structure of the possible heterodimer of A2A and OT receptors was estimated by a bioinformatic approach. RESULTS Both A2A and OT receptors were expressed on the same astrocyte processes. Evidence for A2A-OTR receptor-receptor interaction was obtained by measuring the release of glutamate: OT inhibited the evoked glutamate release, while activation of A2A receptors, per se ineffective, abolished the OT effect. Biochemical and biophysical evidence for A2A-OTR heterodimers on striatal astrocytes was also obtained. The residues in the transmembrane domains 4 and 5 of both receptors are predicted to be mainly involved in the heteromerization. CONCLUSIONS When considering effects of OT in striatum, modulation of glutamate release from the astrocyte processes and of glutamatergic synapse functioning, and the interaction with A2A receptors on the astrocyte processes should be taken into consideration.
Collapse
Affiliation(s)
- Sarah Amato
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genova, Viale Cembrano 4, 16148 Genova, Italy; (S.A.); (S.P.); (G.M.)
| | - Monica Averna
- Department of Experimental Medicine, Section of Biochemistry, University of Genova, Viale Benedetto XV 1, 16132 Genova, Italy; (M.A.); (M.P.); (M.C.); (M.P.)
| | - Diego Guidolin
- Department of Neuroscience, University of Padova, Via Gabelli 63, 35122 Padova, Italy;
| | - Marco Pedrazzi
- Department of Experimental Medicine, Section of Biochemistry, University of Genova, Viale Benedetto XV 1, 16132 Genova, Italy; (M.A.); (M.P.); (M.C.); (M.P.)
| | - Simone Pelassa
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genova, Viale Cembrano 4, 16148 Genova, Italy; (S.A.); (S.P.); (G.M.)
| | - Michela Capraro
- Department of Experimental Medicine, Section of Biochemistry, University of Genova, Viale Benedetto XV 1, 16132 Genova, Italy; (M.A.); (M.P.); (M.C.); (M.P.)
| | - Mario Passalacqua
- Department of Experimental Medicine, Section of Biochemistry, University of Genova, Viale Benedetto XV 1, 16132 Genova, Italy; (M.A.); (M.P.); (M.C.); (M.P.)
- Italian Institute of Biostructures and Biosystems, Viale delle Medaglie d’Oro 305, 00136 Roma, Italy
| | - Matteo Bozzo
- Department of Earth, Environment and Life Sciences, University of Genova, Viale Benedetto XV 5, 16132 Genova, Italy;
| | - Elena Gatta
- DIFILAB, Department of Physics, University of Genoa, Via Dodecaneso 33, 16146 Genova, Italy;
| | - Deanna Anderlini
- Centre for Sensorimotor Performance, The University of Queensland, Brisbane, Blair Drive, St. Lucia, QLD 4067, Australia;
| | - Guido Maura
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genova, Viale Cembrano 4, 16148 Genova, Italy; (S.A.); (S.P.); (G.M.)
| | - Luigi F. Agnati
- Department of Biomedical, Metabolic Sciences and Neuroscience, University of Modena and Reggio Emilia, Via Campi 287, 41125 Modena, Italy;
| | - Chiara Cervetto
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genova, Viale Cembrano 4, 16148 Genova, Italy; (S.A.); (S.P.); (G.M.)
- Correspondence: (C.C.); (M.M.)
| | - Manuela Marcoli
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genova, Viale Cembrano 4, 16148 Genova, Italy; (S.A.); (S.P.); (G.M.)
- Center of Excellence for Biomedical Research, University of Genova, Viale Benedetto XV 9, 16132 Genova, Italy
- Correspondence: (C.C.); (M.M.)
| |
Collapse
|
26
|
Glavonic E, Mitic M, Adzic M. Hallucinogenic drugs and their potential for treating fear-related disorders: Through the lens of fear extinction. J Neurosci Res 2022; 100:947-969. [PMID: 35165930 DOI: 10.1002/jnr.25017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 12/17/2021] [Accepted: 01/05/2022] [Indexed: 12/29/2022]
Abstract
Fear-related disorders, mainly phobias and post-traumatic stress disorder, are highly prevalent, debilitating disorders that pose a significant public health problem. They are characterized by aberrant processing of aversive experiences and dysregulated fear extinction, leading to excessive expression of fear and diminished quality of life. The gold standard for treating fear-related disorders is extinction-based exposure therapy (ET), shown to be ineffective for up to 35% of subjects. Moreover, ET combined with traditional pharmacological treatments for fear-related disorders, such as selective serotonin reuptake inhibitors, offers no further advantage to patients. This prompted the search for ways to improve ET outcomes, with current research focused on pharmacological agents that can augment ET by strengthening fear extinction learning. Hallucinogenic drugs promote reprocessing of fear-imbued memories and induce positive mood and openness, relieving anxiety and enabling the necessary emotional engagement during psychotherapeutic interventions. Mechanistically, hallucinogens induce dynamic structural and functional neuroplastic changes across the fear extinction circuitry and temper amygdala's hyperreactivity to threat-related stimuli, effectively mitigating one of the hallmarks of fear-related disorders. This paper provides the first comprehensive review of hallucinogens' potential to alleviate symptoms of fear-related disorders by focusing on their effects on fear extinction and the underlying molecular mechanisms. We overview both preclinical and clinical studies and emphasize the advantages of hallucinogenic drugs over current first-line treatments. We highlight 3,4-methylenedioxymethamphetamine and ketamine as the most effective therapeutics for fear-related disorders and discuss the potential molecular mechanisms responsible for their potency with implications for improving hallucinogen-assisted psychotherapy.
Collapse
Affiliation(s)
- Emilija Glavonic
- Department of Molecular Biology and Endocrinology, "VINČA" Institute of Nuclear Sciences-National Institute of thе Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Milos Mitic
- Department of Molecular Biology and Endocrinology, "VINČA" Institute of Nuclear Sciences-National Institute of thе Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Miroslav Adzic
- Department of Molecular Biology and Endocrinology, "VINČA" Institute of Nuclear Sciences-National Institute of thе Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
27
|
Janković SM, Đešević M. Advancements in neuroactive peptides in seizures. Expert Rev Neurother 2022; 22:129-143. [DOI: 10.1080/14737175.2022.2031983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Slobodan M. Janković
- - University of Kragujevac, Faculty of Medical Sciences, Kragujevac, Serbia
- University Clinical Center, Kragujevac, Serbia
| | - Miralem Đešević
- - Private Policlinic Center Eurofarm Sarajevo, Cardiology Department, Sarajevo, Bosnia and Herzegovina
| |
Collapse
|
28
|
Faraji J, Lotfi H, Moharrerie A, Jafari SY, Soltanpour N, Tamannaiee R, Marjani K, Roudaki S, Naseri F, Moeeini R, Metz GAS. Regional Differences in BDNF Expression and Behavior as a Function of Sex and Enrichment Type: Oxytocin Matters. Cereb Cortex 2022; 32:2985-2999. [DOI: 10.1093/cercor/bhab395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/04/2021] [Accepted: 10/05/2021] [Indexed: 01/01/2023] Open
Abstract
Abstract
The early environment is critical to brain development, but the relative contribution of physical versus social stimulation is unclear. Here, we investigated in male and female rats the response to early physical and social environmental enrichment in relation to oxytocin (OT) and brain-derived neurotrophic factor (BDNF) expression. The findings show that males and females respond differently to prolonged sensorimotor stimulation from postnatal days 21–110 in terms of functional, structural, and molecular changes in the hippocampus versus medial prefrontal cortex (mPFC). Physical enrichment promoted motor and cognitive functions and hippocampal BDNF mRNA and protein expression in both sexes. Combined physical and social enrichment, however, promoted functional and structural gain in females. These changes were accompanied by elevated plasma oxytocin (OT) levels and BDNF mRNA expression in the mPFC, while the hippocampus was not affected. Administration of an OT antagonist in females blocked the beneficial effects of enrichment and led to reduced cortical BDNF signaling. These findings suggest that an OT-based mechanism selectively stimulates a region-specific BDNF response which is dependent on the type of experience.
Collapse
|
29
|
Hylin MJ, Watanasriyakul WT, Hite N, McNeal N, Grippo AJ. Morphological changes in the basolateral amygdala and behavioral disruptions associated with social isolation. Behav Brain Res 2022; 416:113572. [PMID: 34499940 PMCID: PMC8492539 DOI: 10.1016/j.bbr.2021.113572] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/25/2021] [Accepted: 09/02/2021] [Indexed: 02/07/2023]
Abstract
Social isolation and the disruption of established social bonds contribute to several physical and psychological health issues. Animal models are a useful tool for investigating consequences of social stress, including social isolation. The current study examined morphological changes in the basolateral amygdala (BLA) and affect-related behavioral and endocrine changes due to prolonged social isolation, using the translational prairie vole model (Microtus ochrogaster). Adult male prairie voles were either socially paired (control) or isolated from a same-sex sibling for 4 weeks. Following this 4-week period, a subset of animals (n = 6 per condition) underwent a series of behavioral tasks to assess affective, social, and stress-coping behaviors. Plasma was collected following the last behavioral task for stressor-induced endocrine assays. Brains were collected from a separate subset of animals (n = 10 per condition) following the 4-week social housing period for dendritic structure analyses in the BLA. Social isolation was associated with depressive- and anxiety-like behaviors, as well as elevated oxytocin reactivity following a social stressor. Social isolation was also associated with altered amount of dendritic material in the BLA, with an increase in spine density. These results provide further evidence that social isolation may lead to the development of affective disorders. Dysfunction in the oxytocin system and BLA remodeling may mediate these behavioral changes. Further research will promote an understanding of the connections between oxytocin function and structural changes in the BLA in the context of social stress. This research can facilitate novel treatments for alleviating or preventing behavioral and physiological consequences of social stressors in humans.
Collapse
Affiliation(s)
- Michael J. Hylin
- Department of Psychology, Southern Illinois University, Carbondale, IL, 62901
| | | | - Natalee Hite
- Department of Physiology, Southern Illinois University, Carbondale, IL, 62901
| | - Neal McNeal
- Department of Psychology, Northern Illinois University, DeKalb, IL, 60115
| | - Angela J. Grippo
- Department of Psychology, Northern Illinois University, DeKalb, IL, 60115,Author for Correspondence: Angela J. Grippo, Ph.D.Department of PsychologyNorthern Illinois University1425 W. Lincoln HighwayDeKalb, IL, 60115 815-753-0372
| |
Collapse
|
30
|
A short period of early life oxytocin treatment rescues social behavior dysfunction via suppression of hippocampal hyperactivity in male mice. Mol Psychiatry 2022; 27:4157-4171. [PMID: 35840800 PMCID: PMC9718675 DOI: 10.1038/s41380-022-01692-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/22/2022] [Accepted: 06/29/2022] [Indexed: 02/07/2023]
Abstract
Early sensory experiences interact with genes to shape precise neural circuits during development. This process is vital for proper brain function in adulthood. Neurological dysfunctions caused by environmental alterations and/or genetic mutation may share the same molecular or cellular mechanisms. Here, we show that early life bilateral whisker trimming (BWT) subsequently affects social discrimination in adult male mice. Enhanced activation of the hippocampal dorsal CA3 (dCA3) in BWT mice was observed during social preference tests. Optogenetic activation of dCA3 in naive mice impaired social discrimination, whereas chemogenetic silencing of dCA3 rescued social discrimination deficit in BWT mice. Hippocampal oxytocin (OXT) is reduced after whisker trimming. Neonatal intraventricular compensation of OXT relieved dCA3 over-activation and prevented social dysfunction. Neonatal knockdown of OXT receptor in dCA3 mimics the effects of BWT, and cannot be rescued by OXT treatment. Social behavior deficits in a fragile X syndrome mouse model (Fmr1 KO mice) could also be recovered by early life OXT treatment, through negating dCA3 over-activation. Here, a possible avenue to prevent social dysfunction is uncovered.
Collapse
|
31
|
Oxytocin and Food Intake Control: Neural, Behavioral, and Signaling Mechanisms. Int J Mol Sci 2021; 22:ijms221910859. [PMID: 34639199 PMCID: PMC8509519 DOI: 10.3390/ijms221910859] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 09/29/2021] [Accepted: 10/03/2021] [Indexed: 11/16/2022] Open
Abstract
The neuropeptide oxytocin is produced in the paraventricular hypothalamic nucleus and the supraoptic nucleus of the hypothalamus. In addition to its extensively studied influence on social behavior and reproductive function, central oxytocin signaling potently reduces food intake in both humans and animal models and has potential therapeutic use for obesity treatment. In this review, we highlight rodent model research that illuminates various neural, behavioral, and signaling mechanisms through which oxytocin’s anorexigenic effects occur. The research supports a framework through which oxytocin reduces food intake via amplification of within-meal physiological satiation signals rather than by altering between-meal interoceptive hunger and satiety states. We also emphasize the distributed neural sites of action for oxytocin’s effects on food intake and review evidence supporting the notion that central oxytocin is communicated throughout the brain, at least in part, through humoral-like volume transmission. Finally, we highlight mechanisms through which oxytocin interacts with various energy balance-associated neuropeptide and endocrine systems (e.g., agouti-related peptide, melanin-concentrating hormone, leptin), as well as the behavioral mechanisms through which oxytocin inhibits food intake, including effects on nutrient-specific ingestion, meal size control, food reward-motivated responses, and competing motivations.
Collapse
|
32
|
Yang LN, Chen K, Yin XP, Liu D, Zhu LQ. The Comprehensive Neural Mechanism of Oxytocin in Analgesia. Curr Neuropharmacol 2021; 20:147-157. [PMID: 34525934 PMCID: PMC9199553 DOI: 10.2174/1570159x19666210826142107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 05/19/2021] [Accepted: 06/15/2021] [Indexed: 11/22/2022] Open
Abstract
Oxytocin (OXT) is a nine amino acid neuropeptide hormone that has become one of the most intensively studied molecules in the past few decades. The vast majority of OXT is synthesized in the periventricular nucleus and supraoptic nucleus of the hypothalamus, and a few are synthesized in some peripheral organs (such as the uterus, ovaries, adrenal glands, thymus, pancreas, etc.) OXT modulates a series of physiological processes, including lactation, parturition, as well as some social behaviors. In addition, more and more attention has recently been focused on the analgesic effects of oxytocin. It has been reported that OXT can relieve tension and pain without other adverse effects. However, the critical role and detailed mechanism of OXT in analgesia remain unclear. This review aims to summarize the mechanism of OXT in analgesia and some ideas about the mechanism.
Collapse
Affiliation(s)
- Liu-Nan Yang
- Department of Pathophysiology, Key Lab of Neurological Disorder of Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030. China
| | - Kai Chen
- Department of Pathophysiology, Key Lab of Neurological Disorder of Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030. China
| | - Xiao-Ping Yin
- Department of Neurology, Affiliated Hospital of Jiujiang University, Jiujiang. China
| | - Dan Liu
- Department of Medical Genetics, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030. China
| | - Ling-Qiang Zhu
- Department of Pathophysiology, Key Lab of Neurological Disorder of Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030. China
| |
Collapse
|
33
|
Strzelewicz AR, Vecchiarelli HA, Rondón-Ortiz AN, Raneri A, Hill MN, Kentner AC. Interactive effects of compounding multidimensional stressors on maternal and male and female rat offspring outcomes. Horm Behav 2021; 134:105013. [PMID: 34171577 PMCID: PMC8403628 DOI: 10.1016/j.yhbeh.2021.105013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 10/21/2022]
Abstract
Exposure to adverse childhood experiences (ACEs) is a risk factor for the development of psychiatric disorders in addition to cardiovascular associated diseases. This risk is elevated when the cumulative burden of ACEs is increased. Laboratory animals can be used to model the changes (as well as the underlying mechanisms) that result in response to adverse events. In this study, using male and female Sprague Dawley rats, we examined the impact of increasing stress burden, utilizing both two adverse early life experiences (parental/offspring high fat diet + limited bedding exposure) and three adverse early life experiences (parental/offspring high fat diet + limited bedding exposure + neonatal inflammation), on maternal care quality and offspring behavior. Additionally, we measured hormones and hippocampal gene expression related to stress. We found that the adverse perinatal environment led to a compensatory increase in maternal care. Moreover, these dams had reduced maternal expression of oxytocin receptor, compared to standard housed dams, in response to acute stress on postnatal day (P)22. In offspring, the two-hit and three-hit models resulted in a hyperlocomotor phenotype and increased body weights. Plasma leptin and hippocampal gene expression of corticotropin releasing hormone (Chrh)1 and Crhr2 were elevated (males) while expression of oxytocin was reduced (females) following acute stress. On some measures (e.g., hyperlocomotion, leptin), the magnitude of change was lower in the three-hit compared to the two-hit model. This suggests that multiple early adverse events can have interactive, and often unpredictable, impacts, highlighting the importance of modeling complex interactions amongst stressors during development.
Collapse
Affiliation(s)
- Arielle R Strzelewicz
- School of Pharmacy, Massachusetts College of Pharmacy and Health Sciences, Boston, MA 02115, United States
| | - Haley A Vecchiarelli
- Divisions of Medical Sciences, University of Victoria, BC V8P 5C2, Canada; Neuroscience Graduate Program, Hotchkiss Brain Institute, Mathison Centre for Mental Health, Research and Education, Cumming School of Medicine, University of Calgary, AB T2N 1N4, Canada
| | - Alejandro N Rondón-Ortiz
- School of Pharmacy, Massachusetts College of Pharmacy and Health Sciences, Boston, MA 02115, United States
| | - Anthony Raneri
- School of Arts & Sciences, Massachusetts College of Pharmacy and Health Sciences, Boston, MA 02115, United States
| | - Matthew N Hill
- Neuroscience Graduate Program, Hotchkiss Brain Institute, Mathison Centre for Mental Health, Research and Education, Cumming School of Medicine, University of Calgary, AB T2N 1N4, Canada
| | - Amanda C Kentner
- School of Arts & Sciences, Massachusetts College of Pharmacy and Health Sciences, Boston, MA 02115, United States.
| |
Collapse
|
34
|
Wirth S, Soumier A, Eliava M, Derdikman D, Wagner S, Grinevich V, Sirigu A. Territorial blueprint in the hippocampal system. Trends Cogn Sci 2021; 25:831-842. [PMID: 34281765 DOI: 10.1016/j.tics.2021.06.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/22/2021] [Accepted: 06/22/2021] [Indexed: 12/21/2022]
Abstract
As we skillfully navigate through familiar places, neural computations of distances and coordinates escape our attention. However, we perceive clearly the division of space into socially meaningful territories. 'My space' versus 'your space' is a distinction familiar to all of us. Spatial frontiers are social in nature since they regulate individuals' access to utilities in space depending on hierarchy and affiliation. How does the brain integrate spatial geometry with social territory? We propose that the action of oxytocin (OT) in the entorhinal-hippocampal regions supports this process. Grounded on the functional role of the hypothalamic neuropeptide in the hippocampal system, we show how OT-induced plasticity may bias the geometrical coding of place and grid cells to represent social territories.
Collapse
Affiliation(s)
- Sylvia Wirth
- Institute of Cognitive Science Marc Jeannerod, CNRS and University of Lyon, Etablissement 1, Bron, France.
| | - Amelie Soumier
- iMIND Center of Excellence for Autism, Le Vinatier Hospital, Bron, France
| | - Marina Eliava
- Department of Neuropeptide Research in Psychiatry, Central Institute of Mental Health, University of Heidelberg, Mannheim, Germany
| | - Dori Derdikman
- Neuroscience Department, Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa, Israel
| | - Shlomo Wagner
- Sagol Department of Neurobiology, Integrated Brain and Behavior Research Center, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Valery Grinevich
- Department of Neuropeptide Research in Psychiatry, Central Institute of Mental Health, University of Heidelberg, Mannheim, Germany
| | - Angela Sirigu
- Institute of Cognitive Science Marc Jeannerod, CNRS and University of Lyon, Etablissement 1, Bron, France; iMIND Center of Excellence for Autism, Le Vinatier Hospital, Bron, France.
| |
Collapse
|
35
|
Baptista T, de Azeredo LA, Zaparte A, Viola TW, Coral SC, Nagai MA, Mangone FR, Pavanelli AC, Schuch JB, Mardini V, Szobot CM, Grassi-Oliveira R. Oxytocin Receptor Exon III Methylation in the Umbilical Cord Blood of Newborns With Prenatal Exposure to Crack Cocaine. Front Cell Dev Biol 2021; 9:639287. [PMID: 34178979 PMCID: PMC8220805 DOI: 10.3389/fcell.2021.639287] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 05/11/2021] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Prenatal cocaine exposure (PCE) is associated with behavioral, cognitive, and social consequences in children that might persist into later development. However, there are still few data concerning epigenetic mechanisms associated with the effects of gestational cocaine exposure, particularly in human newborns. AIMS We investigated the effects of PCE on DNA methylation patterns of the Oxytocin Receptor (OXTR) gene in the umbilical cord blood (UCB). The relationship between UCB DNA methylation levels and the severity of the mother's cocaine use during pregnancy was also evaluated. METHODS In this cross-sectional study, 28 UCB samples of newborns with a history of crack cocaine exposure in utero and 30 UCB samples of non-exposed newborns (NEC) were compared for DNA methylation levels at two genomic loci located in exon III of the OXTR gene (OXTR1 and OXTR2) through pyrosequencing. Maternal psychopathology was investigated using the Mini International Neuropsychiatric Interview, and substance use characteristics and addiction severity were assessed using the Smoking and Substance Involvement Screening Test (ASSIST). RESULTS No differences between newborns with a history of PCE and NEC were observed in OXTR1 or OXTR2 DNA methylation levels. However, regression analyses showed that maternal addiction severity for crack cocaine use predicted OXTR1 DNA methylation in newborns. CONCLUSION These data suggest that OXTR methylation levels in the UCB of children are affected by the severity of maternal crack cocaine usage. Larger studies are likely to detect specific changes in DNA methylation relevant to the consequences of PCE.
Collapse
Affiliation(s)
- Talita Baptista
- Developmental Cognitive Neuroscience Lab, School of Medicine, Brain Institute of the Rio Grande do Sul (InsCer), Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Lucas Araújo de Azeredo
- Developmental Cognitive Neuroscience Lab, School of Medicine, Brain Institute of the Rio Grande do Sul (InsCer), Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Aline Zaparte
- Developmental Cognitive Neuroscience Lab, School of Medicine, Brain Institute of the Rio Grande do Sul (InsCer), Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Thiago Wendt Viola
- Developmental Cognitive Neuroscience Lab, School of Medicine, Brain Institute of the Rio Grande do Sul (InsCer), Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Sayra Catalina Coral
- Developmental Cognitive Neuroscience Lab, School of Medicine, Brain Institute of the Rio Grande do Sul (InsCer), Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Maria Aparecida Nagai
- Discipline of Oncology, Department of Radiology and Oncology, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
- Laboratory of Molecular Genetics, Center for Translational Research in Oncology, Cancer Institute of the State of São Paulo, São Paulo, Brazil
| | - Flávia Rotea Mangone
- Laboratory of Molecular Genetics, Center for Translational Research in Oncology, Cancer Institute of the State of São Paulo, São Paulo, Brazil
| | - Ana Carolina Pavanelli
- Laboratory of Molecular Genetics, Center for Translational Research in Oncology, Cancer Institute of the State of São Paulo, São Paulo, Brazil
| | - Jaqueline B. Schuch
- Graduate Program in Psychiatry and Behavioral Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Victor Mardini
- Graduate Program in Psychiatry and Behavioral Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Child and Adolescent Psychiatry Service (SPIA), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
| | - Claudia M. Szobot
- Graduate Program in Psychiatry and Behavioral Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Child and Adolescent Psychiatry Service (SPIA), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
| | - Rodrigo Grassi-Oliveira
- Developmental Cognitive Neuroscience Lab, School of Medicine, Brain Institute of the Rio Grande do Sul (InsCer), Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
36
|
Sanna F, De Luca MA. The potential role of oxytocin in addiction: What is the target process? Curr Opin Pharmacol 2021; 58:8-20. [PMID: 33845377 DOI: 10.1016/j.coph.2021.03.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/26/2021] [Accepted: 03/05/2021] [Indexed: 01/27/2023]
Abstract
Oxytocin regulates a variety of centrally-mediated functions, ranging from socio-sexual behavior, maternal care, and affiliation to fear, stress, anxiety. In the past years, both clinical and preclinical studies characterized oxytocin for its modulatory role on reward-related neural substrates mainly involving the interplay with the mesolimbic and mesocortical dopaminergic pathways. This suggests a role of this nonapeptide on the neurobiology of addiction raising the possibility of its therapeutic use. Although far from a precise knowledge of the underlying mechanisms, the putative role of the bed nucleus of the stria terminalis as a key structure where oxytocin may rebalance altered neurochemical processes and neuroplasticity involved in dependence and relapse has been highlighted. This view opens new opportunities to address the health problems related to drug misuse.
Collapse
Affiliation(s)
- Fabrizio Sanna
- Department of Biomedical Sciences, University of Cagliari, Monserrato, Cagliari 09042, Italy
| | | |
Collapse
|
37
|
Short- and Long-Term Social Recognition Memory Are Differentially Modulated by Neuronal Histamine. Biomolecules 2021; 11:biom11040555. [PMID: 33918940 PMCID: PMC8069616 DOI: 10.3390/biom11040555] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/06/2021] [Accepted: 04/08/2021] [Indexed: 12/12/2022] Open
Abstract
The ability of recognizing familiar conspecifics is essential for many forms of social interaction including reproduction, establishment of dominance hierarchies, and pair bond formation in monogamous species. Many hormones and neurotransmitters have been suggested to play key roles in social discrimination. Here we demonstrate that disruption or potentiation of histaminergic neurotransmission differentially affects short (STM) and long-term (LTM) social recognition memory. Impairments of LTM, but not STM, were observed in histamine-deprived animals, either chronically (Hdc−/− mice lacking the histamine-synthesizing enzyme histidine decarboxylase) or acutely (mice treated with the HDC irreversible inhibitor α-fluoromethylhistidine). On the contrary, restriction of histamine release induced by stimulation of the H3R agonist (VUF16839) impaired both STM and LTM. H3R agonism-induced amnesic effect was prevented by pre-treatment with donepezil, an acetylcholinesterase inhibitor. The blockade of the H3R with ciproxifan, which in turn augmented histamine release, resulted in a procognitive effect. In keeping with this hypothesis, the procognitive effect of ciproxifan was absent in both Hdc−/− and αFMH-treated mice. Our results suggest that brain histamine is essential for the consolidation of LTM but not STM in the social recognition test. STM impairments observed after H3R stimulation are probably related to their function as heteroreceptors on cholinergic neurons.
Collapse
|
38
|
LncRNA Gm14205 induces astrocytic NLRP3 inflammasome activation via inhibiting oxytocin receptor in postpartum depression. Biosci Rep 2021; 40:225881. [PMID: 32706026 PMCID: PMC7414522 DOI: 10.1042/bsr20200672] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 07/04/2020] [Accepted: 07/14/2020] [Indexed: 12/18/2022] Open
Abstract
Postpartum depression (PPD) is a kind of mental disorder characterized by persistent low emotions in puerperium. The most significant physiological change in postpartum is lactation which is regulated by oxytocin receptor (OXTR). However, whether OXTR is related to pathological process of PPD and the potential mechanism still remain unclear. In the present study, we prepared hormone-simulated pregnancy (HSP)-induced PPD mouse model and found that the protein level of OXTR in hippocampus of PPD model mice was down-regulated and Nod-like receptor protein 3 (NLRP3) inflammasome was activated. We identified five long non-coding RNAs (lncRNAs) related to PPD by transcriptome sequencing, including three up-regulated and two down-regulated. The five lncRNAs were associated with the signaling pathway of OXTR according to the bioinformatics analysis. Furthermore, we focused on one of the five lncRNAs, Gm14205, and found that it targeted OXTR which inhibited astrocytic NLRP3 inflammasome activation in hippocampal primary astrocytes. These findings illustrate that OXTR has protective effects in PPD by inhibiting NLRP3 inflammasome activation and provides a new strategy for targeting lncRNA Gm14205 in the pathogenesis of PPD.
Collapse
|
39
|
Lehr AB, Kumar A, Tetzlaff C, Hafting T, Fyhn M, Stöber TM. CA2 beyond social memory: Evidence for a fundamental role in hippocampal information processing. Neurosci Biobehav Rev 2021; 126:398-412. [PMID: 33775693 DOI: 10.1016/j.neubiorev.2021.03.020] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/16/2021] [Accepted: 03/18/2021] [Indexed: 01/16/2023]
Abstract
Hippocampal region CA2 has received increased attention due to its importance in social recognition memory. While its specific function remains to be identified, there are indications that CA2 plays a major role in a variety of situations, widely extending beyond social memory. In this targeted review, we highlight lines of research which have begun to converge on a more fundamental role for CA2 in hippocampus-dependent memory processing. We discuss recent proposals that speak to the computations CA2 may perform within the hippocampal circuit.
Collapse
Affiliation(s)
- Andrew B Lehr
- Department of Computational Neuroscience, University of Göttingen, Germany; Bernstein Center for Computational Neuroscience, University of Göttingen, Germany; Department of Computational Physiology, Simula Research Laboratory, Lysaker, Norway; Centre for Integrative Neuroplasticity, University of Oslo, Norway.
| | - Arvind Kumar
- Department of Computational Science and Technology, KTH Royal Institute of Technology, Sweden
| | - Christian Tetzlaff
- Department of Computational Neuroscience, University of Göttingen, Germany; Bernstein Center for Computational Neuroscience, University of Göttingen, Germany
| | - Torkel Hafting
- Centre for Integrative Neuroplasticity, University of Oslo, Norway; Institute of Basic Medical Sciences, University of Oslo, Norway
| | - Marianne Fyhn
- Centre for Integrative Neuroplasticity, University of Oslo, Norway; Department of Biosciences, University of Oslo, Norway
| | - Tristan M Stöber
- Department of Computational Physiology, Simula Research Laboratory, Lysaker, Norway; Centre for Integrative Neuroplasticity, University of Oslo, Norway; Department of Informatics, University of Oslo, Norway.
| |
Collapse
|
40
|
Kunitake Y, Imamura Y, Mizoguchi Y, Matsushima J, Tateishi H, Murakawa-Hirachi T, Nabeta H, Kawashima T, Kojima N, Yamada S, Monji A. Serum Oxytocin Levels and Logical Memory in Older People in Rural Japan. J Geriatr Psychiatry Neurol 2021; 34:156-161. [PMID: 32233820 DOI: 10.1177/0891988720915526] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
OBJECTIVE The present study aimed to investigate the relationship between serum oxytocin (OT) and logical memory among older people in rural Japan. METHODS This was a cross-sectional study using a survey conducted from October 2009 through March 2011. Most of the study was conducted as part of a national prevalence survey of dementia in Japan. The final sample comprised 385 community-dwelling people aged 65 years or older living in rural Japan. The mean age and standard deviation were 75.7 ± 6.76 years (144 men, mean age 75.0 ± 6.48 years; 241 women, mean age 76.2 ± 6.91 years). The participants underwent screening examinations for a prevalence survey of dementia. The screening examinations were the Mini-Mental State Examination, Clinical Dementia Rating, and "logical memory A" from the Wechsler Memory Scale-Revised (WMSR). We used the WMSR Logical Memory II delayed recall score (LM II-DR) to assess logical memory. Levels of serum OT were obtained using the enzyme immunoassay method. RESULTS Serum OT levels were significantly higher among women than men. The present study revealed that serum OT levels were positively associated with LM II-DR in older women living in rural Japan in multiple linear regression analyses. CONCLUSIONS The present results suggested a positive correlation between OT and logical memory in older women living in rural Japan.
Collapse
Affiliation(s)
- Yutaka Kunitake
- Department of Psychiatry, 476002Faculty of Medicine, Saga University, Saga, Japan
| | - Yoshiomi Imamura
- Department of Psychiatry, 476002Faculty of Medicine, Saga University, Saga, Japan.,Institute of Comparative Studies of International Cultures and Societies, Kurume University, Kurume, Fukuoka, Japan
| | - Yoshito Mizoguchi
- Department of Psychiatry, 476002Faculty of Medicine, Saga University, Saga, Japan
| | - Jun Matsushima
- Department of Psychiatry, 476002Faculty of Medicine, Saga University, Saga, Japan
| | - Hiroshi Tateishi
- Department of Psychiatry, 476002Faculty of Medicine, Saga University, Saga, Japan
| | | | | | | | | | | | - Akira Monji
- Department of Psychiatry, 476002Faculty of Medicine, Saga University, Saga, Japan
| |
Collapse
|
41
|
Che X, Cai J, Liu Y, Xu T, Yang J, Wu C. Oxytocin signaling in the treatment of drug addiction: Therapeutic opportunities and challenges. Pharmacol Ther 2021; 223:107820. [PMID: 33600854 DOI: 10.1016/j.pharmthera.2021.107820] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/15/2021] [Indexed: 12/13/2022]
Abstract
Drug addiction is one of the leading causes of mortality worldwide. Despite great advances were achieved in understanding the neurobiology of drug addiction, the therapeutic options are severely limited, with poor effectiveness and serious side effects. The neuropeptide oxytocin (OXT) is well known for its effects on uterine contraction, sexual/maternal behaviors, social affiliation, stress and learning/memory by interacting with the OXT receptor and other neuromodulators. Emerging evidence suggests that the acute or chronic exposure to drugs can affect the OXT system. Additionally, OXT administration can ameliorate a wide range of abused drug-induced neurobehavioral changes. Overall, OXT not only suppresses drug reward in the binge stage of drug addiction, but also reduces stress responses and social impairments during the withdrawal stage and, finally, prevents drug/cue/stress-induced reinstatement. More importantly, clinical studies have also shown that OXT can exert beneficial effects on reducing substance use disorders of a series of drugs, such as heroin, cocaine, alcohol, cannabis and nicotine. Thus, the present review focuses on the role of OXT in treating drug addiction, including the preclinical and clinical therapeutic potential of OXT and its analogs on the neurobiological perspectives of drugs, to provide a better insight of the efficacy of OXT as a clinical addiction therapeutic agent.
Collapse
Affiliation(s)
- Xiaohang Che
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, PR China; Key Laboratory of New Drug Screening of Liaoning Province, Shenyang Pharmaceutical University, Shenyang, PR China; Key Laboratory of New Drug Pharmacodynamics Evaluation of Liaoning Province, Shenyang Pharmaceutical University, Shenyang, PR China
| | - Jialing Cai
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, PR China
| | - Yueyang Liu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, PR China; Key Laboratory of New Drug Screening of Liaoning Province, Shenyang Pharmaceutical University, Shenyang, PR China; Key Laboratory of New Drug Pharmacodynamics Evaluation of Liaoning Province, Shenyang Pharmaceutical University, Shenyang, PR China
| | - Tianyu Xu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, PR China
| | - Jingyu Yang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, PR China; Key Laboratory of New Drug Screening of Liaoning Province, Shenyang Pharmaceutical University, Shenyang, PR China; Key Laboratory of New Drug Pharmacodynamics Evaluation of Liaoning Province, Shenyang Pharmaceutical University, Shenyang, PR China.
| | - Chunfu Wu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, PR China; Key Laboratory of New Drug Screening of Liaoning Province, Shenyang Pharmaceutical University, Shenyang, PR China; Key Laboratory of New Drug Pharmacodynamics Evaluation of Liaoning Province, Shenyang Pharmaceutical University, Shenyang, PR China.
| |
Collapse
|
42
|
Ribeiro FT, de Serro-Azul MIS, Lorena FB, do Nascimento BPP, Arnold AJT, Barbosa GHL, Ribeiro MO, Cysneiros RM. Increased Endocannabinoid Signaling Reduces Social Motivation in Intact Rats and Does Not Affect Animals Submitted to Early-Life Seizures. Front Behav Neurosci 2020; 14:560423. [PMID: 33362484 PMCID: PMC7756094 DOI: 10.3389/fnbeh.2020.560423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 11/12/2020] [Indexed: 11/24/2022] Open
Abstract
The early life status epilepticus (SE) causes high anxiety and chronic socialization abnormalities, revealed by a low preference for social novelty and deficit in social discrimination. This study investigated the involvement of the endocannabinoid system on the sociability in this model, due to its role in social motivation regulation. Male Wistar rats at postnatal day 9 were subjected to pilocarpine-induced neonatal SE and controls received saline. From P60 the groups received vehicle or JZL195 2 h before each behavioral test to increase endocannabinoids availability. In the sociability test, animals subjected to neonatal SE exhibited impaired sociability, characterized by social discrimination deficit, which was unaffected by the JZL195 treatment. In contrast, JZL195-treated control rats showed low sociability and impaired social discrimination. The negative impact of JZL195 over the sociability in control rats and the lack of effect in animals subjected to neonatal SE was confirmed in the social memory paradigm. In this paradigm, as expected for vehicle-treated control rats, the investigation toward the same social stimulus decreased with the sequential exposition and increased toward a novel stimulus. In animals subjected to neonatal SE, regardless of the treatment, as well as in JZL195-treated control rats, the investigation toward the same social stimulus was significantly reduced with no improvement toward a novel stimulus. Concerning the locomotion, the JZL195 increased it only in control rats. After behavioral tests, brain tissues of untreated animals were used for CB1 receptor quantification by Elisa and for gene expression by RT-PCR: no difference between control and experimental animals was noticed. The results reinforce the evidence that the early SE causes chronic socialization abnormalities, revealed by the low social interest for novelty and impaired social discrimination. The dual FAAH/MAGL inhibitor (JZL195) administration before the social encounter impaired the social interaction in intact rats with no effect in animals subjected to early-life seizures.
Collapse
Affiliation(s)
- Fernanda Teixeira Ribeiro
- Developmental Disabilities Postgraduate Program, Laboratory of Neurobiology and Metabolism, Mackenzie Presbyterian University, São Paulo, Brazil
| | - Marcia Ivany Silva de Serro-Azul
- Developmental Disabilities Postgraduate Program, Laboratory of Neurobiology and Metabolism, Mackenzie Presbyterian University, São Paulo, Brazil
| | - Fernanda Beraldo Lorena
- Postgraduate Program in Translational Medicine, Federal University of São Paulo, São Paulo, Brazil
| | | | - Alexandre José Tavolari Arnold
- Developmental Disabilities Postgraduate Program, Laboratory of Neurobiology and Metabolism, Mackenzie Presbyterian University, São Paulo, Brazil
| | - Geraldo Henrique Lemos Barbosa
- Developmental Disabilities Postgraduate Program, Laboratory of Neurobiology and Metabolism, Mackenzie Presbyterian University, São Paulo, Brazil
| | - Miriam Oliveira Ribeiro
- Developmental Disabilities Postgraduate Program, Laboratory of Neurobiology and Metabolism, Mackenzie Presbyterian University, São Paulo, Brazil
| | - Roberta Monterazzo Cysneiros
- Developmental Disabilities Postgraduate Program, Laboratory of Neurobiology and Metabolism, Mackenzie Presbyterian University, São Paulo, Brazil
| |
Collapse
|
43
|
Chruścicka B, Cowan CSM, Wallace Fitzsimons SE, Borroto-Escuela DO, Druelle CM, Stamou P, Bergmann CA, Dinan TG, Slattery DA, Fuxe K, Cryan JF, Schellekens H. Molecular, biochemical and behavioural evidence for a novel oxytocin receptor and serotonin 2C receptor heterocomplex. Neuropharmacology 2020; 183:108394. [PMID: 33188842 DOI: 10.1016/j.neuropharm.2020.108394] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 10/11/2020] [Accepted: 11/05/2020] [Indexed: 12/11/2022]
Abstract
The complexity of oxytocin-mediated functions is strongly associated with its modulatory effects on other neurotransmission systems, including the serotonin (5-hydroxytryptamine, 5-HT) system. Signalling between oxytocin (OT) and 5-HT has been demonstrated during neurodevelopment and in the regulation of specific emotion-based behaviours. It is suggested that crosstalk between neurotransmitters is driven by interaction between their specific receptors, particularly the oxytocin receptor (OTR) and the 5-hydroxytryptamine 2C receptor (5-HTR2C), but evidence for this and the downstream signalling consequences that follow are lacking. Considering the overlapping central expression profiles and shared involvement of OTR and 5-HTR2C in certain endocrine functions and behaviours, including eating behaviour, social interaction and locomotor activity, we investigated the existence of functionally active OTR/5-HTR2C heterocomplexes. Here, we demonstrate evidence for a potential physical interaction between OTR and 5-HTR2Cin vitro in a cellular expression system using flow cytometry-based FRET (fcFRET). We could recapitulate this finding under endogenous expression levels of both receptors via in silico analysis of single cell transcriptomic data and ex vivo proximity ligation assay (PLA). Next, we show that co-expression of the OTR/5-HTR2C pair resulted in a significant depletion of OTR-mediated Gαq-signalling and significant changes in receptor trafficking. Of note, attenuation of OTR-mediated downstream signalling was restored following pharmacological blockade of the 5-HTR2C. Finally, we demonstrated a functional relevance of this novel heterocomplex, in vivo, as 5-HTR2C antagonism increased OT-mediated hypoactivity in mice. Overall, we provide compelling evidence for the formation of functionally active OTR/5-HTR2C heterocomplexes, adding another level of complexity to OTR and 5-HTR2C signalling functionality. This article is part of the special issue on Neuropeptides.
Collapse
Affiliation(s)
- Barbara Chruścicka
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Małopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland
| | | | | | | | | | | | | | - Timothy G Dinan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - David A Slattery
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt, Germany
| | - Kjell Fuxe
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Harriët Schellekens
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.
| |
Collapse
|
44
|
Wong JC, Shapiro L, Thelin JT, Heaton EC, Zaman RU, D'Souza MJ, Murnane KS, Escayg A. Nanoparticle encapsulated oxytocin increases resistance to induced seizures and restores social behavior in Scn1a-derived epilepsy. Neurobiol Dis 2020; 147:105147. [PMID: 33189882 DOI: 10.1016/j.nbd.2020.105147] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/14/2020] [Accepted: 10/23/2020] [Indexed: 02/06/2023] Open
Abstract
Oxytocin (OT) has broad effects in the brain and plays an important role in cognitive, social, and neuroendocrine function. OT has also been identified as potentially therapeutic in neuropsychiatric disorders such as autism and depression, which are often comorbid with epilepsy, raising the possibility that it might confer protection against the behavioral and seizure phenotypes in epilepsy. Dravet syndrome (DS) is an early-life encephalopathy associated with prolonged and recurrent early-life febrile seizures (FSs), treatment-resistant afebrile epilepsy, and cognitive and behavioral deficits. De novo loss-of-function mutations in the voltage-gated sodium channel SCN1A are the main cause of DS, while genetic epilepsy with febrile seizures plus (GEFS+), also characterized by early-life FSs and afebrile epilepsy, is typically caused by inherited mutations that alter the biophysical properties of SCN1A. Despite the wide range of available antiepileptic drugs, many patients with SCN1A mutations do not achieve adequate seizure control or the amelioration of associated behavioral comorbidities. In the current study, we demonstrate that nanoparticle encapsulation of OT conferred robust and sustained protection against induced seizures and restored more normal social behavior in a mouse model of Scn1a-derived epilepsy. These results demonstrate the ability of a nanotechnology formulation to significantly enhance the efficacy of OT. This approach will provide a general strategy to enhance the therapeutic potential of additional neuropeptides in epilepsy and other neurological disorders.
Collapse
Affiliation(s)
- Jennifer C Wong
- Department of Human Genetics, Emory University, Atlanta, GA, United States of America.
| | - Lindsey Shapiro
- Department of Human Genetics, Emory University, Atlanta, GA, United States of America
| | - Jacquelyn T Thelin
- Department of Human Genetics, Emory University, Atlanta, GA, United States of America
| | - Elizabeth C Heaton
- Department of Human Genetics, Emory University, Atlanta, GA, United States of America
| | - Rokon U Zaman
- Department of Pharmaceutical Sciences, Mercer University, Atlanta, GA, United States of America
| | - Martin J D'Souza
- Department of Pharmaceutical Sciences, Mercer University, Atlanta, GA, United States of America
| | - Kevin S Murnane
- Department of Pharmaceutical Sciences, Mercer University, Atlanta, GA, United States of America
| | - Andrew Escayg
- Department of Human Genetics, Emory University, Atlanta, GA, United States of America
| |
Collapse
|
45
|
Oxytocin receptor binding in the titi monkey hippocampal formation is associated with parental status and partner affiliation. Sci Rep 2020; 10:17301. [PMID: 33057124 PMCID: PMC7560868 DOI: 10.1038/s41598-020-74243-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 09/25/2020] [Indexed: 01/01/2023] Open
Abstract
Social cognition is facilitated by oxytocin receptors (OXTR) in the hippocampus, a brain region that changes dynamically with pregnancy, parturition, and parenting experience. We investigated the impact of parenthood on hippocampal OXTR in male and female titi monkeys, a pair-bonding primate species that exhibits biparental care of offspring. We hypothesized that in postmortem brain tissue, OXTR binding in the hippocampal formation would differ between parents and non-parents, and that OXTR density would correlate with frequencies of observed parenting and affiliative behaviors between partners. Subjects were 10 adult titi monkeys. OXTR binding in the hippocampus (CA1, CA2/3, CA4, dentate gyrus, subiculum) and presubiculum layers (PSB1, PSB3) was determined using receptor autoradiography. The average frequency of partner affiliation (Proximity, Contact, and Tail Twining) and infant carrying were determined from longitudinal observations (5-6 per day). Analyses showed that parents exhibited higher OXTR binding than non-parents in PSB1 (t(8) = - 2.33, p = 0.048), and that OXTR binding in the total presubiculm correlated negatively with Proximity (r = - 0.88) and Contact (r = - 0.91), but not Tail Twining or infant carrying. These results suggest that OXTR binding in the presubiculum supports pair bonding and parenting behavior, potentially by mediating changes in hippocampal plasticity.
Collapse
|
46
|
Abramova O, Zorkina Y, Ushakova V, Zubkov E, Morozova A, Chekhonin V. The role of oxytocin and vasopressin dysfunction in cognitive impairment and mental disorders. Neuropeptides 2020; 83:102079. [PMID: 32839007 DOI: 10.1016/j.npep.2020.102079] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 08/08/2020] [Accepted: 08/09/2020] [Indexed: 02/06/2023]
Abstract
Oxytocin (OXT) and arginine-vasopressin (AVP) are structurally homologous peptide hormones synthesized in the hypothalamus. Nowadays, the role of OXT and AVP in the regulation of social behaviour and emotions is generally known. However, recent researches indicate that peptides also participate in cognitive functioning. This review presents the evidence that the OXT/AVP systems are involved in the formation of social, working, spatial and episodic memory, mediated by such brain structures as the hippocampal CA2 and CA3 regions, amygdala and prefrontal cortex. Some data have demonstrated that the OXT receptor's polymorphisms are associated with impaired memory in humans, and OXT knockout in mice is connected with memory deficit. Additionally, OXT and AVP are involved in mental disorders' progression. Stress-induced imbalance of the OXT/AVP systems leads to an increased risk of various mental disorders, including depression, schizophrenia, and autism. At the same time, cognitive deficits are observed in stress and mental disorders, and perhaps peptide hormones play a part in this. The final part of the review describes possible therapeutic strategies for the use of OXT and AVP for treatment of various mental disorders.
Collapse
Affiliation(s)
- Olga Abramova
- Department of Basic and Applied Neurobiology, V.P. Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow, Russia.
| | - Yana Zorkina
- Department of Basic and Applied Neurobiology, V.P. Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow, Russia
| | - Valeria Ushakova
- Department of Basic and Applied Neurobiology, V.P. Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow, Russia; Department of Biology, Lomonosov Moscow State University, Russia
| | - Eugene Zubkov
- Department of Basic and Applied Neurobiology, V.P. Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow, Russia
| | - Anna Morozova
- Department of Basic and Applied Neurobiology, V.P. Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow, Russia
| | - Vladimir Chekhonin
- Department of Basic and Applied Neurobiology, V.P. Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow, Russia; Department of Medical Nanobiotechnology, Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
47
|
Oxytocin Reduces Brain Injury and Maintains Blood–Brain Barrier Integrity After Ischemic Stroke in Mice. Neuromolecular Med 2020; 22:557-571. [DOI: 10.1007/s12017-020-08613-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 08/29/2020] [Indexed: 12/16/2022]
|
48
|
Harvey AR. Links Between the Neurobiology of Oxytocin and Human Musicality. Front Hum Neurosci 2020; 14:350. [PMID: 33005139 PMCID: PMC7479205 DOI: 10.3389/fnhum.2020.00350] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 08/04/2020] [Indexed: 12/22/2022] Open
Abstract
The human species possesses two complementary, yet distinct, universal communication systems—language and music. Functional imaging studies have revealed that some core elements of these two systems are processed in closely related brain regions, but there are also clear differences in brain circuitry that likely underlie differences in functionality. Music affects many aspects of human behavior, especially in encouraging prosocial interactions and promoting trust and cooperation within groups of culturally compatible but not necessarily genetically related individuals. Music, presumably via its impact on the limbic system, is also rewarding and motivating, and music can facilitate aspects of learning and memory. In this review these special characteristics of music are considered in light of recent research on the neuroscience of the peptide oxytocin, a hormone that has both peripheral and central actions, that plays a role in many complex human behaviors, and whose expression has recently been reported to be affected by music-related activities. I will first briefly discuss what is currently known about the peptide’s physiological actions on neurons and its interactions with other neuromodulator systems, then summarize recent advances in our knowledge of the distribution of oxytocin and its receptor (OXTR) in the human brain. Next, the complex links between oxytocin and various social behaviors in humans are considered. First, how endogenous oxytocin levels relate to individual personality traits, and then how exogenous, intranasal application of oxytocin affects behaviors such as trust, empathy, reciprocity, group conformity, anxiety, and overall social decision making under different environmental conditions. It is argued that many of these characteristics of oxytocin biology closely mirror the diverse effects that music has on human cognition and emotion, providing a link to the important role music has played throughout human evolutionary history and helping to explain why music remains a special prosocial human asset. Finally, it is suggested that there is a potential synergy in combining oxytocin- and music-based strategies to improve general health and aid in the treatment of various neurological dysfunctions.
Collapse
Affiliation(s)
- Alan R Harvey
- School of Human Sciences, The University of Western Australia, Perron Institute for Neurological and Translational Science, Perth, WA, Australia
| |
Collapse
|
49
|
Malhi GS, Das P, Outhred T, Dobson-Stone C, Bell E, Gessler D, Bryant R, Mannie Z. Interactions of OXTR rs53576 and emotional trauma on hippocampal volumes and perceived social support in adolescent girls. Psychoneuroendocrinology 2020; 115:104635. [PMID: 32199286 DOI: 10.1016/j.psyneuen.2020.104635] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 02/19/2020] [Indexed: 12/27/2022]
Abstract
Oxytocin (OXT) is a neuropeptide involved in social behaviour and is sensitive to environmental influences to alter individual vulnerability or resilience to stress resulting in both negative and positive outcomes. The effects of the OXT receptor (OXTR) single nucleotide polymorphism (SNP) rs53576 on hippocampal and amygdala structure and functions in adults are differentially associated with susceptibility to adversity and social behaviours, but this evidence is lacking in healthy adolescents. Adolescence is a developmental period characterised by neurobiological and psychosocial changes resulting in higher susceptibility to mood disorders, particularly among girls. As the brain is highly plastic at this stage, to understand psychosocial and emotional development, clarity of the interactions between rs53576 and adversity on hippocampal and amygdala volumes and social behaviours is needed. In this study, we investigated the interactions between rs53576 and emotional trauma (ET) exposure on hippocampal and amygdala volumes of adolescent girls, and associations with parenting style, perceived social support and bullying behaviour. Based on an unbiased and corrected analytical approach, we found smaller left hippocampal volumes in higher (hET) compared to minimally (mET) exposed AA homozygotes, but no differences in G allele carriers nor in the amygdala. Within the mET AA group, larger volumes were associated with peer perceived social support, but in their hET counterparts, smaller volumes were associated with familial perceived social support. This evidence supports an important role for the hippocampus in social behaviours but extends current knowledge to suggest that hippocampal social behavioural features are contextually dependent on rs53576.
Collapse
Affiliation(s)
- Gin S Malhi
- The University of Sydney, Faculty of Medicine and Health, Northern Clinical School, Department of Psychiatry, Sydney, NSW, Australia; Academic Department of Psychiatry, Royal North Shore Hospital, Northern Sydney Local Health District, St Leonards, NSW, 2065, Australia; CADE Clinic, Royal North Shore Hospital, Northern Sydney Local Health District, St Leonards, NSW, 2065, Australia; ARCHI, Sydney Medical School Northern, The University of Sydney, NSW, 2006, Australia.
| | - Pritha Das
- The University of Sydney, Faculty of Medicine and Health, Northern Clinical School, Department of Psychiatry, Sydney, NSW, Australia; Academic Department of Psychiatry, Royal North Shore Hospital, Northern Sydney Local Health District, St Leonards, NSW, 2065, Australia; CADE Clinic, Royal North Shore Hospital, Northern Sydney Local Health District, St Leonards, NSW, 2065, Australia; ARCHI, Sydney Medical School Northern, The University of Sydney, NSW, 2006, Australia
| | - Tim Outhred
- The University of Sydney, Faculty of Medicine and Health, Northern Clinical School, Department of Psychiatry, Sydney, NSW, Australia; Academic Department of Psychiatry, Royal North Shore Hospital, Northern Sydney Local Health District, St Leonards, NSW, 2065, Australia; CADE Clinic, Royal North Shore Hospital, Northern Sydney Local Health District, St Leonards, NSW, 2065, Australia; ARCHI, Sydney Medical School Northern, The University of Sydney, NSW, 2006, Australia
| | - Carol Dobson-Stone
- The University of Sydney, Brain and Mind Centre, Faculty of Medicine and Health, NSW, Australia; School of Medical Sciences, University of New South Wales, NSW, Australia
| | - Erica Bell
- The University of Sydney, Faculty of Medicine and Health, Northern Clinical School, Department of Psychiatry, Sydney, NSW, Australia; Academic Department of Psychiatry, Royal North Shore Hospital, Northern Sydney Local Health District, St Leonards, NSW, 2065, Australia; CADE Clinic, Royal North Shore Hospital, Northern Sydney Local Health District, St Leonards, NSW, 2065, Australia
| | - Danielle Gessler
- The University of Sydney, Faculty of Medicine and Health, Northern Clinical School, Department of Psychiatry, Sydney, NSW, Australia; Academic Department of Psychiatry, Royal North Shore Hospital, Northern Sydney Local Health District, St Leonards, NSW, 2065, Australia; CADE Clinic, Royal North Shore Hospital, Northern Sydney Local Health District, St Leonards, NSW, 2065, Australia; ARCHI, Sydney Medical School Northern, The University of Sydney, NSW, 2006, Australia; The University of Sydney, Brain and Mind Centre, Faculty of Medicine and Health, NSW, Australia; School of Psychology, University of Sydney, NSW, Australia
| | - Richard Bryant
- School of Psychology, University of New South Wales, NSW, Australia
| | - Zola Mannie
- The University of Sydney, Faculty of Medicine and Health, Northern Clinical School, Department of Psychiatry, Sydney, NSW, Australia; Academic Department of Psychiatry, Royal North Shore Hospital, Northern Sydney Local Health District, St Leonards, NSW, 2065, Australia; CADE Clinic, Royal North Shore Hospital, Northern Sydney Local Health District, St Leonards, NSW, 2065, Australia; ARCHI, Sydney Medical School Northern, The University of Sydney, NSW, 2006, Australia; NSW Health, Northern Sydney Local Health District, Royal North Shore Hospital, St Leonards, NSW, Australia
| |
Collapse
|
50
|
Le Dorze C, Borreca A, Pignataro A, Ammassari-Teule M, Gisquet-Verrier P. Emotional remodeling with oxytocin durably rescues trauma-induced behavioral and neuro-morphological changes in rats: a promising treatment for PTSD. Transl Psychiatry 2020; 10:27. [PMID: 32066681 PMCID: PMC7026036 DOI: 10.1038/s41398-020-0714-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 10/24/2019] [Accepted: 11/04/2019] [Indexed: 01/21/2023] Open
Abstract
Recent evidence indicates that reactivated memories are malleable and can integrate new information upon their reactivation. We injected rats with oxytocin to investigate whether the delivery of a drug which dampens anxiety and fear before the reactivation of trauma memory decreases the emotional load of the original representation and durably alleviates PTSD-like symptoms. Rats exposed to the single prolonged stress (SPS) model of PTSD were classified 15 and 17 days later as either resilient or vulnerable to trauma on the basis of their anxiety and arousal scores. Following 2 other weeks, they received an intracerebral infusion of oxytocin (0.1 µg/1 µL) or saline 40 min before their trauma memory was reactivated by exposure to SPS reminders. PTSD-like symptoms and reactivity to PTSD-related cues were examined 3-14 days after oxytocin treatment. Results showed that vulnerable rats treated with saline exhibited a robust PTSD syndrome including increased anxiety and decreased arousal, as well as intense fear reactions to SPS sensory and contextual cues. Exposure to a combination of those cues resulted in c-fos hypo-activation and dendritic arbor retraction in prefrontal cortex and amygdala neurons, relative to resilient rats. Remarkably, 83% of vulnerable rats subjected to oxytocin-based emotional remodeling exhibited a resilient phenotype, and SPS-induced morphological alterations in prelimbic cortex and basolateral amygdala were eliminated. Our findings emphasize the translational potential of the present oxytocin-based emotional remodeling protocol which, when administered even long after the trauma, produces deep re-processing of traumatic memories and durable attenuation of the PTSD symptomatology.
Collapse
Affiliation(s)
- Claire Le Dorze
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, 91190, Gif-sur-Yvette, France
| | - Antonella Borreca
- Santa Lucia Foundation, via del fosso di fiorano 64, 00143, Rome, Italy
| | - Annabella Pignataro
- Santa Lucia Foundation, via del fosso di fiorano 64, 00143, Rome, Italy
- Institute of Translational Pharmacology, National Research Council, Rome, Italy
| | | | - Pascale Gisquet-Verrier
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, 91190, Gif-sur-Yvette, France.
| |
Collapse
|