1
|
Ni H, Wu H, Wang J, Chan BKW, Chen K, Chan EWC, Li F, Chen S. Lincomycin as a growth-promoting antibiotic induces metabolic and immune dysregulation in animals. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177780. [PMID: 39612713 DOI: 10.1016/j.scitotenv.2024.177780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/24/2024] [Accepted: 11/25/2024] [Indexed: 12/01/2024]
Abstract
Since animal growth promoters (AGPs) are used in large quantities and commonly released to the environment from animal farms, it is necessary to determine whether such agents should be regarded as an environmental toxin that poses a threat to the ecosystem and health risk to wildlife. In this study, a multi-omics approach was employed to explore the effects of a representative AGP, lincomycin, on key metabolic and physiological functions of animals, using a mouse model. The results indicated that exposure to lincomycin resulted in a significant increase in growth rate of mice (50.11 %) over an 8 weeks period, during which significant decrease (61.94 %) and increase (68.64 %) in the relative abundance of Firmicutes and Escherichia coli, respectively, was observed in the gut microbiota, indicating that the gut microbiota structure has been altered. Moreover, the mice exhibited altered lipid profiles and liver damage suggestive of early-stage non-alcoholic fatty liver disease (NAFLD). Disruptions in blood glucose and insulin levels associated with type 2 diabetes mellitus (T2DM) were also observed. Furthermore, lincomycin was found to cause suppression in inflammatory responses, as evidenced by the downregulation of related genes and elevated inflammatory mediators, potentially resulting in increased susceptibility to microbial infection. Our findings underscore the detrimental effects of lincomycin on animal health and highlight the necessity for comprehensive toxicological assessments of lincomycin and other AGPs before their environmental release.
Collapse
Affiliation(s)
- Hongyuhang Ni
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong; Department of Food Science and Nutrition, Faculty of Science, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Haoze Wu
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - Jing Wang
- Department of Food Science and Nutrition, Faculty of Science, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Bill Kwan-Wai Chan
- Department of Food Science and Nutrition, Faculty of Science, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Kaichao Chen
- Department of Food Science and Nutrition, Faculty of Science, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Edward Wai-Chi Chan
- Department of Food Science and Nutrition, Faculty of Science, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Fuyong Li
- Department of Animal Science and Technology, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Sheng Chen
- Department of Food Science and Nutrition, Faculty of Science, The Hong Kong Polytechnic University, Kowloon, Hong Kong; Shenzhen Key Lab for Food Biological Safety Control, The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518057, China.
| |
Collapse
|
2
|
Obianwuna UE, Chang X, Oleforuh-Okoleh VU, Onu PN, Zhang H, Qiu K, Wu S. Phytobiotics in poultry: revolutionizing broiler chicken nutrition with plant-derived gut health enhancers. J Anim Sci Biotechnol 2024; 15:169. [PMID: 39648201 PMCID: PMC11626766 DOI: 10.1186/s40104-024-01101-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 09/05/2024] [Indexed: 12/10/2024] Open
Abstract
As the global population continues to expand, the demand for broiler chicken production to supply safe and high-quality meat is increasing. To meet this ever-growing demand, broiler chickens with enhanced growth performance are being developed, but they often face challenges related to oxidative stress, which can adversely affect gut health. Phytobiotics, which are plant-derived feed additives known for their antimicrobial, antioxidant, immune-modulating, and growth-promoting properties, have emerged as promising natural alternatives to synthetic antibiotics. This review consolidates recent advancements in the use of phytobiotics-derived products from leaves, roots, seeds, flowers, and their extracts in broiler diets reared under standard experimental conditions, without the introduction of stressors. The focus is on elucidating the key mechanisms through which phytobiotics improve gut health, including their effects on gut morphology, integrity, microflora composition, antioxidant capacity, and immune function. The review highlights the potential of phytobiotics to revolutionize broiler nutrition by acting as natural enhancers of gut health. Research findings reveal that phytobiotics significantly improve intestinal health, and boost growth performance, offering a sustainable approach to managing to gut dysfunction. These findings indicate a potential shift in how gut-health related challenges in broilers can be addressed, moving towards natural phytobiotic therapy. However, several challenges persist. Optimizing the dosage of phytobiotics, ensuring consistent performance, and overcoming the limitations related to their extraction and application are key areas requiring further investigation. The review emphasizes the importance of continued research to refine phytobiotic formulations, explore synergistic effects, and incorporate advanced technologies such as AI-driven methods and precision nutrition to tailor feeding strategies more effectively. Additionally, the development of innovative delivery systems, such as nanoencapsulation, is suggested as a way to enhance the effectiveness and reliability of phytobiotics. By highlighting the potential of phytobiotics to revolutionize broiler nutrition, this review supports the poultry industry's shift towards antibiotic-free and sustainable dietary solutions, offering new perspectives on the future of broiler chicken production.
Collapse
Affiliation(s)
- Uchechukwu Edna Obianwuna
- National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xinyu Chang
- National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | | | - Patience N Onu
- Department of Animal Science, Ebonyi State University, Abakiliki, Ebonyi State, Nigeria
| | - Haijun Zhang
- National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Kai Qiu
- National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Shugeng Wu
- National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
3
|
Wu H, Yu Y, Su Q, Zhang TC, Du D, Du Y. Combined impact of antibiotics and Cr(VI) on antibiotic resistance, ARGs, and growth of Bacillussp. SH-1: A functionl analysis from gene to protease. BIORESOURCE TECHNOLOGY 2024; 414:131579. [PMID: 39384050 DOI: 10.1016/j.biortech.2024.131579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/19/2024] [Accepted: 10/05/2024] [Indexed: 10/11/2024]
Abstract
The simultaneous selection of antibiotic resistance genes (ARGs) induced by heavy metals and antibiotics has emerged as a growing environmental problem. This study investigated the combined effects of chromium (Cr(VI)) and antibiotics on the ARGs of Bacillus cereus SH-1. As Cr(VI) concentration increased, it triggered reactive oxygen species oxidative stress in SH-1, increased antioxidant enzyme activity, enhanced plasmid conjugative transfer, and reduced the efficiency of Cr(VI) removal by SH-1. Antibiotic resistance varied with increasing tetracycline and amoxicillin minimum inhibitory concentrations (MICs), whereas azithromycin and chloramphenicol MICs decreased with Cr(VI) induction. The overexpression of eight genes of the HAE-1 family of efflux pumps was detected using metagenomics and proteomics. Co-contamination with Cr(VI) and antibiotics has led to the emergence and spread of antibiotic-resistant bacteria. Therefore, resistance gene contamination resulting from Cr(VI)-polluted environments cannot be overlooked.
Collapse
Affiliation(s)
- Hui Wu
- Hubei Province Engineering Research Center for Control and Treatment of Heavy Metal Pollution, College of Resources and Environmental Science, South-Central Minzu University, Wuhan 430074, PR China; Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education, Wuhan 430074, PR China
| | - Yexing Yu
- Hubei Province Engineering Research Center for Control and Treatment of Heavy Metal Pollution, College of Resources and Environmental Science, South-Central Minzu University, Wuhan 430074, PR China; Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education, Wuhan 430074, PR China
| | - Qingmuke Su
- Hubei Province Engineering Research Center for Control and Treatment of Heavy Metal Pollution, College of Resources and Environmental Science, South-Central Minzu University, Wuhan 430074, PR China; Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education, Wuhan 430074, PR China
| | - Tian C Zhang
- Civil & Environmental Engineering Department, College of Engineering, University of Nebraska-Lincoln, Omaha, NE 68182, USA
| | - Dongyun Du
- Hubei Province Engineering Research Center for Control and Treatment of Heavy Metal Pollution, College of Resources and Environmental Science, South-Central Minzu University, Wuhan 430074, PR China; Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education, Wuhan 430074, PR China
| | - Yaguang Du
- Hubei Province Engineering Research Center for Control and Treatment of Heavy Metal Pollution, College of Resources and Environmental Science, South-Central Minzu University, Wuhan 430074, PR China; Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education, Wuhan 430074, PR China.
| |
Collapse
|
4
|
Liu W, Cheng H, Zhang H, Liu G, Yin X, Zhang C, Jiang R, Wang Z, Ding X. Effect of Lactobacillus paracasei LK01 on Growth Performance, Antioxidant Capacity, Immunity, Intestinal Health, and Serum Biochemical Indices in Broilers. Animals (Basel) 2024; 14:3474. [PMID: 39682439 DOI: 10.3390/ani14233474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 11/11/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
This study aimed to investigate the effects of adding L. paracasei LK01 to the diet on the growth performance, antioxidant capacity, immunity, intestinal health, and serum biochemical indicators of broilers. This study selected 1080 one-day-old broiler chickens with similar body weight, and randomly divided them into six groups, with six replicates in each group and 30 chicks in each replicate. The chicks were fed (1) the basal diet (CON), (2) the basal diet with 106 CFU/kg L. paracasei LK01(T1), (3) the basal diet with 107 CFU/kg L. paracasei LK01(T2), (4) the basal diet with 108 CFU/kg L. paracasei LK01(T3), (5) the basal diet with 109 CFU/kg L. paracasei LK01(T4), and (6) the basal diet with 1010 CFU/kg L. paracasei LK01(T5). The experiment lasted for 42 days. In this study, compared with the CON group, the diet supplemented with L. paracasei significantly increased body weight from 1 to 21 days (p < 0.05). In addition, the 106 CFU/kg L. paracasei LK01 group significantly reduced the activity of glutamic oxaloacetic transaminase and triglyceride levels; the 107 CFU/kg,108 CFU/kg, and 109 CFU/kg L. paracasei LK01 groups also reduced serum uric acid and total cholesterol levels (p < 0.05). The experimental groups all had lower serum levels of malondialdehyde and interleukin-1β (p < 0.01). Except for the 106 CFU/kg group, all experimental groups had significantly lower tumor necrosis factor-α, and the 106 and 107 CFU/kg groups had higher immunoglobulin M levels (p < 0.05). In addition, the 106 CFU/kg group significantly reduced the depth of the ileocecal crypts and increased the villus-to-crypt ratio (V/C) of the jejunum and ileum. In addition, dietary supplementation with L. paracasei LK01 did not change the α diversity of the microbial community in the cecum, but significantly increased the proportion of Bacteroides (phylum) (p < 0.05). The 106 CFU/kg group also significantly increased the abundance of beneficial bacteria such as Ruminococcaceae (genus), Lachnospiraceae (genus), and Faecalibacterium (genus) (p < 0.05). In summary, this study revealed that adding 106 CFU/kg of L. paracasei LKO1 to broiler diets can improve their production performance, serum biochemical indicators, antioxidant, and immune capabilities, as well as cecal flora.
Collapse
Affiliation(s)
- Weixin Liu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230031, China
| | - Hong Cheng
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230031, China
| | - Hao Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230031, China
| | - Guozhen Liu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230031, China
| | - Xinyu Yin
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230031, China
| | - Cheng Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230031, China
| | - Runsheng Jiang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230031, China
| | - Zaigui Wang
- College of Life Science and Technology, Anhui Agricultural University, Hefei 230031, China
| | - Xiaoling Ding
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230031, China
| |
Collapse
|
5
|
Xiao X, Cui T, Qin S, Wang T, Liu J, Sa L, Wu Y, Zhong Y, Yang C. Beneficial effects of Lactobacillus plantarum on growth performance, immune status, antioxidant function and intestinal microbiota in broilers. Poult Sci 2024; 103:104280. [PMID: 39305612 PMCID: PMC11437764 DOI: 10.1016/j.psj.2024.104280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/19/2024] [Accepted: 08/26/2024] [Indexed: 10/01/2024] Open
Abstract
Lactobacillus plantarum (L. plantarum) has been globally regarded as antibiotic alternative in animal farming in the past few years. However, the potential function of L. plantarum in broilers has not been systemically explored. In this study, a total of 560 one-day-old yellow-feathered broilers were randomly divided into 3 groups, fed with basal diet and drank with L. plantarum HJZW08 (LP) at the concentration of 0 (CON), 1000 × 10^5 (LP1000), and 2000 × 10^5 CFU/L (LP2000) for 70 d. Results showed that the body weight (BW), average daily gain (ADG), average daily feed intake (ADFI), immunoglobulin A (IgA), IgY, and anti-inflammatory interleukin 10 (IL-10) were markedly improved (P < 0.05), while the levels of pro-inflammatory IL-2, IL-1β, IL-6, and tumor necrosis factor-α (TNF-α) in serum were decreased (P < 0.05) in the LP2000 group comparing with the CON group. Besides, LP treatment groups prominently increased the levels and activities of antioxidant enzymes and decreased the content of malondialdehyde (MDA). Additionally, the levels of isobutyric acid in the LP1000 and LP2000 groups and isovaleric acid in the LP2000 group were significantly improved. More importantly, the α-diversity and microbial structure of intestinal microbiota were pronounced altered by LP supplementation. The results showed that only the relative abundance of Actinobacteriota was significantly increased in the LP2000 group, while 6 kinds of bacteria on genus level were significantly changed. For further validation, linear discriminant analysis with effect size (LEfSe) plots revealed that 8 amplicon sequence variants (ASVs) were predominant in the CON group, while Bacteroides and other beneficial species such as Lactimicrobium massiliense (ASV4 and ASV36), Intestinimonas butyriciproducens (ASV71), and Barnesiella viscericola (ASV152 and ASV571) were enriched in the LP groups. Taken together, dietary supplementation with LP obviously enhanced the immune status, antioxidant capacity, and stabilized the cecal microbiota and SCFAs, contributing to the improvement of growth performance of broilers. Our study laid good foundation for the application of probiotic Lactobacillus in animal industry in the future.
Collapse
Affiliation(s)
- Xiao Xiao
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, 311300, Hangzhou, China; Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, 311300, Hangzhou, China; Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, 311300, Hangzhou, China; China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, 311300, Hangzhou, China; Zhejiang Vegamax Biotechnology Co. Ltd., Anji, 313300, Huzhou, China
| | - Tiantian Cui
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, 311300, Hangzhou, China; Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, 311300, Hangzhou, China
| | - Songke Qin
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, 311300, Hangzhou, China; Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, 311300, Hangzhou, China
| | - Tao Wang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, 311300, Hangzhou, China; Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, 311300, Hangzhou, China
| | - Jinsong Liu
- Zhejiang Vegamax Biotechnology Co. Ltd., Anji, 313300, Huzhou, China
| | - Lihan Sa
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, 311300, Hangzhou, China; Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, 311300, Hangzhou, China
| | - Yanping Wu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, 311300, Hangzhou, China; Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, 311300, Hangzhou, China; Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, 311300, Hangzhou, China; China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, 311300, Hangzhou, China; Zhejiang Vegamax Biotechnology Co. Ltd., Anji, 313300, Huzhou, China
| | - Yifan Zhong
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, 311300, Hangzhou, China; Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, 311300, Hangzhou, China; Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, 311300, Hangzhou, China; China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, 311300, Hangzhou, China
| | - Caimei Yang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, 311300, Hangzhou, China; Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, 311300, Hangzhou, China; Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, 311300, Hangzhou, China; China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, 311300, Hangzhou, China.
| |
Collapse
|
6
|
Yang X, Xue X, He Y, Song P, Guo L, Hou X. Exploring the Effect of Active Components in Oil Tree Peony Seed Meal on Swine Disease Resistance and its Potential Mechanisms Based on Network Pharmacology and Molecular Docking. Chem Biodivers 2024; 21:e202401384. [PMID: 39172434 DOI: 10.1002/cbdv.202401384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/21/2024] [Accepted: 08/21/2024] [Indexed: 08/23/2024]
Abstract
This study aims to explore the feasibility of using network pharmacology and molecular docking technology to predict the effects of active components from oil tree peony seed meal (PSM) on swine diseases. Ten active components of PSM were screened Screening through literature search and network pharmacology standards, including Betulinic acid, Quercetin, Kaempferol, Luteolin, Isorhamnetin, Hydroxygenkwanin, Hederagenin, Benzoyl Paeoniflorin, Albiflorin, Paeoniflorin. Ten types of swine diseases were selected, including African Swine Fever, Aftosa, Swine Vesicular Disease, Transmissible Gastroenteritis, Swine Streptococcal Infection, Blue Aural Disease, Swine Infectious Atrophic Rhinitis, Swine Influenza, Swine Erysipelas, Swine Epidemic Encephalitis. The results showed that the average number of cross genes between the potential target genes of PSM active components and each swine disease target gene accounted for 7.64 % of the total number of swine disease target genes. The GO enrichment analyses showed that putative targets exist in endosomes, lysosomes, cell membranes, nerves, growth factor activity, receptor tyrosine kinase binding, enzyme binding, growth factor binding, transcription coactivator binding, oxidoreductase activity, prostaglandin E receptor activity and insulin receptor substrate binding. The KEGG enrichment analysis results showed that these putative genes were involved in various cancer progression pathways, signaling pathways, and hormone regulatory pathways. A total of 8 core targets were obtained through protein-protein interaction networks analysis, including Protein Kinase CAMP-Activated Catalytic Subunit Alpha (PRKACA), Non-Receptor Tyrosine Kinase (SRC), Mitogen-Activated Protein Kinase 1 (MAPK1), E1A Binding Protein P300 (EP300), Hypoxia Inducible Factor 1 Subunit Alpha (HIF1A), Phosphatidylinositol-4,5-Bisphosphate 3-Kinase Catalytic Subunit Beta (PIK3CB), C-X-C chemokine receptor type 4 (CXCR4) and Estrogen Receptor 2 (ESR2). The HIF-1 signaling pathway was found to be associated with all 10 selected swine diseases. The PD-L1 expression, and PD-1 checkpoint pathway in cancer, and thyroid hormone signaling pathway were not only enriches the core target with a quantity of 7, but also associated with 9 Swine diseases. In addition, the molecular docking results indicate that the core ingredients have strong affinity with hub genes. The research suggests that the active components of PSM may intervene in swine diseases through multiple components, targets, and pathways.
Collapse
Affiliation(s)
- Xu Yang
- Henan University of Science and Technology, 471023, Luoyang, China
| | - Xian Xue
- Henan University of Science and Technology, 471023, Luoyang, China
| | - Yinglong He
- Henan University of Science and Technology, 471023, Luoyang, China
| | - Peng Song
- Henan University of Science and Technology, 471023, Luoyang, China
| | - Lili Guo
- Henan University of Science and Technology, 471023, Luoyang, China
| | - Xiaogai Hou
- Henan University of Science and Technology, 471023, Luoyang, China
| |
Collapse
|
7
|
Cao KX, Deng ZC, Li SJ, Yi D, He X, Yang XJ, Guo YM, Sun LH. Poultry Nutrition: Achievement, Challenge, and Strategy. J Nutr 2024; 154:3554-3565. [PMID: 39424066 DOI: 10.1016/j.tjnut.2024.10.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/25/2024] [Accepted: 10/08/2024] [Indexed: 10/21/2024] Open
Abstract
Poultry, a vital economic animal, provide a high-quality protein source for human nutrition. Over the past decade, the poultry industry has witnessed substantial achievements in breeding, precision feeding, and welfare farming. However, there are still many challenges restricting the sustainable development of the poultry industry. First, overly focused breeding strategies on production performance have been shown to induce metabolic diseases in poultry. Second, a lack of robust methods for assessing the nutritional requirements poses a challenge to the practical implementation of precision feeding. Third, antibiotic alternatives and feed safety management remain pressing concerns within the poultry industry. Lastly, environmental pollution and inadequate welfare management in farming have a negative effect on poultry health. Despite numerous proposed strategies and innovative approaches, each faces its own set of strengths and limitations. In this review, we aim to provide a comprehensive understanding of the poultry industry over the past decade, by examining its achievements, challenges, and strategies, to guide its future direction.
Collapse
Affiliation(s)
- Ke-Xin Cao
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Zhang-Chao Deng
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Shi-Jun Li
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Dan Yi
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, Hubei, China
| | - Xi He
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Xiao-Jun Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Yu-Ming Guo
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, China Agricultural University, Beijing, China.
| | - Lv-Hui Sun
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China.
| |
Collapse
|
8
|
Chen H, Buzdar JA, Riaz R, Fouad D, Ahmed N, Shah QA, Chen S. Bovine lactoferrin alleviates aflatoxin B1 induced hepatic and renal injury in broilers by mediating Nrf2 signaling pathway. Poult Sci 2024; 103:104316. [PMID: 39383667 PMCID: PMC11492589 DOI: 10.1016/j.psj.2024.104316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/03/2024] [Accepted: 09/05/2024] [Indexed: 10/11/2024] Open
Abstract
Aflatoxin B1 (AFB1) a mycotoxin found in chicken feed that possess a global hazard to poultry health. However different potent compounds like bovine lactoferrin (bLF) may prove to be protective effects against AFB1. This study aims to explore the protective effect of bLF against AFB1-induced injury in the liver and kidney in broiler. For this purpose, 600 broilers chicks were randomly alienated into 5 groups (n = 120 each): negative control; positive control (3 mg/kg AFB1), and bLF high, medium, and low dosage groups (600 mg/kg, 300 mg/kg, and 150 mg/kg, respectively). The results highlight that AFB1 toxicity in birds exhibited low feed intake, reduction in weight gain, and a decrease in FCR while, bLF regulated these adverse effects. Meanwhile, AFB1 group showed higher levels of alanine transaminase (ALT) and aspartate aminotransferase (AST) and lower levels of superoxide dismutase (SOD) and glutathione (GSHpx) in liver, while urea and creatinine were decline in kidney. Supplementation with bLF effectively controlled these biomarkers and control the negative effects of toxicity. Furthermore, hematoxylin and eosin (H&E) staining exhibited normal morphological structures within liver and kidney in the bLF treated groups, while degenerative changes were observed in AFB1 group. Similarly, bLF, decreased oxidative stress and thus prevented apoptosis in the liver and kidney cells of the birds. Whereas, mRNA level of mitochondrial apoptosis related gene including Bcl-2 (Bak and Bax), caspase-3 and caspase-9 was upregulated, while bcl2 gene were downregulated in AFB1 group. Dietary supplementation of bLF effectively normalizes the expression of these genes. AFB1 exposed birds shown to decrease gene expression level of the crucial component of Nrf2 pathway, responsible to regulate antioxidant defense. Interestingly, bLF reverse these detrimental effects of and restore the normal expression levels of Nrf2 pathway. Conclusively, our findings demonstrate that bLF mitigates the detrimental effects of AFB1, besides regulation of the apoptosis-related genes via mitochondrial pathways. These findings validate that the bLF (600 mg/kg) could be used as protective agent against AFB1-induced liver and kidney damage.
Collapse
Affiliation(s)
- Hong Chen
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province, 712100, China
| | - Jameel Ahmed Buzdar
- Department of Basic Veterinary Science, Faculty of Veterinary & Animal Science, Lasbela University of Agriculture, Water and Marine Sciences, Uthal, 90150, Baluchistan, Pakistan
| | - Roshan Riaz
- Department of Animal Nutrition and Nutritional Diseases, Faculty of Veterinary Medicine, Kafkas University, Kars, 36100, Türkiye
| | - Dalia Fouad
- Zoology Department, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Nisar Ahmed
- Department of Basic Veterinary Science, Faculty of Veterinary & Animal Science, Lasbela University of Agriculture, Water and Marine Sciences, Uthal, 90150, Baluchistan, Pakistan
| | - Qurban Ali Shah
- Department of Basic Veterinary Science, Faculty of Veterinary & Animal Science, Lasbela University of Agriculture, Water and Marine Sciences, Uthal, 90150, Baluchistan, Pakistan
| | - Shulin Chen
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province, 712100, China.
| |
Collapse
|
9
|
Tellini C, Pinto LADM, Evangelista FDS, Pallaoro IP, Onishi BT, Lara BR, da Silva JB, Fernandes JIM. Effect of a microencapsulated blend of organic acids and bioactive compounds on the quality and visual appraisal of broiler meat. Poult Sci 2024; 103:104234. [PMID: 39299016 PMCID: PMC11426046 DOI: 10.1016/j.psj.2024.104234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/11/2024] [Accepted: 08/13/2024] [Indexed: 09/22/2024] Open
Abstract
For 2160 broilers, were raised from 1 to 42 d of age, was evaluated the consequences of microencapsulated blend of organic acids and bioactive compounds on dietary supplementation in broilers on meat quality and consumer acceptance during 200 d. Broilers were randomly distributed in a completely randomized design with 6 treatments: Negative control (NC): basal diet; Positive control (PC): NC+ Zinc bacitracin 15%; B150: NC+150 g/t of the microencapsulated blend of organic acids and bioactive compounds; B300: NC+300 g/t of the microencapsulated blend of organic acids and bioactive compounds; B450:NC+450 g/t of the microencapsulated blend of organic acids and bioactive compounds; and B600:NC+600 g/t of the microencapsulated blend of organic acids and bioactive compounds. The poultry meat characteristics (thawing loss, cooking loss, shear force, color and microstructure of the meat), oxidative stability (lipid oxidation, antioxidant activity DPPH and ABTS) and consumer acceptance (visual appraisal and willingness to buy) were evaluated. Color parameters (L and b), thawing losses and shear force were not significantly different among the treatments (NC, PC, B150, B300, B450 and B600; P > 0.05). The highest level of a was in the PC. The cooking losses were the greatest in B600. No treatment showed changes in muscle fibers. The antioxidant activity for DPPH was higher for B600. For ABTS, B150 and B300 presented the least lipid oxidation. When evaluating consumers' visual preference, B300 had the greatest in consumer preference and B150 and B300 had the greatest purchase intention on the first day of storage. After 6 d, B300 continued to be the most preferred and B150 and B450 began to show the greatest purchase intention. The B300 treatment showed a protective effect on lipid stability and consumer preference. These results highlight the importance of using a precise additive dosage during animal production to guarantee the meat's quality and satisfy consumers' demands.
Collapse
Affiliation(s)
- Caio Tellini
- Animal Science Post-Graduate Program, Department of Animal Science, Federal University of Paraná-Sector Palotina, Palotina, Paraná, Brazil, 85950-00
| | - Laura Adriane de Moraes Pinto
- Animal Science Post-Graduate Program, Department of Animal Science, Federal University of Paraná-Sector Palotina, Palotina, Paraná, Brazil, 85950-00.
| | - Felipe de Souza Evangelista
- Poultry Experimentation Laboratory, Department of Animal Science, Federal University of Paraná-Sector Palotina, Palotina, Paraná, Brazil, 85950-000
| | - Isadora Pegoraro Pallaoro
- Poultry Experimentation Laboratory, Department of Animal Science, Federal University of Paraná-Sector Palotina, Palotina, Paraná, Brazil, 85950-000
| | - Beatriz Tiemi Onishi
- Poultry Experimentation Laboratory, Department of Animal Science, Federal University of Paraná-Sector Palotina, Palotina, Paraná, Brazil, 85950-000
| | - Bianca Roldan Lara
- Poultry Experimentation Laboratory, Department of Animal Science, Federal University of Paraná-Sector Palotina, Palotina, Paraná, Brazil, 85950-000
| | - James Barbosa da Silva
- Poultry Experimentation Laboratory, Department of Animal Science, Federal University of Paraná-Sector Palotina, Palotina, Paraná, Brazil, 85950-000
| | - Jovanir Inês Müller Fernandes
- Animal Science Post-Graduate Program, Department of Animal Science, Federal University of Paraná-Sector Palotina, Palotina, Paraná, Brazil, 85950-00; Poultry Experimentation Laboratory, Department of Animal Science, Federal University of Paraná-Sector Palotina, Palotina, Paraná, Brazil, 85950-000
| |
Collapse
|
10
|
Biagini L, Galosi L, Tambella AM, Roncarati A, De Bellis D, Pesaro S, Attili AR, Berardi S, Rossi G. Effect of In Ovo Supplementation of Slab51 Probiotic Mixture, Associated with Marek's Disease Vaccine, on Growth Performance, Intestinal Morphology and Eimeria spp. Infection in Broiler Chickens. Animals (Basel) 2024; 14:3435. [PMID: 39682404 DOI: 10.3390/ani14233435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 11/20/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
The interest for in ovo feeding has grown in the last decades mainly concerning probiotics, live microorganisms that can actively interact with the embryo. The aim of this study was to evaluate the effects of a multi-strain probiotic diluted in Marek's disease vaccine (MDV) on zootechnical performances, intestinal morphology and Eimeria spp. infection. One hundred and twenty eggs of Ross 308 broiler chickens were incubated until 18 d, when 105 fertilised and vital eggs were randomly allocated into three groups. A control group (C) was inoculated with MDV; two treated groups (P1 and P2) were inoculated with MDV and different concentrations of probiotics: 1 × 105 CFU/100 μL in P1 and 1 × 106 CFU/100 μL in P2. After hatching, chickens were separated into three replicates (10/replicate). Zootechnical parameters were determined. At the end of the cycle (35 d), chickens were slaughtered, and the intestine was collected for morphological analysis from nine chickens per group (three/replicate). Eimeria spp. oocyst shedding was determined weekly, and parasitic lesions were analysed on the histological sample. In ovo treatment with probiotic did not influence hatching rate but significantly improved body weight and positively influenced intestinal morphometric data compared to C. Oocyst shedding in faeces resulted in an increase in C, with significant differences at sampling performed at 14, 21 and 28 d of age. These results suggest that the tested probiotic compound is safe for in ovo supplementation and effectively improves zootechnical performances and coccidian resistance.
Collapse
Affiliation(s)
- Lucia Biagini
- School of Biosciences and Veterinary Medicine, University of Camerino, 62024 Matelica, Italy
| | - Livio Galosi
- School of Biosciences and Veterinary Medicine, University of Camerino, 62024 Matelica, Italy
| | - Adolfo Maria Tambella
- School of Biosciences and Veterinary Medicine, University of Camerino, 62024 Matelica, Italy
| | - Alessandra Roncarati
- School of Biosciences and Veterinary Medicine, University of Camerino, 62024 Matelica, Italy
| | - Danilo De Bellis
- School of Biosciences and Veterinary Medicine, University of Camerino, 62024 Matelica, Italy
| | - Stefano Pesaro
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, 33100 Udine, Italy
| | - Anna-Rita Attili
- School of Biosciences and Veterinary Medicine, University of Camerino, 62024 Matelica, Italy
| | - Sara Berardi
- School of Biosciences and Veterinary Medicine, University of Camerino, 62024 Matelica, Italy
| | - Giacomo Rossi
- School of Biosciences and Veterinary Medicine, University of Camerino, 62024 Matelica, Italy
| |
Collapse
|
11
|
Pi CC, Cheng YC, Chen CC, Lee JW, Lin CN, Chiou MT, Chen HW, Chiu CH. Synergistic fermentation of Cordyceps militaris and herbal substrates boosts grower pig antioxidant and immune function. BMC Vet Res 2024; 20:531. [PMID: 39604968 PMCID: PMC11600677 DOI: 10.1186/s12917-024-04338-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 10/18/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Pathogenic infections can significantly impact the health of livestock. Traditionally, antibiotic growth promoters (AGPs) have been used in feed to enhance growth performance and disease control. However, concerns regarding antibiotic resistance have led to the exploration of traditional herbal medicine as a natural alternative, guided by the principle of medicine-food homology. The Taguchi method was employed to optimize the culture formula for cordycepin production, an active component of Cordyceps militaris (C. militaris). The influences of C. militaris supplementing solid-state fermentation (CMSSF) in feed on the growth performance and immune responses of grower pigs were evaluated in the present study. RESULTS The C. militaris ethanol extract (CME) displayed potent free radical scavenging activity against 2, 2-Diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) after undergoing fermentation. Additionally, the antibacterial testing revealed that CME effectively inhibits the growth of common pig pathogens such as Glaesserella parasuis, Pasteurella multocida, Staphylococcus hyicus, and Streptococcus suis. In lipopolysaccharide (LPS)-treated intestinal porcine enterocyte cell line (IPEC-J2), CME significantly suppressed the production of pro-inflammatory cytokines, including tumor necrosis factor (TNF)-α and interleukin (IL)-6. In addition, higher antioxidative activity was detected as indicated by elevated concentration of superoxide dismutase (SOD) in pig serum. The levels of immunoglobulin M (IgM), IgA, and IgG antibodies, as well as classical swine fever virus (CSFV) antibodies (S/P ratio) in serum were all increased. Growth performance of pigs fed with dietary CMSSF supplementation was improved in comparison with the control. CONCLUSIONS Results demonstrated that CMSSF has the potential to be used as a natural growth promoter to enhance immunity, antioxidation, as well as overall health and growth performance of grower pigs.
Collapse
Affiliation(s)
- Chia-Chen Pi
- Department of Food Science, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan.
- King's Ground Biotech Co., Ltd, Pingtung, 91252, Taiwan.
| | | | | | - Jai-Wei Lee
- Department of Tropical Agriculture and International Cooperation, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan
- Sustainable Swine Research Center, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan
| | - Chao-Nan Lin
- Sustainable Swine Research Center, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan
| | - Ming-Tang Chiou
- Sustainable Swine Research Center, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan
| | - Hui-Wen Chen
- Department of Veterinary Medicine, National Taiwan University, Taipei, 10617, Taiwan
- Animal Resource Center, National Taiwan University, Taipei, 10617, Taiwan
| | - Chiu-Hsia Chiu
- Department of Food Science, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan.
| |
Collapse
|
12
|
Beyari EA, Alshammari NM, Alamoudi SA, Mohamed AS, Altarjami LR, Baty RS, Alqadri N, Al-Nazawi AM, Saad AM, Taha TF, El-Saadony MT, El-Tarabily KA, Mostafa NG. Influences of Bacillus pumilus SA388 as an environmentally friendly antibiotic alternative on growth performance, blood biochemistry, immunology, cecal microbiota, and meat quality in broiler chickens. Poult Sci 2024; 103:104115. [PMID: 39303323 PMCID: PMC11438032 DOI: 10.1016/j.psj.2024.104115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/11/2024] [Accepted: 07/14/2024] [Indexed: 09/22/2024] Open
Abstract
The widespread use of antibiotics causes the development of antibiotic-resistant bacterial strains, which have a severe impact on poultry productivity and human health. As a result, research is continuing to develop safe natural antibiotic alternatives. In the current study, Bacillus pumilus SA388 was isolated from the chicken feces and confirmed to be a probiotic. The selected strain was tested for its antimutagenic and antioxidant capabilities before being employed as a probiotic food supplement and antibiotic alternative. The effect of B. pumilus SA388 impact on broiler chickens' growth performance, gut microbiome, blood biochemical markers, immunological response, and meat quality was also studied. B. pumilus SA388 showed significant bactericidal activity against Streptococcus pyogenes, Listeria monocytogenes, Staphylococcus aureus, Escherichia coli, Salmonella typhi, and Klebsiella pneumonia. A total of 200 chickens were used in the present study, divided equally among four experimental groups (ten birds per group with 5 replicates): group 1 (control, G1) received a basal diet without B. pumilus SA388, group 2 (G2) received a basal diet supplemented with 0.4 mg/kg of B. pumilus SA388, group 3 (G3) received a basal diet supplemented with 0.8 mg/kg of B. pumilus SA388, and group 4 (G4) received a basal diet supplemented with 1.6 mg/kg of B. pumilus SA388. Over 35 d, the B. pumilus SA388-supplemented groups outperformed the G1 in terms of body weight gain, performance index, and feed conversion ratio, with a preference for the G4 treatment. The levels of alanine aminotransferase (ALT), aspartate transaminase (AST), low-density lipoprotein (LDL), and total cholesterol decreased significantly (P < 0.05) with increasing B. pumilus SA388 dosages compared to the control G1 group. Dietary supplementation of B. pumilus SA388 at 1.6 mg/kg (G4) significantly (P < 0.05) resulted in improved lipid profile, immunological response, thyroid function, and gut microbiota compared to the control group (G1). Compared to the broilers in the control treatment (G1), the addition of B. pumilus SA388 to broilers in G4 significantly (P < 0.05) enhanced juiciness, tenderness, aroma, and taste. Adding B. pumilus SA388 to chicken feed at different doses significantly (P < 0.05) decreased average feed intake while increasing economic and relative efficiency measures. In conclusion, B. pumilus SA388 has been proven to be an effective antibiotic and nutritional supplement.
Collapse
Affiliation(s)
- Eman A Beyari
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Naheda M Alshammari
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Soha A Alamoudi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Alaa S Mohamed
- Department of Food Science, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Lamaia R Altarjami
- Department of Chemistry, College of Science and Arts, King Abdulaziz University, Rabigh, 21911, Saudi Arabia
| | - Roua S Baty
- Department of Biotechnology, College of Science, Taif University, Taif, 21944, Saudi Arabia
| | - Nada Alqadri
- Department of Biology, College of Turabah University, Taif University, Taif, 21944, Saudi Arabia
| | - Ashwaq M Al-Nazawi
- Department of Epidemiology, Faculty of Public Health and Tropical medicine, Jazan University, Jazan, 82726, Saudi Arabia
| | - Ahmed M Saad
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Taha F Taha
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Mohamed T El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Khaled A El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, 15551, United Arab Emirates.
| | - Nadeen G Mostafa
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| |
Collapse
|
13
|
Elkhaiat I, El-Kassas S, El-Naggar K, Abdo S, Shalaby HK, Azzam MM, Di Cerbo A, Alagawany M, Nofal RY. Dietary supplementation of lysozyme can improve growth rate, laying performance, blood biochemistry, and mRNA levels of some related genes in different plumage-colored quails. Poult Sci 2024:104491. [PMID: 39567341 DOI: 10.1016/j.psj.2024.104491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 10/31/2024] [Accepted: 10/31/2024] [Indexed: 11/22/2024] Open
Abstract
The impact of dietary lysozyme (LZ) supplementation on the growth and laying performance was investigated over 4 weeks of growing and 6 weeks of laying periods in two different plumage color (white and brown-feathered) Japanese quail varieties. For each variety, 240 birds were randomly assigned into four groups with four replicates for each group. The first group (control) was fed a basal non-supplemented diet (BD). Whereas the 2nd, 3rd, and 4th received the BD supplemented with commercial LZ (CLZ) at 100 mg/kg diet, and natural LZ (NLZ) at 100 and 200 mg/kg diet, respectively. The main findings included significant increases in body weights and gains in the white-feathered quails supplemented with NLZ1 compared to the control and NLZ2. However, there were no significant differences in the case of brown-feathered quails in all LZ supplementations. Moreover, the different dietary LZ lowered FI in both quails with the lowest intake observed in the brown-feathered quails. Accordingly, enhanced FCR was reported in the CLZ groups for both quail varieties and in NLZ1 and NLZ2 for the white-feathered and brown-feathered quails, respectively. In both quail varieties, the NLZ2 significantly lowered serum creatinine and urea and increased albumen and globulin levels compared with other groups. Histologically, the best hepatic histological features were found in both quail' varieties fed the NLZ1-supplemented diet. Accompanying LZ-induced modulations in the expression levels of GHR, IGF-1, leptin, CCK, FAS, and ACC genes in both quail varieties were reported. Besides, both quail varieties in NLZ1& NLZ2 supplementation exhibited significant increases in hen day egg production, egg weight, egg mass, and hatchability percentages along with differences in external and internal egg qualities compared with LZ-free diet or CLZ. Therefore, NLZ could be used as an effective feed supplement to enhance the growth and egg performance of Japanese quail with caution being drawn to the supplementation dose about quail variety.
Collapse
Affiliation(s)
- Ibrahim Elkhaiat
- Department of Poultry Production, Faculty of Agriculture, Kafrelsheikh University, 33516, Egypt
| | - Seham El-Kassas
- Animal, Poultry and Fish Breeding and Production, Department of Animal Wealth Development, Faculty of Veterinary Medicine, Kafrelsheikh University, Egypt
| | - Karima El-Naggar
- Department of Nutrition and Veterinary Clinical Nutrition, Faculty of Veterinary Medicine, Alexandria University, Egypt
| | - Safaa Abdo
- Genetics and Genetic Engineering, Department of Animal Wealth Development, Faculty of Veterinary Medicine, Kafrelsheikh University, Egypt
| | - Haitham K Shalaby
- Department of Poultry Production, Faculty of Agriculture, Kafrelsheikh University, 33516, Egypt
| | - Mahmoud M Azzam
- Department of Animal Production, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Alessandro Di Cerbo
- School of Biosciences and Veterinary Medicine, University of Camerino, 62024, Matelica, Italy.
| | - Mahmoud Alagawany
- Poultry Department, Agriculture Faculty, Zagazig University, Zagazig, 44511, Egypt
| | - Reyad Y Nofal
- Department of Poultry Production, Faculty of Agriculture, Kafrelsheikh University, 33516, Egypt
| |
Collapse
|
14
|
Elbaz AM, El-Sonousy NK, Arafa AS, Sallam MG, Ateya A, Abdelhady AY. Oregano essential oil and Bacillus subtilis role in enhancing broiler's growth, stress indicators, intestinal integrity, and gene expression under high stocking density. Sci Rep 2024; 14:25411. [PMID: 39455628 PMCID: PMC11511934 DOI: 10.1038/s41598-024-75533-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024] Open
Abstract
This study investigates the role of dietary Bacillus subtilis and oregano essential oil in mitigating the effects of high stocking density on growth performance, carcass traits, physiological stress indicators, gene expression, and intestinal integrity in broiler chickens. A total of, 1250 one-day-old Ross 308 male broiler chicks were randomly allocated to five experimental groups, where each group had five replicates of 50 chicks. Group 1 (control, LSD): 15 chicks/m2 fed a basal diet without feed additive, group 2 (HSD): 20 chicks/m2 fed a basal diet without feed additive, group 3 (BHSD): 20 chicks/m2 fed a basal diet supplemented with B. subtilis (500 mg/kg diet), group 4 (OHSD): 20 chicks/m2 fed a basal diet supplemented with oregano essential oil (300 mg/kg diet), group 5 (CHSD): 20 chicks/m2 fed a basal diet supplemented with oregano essential oil and B. subtilis. At 35 days of age, there was a noticeable improvement in the growth performance of broilers fed CHSD under high stocking density through the increase in body weight gain, dressing percentage, and crude protein digestibility with a decrease in feed conversion rate compared to other groups. Adding CHSD enhanced the state of oxidation and immunity through increasing superoxide dismutase, glutathione peroxidase, and the relative weight of bursa of Fabricius, while decreasing malondialdehyde, in addition to increasing plasma triiodothyronine levels. The microbial structure and morphometric parameters improved in the group that received the CHSD compared to the other groups, where villus height and Lactobacillus population increased, whereas Escherichia coli and Clostridium perfringens population decreased. Glucose transporter 2 (GLUT2), fatty acid transporter 1 (FABP1), and amino acid transferase 1 (CAT1) gene expression levels significantly increased when feeding on oregano essential oil with B. subtilis. In conclusion, combining oregano essential oil and B. subtilis supplements mitigated the effects of high stocking density by enhancing growth performance, antioxidative status, and intestinal integrity, in addition to modifying the genetic expression of genes related to nutrient absorption.
Collapse
Affiliation(s)
- Ahmed M Elbaz
- Nutrition Department, Desert Research Center, Mataria, Cairo, Egypt.
| | - Neima K El-Sonousy
- Genetics Department, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
| | - A Sabry Arafa
- Poultry Nutrition Department, Animal Production Research Institute, Agricultural Research Center, Ministry Of Agriculture, Giza, Egypt
| | - M G Sallam
- Animal Production Department, Agricultural and Biology Research Institute, National Research Centre, Cairo, Egypt
| | - Ahmed Ateya
- Department of Development of Animal Wealth, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | | |
Collapse
|
15
|
Ahmad QUA, Saleem N, Afzal N, Perveen I, Nazir S, Sabahat S, Saleem Y, Abbas N, Mazhar S, Nawaz S, Syed Q, Abidi SHI, Zahid B, Sajjad N, Chaudhary A. Biosynthesis of antimicrobial nanoparticle from Swertia spp. (Chirayita) against bacterial pathogens of poultry- A way forward to green nanotechnology and nano-medicines. Microb Pathog 2024; 197:107008. [PMID: 39395745 DOI: 10.1016/j.micpath.2024.107008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 09/24/2024] [Accepted: 10/09/2024] [Indexed: 10/14/2024]
Abstract
The increasing prevalence of multidrug-resistant microorganisms in poultry has led to a rise in bacterial infections, causing significant economic loss. Green nanotechnology, such as silver nanoparticles (AgNPs), has the potential to address this issue by providing potent antifungal, antiviral, and antibacterial properties. This study explored the combined potential of AgNPs and the local herb Swertia chirayita against established poultry pathogens, employing a non-factorial Central Composite Design (CCD) to evaluate the factors affecting the production of nanoparticles induced by silver nitrate from the selected herb. The optimal values for temperature, wavelength, silver nitrate concentration, incubation duration, and pH were found to produce the highest nanoparticles. The functional groups in Swertia chirayita stimulated nanoparticles were confirmed using FTIR spectroscopy, and the stability of ScNPs was elucidated using zeta potential. The crystalline structure of ScNPs was confirmed using diffraction intensity patterns. Silver nanoparticles demonstrated antibacterial activity against Salmonella spp. and Escherichia coli (E.coli), both known as significant poultry pathogens, using the agar well diffusion method, with inhibition zones of 25.0 mm and 35.0 mm, respectively.This study explored the green manufacturing of silver nanoparticles by using plants and microorganisms, focusing on their antibacterial properties. The exact mechanism of synthesis and action in AgNPs is still poorly understood. Researchers should prioritize the use of accessible, easy-to-extract plants or bacteria, especially non-pathogenic and fast-growing microorganisms for safe handling. Analyzing biomolecules in plant extract, microbial biomass, or culture supernatants, including probiotic bacteria, is crucial for creating and stabilizing AgNPs, which could be effective synthetic agents. It is crucial to optimize conditions for rapid, stable, and large-scale synthesis. Based on this research, Sc-NPs may be proposed as nanomedicine for treating infections in poultry caused by E. coli and Salmonella spp.
Collapse
Affiliation(s)
- Qurat-Ul-Ain Ahmad
- Department of Zoology, Division of Science & Technology, University of Education, Township, Lahore, Pakistan.
| | - Nida Saleem
- Department of Zoology, Division of Science & Technology, University of Education, Township, Lahore, Pakistan.
| | - Nimra Afzal
- University of Central Punjab, Lahore, Pakistan.
| | - Ishrat Perveen
- GenEd and Molecular Biology Labs, Food and Biotechnology Research Centre, Pakistan Council of Scientific and Industrial Research Centre, Lahore, 54000, Pakistan.
| | | | - Saba Sabahat
- Rashid Latif College of Pharmacy, Lahore, 54000, Pakistan.
| | - Yasar Saleem
- GenEd and Molecular Biology Labs, Food and Biotechnology Research Centre, Pakistan Council of Scientific and Industrial Research Centre, Lahore, 54000, Pakistan.
| | - Naaz Abbas
- GenEd and Molecular Biology Labs, Food and Biotechnology Research Centre, Pakistan Council of Scientific and Industrial Research Centre, Lahore, 54000, Pakistan.
| | - Sania Mazhar
- GenEd and Molecular Biology Labs, Food and Biotechnology Research Centre, Pakistan Council of Scientific and Industrial Research Centre, Lahore, 54000, Pakistan.
| | - Shaista Nawaz
- GenEd and Molecular Biology Labs, Food and Biotechnology Research Centre, Pakistan Council of Scientific and Industrial Research Centre, Lahore, 54000, Pakistan.
| | - Quratulain Syed
- GenEd and Molecular Biology Labs, Food and Biotechnology Research Centre, Pakistan Council of Scientific and Industrial Research Centre, Lahore, 54000, Pakistan.
| | | | - Beenish Zahid
- Department of Pathology, University of Veterinary and Animal Sciences, CVAS, Narowal, Pakistan.
| | - Naseem Sajjad
- GenEd and Molecular Biology Labs, Food and Biotechnology Research Centre, Pakistan Council of Scientific and Industrial Research Centre, Lahore, 54000, Pakistan.
| | - Asma Chaudhary
- Department of Zoology, Division of Science & Technology, University of Education, Township, Lahore, Pakistan
| |
Collapse
|
16
|
Mahmoud UT, El-Reda GA, Ali FAZ, Mahmoud MAM, Abd-Allah SMS, El-Hossary FM, Khalil NSA. Plasma activated water effects on behavior, performance, carcass quality, biochemical changes, and histopathological alterations in quail. BMC Vet Res 2024; 20:391. [PMID: 39232745 PMCID: PMC11373218 DOI: 10.1186/s12917-024-04231-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 08/12/2024] [Indexed: 09/06/2024] Open
Abstract
BACKGROUND Plasma-activated water (PAW) is an innovative promising technology which could be applied to improve poultry health. The current study investigated the effects of drinking water supply with PAW on quail behaviour, performance, biochemical parameters, carcass quality, intestinal microbial populations, and internal organs histopathology. A total of 54 twenty-one-day-old Japanese quail chicks were randomly allotted to three treatments provided with PAW at doses 0, 1 ml (PAW-1), and 2 ml (PAW-2) per one litter drinking water. Each treatment contained 6 replicates (3 birds/ cage; one male and two females). RESULTS The results clarified that there were no significant (P > 0.05) changes in behaviour, and performance. For the biochemical indicators, the PAW-1 group showed significantly higher serum H2O2, total protein and globulin levels compared with the other groups (P = 0.015, < 0.001, and 0.019; respectively). PAW groups had significantly lower serum creatinine and urea levels than the control (P = 0.003). For the carcass quality, the internal organs relative weight between different treatments was not changed. In contrast, there was a significant increase in the meat colour, taste, and overall acceptance scores in PAW groups compared with the control one (P = 0.013, 0.001, and < 0.001; respectively). For the intestinal microbial population, lactobacilli count was significantly higher in PAW-2 compared with the control group (P = 0.014), while there were no changes in the total bacterial count between different treatment groups. Moreover, mild histological changes were recorded in the intestine, liver, and spleen of PAW groups especially PAW-2 compared with the control one. CONCLUSIONS PAW offered benefits, such as reducing creatine and urea levels, improving meat characteristics, and increasing lactobacilli count, all of which are crucial for sustainable quail farming. Therefore, further research is needed.
Collapse
Affiliation(s)
- Usama T Mahmoud
- Department of Animal, poultry and aquatic life behavior and management, Faculty of Veterinary Medicine, Assiut University, Assiut, 71526, Egypt.
| | - Ghada Abd El-Reda
- Physics Department, Faculty of Science, Assiut University, Assiut, 71516, Egypt
- Physics Department, Faculty of Science, Sohag University, Sohag, 82524, Egypt
| | - Fatma Abo Zakaib Ali
- Department of Pathology and Clinical Pathology, Faculty of Veterinary Medicine, Sohag University, Sohag, 82524, Egypt
| | - Manal A M Mahmoud
- Department of Animal Hygiene and Environmental Pollution, Faculty of Veterinary Medicine, Assiut University, Assiut, 71526, Egypt
| | - Sherief M S Abd-Allah
- Department of Food Hygiene, Safety and Technology (Meat Hygiene, Safety and Technology), Faculty of Veterinary Medicine, Assiut University, Assiut, 71526, Egypt
| | - F M El-Hossary
- Physics Department, Faculty of Science, Sohag University, Sohag, 82524, Egypt
| | - Nasser S Abou Khalil
- Department of Medical Physiology, Faculty of Medicine, Assiut University, Assiut, 71515, Egypt
- Department of Animal Physiology and Biochemistry, Faculty of Veterinary Medicine, Badr University, Assiut, Egypt
| |
Collapse
|
17
|
Selim S, Abdel-Megeid NS, Alhotan RA, Ebrahim A, Hussein E. Nutraceuticals vs. antibiotic growth promoters: differential impacts on performance, meat quality, blood lipids, cecal microbiota, and organ histomorphology of broiler chicken. Poult Sci 2024; 103:103971. [PMID: 38941788 PMCID: PMC11260365 DOI: 10.1016/j.psj.2024.103971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 06/02/2024] [Accepted: 06/06/2024] [Indexed: 06/30/2024] Open
Abstract
The main goal of this study was to evaluate the effect of nutraceuticals vs. in-feed antibiotics on performance, blood lipids, antioxidant capacity, cecal microbiota, and organ histomorphology of broiler chickens. A total of 320 one-day-old male broiler chickens were distributed into 5 treatment groups with 8 replicates each. The control group was fed on a basal diet without any additives (NC); the antibiotic group was fed on a basal diet supplemented with 100 mg kg-1 avilamycin (PC); the algal group was fed on a basal diet supplemented with a mixture of Spirulina platensis and Chlorella vulgaris (1.5 g + 1.5 g/kg feed) (SP+CV); the essential oil group was fed with a basal diet containing 300 mg/kg feed rosemary oil (REO); and the probiotics group (a mixture of 1 × 1011 CFU/g Bacillus licheniformis, 1 × 1011 CFU/g Enterococcus facieum, 1 × 1010 CFU/g Lactobacillus acidophilus, and 2 × 108 CFU /g Saccharomyces cerevisiae) was fed with a basal diet supplemented with 0.05% probiotics (PRO). The experiment lasted for 35 d. A beneficial effect of SP+CV and PRO (P < 0.01) was noticed on final body weight, body weight gain, feed conversion ratio, and breast yield. The dietary supplementation with SP+CV, REO, and PRO increased (P < 0.001) broilers' cecal lactic acid bacteria count compared to the control. Lower cecal Clostridium perfringens and Coliform counts (P < 0.001) were noticed in chickens fed the PC and supplemental diets. Malondialdehyde (MDA) concentration was decreased, while glutathione peroxidase (GPx), superoxide dismutase, and catalase enzymes were increased in the breast and thigh meat (P < 0.001) of broiler chickens fed SP+CV, REO, and PRO diets. Dietary SP+CV, REO, and PRO supplementation decreased (P < 0.001) serum total lipids, cholesterol, triglycerides, low-density lipoprotein, and MDA, but increased serum high-density lipoprotein and GPx compared to PC and NC. No pathological lesions were noticed in the liver, kidney, or breast muscle among broilers. The SP+CV, REO, and PRO groups had greater (P < 0.001) intestinal villi height and crypt depth while lower goblet cell densities (P < 0.01) than the control. The present findings suggest that PRO and SP+CV, followed by REO could be suitable alternatives to in-feed antibiotics for enhancing the performance, health, and meat quality of broiler chickens.
Collapse
Affiliation(s)
- Shaimaa Selim
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Menoufia University, Shibin El-Kom 32514, Egypt.
| | - Nazema S Abdel-Megeid
- Department of Cytology and Histology, Faculty of Veterinary Medicine, University of Sadat City, Sadat City 32897, Egypt
| | - Rashed A Alhotan
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Alia Ebrahim
- Jiangsu Key Laboratory for Microbes and Genomics, School of Life Sciences, Nanjing Normal University, China
| | - Eman Hussein
- Department of Poultry and Fish Production, Faculty of Agriculture, Menoufia University, Shibin El-Kom 32514, Egypt
| |
Collapse
|
18
|
Phrutpoom N, Khaokhiew T, Linn AK, Sakdee S, Imtong C, Jongruja N, Angsuthanasombat C. Efficient Production and Purification of Bioactive E50-52-Class IIa Peptidic Bacteriocin Is Achieved through Fusion with the Catalytic Domain of Lysostaphin-Class III Bacteriocin. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:1610-1618. [PMID: 39418519 DOI: 10.1134/s0006297924090074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 10/19/2024]
Abstract
E50-52, a class IIa-peptidic bacteriocin produced by a strain of Enterococcus faecium, has broad-spectrum antimicrobial activity against various foodborne pathogens. However, effective utilization of the E50-52 has been limited by low production yields and challenges associated with separation and purification of this 39-amino acid antimicrobial peptide. In this study, we have successfully produced a biologically active recombinant form of E50-52 by fusing it with the 16-kDa catalytic domain of lysostaphin-class III bacteriocin (LssCAT), which resulted in high-yield production. Initially, the LssCAT-E50-52 chimeric protein was insoluble upon over-expression in Escherichia coli, but it became soluble using phosphate buffer (pH 7.4) supplemented with 8 M urea. Purification using immobilized-Ni2+ affinity chromatography under urea denaturing conditions resulted in consistent production a homogenous products (LssCAT-E50-52) with >95% purity. The purified protein was refolded using an optimized stepwise dialysis process. The resulting refolded LssCAT-E50-52 protein exhibited dose-dependent inhibitory activity against Helicobacter pylori, a Gram-negative, flagellated, helical bacterium that is associated with gastric cancer. Overall, the optimized protocol described in this study effectively produced large quantities of high-purity recombinant LssCAT-E50-52 protein, yielding approximately 100 mg per liter of culture. To the best of our knowledge, this is the first report on the impact of LssCAT-E50-52 on H. pylori. This finding could pave the way for further research into bactericidal mechanism and potential applications of this bacteriocin in biomedical industry.
Collapse
Affiliation(s)
- Nichakarn Phrutpoom
- Department of Clinical Chemistry, Faculty of Medical Technology, Mahidol University, Nakornpathom, 73170, Thailand
| | - Tararat Khaokhiew
- Department of Clinical Chemistry, Faculty of Medical Technology, Mahidol University, Nakornpathom, 73170, Thailand.
| | - Aung Khine Linn
- Excellent Center for Drug Discovery, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Somsri Sakdee
- Center for Advanced Therapeutics, Institute of Molecular Biosciences, Mahidol University, Nakornpathom, 73170, Thailand
| | - Chompounoot Imtong
- Bacterial Toxin Research Innovation Cluster, Biophysics Institute for Research and Development (BIRD), Chiang Mai, 50230, Thailand
| | - Nujarin Jongruja
- Department of Microbiology, Faculty of Science, King Mongkut's University of Technology Thonburi (KMUTT), Bangkok, 10140, Thailand
| | - Chanan Angsuthanasombat
- Center for Advanced Therapeutics, Institute of Molecular Biosciences, Mahidol University, Nakornpathom, 73170, Thailand.
- Graduate Program in Immunology, Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| |
Collapse
|
19
|
Salahi A, Abd El-Ghany WA. Beyond probiotics, uses of their next-generation for poultry and humans: A review. J Anim Physiol Anim Nutr (Berl) 2024; 108:1336-1347. [PMID: 38689488 DOI: 10.1111/jpn.13972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 04/03/2024] [Accepted: 04/13/2024] [Indexed: 05/02/2024]
Abstract
The production of healthy food is one of the basic requirements and challenges. Research efforts have been introduced in the human's food industry to reduce the microbial resistance and use safe and healthy alternatives with a high durability. However, the conducted work about these issues in the field of livestock animal production have been started since 2015. Inappropriate and extensive use of antibiotics has resulted in the increase of antimicrobial resistance, presence of drug residues in tissues, and destruction of the gut microbiome. Therefore, discovering and developing antibiotic substitutes were urgent demands. Probiotic compounds containing living micro-organisms are important antibiotic alternative that have been beneficially and extensively used in humans, animals, and poultry. However, some probiotics show some obstacles during production and applications. Accordingly, this review article proposes a comprehensive description of the next-generation of probiotics including postbiotics, proteobiotics, psychobiotics, immunobiotics and paraprobiotics and their effects on poultry production and human's therapy. These compounds proved great efficiency in terms of restoring gut health, improving performance and general health conditions, modulating the immune response and reducing the pathogenic micro-organisms. However, more future research work should be carried out regarding this issue.
Collapse
Affiliation(s)
- Ahmad Salahi
- Department of Animal Science, Faculty of Agriculture, Zanjan University, Zanjan, Iran
| | - Wafaa A Abd El-Ghany
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| |
Collapse
|
20
|
Al-Gheffari HK, Reda FM, Alagawany M, Saleh O, Alhazmi N, Salem HM, Ibrahim EH, Alshahrani MY, Al-Qurashi MM, El-Saadony MT, El-Tarabily KA, Saad AM, Mahgoub S. The influence of dietary supplementation with fermented agro-industrial residue of faba bean on Japanese quail performance, immunity, gut microbiota, blood chemistry, and antioxidant status. Poult Sci 2024; 103:103880. [PMID: 39094436 PMCID: PMC11334835 DOI: 10.1016/j.psj.2024.103880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 08/04/2024] Open
Abstract
Antibiotic overuse in poultry feeds has disastrous implications; consequently, long-term alternatives must be developed. As a result, the current study aims to assess the impact of Aspergillus niger filtrate (ANF) high in organic acids grown on agro-industrial residue of faba bean (AIRFB) on quail diet, as well as their influence on bird productivity, digestion, carcass yield, blood chemistry, and intestinal microbiota. A total of 240 Japanese quails (aged 7 d) were used in this study, divided equally among 5 experimental groups with 48 quails each. Group 1 (G1) received a basal diet without any ANF, group 2 (G2) received a basal diet supplemented with 0.5 mL ANF/kg diet, group 3 (G3) received a basal diet supplemented with 1.0 mL ANF/kg diet, group 4 (G4) received a basal diet supplemented with 1.5 mL ANF/kg diet, and group 5 (G5) received a basal diet supplemented with 2 mL ANF/kg diet. The performance parameters were monitored at 1 to 3, 3 to 5, and 1 to 5 wk. Adding ANF increased body weight at 3 and 5 wk, as well as body weight gain at 1 to 3, 3 to 5, and 1 to 5 wk, compared to the control diet. The ANF fed quails had the highest feed conversion ratio compared to the control group. The addition of ANF to the quail diet had no effect on the weight of the carcass, gizzard, heart, liver, giblets, or dressing; however, it did lower triglycerides, low-density lipoprotein, and very low-density lipoprotein while increasing high-density lipoprotein levels. The quail groups that received ANF had enhanced immunological indices such as IgG, IgM, IgA, and lysozymes. It also increased the levels of superoxide dismutase and total antioxidant contents, as well as catalase, and digestive enzymes such as protease, amylase, and lipase. However, it lowered the blood MDA levels compared to control. It has been demonstrated that the total gut microbiota, Escherichia coli, total coliforms, and the population of Salmonella are all reduced in ANF-fed quails. Histological examination of ANF quails' liver and intestinal sections revealed normal hepatic parenchyma, typical leaf-like intestinal villi, and comparatively short and frequently free lumina. In conclusion, Japanese quail showed improvements in performance, digestive enzymes, antioxidant indices, immunity, and capacity to reduce intestinal pathogenic bacteria after consuming diet supplemented with ANF.
Collapse
Affiliation(s)
- Hawazen K Al-Gheffari
- Department of Biological Sciences, Microbiology, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Fayiz M Reda
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Mahmoud Alagawany
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Ohud Saleh
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah, 21959, Saudi Arabia
| | - Nada Alhazmi
- Department of Basic Sciences, College of Science and Health Professions, King Saud bin Abdulaziz University for Health Sciences, Jeddah, 11481, Saudi Arabia; King Abdullah International Medical Research Center, Jeddah, Saudi Arabia
| | - Heba M Salem
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Essam H Ibrahim
- Biology Department, Faculty of Science, King Khalid University, Abha, 61413, Saudi Arabia; Center of Bee Research and its Products, King Khalid University, Abha, 61413, Saudi Arabia
| | - Mohammad Y Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, 9088, Saudi Arabia
| | - Mada M Al-Qurashi
- Biological Sciences Department, College of Science & Arts, King Abdulaziz University, Rabigh, 21911, Saudi Arabia
| | - Mohamed T El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Khaled A El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, 15551, United Arab Emirates.
| | - Ahmed M Saad
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Samir Mahgoub
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| |
Collapse
|
21
|
Ye Z, Ji B, Peng Y, Song J, Zhao T, Wang Z. Screening and Characterization of Probiotics Isolated from Traditional Fermented Products of Ethnic-Minorities in Northwest China and Evaluation Replacing Antibiotics Breeding Effect in Broiler. Pol J Microbiol 2024; 73:275-295. [PMID: 39213263 PMCID: PMC11398283 DOI: 10.33073/pjm-2024-025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/25/2024] [Indexed: 09/04/2024] Open
Abstract
In this study, Lactobacillus fermentum DM7-6 (DM7-6), Lactobacillus plantarum DM9-7 (DM9-7), and Bacillus subtilis YF9-4 (YF9-4) were isolated from traditional fermented products. The survival rate of DM7-6, DM9-7, and YF9-4 in simulated intestinal gastric fluid reached 61.29%, 44.82%, and 55.26%, respectively. These strains had inhibition ability against common pathogens, and the inhibition zone diameters were more than 7 mm. Antioxidant tests showed these strains had good scavenging capacity for superoxide anion, hydroxyl radical and DPPH, and the total reduction capacity reached 65%. Then DM7-6, DM9-7 and YF9-4 were fed to broilers to study the effects on antioxidant capacity, immune response, biochemical indices, tissue morphology, and gut microbiota. 180 healthy broilers were allocated randomly into six experimental groups. SOD, GSH-Px, and T-AOC in broilers serum were detected, and the results showed probiotics significantly improve antioxidant capacity compared to CK group, while antibiotics showed the opposite result. Besides, IgA, IgM, IgG, TNF-α, and IL-2 indicated it could significantly improve immunity by adding probiotics in broilers diets. However, antibiotics reduced immunoglobulin levels and enhanced inflammation index. Biochemical indicators and tissue morphology showed probiotics had a protective effect on metabolic organs. Gut microbiota analysis proved antibiotics could significantly decrease microbial community diversity and increase the proportion of opportunistic pathogens, while probiotics could improve the diversity of gut microbiota and promote the colonization of beneficial microorganisms. In summary, probiotics DM7-6, DM9-7, and YF9-4 can improve the broiler's health by improving antioxidant capacity and immune function, regulating gut microbiota, and can be used as alternative probiotics for antibiotics-free breeding of broilers.
Collapse
Affiliation(s)
- Ze Ye
- Key Laboratory of Microbial Resources Exploitation and Application of Gansu Province, Institute of Biology, Gansu Academy of Sciences, Lanzhou, China
| | - Bin Ji
- Key Laboratory of Microbial Resources Exploitation and Application of Gansu Province, Institute of Biology, Gansu Academy of Sciences, Lanzhou, China
| | - Yinan Peng
- Key Laboratory of Microbial Resources Exploitation and Application of Gansu Province, Institute of Biology, Gansu Academy of Sciences, Lanzhou, China
| | - Jie Song
- Key Laboratory of Microbial Resources Exploitation and Application of Gansu Province, Institute of Biology, Gansu Academy of Sciences, Lanzhou, China
| | - Tingwei Zhao
- Key Laboratory of Microbial Resources Exploitation and Application of Gansu Province, Institute of Biology, Gansu Academy of Sciences, Lanzhou, China
| | - Zhiye Wang
- Key Laboratory of Microbial Resources Exploitation and Application of Gansu Province, Institute of Biology, Gansu Academy of Sciences, Lanzhou, China
- School of Life Science, Lanzhou University of Technology, Lanzhou, China
| |
Collapse
|
22
|
Michalczuk M, Abramowicz-Pindor P, Urban J, Bień D, Ciborowska P, Matuszewski A, Zalewska A, Opacka E, Wojtasik-Kalinowska I. The Effect of Phytogenic Additive in Broiler's Diet on Production Results, Physicochemical Parameters, and the Composition of Volatile Organic Compounds of Broiler Meat Assessed by an Electronic Nose System. Animals (Basel) 2024; 14:2428. [PMID: 39199961 PMCID: PMC11350640 DOI: 10.3390/ani14162428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/10/2024] [Accepted: 08/19/2024] [Indexed: 09/01/2024] Open
Abstract
The primary objective of this study was to investigate the impact of a phytogenic additive (PA) in broiler chickens' diet on production, physiochemical parameters, and the profile of volatile organic compounds present in broiler chickens' meat. The experiment was conducted in a commercial chicken house, where Ross 308 broiler chickens were divided into two groups, each consisting of 65,000 broilers. One group was fed a diet supplemented with 100 ppm of PA throughout the rearing period. The primary chemical composition of the meat and its physicochemical parameters were determined. A visual assessment of breast muscles for defects and volatile organic compounds were evaluated using an electronic nose system. No statistically significant differences were shown in the production performance of the chickens; while summarizing all production parameters, a higher EPEF index of 31 points in the experimental group was highlighted. Breast muscle quality showed differences in drip loss and WHC (p ≤ 0.01) in favor of the experimental group, and a lower cutting force value (p ≤ 0.05) was found for breast muscles from the experimental group. The group also had a lower proportion of muscles with a white striping defect, and the results of volatile organic compound profiling showed the most aroma units.
Collapse
Affiliation(s)
- Monika Michalczuk
- Department of Animal Breeding, Institute of Animal Sciences, Warsaw University of Life Sciences, Ciszewskiego 8, 02–786 Warsaw, Poland; (M.M.); (J.U.); (P.C.); (A.Z.); (E.O.)
| | - Paulina Abramowicz-Pindor
- Department of Research and Development, AdiFeed Sp. z o.o., Chrzanowska 15, 05-825 Grodzisk Mazowiecki, Poland;
| | - Jakub Urban
- Department of Animal Breeding, Institute of Animal Sciences, Warsaw University of Life Sciences, Ciszewskiego 8, 02–786 Warsaw, Poland; (M.M.); (J.U.); (P.C.); (A.Z.); (E.O.)
| | - Damian Bień
- Division of Animal Nutrition, Institute of Animal Sciences, Warsaw University of Life Sciences, Ciszewskiego 8, 02–786 Warsaw, Poland;
| | - Patrycja Ciborowska
- Department of Animal Breeding, Institute of Animal Sciences, Warsaw University of Life Sciences, Ciszewskiego 8, 02–786 Warsaw, Poland; (M.M.); (J.U.); (P.C.); (A.Z.); (E.O.)
| | - Arkadiusz Matuszewski
- Department of Animal Environment Biology, Institute of Animal Sciences, Warsaw University of Life Sciences, Ciszewskiego 8, 02-786 Warsaw, Poland
| | - Anna Zalewska
- Department of Animal Breeding, Institute of Animal Sciences, Warsaw University of Life Sciences, Ciszewskiego 8, 02–786 Warsaw, Poland; (M.M.); (J.U.); (P.C.); (A.Z.); (E.O.)
| | - Eliza Opacka
- Department of Animal Breeding, Institute of Animal Sciences, Warsaw University of Life Sciences, Ciszewskiego 8, 02–786 Warsaw, Poland; (M.M.); (J.U.); (P.C.); (A.Z.); (E.O.)
| | - Iwona Wojtasik-Kalinowska
- Department of Technique and Food Development, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences, Nowoursynowska 159 C, 02-776 Warsaw, Poland;
| |
Collapse
|
23
|
Subhasinghe I, Ahmed KA, Ayalew LE, Gautam H, Popowich S, Matsuyama-Kato A, Chow-Lockerbie B, Tikoo SK, Griebel P, Gomis S. Induction of trained immunity in broiler chickens following delivery of oligodeoxynucleotide containing CpG motifs to protect against Escherichia coli septicemia. Sci Rep 2024; 14:18882. [PMID: 39143261 PMCID: PMC11325023 DOI: 10.1038/s41598-024-69781-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 08/08/2024] [Indexed: 08/16/2024] Open
Abstract
Oligodeoxynucleotides containing CpG motifs (CpG-ODN) can promote antimicrobial immunity in chickens by enriching immune compartments and activating immune cells. Innate memory, or trained immunity, has been demonstrated in humans and mice, featuring the absence of specificity to the initial stimulus and subsequently cross-protection against pathogens. We hypothesize that CpG-ODN can induce trained immunity in chickens. We delivered single or multiple administrations of CpG-ODN to birds and mitochondrial oxidative phosphorylation (OXPHOS) and glycolysis of peripheral blood mononuclear cells were quantified using Seahorse XFp. Next, chickens were administered with CpG-ODN twice at 1 and 4 day of age and challenged with Escherichia coli at 27 days of age. The CpG-ODN administered groups had significantly higher mitochondrial OXPHOS until 21 days of age while cellular glycolysis gradually declined by 14 days of age. The group administered with CpG-ODN twice at 1 and 4 days of age had significantly higher survival, lower clinical score and bacterial load following challenge with E. coli at 27 d of age. This study demonstrated the induction of trained immunity in broiler chickens following administration of CpG-ODN twice during the first 4 days of age to protect birds against E. coli septicemia at 27 days of age.
Collapse
Affiliation(s)
- Iresha Subhasinghe
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK, S7N 5B4, Canada
| | - Khawaja Ashfaque Ahmed
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK, S7N 5B4, Canada
| | - Lisanework E Ayalew
- Atlantic Veterinary College, University of Prince Edward Island, 550 University Ave, Charlottetown, PE, C1A 4P3, Canada
| | - Hemlata Gautam
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK, S7N 5B4, Canada
| | - Shelly Popowich
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK, S7N 5B4, Canada
| | - Ayumi Matsuyama-Kato
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK, S7N 5B4, Canada
| | - Betty Chow-Lockerbie
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK, S7N 5B4, Canada
| | - Suresh K Tikoo
- Vaccinology and Immunotherapy, School of Public Health, University of Saskatchewan, 5D40 Health Sciences, 107 Wiggins Road, Saskatoon, SK, S7N 5E5, Canada
| | - Philip Griebel
- Vaccinology and Immunotherapy, School of Public Health, University of Saskatchewan, 5D40 Health Sciences, 107 Wiggins Road, Saskatoon, SK, S7N 5E5, Canada
- VIDO-InterVac, University of Saskatchewan, Saskatoon, SK, S7N 5E3, Canada
| | - Susantha Gomis
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK, S7N 5B4, Canada.
| |
Collapse
|
24
|
Angelini P. Plant-Derived Antimicrobials and Their Crucial Role in Combating Antimicrobial Resistance. Antibiotics (Basel) 2024; 13:746. [PMID: 39200046 PMCID: PMC11350763 DOI: 10.3390/antibiotics13080746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/27/2024] [Accepted: 07/31/2024] [Indexed: 09/01/2024] Open
Abstract
Antibiotic resistance emerged shortly after the discovery of the first antibiotic and has remained a critical public health issue ever since. Managing antibiotic resistance in clinical settings continues to be challenging, particularly with the rise of superbugs, or bacteria resistant to multiple antibiotics, known as multidrug-resistant (MDR) bacteria. This rapid development of resistance has compelled researchers to continuously seek new antimicrobial agents to curb resistance, despite a shrinking pipeline of new drugs. Recently, the focus of antimicrobial discovery has shifted to plants, fungi, lichens, endophytes, and various marine sources, such as seaweeds, corals, and other microorganisms, due to their promising properties. For this review, an extensive search was conducted across multiple scientific databases, including PubMed, Elsevier, ResearchGate, Scopus, and Google Scholar, encompassing publications from 1929 to 2024. This review provides a concise overview of the mechanisms employed by bacteria to develop antibiotic resistance, followed by an in-depth exploration of plant secondary metabolites as a potential solution to MDR pathogens. In recent years, the interest in plant-based medicines has surged, driven by their advantageous properties. However, additional research is essential to fully understand the mechanisms of action and verify the safety of antimicrobial phytochemicals. Future prospects for enhancing the use of plant secondary metabolites in combating antibiotic-resistant pathogens will also be discussed.
Collapse
Affiliation(s)
- Paola Angelini
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06122 Perugia, Italy
| |
Collapse
|
25
|
John FA, Gaghan C, Liu J, Wolfenden R, Kulkarni RR. Screening and selection of eubiotic compounds possessing immunomodulatory and anti-Clostridium perfringens properties. Poult Sci 2024; 103:103911. [PMID: 38909503 PMCID: PMC11253676 DOI: 10.1016/j.psj.2024.103911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/20/2024] [Accepted: 05/23/2024] [Indexed: 06/25/2024] Open
Abstract
Eubiotics are water and/or feed additives used in poultry to promote gut health and control enteric burden of pathogens, including Clostridium perfringens. While several eubiotic compounds (ECs) are being introduced commercially, it is essential to devise an in vitro model to screen these compounds to assess their immunomodulatory and antimicrobial properties prior to their testing in vivo. A chicken macrophage cell-line (MQ-NCSU) was used to develop an in vitro model to screen the immunological and anti-C. perfringens properties of 10 ECs: monobutyrin, monolaurin, calcium butyrate, tributyrin, carvacrol, curcumin, green tea extract, rosemary extract, monomyristate, and tartaric acid. An optimal concentration for each EC was selected by measuring the effect on viability of MQ-NCSU cells. Cells were then treated with ECs for 6, 12, and 24 h. and expression of interferon-gamma (IFNγ), interleukin (IL)-1β, IL-6, IL-10, transforming growth factor-beta (TGFβ) and cluster of differentiation (CD40) genes, as well as major histocompatibility complex (MHC)-II protein were evaluated. At 6 h post-stimulation, monobutyrin, calcium butyrate, and green tea extract treatments induced a significant downregulation of IFNγ, IL-6, or IL-1β gene transcription and MHC-II expression, while the IL-10 or TGFβ gene expression in these treatments as well as those receiving rosemary extract and tartaric acid was significantly upregulated, when compared to control, suggesting immunomodulatory properties of these ECs. Finally, pretreatment of macrophages with these selected 5 ECs for 24 h followed by C. perfringens infection showed that monobutyrin, green tea extract, rosemary extract, and calcium butyrate treatments can inhibit bacterial growth significantly at 12 and/or 24 h post-infection, when compared to the control. Collectively, our findings show that ECs possessing immunomodulatory and anti-C. perfringens properties can be selected using an in vitro avian macrophage cell-based model so that such ECs can further be tested in vivo for their disease prevention efficacy.
Collapse
Affiliation(s)
- Feba Ann John
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Carissa Gaghan
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Jundi Liu
- Animal Nutrition BU, Eastman Chemical Company, Kingsport, TN, USA
| | - Ross Wolfenden
- Animal Nutrition BU, Eastman Chemical Company, Kingsport, TN, USA
| | - Raveendra R Kulkarni
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
26
|
Park I, Nam H, Lee Y, Wickramasuriya SS, Smith AH, Rehberger TG, Lillehoj HS. The effect of gut microbiota-derived carnosine on mucosal integrity and immunity in broiler chickens challenged with Eimeria maxima. Poult Sci 2024; 103:103837. [PMID: 38848630 PMCID: PMC11214313 DOI: 10.1016/j.psj.2024.103837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/22/2024] [Accepted: 05/04/2024] [Indexed: 06/09/2024] Open
Abstract
In the first study, an in vitro culture system was developed to investigate the effects of carnosine on macrophage proinflammatory cytokine response using an established chicken macrophage cell line (CMC), gut integrity using a chicken intestinal epithelial cell line (IEC), muscle differentiation in quail muscle cells (QMCs) and primary chicken embryonic muscle cells (PMCs), and direct anti-parasitic effect against Eimeria maxima sporozoites. Cells to be tested were seeded in 24-well plates and treated with carnosine at 4 different concentrations (0.1, 1.0, and 10.0 µg). After 18 h of incubation, cells were harvested to measure gene expression of proinflammatory cytokines in CMC, tight junction (TJ) proteins in IECs, and muscle cell growth markers in QMCs and PMCs. In vivo trials were conducted to investigate the effect of dietary carnosine on disease parameters in broiler chickens challenged with E. maxima. One hundred and twenty male broiler chickens (0-day-old) were allocated into 4 treatment groups: 1) basal diet without infection (NC), 2) basal diet with E. maxima infection (PC), 3) carnosine at 10.0 mg/kg feed with PC (HCS), and 4) carnosine at 1.0 mg/kg feed with PC (LCS). All groups except NC were orally infected with E. maxima on d 14. Jejunal samples were collected for lesion scoring and jejunum gut tissues were used for transcriptomic analysis of cytokines and TJ proteins. In vitro, carnosine treatment significantly decreased IL-1β gene expression in CMC following LPS stimulation. In vivo feeding studies showed that dietary carnosine increased BW and ADG of chickens in E. maxima-infected groups and reduced the jejunal lesion score and fecal oocyst shedding in HCS group. Jejunal IL-1β, IL-8, and IFN-γ expression were suppressed in the HCS group compared to PC. The expression levels of claudin-1 and occludin in IECs were also increased in HCS following carnosine treatment. In conclusion, these findings highlight the beneficial effects of dietary carnosine supplementation on intestinal immune responses and gut barrier function in broiler chickens exposed to E. maxima infection.
Collapse
Affiliation(s)
- Inkyung Park
- Animal Bioscience and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, USDA, MD 20705, USA
| | - Hyoyoun Nam
- Animal Bioscience and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, USDA, MD 20705, USA
| | - Youngsub Lee
- Animal Bioscience and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, USDA, MD 20705, USA
| | - Samiru S Wickramasuriya
- Animal Bioscience and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, USDA, MD 20705, USA
| | | | | | - Hyun S Lillehoj
- Animal Bioscience and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, USDA, MD 20705, USA.
| |
Collapse
|
27
|
Hudec E, Mudroňová D, Marcinčák S, Bartkovský M, Makiš A, Faldyna M, Ratvaj M, Karaffová V. The effect of Limosilactobacillus fermentum 2i3 and 0.6% addition of humic substances on production parameters and the immune system of broilers. Poult Sci 2024; 103:103884. [PMID: 38865771 PMCID: PMC11223114 DOI: 10.1016/j.psj.2024.103884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 05/10/2024] [Accepted: 05/18/2024] [Indexed: 06/14/2024] Open
Abstract
The widespread use of antibiotics in the poultry industry as growth promoters has led to the emergence of bacterial resistance, which poses a significant health risk to humans and animals. Substances of natural origin, such as probiotic bacteria and humic substances, can be a promising solution. The aim of this experiment was to study the effect of the administration of a probiotic strain of Limosilactobacillus fermentum 2i3 and/or a new formula of humic substances specifically designed for detoxification on the production parameters, including gene expression of myogenic growth factors and selected parameters of the immune response. We found that production parameters such as feed conversion ratio and weekly weight gain, as well as gene expression of mucin-2 and immunoglobulin A, were positively influenced mainly by the administration of L. fermentum 2i3. Similarly, the percentage of active phagocytes and their absorption capacity as well as the proportions of CD8+ and CD4+CD8+ T-lymphocyte subpopulations were significantly increased. The addition of humic substances, either alone or in combination with probiotics, significantly reduced the aforementioned parameters compared to the control. On the other hand, the relative gene expression for all myogenic growth factors was the highest in the humic group alone. Based on the results obtained, we can confirm the immunostimulating effect of L. fermentum 2i3 administered in drinking water, which also had an impact on important production parameters of broiler meat. On the other hand, in the combined group there was no expected potentiation of the positive effects on the observed parameters.
Collapse
Affiliation(s)
- E Hudec
- Department of Morphological Disciplines, University of Veterinary Medicine and Pharmacy, Košice, Slovakia
| | - D Mudroňová
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, Košice, Slovakia
| | - S Marcinčák
- Department of Food Hygiene and Technology, University of Veterinary Medicine and Pharmacy, Košice, Slovakia
| | - M Bartkovský
- Department of Food Hygiene and Technology, University of Veterinary Medicine and Pharmacy, Košice, Slovakia
| | - A Makiš
- Department of Food Hygiene and Technology, University of Veterinary Medicine and Pharmacy, Košice, Slovakia
| | - M Faldyna
- Veterinary Research Institute, Brno, Czech Republic
| | - M Ratvaj
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, Košice, Slovakia
| | - V Karaffová
- Department of Morphological Disciplines, University of Veterinary Medicine and Pharmacy, Košice, Slovakia.
| |
Collapse
|
28
|
Dong Y, Gao X, Qiao C, Han M, Miao Z, Liu C, Yan L, Li J. Effects of Mixed Organic Acids and Essential Oils in Drinking Water on Growth Performance, Intestinal Digestive Capacity, and Immune Status in Broiler Chickens. Animals (Basel) 2024; 14:2160. [PMID: 39123686 PMCID: PMC11311025 DOI: 10.3390/ani14152160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/11/2024] [Accepted: 07/20/2024] [Indexed: 08/12/2024] Open
Abstract
In order to evaluate the effects of acidifiers and essential oils in drinking water on growth, intestinal digestive capacity, and immune status in broilers, a total of 480, 1-day-old Arbore Acres broilers were randomly assigned to four treatments including normal tap water (Ctr) and tap water supplemented with acidifier I (ACI), acidifier I and essential oils (ACI+EO), and acidifier II (ACII). Both ACI+EO and ACII increased final body weight. The pH value of the crop and gizzards was reduced by ACI+EO, and ACII decreased the pH values of the proventriculus and gizzards (p < 0.05). Compared with control group, ACI, ACI+EO, ACII significantly enhanced lipase activity in jejunum but ACII decreased the level of serum total cholesterol and total triglyceride (p < 0.05). Compared with the control group, ACI+EO and ACII significantly increased the relative weight of the spleen, increased the level of serum IgA and IgM, and decreased E. coli in excreta, while ACII significantly decreased Salmonella in excreta (p <0.05). All treatments significantly increased Lactobacillus in excreta. In conclusion, ACI+EO improved immune status and ACII was effective in reducing Salmonella and promoting Lactobacillus, contributing to intestinal health.
Collapse
Affiliation(s)
- Yuanyang Dong
- College of Animal Science, Shanxi Agricultural University, Taigu 030800, China; (Y.D.); (X.G.); (C.Q.); (M.H.); (Z.M.)
| | - Xulong Gao
- College of Animal Science, Shanxi Agricultural University, Taigu 030800, China; (Y.D.); (X.G.); (C.Q.); (M.H.); (Z.M.)
| | - Chenqi Qiao
- College of Animal Science, Shanxi Agricultural University, Taigu 030800, China; (Y.D.); (X.G.); (C.Q.); (M.H.); (Z.M.)
| | - Miaomiao Han
- College of Animal Science, Shanxi Agricultural University, Taigu 030800, China; (Y.D.); (X.G.); (C.Q.); (M.H.); (Z.M.)
| | - Zhiqiang Miao
- College of Animal Science, Shanxi Agricultural University, Taigu 030800, China; (Y.D.); (X.G.); (C.Q.); (M.H.); (Z.M.)
| | - Ci Liu
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030800, China;
| | - Lei Yan
- New Hope Liuhe Co., Ltd., Beijing 100102, China;
| | - Jianhui Li
- College of Animal Science, Shanxi Agricultural University, Taigu 030800, China; (Y.D.); (X.G.); (C.Q.); (M.H.); (Z.M.)
| |
Collapse
|
29
|
Gong L, Xu H, Zhang X, Mahmood T, Mercier Y, Fu J, Liu Y, Gao M, Lv Z, Guo Y. Methionine Source and Level Modulate Gut pH, Amino Acid Transporters and Metabolism Related Genes in Broiler Chickens. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:15662-15671. [PMID: 38976570 DOI: 10.1021/acs.jafc.4c01020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
This study determined the effects of two methionine (Met) sources at three total sulfur amino acids (TSAA) to lysine ratios (TSAA/Lys) on gut pH, digestive enzyme activity, amino acid transporter expression, and Met metabolism of broilers. The birds were randomly assigned to a 2 × 3 factorial arrangement with Met sources (dl-Met and dl-2-hydroxy-4-(methylthio)-butanoic acid (OH-Met)) and TSAA/Lys (0.58, 0.73, and 0.88) from 1 to 21 days. The results demonstrated that dl-Met and OH-Met supported the same growth performance, but high TSAA/Lys ratio reduced the feed intake and body weight (P < 0.05). OH-Met reduced the crop chyme pH and enhanced the jejunal lipase activity (P < 0.05). ATB0,+ expression decreased with increased dl-Met levels in the duodenum; the low TSAA/Lys ratio induced a stronger mRNA expression of basolateral Met transporters. OH-Met resulted in an increase of cystathionine β-synthase expression in the liver and a decrease in serum homocysteine levels at middle TSAA/Lys ratio compared with dl-Met treatment (P < 0.05). In conclusion, two Met sources support the same growth, but OH-Met acidified the crop chyme. The investigated transporter transcripts differed significantly along the small intestine. At the middle TSAA/Lys ratio, OH-Met showed a higher metabolic tendency of the trans-sulfuration pathway compared with dl-Met.
Collapse
Affiliation(s)
- Lu Gong
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Huiping Xu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xiaodan Zhang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Tahir Mahmood
- Adisseo France S.A.S., 20 rue Prosper Monnet, 69190 Saint Fons, France
| | - Yves Mercier
- Adisseo France S.A.S., 20 rue Prosper Monnet, 69190 Saint Fons, France
| | - Jianyang Fu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yongfa Liu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Mingkun Gao
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Zengpeng Lv
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yuming Guo
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
30
|
Kholif AE, Anele A, Anele UY. Microbial feed additives in ruminant feeding. AIMS Microbiol 2024; 10:542-571. [PMID: 39219749 PMCID: PMC11362274 DOI: 10.3934/microbiol.2024026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/28/2024] [Accepted: 07/09/2024] [Indexed: 09/04/2024] Open
Abstract
The main purposes of feed additives administration are to increase feed quality, feed utilization, and the performance and health of animals. For many years, antibiotic-based feed additives showed promising results; however, their administration in animal feeds has been banned due to some public concerns regarding their residues in the produced milk and meat from treated animals. Some microorganisms have desirable properties and elicit certain effects, which makes them potential alternatives to antibiotics to enhance intestinal health and ruminal fermentation. The commonly evaluated microorganisms are some species of bacteria and yeasts. Supplementing microorganisms to ruminants boosts animal health, feed digestion, ruminal fermentation, animal performance (meat and milk), and feed efficiency. Moreover, feeding microorganisms helps young calves adapt quickly to consume solid feed and prevents thriving populations of enteric pathogens in the gastrointestinal tract which cause diarrhea. Lactobacillus, Streptococcus, Lactococcus, Bacillus, Enterococcus, Bifidobacterium, Saccharomyces cerevisiae, and Aspergillus oryzae are the commonly used microbial feed additives in ruminant production. The response of feeding such microorganisms depends on many factors including the level of administration, diet fed to animal, physiological status of animal, and many other factors. However, the precise modes of action in which microbial feed additives improve nutrient utilization and livestock production are under study. Therefore, we aim to highlight some of the uses of microorganisms-based feed additives effects on animal production, the modes of action of microorganisms, and their potential use as an alternative to antibiotic feed additives.
Collapse
Affiliation(s)
- Ahmed E. Kholif
- Department of Animal Sciences, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, USA
- Dairy Science Department, National Research Centre, 33 Bohouth St. Dokki, Giza, Egypt
| | - Anuoluwapo Anele
- Department of Natural Resources and Environmental Design, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, USA
| | - Uchenna Y. Anele
- Department of Animal Sciences, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, USA
| |
Collapse
|
31
|
D'Alessandro AG, Desantis S, Fracchiolla G, Porrelli R, Dibenedetto RS, Di Luca A, Martemucci G. Response of laying hens fed diet supplemented with a mixture of olive, laurel, and rosemary leaf powders: Metabolic profile, oxidative status, intestinal histomorphology, and egg quality. Res Vet Sci 2024; 174:105294. [PMID: 38744020 DOI: 10.1016/j.rvsc.2024.105294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/27/2024] [Accepted: 05/08/2024] [Indexed: 05/16/2024]
Abstract
This study aimed to evaluate the effects of a mixture of olive, laurel, and rosemary leaf powders, on the oxidative state, biochemical, immune, intestinal morphophysiological parameters, and egg quality of laying hens. One hundred Lohmann Brown hens (28 weeks old) were equally assigned to two groups (n. 50) corresponding to a basal control diet (CON) or the diet supplemented with 6 g/kg feed of leaf powder mixture (LPM) containing olive, laurel, and rosemary leaves (1:1:1), for 60 days. Oxidative status, biochemical indices, immune response, cecal short chain fatty acids (SCFAs), intestinal morphological characteristics, and some egg traits were evaluated at the end of the experiment. The results indicated that LPM improved (P < 0.05) the oxidative status (TOS, ROMs), the immune system (IL-6, IL-1β, and TNF-α), the total protein and HDL cholesterol content, whereas it decreased (P < 0.05) total cholesterol and LDL cholesterol. Aspartate aminotransferase (AST), alkaline phosphatase (ALP), and alanine aminotransferase were significantly (P < 0.05) lower in the LPM than in the CON group. A significant increase (P < 0.05) in SCFA content in the caecum, as well as in villi height and crypt depth in both duodenum and ileum of LPM-treated hens, was observed. Egg quality parameters were not influenced (P > 0.05) by LPM. These findings indicate that LPM can be considered a candidate as an antioxidant ingredient for functional food in laying hens.
Collapse
Affiliation(s)
| | - Salvatore Desantis
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari Aldo Moro, S.P. 62 per Casamassima Km 3, 70010 Valenzano (Bari), Italy.
| | - Giuseppe Fracchiolla
- Department of Pharmacy-Drug Sciences, University of Bari Aldo Moro, 70126 Bari, Italy.
| | | | | | - Alessio Di Luca
- Department of Soil, Plant and Food Sciences (DiSSPA), University of Bari Aldo Moro, 70126 Bari, Italy
| | | |
Collapse
|
32
|
Mohamed LA, Dosoky WM, Kamal M, Alshehry G, Algarni EH, Aldekhail NM, Mohamed HS, Abd El-Hack ME, Farag SA. Growth performance, carcass traits and meat physical characteristics of growing Japanese quail fed ginger powder and frankincense oil as feed additives. Poult Sci 2024; 103:103771. [PMID: 38749109 PMCID: PMC11112370 DOI: 10.1016/j.psj.2024.103771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/07/2024] [Accepted: 04/12/2024] [Indexed: 05/26/2024] Open
Abstract
This work aimed to investigate the effects of dietary frankincense oil and ginger on the growth efficiency of growing Japanese quail, including live body weight, body weight gain, feed intake, feed conversion ratio, carcass traits, and physical characteristics of the meat. In total, 150 unsexed Japanese quail chicks that were 7 d old were utilized in the experiment. The chicks were randomly divided into 5 groups. Each group was divided into 3 replicates with ten birds in a completely randomized design. Group 1 received a basal diet without supplements and was used as a control group. Groups 2 and 3 received basal diets with 250 and 500 mg of ginger per kg of diet, respectively. Groups 4 and 5 received basal diets with 200 and 400 mg of frankincense oil per kg of diet, respectively. Results showed that BW of chicks received 500 mg of ginger and the 2 levels of frankincense oil at 5 wk of age, and 250 mg of ginger and 400 mg of frankincense oil at 6 wk significantly increased. BWG was significantly increased by using 500 mg of ginger and 2 levels of frankincense oil at 1 to 3 wk, 250 mg of ginger and 400 mg of frankincense oil at 3 to 6 wk, and 1 to 6 wk of age, in comparison with the control group. Treatments insignificantly influenced feed intake (FI), and feed conversion ratio (FCR) was improved considerably by using 250 mg of ginger and 400 mg of frankincense at 3 to 6 wk and 1 to 6 wk of age, respectively. Gizzard% was notably reduced with 200 mg of frankincense oil. The pH value of meat was significantly increased by having 2 levels of ginger. Still, water holding capacity and tenderness significantly decreased owing to 500 mg of ginger and 400 mg of frankincense oil. We can conclude that adding ginger and frankincense oil to Japanese quail diets may be beneficial.
Collapse
Affiliation(s)
- Laila A Mohamed
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Waleed M Dosoky
- Department of Animal and Fish Production, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria 21531, Egypt
| | - Mahmoud Kamal
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, China; Animal Production Research Institute, Agricultural Research Center, Dokki, Giza 12618, Egypt
| | - Garsa Alshehry
- Department of Food Science and Nutrition, College of Sciences, Taif University, Taif 21944, Saudi Arabia
| | - Eman H Algarni
- Department of Food Science and Nutrition, College of Sciences, Taif University, Taif 21944, Saudi Arabia
| | - Nasser M Aldekhail
- Department of Pharmacy, College of Pharmacy, Nursing and Medical Sciences, Riyadh Elm University, Riyadh, Saudi Arabia
| | - Hanan S Mohamed
- Animal Production Research Institute, Agricultural Research Center, Dokki, Giza 12618, Egypt
| | - Mohamed E Abd El-Hack
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt.
| | - Soha A Farag
- Department of Animal Production, Faculty of Agriculture, Tanta University, Tanta 31527, Egypt
| |
Collapse
|
33
|
Li Y, He J, Zhang L, Liu H, Cao M, Lin Y, Xu S, Che L, Fang Z, Feng B, Li J, Zhuo Y, Wu D. Improvement of insulin sensitivity by dietary fiber consumption during late pregnant sows is associated with gut microbiota regulation of tryptophan metabolism. Anim Microbiome 2024; 6:34. [PMID: 38907293 PMCID: PMC11191243 DOI: 10.1186/s42523-024-00323-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 06/12/2024] [Indexed: 06/23/2024] Open
Abstract
BACKGROUND Dietary fiber (DF) consumption was reported to improve insulin sensitivity, change the tryptophan metabolism, and alter the gut microbiota. Herein, this study aimed to investigate the effects of DF consumption on insulin sensitivity, tryptophan metabolism, and gut microbiota composition in sows during late pregnancy, and explore the relationship between tryptophan metabolites and insulin sensitivity regulated by DF supplementation. RESULTS Twelve sows were randomly assigned to two dietary treatment groups (six/group): the low-fiber (LF) group, which was fed a basal diet, and the high-fiber (HF) group, which was fed the basal diet supplemented with 22.60 g/kg inulin and 181.60 g/kg cellulose. During late pregnancy, meal test, glucose tolerance test, and insulin challenge test were used to investigate the insulin sensitivity of sows, using the percutaneous brachiocephalic vein catheterization technique. High DF consumption resulted in improved insulin sensitivity, especially during the second and third trimesters, and promoted serotonin production from tryptophan. Additionally, plasma serotonin concentration was positively correlated with the insulin sensitivity index during late pregnancy. Moreover, DF consumption elevated fecal short-chain fatty acid (SCFA) concentrations, altered fecal microbial diversity, and increased the abundances of Rikenellaceae_RC9_gut_group, Alloprevotella, Parabacteroides, Roseburia, and Sphaerochaeta, which were positively correlated to plasma serotonin concentration. CONCLUSIONS DF consumption improved insulin sensitivity during late pregnancy in sows, which improved microbial diversity in fecal samples and increased fecal SCFA concentrations, resulting in a positive correlation with plasma serotonin level.
Collapse
Affiliation(s)
- Yang Li
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Shandong Agricultural University, Panhe Street 7#, Tai'an, 271017, People's Republic of China
- Key Laboratory for Animal Disease-Resistance Nutrition of the Ministry of Agriculture, Institute of Animal Nutrition, Sichuan Agricultural University, Huimin Road 211#, Chengdu, 611130, People's Republic of China
- Division of Animal and Human Health Engineering, Department of Biosystems, KU Leuven, Kasteelpark Arenberg 30, Heverlee, 3001, Belgium
| | - Jiaqi He
- Key Laboratory for Animal Disease-Resistance Nutrition of the Ministry of Agriculture, Institute of Animal Nutrition, Sichuan Agricultural University, Huimin Road 211#, Chengdu, 611130, People's Republic of China
| | - Lijia Zhang
- Key Laboratory for Animal Disease-Resistance Nutrition of the Ministry of Agriculture, Institute of Animal Nutrition, Sichuan Agricultural University, Huimin Road 211#, Chengdu, 611130, People's Republic of China
| | - Haoyu Liu
- Key Laboratory for Animal Disease-Resistance Nutrition of the Ministry of Agriculture, Institute of Animal Nutrition, Sichuan Agricultural University, Huimin Road 211#, Chengdu, 611130, People's Republic of China
| | - Meng Cao
- Key Laboratory for Animal Disease-Resistance Nutrition of the Ministry of Agriculture, Institute of Animal Nutrition, Sichuan Agricultural University, Huimin Road 211#, Chengdu, 611130, People's Republic of China
| | - Yan Lin
- Key Laboratory for Animal Disease-Resistance Nutrition of the Ministry of Agriculture, Institute of Animal Nutrition, Sichuan Agricultural University, Huimin Road 211#, Chengdu, 611130, People's Republic of China
| | - Shengyu Xu
- Key Laboratory for Animal Disease-Resistance Nutrition of the Ministry of Agriculture, Institute of Animal Nutrition, Sichuan Agricultural University, Huimin Road 211#, Chengdu, 611130, People's Republic of China
| | - Lianqiang Che
- Key Laboratory for Animal Disease-Resistance Nutrition of the Ministry of Agriculture, Institute of Animal Nutrition, Sichuan Agricultural University, Huimin Road 211#, Chengdu, 611130, People's Republic of China
| | - Zhengfeng Fang
- Key Laboratory for Animal Disease-Resistance Nutrition of the Ministry of Agriculture, Institute of Animal Nutrition, Sichuan Agricultural University, Huimin Road 211#, Chengdu, 611130, People's Republic of China
| | - Bin Feng
- Key Laboratory for Animal Disease-Resistance Nutrition of the Ministry of Agriculture, Institute of Animal Nutrition, Sichuan Agricultural University, Huimin Road 211#, Chengdu, 611130, People's Republic of China
| | - Jian Li
- Key Laboratory for Animal Disease-Resistance Nutrition of the Ministry of Agriculture, Institute of Animal Nutrition, Sichuan Agricultural University, Huimin Road 211#, Chengdu, 611130, People's Republic of China
| | - Yong Zhuo
- Key Laboratory for Animal Disease-Resistance Nutrition of the Ministry of Agriculture, Institute of Animal Nutrition, Sichuan Agricultural University, Huimin Road 211#, Chengdu, 611130, People's Republic of China.
| | - De Wu
- Key Laboratory for Animal Disease-Resistance Nutrition of the Ministry of Agriculture, Institute of Animal Nutrition, Sichuan Agricultural University, Huimin Road 211#, Chengdu, 611130, People's Republic of China.
| |
Collapse
|
34
|
Navale VD, Yadav R, Khilari A, Dharne M, Shanmugam D, Vamkudoth KR. Dietary Supplementation of Lactococcus lactis subsp. lactis BIONCL17752 on Growth Performance, and Gut Microbiota of Broiler Chickens. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10313-4. [PMID: 38904895 DOI: 10.1007/s12602-024-10313-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/12/2024] [Indexed: 06/22/2024]
Abstract
The rapid rise of antimicrobial resistance (AMR) is a global concern, being triggered by the overuse or misuse of antibiotics in poultry farming sector. We evaluated Lactococcus lactis subsp. lactis BIONCL17752 strain, and characterized its probiotic potential to endure hostile gastrointestinal conditions. Genome sequencing analysis revealed probiotics traits, and gene clusters involved in bacteriocins, lactococcin A, and sactipeptides production. The absence of genes for antibiotic resistance, virulence, and biogenic amine production indicates the potential of probiotic strain. The BIONCL17752 strain was explored for antibiotic-free feed supplement for growth promotor in broiler chicken. The feed supplemented with 4 × 109 CFU/kg of probiotic strain, in combination with various concentrations of fructooligosaccharides (FOS) 1.0, 2.5, and 5.0 kg/tonne in starter, grower, and finisher diets, respectively. A significant improvement of body weight 152 to 171 g/bird (p < 0.05), and a low feed conversion ratio (FCR) of 1.62, was achieved without using synthetic antibiotics for growth promotion. The results of biochemical, hematological, and histological examinations showed normal features, indicating that the treatment had no harmful effects on the bird's health. Reduced levels of cholesterol, triglycerides, high-density lipoprotein (HDL), and low-density lipoprotein (LDL) in serum are an indication of the health benefits for the treated birds. Microbial community analysis of fecal samples of poultry birds exhibited a higher abundance of Bacteroidetes, Firmicutes, Proteobacteria, Actinobacteria, and Fusobacteria. Probiotic treatment resulted in reduced Firmicutes and increased Bacteroidetes (F/B ratio) in the broiler's gut which highlights the benefits of probiotic dietary supplements. Importantly, the probiotic-fed group exhibited a high abundance of carbohydrate-active enzymes (CAZyme) such as glycoside hydrolases (GH), glycoside transferases (GT), and carbohydrate-binding module (CBM) hydrolases which are essential for the degradation of complex sugar molecules. The probiotic potential of the BIONCL17752 strain contributes to broilers' health by positively affecting intestinal microbiota, achieving optimal growth, and lowering mortality, demonstrating the economic benefits of probiotic treatment in organic poultry farming.
Collapse
Affiliation(s)
- Vishwambar D Navale
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Rakeshkumar Yadav
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008, India
- National Collection of Industrial Microorganisms (NCIM), CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Ajinkya Khilari
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Mahesh Dharne
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008, India
- National Collection of Industrial Microorganisms (NCIM), CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Dhanasekaran Shanmugam
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Koteswara Rao Vamkudoth
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
35
|
Bumbie GZ, Abormegah L, Asiedu P, Oduro-Owusu AD, Koranteng AAA, Ansah KO, Lamptey VK, Chen C, Mohamed TM, Tang Z. Influence of Pediococcus pentosaceus GT001 on Performance, Meat Quality, Immune Function, Antioxidant and Cecum Microbial in Broiler Chickens Challenged by Salmonella typhimurium. Animals (Basel) 2024; 14:1676. [PMID: 38891723 PMCID: PMC11171082 DOI: 10.3390/ani14111676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/31/2024] [Accepted: 06/02/2024] [Indexed: 06/21/2024] Open
Abstract
This study evaluated the effects of Pediococcus pentosaceus GT001 on Salmonella typhimurium (S. typhimurium)-challenged broiler chickens. Two hundred Ross 708 broiler day-old chicks with comparable weight were distributed at random into four treatments with five replicates and ten chicks per replicate. The following were the treatment groups: (B) basal diet (control); (B + S) basal diet and birds were challenged with S. typhimurium at 1.0 × 107 cfu/g; (B + P) basal diet + Pediococcus pentosaceus GT001 at 4.0 × 108 cfu/g; (B + P + S) basal diet + P. pentosaceus GT001 at 4.0 × 108 cfu/g and birds were challenged with S. typhimurium at 1.0 × 107 cfu/g. There was a significant reduction (p < 0.05) in the body weight of the Salmonella-infected birds compared to the other treatment groups. However, the FCRs of the broilers were comparable among the different treatment groups (p > 0.05). The lipid profile and liver function indices measured were significantly enhanced in the P. pentosaceus GT001-supplemented groups (B + P and B + P + S) compared to the group that was Salmonella-challenged (p < 0.05) but were similar to those in the control group. The serum antioxidant activities, such as the T-AOC, SOD, CAT, GHS-Px and MDA, were significantly improved in the P. pentosaceus GT001-supplemented groups (B + P and B + P + S) (p < 0.05). The MDA was similar in the B + P and B + P + S groups, but both were significantly lower than the control and the Salmonella groups. The administration of P. pentosaceus GT001 enhanced the lipase and amylase levels in both the serum and intestine of the broilers (p < 0.05). The immunoglobin (IgA, IgG, IgM) and cytokine (IL-10 and IL-6) levels in the serum were significantly higher in the B, B + P and B + P + S treatment groups (p < 0.05). The immune-related organs (bursa and spleen) were significantly influenced in the birds fed with P. pentosaceus GT001. No significant variation was noted among all the dietary treatments in terms of the measured meat quality indices. The small intestinal digesta content of the Salmonella load was below a detectable range after 14 days of infection (p < 0.05). No significant differences were observed among the different treatment groups in terms of the breast pH, drip loss and meat color (p > 0.05). The inclusion of P. pentosaceus GT001 also modified the community structure in the cecum. This indicates that it has health benefits and could be incorporated in the broiler diet.
Collapse
Affiliation(s)
- Gifty Ziema Bumbie
- Laboratory for Bio-Feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China; (G.Z.B.); (C.C.)
- Council for Scientific and Industrial Research, Animal Research Institute, Accra 20, Ghana; (L.A.); (A.D.O.-O.); (A.A.-A.K.); (K.O.A.); (V.K.L.)
| | - Leonardo Abormegah
- Council for Scientific and Industrial Research, Animal Research Institute, Accra 20, Ghana; (L.A.); (A.D.O.-O.); (A.A.-A.K.); (K.O.A.); (V.K.L.)
| | - Peter Asiedu
- Department of Animal Production and Health, School of Agricultural and Technology, University of Energy and Natural Resources, Sunyani 214, Ghana;
| | - Akua Durowaa Oduro-Owusu
- Council for Scientific and Industrial Research, Animal Research Institute, Accra 20, Ghana; (L.A.); (A.D.O.-O.); (A.A.-A.K.); (K.O.A.); (V.K.L.)
| | - Achiamaa Asafu-Adjaye Koranteng
- Council for Scientific and Industrial Research, Animal Research Institute, Accra 20, Ghana; (L.A.); (A.D.O.-O.); (A.A.-A.K.); (K.O.A.); (V.K.L.)
| | - Kwabena Owusu Ansah
- Council for Scientific and Industrial Research, Animal Research Institute, Accra 20, Ghana; (L.A.); (A.D.O.-O.); (A.A.-A.K.); (K.O.A.); (V.K.L.)
| | - Vida Korkor Lamptey
- Council for Scientific and Industrial Research, Animal Research Institute, Accra 20, Ghana; (L.A.); (A.D.O.-O.); (A.A.-A.K.); (K.O.A.); (V.K.L.)
| | - Chen Chen
- Laboratory for Bio-Feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China; (G.Z.B.); (C.C.)
| | - Taha Mohamed Mohamed
- Department of Animal and Fish Production, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria 21531, Egypt;
| | - Zhiru Tang
- Laboratory for Bio-Feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China; (G.Z.B.); (C.C.)
| |
Collapse
|
36
|
Champati A, Bhanja SK, Rokade JJ, Nayak N, Yadav AS, Biswas A, Sharma D, Chakma J, Sky, Mishra J, Saha SK, Agrawal RK, Singh M. Evaluation of in-feed supplementation of formic acid and thymol as non-antibiotic growth promoters and assessing their effect on antimicrobial resistant E.coli isolated in Turkey. Vet Res Commun 2024; 48:1741-1754. [PMID: 38539029 DOI: 10.1007/s11259-024-10353-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 03/10/2024] [Indexed: 06/04/2024]
Abstract
With the rampant usage of antibiotics as growth promoters (AGPs) in poultry sector, there has been alarming concerns of antimicrobial resistant microbes such as Escherichia coli. Diversification of poultry farming due to consumer demand for safer products with higher protein content, turkey production is gaining popularity. Feed additives such as formic acid (FA) and thymol (TH) are effectively replacing AGPs due to their antimicrobial action. This directed the researchers to find alternatives to antibiotics such as thymol and formic acid because of their strong antimicrobial, anti-oxidative, digestive-stimulating properties. To assess the efficacy of FA and TH as growth promoters and their effect on the antimicrobial resistance (AMR) load, the current study (0-12 weeks) was conducted in CARI VIRAT turkey poults (n = 256; unsexed) those were randomly distributed into eight treatment groups: control(T1), AGP (T2), graded levels of FA (T3 to T5) @ 2.5, 5 and 7.5 ml/kg and TH (T6 to T8) @ 120, 240 and 350 mg/kg. Cloacal swab samples were collected at 0, 4th, 8th and 12th week interval and processed further for isolation, identification and assessment of resistance profile of E. coli. The final body weight, cumulative gain and FCR were significantly (p < 0.05) better for birds under supplementation. The Total plate count (TPC) and coliforms showcased a significant (p < 0.001) reduction in the FA and TH supplement groups as compared to control and AGP group. The resistance profile indicated E. coli isolates from AGP group with significantly (p < 0.001) highest resistivity against antibiotics (viz. chloramphenicol, tetracycline, nalidixic acid, chlortetracycline) while isolates from FA (T5) and TH (T8) groups were the least resistant. blaAmpC gene was significantly (p < 0.001) harbored in T2 isolates whereas least detected in T5 and T8. It was inferred that formic acid (7.5 ml/kg) and thymol (360 mg/kg) can effectively replace AGPs and lower AMR burden in poultry.
Collapse
Affiliation(s)
- Abhijeet Champati
- ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India.
| | - Subrat Kumar Bhanja
- ICAR-Directorate of Poultry Research, Regional Station, Bhubaneswar, Odisha, 751003, India.
| | - Jaydip Jaywant Rokade
- ICAR-Central Avian Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India
| | - Nibedita Nayak
- ICAR-Central Coastal Agricultural Research Institute, Goa, 403402, India
| | - Ajit Singh Yadav
- Indian Council of Agricultural Research (ICAR), New Delhi, 110001, India
| | - Avishek Biswas
- ICAR-Central Institute for Research on Cattle, Meerut, Uttar Pradesh, 250001, India
| | - Divya Sharma
- ICAR-Central Avian Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India
| | - Juli Chakma
- ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India
| | - Sky
- ICAR-Central Avian Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India
| | - Jyotiprabha Mishra
- ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India
| | - Subodh Kumar Saha
- ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India
| | - Ravi Kant Agrawal
- ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India
| | - Mukesh Singh
- ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India
| |
Collapse
|
37
|
Kiskinis K, Mantzios T, Economou V, Petridou E, Tsitsos A, Patsias A, Apostolou I, Papadopoulos GA, Giannenas I, Fortomaris P, Tsiouris V. The In Vitro Antibacterial Activity of Phytogenic and Acid-Based Eubiotics against Major Foodborne Zoonotic Poultry Pathogens. Animals (Basel) 2024; 14:1611. [PMID: 38891658 PMCID: PMC11171102 DOI: 10.3390/ani14111611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 05/26/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
The aim of the study was to investigate in vitro the antibacterial activity of 8 commercial drinking water additives against major zoonotic poultry pathogens (Campylobacter spp., Escherichia coli, Salmonella Typhimurium, Staphylococcus aureus and Listeria spp.). We tested two essential oil-based phytogenics (Phyto CSC Liquide B, AEN 350 B Liquid), two acid-based eubiotics (Salgard® liquid, Intesti-Flora), and four blends of essential oils and organic acids (ProPhorceTM SA Exclusive, Herbal acid, Rigosol-N and Eubisan 3000). The antibacterial activity was determined by estimating the minimum inhibitory concentration (MIC) using a microdilution method. The MICs of the products against Campylobacter spp. ranged from 0.071% to 0.568% v/v, in which Herbal acid, a blend rich in lactic and phosphoric acids, also containing thyme and oregano oils, exhibited the highest efficacy (MIC: 0.071% v/v) against all the tested strains. The MICs of the tested products against Escherichia coli ranged between 0.071% and 1.894% v/v. Specifically, the MIC of Rigosol-N, a blend of high concentrations of lactic and acetic acid, was 0.142% v/v for both tested strains, whereas the MICs of Intesti-Flora, a mixture rich in lactic and propionic acid, ranged from 0.284% to 0.568% v/v. The MICs of the products against Salmonella Typhimurium were between 0.095% and 1.894% v/v. Specifically, the MIC of Eubisan 3000, a blend rich in oregano oil, was 0.284% v/v. The MICs against Staphylococcus aureus were between 0.142% and 9.090% v/v. The MICs of Phyto CSC Liquide B, which is rich in trans-cinnamaldehyde, were between 3.030% and 9.090% v/v, showing the highest MIC values of all tested products. Finally, the MIC values of the tested commercial products against Listeria spp. were 0.095% to 3.030% v/v. The MICs of ProPhorceTM SA Exclusive, a highly concentrated blend of formic acid and its salts, were 0.095-0.142% v/v against Listeria spp., while the MICs of AEN 350 B Liquid were between 0.284% and 1.894% exhibiting high Listeria spp. strain variability. In conclusion, all the selected commercial products exhibited more or less antibacterial activity against pathogenic bacteria and, thus, can be promising alternatives to antibiotics for the control of zoonotic poultry pathogens and the restriction of antimicrobial-resistant bacteria.
Collapse
Affiliation(s)
- Konstantinos Kiskinis
- Unit of Avian Medicine, Clinic of Farm Animals, School of Veterinary Medicine, Aristotle University of Thessaloniki, 54627 Thessaloniki, Greece; (T.M.); (V.T.)
| | - Tilemachos Mantzios
- Unit of Avian Medicine, Clinic of Farm Animals, School of Veterinary Medicine, Aristotle University of Thessaloniki, 54627 Thessaloniki, Greece; (T.M.); (V.T.)
| | - Vangelis Economou
- Laboratory of Food Animal Hygiene and Veterinary Public Health, School of Veterinary Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (V.E.); (A.T.)
| | - Evanthia Petridou
- Laboratory of Microbiology and Infectious Diseases, School of Veterinary Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Anestis Tsitsos
- Laboratory of Food Animal Hygiene and Veterinary Public Health, School of Veterinary Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (V.E.); (A.T.)
| | - Apostolos Patsias
- Agricultural Poultry Cooperation of Ioannina “PINDOS”, Rodotopi, 45500 Ioannina, Greece;
| | - Ioanna Apostolou
- National Reference Laboratory (NRL) for Campylobacter, Veterinary Laboratory of Ioannina, 45221 Ioannina, Greece;
| | - Georgios A. Papadopoulos
- Laboratory of Animal Science, School of Veterinary Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (G.A.P.); (P.F.)
| | - Ilias Giannenas
- Laboratory of Nutrition, School of Veterinary Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Paschalis Fortomaris
- Laboratory of Animal Science, School of Veterinary Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (G.A.P.); (P.F.)
| | - Vasilios Tsiouris
- Unit of Avian Medicine, Clinic of Farm Animals, School of Veterinary Medicine, Aristotle University of Thessaloniki, 54627 Thessaloniki, Greece; (T.M.); (V.T.)
| |
Collapse
|
38
|
Yang W, Li J, Yao Z, Li M. A review on the alternatives to antibiotics and the treatment of antibiotic pollution: Current development and future prospects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171757. [PMID: 38513856 DOI: 10.1016/j.scitotenv.2024.171757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/08/2024] [Accepted: 03/14/2024] [Indexed: 03/23/2024]
Abstract
Antibiotics, widely used in the fields of medicine, animal husbandry, aquaculture, and agriculture, pose a serious threat to the ecological environment and human health. To prevent antibiotic pollution, efforts have been made in recent years to explore alternative options for antibiotics in animal feed, but the effectiveness of these alternatives in replacing antibiotics is not thoroughly understood due to the variation from case to case. Furthermore, a systematic summary of the specific applications and limitations of antibiotic removal techniques in the environment is crucial for developing effective strategies to address antibiotic contamination. This comprehensive review summarized the current development and potential issues on different types of antibiotic substitutes, such as enzyme preparations, probiotics, and plant extracts. Meanwhile, the existing technologies for antibiotic residue removal were discussed under the scope of application and limitation. The present work aims to highlight the strategy of controlling antibiotics from the source and provide valuable insights for green and efficient antibiotic treatment.
Collapse
Affiliation(s)
- Weiqing Yang
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China
| | - Jing Li
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China.
| | - Zhiliang Yao
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Mi Li
- Center for Renewable Carbon, School of Natural Resources, The University of Tennessee, Knoxville, TN 37996, USA
| |
Collapse
|
39
|
Fu G, Zhang M, Huang Y, Han R, Qi K, Yin L, Zhao D, Huang Y, Ma T, Wang L. Effects of different addition levels of CHM-JM113 on growth performance, antioxidant capacity, organ index, and intestinal health of AA broilers. Front Vet Sci 2024; 11:1388173. [PMID: 38812557 PMCID: PMC11133612 DOI: 10.3389/fvets.2024.1388173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 04/17/2024] [Indexed: 05/31/2024] Open
Abstract
The purpose of the present study was to investigate the effects of different levels of a Chinese herbal medicine formulation combined with JM113 (CHM-JM113) on growth performance, antioxidant capacity, organ index, and intestinal health of AA broilers. The AA broiler chicks were randomly allocated to 5 treatments as follows: a basic diet for the control group, the basic diet supplemented with 0.25% CHM-JM113, 0.5% CHM-JM113, 1% CHM-JM113 and 2% CHM-JM113 for the treatment group, respectively. The results showed that the addition of CHM-JM113 to the diet significantly reduced the mortality (p < 0.01) and improved the European Broiler Index (EBI) (p < 0.05), whereas it had no significance on growth performance of AA broilers (p > 0.05). Comparing the control group, 0.5 and 1% CHM-JM113 group significantly improved the organ index of liver, spleen and bursa (p < 0.05). In terms of intestinal morphology and structure, the addition of different levels of CHM-JM113 increased VH and VH/CD ratio, decreased CD in the small intestine compared to the control group, with 1 and 2% of the additive dose being more effective (p < 0.05). Chinese herbal medicine and probiotics as natural antioxidants also significantly increased the content of SOD in serum of 21-day-old broilers (p < 0.01), and significantly decreased the content of MDA in serum (p < 0.01). At 42 days of age, the addition of 1 and 2% CHM-JM113 significantly increased the content of SOD (p < 0.01) and significantly decreased the content of MDA in the organism (p < 0.01), accompanied by a significant increase in T-AOC and CAT content. In the study of the effect of CHM-JM113 on intestinal immunity, compared with the control group, we found that 1% or 2% CHM-JM113 had a better effect on the expression of occludin and claudin-1 in the intestinal segments of broilers (p < 0.05). For the expression of GATA-3, 0.5% CHM-JM113 may have a better effect (p < 0.05). CHM-JM113 may be used as an antibiotic alternative in broiler production.
Collapse
Affiliation(s)
- Guanhua Fu
- College of Life Science and Food Engineering, Hebei University of Engineering, Handan, China
| | - Mengyu Zhang
- College of Life Science and Food Engineering, Hebei University of Engineering, Handan, China
| | - Yuanyuan Huang
- College of Life Science and Food Engineering, Hebei University of Engineering, Handan, China
- Breeding Branch, Muyuan Foods Co., Ltd., Nanyang, China
| | - Runyu Han
- College of Life Science and Food Engineering, Hebei University of Engineering, Handan, China
| | - Kaixuan Qi
- College of Life Science and Food Engineering, Hebei University of Engineering, Handan, China
| | - Lidong Yin
- College of Life Science and Food Engineering, Hebei University of Engineering, Handan, China
| | - Dongchen Zhao
- College of Life Science and Food Engineering, Hebei University of Engineering, Handan, China
| | - Yueyan Huang
- College of Life Science and Food Engineering, Hebei University of Engineering, Handan, China
| | - Tenghe Ma
- College of Life Science and Food Engineering, Hebei University of Engineering, Handan, China
| | - Lihong Wang
- College of Life Science and Food Engineering, Hebei University of Engineering, Handan, China
| |
Collapse
|
40
|
El-Abd NM, Hamouds RA, Saddiq AA, Al-Shaikh TM, Khusaifan TJ, Abou-El-Souod G. Effect of dietary Arthrospira platensis phycocyanin on broiler chicken growth performance, physiological status, fatty and amino acid profiles. Vet World 2024; 17:1098-1107. [PMID: 38911079 PMCID: PMC11188895 DOI: 10.14202/vetworld.2024.1098-1107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 04/23/2024] [Indexed: 06/25/2024] Open
Abstract
Background and Aim Natural antioxidants are crucial for preserving and enhancing the health, survival, reproduction, and reproductive function of poultry. Phycocyanin (PC) is a natural blue food colorant with various health benefits. The aim of this study was to extract Arthrospira platensis phycocyanin (ApPC) from A. platensis using simple and economical methods and investigate the impact of phytocyanin supplementation on the performance and fatty and amino acid profiles of broiler chicks. Materials and Methods PC was extracted from A. platensis by freezing and thawing, and optimization conditions such as pH and temperature were applied during storage periods. A total of 270 1-week-old Ross breed broiler chicks were randomly assigned to the following three treatment groups: basal diet supplemented with 0 mg of PC/kg diet (control), basal diet supplemented with 1 g PC/kg diet (T1), and basal diet supplemented with 2 g PC/kg (T2). In a completely randomized design, three cage replicates (30 birds each) were assigned to each of the three groups. The dietary effects of ApPC on growth performance (body weight gain [BWG], body weight [BW], feed intake, feed conversion ratio, serum constituents, and antioxidant indices) in broiler chickens, free amino acids, and fatty acids in muscles were evaluated. Results Total BWG and BW increased without a significant effect on the total feed consumption. Serum levels of total proteins and albumin increased with increasing ApPC supplementation. In addition, globulin levels significantly increased. There was a significant decrease in serum total cholesterol levels among the treatments. The activity of antioxidant enzymes (superoxide dismutase, catalase, glutathione, and total antioxidant capacity) is significantly increased. In contrast, an increase in ApPC caused a significant decrease in malondialdehyde. The content and quantity of fatty acids and amino acids in the meat of broiler chicks supplemented with PC varies. Conclusion The addition of PC to broiler chicken diets enhances antioxidant activities, BW, BWG, and meets quality requirements.
Collapse
Affiliation(s)
- Niamat M. El-Abd
- Sustainable Development of Environment and its Projects Management, Environmental Studies and Research Institute, University of Sadat City, Sadat City 32897, Egypt
| | - Ragaa A. Hamouds
- Department of Biology, College of Science and Arts at Khulis, University of Jeddah, Jeddah 21959, Saudi Arabia
- Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City 32897, Egypt
| | - Amna A. Saddiq
- College of Sciences, University of Jeddah, Jeddah, Saudi Arabia
| | - Turki M. Al-Shaikh
- Department of Biology, College of Science and Arts at Khulis, University of Jeddah, Jeddah 21959, Saudi Arabia
| | | | - Ghada Abou-El-Souod
- Department of Botany and Microbiology, Faculty of Science, Menoufia University, Shibin Al Kawm, Egypt
| |
Collapse
|
41
|
Abd El-Aziz AH, El-Kasrawy NI, Abd El-Hack ME, Swelum AA, Suliman G, Tufarelli V, Abo Ghanima MM. Impact of bee venom supplement on productive performance, health status and economics of weaned male rabbits: Considering breed and dosage factors. J Anim Physiol Anim Nutr (Berl) 2024; 108:792-805. [PMID: 38311831 DOI: 10.1111/jpn.13931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/30/2023] [Accepted: 01/18/2024] [Indexed: 02/06/2024]
Abstract
The objectives of the present study were to investigate the potential effects of purified bee venom (BV) on various aspects of growth, carcass, antioxidant, intestinal bacterial count and economic considerations in rabbits. A total of 240 male rabbits, comprising two distinct breeds (V-Line and New Zealand White [NZW]), 5 weeks old, with an average live body weight (BW) of 680 ± 20 g, were randomly divided into six groups, each containing 30 rabbits. Each group had five replicates, with six rabbits in each replicate. The allocation of animals to the groups followed a fully factorial design, incorporating two factors: breed (V-Line and NZW) and four levels of purified BV derived from Apis Mellifera. The control group (G1) received a basal diet without additives. The other three groups (G2, G3 and G4) received the basal diet with BV supplementation in their drinking water at 0.5, 1 and 2 mg/L respectively. The study results indicated that NZW rabbits significantly enhanced feed conversion ratio while maintaining consistent carcass attributes compared to the V-Line breed. Despite variations in growth parameters being less pronounced, the supplementation of BV at levels of 1-2 mg/L demonstrated significant improvements in various other parameters. Notably, the interaction between the BV supplement and the breed factor (p < 0.001) yielded notable distinctions in most production metrics, encompassing BW, weight gain, feed conversion, carcass attributes and blood parameters. Increasing levels of BV supplementation, particularly at 1 mg/L, led to substantial improvements in serum and tissue metabolites. Moreover, the levels of total bacterial count and Escherichia coli in the jejunum and colon were significantly diminished, while the population of Lactobacilli in the colon was augmented (p < 0.001) in rabbits from both breeds receiving BV supplementation (1-2 mg/L) compared to the control group. The results underscore the potential of the BV supplement to enhance final weights, bolster antioxidant status and mitigate the presence of pathogenic bacteria, thereby contributing to enhanced economic efficiency in rabbits. Further inquiries are warranted to comprehensively investigate BV supplementation's potential advantages and limitations across different breeds and dosage levels.
Collapse
Affiliation(s)
- Ayman H Abd El-Aziz
- Animal Husbandry and Animal Wealth Development Department, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Nagwa I El-Kasrawy
- Animal Husbandry and Animal Wealth Development Department, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | | | - Ayman A Swelum
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Gamaleldin Suliman
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Vincenzo Tufarelli
- Department of Precision and Regenerative Medicine and Jonian Area (DiMePRe-J), Section of Veterinary Science and Animal Production, University of Bari Aldo Moro, Valenzano, Italy
| | - Mahmoud M Abo Ghanima
- Animal Husbandry and Animal Wealth Development Department, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| |
Collapse
|
42
|
Balenović M, Janječić Z, Savić V, Kasap A, Popović M, Šimpraga B, Sokolović M, Bedeković D, Kiš G, Zglavnik T, Špoljarić D, Krstulović F, Listeš I, Zelenika TA. Immunostimulatory and Antibacterial Effects of Cannabis sativa L. Leaves on Broilers. Animals (Basel) 2024; 14:1159. [PMID: 38672306 PMCID: PMC11047609 DOI: 10.3390/ani14081159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/05/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
The aim of this study was to evaluate the effect of dried Cannabis sativa L. leaves as a phytogenic mixture added to broiler feed on CD4+ and CD8+ T lymphocyte subpopulations, Newcastle disease virus (NDV) antibody titres, and the presence of E. coli in faecal samples. The study was conducted on 100 male Ross 308 broilers, divided into four groups of 25 broilers, for a 42-day research period. The groups were housed separately in boxes on a litter of softwood shavings and were fed starter mixture from day 1 to day 21 and finisher mixture from day 22 to day 42. Industrial hemp (C. sativa) was grown in the Crkvina area, Croatia (latitude: 45°18'46.8″ N; longitude: 15°31'30″ E). The hemp leaves were manually separated, sun-dried, and ground to a powder. The mixture offered to the control group did not contain cannabis leaves, whereas the three experimental groups received mixtures containing mixed cannabis leaves in a quantity of 10 g/kg, 20 g/kg, or 30 g/kg (E_10, E_20, and E_30, respectively). The mean NDV antibody level was uniform in all study groups until post-vaccination day 14 and increased comparably with time. The percentage of CD4+ and CD8+ lymphocytes in the peripheral blood subpopulation showed statistically significant differences (p < 0.001) in the E_20 group as compared with the control group and both the E_10 and E_30 groups throughout the study period. As the broiler age increased, the CD4+-to-CD8+ ratios also increased and were statistically significant (p < 0.0001) on day 42 in all experimental groups as compared to the control group. Comparing the control group with the experimental groups indicated that the bacterial count was lower in broiler groups having received feed with the addition of 20 g/kg and 30 g/kg C. sativa leaves. In conclusion, the C. sativa leaves were found to elicit a favourable immunomodulatory effect on cell-mediated and humoral immune responses in broilers via increased CD4+ and CD8+ lymphocyte subpopulations and higher CD4+:CD8+ cell ratios, thus indicating enhanced immune function capacity. In addition, C. sativa leaves may have complementary effects on the broiler post-vaccination immune response, increase broilers' resistance to infectious diseases, reduce the effect of stress associated with vaccination, and improve broiler health and welfare.
Collapse
Affiliation(s)
- Mirta Balenović
- Poultry Center, Croatian Veterinary Institute, Ul. Vjekoslava Heinzela 55, 10000 Zagreb, Croatia; (M.B.)
| | - Zlatko Janječić
- Department of Animal Nutrition, Faculty of Agriculture, University of Zagreb, Svetošimunska Cesta 25, 10000 Zagreb, Croatia
| | - Vladimir Savić
- Poultry Center, Croatian Veterinary Institute, Ul. Vjekoslava Heinzela 55, 10000 Zagreb, Croatia; (M.B.)
| | - Ante Kasap
- Department of Animal Science and Technology, Faculty of Agriculture, University of Zagreb, Svetošimunska Cesta 25, 10000 Zagreb, Croatia
| | - Maja Popović
- Department of Veterinary Biology, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova ul. 55, 10000 Zagreb, Croatia
| | - Borka Šimpraga
- Poultry Center, Croatian Veterinary Institute, Ul. Vjekoslava Heinzela 55, 10000 Zagreb, Croatia; (M.B.)
| | - Marijana Sokolović
- Poultry Center, Croatian Veterinary Institute, Ul. Vjekoslava Heinzela 55, 10000 Zagreb, Croatia; (M.B.)
| | - Dalibor Bedeković
- Department of Animal Nutrition, Faculty of Agriculture, University of Zagreb, Svetošimunska Cesta 25, 10000 Zagreb, Croatia
| | - Goran Kiš
- Department of Animal Nutrition, Faculty of Agriculture, University of Zagreb, Svetošimunska Cesta 25, 10000 Zagreb, Croatia
| | - Tihomir Zglavnik
- Poultry Center, Croatian Veterinary Institute, Ul. Vjekoslava Heinzela 55, 10000 Zagreb, Croatia; (M.B.)
| | - Daniel Špoljarić
- Department of Veterinary Biology, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova ul. 55, 10000 Zagreb, Croatia
| | - Fani Krstulović
- Poultry Center, Croatian Veterinary Institute, Ul. Vjekoslava Heinzela 55, 10000 Zagreb, Croatia; (M.B.)
| | - Irena Listeš
- Regional Veterinary Institute Split, Croatian Veterinary Institute, Poljička Cesta 33, 21000 Split, Croatia
| | - Tajana Amšel Zelenika
- Poultry Center, Croatian Veterinary Institute, Ul. Vjekoslava Heinzela 55, 10000 Zagreb, Croatia; (M.B.)
| |
Collapse
|
43
|
Zhu La ALT, Wen Q, Xiao Y, Hu D, Liu D, Guo Y, Hu Y. A New Bacillus velezensis Strain CML532 Improves Chicken Growth Performance and Reduces Intestinal Clostridium perfringens Colonization. Microorganisms 2024; 12:771. [PMID: 38674715 PMCID: PMC11051962 DOI: 10.3390/microorganisms12040771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/29/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Bacillus velezensis has gained increasing recognition as a probiotic for improving animal growth performance and gut health. We identified six B. velezensis strains from sixty Bacillus isolates that were isolated from the cecal samples of fifteen different chicken breeds. We characterized the probiotic properties of these six B. velezensis strains. The effect of a selected strain (B. velezensis CML532) on chicken growth performance under normal feeding and Clostridium perfringens challenge conditions was also evaluated. The results revealed that the six B. velezensis strains differed in their probiotic properties, with strain CML532 exhibiting the highest bile salt and acid tolerance and high-yield enzyme and antibacterial activities. Genomic analyses showed that genes related to amino acid and carbohydrate metabolism, as well as genes related to starch and cellulose hydrolysis, were abundant in strain CML532. Dietary supplementation with strain CML532 promoted chicken growth, improved the gut barrier and absorption function, and modulated the gut microbiota. Under the C. perfringens challenge condition, strain CML532 alleviated intestinal damage, reduced ileal colonization of C. perfringens, and also improved chicken growth performance. Collectively, this study demonstrated that the newly isolated B. velezensis strain is a promising probiotic with beneficial effects on chicken growth performance and gut health.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yongfei Hu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (A.L.T.Z.L.); (Q.W.); (Y.X.); (D.H.); (D.L.); (Y.G.)
| |
Collapse
|
44
|
Paredes-López DM, Robles-Huaynate RA, Soto-Vásquez MR, Perales-Camacho RA, Morales-Cauti SM, Beteta-Blas X, Aldava-Pardave U. Modulation of Gut Microbiota, and Morphometry, Blood Profiles and performance of Broiler Chickens Supplemented with Piper aduncum, Morinda citrifolia, and Artocarpus altilis leaves Ethanolic Extracts. Front Vet Sci 2024; 11:1286152. [PMID: 38511194 PMCID: PMC10953691 DOI: 10.3389/fvets.2024.1286152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 02/06/2024] [Indexed: 03/22/2024] Open
Abstract
Bioactive plants such as P. aduncum, M. citrifolia, and A. altilis might improve intestinal health as an alternative to antibiotic growth promoters. The objective of this study was to determine the effect of the ethanolic extracts (EEs) of these plants on the intestinal health of broiler chickens. Cobb 500 chickens (n = 352) were distributed into eight treatments with four replicates and 11 chickens each. T1 received a base diet, and T2 received a base diet with 0.005% zinc bacitracin. T3, T5, and T7 were supplemented with 0.005% of P. aduncum, M. citrifolia, and A. altilis EE in the diet while T4, T6, and T8 with 0.01% of the extract. The EEs were supplemented with drinking water from 1 to 26 days of age. The following parameters were evaluated: hematological profiles at 28 days of age, blood metabolites profiles at 14, 21, and 28 days; Escherichia coli, Staphylococcus aureus, and Lactobacillus sp. abundance in the ileum mucosa and content at 21 and 28 days, and histomorphometry of the duodenum, jejunum, and ileum mucosa at 14, 21, and 28 d. Final weight (FW), weight gain (WG), feed intake (FI), and feed conversion rate (FCR) were evaluated at seven, 21, and 33 days of age. M. citrifolia and A. altilis EE at 0.01% increased blood glucose levels at 21 and 28 days of age, respectively, and P. aduncum and M. citrifolia EE at 0.01% increased triglycerides at 28 days of age; in addition, this EE did not have any effect on the AST and ALT profiles. The depths of the Lieberkühn crypts and the villi length to the crypt's depth ratio increased with age on supplementation with 0.01% M. citrifolia and A. altilis EE at 21 days of age (p < 0.05). In addition, the depth of the crypts increased at 28 days of age (p < 0.05) in chickens supplemented with 0.01% A. altilis EE. The 0.01% M. citrifolia EE in diet decreased in the Staphylococcus aureus population in the ileal microbiota (p < 0.05). The FW and WG during the fattening and in the three stages overall increased, and the FCR decreased; however, the FI and the carcass yield did not change in the broiler chickens supplemented with 0.01% M. citrifolia EE (p < 0.05). Conclusively, the M. citrifolia EE at 0.01% of the diet improved intestinal health and thus the performance indices of the broiler chickens and did not have a detrimental effect on any of the parameters evaluated, so it is postulated as a potential alternative to AGP in poultry.
Collapse
Affiliation(s)
| | - R. A. Robles-Huaynate
- Department of Animal Science, Universidad Nacional Agraria de la Selva, Tingo María, Peru
| | | | - Rosa Amelia Perales-Camacho
- Department of Animal and Public Health, Faculty of Veterinary Medicine, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - Siever Miguel Morales-Cauti
- Department of Animal and Public Health, Faculty of Veterinary Medicine, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - Xiomara Beteta-Blas
- Posgraduate School, Universidad Nacional Agraria de la Selva, Tingo María, Peru
| | | |
Collapse
|
45
|
Alghamdi MA, Reda FM, Mahmoud HK, Bahshwan SMA, Salem HM, Alhazmi WA, Soror AFS, Mostafa NG, Attia S, Mohamed MDA, Saad AM, El-Tarabily KA, Abdelgeliel AS. The potential of Spirulina platensis to substitute antibiotics in Japanese quail diets: impacts on growth, carcass traits, antioxidant status, blood biochemical parameters, and cecal microorganisms. Poult Sci 2024; 103:103350. [PMID: 38262339 PMCID: PMC10831102 DOI: 10.1016/j.psj.2023.103350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/29/2023] [Accepted: 12/01/2023] [Indexed: 01/25/2024] Open
Abstract
The development of antibiotic-resistant microorganisms prompted the investigation of possible antibiotic substitutes. As a result, the purpose of the current study is to assess the effect of dietary Spirulina platensis extract as an antibiotic alternative on Japanese quail (Coturnix japonica) growth, antioxidant status, blood parameters, and cecal microorganisms. There was a total of 150 Japanese quails used in this study, divided equally among 5 experimental groups (10 birds per group with 3 replicates): group 1 (G1) received a basal diet without any S. platensis extract, group 2 (G2) received a basal diet supplemented with 1 mL S. platensis extract/kg, group 3 (G3) received a basal diet supplemented with 2 mL S. platensis extract/kg, group 4 (G4) received a basal diet supplemented with 3 mL S. platensis extract/kg, and group 5 (G5) received a basal diet supplemented with 4 mL S. platensis extract/kg from d 7 until d 35. The results showed that compared to the control birds in G1, Japanese quail supplemented with 4 mL of S. platensis extract/kg of diet (G5) had significantly better live body weight, body weight gain, feed intake, feed conversion ratio, digestive enzymes, blood parameters, liver and kidney functions, lipid profile, antioxidant profile, immunological parameters, and cecal microorganism's count. There were no significant changes in the percentage of carcasses, liver, and total giblets among all the 5 groups. Only gizzard percentage showed a significant increase in G2 compared to birds in G1. In addition, intestinal pH showed a significant drop in G2 and G5 compared to birds in G1. After cooking the quail meat, the juiciness and tenderness increased as S. platensis extract levels increased, whereas aroma and taste declined slightly as S. platensis extract levels increased. Furthermore, when a high concentration of S. platensis extract was used, the lightness of the meat reduced while its redness and yellowness increased. The disk diffusion assay showed that S. platensis extract had significant antibacterial activity against Staphylococcus aureus, Listeria monocytogenes, Campylobacter jejuni, and Salmonella typhi, with inhibition zones ranging from 16 to 42 mm. This activity may be attributable to the volatile chemicals in S. platensis extract, of which Geosmin and 2-methylisoborneol are the primary components. In the diet of Japanese quails, it is possible to draw the conclusion that the extract of S. platensis can be utilized as a feed additive and as an alternative to antibiotics.
Collapse
Affiliation(s)
- Mashail A Alghamdi
- Biology Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Fayiz M Reda
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Hemat K Mahmoud
- Department of Animal Production, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Safia M A Bahshwan
- Biological Sciences Department, College of Science and Arts, King Abdulaziz University, Rabigh 21911, Saudi Arabia
| | - Heba M Salem
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Wafaa Ahmed Alhazmi
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Abel-Fattah Salah Soror
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| | - Nadeen G Mostafa
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Sally Attia
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Mazhar D A Mohamed
- Agricultural Microbiology Department, Faculty of Agriculture, Sohag University, Sohag 82524, Egypt
| | - Ahmed M Saad
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Khaled A El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al Ain 15551, United Arab Emirates.
| | - Asmaa Sayed Abdelgeliel
- Department of Botany and Microbiology, Faculty of Science, South Valley University, Qena 83523, Egypt
| |
Collapse
|
46
|
Pelyuntha W, Ngasaman R, Yingkajorn M, Chukiatsiri K, Guyonnet V, Vongkamjan K. Phage cocktail administration to reduce Salmonella load in broilers. Res Vet Sci 2024; 169:105163. [PMID: 38295630 DOI: 10.1016/j.rvsc.2024.105163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/02/2024]
Abstract
Salmonella is a serious foodborne pathogen that can cause gastrointestinal disease through the consumption of contaminated foods; including poultry meat. Salmonella is commonly present in the intestinal tract of poultry and farm environments, posing a potential risk of contamination during the processing of poultry meat. This study was a continuation in evaluating the effects of our previously developed phage cocktail targeting Salmonella at large-scale trials in commercial broiler farms, in which this cocktail considerably lowered Salmonella colonization in the gut of broilers. The phage cocktail given to broilers showed resistance to temperatures of up to 65 °C (> 60% survivability), pH ranging from 2 to 12 (> 96% survivability), 0.5 to 15% (w/v) NaCl (> 98% survivability), chlorine up to 0.5% (v/v) (53% survivability), and chlorine neutralizer (100% survivability). In the animal challenge study, phage treatments, designed as "prevention" and "exclusion" programs, could control Salmonella on day 20 and 32 of the experiment, respectively; as indicated by the absence of Salmonella detection in cloacal swabs from broilers (0% prevalence). In the commercial-scale trial I, Salmonella was not detected in the phage-treated group from cloacal swabs, boot cover swabs, and bedding material samples after 16 days (0% prevalence) of phage administration. In the commercial-scale trial II, phage treatment extended the Salmonella control period in broilers during a 40-day growout period. In summary, a phage cocktail demonstrated high efficiency in controlling various serovars of Salmonella historically linked to contamination on these broiler farms. Phage cocktail application offers an effective, alternative to enhance food safety within the poultry value chain, protecting consumers and as well as the economic sustainability of the poultry sector.
Collapse
Affiliation(s)
- Wattana Pelyuntha
- Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
| | - Ruttayaporn Ngasaman
- Faculty of Veterinary Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Mingkwan Yingkajorn
- Department of Pathology, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Kridda Chukiatsiri
- Faculty of Animal Science and Technology, Maejo University, Nongharn, Sansai, Chiang Mai 50290, Thailand
| | | | - Kitiya Vongkamjan
- Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Chatuchak, Bangkok 10900, Thailand.
| |
Collapse
|
47
|
El-Ratel IT, Amara MM, Beshara MM, Basuini MFE, Fouda SF, El-Kholy KH, Ebeid TA, Kamal M, Othman SI, Rudayni HA, Allam AA, Moustafa M, Tellez-Isaias G, Abd El-Hack ME, Mekawy A. Effects of supplemental vitamin A on reproduction and antioxidative status of aged laying hens, and growth, blood indices and immunity of their offspring. Poult Sci 2024; 103:103453. [PMID: 38306808 PMCID: PMC10850857 DOI: 10.1016/j.psj.2024.103453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/04/2024] [Accepted: 01/07/2024] [Indexed: 02/04/2024] Open
Abstract
The purpose of this investigation was to evaluate the impacts of vitamin A (VA) supplementation in feed at levels of 0 (control), 2,000, 4,000, 6,000, and 8,000 IU VA/kg diet on the reproductive efficiency and antioxidative properties of aged Sinai laying hens at 52 wk of age (n = 300 females and 30 males) in 6 replicates (10 females + 1 male/replicate). As well as blood biochemical indicators, carcass characteristics, growth performance, immunity, and the antioxidative status of their chicks. Results showed that diets supplemented with 2,000 or 6,000 IU/kg of VA increased fertility rate and decreased early embryonic mortality (P < 0.05). Increasing VA from 4,000 to 6,000 IU/kg significantly boosted hatchability rates. All VA levels significantly enhanced glutathione peroxidase (GPx) and reduced malondialdehyde (MDA) and late embryonic mortality. In the shell gland, dietary supplementation of 6,000 or 8,000 IU/kg of VA enhanced actions of GPx actions, catalase (CAT), and superoxide dismutase (SOD). In hatched chicks, all VA levels boosted (P < 0.05) hemoglobin, red blood cell count, and serum concentration of total proteins and IgA while decreasing eosinophils percentage and aspartate aminotransferase activity (AST) concentration. Dietary VA supplementations from 4,000 to 8,000 IU/kg improved lymphocytes, serum total antioxidant capacity (TAC), SOD, and IgM, while decreasing heterophils, heterophils/lymphocytes ratio, and creatinine in hatched chicks. Serum triglyceride concentration was reduced by adding 6,000 or 8,000 IU/kg of VA, while globulin and high-density lipoprotein concentrations were heightened only by 8,000 IU/kg of VA. It could be concluded that the dietary supplementation of VA (6,000 IU/kg) improved reproductive efficiency and antioxidative status in the liver and the shell gland of aged laying hens and improved hemato-biochemicals parameters, antioxidative status, and immunity of their offspring.
Collapse
Affiliation(s)
- Ibrahim T El-Ratel
- Department of Animal, Poultry and Fish Production, Faculty of Agriculture, Damietta University, Damietta 34517, Egypt
| | - Mariam M Amara
- Department of Animal, Poultry and Fish Production, Faculty of Agriculture, Damietta University, Damietta 34517, Egypt
| | - Malak M Beshara
- Agricultural Research Center, Animal Production Research Institute, Ministry of Agriculture, Dokki, Giza, Egypt
| | - Mohammed F El Basuini
- Department of Animal Production, Faculty of Agriculture, Tanta University, 31527 Tanta, Egypt; Faculty of Desert Agriculture, King Salman International University, South Sinai, Egypt
| | - Sara F Fouda
- Department of Poultry Production, Faculty of Agriculture, Mansoura University, Mansoura 35516, Egypt
| | - Khaled H El-Kholy
- Department of Animal, Poultry and Fish Production, Faculty of Agriculture, Damietta University, Damietta 34517, Egypt
| | - Tarek A Ebeid
- Department of Animal Production and Breeding, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 51452, Saudi Arabia; Department of Poultry Production, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
| | - Mahmoud Kamal
- Agricultural Research Center, Animal Production Research Institute, Dokki, Giza 12618, Egypt
| | - Sarah I Othman
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Hassan A Rudayni
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh 11623, Saudi Arabia
| | - Ahmed A Allam
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh 11623, Saudi Arabia; Department of Zoology, Faculty of Science, Beni-suef University, Beni-suef 65211 Egypt
| | - Mahmoud Moustafa
- Department of Biology, College of Science, King Khalid University, Abha, Kingdom of Saudi Arabia
| | - Guillermo Tellez-Isaias
- Department of Poultry Science, Division of Agriculture, University of Arkansas, Fayetteville, AR 72701 USA
| | | | - Aml Mekawy
- Department of Animal, Poultry and Fish Production, Faculty of Agriculture, Damietta University, Damietta 34517, Egypt
| |
Collapse
|
48
|
Moore RJ. Necrotic enteritis and antibiotic-free production of broiler chickens: Challenges in testing and using alternative products. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 16:288-298. [PMID: 38371475 PMCID: PMC10869589 DOI: 10.1016/j.aninu.2023.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 08/21/2023] [Accepted: 08/28/2023] [Indexed: 02/20/2024]
Abstract
The global trend towards raising broiler chickens without the use of in-feed antibiotics (IFAs) means that there is an ongoing need to develop alternative treatments capable of delivering the benefits that IFAs previously provided. IFAs supported the productivity performance of chickens and played a key role in maintaining their health. Necrotic enteritis (NE) is an important disease of broilers that affects health, productivity, and welfare, and was previously well controlled by IFAs. However, with the reduction in IFA use, NE is resurgent in some countries. Vaccines and various feed additives, including pre-, pro-, and postbiotics, phytobiotics, fatty acids, and phage therapies have been introduced as alternative methods of NE control. While some of these feed additives have specific activity against the NE pathogen, Clostridium perfringens, most have the more general goal of reinforcing gut health. Extensive reviews of the effects of many of these feed additives on gut health have been published recently. Hence, rather than cover previously well reviewed areas of research this review focuses on the challenges and pitfalls in undertaking experimental assessment of alternative NE treatments and translating laboratory research to real world commercial production settings. The review is based on the author's particular experience, reading, thoughts, and analysis of the available information and inevitably presents a particular understanding that is likely to be at odds with others thinking on these issues. It is put forward to stimulate thinking and discussion on the issues covered.
Collapse
Affiliation(s)
- Robert J. Moore
- School of Science, RMIT University, Bundoora, Victoria 3083, Australia
| |
Collapse
|
49
|
Farag SA, El-Keredy A, Abd El Gawad SA, Swelum AA, Tellez-Isaias G, Abouzeid AE. Impacts of willow (Salix babylonica L.) leaf extract on growth, cecal microbial population, and blood biochemical parameters of broilers. Poult Sci 2024; 103:103386. [PMID: 38176372 PMCID: PMC10805942 DOI: 10.1016/j.psj.2023.103386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/12/2023] [Accepted: 12/12/2023] [Indexed: 01/06/2024] Open
Abstract
The investigation examined the use of willow leaf extract (WLE) on broiler chickens, examining carcass characteristics, cecal microbiota, antioxidants, and blood parameters. In 4 groups of 300 chicks, a basal diet was given for 5 wk, and the first treatment was basal diet (C). The diets for the remaining 3 treatments (WLE150, WLE300, and WLE450) contained 150, 300, and 450 mg of willow leaf extract /kg, respectively. The study found that birds fed willow leaf extract supplements had significantly greater body weight (BW), body weight gain (BWG), and enhanced feed conversion ratio (FCR) vs. the control group. Birds fed at 450 mg/kg food showed the greatest growth features, carcass weight, liver weight, lower abdominal fat, better low-density lipoprotein (LDL), and high-density lipoprotein (HDL) concentrations, and highest hematological characteristics. Chickens fed diets supplemented with varied doses of willow leaf extract showed significantly increased antioxidant enzyme activity, with higher amounts of glutathione peroxidase (GPx) activity, superoxide dismutase (SOD), total antioxidant capacity (TAC), and lower malondialdehyde (MDA). However, in the study, birds fed a diet supplemented with 450 mg of willow leaf extract per kg meal showed a significant drop of 13.02%, which found no significant variations in hazardous bacteria (Escherichia coli) across 2 treatments (WLE150 and WLE300). In addition, the study discovered that birds fed with varied doses of willow leaf extract had fewer cecum infections (Staphylococci aureus). We conclude that using willow at a level of 450 mg/kg diet can significantly enhance the BWG, FCR, antioxidant levels and beneficial bacteria activity besides the condition of broiler chicken's general health.
Collapse
Affiliation(s)
- Soha A Farag
- Department of Animal Production, Faculty of Agriculture, Tanta University, Tanta, Egypt
| | - Amira El-Keredy
- Department of Genetics, Faculty of Agriculture, Tanta University, Tanta, Egypt
| | - Sally A Abd El Gawad
- Department of Animal Production, Faculty of Agriculture, Tanta University, Tanta, Egypt
| | - Ayman A Swelum
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia.
| | | | - Adel E Abouzeid
- Department of Animal Production, Faculty of Agriculture, Tanta University, Tanta, Egypt
| |
Collapse
|
50
|
Rodrigues RA, Silva LAM, Brugnera HC, Pereira N, Casagrande MF, Makino LC, Bragança CRS, Schocken-Iturrino RP, Cardozo MV. Association of Bacillus subtilis and Bacillus amyloliquefaciens: minimizes the adverse effects of necrotic enteritis in the gastrointestinal tract and improves zootechnical performance in broiler chickens. Poult Sci 2024; 103:103394. [PMID: 38194830 PMCID: PMC10792630 DOI: 10.1016/j.psj.2023.103394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 01/11/2024] Open
Abstract
This study aimed to evaluate the efficiency and capacity of the probiotic composed of Bacillus subtilis and Bacillus amyloliquefaciens, in improving the zootechnical performance of broiler chickens challenged with Eimeria spp. and Clostridium perfringens. The broilers were distributed in a completely randomized design in poultry isolators (12 birds each), resulting in 3 treatments: T1 (control, no challenge and no Bacillus in diet), T2 (challenged with Eimeria spp., followed by Clostridium perfringens infection and no Bacillus in the diet), and T3 (challenged with Eimeria spp., Clostridium perfringens and treated with Bacillus subtilis and Bacillus amyloliquefaciens). They were evaluated for a period of 29 d, divided into preinitial (1-7 d of age), initial (8-21 d), and growth (22-29 d) phases. Assessments of body weight, weight gain, feed consumption, and feed conversion were conducted, along with the classification of the scores and optical microscopy of the tract gastrointestinal. The animals challenged and treated with the probiotic containing Bacillus spp. showed improved indicators of zootechnical performance. Additionally, the animals challenged and treated (T3) had a better score for intestinal lesions compared to the other treatment groups. Therefore, the probiotic consisting of Bacillus subtilis and Bacillus amyloliquefaciens could be considered an effective option for disease prevention and improving the zootechnical performance of broiler chickens.
Collapse
Affiliation(s)
- Romário A Rodrigues
- Department of Reproduction Pathology and One Health, School of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, São Paulo, Brazil.
| | - Leandro A M Silva
- Department of Reproduction Pathology and One Health, School of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, São Paulo, Brazil
| | - Heloisa C Brugnera
- Department of Reproduction Pathology and One Health, School of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, São Paulo, Brazil
| | - Natália Pereira
- Department of Reproduction Pathology and One Health, School of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, São Paulo, Brazil
| | - Mariana F Casagrande
- Department of Reproduction Pathology and One Health, School of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, São Paulo, Brazil
| | - Lilian C Makino
- Department of Fisheries and Aquaculture Resources, School of Agricultural Sciences of Vale do Ribeira, São Paulo State University (UNESP), Registro, São Paulo, Brazil
| | - Caio R S Bragança
- Laboratory of Microorganism Physiology, Department of Biomedical Sciences and Health, Minas Gerais State University, Passos, Minas Gerais, Brazil
| | - Rubén Pablo Schocken-Iturrino
- Department of Reproduction Pathology and One Health, School of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, São Paulo, Brazil
| | - Marita V Cardozo
- Laboratory of Microorganism Physiology, Department of Biomedical Sciences and Health, Minas Gerais State University, Passos, Minas Gerais, Brazil
| |
Collapse
|