1
|
Nie R, Xu X, Xu P, Zhuge Y, Zheng T, Yu X, Yao R, Tan H, Li G, Zhao X, Du Q. Taxonomic and functional responses of benthic macroinvertebrates to wastewater effluents in the receiving river of ecologically vulnerable karst areas in Southwest China. ENVIRONMENTAL RESEARCH 2025; 278:121666. [PMID: 40268223 DOI: 10.1016/j.envres.2025.121666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 04/17/2025] [Accepted: 04/21/2025] [Indexed: 04/25/2025]
Abstract
Discharges of wastewater effluents have a profound impact on the health of receiving river ecosystems, especially with regard to benthic macroinvertebrate communities. However, the effects of different wastewater types on the taxonomy and function of benthic macroinvertebrates in the receiving rivers in vulnerable karst regions of China are still rarely known. Here, we collected benthic macroinvertebrate samples from the Yanjin River, which could be divided into reaches mainly influenced by industrial, domestic and mixed wastewater, as well as from its adjacent Guanyinsi River, which was unaffected by wastewater. We found that both taxonomic and functional structures of benthic macroinvertebrates in the receiving river differed significantly under the influence of various wastewater types, which was linked to fluctuations in nutrient-related water quality, despite seasonal variation. Watershed-scale anthropogenic activities played important roles in determining the water quality, thereby indirectly driving the functional trait adaptation of benthic macroinvertebrate communities. Notably, we observed that the expansion of cropland dramatically decreased the functional diversities of benthic macroinvertebrates. Threshold responses of multi-faceted diversities in benthic macroinvertebrates to pollutants suggested that the critical concentrations of chemical oxygen demand (CODMn) and ammonia nitrogen (NH4-N) were 4.16 mg/L and 0.23 mg/L, respectively. Our study provided insights into the impacts of anthropogenic activities on benthic macroinvertebrates from both taxonomic and functional perspectives, highlighting the need to incorporate watershed-scale human activity management into water quality control strategies for urban river ecosystems, tailored to local conditions.
Collapse
Affiliation(s)
- Rui Nie
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing, 100038, China; Department of Water Ecology and Environment, China Institute of Water Resources and Hydropower Research, Beijing, 100038, China
| | - Xuming Xu
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing, 100038, China; Department of Water Ecology and Environment, China Institute of Water Resources and Hydropower Research, Beijing, 100038, China.
| | - Peijie Xu
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing, 100038, China; Department of Water Ecology and Environment, China Institute of Water Resources and Hydropower Research, Beijing, 100038, China; College of Hydraulic and Environmental Engineering, China Three Gorges University, Yichang, 443002, China
| | - Yisi Zhuge
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing, 100038, China; Department of Water Ecology and Environment, China Institute of Water Resources and Hydropower Research, Beijing, 100038, China
| | - Tong Zheng
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Xiao Yu
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing, 100038, China; Department of Water Ecology and Environment, China Institute of Water Resources and Hydropower Research, Beijing, 100038, China
| | - Rui Yao
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing, 100038, China; Department of Water Ecology and Environment, China Institute of Water Resources and Hydropower Research, Beijing, 100038, China
| | - Hongwu Tan
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing, 100038, China; Department of Water Ecology and Environment, China Institute of Water Resources and Hydropower Research, Beijing, 100038, China
| | - Guoqiang Li
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing, 100038, China; Department of Water Ecology and Environment, China Institute of Water Resources and Hydropower Research, Beijing, 100038, China
| | - Xiaohui Zhao
- College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Qiang Du
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing, 100038, China; Department of Water Ecology and Environment, China Institute of Water Resources and Hydropower Research, Beijing, 100038, China
| |
Collapse
|
2
|
Zhang X, Guo W, Zhang Z, Gao P, Tang P, Liu T, Yao X, Li J. Insights into the mobility and bacterial hosts of antibiotic resistance genes under dinotefuran selection pressure in aerobic granular sludge based on metagenomic binning and functional modules. ENVIRONMENTAL RESEARCH 2025; 268:120807. [PMID: 39798650 DOI: 10.1016/j.envres.2025.120807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/30/2024] [Accepted: 01/08/2025] [Indexed: 01/15/2025]
Abstract
Dinotefuran (DIN) is toxic to non-target organisms and accelerates the evolution of antibiotic resistance, which poses a problem for the stable operation of the activated sludge process in wastewater treatment plants (WWTPs). However, the emergence and the transfer mechanism of antibiotic resistance genes (ARGs) in activated sludge systems under DIN stress remains unclear. Thus, in the study, the potential impact of DIN on ARGs and virulence factor genes (VFGs) in aerobic granular sludge (AGS) was investigated in depth using metagenomic binning and functional modules. It was found that DIN stress increased the total abundance of ARGs, mobile genetic elements (MGEs), and VFGs in the AGS system, with the highest abundance of fabG (4.6%), tnpA (55.6%) and LPS (39.0%), respectively. The proliferation of the enteric pathogens Salmonella enterica and Escherichia coli in the system indicates that DIN induces exposure of harmless bacteria to the infected environment. The genera Nitrospira (1169 ARG subtypes) and Dechloromonas (663 ARG subtypes) were identified as the potentially antibiotic-resistant bacteria carrying the most ARGs and MGEs in the metagenome-assembled genomes. Co-localization patterns of some ARGs, MGEs, and the SOS response-related gene lexA were observed on metagenome-assembled contigs under high levels of DIN exposure, suggesting DIN stimulated ROS production (101.8% increase over control), altered cell membrane permeability, and increased the potential for horizontal gene transfer (HGT). Furthermore, the DNA damage caused by DIN in AGS led to the activation of the antioxidant system and the SOS repair response, which in turn promoted the expression of the type IV secretion system and HGT through the flagellar channel. This study extends the previously unappreciated DIN understanding of the spread and associated risks of ARGs and VFGs in the AGS system of WWTPs. It elucidates how DIN facilitates HGT, offering a scientific basis for controlling emerging contaminant-induced resistance.
Collapse
Affiliation(s)
- Xin Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, China
| | - Wei Guo
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, China.
| | - Zuyuan Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, China
| | - Peng Gao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, China
| | - Peng Tang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, China
| | - Tingting Liu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, China
| | - Xingrong Yao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, China
| | - Jun Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, China.
| |
Collapse
|
3
|
Wei Y, Meng Y, Jia K, Lu W, Huang Y, Lu H. Dimethomorph induces heart and vascular developmental defects by disrupting thyroid hormone in zebrafish embryos. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 289:117413. [PMID: 39693786 DOI: 10.1016/j.ecoenv.2024.117413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/23/2024] [Accepted: 11/25/2024] [Indexed: 12/20/2024]
Abstract
Dimethomorph (DMT) is a widely-used selective active fungicide that effectively controls downy mildew, crown rot, and late blight in crops. The extensive application of DMT raises concerns about its ecological impact on non-target organisms in the environment. However, there is limited understanding of the toxicological properties of DMT on these organisms. In this study, we utilized zebrafish as an animal model to assess the toxicity of DMT induced by exposure 5.5-72 hours post-fertilization (hpf). During this period, we monitored and evaluated the development of the zebrafish heart and vascular system. Additionally, embryo samples were collected to perform molecular-level detection of PCNA, oxidative stress, and related genes. The results showed a concentration-dependent decrease in survival rate and hatching rate, shortened body length, slowed heart rate, and pericardial edema, body curvature and reduced eye size as DMT exposure concentration increased. Furthermore, DMT exposure led to impairments in the development of the heart, vascular, along with change in the expression levels of relevant genes. It also caused a decrease in cell proliferation and an increase in oxidative stress levels. Moreover, DMT disrupts the normal development of thyroid follicular cells, leading to a reduction in T3 levels. Thyroid hormone supplementation partially reverses the toxicity induced by DMT, increasing eye size, restoring body length, reducing spine curvature, and reducing pericardial edema. Therefore, we speculate that DMT likely affects the development of zebrafish embryos by disrupting normal thyroid follicle development.
Collapse
Affiliation(s)
- You Wei
- Center for Clinical Medicine Research, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China; Center for drug Screening and Research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, Jiangxi 341000, China
| | - Yunlong Meng
- Center for Clinical Medicine Research, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China; Center for drug Screening and Research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, Jiangxi 341000, China
| | - Kun Jia
- Center for drug Screening and Research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, Jiangxi 341000, China
| | - Weijian Lu
- Center for Clinical Medicine Research, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Yushan Huang
- Center for Evidence Based Medical and Clinical Research, First Affiliated Hospital of Gannan Medical University, Ganzhou, China.
| | - Huiqiang Lu
- Center for Clinical Medicine Research, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China.
| |
Collapse
|
4
|
Schriever C, Jene B, Resseler H, Spatz R, Sur R, Weyers A, Winter M. The European regulatory system for plant protection products-cause of a "Silent Spring" or highly advanced and protective? INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2025; 21:3-19. [PMID: 39879219 PMCID: PMC11804878 DOI: 10.1093/inteam/vjae007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 08/23/2024] [Accepted: 09/05/2024] [Indexed: 01/31/2025]
Abstract
Current publications that are shaping public perception repeatedly claim that residues of plant protection products (PPP) in the environment demonstrate gaps in assessing the exposure and effects of PPP, allegedly revealing the inability of the European regulatory system to prevent environmental contamination and damage such as biodiversity decline. The hypothesis is that environmental risk assessments rely on inappropriate predictive models that underestimate exposure and do not explicitly account for the impact of combinations of environmental stressors and physiological differences in stress responses. This article puts this criticism into context to allow for a more balanced evaluation of the European regulatory system for PPP. There is broad consensus that the decline in biodiversity is real. This article analyzed current literature for causes of this decline and of chemical contamination. The main drivers identified were land use changes and structural uniformity of agricultural landscapes or multiple contaminants emitted by various sources such as wastewater discharge systems. Comparing measured environmental concentrations from published monitoring studies with exposure predictions from the regulatory risk assessment reveals only slight occasional exceedances for a few environmental scenarios and compounds. Therefore, the call for greater conservatism in the European authorization process for PPPs will not lead to an improvement in the environmental situation. We suggest enhancing landscape diversity through the European Union Common Agricultural Policy and reducing contamination from wastewater and farmyard effluents. The current regulatory risk management toolbox should be expanded to include flexible localized mitigation measures and treatment options to reduce applied amounts and off-target exposure.
Collapse
Affiliation(s)
- Carola Schriever
- BASF SE, Agricultural Solutions, Environmental Fate, Limburgerhof, Germany
| | - Bernhard Jene
- BASF SE, Agricultural Solutions, Environmental Fate, Limburgerhof, Germany
| | | | | | - Robin Sur
- Bayer AG, Crop Science, Environmental Safety, Monheim am Rhein, Germany
| | - Arnd Weyers
- Bayer AG, Crop Science, Environmental Safety, Monheim am Rhein, Germany
| | - Mark Winter
- Industrieverband Agrar e. V. (IVA), Wissenschaft und Innovation, Frankfurt am Main, Germany
| |
Collapse
|
5
|
Shahid N, Siddique A, Liess M. Synergistic interaction between a toxicant and food stress is further exacerbated by temperature. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125109. [PMID: 39396725 DOI: 10.1016/j.envpol.2024.125109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/16/2024] [Accepted: 10/09/2024] [Indexed: 10/15/2024]
Abstract
Global biodiversity is declining at an unprecedented rate in response to multiple environmental stressors. Effective biodiversity management requires deeper understanding of the relevant mechanisms behind such ecological impacts. A key challenge is understanding synergistic interactions between multiple stressors and predicting their combined effects. Here we used Daphnia magna to investigate the interaction between a pyrethroid insecticide esfenvalerate and two non-chemical environmental stressors: elevated temperature and food limitation. We hypothesized that the stressors with different modes of action can act synergistically. Our findings showed additive effects of food limitation and elevated temperature (25 °C, null model effect addition (EA)) with model deviation ratio (MDR) ranging from 0.7 to 0.9. In contrast, we observed strong synergistic interactions between esfenvalerate and food limitation at 20 °C, considerably further amplified at 25 °C. Additionally, for all stress combinations, the synergism intensified over time indicating the latent effects of the pesticide. Consequently, multiple stress substantially reduced the lethal concentration of esfenvalerate by a factor of 19 for the LC50 (0.45-0.024 μg/L) and 130 for the LC10 (0.096-0.00074 μg/L). The stress addition model (SAM) predicted increasing synergistic interactions among stressors with increasing total stress.
Collapse
Affiliation(s)
- Naeem Shahid
- System-Ecotoxicology, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318, Leipzig, Germany; Department of Evolutionary Ecology and Environmental Toxicology, Goethe University Frankfurt, Germany.
| | - Ayesha Siddique
- System-Ecotoxicology, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318, Leipzig, Germany.
| | - Matthias Liess
- System-Ecotoxicology, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318, Leipzig, Germany; Institute for Environmental Research (Biology V), RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany.
| |
Collapse
|
6
|
Sar T, Marchlewicz A, Harirchi S, Mantzouridou FT, Hosoglu MI, Akbas MY, Hellwig C, Taherzadeh MJ. Resource recovery and treatment of wastewaters using filamentous fungi. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175752. [PMID: 39182768 DOI: 10.1016/j.scitotenv.2024.175752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 06/28/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
Industrial wastewater, often characterized by its proximity to neutral pH, presents a promising opportunity for fungal utilization despite the prevalent preference of fungi for acidic conditions. This review addresses this discrepancy, highlighting the potential of certain industrial wastewaters, particularly those with low pH levels, for fungal biorefinery. Additionally, the economic implications of biomass recovery and compound separation, factors that require explicit were emphasized. Through an in-depth analysis of various industrial sectors, including food processing, textiles, pharmaceuticals, and paper-pulp, this study explores how filamentous fungi can effectively harness the nutrient-rich content of wastewaters to produce valuable resources. The pivotal role of ligninolytic enzymes synthesized by fungi in wastewater purification is examined, as well as their ability to absorb metal contaminants. Furthermore, the diverse benefits of fungal biorefinery are underscored, including the production of protein-rich single-cell protein, biolipids, enzymes, and organic acids, which not only enhance environmental sustainability but also foster economic growth. Finally, the challenges associated with scaling up fungal biorefinery processes for wastewater treatment are critically evaluated, providing valuable insights for future research and industrial implementation. This comprehensive analysis aims to elucidate the potential of fungal biorefinery in addressing industrial wastewater challenges while promoting sustainable resource utilization.
Collapse
Affiliation(s)
- Taner Sar
- Swedish Centre for Resource Recovery, University of Borås, 501 90 Borås, Sweden
| | - Ariel Marchlewicz
- University of Silesia in Katowice, The Faculty of Natural Science, Institute of Biology, Biotechnology and Environmental Protection, Jagiellońska 28, 40-032 Katowice, Poland; University of Jyväskylä, The Faculty of Mathematics and Science, The Department of Biological and Environmental Science, Survontie 9c, FI-40500 Jyväskylä, Finland
| | - Sharareh Harirchi
- Swedish Centre for Resource Recovery, University of Borås, 501 90 Borås, Sweden; Department of Biotechnology, Iranian Research Organization for Science and Technology, Tehran P.O. Box 3353-5111, Iran
| | - Fani Th Mantzouridou
- Laboratory of Food Chemistry and Technology, School of Chemistry, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
| | - Muge Isleten Hosoglu
- Institute of Biotechnology, Gebze Technical University, Gebze, Kocaeli 41400, Türkiye
| | - Meltem Yesilcimen Akbas
- Department of Molecular Biology and Genetics, Gebze Technical University, Gebze, Kocaeli 41400, Türkiye
| | - Coralie Hellwig
- Swedish Centre for Resource Recovery, University of Borås, 501 90 Borås, Sweden
| | | |
Collapse
|
7
|
Liebmann L, Schreiner VC, Vormeier P, Weisner O, Liess M. Combined effects of herbicides and insecticides reduce biomass of sensitive aquatic invertebrates. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174343. [PMID: 38960172 DOI: 10.1016/j.scitotenv.2024.174343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/24/2024] [Accepted: 06/26/2024] [Indexed: 07/05/2024]
Abstract
The structure and biomass of aquatic invertebrate communities play a crucial role in the matter dynamics of streams. However, biomass is rarely quantified in ecological assessments of streams, and little is known about the environmental and anthropogenic factors that influence it. In this study, we aimed to identify environmental factors that are associated with invertebrate structure and biomass through a monitoring of 25 streams across Germany. We identified invertebrates, assigned them to taxonomic and trait-based groups, and quantified biomass using image-based analysis. We found that insecticide pressure generally reduced the abundance of insecticide-vulnerable populations (R2 = 0.43 applying SPEARpesticides indicator), but not invertebrate biomass. In contrast, herbicide pressure reduced the biomass of several biomass aggregations. Especially, insecticide-sensitive populations, that were directly (algae feeder, R2 = 0.39) or indirectly (predators, R2 = 0.29) dependent on algae, were affected. This indicated a combined effect of possible food shortage due to herbicides and direct insecticide pressure. Specifically, all streams with increased herbicide pressure showed a reduced overall biomass share of Trichoptera from 43 % to 3 % and those of Ephemeroptera from 20 % to 3 % compared to streams grouped by low herbicide pressure. In contrast, insecticide-insensitive Gastropoda increased from 10 % to 45 %, and non-vulnerable leaf-shredding Crustacea increased from 10 % to 22 %. In summary, our results indicate that at the community level, the direct effects of insecticides and the indirect, food-mediated effects of herbicides exert a combined effect on the biomass of sensitive insect groups, thus disrupting food chains at ecosystem level.
Collapse
Affiliation(s)
- Liana Liebmann
- UFZ, Helmholtz Centre for Environmental Research, System-Ecotoxicology, 04318 Leipzig, Germany; Department Evolutionary Ecology & Environmental Toxicology (E3T), Institute of Ecology, Diversity and Evolution, Faculty of Biological Sciences, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
| | - Verena C Schreiner
- Ecotoxicology, Research Centre One Health Ruhr of the University Alliance Ruhr, Faculty of Biology, University Duisburg-Essen, 45141 Essen, Germany
| | - Philipp Vormeier
- UBA, German Environment Agency, Department Water and Soil, 06844 Dessau-Roßlau, Germany
| | - Oliver Weisner
- UBA, German Environment Agency, Department International Aspects and Pesticides, 06844 Dessau-Roßlau, Germany
| | - Matthias Liess
- UFZ, Helmholtz Centre for Environmental Research, System-Ecotoxicology, 04318 Leipzig, Germany; RWTH Aachen University, Institute of Ecology & Computational Life Science, 52056 Aachen, Germany.
| |
Collapse
|
8
|
Kim H, Kim SD. Pesticides in wastewater treatment plant effluents in the Yeongsan River Basin, Korea: Occurrence and environmental risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174388. [PMID: 38969125 DOI: 10.1016/j.scitotenv.2024.174388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/03/2024] [Accepted: 06/28/2024] [Indexed: 07/07/2024]
Abstract
Pesticides are among the main drivers posing risks to aquatic environments, with effluents from wastewater treatment plants (WWTPs) serving as a major source. This study aimed to identify the primary pesticides for which there was a risk of release into aquatic environments through WWTP effluents, thereby enabling more effective contamination management in public water bodies. In this study, monitoring, risk assessment, and risk-based prioritization of 87 pesticides in effluents from three WWTPs in the Yeongsan River Basin, Korea, were conducted. A total of 59 pesticides were detected at concentrations from 0.852 ng/L to 82.044 μg/L and exhibited variable patterns across different WWTP locations. An environmental risk assessment based on the risk quotient (RQ) of individual pesticides identified 13 substances implicated in significant ecotoxicological risks, as they exceeded RQ values of 1 at least once. An optimized risk (RQf)-based prioritization, considering the frequency of the measured environmental concentration (MEC) exceeding the predicted environmental concentration (PNEC), was conducted to identify pesticides that potentially posed risks and thus should be managed as a priority. Four pesticides had an RQf value >1; metribuzin exhibited the highest RQf value of 4.951, followed by 3-phenoxybenzoic acid, atrazin-2-hydroxy, and atrazine. Additionally, five pesticides (terbuthylazine, methabenzthiazuron, diuron, thiacloprid, and fipronil) and another four pesticides (propazine, imidacloprid, hexaconazole, and hexazione) had RQf values >0.1 and > 0.01, respectively. By calculating the contributions of individual pesticides to the RQf of these mixtures (RQf, mix) based on the concentration addition model, it was determined that >95 % of the sum of RQf, mix was driven by the top seven pesticides. These findings highlight the importance of prioritizing pesticides for effective management of contamination sources.
Collapse
Affiliation(s)
- Hyewon Kim
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, 123 Cheomdan-Gwagiro, Gwangju 61005, Republic of Korea
| | - Sang Don Kim
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, 123 Cheomdan-Gwagiro, Gwangju 61005, Republic of Korea.
| |
Collapse
|
9
|
Markert N, Guhl B, Feld CK. Linking wastewater treatment plant effluents to water quality and hydrology: Effects of multiple stressors on fish communities. WATER RESEARCH 2024; 260:121914. [PMID: 38880012 DOI: 10.1016/j.watres.2024.121914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 06/02/2024] [Accepted: 06/07/2024] [Indexed: 06/18/2024]
Abstract
Wastewater treatment plants (WWTPs) are essential for maintaining a good water quality of surface waters. However, WWTPs are also associated with water quality deterioration and hydro-morphological alteration. Riverine communities respond to these stressors with changes in their community structure, abundance and diversity. In this study, we used a dataset of 94 monitoring sites across North Rhine-Westphalia, Germany to investigate the influence of WWTPs on the water quality and hydro-morphological quality in river sections downstream of WWTP effluents. More specifically, we analyzed the effects of the percentage of WWTP effluents (in relation to median base flow) on four stressor groups (physico-chemistry, micropollutants, hydrological and morphological alteration) using Linear Mixed Models (LMM). Furthermore, we assessed the impact of a selection of twelve ecologically relevant stressor variables reflecting water quality deterioration and hydro-morphological alteration on reference fish communities using Canonical Correspondence Analysis (CCA). The percentage of WWTP effluents was correlated with water quality, especially with toxic units of a wide range of pharmaceuticals including diclofenac, venlafaxine and sulfamethoxazole (R² up to 0.54) as well as specific pesticides (e.g., terbutryn: R² = 0.33). The correlation of percent WWTP effluents with hydro-morphological alteration was weaker and most pronounced for the frequency of high flow (R² = 0.24) and flow variability (R² = 0.19). About 40 % of the variance in the fish community structure were explained by 12 stressor variables in the CCA models. Water quality and hydrological, but not morphological stressors showed strong albeit highly variable effects on individual fish species. The results indicate that water quality degradation and hydrological alteration are important factors determining the ecological status of fish communities. In this context, WWTP effluents can impose relevant point sources of pollution that affect water quality but also cause alterations of the hydrological regime. Further management measures addressing both stressor groups are needed to improve the ecological status.
Collapse
Affiliation(s)
- Nele Markert
- Faculty of Biology, Aquatic Ecology, University of Duisburg-Essen, Universitätsstr. 5, Essen 45141, Germany; North Rhine-Westphalian Office of Nature, Environment and Consumer Protection (LANUV NRW), Düsseldorf 40208, Germany.
| | - Barbara Guhl
- North Rhine-Westphalian Office of Nature, Environment and Consumer Protection (LANUV NRW), Düsseldorf 40208, Germany
| | - Christian K Feld
- Faculty of Biology, Aquatic Ecology, University of Duisburg-Essen, Universitätsstr. 5, Essen 45141, Germany; Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Universitätsstr. 5, Essen 45141, Germany
| |
Collapse
|
10
|
Shahid N, Siddique A, Liess M. Predicting the Combined Effects of Multiple Stressors and Stress Adaptation in Gammarus pulex. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:12899-12908. [PMID: 38984974 PMCID: PMC11270985 DOI: 10.1021/acs.est.4c02014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/19/2024] [Accepted: 06/26/2024] [Indexed: 07/11/2024]
Abstract
Global change confronts organisms with multiple stressors causing nonadditive effects. Persistent stress, however, leads to adaptation and related trade-offs. The question arises: How can the resulting effects of these contradictory processes be predicted? Here we show that Gammarus pulex from agricultural streams were more tolerant to clothianidin (mean EC50 148 μg/L) than populations from reference streams (mean EC50 67 μg/L). We assume that this increased tolerance results from a combination of physiological acclimation, epigenetic effects, and genetic evolution, termed as adaptation. Further, joint exposure to pesticide mixture and temperature stress led to synergistic interactions of all three stressors. However, these combined effects were significantly stronger in adapted populations as shown by the model deviation ratio (MDR) of 4, compared to reference populations (MDR = 2.7). The pesticide adaptation reduced the General-Stress capacity of adapted individuals, and the related trade-off process increased vulnerability to combined stress. Overall, synergistic interactions were stronger with increasing total stress and could be well predicted by the stress addition model (SAM). In contrast, traditional models such as concentration addition (CA) and effect addition (EA) substantially underestimated the combined effects. We conclude that several, even very disparate stress factors, including population adaptations to stress, can act synergistically. The strong synergistic potential underscores the critical importance of correctly predicting multiple stresses for risk assessment.
Collapse
Affiliation(s)
- Naeem Shahid
- System-Ecotoxicology, Helmholtz Centre for Environmental Research −
UFZ, Permoserstraße 15, 04318 Leipzig, Germany
- Department
of Evolutionary Ecology and Environmental Toxicology, Goethe University Frankfurt, 60629 Frankfurt am Main, Germany
| | - Ayesha Siddique
- System-Ecotoxicology, Helmholtz Centre for Environmental Research −
UFZ, Permoserstraße 15, 04318 Leipzig, Germany
- Institute
for Environmental Research (Biology V), RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Matthias Liess
- System-Ecotoxicology, Helmholtz Centre for Environmental Research −
UFZ, Permoserstraße 15, 04318 Leipzig, Germany
- Institute
for Environmental Research (Biology V), RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| |
Collapse
|
11
|
Sundararaman S, Kumar KS, Siddharth U, Prabu D, Karthikeyan M, Rajasimman M, Thamarai P, Saravanan A, Kumar JA, Vasseghian Y. Sustainable approach for the expulsion of metaldehyde: risk, interactions, and mitigation: a review. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:248. [PMID: 38874631 DOI: 10.1007/s10653-024-02001-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 04/16/2024] [Indexed: 06/15/2024]
Abstract
All pests can be eliminated with the help of pesticides, which can be either natural or synthetic. Because of the excessive use of pesticides, it is harmful to both ecology and people's health. Pesticides are categorised according to several criteria: their chemical composition, method of action, effects, timing of use, source of manufacture, and formulations. Many aquatic animals, birds, and critters live in danger owing to hazardous pesticides. Metaldehyde is available in various forms and causes significant impact even when small amounts are ingested. Metaldehyde can harm wildlife, including dogs, cats, and birds. This review discusses pesticides, their types and potential environmental issues, and metaldehyde's long-term effects. In addition, it examines ways to eliminate metaldehyde from the aquatic ecosystem before concluding by anticipating how pesticides may affect society. The metal-organic framework and other biosorbents have been appropriately synthesized and subsequently represent the amazing removal of pesticides from effluent as an enhanced adsorbent, such as magnetic nano adsorbents. A revision of the risk assessment for metaldehyde residuals in aqueous sources is also attempted.
Collapse
Affiliation(s)
- Sathish Sundararaman
- Department of Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai, 600119, India.
| | - K Satish Kumar
- Department of Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai, 600119, India
| | - U Siddharth
- Department of Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai, 600119, India
| | - D Prabu
- Department of Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai, 600119, India
| | - M Karthikeyan
- Department of Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai, 600119, India
| | - M Rajasimman
- Department of Chemical Engineering, Annamalai University, Annamalainagar, Chidambaram, 608002, India
| | - P Thamarai
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Saveetha University, Chennai, Tamilnadu, 602105, India
| | - A Saravanan
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Saveetha University, Chennai, Tamilnadu, 602105, India
| | - J Aravind Kumar
- Department of Energy and Environmental Engineering, Saveetha School of Engineering, SIMATS, Saveetha University, Chennai, India
| | - Yasser Vasseghian
- Department of Chemical Engineering and Material Science, Yuan Ze University, Taoyuan, Taiwan.
| |
Collapse
|
12
|
Heß S, Hof D, Oetken M, Sundermann A. Macroinvertebrate communities respond strongly but non-specifically to a toxicity gradient derived by effect-based methods. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 356:124330. [PMID: 38848961 DOI: 10.1016/j.envpol.2024.124330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 06/09/2024]
Abstract
Chemical pollution is one of the most important threats to freshwater ecosystems. The plethora of potentially occurring chemicals and their effects in complex mixtures challenge standard monitoring methods. Effect-based methods (EBMs) are proposed as complementary tools for the assessment of chemical pollution and toxic effects. To investigate the effects of chemical pollution, the ecological relevance of EBMs and the potential of macroinvertebrates as toxicity-specific bioindicators, ecological and ecotoxicological data were linked. Baseline toxicity, mutagenicity, dioxin-like and estrogenic activity of water and sediment samples from 30 river sites in central Germany were quantified with four in vitro bioassays. The responses of macroinvertebrate communities at these sites were assessed by calculating 16 taxonomic and functional metrics and by investigating changes in the taxonomic and trait composition. Principal component analysis revealed an increase in toxicity along a joint gradient of chemicals with different modes of action. This toxicity gradient was associated with a decrease in biodiversity and ecological quality, as well as significant changes in taxonomic and functional composition. The strength of the effects suggested a strong impact of chemical pollution and underlined the suitability of EBMs in detecting ecological relevant effects. However, the metrics, taxa, and traits associated with vulnerability or tolerance to toxicity were found to also respond to other stressors in previous studies and thus may have only a low potential as toxicity-specific bioindicators. Because macroinvertebrates respond integratively to all present stressors, linking both ecological and environmental monitoring is necessary to investigate the overall effects but also isolate individual stressors. EBMs have a high potential to separate the toxicity of chemical mixtures from other stressors in a multiple stressor scenario, as well as identifying the presence of chemical groups with specific modes of action.
Collapse
Affiliation(s)
- Sebastian Heß
- Senckenberg Research Institute and Natural History Museum Frankfurt, Department of River Ecology and Conservation, Clamecystr. 12, 63571, Gelnhausen, Germany; Goethe University Frankfurt, Faculty Biological Sciences, Institute of Ecology, Evolution and Diversity, Max-von-Laue-Str. 13, 60438, Frankfurt am Main, Germany.
| | - Delia Hof
- Goethe University Frankfurt, Faculty Biological Sciences, Department Aquatic Ecotoxicology, Max-von-Laue-Str. 13, 60438, Frankfurt am Main, Germany
| | - Matthias Oetken
- Goethe University Frankfurt, Faculty Biological Sciences, Department Aquatic Ecotoxicology, Max-von-Laue-Str. 13, 60438, Frankfurt am Main, Germany; Kompetenzzentrum Wasser Hessen, Max-von-Laue-Straße 13, 60438, Frankfurt am Main, Germany
| | - Andrea Sundermann
- Senckenberg Research Institute and Natural History Museum Frankfurt, Department of River Ecology and Conservation, Clamecystr. 12, 63571, Gelnhausen, Germany; Goethe University Frankfurt, Faculty Biological Sciences, Institute of Ecology, Evolution and Diversity, Max-von-Laue-Str. 13, 60438, Frankfurt am Main, Germany; Kompetenzzentrum Wasser Hessen, Max-von-Laue-Straße 13, 60438, Frankfurt am Main, Germany
| |
Collapse
|
13
|
Qin R, Zhang B, Huang Y, Song S, Zhang Z, Wen X, Zhong Z, Zhang F, Zhang T. The fate and transport of neonicotinoid insecticides and their metabolites through municipal wastewater treatment plants in South China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 349:123968. [PMID: 38631448 DOI: 10.1016/j.envpol.2024.123968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 04/19/2024]
Abstract
Neonicotinoid insecticides (NEOs) have gained widespread usage as the most prevalent class of insecticides globally and are frequently detected in the environment, posing potential risks to biodiversity and human health. Wastewater discharged from wastewater treatment plants (WWTPs) is a substantial source of environmental NEOs. However, research tracking NEO variations in different treatment units at the WWTPs after being treated by the treatment processes remains limited. Therefore, this study aimed to comprehensively investigate the fate of nine parent NEOs (p-NEOs) and five metabolites in two municipal WWTPs using distinct treatment processes. The mean concentrations of ∑NEOs in influent (effluent) for the UNITANK, anaerobic-anoxic-oxic (A2/O), and cyclic activated sludge system (CASS) processes were 189 ng/L (195 ng/L), 173 ng/L (177 ng/L), and 123 ng/L (138 ng/L), respectively. Dinotefuran, imidacloprid, thiamethoxam, acetamiprid, and clothianidin were the most abundant p-NEOs in the WWTPs. Conventional wastewater treatment processes were ineffective in removing NEOs from wastewater (-4.91% to -12.1%), particularly major p-NEOs. Moreover, the behavior of the NEOs in various treatment units was investigated. The results showed that biodegradation and sludge adsorption were the primary mechanisms responsible for eliminating NEO. An anoxic or anaerobic treatment unit can improve the removal efficiency of NEOs during biological treatment. However, the terminal treatment unit (chlorination disinfection tank) did not facilitate the removal of most of the NEOs. The estimated total amount of NEOs released from WWTPs to receiving waters in the Pearl River of South China totaled approximately 6.90-42.6 g/d. These findings provide new insights into the efficiency of different treatment processes for removing NEOs in current wastewater treatment systems.
Collapse
Affiliation(s)
- Ronghua Qin
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Bo Zhang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China; School of Chemistry and Environment, Jiaying University, Mei Zhou, 514015, China.
| | - Yingyan Huang
- Guangzhou Hexin Instrument Co., Ltd., Guangzhou, 510530, China.
| | - Shiming Song
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China; School of Chemistry and Environment, Jiaying University, Mei Zhou, 514015, China.
| | - Ziqi Zhang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Xiaoyu Wen
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Zhiqing Zhong
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Fengru Zhang
- School of Chemistry and Environment, Jiaying University, Mei Zhou, 514015, China.
| | - Tao Zhang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| |
Collapse
|
14
|
Markert N, Schürings C, Feld CK. Water Framework Directive micropollutant monitoring mirrors catchment land use: Importance of agricultural and urban sources revealed. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170583. [PMID: 38309347 DOI: 10.1016/j.scitotenv.2024.170583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/28/2024] [Accepted: 01/29/2024] [Indexed: 02/05/2024]
Abstract
River monitoring programs worldwide consistently unveil micropollutant concentrations (pesticide, pharmaceuticals, and industrial chemicals) exceeding regulatory quality targets with deteriorating effects on aquatic communities. However, both the composition and individual concentrations of micropollutants are likely to vary with the catchment land use, in particular regarding urban and agricultural area as the primary sources of micropollutants. In this study, we used a dataset of 109 governmental monitoring sites with micropollutants monitored across the Federal State of North Rhine-Westphalia, Germany, to investigate the relationship between high-resolution catchment land use (distinguishing urban, forested and grassland area as well as 22 different agricultural crop types) and 39 micropollutants using Linear Mixed Models (LMMs). Ecotoxicological risks were indicated for mixtures of pharmaceutical and industrial chemicals for 100 % and for pesticides for 55 % of the sites. The proportion of urban area in the catchment was positively related with concentrations of most pharmaceuticals and industrial chemicals (R2 up to 0.54), whereas the proportions of grassland and forested areas generally showed negative relations. Cropland overall showed weak positive relationships with micropollutant concentrations (R2 up to 0.29). Individual crop types, particularly vegetables and permanent crops, showed higher relations (R2 up to 0.46). The findings suggest that crop type-specific pesticide applications are mirrored in the detected micropollutant concentrations. This highlights the need for high-resolution spatial land use to investigate the magnitude and dynamics of micropollutant exposure and relevant pollution sources, which would remain undetected with highly aggregated land use classifications. Moreover, the findings imply the need for tailored management measures to reduce micropollutant concentrations from different sources and their related ecological effects. Urban point sources, could be managed by advanced wastewater treatment. The reduction of diffuse pollution from agricultural land uses requires additional measures, to prevent pesticides from entering the environment and exceeding regulatory quality targets.
Collapse
Affiliation(s)
- Nele Markert
- University Duisburg-Essen, Faculty of Biology, Aquatic Ecology, Universitätsstr. 5, 45141 Essen, Germany; North Rhine-Westphalia Office of Nature, Environment and Consumer Protection (LANUV NRW), 40208 Düsseldorf, Germany
| | - Christian Schürings
- University Duisburg-Essen, Faculty of Biology, Aquatic Ecology, Universitätsstr. 5, 45141 Essen, Germany.
| | - Christian K Feld
- University Duisburg-Essen, Faculty of Biology, Aquatic Ecology, Universitätsstr. 5, 45141 Essen, Germany; University Duisburg-Essen, Centre for Water and Environmental Research (ZWU), Universitätsstr. 5, 45141 Essen, Germany
| |
Collapse
|
15
|
Yan H, Zhang T, Yang Y, Li J, Liu Y, Qu D, Feng L, Zhang L. Occurrence of iodinated contrast media (ICM) in water environments and their control strategies with a particular focus on iodinated by-products formation: A comprehensive review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119931. [PMID: 38154220 DOI: 10.1016/j.jenvman.2023.119931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/03/2023] [Accepted: 12/23/2023] [Indexed: 12/30/2023]
Abstract
Iodinated contrast media (ICM), one of the pharmaceutical and personal care products (PPCPs), are frequently detected in various water bodies due to the strong biochemical stability and recalcitrance to conventional water treatment. Additionally, ICM pose a risk of forming iodinated by-products that can be detrimental to the aquatic ecosystem. Consequently, effectively removing ICM from aqueous environments is a significant concern for environmental researchers. This article provides a comprehensive review of the structural characteristics of ICM, their primary source (e.g., domestic and hospital wastewater), detected concentrations in water environments, and ecological health hazards associated with them. The current wastewater treatment technologies for ICM control are also reviewed in detail with the aim of providing a reference for future research. Prior researches have demonstrated that traditional treatment processes (such as physical adsorption, biochemical method and chemical oxidation method) have inadequate efficiencies in the removal of ICM. Currently, the application of advanced oxidation processes to remove ICM has become extensive, but there are some issues like poor deiodination efficiency and the risk of forming toxic intermediates or iodinated by-products. Conversely, reduction technologies have a high deiodination rate, enabling the targeted removal of ICM. But the subsequent treatment issues related to iodine (such as I- and OI-) are often underestimated, potentially generating iodinated by-products during the subsequent treatment processes. Hence, we proposed using combined reduction-oxidation technologies to remove ICM and achieved synchronous control of iodinated by-products. In the future, it is recommended to study the degradation efficiency of ICM and the control efficiency of iodinated by-products by combining different reduction and oxidation processes.
Collapse
Affiliation(s)
- Hao Yan
- Beijing Key Lab for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Tao Zhang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yi Yang
- University of Science and Technology of China, Anhui 230026, China
| | - Juan Li
- Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University, Zhuhai 519087, China
| | - Yongze Liu
- Beijing Key Lab for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China.
| | - Dan Qu
- Beijing Key Lab for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Li Feng
- Beijing Key Lab for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Liqiu Zhang
- Beijing Key Lab for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
16
|
Römerscheid M, Paschke A, Schüürmann G. Survey of Appearance and temporal concentrations of polar organic pollutants in Saxon waters. Heliyon 2024; 10:e23378. [PMID: 38192827 PMCID: PMC10772579 DOI: 10.1016/j.heliyon.2023.e23378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 12/01/2023] [Indexed: 01/10/2024] Open
Abstract
Integrative passive samplers such as the Chemcatcher are often proposed as alternatives for conventional grab sampling of surface waters. So far, their routine application for regulatory monitoring is hampered (among others) by the fact that TWA concentrations may depend significantly on the design and specifics of the samplers employed. The presented study addresses this issue, focusing on the uptake of polar organic pollutants in three different Chemcatcher configurations and polydimethylsiloxane (PDMS) sheets in the field. Covering waste water treatment plant effluents, creeks, and rivers, samplers were deployed for periods of 14-21 days in eight trials over the course of one year. 33 organic pesticides, 14 transformation products and 31 pharmaceuticals could be detected at least once in TWA concentrations ranging from 0.03 ng/L to 16.5 μg/L. We show that through employing generic, i.e. sampler specific, rather than compound specific sampling rates, the variation among results from three integrative passive sampler designs yields linear correlations with an offset of less than 0.1 and correlation coefficients r2 > 0.8. In this way, TWA concentrations enable the identification of low-concentration xenobiotics of concern, which may support regulatory monitoring correspondingly.
Collapse
Affiliation(s)
- Mara Römerscheid
- UFZ Department of Ecological Chemistry, Helmholtz Centre for Environmental Research, Permoserstr. 15, 04318 Leipzig, Germany
- Institute of Organic Chemistry, Technical University Bergakademie Freiberg, Leipziger Str. 29, 09599 Freiberg, Germany
| | - Albrecht Paschke
- UFZ Department of Ecological Chemistry, Helmholtz Centre for Environmental Research, Permoserstr. 15, 04318 Leipzig, Germany
| | - Gerrit Schüürmann
- Institute of Organic Chemistry, Technical University Bergakademie Freiberg, Leipziger Str. 29, 09599 Freiberg, Germany
| |
Collapse
|
17
|
Kondor AC, Vancsik AV, Bauer L, Szabó L, Szalai Z, Jakab G, Maász G, Pedrosa M, Sampaio MJ, Lado Ribeiro AR. Efficiency of the bank filtration for removing organic priority substances and contaminants of emerging concern: A critical review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 340:122795. [PMID: 37918769 DOI: 10.1016/j.envpol.2023.122795] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/21/2023] [Accepted: 10/22/2023] [Indexed: 11/04/2023]
Abstract
With growing concerns regarding the ecological and human risks of organic micropollutants (OMPs) in water, much effort has been devoted worldwide to establishing quality standards and compiling candidate and watch lists. Although bank filtration is recognized as an efficient natural water treatment in the removal of contaminants such as OMPs, the increase in exploitation requires continuous assessment of removal efficiency. This review aims to provide a critical overview of bank filtration (BF) reports on more than a hundred priority substances (PSs) and compounds of emerging concern (CECs) listed in the relevant European Union regulations. Field- and lab-scale studies analyzing the removal efficiency and its variance of individual OMPs and biological indicators using BF and the main influencing factors and their interactions, shortcomings, and future challenges are discussed in this review. The removal efficiency of EU-relevant contaminants by BF has been comprehensively investigated for only a few pollutants listed in the environmental EU regulations: pharmaceutically active compounds, (e.g., the anti-inflammatory drug diclofenac, some antibiotics (e.g., sulfamethoxazole and trimethoprim)), a few pesticides (e.g., atrazine), and faecal indicators such as Escherichia coli. In many cases, the measured concentrations of PSs and CECs have not been published numerically, which hinders comprehensive statistical analysis. Although BF is one of the most cost-effective and efficient water treatments, present field and lab studies have demonstrated the diversity of site-specific factors affecting its efficiency. Even in the case of substances known to be removed by BF, the efficiency rates can vary with environmental and anthropogenic factors (e.g., hydrogeological parameters and the contamination level of infiltrating water) and abstraction well parameters (e.g., the depth, distance, and pumping volume). The published removal rate variations and influencing factors often reflect the research design (field or lab-scale), which can lead to ambiguities.
Collapse
Affiliation(s)
- Attila Csaba Kondor
- Geographical Institute, HUN-REN Research Centre for Astronomy and Earth Sciences, Budaörsi út 45, Budapest H-1112, Hungary; HUN-REN CSFK, MTA Centre of Excellence, Budapest, Konkoly Thege Miklós út 15-17, H-1121, Hungary
| | - Anna Viktória Vancsik
- Geographical Institute, HUN-REN Research Centre for Astronomy and Earth Sciences, Budaörsi út 45, Budapest H-1112, Hungary; HUN-REN CSFK, MTA Centre of Excellence, Budapest, Konkoly Thege Miklós út 15-17, H-1121, Hungary
| | - László Bauer
- Geographical Institute, HUN-REN Research Centre for Astronomy and Earth Sciences, Budaörsi út 45, Budapest H-1112, Hungary; HUN-REN CSFK, MTA Centre of Excellence, Budapest, Konkoly Thege Miklós út 15-17, H-1121, Hungary
| | - Lili Szabó
- Geographical Institute, HUN-REN Research Centre for Astronomy and Earth Sciences, Budaörsi út 45, Budapest H-1112, Hungary; HUN-REN CSFK, MTA Centre of Excellence, Budapest, Konkoly Thege Miklós út 15-17, H-1121, Hungary; Department of Environmental and Landscape Geography, Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest H-1117, Hungary
| | - Zoltán Szalai
- Geographical Institute, HUN-REN Research Centre for Astronomy and Earth Sciences, Budaörsi út 45, Budapest H-1112, Hungary; HUN-REN CSFK, MTA Centre of Excellence, Budapest, Konkoly Thege Miklós út 15-17, H-1121, Hungary; Department of Environmental and Landscape Geography, Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest H-1117, Hungary
| | - Gergely Jakab
- Geographical Institute, HUN-REN Research Centre for Astronomy and Earth Sciences, Budaörsi út 45, Budapest H-1112, Hungary; HUN-REN CSFK, MTA Centre of Excellence, Budapest, Konkoly Thege Miklós út 15-17, H-1121, Hungary; Department of Environmental and Landscape Geography, Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest H-1117, Hungary.
| | - Gábor Maász
- Soós Ernő Research and Development Center, University of Pannonia, Zrínyi Miklós utca 18, Nagykanizsa H-8800, Hungary
| | - Marta Pedrosa
- LSRE-LCM - Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Maria José Sampaio
- LSRE-LCM - Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Ana Rita Lado Ribeiro
- LSRE-LCM - Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| |
Collapse
|
18
|
Zhang S, Luo T, Weng Y, Wang D, Sun L, Yu Z, Zhao Y, Liang S, Ren H, Zheng X, Jin Y, Qi X. Toxicologic effect and transcriptome analysis for sub-chronic exposure to carbendazim, prochloraz, and their combination on the liver of mice. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:5500-5512. [PMID: 38123780 DOI: 10.1007/s11356-023-31412-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023]
Abstract
Carbendazim (CBZ) and prochloraz (PCZ) are broad-spectrum fungicides used in agricultural peat control. Both fungicides leave large amounts of residues in fruits and are toxic to non-target organisms. However, the combined toxicity of the fungicides to non-target organisms is still unknown. Therefore, we characterized the toxic effects of dietary supplementation with CBZ, PCZ, and their combination for 90 days in 6-week-old male Institute of Cancer Research (ICR) mice. CBZ-H (100 mg/kg day), PCZ-H (10 mg/kg day), and their combination treatments increased the relative liver weights and caused liver injury. The serum total cholesterol (TC), triglyceride (TG), glucose (Glu), pyruvate (PYR), low-density lipoprotein cholesterol (LDL-C), and high-density lipoprotein cholesterol (HDL-C) levels were reduced, and synergistic toxicity was observed. Hepatic transcriptome revealed that 326 differentially expressed genes (DEGs) of liver were observed in the CBZ treatment group, 149 DEGs in the PCZ treatment group, and 272 DEGs in the combination treatment group. According to KEGG enrichment analysis, the fungicides and their combination affected lipid metabolism, amino acid metabolism, and ferroptosis. In addition, the relative mRNA levels of key genes involved in lipid metabolism were also examined. Compared with individual exposure, combined exposure to CBZ and PCZ caused a more obvious decrease in the expression of some genes related to glycolipid metabolism. Furthermore, the relative mRNA levels of some key genes in the combination treatment group were lower than those in the CBZ and PCZ treated groups. In summary, CBZ, PCZ, and their combination generally caused hepatotoxicity and glycolipid metabolism disorders, which could provide new insights for investigating the combined toxicity of multiple fungicides to animals.
Collapse
Affiliation(s)
- Shuwen Zhang
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Hangzhou, 310021, China
| | - Ting Luo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Hangzhou, 310021, China
- Institute of Agro-Product Safety and Nutrition, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - You Weng
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Dou Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Hangzhou, 310021, China
- Institute of Agro-Product Safety and Nutrition, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Li Sun
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Zheping Yu
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Yao Zhao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Hangzhou, 310021, China
- Institute of Agro-Product Safety and Nutrition, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Senmiao Liang
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Haiying Ren
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Xiliang Zheng
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Xingjiang Qi
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
- Xianghu Laboratory, Hangzhou, 311231, China.
| |
Collapse
|
19
|
Chen Y, Ling J, Yu W, Zhang L, Wu R, Yang D, Qu J, Jin H, Tao Z, Shen Y, Meng R, Yu J, Zheng Q, Shen G, Du W, Sun H, Zhao M. Identification of point and nonpoint emission sources of neonicotinoid pollution in regional surface water. WATER RESEARCH 2024; 248:120863. [PMID: 37976945 DOI: 10.1016/j.watres.2023.120863] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 10/07/2023] [Accepted: 11/11/2023] [Indexed: 11/19/2023]
Abstract
Neonicotinoid insecticides are widely applied in farmland, with high detection rates in soils and surface waters, posing potential risks to biodiversity and human health. As a nonpoint emission, surface runoff is widely regarded as the major source of neonicotinoid pollution in surface waters, but few studies have determined the point source contribution to rivers that may be primarily from wastewater treatment plants (WWTPs). Here, we collected the surface water from eight river basins in Zhejiang Province of China and quantified residual concentrations of eight widely commercialized neonicotinoids. Four of these were detected in all samples, with concentrations of dinotefuran and nitenpyram of 119 ± 166 and 87.6 ± 25.3 ng/L, respectively, representing more than 90 % of the total (282 ± 174 ng/L). Neonicotinoid residues were higher in tributaries due to nearby farmland and more dilution effects in the mainstream, and the residues were higher in lower reaches which can be explained by the water flow direction. Significant spatial differences in neonicotinoid distribution between surface water and agricultural soils result from environmental factors (e.g., water turbidity, precipitation, temperature) impacting migration and transport processes. Neonicotinoid residues in surface water showed a significant positive correlation with total WWTP emissions after adjusting for environmental factors. Conversely, no significant association was observed with cropland density (a nonpoint emission source), indicating that point emission source (contributing 20.6 %) predominantly influenced neonicotinoid residue spatial variation in river basin-scale surface water.
Collapse
Affiliation(s)
- Yuanchen Chen
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, China; Innovation Research Center of Advanced Environmental Technology, Eco-Industrial Innovation Institute ZJUT, Quzhou, Zhejiang 324400, China.
| | - Jun Ling
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, China
| | - Wenfei Yu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, China
| | - Li Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, China
| | - Ruxin Wu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, China
| | - Dan Yang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, China
| | - Jiajia Qu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, China
| | - Hangbiao Jin
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, China; Innovation Research Center of Advanced Environmental Technology, Eco-Industrial Innovation Institute ZJUT, Quzhou, Zhejiang 324400, China.
| | - Zhen Tao
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, China
| | - Yuexin Shen
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, China
| | - Ruirui Meng
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, China
| | - Jingtong Yu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, China
| | - Qingyi Zheng
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, China
| | - Guofeng Shen
- Ministry of Education Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Wei Du
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science &Technology, Kunming, Yunnan 650500, China
| | - Haitong Sun
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom; Department of Earth Sciences, University of Cambridge, Cambridge CB2 3EQ, United Kingdom
| | - Meirong Zhao
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, China
| |
Collapse
|
20
|
Knight ER, Verhagen R, Mueller JF, Tscharke BJ. Spatial and temporal trends of 64 pesticides and their removal from Australian wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:166816. [PMID: 37689203 DOI: 10.1016/j.scitotenv.2023.166816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/28/2023] [Accepted: 09/02/2023] [Indexed: 09/11/2023]
Abstract
Pesticides are necessary for the control of pest plant, fungi and insect species. After application, they may find their way into waste streams, such as municipal sewage, where their spatio-temporal distribution has not been well characterised. To further understand the spatio-temporal distribution and to evaluate potential sources and fate after treatment, 64 pesticides were analysed in matched influents and effluents of 22 wastewater treatment plants (WWTPs) from across Australia. The pesticides consisted of 30 herbicides and 8 herbicide metabolites or transformation products, 16 insecticides and 10 fungicides. The samples were 1084 24-hr composite samples pooled into 113 samples. Pools represented two influent and one effluent pools at each of 22 sites in 2019, as well as two pools per year from 2009 to 2021 for an 11-year long-term temporal trend at a subset of two locations. The total population served by the 22 sites was equivalent to ~41 % of the Australian population. Of the 64 pesticides, 25 were detected in influent, with highest influent concentrations up to 100 μg/L and effluent concentrations up to 16 μg/L for the herbicide 2,4-D. The total mass of pesticides was extrapolated to Australia, suggesting ~33 t of the targeted pesticides entered WWTP influent annually nation-wide, with 14 t emitted into effluents annually. Long-term trends varied by analyte and for carbendazim decreases over time, may be related to restrictions in use. Risk quotients (RQs) were calculated for 14 analytes in the effluent. 35 % had an RQ above one, indicating a potential environmental risk. Fipronil had the highest RQ (49) at Site 6. The population-normalized mass loads of pesticides were site-specific, and in some cases correlated with land use attributes suggestive of point sources. This reflects a need to better characterise sources to enable prevention, or possible pre-treatment of pesticide-containing wastewater entering municipal sewage streams.
Collapse
Affiliation(s)
- Emma R Knight
- Queensland Alliance for Environmental Health Sciences, The University of Queensland, 20 Cornwall Street Woolloongabba, Queensland 4102, Australia.
| | - Rory Verhagen
- Queensland Alliance for Environmental Health Sciences, The University of Queensland, 20 Cornwall Street Woolloongabba, Queensland 4102, Australia
| | - Jochen F Mueller
- Queensland Alliance for Environmental Health Sciences, The University of Queensland, 20 Cornwall Street Woolloongabba, Queensland 4102, Australia
| | - Ben J Tscharke
- Queensland Alliance for Environmental Health Sciences, The University of Queensland, 20 Cornwall Street Woolloongabba, Queensland 4102, Australia
| |
Collapse
|
21
|
El Dine LJ, Trivella AS, Budzinski H, Al Iskandarani M, Mazellier P, Brahim M. Degradation of azoxystrobin, methoxyfenozide, and propyzamide by ultrasound treatment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:114239-114248. [PMID: 37858018 DOI: 10.1007/s11356-023-30345-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 10/04/2023] [Indexed: 10/21/2023]
Abstract
Ultrasound as a green and efficient process gains special attention in wastewater treatment. The ultrasound-assisted degradation of azoxystrobin, methoxyfenozide, and propyzamide as widely used pesticides for vine treatment was investigated. A wide range of ultrasonic power (40 to 140 W) and a single frequency (20 kHz) were applied. Degradation experiments were carried out according to the parameters set by a central composite design (CCD) under response surface methodology (RSM) via JMP software. The treatment efficiency was quantified using degradation rates and hydrogen peroxide (H2O2) measurements. Results indicated that the pesticide's degradation was negligible at 40 W but by increasing the power setting from 80 to 140 W, the degradation rate constants of azoxystrobin, methoxyfenozide, and propyzamide increased from 3.6 × 10-2 min-1 to 0.2 min-1, from 6.1 × 10-2 min-1 to 0.3 min-1, and from 3.1 × 10-2 min-1 to 0.1 min-1, respectively. The hydrogen peroxide (H2O2) measurements confirmed this trend. Besides, electric energy per order of pollutant removal (EE/O) was also evaluated for the same treatment duration and results revealed that treatment conditions of 20 kHz and 140 W were the less energy-guzzling. Finally, profiles obtained with RSM illustrated linear degradation kinetics for azoxystrobin and propyzamide. Indeed, treatment efficiency increased when increasing both studied parameters. However, both linear and quadratic degradation kinetics occurred for methoxyfenozide degradation indicating a parameter threshold beyond which the trend is reversed. Overall, this study confirms the effectiveness of ultrasound for the degradation of pesticides in aqueous medium.
Collapse
Affiliation(s)
- Lara Jamal El Dine
- Univ. Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, F-33600, Pessac, France
- National Council of Scientific Research (NCSR), Lebanese Atomic Energy Commission (LAEC), Laboratory of Analysis of Organic Pollutants (LAOP),, Beirut, Lebanon, 11- 8281, Riad El Solh, 1107 2260
| | | | - Hélène Budzinski
- Univ. Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, F-33600, Pessac, France
| | - Mohamad Al Iskandarani
- National Council of Scientific Research (NCSR), Lebanese Atomic Energy Commission (LAEC), Laboratory of Analysis of Organic Pollutants (LAOP),, Beirut, Lebanon, 11- 8281, Riad El Solh, 1107 2260
| | - Patrick Mazellier
- Univ. Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, F-33600, Pessac, France
| | - Marwa Brahim
- Univ. Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, F-33600, Pessac, France.
| |
Collapse
|
22
|
Banik A, Eum J, Hwang BJ, Kee Y. Differential Neuroprotective Effects of N-Acetylcysteine against Dithianon Toxicity in Glutamatergic, Dopaminergic, and GABAergic Neurons: Assessment Using Zebrafish. Antioxidants (Basel) 2023; 12:1920. [PMID: 38001773 PMCID: PMC10668936 DOI: 10.3390/antiox12111920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/20/2023] [Accepted: 10/25/2023] [Indexed: 11/26/2023] Open
Abstract
Despite the widespread agricultural use of dithianon as an antifungal agent, its neurotoxic implications for humans and wildlife have not been comprehensively explored. Using zebrafish embryonic development as our model, we found that dithianon treatment induced behavioral alterations in zebrafish larvae that appeared normal. Detailed quantitative analyses showed that dithianon at ≥0.0001 µgmL-1 induced cytoplasmic and mitochondrial antioxidant responses sequentially, followed by the disruption of mitochondrial and cellular homeostasis. Additionally, dithianon at 0.01 and 0.1 µgmL-1 downregulated the expressions of glutamatergic (slc17a6b), GABAergic (gad1b), and dopaminergic (th) neuronal markers. Contrarily, dithianon upregulated the expression of the oligodendrocyte marker (olig2) at concentrations of 0.001 and 0.01 µgmL-1, concurrently suppressing the gene expression of the glucose transporter slc2a1a/glut1. Particularly, dithianon-induced increase in reactive oxygen species (ROS) production was reduced by both N-acetylcysteine (NAC) and betaine; however, only NAC prevented dithianon-induced mortality of zebrafish embryos. Moreover, NAC specifically prevented dithianon-induced alterations in glutamatergic and dopaminergic neurons while leaving GABAergic neurons unaffected, demonstrating that the major neurotransmission systems in the central nervous system differentially respond to the protective effects. Our findings contribute to a better understanding of the neurotoxic potential of dithianon and to developing preventive strategies.
Collapse
Affiliation(s)
- Amit Banik
- Interdisciplinary Graduate Program in Environmental and Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea; (A.B.); (J.E.)
| | - Juneyong Eum
- Interdisciplinary Graduate Program in Environmental and Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea; (A.B.); (J.E.)
| | - Byung Joon Hwang
- Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea;
| | - Yun Kee
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| |
Collapse
|
23
|
Enns D, Cunze S, Baker NJ, Oehlmann J, Jourdan J. Flushing away the future: The effects of wastewater treatment plants on aquatic invertebrates. WATER RESEARCH 2023; 243:120388. [PMID: 37517151 DOI: 10.1016/j.watres.2023.120388] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 06/27/2023] [Accepted: 07/19/2023] [Indexed: 08/01/2023]
Abstract
Wastewater treatment plants (WWTP) are essential infrastructure in our developing world. However, with the development and release of novel entities and without modern upgrades, they are ineffective at fully removing micropollutants before treated effluents are released back into aquatic environments. Thus, WWTPs may represent additional point source impacts to freshwater environments, further pressuring aquatic fauna and already vulnerable insect communities. Previous studies - mostly focusing on single WWTPs - have shown general trends of freshwater invertebrate communities becoming dominated by pollution tolerant taxa. To expand on these findings, the current study is the first to comprehensively investigate data on the effects of 170 WWTPs on invertebrate taxonomic composition. We compared data for several diversity and pollution indices, as well as the taxonomic composition both upstream and downstream of the WWTPs (366 sampling sites). In terms of abundance, the three most frequent and negatively impacted orders were the Plecoptera, Trichoptera and Gastropoda, while the Turbellaria, Hirudinea and Crustacea increased in abundance. Although strong changes in community composition were observed between upstream and downstream sites (mean species turnover of 61%), commonly used diversity indices were not sensitive to these changes, highlighting their potential inadequacy in accurately assessing ecological health. Our results indicate that WWTPs change downstream conditions in favour of pollution tolerant taxa to the detriment of sensitive taxa. Order-level taxonomic responses can be informative but should be interpreted with caution, since they can be driven by a few taxa, or opposing responses of species in the same group can result in an overall low order-level response. Upgrading WWTPs via additional treatment steps or merging may be beneficial, provided upstream sections are unimpacted and/or are in a good chemical and structural condition.
Collapse
Affiliation(s)
- Daniel Enns
- Goethe University Frankfurt, Department Aquatic Ecotoxicology, Max-von-Laue-Straße 13, D-60438 Frankfurt am Main, Germany; Kompetenzzentrum Wasser Hessen, Max-von-Laue-Straße 13, D-60438 Frankfurt am Main, Germany.
| | - Sarah Cunze
- Goethe University Frankfurt, Department of Integrative Parasitology and Zoophysiology, Max-von-Laue-Straße 13, D-60438 Frankfurt am Main, Germany
| | - Nathan Jay Baker
- Nature Research Centre, Institute of Ecology, Akademijos Str. 2, LT-08412 Vilnius, Lithuania
| | - Jörg Oehlmann
- Goethe University Frankfurt, Department Aquatic Ecotoxicology, Max-von-Laue-Straße 13, D-60438 Frankfurt am Main, Germany; Kompetenzzentrum Wasser Hessen, Max-von-Laue-Straße 13, D-60438 Frankfurt am Main, Germany
| | - Jonas Jourdan
- Goethe University Frankfurt, Department Aquatic Ecotoxicology, Max-von-Laue-Straße 13, D-60438 Frankfurt am Main, Germany; Kompetenzzentrum Wasser Hessen, Max-von-Laue-Straße 13, D-60438 Frankfurt am Main, Germany.
| |
Collapse
|
24
|
Ruck G, Decamps A, Aubin JB, Quéau H, Garnero L, Cavanna T, Bertrand-Krajewski JL, Neuzeret D, Geffard O, Chaumot A. Avoidance behaviour of aquatic macroinvertebrates for real-time detection of micropollutant surge in wastewater effluents. WATER RESEARCH 2023; 242:120228. [PMID: 37348420 DOI: 10.1016/j.watres.2023.120228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/08/2023] [Accepted: 06/13/2023] [Indexed: 06/24/2023]
Abstract
Micropollutants are regularly detected at the outlets of wastewater treatment plants (WWTPs). Across urban and industrial WWTPs, monitoring directives only require assessment for a handful of chemicals via sampling methods that fail to capture the temporal variability in micropollutant discharge. In this study, we develop a biotest for real-time on-line monitoring of micropollutant discharge dynamics in WWTPs effluents. The selected biomonitoring device ToxMate uses videotracking of invertebrate movement, which was used to deduce avoidance behaviour of the amphipod Gammarus fossarum. Organism conditioning was set up to induce a state of minimal locomotor activity in basal conditions to maximise avoidance signal sensitivity to micropollutant spikes. We showed that with a standardised protocol, it was possible to minimise both overall movement and sensitivity to physio-chemical variations typical to WWTP effluents, as well as capture the spikes of two micropollutants upon exposure (copper and methomyl). Spikes in avoidance behaviour were consistently seen for the two chemicals, as well as a strong correlation between avoidance intensity and spiked concentration. A two-year effluent monitoring case study also illustrates how this biomonitoring method is suitable for real-time on-site monitoring, and shows a promising non-targeted approach for characterising complex micropollutant discharge variability at WWTP effluents, which today remains poorly understood.
Collapse
Affiliation(s)
- G Ruck
- Laboratoire d'écotoxicologie, INRAE, UR RiverLy, Villeurbanne F-69625, France; Viewpoint, 67 rue Copernic, Civrieux F-01390, France
| | - A Decamps
- Viewpoint, 67 rue Copernic, Civrieux F-01390, France
| | - J B Aubin
- Laboratory DEEP - EA 7429, University of Lyon, INSA Lyon, 11 rue de la physique, Villeurbanne F-69621, France
| | - H Quéau
- Laboratoire d'écotoxicologie, INRAE, UR RiverLy, Villeurbanne F-69625, France
| | - L Garnero
- Laboratoire d'écotoxicologie, INRAE, UR RiverLy, Villeurbanne F-69625, France
| | - T Cavanna
- Viewpoint, 67 rue Copernic, Civrieux F-01390, France
| | - J L Bertrand-Krajewski
- Laboratory DEEP - EA 7429, University of Lyon, INSA Lyon, 11 rue de la physique, Villeurbanne F-69621, France
| | - D Neuzeret
- Viewpoint, 67 rue Copernic, Civrieux F-01390, France
| | - O Geffard
- Laboratoire d'écotoxicologie, INRAE, UR RiverLy, Villeurbanne F-69625, France
| | - A Chaumot
- Laboratoire d'écotoxicologie, INRAE, UR RiverLy, Villeurbanne F-69625, France.
| |
Collapse
|
25
|
Fajardo C, Sánchez-Fortún S, Videira-Quintela D, Martin C, Nande M, D Ors A, Costa G, Guillen F, Montalvo G, Martin M. Biofilm formation on polyethylene microplastics and their role as transfer vector of emerging organic pollutants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:84462-84473. [PMID: 37368211 DOI: 10.1007/s11356-023-28278-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 06/12/2023] [Indexed: 06/28/2023]
Abstract
Microplastic (MP)-colonizing microorganisms are important links for the potential impacts on environmental, health, and biochemical circulation in various ecosystems but are not yet well understood. In addition, biofilms serve as bioindicators for the evaluation of pollutant effects on ecosystems. This study describes the ability of three polyethylene-type microplastics, white (W-), blue (B-), and fluorescent blue (FB-) MPs, to support microbial colonization of Pseudomonas aeruginosa, the effect of mixed organic contaminants (OCs: amoxicillin, ibuprofen, sertraline, and simazine) on plastic-associated biofilms, and the role of biofilms as transfer vectors of such emerging pollutants. Our results showed that P. aeruginosa had a strong ability to produce biofilms on MPs, although the protein amount of biomass formed on FB-MP was 1.6- and 2.4-fold higher than that on B- and W-MP, respectively. When OCs were present in the culture medium, a decrease in cell viability was observed in the W-MP biofilm (65.0%), although a general impairing effect of OCs on biofilm formation was ruled out. Microbial colonization influenced the ability of MPs to accumulate OCs, which was higher for FB-MP. In particular, the sorption of amoxicillin was lower for all bacterial-colonized MPs than for the bare MPs. Moreover, we analysed oxidative stress production to assess the impact of MPs or MPs/OCs on biofilm development. The exposure of biofilms to OCs induced an adaptive stress response reflected in the upregulation of the katB gene and ROS production, particularly on B- and FB-MP. This study improves our understanding of MP biofilm formation, which modifies the ability of MPs to interact with some organic pollutants. However, such pollutants could hinder microbial colonization through oxidative stress production, and thus, considering the key role of biofilms in biogeochemical cycles or plastic degradation, the co-occurrence of MPs/OCs should be considered to assess the potential risks of MPs in the environment.
Collapse
Affiliation(s)
- Carmen Fajardo
- Department of Biomedicine and Biotechnology, Faculty of Pharmacy, University of Alcala, Ctra. Madrid-Barcelona Km 33.600, Alcala de Henares, Madrid, Spain.
| | - Sebastián Sánchez-Fortún
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University Complutense of Madrid, W/N Puerta de Hierro Ave, Madrid, Spain
| | - Diogo Videira-Quintela
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, Faculty of Pharmacy, University of Alcala, Ctra. Madrid-Barcelona Km 33.600, Alcala de Henares, Madrid, Spain
| | - Carmen Martin
- Department of Biotechnology-Plant Biology, School of Agricultural, Food and Biosystems Engineering, Technical University of Madrid, 3 Complutense Ave, Madrid, Spain
| | - Mar Nande
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary, University Complutense of Madrid, W/N Puerta de Hierro Ave, Madrid, Spain
| | - Ana D Ors
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University Complutense of Madrid, W/N Puerta de Hierro Ave, Madrid, Spain
| | - Gonzalo Costa
- Department of Animal Physiology, Faculty ofVeterinary, University Complutense of Madrid, W/N Puerta de Hierro Ave, 28040, Madrid, Spain
| | - Francisco Guillen
- Department of Biomedicine and Biotechnology, Faculty of Pharmacy, University of Alcala, Ctra. Madrid-Barcelona Km 33.600, Alcala de Henares, Madrid, Spain
| | - Gemma Montalvo
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, Faculty of Pharmacy, University of Alcala, Ctra. Madrid-Barcelona Km 33.600, Alcala de Henares, Madrid, Spain
| | - Margarita Martin
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary, University Complutense of Madrid, W/N Puerta de Hierro Ave, Madrid, Spain
| |
Collapse
|
26
|
Heß S, Hof D, Oetken M, Sundermann A. Effects of multiple stressors on benthic invertebrates using Water Framework Directive monitoring data. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 878:162952. [PMID: 36948311 DOI: 10.1016/j.scitotenv.2023.162952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 05/13/2023]
Abstract
Multiple stressors affect freshwater systems and cause a deficient ecological status according to the European Water Framework Directive (WFD). To select effective mitigation measures and improve the ecological status, knowledge on the stressor hierarchy and individual and joined effects is necessary. However, compared to common stressors like nutrient enrichment and morphological degradation, the relative importance of micropollutants such as pesticides and pharmaceuticals is largely unaddressed. We used WFD monitoring data from Saxony (Germany) to investigate the importance of 85 environmental variables (including 34 micropollutants) for 18 benthic invertebrate metrics at 108 sites. The environmental variables were assigned to five groups (natural factors, nutrient enrichment, metals, micropollutants and morphological degradation) and were ranked according to their relative importance as group and individually within and across groups using Principal Component Analyses (PCAs) and Boosted Regression Trees (BRTs). Overall, natural factors contributed the most to the total explained deviance of the models. This variable group represented not only typological differences between sampling sites but also a gradient of human impact by strongly anthropogenically influenced variables such as electric conductivity and dissolved oxygen. These large-scale effects can mask the individual importance of the other variable groups, which may act more specifically at a subset of sites. Accordingly, micropollutants were not represented by a few dominant variables but rather a diverse palette of different chemicals with similar contribution. As a group, micropollutants contributed similarly as metals, nutrient enrichment and morphological degradation. However, the importance of micropollutants might be underestimated due to limitations of the current chemical monitoring practices.
Collapse
Affiliation(s)
- Sebastian Heß
- Senckenberg Research Institute and Natural History Museum Frankfurt, Department of River Ecology and Conservation, Clamecystr. 12, 63571 Gelnhausen, Germany; Goethe University Frankfurt, Faculty of Biology, Institute of Ecology, Evolution and Diversity, Max-von-Laue-Str. 13, 60438 Frankfurt am Main, Germany.
| | - Delia Hof
- Goethe University Frankfurt, Faculty of Biology, Department of Aquatic Ecotoxicology, Max-von-Laue-Str. 13, 60438 Frankfurt am Main, Germany
| | - Matthias Oetken
- Goethe University Frankfurt, Faculty of Biology, Department of Aquatic Ecotoxicology, Max-von-Laue-Str. 13, 60438 Frankfurt am Main, Germany
| | - Andrea Sundermann
- Senckenberg Research Institute and Natural History Museum Frankfurt, Department of River Ecology and Conservation, Clamecystr. 12, 63571 Gelnhausen, Germany; Goethe University Frankfurt, Faculty of Biology, Institute of Ecology, Evolution and Diversity, Max-von-Laue-Str. 13, 60438 Frankfurt am Main, Germany
| |
Collapse
|
27
|
Jiang J, Zhao J, Zhao G, Liu L, Song H, Liao S. Recognition, possible source, and risk assessment of organic pollutants in surface water from the Yongding River Basin by non-target and target screening. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023:121895. [PMID: 37236593 DOI: 10.1016/j.envpol.2023.121895] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/11/2023] [Accepted: 05/23/2023] [Indexed: 05/28/2023]
Abstract
Organic pollutants in aquatic environment could have important implications on pollution stress on aquatic organisms and even on the risk of human exposure. Thus, revealing their occurrence in aquatic environment is essential for water quality monitoring and ecological risk purposes. In this study, a comprehensive two-dimensional gas chromatography connected with time-of-flight mass spectrometry (GC × GC-TOF-MS) was applied, to enable non-target and target analysis of pollutants in the Yongding River Basin. Based on the isotopic patterns, accurate masses and standard substances, certain environmental contaminants were tentatively identified which including polycyclic aromatic hydrocarbon (PAHs), organochlorine pesticides (OCPs), phenols, amines, etc. The compounds with the highest concentration were naphthalene (109.0 ng/L), 2,3-benzofuran (51.5 ng/L) and 1,4-dichlorobenzene (35.9 ng/L) in Guishui River. Wastewater treatment plants (WWTPs) discharges were a main source of pollutants in Yongding River Basin, as the types of compounds screened in the downstream river were relatively similar to those from WWTPs. According to the target analysis, a number of pollutants were selected due to the acute toxicity and cumulative discharge from WWTPs and downstream rivers. Three PAHs (naphthalene, Benzo(b)fluoranthene and pyrene) homologues showed moderate risk to fish and H. Azteca in Yongding River Basin, while the rest of the measured chemicals showed low ecological impact across the entire study area based on the risk assessment. The results are helpful for understanding the necessity of high-throughput screening analysis for assessing water quality of rivers and the discharge emissions of pollutants from WWTPs to the river environment.
Collapse
Affiliation(s)
- Jingqiu Jiang
- Department of Environmental Science & Engineering, North China Electric Power University, Baoding, 071000, China; Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, No.12 South Zhongguancun Ave., Haidian District, Beijing, 100081, China
| | - Jian Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Gaofeng Zhao
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, No.12 South Zhongguancun Ave., Haidian District, Beijing, 100081, China.
| | - Lin Liu
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, No.12 South Zhongguancun Ave., Haidian District, Beijing, 100081, China
| | - Huarong Song
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, No.12 South Zhongguancun Ave., Haidian District, Beijing, 100081, China; Qingdao Engineering Research Center for Rural Environment, College of Resources and Environment, Qingdao Agricultural University, Qingdao, 266109, China
| | - Siyuan Liao
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, No.12 South Zhongguancun Ave., Haidian District, Beijing, 100081, China
| |
Collapse
|
28
|
Römerscheid M, Paschke A, Schneider S, Blaha M, Harzdorf J, Schüürmann G. Calibration of the Chemcatcher® passive sampler and derivation of generic sampling rates for a broad application in monitoring of surface waters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 871:161936. [PMID: 36746283 DOI: 10.1016/j.scitotenv.2023.161936] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/27/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
We determined sampling rates for 34 pesticides, five pesticide transformation products, and 34 pharmaceutical compounds with the Chemcatcher (CC) passive sampler in a laboratory-based continuous-flow system at 40 cm/s and ambient temperature. Three different sampling phases were used: styrene divinylbenzene disks (SDB-XC), styrene divinylbenzene reversed phase sulfonate disks (SDB-RPS), and hydrophilic lipophilic balance disks (HLB), in all cases covered with a diffusion-limiting polyethersulfone membrane. The measured sampling rates range from 0.007 L/d to 0.193 L/d for CC with SDB-XC (CC-XC), from 0.055 L/d to 0.796 L/d for CC with SDB-RPS (CC-RPS), and from 0.018 L/d to 0.073 L/d for CC equipped with HLB (CC-HLB). Comparison with sampling rates from literature enabled to derive generic sampling rates that can be used for compounds with unknown uptake kinetics such as transformations products and new compounds of interest. Field trial results demonstrate that the presently derived generic sampling rates are suitable for estimating time-weighted average concentrations within reasonable uncertainty limits. In this way, Chemcatcher passive sampling can be applied approximately to a broad range of solutes without the need for deriving compound-specific sampling rates, which enable compliance checks against environmental quality standards and further risk assessment.
Collapse
Affiliation(s)
- Mara Römerscheid
- UFZ Department of Ecological Chemistry, Helmholtz Centre for Environmental Research, Permoserstr. 15, 04318 Leipzig, Germany; Institute of Organic Chemistry, Technical University Bergakademie Freiberg, Leipziger Str. 29, 09599 Freiberg, Germany.
| | - Albrecht Paschke
- UFZ Department of Ecological Chemistry, Helmholtz Centre for Environmental Research, Permoserstr. 15, 04318 Leipzig, Germany
| | - Selma Schneider
- UFZ Department of Ecological Chemistry, Helmholtz Centre for Environmental Research, Permoserstr. 15, 04318 Leipzig, Germany
| | - Maximilian Blaha
- UFZ Department of Ecological Chemistry, Helmholtz Centre for Environmental Research, Permoserstr. 15, 04318 Leipzig, Germany
| | - Julia Harzdorf
- UFZ Department of Ecological Chemistry, Helmholtz Centre for Environmental Research, Permoserstr. 15, 04318 Leipzig, Germany
| | - Gerrit Schüürmann
- Institute of Organic Chemistry, Technical University Bergakademie Freiberg, Leipziger Str. 29, 09599 Freiberg, Germany
| |
Collapse
|
29
|
Martín C, Pirredda M, Fajardo C, Costa G, Sánchez-Fortún S, Nande M, Mengs G, Martín M. Transcriptomic and physiological effects of polyethylene microplastics on Zea mays seedlings and their role as a vector for organic pollutants. CHEMOSPHERE 2023; 322:138167. [PMID: 36804253 DOI: 10.1016/j.chemosphere.2023.138167] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
The widespread employment of plastics in recent decades has resulted in the accumulation of plastic residues in all ecosystems. Their presence and degradation into small particles such as microplastics (MPs) may have a negative effect on plant development and therefore on crop production. In this study, the effects of two types of polyethylene MPs on Zea mays seedlings cultured in vitro were analysed. In addition, four organic pollutants (ibuprofen, simazine, sertraline, and amoxicillin) were adsorbed by the MPs to evaluate their capacity as other contaminant vectors. The development of the plants was negatively affected by MPs alone or with the organic compounds. The strongest effect was observed in the W-MPs treatments, with a reduction in leaf and root length near 70%. Chlorophyll content was also differentially affected depending on the treatment. Transcriptome analysis showed that MPs affected gene expression in the roots of maize seedlings. As observed in the physiological parameters analysed, some gene expression changes were associated with specific treatments, such as changes in sugar transport genes in the B-MIX treatment. These results contribute to a better understanding of the molecular mechanisms of plants in regard to plastic stress responses.
Collapse
Affiliation(s)
- Carmen Martín
- Dpt. of Biotechnology-Plant Biology, Universidad Politécnica de Madrid (UPM), 3 Complutense Ave., 28040 Madrid, Spain.
| | - Michela Pirredda
- Dpt. of Biotechnology-Plant Biology, Universidad Politécnica de Madrid (UPM), 3 Complutense Ave., 28040 Madrid, Spain
| | - Carmen Fajardo
- Dpt. of Biomedicine and Biotechnology, Universidad de Alcalá de Henares (UAH), w/n San Diego Sq., 28801 Alcalá de Henares, Spain
| | - Gonzalo Costa
- Dpt. of Animal Physiology, Universidad Complutense de Madrid (UCM), w/n Puerta de Hierro Ave., 28040 Madrid, Spain
| | - Sebastián Sánchez-Fortún
- Dpt. of Pharmacology and Toxicology, Universidad Complutense de Madrid (UCM), w/n Puerta de Hierro Ave., 28040 Madrid, Spain
| | - Mar Nande
- Dpt. Biochemistry and Molecular Biology, Universidad Complutense de Madrid (UCM), w/n Puerta de Hierro Ave., 28040 Madrid, Spain
| | - Gerardo Mengs
- Dpt. Biochemistry and Molecular Biology, Universidad Complutense de Madrid (UCM), w/n Puerta de Hierro Ave., 28040 Madrid, Spain
| | - Margarita Martín
- Dpt. Biochemistry and Molecular Biology, Universidad Complutense de Madrid (UCM), w/n Puerta de Hierro Ave., 28040 Madrid, Spain
| |
Collapse
|
30
|
Marcu D, Keyser S, Petrik L, Fuhrimann S, Maree L. Contaminants of Emerging Concern (CECs) and Male Reproductive Health: Challenging the Future with a Double-Edged Sword. TOXICS 2023; 11:330. [PMID: 37112557 PMCID: PMC10141735 DOI: 10.3390/toxics11040330] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/10/2023] [Accepted: 03/15/2023] [Indexed: 06/19/2023]
Abstract
Approximately 9% of couples are infertile, with half of these cases relating to male factors. While many cases of male infertility are associated with genetic and lifestyle factors, approximately 30% of cases are still idiopathic. Contaminants of emerging concern (CECs) denote substances identified in the environment for the first time or detected at low concentrations during water quality analysis. Since CEC production and use have increased in recent decades, CECs are now ubiquitous in surface and groundwater. CECs are increasingly observed in human tissues, and parallel reports indicate that semen quality is continuously declining, supporting the notion that CECs may play a role in infertility. This narrative review focuses on several CECs (including pesticides and pharmaceuticals) detected in the nearshore marine environment of False Bay, Cape Town, South Africa, and deliberates their potential effects on male fertility and the offspring of exposed parents, as well as the use of spermatozoa in toxicological studies. Collective findings report that chronic in vivo exposure to pesticides, including atrazine, simazine, and chlorpyrifos, is likely to be detrimental to the reproduction of many organisms, as well as to sperm performance in vitro. Similarly, exposure to pharmaceuticals such as diclofenac and naproxen impairs sperm motility both in vivo and in vitro. These contaminants are also likely to play a key role in health and disease in offspring sired by parents exposed to CECs. On the other side of the double-edged sword, we propose that due to its sensitivity to environmental conditions, spermatozoa could be used as a bioindicator in eco- and repro-toxicology studies.
Collapse
Affiliation(s)
- Daniel Marcu
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
- Comparative Spermatology Laboratory, Department of Medical Bioscience, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa;
| | - Shannen Keyser
- Comparative Spermatology Laboratory, Department of Medical Bioscience, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa;
| | - Leslie Petrik
- Environmental and Nano Sciences Group, Department of Chemistry, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa
| | - Samuel Fuhrimann
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute (Swiss TPH), 4123 Allschwil, Switzerland
| | - Liana Maree
- Comparative Spermatology Laboratory, Department of Medical Bioscience, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa;
| |
Collapse
|
31
|
Zhang Q, Xu H, Song N, Liu S, Wang Y, Ye F, Ju Y, Jiao S, Shi L. New insight into fate and transport of organic compounds from pollution sources to aquatic environment using non-targeted screening: A wastewater treatment plant case study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 863:161031. [PMID: 36549534 DOI: 10.1016/j.scitotenv.2022.161031] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/08/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
A variety of chemicals discharged into the aquatic environment by the wastewater treatment plant (WWTP), which is a potential source of hazard to the ecological environment and human health. This study established a novel analytical method for all compounds using non-targeted screening to comprehensively explore the fate and transport of organic compounds from WWTP to aquatic environment. 3967 and 3636 features were detected in WWTP samples and river samples, respectively. Multi-level classification was applied to all identified compounds, and results showed that aliphatics were dominant in both abundance and response, accounting for an average of 35.49 % and 74.10 %, respectively. A total of 88 Emerging Contaminants (ECs), including 22 endocrine disrupting chemicals (EDCs), 12 pharmaceuticals and personal care products (PPCPs), 12 pesticides, 10 volatile organic compounds (VOCs), 5 persistent organic pollutants (POPs) and 27 chemicals with other uses, were identified from all compounds, and their traceability analysis was performed. Furthermore, the contribution rate of organic compounds from WWTP effluent to river was calculated to be 33.60 % by the analysis of source-sink relationship. An in-depth and comprehensive exploration of the fate and transport of all organic compounds will help to provide guidelines for the treatment technologies and achieve the traceability of pollutants.
Collapse
Affiliation(s)
- Qian Zhang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, PR China; College of Environment, Hohai University, Nanjing 210098, PR China
| | - Hang Xu
- College of Environment, Hohai University, Nanjing 210098, PR China
| | - Ninghui Song
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, PR China.
| | - Sitao Liu
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA 92521, USA
| | - Yixuan Wang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, PR China
| | - Fei Ye
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, PR China
| | - Yongming Ju
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, PR China
| | - Shaojun Jiao
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, PR China
| | - Lili Shi
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, PR China
| |
Collapse
|
32
|
Liebmann L, Vormeier P, Weisner O, Liess M. Balancing effort and benefit - How taxonomic and quantitative resolution influence the pesticide indicator system SPEAR pesticides. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 848:157642. [PMID: 35907531 DOI: 10.1016/j.scitotenv.2022.157642] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/05/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
Biological indices aim to reflect the ecological quality of streams based on the community's species or trait composition. Accordingly, the capability to predict the ecological quality depends on (i) the knowledge on the association of taxa or traits with stressors and (ii) the taxonomic and quantitative resolution of taxa. Generally speaking, a higher resolution is associated with a better linkage between environmental condition and biological response but also with higher efforts and costs. So far it is unknown how the taxonomic and quantitative resolution affect the ecological quality assessment of streams related to pesticide effects when applying the invertebrate-based indicator SPEARpesticides. We investigated the ecological quality of 101 streams considering four taxonomic levels (species, genus, family, order) and three quantitative resolutions (abundance, three abundance classes, and presence-absence). In a multiple linear regression analysis between 13 investigated stressors and SPEARpesticides, the full models' explained variance remained fairly constant with decreasing taxonomic and quantitative resolution. As expected, the highest association between pesticide pressure and SPEARpesticides was reached at a species/abundance resolution yielding an R2 of 0.43. In contrast, the lowest quantitative resolution of order level combined with presence-absence information revealed an explained variance of 0.28 R2. We suggest the family/abundance class resolution (R2 = 0.38) as the best trade-off between effort and accuracy for large-scale monitoring. Due to a comparable linear regression at family/abundance class resolution, the assigned ecological quality classes were largely congruent (69 %) to species/abundance resolution. We conclude that the ecological quality assessment with SPEARpesticides at family/abundance class resolution can be used to link pesticide contamination and invertebrate community structure with less taxonomic expertise and less quantification effort.
Collapse
Affiliation(s)
- Liana Liebmann
- Helmholtz Centre for Environmental Research-UFZ, Permoserstr. 15, 04318 Leipzig, Germany; Department Evolutionary Ecology & Environmental Toxicology (E3T), Institute of Ecology, Diversity and Evolution, Faculty of Biological Sciences, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany.
| | - Philipp Vormeier
- Helmholtz Centre for Environmental Research-UFZ, Permoserstr. 15, 04318 Leipzig, Germany; Institute for Environmental Research (Biology V), RWTH Aachen University, 52062 Aachen, Germany
| | - Oliver Weisner
- Helmholtz Centre for Environmental Research-UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| | - Matthias Liess
- Helmholtz Centre for Environmental Research-UFZ, Permoserstr. 15, 04318 Leipzig, Germany; Institute for Environmental Research (Biology V), RWTH Aachen University, 52062 Aachen, Germany
| |
Collapse
|
33
|
Burdon FJ, Reyes M, Schönenberger U, Räsänen K, Tiegs SD, Eggen RIL, Stamm C. Environmental context determines pollution impacts on ecosystem functioning. OIKOS 2022. [DOI: 10.1111/oik.09131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Francis J. Burdon
- Eawag – Swiss Federal Inst. of Aquatic Science and Technology Dübendorf Switzerland
- Te Aka Mātuatua – School of Science, Univ. of Waikato Hamilton New Zealand
| | - Marta Reyes
- Eawag – Swiss Federal Inst. of Aquatic Science and Technology Dübendorf Switzerland
| | - Urs Schönenberger
- Eawag – Swiss Federal Inst. of Aquatic Science and Technology Dübendorf Switzerland
| | - Katja Räsänen
- Eawag – Swiss Federal Inst. of Aquatic Science and Technology Dübendorf Switzerland
- Dept of Biological and Environmental Science, Univ. of Jyväskylä Jyväskylä Finland
| | - Scott D. Tiegs
- Dept of Biological Sciences, Oakland Univ. Rochester MI USA
| | - Rik I. L. Eggen
- Eawag – Swiss Federal Inst. of Aquatic Science and Technology Dübendorf Switzerland
- ETH Zürich, Inst. of Biogeochemistry and Pollutant Dynamics Zürich Switzerland
| | - Christian Stamm
- Eawag – Swiss Federal Inst. of Aquatic Science and Technology Dübendorf Switzerland
| |
Collapse
|
34
|
Narain-Ford DM, van Wezel AP, Helmus R, Dekker SC, Bartholomeus RP. Soil self-cleaning capacity: Removal of organic compounds during sub-surface irrigation with sewage effluent. WATER RESEARCH 2022; 226:119303. [PMID: 36323222 DOI: 10.1016/j.watres.2022.119303] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 10/06/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
Globally, the reuse of treated sewage effluent for irrigation purposes is increasingly encouraged as a practical solution against the mismatch between the demand for and availability of freshwater resources. The reuse of sewage effluent for sub-surface irrigation (SSI) in agriculture serves the dual purpose of supplying water to crops and diminishing emissions of contaminants of emerging concern (CoECs) into surface water. To investigate such reuse, in a real scale cropland with SSI using sewage effluent, from September 2017 to March 2019 including the extremely dry year 2018, residues were followed of 133 CoECs as related to their physicochemical properties and quantified by liquid chromatography coupled to high-resolution mass spectrometry. Of the 133 target CoECs, 89 were retrieved in the field, most non-detect CoECs have low persistency. During the growing season with sub-surface irrigation, CoECs spread to the shallow groundwater and rhizosphere. Significantly lower concentrations are found between infiltration pipes as compared to directly next to the pipes in shallow groundwater for all persistency-mobility classes. CoECs belonging to the class pm (low persistency and low mobility) or class PM (high persistency and high mobility) class show no change amongst their removal in the rhizosphere and groundwater in a dry versus normal year. CoECs belonging to the class pM (low persistency and high mobility) show high seasonal dynamics in the rhizosphere and shallow groundwater, indicating that these CoECs break down. CoECs of the class Pm (high persistency and low mobility) only significantly build up in the rhizosphere next to infiltration pipes. Climatic conditions with dry summers and precipitation surplus and drainage in winter strongly affect the fate of CoECs. During the dry summer of 2018 infiltrated effluent is hardly diluted, resulting in significantly higher concentrations for the CoECs belonging to the classes pM and Pm. After the extremely dry year of 2018, cumulative concentrations are still significantly higher, while after a normal year during winter precipitation surplus removes CoECs. For all persistency-mobility classes in the shallow groundwater between the pipes, we find significant removal efficiencies. For the rhizosphere between the pipes, we find the same except for Pm. Next to the pipes however we find no significant removal for all classes in both the rhizosphere and shallow groundwater and even significant accumulation for Pm. For this group of persistent moderately hydrophobic CoECs risk characterization ratio's were calculated for the period of time with the highest normalized concentration. None of the single-chemical RCRs are above one and the ΣRCR is also far below one, implying sufficiently safe ambient exposures. Overall the deeper groundwater (7.0-11.8 m below soil surface) has the lowest response to the sub-surface irrigation for all persistency-mobility. When adopting a SSI STP effluent reuse system care must be taken to monitor the CoECs that are (moderately) hydrophobic as these can build up in the SSI system. For the deeper groundwater and for the discharge to the surface water, we find significant removal for the pM and the PM class but not for other classes. In conclusion, relatively high removal efficiencies are shown benefiting the surface waters that would otherwise receive the STP effluent directly.
Collapse
Affiliation(s)
- D M Narain-Ford
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, the Netherlands; Copernicus Institute of Sustainable Development, Utrecht University, Utrecht, the Netherlands; KWR Water Research Institute, Nieuwegein, the Netherlands.
| | - A P van Wezel
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, the Netherlands
| | - R Helmus
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, the Netherlands
| | - S C Dekker
- Copernicus Institute of Sustainable Development, Utrecht University, Utrecht, the Netherlands
| | - R P Bartholomeus
- KWR Water Research Institute, Nieuwegein, the Netherlands; Soil Physics and Land Management, Wageningen UR, Wageningen, the Netherlands
| |
Collapse
|
35
|
Investigating the effect of pesticides on Daphnia population dynamics by inferring structure and parameters of a stochastic model. Ecol Modell 2022. [DOI: 10.1016/j.ecolmodel.2022.110076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
36
|
Silva C, Cachada A, Gonçalves FJM, Nannou C, Lambropoulou D, Patinha C, Abrantes N, Pereira JL. Chemical characterization of riverine sediments affected by wastewater treatment plant effluent discharge. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 839:156305. [PMID: 35636541 DOI: 10.1016/j.scitotenv.2022.156305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
This study was aimed at assessing the contribution of wastewater treatment effluents to the contamination profile of the sediments of receiving waterways. Three wastewater treatment plants (WWTP) were addressed, encompassing different population equivalent sizes, urbanization degrees and treatment methods translating differences in expected contamination patterns. Within each WWTP system, the assessment targeted the effluent and sediment samples collected upstream and downstream the effluent discharge point; contaminants belonging to several concerning chemical classes (metals and metalloids; pesticides; pharmaceuticals and personal care products, PPCPs; and polycyclic aromatic hydrocarbons, PAHs) were quantified both in effluent and sediment samples. Clear associations between contaminants present in the effluent and corresponding sediment samples were not always verified. In fact, a noticeable difference between the number or abundance of contaminants detected in effluents and in sediments, suggesting that effluents are not always the most likely source (e.g. PAHs). However, sediment contaminants that were likely sourced by the effluents were also identified (e.g. PPCPs). Sediment analysis offers an important historical view of contamination, especially in flowing recipient ecosystems where any characterization over the water matrix is ephemeral and linking exclusively to the moment of sampling. Hence, sediments should be considered for the establishment of WWTP operational benchmarks regulating the emission of contaminants, which is currently focused mostly on effluent composition thus potentially over/underestimating the longer-term impact of effluent discharge in the recipient waterways.
Collapse
Affiliation(s)
- Carlos Silva
- CESAM - Centre for Environmental and Marine Studies, University of Aveiro, Portugal; Department of Biology, University of Aveiro, Portugal
| | - Anabela Cachada
- CIIMAR-UP, Novo Edifício Do Terminal de Cruzeiros Do Porto de Leixões, Matosinhos, Portugal
| | - Fernando J M Gonçalves
- CESAM - Centre for Environmental and Marine Studies, University of Aveiro, Portugal; Department of Biology, University of Aveiro, Portugal
| | - Christina Nannou
- Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, Greece; Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, Thessaloniki, Greece
| | - Dimitra Lambropoulou
- Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, Greece; Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, Thessaloniki, Greece
| | - Carla Patinha
- Department of Geosciences & GEOBIOTEC, University of Aveiro, Portugal
| | - Nelson Abrantes
- CESAM - Centre for Environmental and Marine Studies, University of Aveiro, Portugal; Department of Environment and Planning, University of Aveiro, Portugal
| | - Joana Luísa Pereira
- CESAM - Centre for Environmental and Marine Studies, University of Aveiro, Portugal; Department of Biology, University of Aveiro, Portugal.
| |
Collapse
|
37
|
Caglak A, Chormey DS, Bakirdere S, Onkal Engin G. Performance evaluation of ceramic membrane bioreactor: effect of operational parameters on micropollutant removal and membrane fouling. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:68306-68319. [PMID: 35538336 DOI: 10.1007/s11356-022-20612-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 04/30/2022] [Indexed: 06/14/2023]
Abstract
This paper presents the removal of nine potential endocrine disruptors including pesticides, pharmaceuticals and industrial chemicals using a submerged membrane bioreactor (MBR) system. Two lab-scale submerged MBRs having ceramic membranes were operated at three different sludge retention times (SRT: 15, 45, 90 days) and two hydraulic retention times (HRT: 12, 6 h) and the effects of SRT and HRT on both micropollutant removal and membrane fouling were investigated. While the effect of SRT and HRT change was observed on the removal of atrazine, fluoxetine, penconazole, no significant change was detected for the other micropollutants studied. It was determined that physicochemical properties such as distribution coefficient (LogD) and hydrophobicity of micropollutants are also effective on the removal efficiency of micropollutants. High removal efficiencies ([Formula: see text] 97.5%) were observed for hydrophobic pollutants (logD > 3.2) except for penconazole (72.1%) and for hydrophilic pollutants (logD < 3.2) except for atrazine (42.5%). Membrane fouling was significantly affected by different operational parameters applied, with the slowest fouling occurring at 45 days of SRT and 12 h of HRT. However, micropollutant addition did not have a significant effect on membrane fouling. It has been shown that the simultaneous and effective treatment performance for micropollutants makes the membrane bioreactor system a promising wastewater treatment process.
Collapse
Affiliation(s)
- Abdulkadir Caglak
- Environmental Engineering Department, Civil Engineering Faculty, Yildiz Technical University, 34220, Istanbul, Turkey
| | | | - Sezgin Bakirdere
- Department of Chemistry, Yildiz Technical University, 34220, Istanbul, Turkey
| | - Guleda Onkal Engin
- Environmental Engineering Department, Civil Engineering Faculty, Yildiz Technical University, 34220, Istanbul, Turkey.
| |
Collapse
|
38
|
Hou M, Li X, Fu Y, Wang L, Lin D, Wang Z. Degradation of iodinated X-ray contrast media by advanced oxidation processes: A literature review with a focus on degradation pathways. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
39
|
Ferreira D, Alkimin GDD, Neves B, Conde T, Domingues MR, Nunes B. Evaluation of parental and transgenerational effects of clotrimazole in Daphnia magna - A multi-parametric approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 831:154677. [PMID: 35337862 DOI: 10.1016/j.scitotenv.2022.154677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 06/14/2023]
Abstract
Azole antifungals inhibit the cytochrome P450 complex, decreasing the production of ergosterol in fungi, and compromising the biosynthesis of ecdysteroids in crustaceans, which are hormones regulating reproduction and ecdysis. The azole antifungal clotrimazole (CLO) raises environmental concerns due its toxicity. This work evaluated the effects on the number of moults, feeding rate, growth, reproduction, transgenerational reproductive effects on two different generations (F0, parental generation; and F1, organisms born from F0), and energetic balance in Daphnia magna. Neonates (<24 h) were exposed to sublethal concentrations (0, 2.7, and 3.4 mg/L) of CLO, to assess its effects on the moulting process. Neonates were also exposed to environmentally realistic concentrations of CLO (0, 30, 150, 750, and 3750 ng/L) for 24 and 96 h, to assess adverse effects on their feeding behaviour. Effects on energy reserves (fatty acids, glycogen, and protein levels) were also measured in animals exposed to CLO. A reproduction test was carried out to evaluate the amount and size of neonates from F0 and F1 generations. CLO exposure decreased the number of moults, and the size of organisms, but did not alter the feeding pattern of 5 days old individuals. However, neonates (<24 h) exposed to CLO had a significant decrease in their feeding pattern. CLO decreased the fatty acids content in exposed animals, but did not change glycogen and protein. CLO also decreased the size of adult daphnids from the third brood, born from animals exposed in F0; in F1 animals, the size of neonates from the third brood was decreased. This study evidenced the toxic effects caused by CLO on growth, feeding and reproduction of D. magna. Nevertheless, it is not possible to conclude whether the effects are due to the inhibition of cytochrome P450 enzymes, or to unspecific effects caused by general toxic stress and decreased nutrition.
Collapse
Affiliation(s)
- David Ferreira
- Departamento de Biologia da Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Gilberto Dias de Alkimin
- Departamento de Biologia da Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; Centro de Estudos do Ambiente e do Mar, CESAM, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; Centre for Marine and Environmental Research (CIMA), Universidade do Algarve, Campus de Gambelas, 8000-139, Faro, Portugal.
| | - Bruna Neves
- Centro de Estudos do Ambiente e do Mar, CESAM, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
| | - Tiago Conde
- Centro de Estudos do Ambiente e do Mar, CESAM, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal; Department of Medical Sciences and Institute of Biomedicine - iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal
| | - M Rosário Domingues
- Centro de Estudos do Ambiente e do Mar, CESAM, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
| | - Bruno Nunes
- Departamento de Biologia da Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; Centro de Estudos do Ambiente e do Mar, CESAM, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| |
Collapse
|
40
|
Büttner O, Jawitz JW, Birk S, Borchardt D. Why wastewater treatment fails to protect stream ecosystems in Europe. WATER RESEARCH 2022; 217:118382. [PMID: 35413560 DOI: 10.1016/j.watres.2022.118382] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/16/2022] [Accepted: 03/29/2022] [Indexed: 06/14/2023]
Abstract
There is significant debate about why less than half of European rivers and streams are in good ecological status, despite decades of intense regulatory efforts. Of the multiple stressors that are recognized as potential contributors to stream degradation, we focus on discharge from 26,500 European wastewater treatment plants (WWTPs). We tested the hypothesis that stream ecological status degradation across Europe is related to the local intensity of wastewater discharge, with an expected stream-order (ω) dependence based on the scaling laws that govern receiving stream networks. We found that ecological status in streams (ω≤3) declined consistently with increasing urban wastewater discharge fraction of stream flow (UDF) across river types and basins. In contrast, ecological status in larger rivers (ω≥4) was not related to UDF. From a continental-scale logistic regression model (accuracy 86%) we identified an ecologically critical threshold UDF = 6.5% ± 0.5. This is exceeded by more than one third of WWTPs in Europe, mostly discharging into smaller streams. Our results suggest that new receiving water-specific strategies for wastewater management are needed to achieve good ecological status in smaller streams.
Collapse
Affiliation(s)
- Olaf Büttner
- Department Aquatic Ecosystems Analysis and Management, Helmholtz Centre for Environmental Research-UFZ, Germany.
| | - James W Jawitz
- Soil and Water Sciences Department, University of Florida, Gainesville, FL 32611, USA
| | - Sebastian Birk
- Facultyof Biology, Aquatic Ecology, University of Duisburg-Essen, Essen, Germany
| | - Dietrich Borchardt
- Department Aquatic Ecosystems Analysis and Management, Helmholtz Centre for Environmental Research-UFZ, Germany
| |
Collapse
|
41
|
Švara V, Michalski SG, Krauss M, Schulze T, Geuchen S, Brack W, Luckenbach T. Reduced genetic diversity of freshwater amphipods in rivers with increased levels of anthropogenic organic micropollutants. Evol Appl 2022; 15:976-991. [PMID: 35782015 PMCID: PMC9234654 DOI: 10.1111/eva.13387] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 03/25/2022] [Accepted: 04/07/2022] [Indexed: 12/01/2022] Open
Abstract
Anthropogenic chemicals in freshwater environments contribute majorly to ecosystem degradation and biodiversity decline. In particular anthropogenic organic micropollutants (AOM), a diverse group of compounds, including pesticides, pharmaceuticals, and industrial chemicals, can significantly impact freshwater organisms. AOM were found to impact genetic diversity of freshwater species; however, to which degree AOM cause changes in population genetic structure and allelic richness of freshwater macroinvertebrates remains poorly understood. Here, the impact of AOM on genetic diversity of the common amphipod Gammarus pulex (Linnaeus, 1758) (clade E) was investigated on a regional scale. The site-specific AOM levels and their toxic potentials were determined in water and G. pulex tissue sample extracts for 34 sites along six rivers in central Germany impacted by wastewater effluents and agricultural run-off. Population genetic parameters were determined for G. pulex from the sampling sites by genotyping 16 microsatellite loci. Genetic differentiation among G. pulex from the studied rivers was found to be associated with geographic distance between sites and to differences in site-specific concentrations of AOM. The genetic diversity parameters of G. pulex were found to be related to the site-specific AOM levels. Allelic richness was significantly negatively correlated with levels of AOM in G. pulex tissue (p < 0.003) and was reduced by up to 22% at sites with increased levels of AOM, despite a positive relationship of allelic richness and the presence of waste-water effluent. In addition, the inbreeding coefficient of G. pulex from sites with toxic AOM levels was up to 2.5 times higher than that of G. pulex from more pristine sites. These results indicate that AOM levels commonly found in European rivers significantly contribute to changes in the genetic diversity of an ecologically relevant indicator species.
Collapse
Affiliation(s)
- Vid Švara
- Department of Effect‑Directed AnalysisHelmholtz Centre for Environmental Research – UFZLeipzigGermany
- Department of Evolutionary Ecology and Environmental ToxicologyGoethe University FrankfurtFrankfurt am MainGermany
- UNESCO Chair for Sustainable Management of Conservation AreasCarinthia University of Applied SciencesVillachAustria
| | - Stefan G. Michalski
- Department of Community EcologyHelmholtz Centre for Environmental Research – UFZHalleGermany
| | - Martin Krauss
- Department of Effect‑Directed AnalysisHelmholtz Centre for Environmental Research – UFZLeipzigGermany
| | - Tobias Schulze
- Department of Effect‑Directed AnalysisHelmholtz Centre for Environmental Research – UFZLeipzigGermany
| | - Stephan Geuchen
- Department of Bioanalytical EcotoxicologyHelmholtz Centre for Environmental Research – UFZLeipzigGermany
| | - Werner Brack
- Department of Effect‑Directed AnalysisHelmholtz Centre for Environmental Research – UFZLeipzigGermany
- Department of Evolutionary Ecology and Environmental ToxicologyGoethe University FrankfurtFrankfurt am MainGermany
| | - Till Luckenbach
- Department of Bioanalytical EcotoxicologyHelmholtz Centre for Environmental Research – UFZLeipzigGermany
| |
Collapse
|
42
|
Alimzhanova M, Mamedova M, Ashimuly K, Alipuly A, Adilbekov Y. Miniaturized solid-phase microextraction coupled with gas chromatography-mass spectrometry for determination of endocrine disruptors in drinking water. Food Chem X 2022; 14:100345. [PMID: 35663598 PMCID: PMC9156867 DOI: 10.1016/j.fochx.2022.100345] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 05/11/2022] [Accepted: 05/21/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Mereke Alimzhanova
- al-Farabi Kazakh National University, Faculty of Physics and Technology, 71 al-Farabi Ave., 050040 Almaty, Kazakhstan
- Center of Physical Chemical Methods of Research and Analysis, al-Farabi Kazakh National University, 050012 Almaty, Kazakhstan
- Corresponding author.
| | - Madina Mamedova
- al-Farabi Kazakh National University, Faculty of Physics and Technology, 71 al-Farabi Ave., 050040 Almaty, Kazakhstan
- Center of Physical Chemical Methods of Research and Analysis, al-Farabi Kazakh National University, 050012 Almaty, Kazakhstan
| | - Kazhybek Ashimuly
- Center of Physical Chemical Methods of Research and Analysis, al-Farabi Kazakh National University, 050012 Almaty, Kazakhstan
| | - Alham Alipuly
- Center of Physical Chemical Methods of Research and Analysis, al-Farabi Kazakh National University, 050012 Almaty, Kazakhstan
| | - Yerlan Adilbekov
- Center of Physical Chemical Methods of Research and Analysis, al-Farabi Kazakh National University, 050012 Almaty, Kazakhstan
| |
Collapse
|
43
|
Shi L, Zhang J, Lu T, Zhang K. Metagenomics revealed the mobility and hosts of antibiotic resistance genes in typical pesticide wastewater treatment plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 817:153033. [PMID: 35026253 DOI: 10.1016/j.scitotenv.2022.153033] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 05/09/2023]
Abstract
Pesticide showed a crucial selective pressure of antibiotic resistance genes (ARGs) in the environmental dimension, especially in the pesticide wastewater treatment process, where the information on the mobility and hosts of ARGs was very important but limited. This study tried to clarify the mobile antibiotic resistome and ARG hosts in three typical pesticide wastewater treatment plants (PWWTPs) through metagenomics. Results showed that ARGs associated with antibiotic efflux and multi-drug resistance generally dominated in the PWWTPs, and the relative abundance of ARGs was generally higher in the water phase than that in sludge phase. The mobile antibiotic resistome accounted for 43.6% ± 16.2% and 44.8% ± 18.0% of the total relative abundance of ARGs in the water phase and sludge phase, respectively. The tnpA, IS91 and intI1 were the dominant mobile genetic elements (MGEs) closely associated with ARGs. MCR-5 and MCR-9 were first identified in the PWWTPs and located together with the tnpA, tnpA2 and int2. The potential human pathogens belonging to Citrobacter, Pseudomonas, Enterobacter, Acinetobacter, and Kluyvern were the major ARG hosts in the PWWTPs. Statistical analysis indicated that microbial community contributed the most to the occurrence of antibiotic resistome, and the reduction of the major ARG hosts was crucial from the perspective of ARGs control.
Collapse
Affiliation(s)
- Liming Shi
- State Key Laboratory of Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Junya Zhang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Department of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Tiedong Lu
- College of Life Science and Technology, Guangxi University, Nanning 530005, Guangxi, China
| | - Kecheng Zhang
- State Key Laboratory of Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
44
|
Kienle C, Werner I, Fischer S, Lüthi C, Schifferli A, Besselink H, Langer M, McArdell CS, Vermeirssen ELM. Evaluation of a full-scale wastewater treatment plant with ozonation and different post-treatments using a broad range of in vitro and in vivo bioassays. WATER RESEARCH 2022; 212:118084. [PMID: 35114528 DOI: 10.1016/j.watres.2022.118084] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 12/31/2021] [Accepted: 01/13/2022] [Indexed: 06/14/2023]
Abstract
Micropollutants present in the effluent of wastewater treatment plants (WWTPs) after biological treatment are largely eliminated by effective advanced technologies such as ozonation. Discharge of contaminants into freshwater ecosystems can thus be minimized, while simultaneously protecting drinking water resources. However, ozonation can lead to reactive and potentially toxic transformation products. To remove these, the Swiss Federal Office for the Environment recommends additional "post-treatment" of ozonated WWTP effluent using sand filtration, but other treatments may be similarly effective. In this study, 48 h composite wastewater samples were collected before and after full-scale ozonation, and after post-treatments (full-scale sand filtration, pilot-scale fresh and pre-loaded granular activated carbon, and fixed and moving beds). Ecotoxicological tests were performed to quantify the changes in water quality following different treatment steps. These included standard in vitro bioassays for the detection of endocrine, genotoxic and mutagenic effects, as well as toxicity to green algae and bacteria, and flow-through in vivo bioassays using oligochaetes and early life stages of rainbow trout. Results show that ozonation reduced a number of ecotoxicological effects of biologically treated wastewater by 66 - 93%: It improved growth and photosynthesis of green algae, decreased toxicity to luminescent bacteria, reduced concentrations of hormonally active contaminants and significantly changed expression of biomarker genes in rainbow trout liver. Bioassay results showed that ozonation did not produce problematic levels of reaction products overall. Small increases in toxicity observed in a few samples were reduced or eliminated by post-treatments. However, only relatively fresh granular activated carbon (analyzed at 13,000 - 20,000 bed volumes) significantly reduced effects additionally (by up to 66%) compared to ozonation alone. Inhibition of algal photosynthesis, rainbow trout liver histopathology and biomarker gene expression proved to be sufficiently sensitive endpoints to detect the change in water quality achieved by post-treatment.
Collapse
Affiliation(s)
- Cornelia Kienle
- Swiss Centre for Applied Ecotoxicology, CH-8600 Dübendorf, CH-1015 Lausanne, Switzerland.
| | - Inge Werner
- Swiss Centre for Applied Ecotoxicology, CH-8600 Dübendorf, CH-1015 Lausanne, Switzerland
| | - Stephan Fischer
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, CH-8600 Dübendorf, Switzerland
| | - Christina Lüthi
- Swiss Centre for Applied Ecotoxicology, CH-8600 Dübendorf, CH-1015 Lausanne, Switzerland
| | - Andrea Schifferli
- Swiss Centre for Applied Ecotoxicology, CH-8600 Dübendorf, CH-1015 Lausanne, Switzerland
| | - Harrie Besselink
- BioDetection Systems B.V. (BDS), Amsterdam, 1098 XH, Netherlands
| | - Miriam Langer
- Swiss Centre for Applied Ecotoxicology, CH-8600 Dübendorf, CH-1015 Lausanne, Switzerland
| | - Christa S McArdell
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, CH-8600 Dübendorf, Switzerland
| | | |
Collapse
|
45
|
Moradeeya PG, Sharma A, Kumar MA, Basha S. Titanium dioxide based nanocomposites - Current trends and emerging strategies for the photocatalytic degradation of ruinous environmental pollutants. ENVIRONMENTAL RESEARCH 2022; 204:112384. [PMID: 34785207 DOI: 10.1016/j.envres.2021.112384] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 11/07/2021] [Accepted: 11/10/2021] [Indexed: 06/13/2023]
Abstract
Many ruinous pollutants are omnipresent in the environment and among them; pesticides are xenobiotic and pose to be a bio-recalcitrance. Their detrimental ecological and environmental impacts attract attention of environmental excerpts and the surge of stringent regulations have endows the need of a technically feasible treatment. This critical review emphasizes about the occurrence, abundance and fate of structurally distinct pesticides in different environment. The practiced remedial strategies and in particular, the advanced oxidation processes (AOPs) those utilize the photo-catalytic properties of nano-composites for the degradation of pollutants are critically discussed. Photo-catalytic degradation utilizes many composite materials at nano-scale level, wherein synthesis of nano-composites with appropriate precursors and other adjoining functional moieties are of prime importance. Therefore, suitable starter materials along with the reaction conditions are prerequisite for effectively tailoring the nano-composites. The aforementioned aspects and their customized applications are critically discussed. The associated challenges, opportunities and process economics of degradation using photo-catalytic AOP techniques are highlighted and in addition, the review tries to explain how best the photo-degradation can be a stand-alone tool with a societal importance. Conclusively, the future prospects for undertaking new researches in photo-catalytic breakdown of pollutants that can be judiciously sustainable.
Collapse
Affiliation(s)
- Pareshkumar G Moradeeya
- Hyderabad Zonal Laboratory, CSIR-National Environmental Engineering Research Institute, IICT Campus, Tarnaka, Hyderabad, 500 007, Telangana, India; Department of Environmental Science & Engineering, Marwadi Education Foundation, Rajkot, 360 003, Gujarat, India
| | - Archana Sharma
- Department of Environmental Science & Engineering, Marwadi Education Foundation, Rajkot, 360 003, Gujarat, India
| | - Madhava Anil Kumar
- Analytical and Environmental Science Division & Centralized Instrument Facility, CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar, 364 002, Gujarat, India
| | - Shaik Basha
- Hyderabad Zonal Laboratory, CSIR-National Environmental Engineering Research Institute, IICT Campus, Tarnaka, Hyderabad, 500 007, Telangana, India.
| |
Collapse
|
46
|
Shuliakevich A, Schroeder K, Nagengast L, Wolf Y, Brückner I, Muz M, Behnisch PA, Hollert H, Schiwy S. Extensive rain events have a more substantial impact than advanced effluent treatment on the endocrine-disrupting activity in an effluent-dominated small river. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:150887. [PMID: 34634343 DOI: 10.1016/j.scitotenv.2021.150887] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/05/2021] [Accepted: 10/05/2021] [Indexed: 06/13/2023]
Abstract
Wastewater treatment plants (WWTPs) remain an important primary source of emission for endocrine-disrupting compounds in the environment. As an advanced wastewater treatment process, ozonation is known to reduce endocrine-disrupting activity. However, it remains unclear to which extend improved wastewater treatment may reduce the endocrine-disrupting activity in the receiving water body. The present study investigated possible factors for the endocrine-disrupting activity in a small receiving water body, the Wurm River (North-Rhine Westphalia, Germany), up- and downstream of a local WWTP. The cell-based reporter gene CALUX® assay was applied to identify the endocrine-disrupting activity in the water, sediment, and suspended particulate matter. The water phase and the effluent sampling were primarily driven by applying the full-scale effluent ozonation (sampling campaigns in June 2017 and March 2019). In contrast, the sediment sampling aimed to compare the particle-bound endocrine-disrupting activity during dry (June 2017) and rainy summer (June 2018) seasons. The water phase showed low to moderate estrogenic/antiandrogenic activity. Advanced effluent treatment by ozonation led to a complete reduction of the endocrine-disrupting activity according to the limit of detection of the CALUX® assays. The suspended particulate matter originated from the water phase of the second sampling campaign revealed antiandrogenic activity only. Sediments at the sampling sites along the local WWTP revealed higher estrogenic and antiandrogenic activity after extensive rain events and were not affected by the ozonated effluent. Fluctuation patterns of the endocrine-disrupting activity in sediments were in line with fluctuated concentrations of polycyclic aromatic hydrocarbons. Rainwater overflow basin release was suggested as a vector for particle-bound and dissolved endocrine-disrupting activity in the receiving water body. The present study underlined the necessity for monitoring both water and sediment phases to achieve reliable profiling of the endocrine-disrupting activity. The receptor-mediated CALUX® assays were proven to be suitable for investigating the endocrine-disrupting activity distribution in different river compartments and WWTP effluents.
Collapse
Affiliation(s)
- Aliaksandra Shuliakevich
- Goethe University Frankfurt/Main, Department Evolutionary Ecology and Environmental Toxicology, Max-von-Laue-Strasse 13, 60438 Frankfurt/Main, Germany
| | - Katja Schroeder
- RWTH Aachen University, Institute of Biology V, Worringerweg 1, 52074 Aachen, Germany
| | - Laura Nagengast
- RWTH Aachen University, Institute of Biology V, Worringerweg 1, 52074 Aachen, Germany
| | - Yvonne Wolf
- RWTH Aachen University, Institute of Biology V, Worringerweg 1, 52074 Aachen, Germany
| | - Ira Brückner
- Eifel-Rur Waterboard (WVER), Eisenbahnstr. 5, 52354 Düren, Germany
| | - Melis Muz
- Helmholtz Centre for Environmental Research UFZ, Department of Effect-Directed Analysis, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Peter A Behnisch
- BioDetection Systems B.V. (BDS), Science Park 406, 1098 XH Amsterdam, the Netherlands
| | - Henner Hollert
- Goethe University Frankfurt/Main, Department Evolutionary Ecology and Environmental Toxicology, Max-von-Laue-Strasse 13, 60438 Frankfurt/Main, Germany.
| | - Sabrina Schiwy
- Goethe University Frankfurt/Main, Department Evolutionary Ecology and Environmental Toxicology, Max-von-Laue-Strasse 13, 60438 Frankfurt/Main, Germany
| |
Collapse
|
47
|
Fajardo C, Martín C, Costa G, Sánchez-Fortún S, Rodríguez C, de Lucas Burneo JJ, Nande M, Mengs G, Martín M. Assessing the role of polyethylene microplastics as a vector for organic pollutants in soil: Ecotoxicological and molecular approaches. CHEMOSPHERE 2022; 288:132460. [PMID: 34610374 DOI: 10.1016/j.chemosphere.2021.132460] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/29/2021] [Accepted: 10/01/2021] [Indexed: 06/13/2023]
Abstract
Microplastics (MPs), pharmaceuticals and pesticides are emerging pollutants with proposed negative impacts on the environment. Rising interest in investigations of MPs is likely related to their potential to accumulate in agricultural systems as the base of the food chain. We applied an integrated approach using classic bioassays and molecular methods to evaluate the impact associated with a mixture of three types of polyethylene (PE) microbeads, namely, white (W), blue (B), and fluorescent blue (FB), and their interactions with pollutants (OCs), including ibuprofen (IB), sertraline (STR), amoxicillin (AMX) and simazine (SZ), on different soil organisms. PE-MPs exhibited different abilities for the adsorption of each OC; W selectively adsorbed higher amounts of SZ, whereas B and FB preferably retained AMX. Standard soil was artificially contaminated with OCs and MPs (alone or combined with OCs) and incubated for 30 days. The presence of MPs or MPs and OCs (MIX) in soil did not produce any effect on Caenorhabditis elegans endpoint growth, reproduction, or survival. Inhibition of leaf growth in Zea mays was detected, but this negative effect declined over time, while the inhibition of root growth increased, especially when OCs (32%) or MIX (47%) were added. Moreover, the expression of the antioxidant genes CAT 1, SOD-1A and GST 1 on plants was affected by the treatments studied. The addition of MPs or MIX significantly affected the soil bacterial phylogenetic profile, which selectively enriched members of the bacterial community (particularly Proteobacteria). The predicted functional profiles of MP/MIX samples indicated a potential impact on the carbon and nitrogen cycle within the soil environment. Our results indicate that MPs and their capability to act as pollutant carriers affect soil biota; further studies should be carried out on the bioavailability of OCs adsorbed by microplastics and how long it takes to leach these OCs into different organisms and/or ecosystems.
Collapse
Affiliation(s)
- Carmen Fajardo
- Dpt. of Biomedicine and Biotechnology, Universidad de Alcalá de Henares (UAH), W/n San Diego Sq., 28801, Alcalá de Henares, Spain.
| | - Carmen Martín
- Dpt. of Biotechnology-Plant Biology, Universidad Politécnica de Madrid (UPM), 3 Complutense Ave., 28040, Madrid, Spain
| | - Gonzalo Costa
- Dpt. of Animal Physiology, Universidad Complutense de Madrid (UCM), W/n Puerta de Hierro Ave., 28040, Madrid, Spain
| | - Sebastián Sánchez-Fortún
- Dpt. of Pharmacology and Toxicology, Universidad Complutense de Madrid (UCM), W/n Puerta de Hierro Ave., 28040, Madrid, Spain
| | - Casilda Rodríguez
- Dpt. of Pharmacology and Toxicology, Universidad Complutense de Madrid (UCM), W/n Puerta de Hierro Ave., 28040, Madrid, Spain
| | - Jose Julio de Lucas Burneo
- Dpt. of Pharmacology and Toxicology, Universidad Complutense de Madrid (UCM), W/n Puerta de Hierro Ave., 28040, Madrid, Spain
| | - Mar Nande
- Dpt. Biochemistry and Molecular Biology, Universidad Complutense de Madrid (UCM), W/n Puerta de Hierro Ave., 28040, Madrid, Spain
| | - Gerardo Mengs
- Dpt. Biochemistry and Molecular Biology, Universidad Complutense de Madrid (UCM), W/n Puerta de Hierro Ave., 28040, Madrid, Spain
| | - Margarita Martín
- Dpt. Biochemistry and Molecular Biology, Universidad Complutense de Madrid (UCM), W/n Puerta de Hierro Ave., 28040, Madrid, Spain
| |
Collapse
|
48
|
Zhang X, Wang J, Li Y, Li X, Zheng Y, Arif M, Ru S. Environmental relevant herbicide prometryn induces developmental toxicity in the early life stages of marine medaka (Oryzias melastigma) and its potential mechanism. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 243:106079. [PMID: 35065453 DOI: 10.1016/j.aquatox.2022.106079] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/21/2021] [Accepted: 01/12/2022] [Indexed: 06/14/2023]
Abstract
Triazine herbicides have been widely detected in marine environments because of their extensive usage in agriculture, but their impact on marine organisms is unclear. In this study, marine medaka (Oryzias melastigma) embryos were exposed to 0, 1, 10, 100, and 1000 μg/L prometryn, one of the most detected triazine herbicides, to investigate its potential effects. The results showed that 1, 10, 100, and 1000 µg/L prometryn not only induced yolk sac shrinkage and heart malformations, but also significantly delayed the hatching time and increased the heart rate and hatching failure rate of embryos. Moreover, 1, 10, 100, and 1000 μg/L prometryn caused obvious malformations and decreased the body length of the newly hatched larvae. After 21 d of exposure, increased larval death rate, decreased body length and width, and higher lipid accumulation were observed in the larvae from all prometryn groups. Furthermore, prometryn exposure upregulated the expression levels of cardiac development-related genes GATA, COX, ATPase, SmyD1, EPO, FGF8, NKX2, and BMP4 in the larvae. Transcriptome analysis revealed that 10 μg/L prometryn upregulated 604 genes, and the topmost pathways of differentially expressed genes were the complement and coagulation cascades and AMPK signaling pathways. qPCR results confirmed that prometryn exposure significantly increased the expression levels of the complement and coagulation cascade genes f2, f5, c3, and c5. This study demonstrated that environmentally relevant concentrations of prometryn induced significant toxicity in the early life stages of marine medaka. Therefore, the health risks of herbicides to marine organisms are of great concern.
Collapse
Affiliation(s)
- Xiaona Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Jun Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| | - Yuejiao Li
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Xuan Li
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Yuqi Zheng
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Muhammad Arif
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Shaoguo Ru
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
49
|
Xie P, Yan Q, Xiong J, Li H, Ma X, You J. Point or non-point source: Toxicity evaluation using m-POCIS and zebrafish embryos in municipal sewage treatment plants and urban waterways. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 292:118307. [PMID: 34626713 DOI: 10.1016/j.envpol.2021.118307] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 10/02/2021] [Accepted: 10/05/2021] [Indexed: 06/13/2023]
Abstract
Municipal sewage treatment plants (STPs) have been regarded as an important source of organic contaminants in aquatic environment. To assess the impact of STPs on occurrence and toxicity of STP-associated contaminants in receiving waterways, a novel passive sampler modified from polar organic chemical integrative sampler (m-POCIS) was deployed at the inlet and outlet of a STP and several upstream and downstream sites along a river receiving STP effluent in Guangzhou, China. Eighty-seven contaminants were analyzed in m-POCIS extracts, along with toxicity evaluation using zebrafish embryos. Polycyclic musks were the predominant contaminants in both STP and urban waterways, and antibiotics and current-use pesticides (e.g., neonicotinoids, fiproles) were also ubiquitous. The m-POCIS extracts from downstream sites caused significant deformity in embryos, yet the toxicity could not be explained by the measured contaminants, implying the presence of nontarget stressors. Sewage treatment process substantially reduced embryo deformity, chemical oxygen demand, and contamination levels of some contaminants; however, concentrations of neonicotinoids and fiproles increased after STP treatment, possibly due to the release of chemicals from perturbed sludge. Source identification showed that most of the contaminants found in urban waterways were originated from nonpoint runoff, while cosmetics factories and hospitals were likely point sources for musks and antibiotics, respectively. Although the observed embryo toxicity could not be well explained by target contaminants, the present study showed a promising future of using passive samplers to evaluate chemical occurrence and aquatic toxicity concurrently. Zebrafish embryo toxicity significantly decreased after sewage treatment, but higher toxicity was observed for downstream samples, demonstrating that urban runoff may produce detrimental effects to aquatic life, particularly in rainy season. These results highlight the relevance of monitoring nonpoint source pollution along with boosting municipal sewage treatment infrastructure.
Collapse
Affiliation(s)
- Peihong Xie
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China
| | - Qiankun Yan
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China
| | - Jingjing Xiong
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China; South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Huizhen Li
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China
| | - Xue Ma
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China
| | - Jing You
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China.
| |
Collapse
|
50
|
Rodrigues P, Oliva-Teles L, Guimarães L, Carvalho AP. Occurrence of Pharmaceutical and Pesticide Transformation Products in Freshwater: Update on Environmental Levels, Toxicological Information and Future Challenges. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 260:14. [PMCID: PMC9734374 DOI: 10.1007/s44169-022-00014-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 11/28/2022] [Indexed: 09/06/2024]
Abstract
Pharmaceuticals and pesticides are recognized micropollutants in freshwater systems. Their ever-increasing frequency of detection, levels found and little information available about their effects on non-target organisms, make them emerging contaminants. However, parental compounds are not the only substances of concern. Their metabolites and degradation products, hereby referred to as transformation products, are increasingly detected in freshwater samples and wastewater effluents. In the past years, a wealth of publications provided concentration levels detected in freshwater and some toxicological data, which required critical systematization. This review identified concentrations for 190 transformation products (92 from pesticides and 98 from pharmaceuticals) in water bodies and wastewater effluents. A concentration heatmap was produced to easily spot the substances found at higher levels and plan future research. The very limited available toxicological data link exposure to transformation products to adverse outcomes in humans (genotoxicity and alteration in detoxification processes) and aquatic species (mostly related to apical endpoints). Overall, environmental levels of these transformation products may pose a severe threat to aquatic organisms and need to be further investigated in sound experimental designs, testing for the effects of the single substances as well as of their mixtures. Such toxicological information is highly needed to improve both water treatment technologies and monitoring programmes.
Collapse
Affiliation(s)
- P. Rodrigues
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões Av. General Norton de Matos S/n, 4450-208 Matosinhos, Portugal
- Department of Biology, FCUP – Faculty of Sciences, University of Porto, Rua do Campo Alegre, S/N, 4169-007 Porto, Portugal
- ICBAS/UP-Institute of Biomedical Sciences Abel Salazar, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - L. Oliva-Teles
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões Av. General Norton de Matos S/n, 4450-208 Matosinhos, Portugal
- Department of Biology, FCUP – Faculty of Sciences, University of Porto, Rua do Campo Alegre, S/N, 4169-007 Porto, Portugal
| | - L. Guimarães
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões Av. General Norton de Matos S/n, 4450-208 Matosinhos, Portugal
- Department of Biology, FCUP – Faculty of Sciences, University of Porto, Rua do Campo Alegre, S/N, 4169-007 Porto, Portugal
| | - A. P. Carvalho
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões Av. General Norton de Matos S/n, 4450-208 Matosinhos, Portugal
- Department of Biology, FCUP – Faculty of Sciences, University of Porto, Rua do Campo Alegre, S/N, 4169-007 Porto, Portugal
| |
Collapse
|