1
|
Xiao L, Peng H, Song Z, Liu H, Dong Y, Lin Z, Gao M. Impacts of root exudates on the toxic response of Chrysanthemum coronarium L. to the co-pollution of nanoplastic particles and tetracycline. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 361:124916. [PMID: 39251125 DOI: 10.1016/j.envpol.2024.124916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/20/2024] [Accepted: 09/06/2024] [Indexed: 09/11/2024]
Abstract
Nano polystyrene (PS) particles and antibiotics universally co-exist, posing a threat to crop plants and hence human health, nevertheless, there is limited research on their combined toxic effects along with major influential factors, especially root exudates, on crop plants. This study aimed to investigate the response of Chrysanthemum coronarium L. to the co-pollution of nanoplastics and tetracycline (TC), as well as the effect of root exudates on this response. Based on a hydroponic experiment, the biochemical and physiological indices of Chrysanthemum coronarium L. were measured after 7 days of exposure. Results revealed that the co-pollution of TC and PS caused significant oxidative damage to the plants, resulting in reduced biomass. Amongst the two contaminants, TC played a more prominent role. PS could enter the root tissue, and the uptake of TC and PS by plant roots was synergetic. Malic acid, oxalic acid, and formic acid could explain 65.1% of the variation in biochemical parameters and biomass of the roots. These compounds affected the photosynthesis and biomass of Chrysanthemum coronarium L. by gradually lowering root reactive oxygen species (ROS) and leaf ROS. In contrast, the impact of rhizobacteria on the toxic response of the plants was relatively minor. These findings suggested that root exudates could alleviate the toxic response of plants to the co-pollution of TC and PS. This study enhances our understanding of the role of root exudates, providing insights for agricultural management and ensuring food safety.
Collapse
Affiliation(s)
- Ling Xiao
- Department of Materials and Environmental Engineering, Shantou University, Shantou, 515063, China
| | - Hongchang Peng
- Department of Materials and Environmental Engineering, Shantou University, Shantou, 515063, China
| | - Zhengguo Song
- Department of Materials and Environmental Engineering, Shantou University, Shantou, 515063, China
| | - Hanxuan Liu
- Department of Materials and Environmental Engineering, Shantou University, Shantou, 515063, China
| | - Youming Dong
- Department of Materials and Environmental Engineering, Shantou University, Shantou, 515063, China
| | - Zitian Lin
- Department of Materials and Environmental Engineering, Shantou University, Shantou, 515063, China
| | - Minling Gao
- Department of Materials and Environmental Engineering, Shantou University, Shantou, 515063, China.
| |
Collapse
|
2
|
Chen X, Song Y, Ling C, Shen Y, Zhan X, Xing B. Fate of emerging antibiotics in soil-plant systems: A case on fluoroquinolones. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175487. [PMID: 39153616 DOI: 10.1016/j.scitotenv.2024.175487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/17/2024] [Accepted: 08/11/2024] [Indexed: 08/19/2024]
Abstract
Fluoroquinolones (FQs), a class of broad-spectrum antibiotics widely used to treat human and animal diseases globally, have limited adsorption and are often excreted unchanged or as metabolites. These compounds enter the soil environment through feces, urban wastewater, or discharge of biological solids. The fluorine atoms in FQs impart high electronegativity, chemical stability, and resistance to microbial degradation, allowing them to potentially enter food chains. The persistence of FQs in soils raises questions about their impacts on plant growth, an aspect not yet conclusively determined. We reviewed whether, like other organic compounds, FQs are actively absorbed by plants, resulting in bioaccumulation and posing threats to human health. The influx of FQs has led to antibiotic resistance in soil microbes by exerting selective pressure and contributing to multidrug-resistant bacteria. Therefore, the environmental risks of FQs warrant further attention. This work provides a comprehensive review of the fate and behavior of FQs at the plant-environment interface, their migration and transport from the environment into plants, and associated toxicity. Current limitations in research are discussed and prospects for future investigations outlined. Thus, understanding antibiotic behavior in plants and translocation within tissues is not only crucial for ecosystem health (plant health), but also assessing potential human health risks. In addition, it can offer insights into the fate of emerging soil pollutants in plant-soil systems.
Collapse
Affiliation(s)
- Xiaohan Chen
- Co-Innovation Center for the Sustainable Forestry in Southern China, College of Ecology and Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Yixuan Song
- Co-Innovation Center for the Sustainable Forestry in Southern China, College of Ecology and Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Chen Ling
- Co-Innovation Center for the Sustainable Forestry in Southern China, College of Ecology and Environment, Nanjing Forestry University, Nanjing 210037, China.
| | - Yu Shen
- Co-Innovation Center for the Sustainable Forestry in Southern China, College of Ecology and Environment, Nanjing Forestry University, Nanjing 210037, China.
| | - Xinhua Zhan
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, United States.
| |
Collapse
|
3
|
Lin X, Zhang J, Luo Z, Li J, Xiao X, Wang X, Cai Q, Yu W, Tao J, Zeng J, Tu H, Qiu J. Optimization of degradation conditions for sulfachlorpyridazine by Bacillus sp. DLY-11 and analysis of biodegradation mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135755. [PMID: 39244986 DOI: 10.1016/j.jhazmat.2024.135755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/26/2024] [Accepted: 09/04/2024] [Indexed: 09/10/2024]
Abstract
Sulfachloropyridazine (SCP) is a common sulfonamide antibiotic pollutant found in animal excreta. Finding highly efficient degrading bacterial strains is an important measure to reduce SCP antibiotic pollution. Although some strains with degradation capabilities have been screened, the degradation pathways and biotransformation mechanisms of SCP during bacterial growth are still unclear. In this study, a strain capable of efficiently degrading SCP, named Bacillus sp. DLY-11, was isolated from pig manure aerobic compost. Under optimized conditions (5 % Vaccination dose, 51.5 ℃ reaction temperature, pH=7.92 and 0.5 g/L MgSO4), this strain was able to degrade 97.7 % of 20 mg/L SCP within 48 h. Through the analysis of nine possible degradation products (including a new product of 1,4-benzoquinone with increased toxicity), three potential biodegradation pathways were proposed. The biodegradation reactions include S-N bond cleavage, dechlorination, hydroxylation, deamination, methylation, sulfur dioxide release, and oxidation reactions. This discovery not only provides a new efficient SCP-degrading bacterial strain but also expands our understanding of the mechanisms of bacterial degradation of SCP, filling a knowledge gap. It offers important reference for the bioremediation of antibiotic pollutants in livestock and poultry farming.
Collapse
Affiliation(s)
- Xiaojun Lin
- South China Institute of Environmental Sciences, MEE, Guangzhou 510655, Guangdong, China; State Environmental Protection Key Laboratory of Water Environmental Simulation and Pollution Control, Guangzhou 510655, Guangdong, China
| | - Jun Zhang
- Zhejiang Lishui Ecological and Environmental Monitoring Center, Lishui 323000, Zhejiang, China
| | - Zifeng Luo
- South China Institute of Environmental Sciences, MEE, Guangzhou 510655, Guangdong, China; State Environmental Protection Key Laboratory of Water Environmental Simulation and Pollution Control, Guangzhou 510655, Guangdong, China.
| | - Jingtong Li
- College of Agriculture, Yangtze University, Jingzhou 434025, Hubei, China
| | - Xue Xiao
- South China Institute of Environmental Sciences, MEE, Guangzhou 510655, Guangdong, China
| | - Xiujuan Wang
- South China Institute of Environmental Sciences, MEE, Guangzhou 510655, Guangdong, China; State Environmental Protection Key Laboratory of Water Environmental Simulation and Pollution Control, Guangzhou 510655, Guangdong, China
| | - Qianyi Cai
- South China Institute of Environmental Sciences, MEE, Guangzhou 510655, Guangdong, China; State Environmental Protection Key Laboratory of Water Environmental Simulation and Pollution Control, Guangzhou 510655, Guangdong, China
| | - Weida Yu
- South China Institute of Environmental Sciences, MEE, Guangzhou 510655, Guangdong, China; State Environmental Protection Key Laboratory of Water Environmental Simulation and Pollution Control, Guangzhou 510655, Guangdong, China
| | - Junshi Tao
- South China Institute of Environmental Sciences, MEE, Guangzhou 510655, Guangdong, China; State Environmental Protection Key Laboratory of Water Environmental Simulation and Pollution Control, Guangzhou 510655, Guangdong, China
| | - Jingwen Zeng
- South China Institute of Environmental Sciences, MEE, Guangzhou 510655, Guangdong, China; State Environmental Protection Key Laboratory of Water Environmental Simulation and Pollution Control, Guangzhou 510655, Guangdong, China
| | - Hongxing Tu
- South China Institute of Environmental Sciences, MEE, Guangzhou 510655, Guangdong, China; State Environmental Protection Key Laboratory of Water Environmental Simulation and Pollution Control, Guangzhou 510655, Guangdong, China
| | - Jinrong Qiu
- South China Institute of Environmental Sciences, MEE, Guangzhou 510655, Guangdong, China; State Environmental Protection Key Laboratory of Water Environmental Simulation and Pollution Control, Guangzhou 510655, Guangdong, China.
| |
Collapse
|
4
|
Eichberg C, Leiß A, Stothut M, Bernheine J, Jurczyk K, Paulus L, Thiele-Bruhn S, Thomas FM, Donath TW. Tetracycline but not sulfamethazine inhibits early root growth of wild grassland species, while seed germination is hardly affected by either antibiotic. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125178. [PMID: 39447628 DOI: 10.1016/j.envpol.2024.125178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 09/20/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024]
Abstract
Seed germination and early growth of grassland species might be influenced by veterinary antibiotics that are extensively released into agricultural habitats. Therefore, we tested impacts of the commonly used antibiotics tetracycline and sulfamethazine, single and in mixture, on seed germination and seedling root growth of six typical species of temperate European grasslands (Carum carvi, Centaurea jacea, Galium mollugo, Plantago lanceolata, Silene latifolia, Dactylis glomerata). In standardised germination experiments, we assessed three germination variables (germination percentage, mean germination time, synchrony of germination) and one post-germination variable (seedling root length) under different environmentally realistic antibiotic concentrations (0.1, 1, 10 mg l-1 and a water control). While the germination variables were only irregularly and weakly affected by both antibiotics, seedling root length was strongly reduced by tetracycline, but not by sulfamethazine. Among the test species, D. glomerata was most sensitive to tetracycline with the average root length reduced up to 81 % in the 10 mg l-1 treatment. Its germination behaviour, however, was almost insensitive to the two antibiotics. Mixture effects were only shown in relation to the germination of single species, where the binary mixture produced effects but not the two single antibiotics or, conversely, effects of single antibiotics were lost in the mixture. These findings highlight the potential threat of plant regeneration from seed by veterinary antibiotics, particularly affecting early root growth and potentially influencing plant population growth in natural habitats.
Collapse
Affiliation(s)
- Carsten Eichberg
- Geobotany, Spatial and Environmental Sciences, Trier University, Behringstraße 21, 54296, Trier, Germany.
| | - Angela Leiß
- Geobotany, Spatial and Environmental Sciences, Trier University, Behringstraße 21, 54296, Trier, Germany
| | - Manuel Stothut
- Geobotany, Spatial and Environmental Sciences, Trier University, Behringstraße 21, 54296, Trier, Germany
| | - Jan Bernheine
- Geobotany, Spatial and Environmental Sciences, Trier University, Behringstraße 21, 54296, Trier, Germany
| | - Kim Jurczyk
- Geobotany, Spatial and Environmental Sciences, Trier University, Behringstraße 21, 54296, Trier, Germany
| | - Lena Paulus
- Geobotany, Spatial and Environmental Sciences, Trier University, Behringstraße 21, 54296, Trier, Germany
| | - Sören Thiele-Bruhn
- Soil Science, Spatial and Environmental Sciences, Trier University, Behringstraße 21, 54296, Trier, Germany
| | - Frank M Thomas
- Geobotany, Spatial and Environmental Sciences, Trier University, Behringstraße 21, 54296, Trier, Germany
| | - Tobias W Donath
- Department of Landscape Ecology, Institute for Natural Resource Conservation, Kiel University, Olshausenstraße 75, 24118, Kiel, Germany
| |
Collapse
|
5
|
Li M, Liu G, Cai Y, Guo T, Xu Y, Zhao X, Ji H, Ouyang D, Zhang H. Decreased Sulfamethoxazole Uptake in Lettuce (Lactuca sativa L.) due to Transpiration Inhibition by Polypropylene Microplastics. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 286:117201. [PMID: 39426106 DOI: 10.1016/j.ecoenv.2024.117201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/11/2024] [Accepted: 10/14/2024] [Indexed: 10/21/2024]
Abstract
Microplastics and antibiotics are emerging contaminants in agricultural soil that can have negative effects on crops. However, limited research has been conducted on the effects of the polypropylene (PP) microplastic and sulfamethoxazole (SMX) co-exposure on crops, specifically regarding the impact of PP microplastics on SMX uptake and transport in crops. In this study, hydroponic experiments were carried out using lettuce (Lactuca sativa L.), PP microplastics (1.0 g L-1), and SMX (0.5 mg L-1 or 2.5 mg L-1) to investigate the individual and co-exposure effects of PP microplastics and SMX on Lettuce growth, explore the uptake and translocation of SMX in lettuce and elucidate the underlying mechanism of PP microplastic impact on SMX uptake. Results demonstrated that co-exposure to 1.0 g L-1 of PP microplastics and 0.5 mg L-1 of SMX resulted in an enhanced toxic effect. However, no intensified toxic effect on the lettuce was observed when 1.0 g L-1 PP microplastics were added in the presence of 2.5 mg L-1 SMX, indicating that the SMX dominated the toxic effect on lettuce at high concentrations. Additionally, the study found that the water absorption process controlled by the aquaporin and transpiration contributed to the uptake and translocation of SMX in lettuce. When exposed to PP microplastics, no impact was observed on the aquaporin contents of the lettuce while the transpiration rate was significantly decreased by 31.6 % - 44.2 % resulting from microplastics adhered to the root surface. Therefore, in the presence of 2.5 mg L-1 SMX, the SMX uptake in the lettuce root was inhibited by 35.9 % (P < 0.05) when exposed to 1.0 g L-1 PP microplastic. This work deepens our understanding of the behaviour of microplastics and antibiotics in the terrestrial environment.
Collapse
Affiliation(s)
- Mei Li
- Sino-Spain Joint Laboratory for Agricultural Environment Emerging Contaminants of Zhejiang Province, School of Environment and Resources, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Guanlin Liu
- Sino-Spain Joint Laboratory for Agricultural Environment Emerging Contaminants of Zhejiang Province, School of Environment and Resources, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Yimin Cai
- Sino-Spain Joint Laboratory for Agricultural Environment Emerging Contaminants of Zhejiang Province, School of Environment and Resources, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Ting Guo
- Sino-Spain Joint Laboratory for Agricultural Environment Emerging Contaminants of Zhejiang Province, School of Environment and Resources, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Yangyang Xu
- Sino-Spain Joint Laboratory for Agricultural Environment Emerging Contaminants of Zhejiang Province, School of Environment and Resources, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Xinlin Zhao
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China; Hunan Provincial Key Laboratory of the TCM Agricultural Biogenomics, Changsha 410205, China
| | - Haibao Ji
- State Key Laboratory of Subtropical Silviculture, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Da Ouyang
- Sino-Spain Joint Laboratory for Agricultural Environment Emerging Contaminants of Zhejiang Province, School of Environment and Resources, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China.
| | - Haibo Zhang
- Sino-Spain Joint Laboratory for Agricultural Environment Emerging Contaminants of Zhejiang Province, School of Environment and Resources, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China.
| |
Collapse
|
6
|
Maranho LT, Gomes MP. Morphophysiological Adaptations of Aquatic Macrophytes in Wetland-Based Sewage Treatment Systems: Strategies for Resilience and Efficiency under Environmental Stress. PLANTS (BASEL, SWITZERLAND) 2024; 13:2870. [PMID: 39458817 PMCID: PMC11511398 DOI: 10.3390/plants13202870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/01/2024] [Accepted: 10/04/2024] [Indexed: 10/28/2024]
Abstract
There is a common misconception that aquatic macrophytes face significant challenges in wetland-based sewage treatment systems. This study aims to correct this perception by focusing on the crucial morphophysiological adaptations of aquatic macrophytes that enable them to thrive in wetland-based sewage treatment systems, particularly under environmental stress. These adaptations are vital for improving the efficiency and resilience of wastewater treatment processes, offering sustainable solutions in the face of variable environmental conditions and complex contaminant mixtures. The review emphasizes the role of macrophytes as natural engineers, capable of enhancing pollutant removal and system stability through their unique structural and functional traits. By understanding these adaptations, the review aims to guide the optimization of wetland design and management, ultimately contributing to more sustainable and effective wastewater treatment practices. The findings underscore the importance of species selection and the integration of nature-based solutions in environmental management, advocating for policies that support the use of macrophytes in modern wastewater management.
Collapse
Affiliation(s)
- Leila Teresinha Maranho
- Plant Stress Physiology Laboratory, Department of Botany, Biological Sciences Sector, Polytechnic Center Jardim das Américas, Federal University of Paraná, Avenida Coronel Francisco H. dos Santos, 100, Curitiba 81531-980, Brazil
- Graduate Program in Ecology and Conservation, Federal University of Paraná, Curitiba 81531-980, Brazil
| | - Marcelo Pedrosa Gomes
- Plant Stress Physiology Laboratory, Department of Botany, Biological Sciences Sector, Polytechnic Center Jardim das Américas, Federal University of Paraná, Avenida Coronel Francisco H. dos Santos, 100, Curitiba 81531-980, Brazil
- Graduate Program in Ecology and Conservation, Federal University of Paraná, Curitiba 81531-980, Brazil
| |
Collapse
|
7
|
Zhang Y, Xu F, Yao J, Liu SS, Lei B, Tang L, Sun H, Wu M. Spontaneous interactions between typical antibiotics and soil enzyme: Insights from multi-spectroscopic approaches, XPS technology, molecular modeling, and joint toxic actions. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135990. [PMID: 39357361 DOI: 10.1016/j.jhazmat.2024.135990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/15/2024] [Accepted: 09/26/2024] [Indexed: 10/04/2024]
Abstract
A large amount of antibiotics enters the soil environment and accumulates therein as individuals and mixtures, threatening the soil safety. However, there is little information regarding the influence of single and mixed antibiotics on key soil proteins at molecular level. In this study, setting sulfadiazine (SD) and tetracycline hydrochloride (TC) as the representative antibiotics, the interactions between these agents and α-amylase (an important hydrolase in soil carbon cycle) were investigated through multi-spectroscopic approaches, X-ray photoelectron spectrometry, and molecular modeling. It was found that both SD and TC spontaneously bound to α-amylase with 1:1 stoichiometry mainly via forming stable chemical bonds. The interactions altered the polarity of aromatic amino acids, protein backbone, secondary structure, hydrophobicity and activity of α-amylase. The SD-TC mixtures were designed based on the direct equipartition ray to comprehensively characterize the possible concentration distribution, and interactive effects indicated that the mixtures antagonistically impacted α-amylase. These findings reveal the binding characteristics between α-amylase and typical antibiotics, which probably influence the ecological functions of α-amylase in soil. This study clarifies the potential harm of antibiotics on soil functional enzyme, which is significant for the environmental risk assessment of antibiotics and their mixtures.
Collapse
Affiliation(s)
- Yulian Zhang
- Key Laboratory of Organic Compound Pollution Control Engineering (MOE), School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Fangyu Xu
- Key Laboratory of Organic Compound Pollution Control Engineering (MOE), School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Jingyi Yao
- Key Laboratory of Organic Compound Pollution Control Engineering (MOE), School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Shu-Shen Liu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Bo Lei
- Key Laboratory of Organic Compound Pollution Control Engineering (MOE), School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Liang Tang
- Key Laboratory of Organic Compound Pollution Control Engineering (MOE), School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
| | - Haoyu Sun
- Key Laboratory of Organic Compound Pollution Control Engineering (MOE), School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
| | - Minghong Wu
- Key Laboratory of Organic Compound Pollution Control Engineering (MOE), School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China; College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350108, Fujian, China
| |
Collapse
|
8
|
Jin H, Hou J, Ruan Y, Xu J, Yang K, Lin D. Distribution pattern analysis of multiple antibiotics in the soil-rice system using a QuEChERS extraction method. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 944:173929. [PMID: 38871311 DOI: 10.1016/j.scitotenv.2024.173929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/22/2024] [Accepted: 06/09/2024] [Indexed: 06/15/2024]
Abstract
Antibiotics are commonly released into paddy fields as mixtures via human activities. However, the simultaneous extraction and detection of these chemicals from multiple media are technically challenging due to their different physicochemical properties, resulting in unclear patterns of their transport in the soil-rice system. In this study, a "quick, easy, cheap, effective, rugged, and safe" (QuEChERS) method was developed for the simultaneous analysis of 4 tetracyclines (TCs) and 4 fluoroquinolones (FQs) in the soil and rice tissues from a local poultry farm, and thereby the distribution patterns of the target antibiotics in the soil-rice system and their risk levels to the soil were analyzed. After parameter optimization, the calibration range used for the target antibiotics was 0.1-50 μg/L and each calibration curve was linear with a coefficient of determination (R2 > 0.995); The QuEChERS method achieved satisfactory recovery rates (70.3-124.6%) along with sensitive detection limits (0.005-0.21 ng/g) for TCs and FQs in the soil, root, stem, leaf, and grain. Among the 8 antibiotics, enrofloxacin (ENX), ciprofloxacin (CIP), oxytetracycline (OTC), and doxycycline (DOX) were detected around a poultry farm. The four antibiotics in the collected paddy soils around the poultry farm ranged from 7.1 ng/g to 395.5 ng/g. Notably, ENX and DOX had higher ecological risks (risk quotient values >1) than CIP and OTC in soil. ENX, CIP, and DOX were highly enriched in rice roots with concentrations up to 471.9, 857.3, and 547.4 ng/g, respectively, which were also detected in rice aboveground tissues. The findings may provide both technical and practical guidance for the understanding of antibiotic environmental behavior and risks.
Collapse
Affiliation(s)
- Hui Jin
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Jie Hou
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Yuyu Ruan
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Jiang Xu
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Kun Yang
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Daohui Lin
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Ecological Civilization Academy, Anji 313300, China.
| |
Collapse
|
9
|
Marques RZ, Oliveira PGD, Barbato ML, Kitamura RSA, Maranho LT, Brito JCM, Nogueira KDS, Juneau P, Gomes MP. Green solutions for antibiotic pollution: Assessing the phytoremediation potential of aquatic macrophytes in wastewater treatment plants. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 357:124376. [PMID: 38897277 DOI: 10.1016/j.envpol.2024.124376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/03/2024] [Accepted: 06/13/2024] [Indexed: 06/21/2024]
Abstract
We compared the ability of one emergent (Sagittaria montevidensis), two floating (Salvinia minima and Lemna gibba), and one heterophyllous species (Myriophyllum aquaticum) to simultaneously remove sulfamethoxazole, sulfadiazine, ciprofloxacin, enrofloxacin, norfloxacin, levofloxacin, oxytetracycline, tetracycline, doxycycline, azithromycin, amoxicillin, and meropenem from wastewater in a mesocosm-scale constructed wetland over 28 days. Antibiotic concentrations in plants and effluent were analyzed using an LC-MS/MS to assess the removal rates and phytoremediation capacities. M. aquaticum did not effectively mitigate contamination due to poor tolerance and survival in effluent conditions. S. minima and L. gibba demonstrated superior efficiency, reducing the antibiotic concentrations to undetectable levels within 14 days, while S. montevidensis achieved this result by day 28. Floating macrophytes emerge as the preferable choice for remediation of antibiotics compared to emergent and heterophyllous species. Antibiotics were detected in plant tissues at concentrations ranging from 0.32 to 29.32 ng g-1 fresh weight, highlighting macrophytes' ability to uptake and accumulate these contaminants. Conversely, non-planted systems exhibited a maximum removal rate of 65%, underscoring the persistence of these molecules in natural environments, even after the entire experimental period. Additionally, macrophytes improved effluent quality regardless of species by reducing total soluble solids and phosphate concentrations and mitigating ecotoxicological effects. This study underscores the potential of using macrophytes in wastewater treatment plants to enhance overall efficiency and prevent environmental contamination by antibiotics, thereby mitigating the harmful impact on biota and antibiotic resistance. Selecting appropriate plant species is crucial for successful phytoremediation in constructed wetlands, and actual implementation is essential to validate their effectiveness and practical applicability.
Collapse
Affiliation(s)
- Raizza Zorman Marques
- Programa de Pós-Graduação em Ciência dos Solo, Universidade Federal do Paraná, Rua dos Funcionários, 140, Juvevê, 80035-050, Curitiba, Paraná, Brazil; Laboratório de Fisiologia de Plantas sob Estresse, Departamento de Botânica, Setor de Ciências Biológicas, Universidade Federal do Paraná, Avenida Coronel Francisco H. dos Santos, 100, Centro Politécnico Jardim das Américas, C.P. 19031, 81531-980, Curitiba, Paraná, Brazil
| | | | - Marcello Locatelli Barbato
- Programa de Pós-Graduação em Ciência dos Solo, Universidade Federal do Paraná, Rua dos Funcionários, 140, Juvevê, 80035-050, Curitiba, Paraná, Brazil; Laboratório de Fisiologia de Plantas sob Estresse, Departamento de Botânica, Setor de Ciências Biológicas, Universidade Federal do Paraná, Avenida Coronel Francisco H. dos Santos, 100, Centro Politécnico Jardim das Américas, C.P. 19031, 81531-980, Curitiba, Paraná, Brazil
| | - Rafael Shinji Akiyama Kitamura
- Laboratório de Fisiologia de Plantas sob Estresse, Departamento de Botânica, Setor de Ciências Biológicas, Universidade Federal do Paraná, Avenida Coronel Francisco H. dos Santos, 100, Centro Politécnico Jardim das Américas, C.P. 19031, 81531-980, Curitiba, Paraná, Brazil; Programa de Pós-Graduação em Genética, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | - Leila Teresinha Maranho
- Laboratório de Fisiologia de Plantas sob Estresse, Departamento de Botânica, Setor de Ciências Biológicas, Universidade Federal do Paraná, Avenida Coronel Francisco H. dos Santos, 100, Centro Politécnico Jardim das Américas, C.P. 19031, 81531-980, Curitiba, Paraná, Brazil; Programa de Pós-Graduação em Ecologia e Conservação, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | - Julio Cesar Moreira Brito
- Fundação Ezequiel Dias, Rua Conde Pereira Carneiro, 80, 30510-010, Belo Horizonte, Minas Gerais, Brazil
| | - Keite da Silva Nogueira
- Programa de Pós-Graduação em Microbiologia Parasitologia e Patologia, Laboratório de Microbiologia Médica, Departamento de Patologia Básica, Setor de Ciências Biológicas, Universidade Federal do Paraná, Avenida Coronel Francisco H. dos Santos, 100, Centro Politécnico Jardim das Américas, C.P. 19031, 81531-980, Curitiba, Paraná, Brazil
| | - Philippe Juneau
- Programa de Pós-Graduação em Ecologia e Conservação, Universidade Federal do Paraná, Curitiba, Paraná, Brazil; Ecotoxicology of Aquatic Microorganisms Laboratory, GRIL, EcotoQ, TOXEN, Department of Biological Sciences, Université du Québec à Montréal, Succ. Centre-ville, C.P.8888, H3C 3P8, Québec, Canada
| | - Marcelo Pedrosa Gomes
- Programa de Pós-Graduação em Ciência dos Solo, Universidade Federal do Paraná, Rua dos Funcionários, 140, Juvevê, 80035-050, Curitiba, Paraná, Brazil; Laboratório de Fisiologia de Plantas sob Estresse, Departamento de Botânica, Setor de Ciências Biológicas, Universidade Federal do Paraná, Avenida Coronel Francisco H. dos Santos, 100, Centro Politécnico Jardim das Américas, C.P. 19031, 81531-980, Curitiba, Paraná, Brazil; Programa de Pós-Graduação em Ecologia e Conservação, Universidade Federal do Paraná, Curitiba, Paraná, Brazil.
| |
Collapse
|
10
|
Mamani Ramos Y, Huamán Castilla NL, Colque Ayma EJ, Mamani Condori N, Campos Quiróz CN, Vilca FZ. Divergent effects of azithromycin on purple corn (Zea mays L.) cultivation: Impact on biomass and antioxidant compounds. PLoS One 2024; 19:e0307548. [PMID: 39172948 PMCID: PMC11340972 DOI: 10.1371/journal.pone.0307548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 07/08/2024] [Indexed: 08/24/2024] Open
Abstract
The present study assessed the impact of using irrigation water contaminated with Azithromycin (AZM) residues on the biomass and antioxidant compounds of purple corn; for this purpose, the plants were cultivated under ambient conditions, and the substrate used consisted of soil free from AZM residues, mixed with compost in a ratio of 1:1 (v/v). The experiment was completely randomized with four replications, with treatments of 0, 1, 10, and 100 μg/L of AZM. The results indicate that the presence of AZM in irrigation water at doses of 1 and 10 μg/L increases the weight of dry aboveground biomass, while at an amount of 100 μg/L, it decreases. Likewise, this study reveals that by increasing the concentration of AZM from 1 to 10 μg/L, total polyphenols and monomeric anthocyanins double, in contrast, with an increase to 100 μg/L, these decrease by 44 and 53%, respectively. It has been demonstrated that purple corn exposed to the antibiotic AZM at low doses has a notable antioxidant function in terms of DPPH and ORAC. The content of flavonols, phenolic acids, and flavanols increases by 57, 28, and 83%, respectively, when the AZM concentration is from 1 to 10 μg/L. However, with an increase to 100 μg/L, these compounds decrease by 17, 40, and 42%, respectively. On the other hand, stem length, root length, and dry weight of root biomass are not significantly affected by the presence of AZM in irrigation water.
Collapse
Affiliation(s)
- Yoselin Mamani Ramos
- Escuela Profesional de Ingeniería Ambiental de la Universidad Nacional de Moquegua, Urb Ciudad Jardín-Pacocha-Ilo, Perú
- Laboratorio de Contaminantes Orgánicos y Ambiente del IINDEP de la Universidad Nacional de Moquegua, Urb Ciudad Jardín-Pacocha-Ilo, Perú
| | - Nils Leander Huamán Castilla
- Escuela Profesional de Ingeniería Agroindustrial, Universidad Nacional de Moquegua, Moquegua, Perú
- Laboratorio de Tecnologías Sustentables para la Extracción de Compuestos de Alto Valor, Instituto de Investigación para el Desarrollo del Perú, Universidad Nacional de Moquegua, Moquegua, Perú
| | - Elvis Jack Colque Ayma
- Laboratorio de Contaminantes Orgánicos y Ambiente del IINDEP de la Universidad Nacional de Moquegua, Urb Ciudad Jardín-Pacocha-Ilo, Perú
| | - Noemi Mamani Condori
- Escuela Profesional de Ingeniería Ambiental de la Universidad Nacional de Moquegua, Urb Ciudad Jardín-Pacocha-Ilo, Perú
- Laboratorio de Contaminantes Orgánicos y Ambiente del IINDEP de la Universidad Nacional de Moquegua, Urb Ciudad Jardín-Pacocha-Ilo, Perú
| | - Clara Nely Campos Quiróz
- Laboratorio de Contaminantes Orgánicos y Ambiente del IINDEP de la Universidad Nacional de Moquegua, Urb Ciudad Jardín-Pacocha-Ilo, Perú
| | - Franz Zirena Vilca
- Escuela Profesional de Ingeniería Ambiental de la Universidad Nacional de Moquegua, Urb Ciudad Jardín-Pacocha-Ilo, Perú
- Laboratorio de Contaminantes Orgánicos y Ambiente del IINDEP de la Universidad Nacional de Moquegua, Urb Ciudad Jardín-Pacocha-Ilo, Perú
| |
Collapse
|
11
|
Chen Z, Han M, Guo Z, Feng Y, Guo Y, Yan X. An integration of physiology, transcriptomics, and proteomics reveals carbon and nitrogen metabolism responses in alfalfa (Medicago sativa L.) exposed to titanium dioxide nanoparticles. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134851. [PMID: 38852253 DOI: 10.1016/j.jhazmat.2024.134851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 06/11/2024]
Abstract
Nanoparticle (NP) pollution has negative impacts and is a major global environmental problem. However, the molecular response of alfalfa (Medicago sativa L.) to titanium dioxide nanoparticles (TiO2 NPs) is limited. Herein, the dual effects of TiO2 NPs (0-1000 mg L-1) on carbon (C) and nitrogen (N) metabolisms in alfalfa were investigated. The results showed that 500 mg L-1 TiO2 NPs (Ti-500) had the highest phytotoxicity in the C/N metabolizing enzymes; and it significantly increased total soluble sugar, starch, sucrose, and sucrose-phosphate synthase. Furthermore, obvious photosynthesis responses were found in alfalfa exposed to Ti-500. By contrast, 100 mg L-1 TiO2 NPs (Ti-100) enhanced N metabolizing enzymes. RNA-seq analyses showed 4265 and 2121 differentially expressed genes (DEGs) in Ti-100 and Ti-500, respectively. A total of 904 and 844 differentially expressed proteins (DEPs) were identified in Ti-100 and Ti-500, respectively. Through the physiological, transcriptional, and proteomic analyses, the DEGs and DEPs related to C/N metabolism, photosynthesis, chlorophyll synthesis, starch and sucrose metabolism, and C fixation in photosynthetic organisms were observed. Overall, TiO2 NPs at low doses improve photosynthesis and C/N regulation, but high doses can cause toxicity. It is valuable for the safe application of NPs in agriculture.
Collapse
Affiliation(s)
- Zhao Chen
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Mengli Han
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Zhipeng Guo
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Yuxi Feng
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Yuxia Guo
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China.
| | - Xuebing Yan
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
12
|
Ran JM, Yang L, Liu CT, Liu QH, Liu YL, Li SJ, Fu Y, Ye F. A novel fluorescence platform for specific detection of tetracycline antibiotics based on [MQDA-Eu 3+] system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:172866. [PMID: 38705291 DOI: 10.1016/j.scitotenv.2024.172866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/09/2024] [Accepted: 04/27/2024] [Indexed: 05/07/2024]
Abstract
Tetracycline antibiotics (TCs) are extensively used in clinical medicine, animal husbandry, and aquaculture because of their cost-effectiveness and high antibacterial efficacy. However, the presence of TCs residues in the environment poses risks to humans. In this study, an inner filter effect (IFE) fluorescent probe, 2,2'-(ethane-1,2-diylbis((2-((2-methylquinolin-8-yl)amino)-2-oxoethyl)azanediyl))diacetic acid (MQDA), was developed for the rapid detection of Eu3+ within 30 s. And its complex [MQDA-Eu3+] was successfully used for the detection of TCs. Upon coordination of a carboxyl of MQDA with Eu3+ to form a [MQDA-Eu3+] complex, the carboxyl served as an antenna ligand for the effective detection of Eu3+ to intensify the emission intensity of MQDA via "antenna effect", the process was the energy absorbed by TCs via UV excitation was effectively transferred to Eu3+. Fluorescence quenching of the [MQDA-Eu3+] complex was caused by the IFE in multicolor fluorescence systems. The limits of detection of [MQDA-Eu3+] for oxytetracycline, chlorotetracycline hydrochloride, and tetracycline were 0.80, 0.93, and 1.7 μM in DMSO/HEPES (7:3, v/v, pH = 7.0), respectively. [MQDA-Eu3+] demonstrated sensitive detection of TCs in environmental and food samples with satisfactory recoveries and exhibited excellent imaging capabilities for TCs in living cells and zebrafish with low cytotoxicity. The proposed approach demonstrated considerable potential for the quantitative detection of TCs.
Collapse
Affiliation(s)
- Jia-Mei Ran
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Liu Yang
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, People's Republic of China; Key Laboratory of Agricultural Functional Molecule Design and Utilization of Heilongjiang Province, Harbin 150030, People's Republic of China
| | - Chun-Tong Liu
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Qiu-Huan Liu
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Yu-Long Liu
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, People's Republic of China; Key Laboratory of Agricultural Functional Molecule Design and Utilization of Heilongjiang Province, Harbin 150030, People's Republic of China
| | - Shi-Jie Li
- Department of Biotechnology, College of Life Science, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Ying Fu
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, People's Republic of China; Key Laboratory of Agricultural Functional Molecule Design and Utilization of Heilongjiang Province, Harbin 150030, People's Republic of China.
| | - Fei Ye
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, People's Republic of China; Key Laboratory of Agricultural Functional Molecule Design and Utilization of Heilongjiang Province, Harbin 150030, People's Republic of China.
| |
Collapse
|
13
|
Cyganowski P, Terefinko D, Motyka-Pomagruk A, Babinska-Wensierska W, Khan MA, Klis T, Sledz W, Lojkowska E, Jamroz P, Pohl P, Caban M, Magureanu M, Dzimitrowicz A. The Potential of Cold Atmospheric Pressure Plasmas for the Direct Degradation of Organic Pollutants Derived from the Food Production Industry. Molecules 2024; 29:2910. [PMID: 38930977 PMCID: PMC11206621 DOI: 10.3390/molecules29122910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/05/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
Specialized chemicals are used for intensifying food production, including boosting meat and crop yields. Among the applied formulations, antibiotics and pesticides pose a severe threat to the natural balance of the ecosystem, as they either contribute to the development of multidrug resistance among pathogens or exhibit ecotoxic and mutagenic actions of a persistent character. Recently, cold atmospheric pressure plasmas (CAPPs) have emerged as promising technologies for degradation of these organic pollutants. CAPP-based technologies show eco-friendliness and potency for the removal of organic pollutants of diverse chemical formulas and different modes of action. For this reason, various types of CAPP-based systems are presented in this review and assessed in terms of their constructions, types of discharges, operating parameters, and efficiencies in the degradation of antibiotics and persistent organic pollutants. Additionally, the key role of reactive oxygen and nitrogen species (RONS) is highlighted. Moreover, optimization of the CAPP operating parameters seems crucial to effectively remove contaminants. Finally, the CAPP-related paths and technologies are further considered in terms of biological and environmental effects associated with the treatments, including changes in antibacterial properties and toxicity of the exposed solutions, as well as the potential of the CAPP-based strategies for limiting the spread of multidrug resistance.
Collapse
Affiliation(s)
- Piotr Cyganowski
- Department of Polymer and Carbonaceous Materials, Wroclaw University of Science and Technology, 27 Wybrzeze St. Wyspianskiego, 50-370 Wroclaw, Poland
| | - Dominik Terefinko
- Department of Analytical Chemistry and Chemical Metallurgy, Wroclaw University of Science and Technology, 27 Wybrzeze St. Wyspianskiego, 50-370 Wroclaw, Poland; (D.T.); (M.A.K.); (T.K.); (P.J.); (P.P.)
| | - Agata Motyka-Pomagruk
- Laboratory of Plant Protection and Biotechnology, Intercollegiate Faculty of Biotechnology University of Gdansk and Medical University of Gdansk, University of Gdansk, 58 Abrahama, 80-307 Gdansk, Poland; (A.M.-P.); (W.S.); (E.L.)
- Research and Development Laboratory, Intercollegiate Faculty of Biotechnology University of Gdansk and Medical University of Gdansk, University of Gdansk, 20 Podwale Przedmiejskie, 80-824 Gdansk, Poland;
| | - Weronika Babinska-Wensierska
- Research and Development Laboratory, Intercollegiate Faculty of Biotechnology University of Gdansk and Medical University of Gdansk, University of Gdansk, 20 Podwale Przedmiejskie, 80-824 Gdansk, Poland;
- Laboratory of Physical Biochemistry, Intercollegiate Faculty of Biotechnology University of Gdansk and Medical University of Gdansk, University of Gdansk, 58 Abrahama, 80-307 Gdansk, Poland
| | - Mujahid Ameen Khan
- Department of Analytical Chemistry and Chemical Metallurgy, Wroclaw University of Science and Technology, 27 Wybrzeze St. Wyspianskiego, 50-370 Wroclaw, Poland; (D.T.); (M.A.K.); (T.K.); (P.J.); (P.P.)
| | - Tymoteusz Klis
- Department of Analytical Chemistry and Chemical Metallurgy, Wroclaw University of Science and Technology, 27 Wybrzeze St. Wyspianskiego, 50-370 Wroclaw, Poland; (D.T.); (M.A.K.); (T.K.); (P.J.); (P.P.)
| | - Wojciech Sledz
- Laboratory of Plant Protection and Biotechnology, Intercollegiate Faculty of Biotechnology University of Gdansk and Medical University of Gdansk, University of Gdansk, 58 Abrahama, 80-307 Gdansk, Poland; (A.M.-P.); (W.S.); (E.L.)
- Research and Development Laboratory, Intercollegiate Faculty of Biotechnology University of Gdansk and Medical University of Gdansk, University of Gdansk, 20 Podwale Przedmiejskie, 80-824 Gdansk, Poland;
| | - Ewa Lojkowska
- Laboratory of Plant Protection and Biotechnology, Intercollegiate Faculty of Biotechnology University of Gdansk and Medical University of Gdansk, University of Gdansk, 58 Abrahama, 80-307 Gdansk, Poland; (A.M.-P.); (W.S.); (E.L.)
- Research and Development Laboratory, Intercollegiate Faculty of Biotechnology University of Gdansk and Medical University of Gdansk, University of Gdansk, 20 Podwale Przedmiejskie, 80-824 Gdansk, Poland;
| | - Piotr Jamroz
- Department of Analytical Chemistry and Chemical Metallurgy, Wroclaw University of Science and Technology, 27 Wybrzeze St. Wyspianskiego, 50-370 Wroclaw, Poland; (D.T.); (M.A.K.); (T.K.); (P.J.); (P.P.)
| | - Pawel Pohl
- Department of Analytical Chemistry and Chemical Metallurgy, Wroclaw University of Science and Technology, 27 Wybrzeze St. Wyspianskiego, 50-370 Wroclaw, Poland; (D.T.); (M.A.K.); (T.K.); (P.J.); (P.P.)
| | - Magda Caban
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdansk, 63 Wita Stwosza, 80-308 Gdansk, Poland;
| | - Monica Magureanu
- National Institute for Lasers, Plasma and Radiation Physics, Department of Plasma Physics and, Nuclear Fusion, 409 Atomistilor Str., 077125 Magurele, Romania;
| | - Anna Dzimitrowicz
- Department of Analytical Chemistry and Chemical Metallurgy, Wroclaw University of Science and Technology, 27 Wybrzeze St. Wyspianskiego, 50-370 Wroclaw, Poland; (D.T.); (M.A.K.); (T.K.); (P.J.); (P.P.)
| |
Collapse
|
14
|
Guzman-Tordecilla M, Pacheco-Bustos C, Coronado-Posada N, Pedrosa-Gomes M, Martinez-Burgos WJ, Mejía-Marchena R, Zorman-Marques R. Exploring the ecotoxicological impact of meropenem on Lemna minor: Growth, photosynthetic activity, and oxidative stress. ENVIRONMENTAL RESEARCH 2024; 258:119409. [PMID: 38871272 DOI: 10.1016/j.envres.2024.119409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/22/2024] [Accepted: 06/10/2024] [Indexed: 06/15/2024]
Abstract
Meropenem is a potent carbapenem antibiotic frequently used in medical settings. Several studies have confirmed the pervasive presence of these antibiotics in wastewater treatment plants and aquatic environments. However, the effects of these substances on non-target organisms, such as plants, have not been adequately monitored. Thus, this study aimed to assess the short-term impact of meropenem on the growth, photosynthesis, chlorophyll content, and enzyme activity of the macrophyte plant Lemna minor. The methods involved exposing the plant to meropenem under controlled conditions and assessing physiological and biochemical parameters to determine the impact on photosynthetic activity and oxidative stress. These analyses included growth rate, antioxidant enzyme activity, and photosynthetic capacity. The findings suggest that the growth rate of Lemna minor remained unaffected by meropenem at concentrations <200000 μgL-1. However, plants exposed to concentrations >20 μgL-1showed physiological alterations, such as decreased net photosynthesis rate (17%) and chlorophyll concentration (57%), compared to the control group. For acute toxicity assays, the calculated EC50 7-day and EC20 7-day were 1135 μgL-1and 33 μgL-1, respectively. In addition, in most treatments tested, meropenem caused an increase in the superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase (APX) activity as a defense mechanism against oxidative stress. Our results suggest that meropenem affects photosynthetic processes and induces oxidative stress in the macrophyte plant Lemna minor. Further studies are needed to assess the physiological and metabolic interactions between antibiotics and primary producers at different long-term trophic levels.
Collapse
Affiliation(s)
- Maria Guzman-Tordecilla
- Instituto de Estudios Hidráulicos y Ambientales (IDEHA), Departamento de Ingeniería Civil y Ambiental, Universidad del Norte, km 5 antigua vía a Puerto Colombia, Barranquilla, C.P. 081007, Colombia.
| | - Carlos Pacheco-Bustos
- Instituto de Estudios Hidráulicos y Ambientales (IDEHA), Departamento de Ingeniería Civil y Ambiental, Universidad del Norte, km 5 antigua vía a Puerto Colombia, Barranquilla, C.P. 081007, Colombia
| | - Nadia Coronado-Posada
- Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, C.P. 130014, Cartagena, Colombia
| | - Marcelo Pedrosa-Gomes
- Laboratório de Fisiologia de Plantas sob Estresse, Departamento de Botânica, Setor de Ciências Biológicas, Universidade Federal do Paraná, Avenida Coronel Francisco H. dos Santos, 100, Centro Politécnico Jardim das Américas, C.P. 19031, 81531-980, Curitiba, Paraná, Brazil
| | - Walter J Martinez-Burgos
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná Centro Politécnico, Curitiba, Paraná, C.P. 81531-990, Brazil
| | - Ricardo Mejía-Marchena
- Instituto de Estudios Hidráulicos y Ambientales (IDEHA), Departamento de Ingeniería Civil y Ambiental, Universidad del Norte, km 5 antigua vía a Puerto Colombia, Barranquilla, C.P. 081007, Colombia
| | - Raizza Zorman-Marques
- Laboratório de Fisiologia de Plantas sob Estresse, Departamento de Botânica, Setor de Ciências Biológicas, Universidade Federal do Paraná, Avenida Coronel Francisco H. dos Santos, 100, Centro Politécnico Jardim das Américas, C.P. 19031, 81531-980, Curitiba, Paraná, Brazil
| |
Collapse
|
15
|
Kacienė G, Dikšaitytė A, Januškaitienė I, Miškelytė D, Sujetovienė G, Dagiliūtė R, Žaltauskaitė J. Veterinary antibiotics differ in phytotoxicity on oilseed rape grown over a wide range of concentrations. CHEMOSPHERE 2024; 356:141977. [PMID: 38608779 DOI: 10.1016/j.chemosphere.2024.141977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 04/14/2024]
Abstract
Residues of veterinary antibiotics are a worldwide problem of increasing concern due to their persistence and diverse negative effects on organisms, including crops, and limited understanding of their phytotoxicity. Therefore, this study aimed to compare the phytotoxic effects of veterinary antibiotics tetracycline (TC) and ciprofloxacin (CIP) applied in a wide range of concentrations on model plant oilseed rape (Brassica napus). Overall phytotoxicity of 1-500 mg kg-1 of TC and CIP was investigated based on morphological, biochemical, and physiological plant response. Photosystem II (PSII) performance was suppressed by TC even under environmentally relevant concentration (1 mg kg-1), with an increasing effect proportionally to TC concentration in soil. In contrast, CIP was found to be more phytotoxic than TC when applied at high concentrations, inducing a powerful oxidative burst, impairment of photosynthetic performance, collapse of antioxidative protection and sugar metabolism, and in turn, complete growth retardation at 250 and 500 mg kg-1 CIP treatments. Results of our study suggest that TC and CIP pollution do not pose a significant risk to oilseed rapes in many little anthropogenically affected agro-environments where TC or CIP concentrations do not exceed 1 mg kg-1; however, intensive application of manure with high CIP concentrations (more than 50 mg kg-1) might be detrimental to plants and, in turn, lead to diminished agricultural production and a potential risk to human health.
Collapse
Affiliation(s)
- Giedrė Kacienė
- Vytautas Magnus university, Department of Environmental Sciences, Universiteto St. 10, LT-46265, Akademija, Kaunas dist, Lithuania
| | - Austra Dikšaitytė
- Vytautas Magnus university, Department of Environmental Sciences, Universiteto St. 10, LT-46265, Akademija, Kaunas dist, Lithuania.
| | - Irena Januškaitienė
- Vytautas Magnus university, Department of Environmental Sciences, Universiteto St. 10, LT-46265, Akademija, Kaunas dist, Lithuania
| | - Diana Miškelytė
- Vytautas Magnus university, Department of Environmental Sciences, Universiteto St. 10, LT-46265, Akademija, Kaunas dist, Lithuania
| | - Gintarė Sujetovienė
- Vytautas Magnus university, Department of Environmental Sciences, Universiteto St. 10, LT-46265, Akademija, Kaunas dist, Lithuania
| | - Renata Dagiliūtė
- Vytautas Magnus university, Department of Environmental Sciences, Universiteto St. 10, LT-46265, Akademija, Kaunas dist, Lithuania
| | - Jūratė Žaltauskaitė
- Vytautas Magnus university, Department of Environmental Sciences, Universiteto St. 10, LT-46265, Akademija, Kaunas dist, Lithuania
| |
Collapse
|
16
|
Fang Z, Zhao X, Zhang Z, Wu J, Cheng J, Lei D, Li N, Ge R, He QY, Sun X. Unveiling a novel mechanism for competitive advantage of ciprofloxacin-resistant bacteria in the environment through bacterial membrane vesicles. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133453. [PMID: 38246062 DOI: 10.1016/j.jhazmat.2024.133453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/17/2023] [Accepted: 01/03/2024] [Indexed: 01/23/2024]
Abstract
Ciprofloxacin (CIP) is a prevalent environmental contaminant that poses a high risk of antibiotic resistance. High concentrations of antibiotics can lead to the development of resistant bacteria with high fitness costs, which often face a competitive disadvantage. However, it is unclear whether low-cost resistant bacteria formed by exposure to sub-MIC CIP in the environment can evolve competitive mechanisms against sensitive Escherichia coli (SEN) other than stronger resistance to CIP. Our study exposed E. coli to sub-MIC CIP levels, resulting in the development of CIP-resistant E. coli (CIPr). In antibiotic-free co-culture assays, CIPr outcompeted SEN. This indicates that CIPr is very likely to continue to develop and spread in antibiotic-free environments such as drinking water and affect human health. Further mechanism investigation revealed that bacterial membrane vesicles (BMVs) in CIPr, functioning as substance delivery couriers, mediated a cleavage effect on SEN. Proteomic analysis identified Entericidin B (EcnB) within CIPr-BMVs as a key factor in this competitive interaction. RT-qPCR analysis showed that the transcription of its negative regulator ompR/envZ was down-regulated. Moreover, EcnB plays a crucial role in the development of CIP resistance, and some resistance-related proteins and pathways have also been discovered. Metabolomics analysis highlighted the ability of CIPr-BMVs to acidify SEN, increasing the lytic efficiency of EcnB through cationization. Overall, our study reveals the importance of BMVs in mediating bacterial resistance and competition, suggesting that regulating BMVs production may be a new strategy for controlling the spread of drug-resistant bacteria.
Collapse
Affiliation(s)
- Zuye Fang
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou, China
| | - Xinlu Zhao
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou, China
| | - Ziyuan Zhang
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou, China
| | - Jiayi Wu
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou, China
| | - Jiliang Cheng
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Dan Lei
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou, China
| | - Nan Li
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou, China
| | - Ruiguang Ge
- Key Laboratory of Gene Engineering of the Ministry of Education and State Key Laboratory of Biocontrol, College of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China.
| | - Qing-Yu He
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou, China.
| | - Xuesong Sun
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou, China.
| |
Collapse
|
17
|
Chen J, Zhang J, Wang C, Wang P, Gao H, Zhang B, Feng B. Nitrate input inhibited the biodegradation of erythromycin through affecting bacterial network modules and keystone species in lake sediments. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 355:120530. [PMID: 38452622 DOI: 10.1016/j.jenvman.2024.120530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 02/01/2024] [Accepted: 02/29/2024] [Indexed: 03/09/2024]
Abstract
Antibiotic contamination and excessive nitrate loads are generally concurrent in aquatic ecosystems. However, little is known about the effects of nitrate input on the biodegradation of antibiotics. In this study, the effects of nitrate input on microbial degradation of erythromycin, a typical macrolide antibiotic widely detected in lake sediments, were investigated. The results showed that the nitrate input significantly inhibited the erythromycin removal and such an inhibitory effect was strengthened with the increased input dosages. Nitrate input significantly increased sediment nitrite concentration, indicating enhanced denitrification under high nitrate pressure. Bacterial network module and keystone species analysis showed that nitrate input enriched the keystone species involved in denitrification (e.g., Simplicispira and Denitratisoma). In contrast, some potential erythromycin-degrading bacteria (e.g., Desulfatiglandales, Pseudomonadales, Nitrospira) were inhibited by nitrate input. The variations in dominant bacterial groups implied competition between denitrification and erythromycin degradation in response to nitrate input. Based on the partial least squares path modeling analysis, keystone species (total effect: 0.419) and bacterial module (total effect: 0.403) showed strong association with erythromycin removal percentage. This indicated that the inhibitory effect of nitrate input on erythromycin degradation was mainly explained by bacterial network modules and keystone species. These findings will help us to assess the bioremediation potential of antibiotic-contaminated sediments suffering from excessive nitrogen discharge concurrently.
Collapse
Affiliation(s)
- Juan Chen
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China.
| | - Jingjing Zhang
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Chao Wang
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Peifang Wang
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Han Gao
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Bo Zhang
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Bingbing Feng
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| |
Collapse
|
18
|
Zhang Z, Zhao L, Yang J, Pang J, Lambers H, He H. Effects of environmentally relevant concentrations of oxytetracycline and sulfadiazine on the bacterial communities, antibiotic resistance genes, and functional genes are different between maize rhizosphere and bulk soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:22663-22678. [PMID: 38409385 DOI: 10.1007/s11356-024-32578-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 02/17/2024] [Indexed: 02/28/2024]
Abstract
Antibiotic contamination in soil has become a major concern worldwide. At present, it is not clear how two co-existed antibiotics with environmentally relevant concentrations would affect soil bacterial community structure, the abundances of antibiotic resistance genes (ARGs) and functional genes, and whether the effects of antibiotics would differ between rhizosphere and bulk soil. We conducted a greenhouse pot experiment to grow maize in a loess soil treated with oxytetracycline (OTC) or sulfadiazine (SDZ) or both at an environmentally relevant concentration (1 mg kg-1) to investigate the effects of OTC and SDZ on the rhizosphere and bulk soil bacterial communities, abundances of ARGs and carbon (C)-, nitrogen (N)-, and phosphorus (P)-cycling functional genes, and on plant growth and plant N and P nutrition. The results show that the effects of environmentally relevant concentrations of OTC and SDZ on bacterial communities and abundances of ARGs and functional genes differ between maize rhizosphere and bulk soil. The effects of two antibiotics resulted in a higher absolute abundances of accA, tet(34), tnpA-04, and sul2 in the rhizosphere soil than in the bulk soil and different bacterial community compositions and biomarkers in the rhizosphere soil and the bulk soil. However, OTC had a stronger inhibitory effect on the abundances of a few functional genes in the bulk soil than SDZ did, and their combination had no synergistic effect on plant growth, ARGs, and functional genes. The role of co-existed OTC and SDZ decreased shoot height and increased root N concentration. The results demonstrate that environmentally relevant concentrations of antibiotics shift soil microbial community structure, increase the abundances of ARGs, and reduce the abundances of functional genes. Furthermore, soil contamination with antibiotics can diminish agricultural production via phytotoxic effects on crops, and combined effects of antibiotics on plant growth and nutrient uptake should be considered.
Collapse
Affiliation(s)
- Zekun Zhang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau/College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Le Zhao
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau/College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jie Yang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau/College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jiayin Pang
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, 6009, Australia
- School of Agriculture and Environment, The University of Western Australia, Perth, WA, 6009, Australia
| | - Hans Lambers
- School of Agriculture and Environment, The University of Western Australia, Perth, WA, 6009, Australia
- School of Biological Sciences, The University of Western Australia, Perth, WA, 6009, Australia
- Department of Plant Nutrition, China Agricultural University, Beijing, 100193, China
| | - Honghua He
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau/College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China.
- School of Biological Sciences, The University of Western Australia, Perth, WA, 6009, Australia.
- Institute of Soil and Water Conservation, Northwest A&F University, Yangling, 712100, Shaanxi, China.
- Institute of Soil and Water Conservation, Yangling, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
19
|
Yévenes K, Ibáñez MJ, Pokrant E, Flores A, Maturana M, Maddaleno A, Cornejo J. A Suitable HPLC-MS/MS Methodology for the Detection of Oxytetracycline, Enrofloxacin, and Sulfachloropyridazine Residues in Lettuce Plants. Foods 2024; 13:153. [PMID: 38201182 PMCID: PMC10779216 DOI: 10.3390/foods13010153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/20/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024] Open
Abstract
Oxytetracycline (OTC), enrofloxacin (EFX), and sulfachloropyridazine (SCP) are critically important antimicrobials (AMs) in both human and veterinary medicine, where they are widely used in farm animals. Lettuce has become a matrix of choice for studying the presence of residues of these AMs in plants, as the concentrations of residues detected in lettuce can range from ng to mg. While several analytical methodologies have been developed for the purpose of detecting AMs in lettuce, these currently do not detect both the parent compound and its active metabolites or epimers, such as in the case of ciprofloxacin (CFX) and 4-epi-oxitetracycline (4-epi-OTC), which also pose a risk to public health and the environment due to their AM activity. In light of this situation, this work proposes an analytical method that was developed specifically to allow for the detection of OTC, 4-epi-OTC, EFX, CFX, and SCP in a lettuce matrix. This method uses acetonitrile, methanol, 0.5% formic acid, and McIlvaine-EDTA buffer as extraction solvents, and dispersive solid-phase extraction (dSPE) for the clean-up. The analytes were detected using a liquid chromatography technique coupled to mass spectrometry (HPLC-MS/MS). Parameters such as the specificity, linearity, recovery, precision, limit of detection, and limit (LOD) of quantification (LOQ) were calculated according to the recommendations established in the European Union decision 2021/808/EC and VICH GL2: Validation of analytical procedures. The LOQ for the analytes OTC, 4-epi-OTC, CFX, and SCP was 1 μg·kg-1, whereas for EFX, it was 5 μg·kg-1 dry weight. All calibration curves showed a coefficient of determination (R2) of >0.99. The recovery levels ranged from 93.0 to 110.5% and the precision met the acceptance criteria, with a coefficient of variation of ≤14.02%. Therefore, this methodology allows for the precise and reliable detection and quantification of these analytes. The analysis of commercial samples confirmed the suitability of this method.
Collapse
Affiliation(s)
- Karina Yévenes
- Department of Preventive Animal Medicine, Faculty of Veterinary and Animal Sciences, University of Chile, Santiago 8820808, Chile; (K.Y.); (M.J.I.); (E.P.)
- Doctorate Program of Forestry, Agricultural and Veterinary Sciences (DCSAV), Southern Campus, University of Chile, Santa Rosa 11315, La Pintana, Santiago 8820808, Chile
| | - María José Ibáñez
- Department of Preventive Animal Medicine, Faculty of Veterinary and Animal Sciences, University of Chile, Santiago 8820808, Chile; (K.Y.); (M.J.I.); (E.P.)
| | - Ekaterina Pokrant
- Department of Preventive Animal Medicine, Faculty of Veterinary and Animal Sciences, University of Chile, Santiago 8820808, Chile; (K.Y.); (M.J.I.); (E.P.)
- Laboratory of Veterinary Pharmacology (FARMAVET), Faculty of Veterinary and Animal Sciences, University of Chile, Santiago 8820808, Chile; (A.F.); (M.M.); (A.M.)
| | - Andrés Flores
- Laboratory of Veterinary Pharmacology (FARMAVET), Faculty of Veterinary and Animal Sciences, University of Chile, Santiago 8820808, Chile; (A.F.); (M.M.); (A.M.)
| | - Matías Maturana
- Laboratory of Veterinary Pharmacology (FARMAVET), Faculty of Veterinary and Animal Sciences, University of Chile, Santiago 8820808, Chile; (A.F.); (M.M.); (A.M.)
| | - Aldo Maddaleno
- Laboratory of Veterinary Pharmacology (FARMAVET), Faculty of Veterinary and Animal Sciences, University of Chile, Santiago 8820808, Chile; (A.F.); (M.M.); (A.M.)
| | - Javiera Cornejo
- Department of Preventive Animal Medicine, Faculty of Veterinary and Animal Sciences, University of Chile, Santiago 8820808, Chile; (K.Y.); (M.J.I.); (E.P.)
- Laboratory of Veterinary Pharmacology (FARMAVET), Faculty of Veterinary and Animal Sciences, University of Chile, Santiago 8820808, Chile; (A.F.); (M.M.); (A.M.)
| |
Collapse
|
20
|
Liu C, Pan K, Xu H, Song Y, Qi X, Lu Y, Jiang X, Liu H. The effects of enrofloxacin exposure on responses to oxidative stress, intestinal structure and intestinal microbiome community of largemouth bass (Micropterus salmoides). CHEMOSPHERE 2024; 348:140751. [PMID: 37992902 DOI: 10.1016/j.chemosphere.2023.140751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 11/24/2023]
Abstract
Antibiotic residues in the aquaculture environments may lead to antibiotic resistance, and potentially exert adverse effects on health of the non-target organisms and humans. In order to evaluate the effect of enrofloxacin of environmental concentrations on largemouth bass (Micropterus salmoides). Two hundred and seventy largemouth basses (with an average weight of 7.88 ± 0.60 g) were randomly divided into three groups, and separately exposed to 0, 1, 100 μg/L enrofloxacin (Control, ENR1, ENR100) for 30 days to detect the effect of enrofloxacin on the growth performance, oxidative stress, intestinal microbiota structure, inflammatory response and structure of the intestine. The results showed that ENR significantly reduced the final body weight (FBW) and weight gain rate (WGR), and increased feed conversion ratio (FCR) (P < 0.05). The histopathological analysis revealed that the villus width and muscular thickness of anterior intestine were significantly decreased with the increasing of enrofloxacin concentration. The activity of SOD was significantly increased at enrofloxacin stress, while CAT and POD activity were significantly decreased compared to control group (P < 0.05). The activities of lysozyme (LZM), alkaline phosphatase (AKP) and peroxidase (POD) in ENR1 was higher than that of control and ENR100 groups. Enrofloxacin treatment up-regulated the expression IL-1β and TNF-α, and down-regulated IL-10, and decreasing the expression level ZO-1, claudin-1, and occludin. Furthermore, the enrofloxacin treatment significantly decreased the intestinal bacterial diversity (P < 0.05). Exposure to 100 μg/L enrofloxacin obviously increased the relative abundance of Bacteroidota, Myxococcota, and Zixibacteria of fish gut, and reduced Firmicutes; 1 μg/L enrofloxacin considerably increased Bacteroidota, Myxococcota, and Actinobacteria, and reduced Firmicutes. The relative abundance of DTB120 and Elusimicrobiota was positively correlated with the occludin and claudin-1 gene. Taken together, exposure to enrofloxacin inhibited the growth of largemouth bass, influenced intestinal health, and induced dysbiosis of the intestinal microbiota.
Collapse
Affiliation(s)
- Chengrong Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Kuiquan Pan
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Hongzhou Xu
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yanzhen Song
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xiaoyu Qi
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yitong Lu
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xinxin Jiang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Haixia Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
21
|
Zhou T, An Q, Zhang L, Wen C, Yan C. Phytoremediation for antibiotics removal from aqueous solutions: A meta-analysis. ENVIRONMENTAL RESEARCH 2024; 240:117516. [PMID: 37890821 DOI: 10.1016/j.envres.2023.117516] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 10/16/2023] [Accepted: 10/24/2023] [Indexed: 10/29/2023]
Abstract
Antibiotics are widely used as drugs and enter water bodies through various routes, leading to environmental pollution. As a green in-situ remediation technology, phytoremediation has been proven to be highly effective in removing antibiotics present in the aqueous phase. However, these data are distributed in various studies and lack systematic analysis, which could provide a more comprehensive understanding of the current status and trends in the research field. Based on this, a meta-analysis was conducted from three perspectives in this study: the factors influencing antibiotics removal by phytoremediation, the effect of antibiotics on plant physiological indexes, and the accumulation and translocation of antibiotics in plants. The results showed that plants have a significant effect on antibiotics removal, which is influenced by plant species, running time, biomass, antibiotic types and antibiotic concentration. Although some physiological indexes of plants changed under stress from high antibiotic concentrations, most plant species demonstrated resistance to antibiotic concentrations below 100 μgL-1. Additionally, the amount of antibiotics accumulated in plants was extremely little, so the risk of secondary pollution was minimal during phytoremediation. The results of this study reveal the main factors influencing antibiotics removal by phytoremediation and plant physiological responses to antibiotics, providing a reference for improving the rational application of phytoremediation for antibiotics removal. In addition, it will provide concepts and directions for improving the efficiency of sustainable and environmentally friendly remediation methods for treating antibiotic pollution.
Collapse
Affiliation(s)
- Tong Zhou
- Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiuying An
- Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ling Zhang
- College of Materials Sciences and Engineering, Henan Institute of Technology, Xinxiang, 453003, China
| | - Ce Wen
- Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Changzhou Yan
- Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China.
| |
Collapse
|
22
|
Yagoubi A, Mahjoubi Y, Giannakis S, Rzigui T, Djebali W, Chouari R. The silver lining of antibiotic resistance: Bacterial-mediated reduction of tetracycline plant stress via antibiotrophy. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 204:108093. [PMID: 37857085 DOI: 10.1016/j.plaphy.2023.108093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/24/2023] [Accepted: 10/12/2023] [Indexed: 10/21/2023]
Abstract
The reuse of water using effluents containing antibiotics from anthropogenic activities has been mainly linked to the development of antibiotic resistance. However, we report that the development of bacterial tolerance promotes plant growth. In the present study, we aimed to evaluate the efficiency of inoculation of a new antibiotic-degrading bacterium, Erwinia strain S9, in augmenting the tolerance of pea (Pisum sativum L.) plants to tetracycline (TET) (10 and 20 mg/L). Physiological parameters such as tissue elongation and biomass, as well as relative water content, were remarkably lower in plants exposed to TET than in the control. The inhibitory effects of TET were associated with reduced CO2 assimilation, stomatal conductance, transpiration, dark respiration, and light saturation point (LSP). High concentrations of TET-induced oxidative stress are attested by the overproduction of superoxide radicals (O2•-), hydrogen peroxide (H2O2), and hydroxyl radicals (HO•), resulting in increased malondialdehyde content and cell death. The high activity of antioxidant enzymes such as catalase, ascorbate peroxidase, and guaiacol peroxidase validated the proposed mechanism. Under TET stress conditions, supplementation with Erwinia strain S9 was beneficial to pea plants through osmotic adjustment, increased nutrient uptake, gas exchange optimization, and increased antioxidant activities. Its presence not only ensures plant survival and growth during antibiotic stress but also degrades TET via significant antibiotrophy. This strategy is a cost-effective environmental chemical engineering tool that can be used to depollute wastewater or to improve crop resistance in rhizofiltration treatment when treated wastewater is reused for irrigation.
Collapse
Affiliation(s)
- Amira Yagoubi
- University of Carthage, Laboratory of Plant Toxicology and Environmental Microbiology (LR18ES38), Faculty of Sciences of Bizerte, 7021, Bizerte, Tunisia; Universidad Politécnica de Madrid (UPM), E.T.S. de Ingenieros de Caminos, Canales y Puertos, Departamento de Ingeniería Civil: Hidráulica, Energía y Medio Ambiente, Unidad docente Ingeniería Sanitaria, c/ Profesor Aranguren, s/n, ES-28040, Madrid, Spain
| | - Yathreb Mahjoubi
- University of Carthage, Laboratory of Plant Toxicology and Environmental Microbiology (LR18ES38), Faculty of Sciences of Bizerte, 7021, Bizerte, Tunisia
| | - Stefanos Giannakis
- Universidad Politécnica de Madrid (UPM), E.T.S. de Ingenieros de Caminos, Canales y Puertos, Departamento de Ingeniería Civil: Hidráulica, Energía y Medio Ambiente, Unidad docente Ingeniería Sanitaria, c/ Profesor Aranguren, s/n, ES-28040, Madrid, Spain
| | - Touhami Rzigui
- National Research Institute for Rural Engineering Water and Forests (INRGREF), Laboratory for the Management and Valorization of Forest Products (LGVPF), Tunis, Tunisia
| | - Wahbi Djebali
- University of Carthage, Laboratory of Plant Toxicology and Environmental Microbiology (LR18ES38), Faculty of Sciences of Bizerte, 7021, Bizerte, Tunisia
| | - Rakia Chouari
- University of Carthage, Laboratory of Plant Toxicology and Environmental Microbiology (LR18ES38), Faculty of Sciences of Bizerte, 7021, Bizerte, Tunisia.
| |
Collapse
|
23
|
Shen L, Zhang P, Lin Y, Huang X, Zhang S, Li Z, Fang Z, Wen Y, Liu H. Polystyrene microplastic attenuated the toxic effects of florfenicol on rice (Oryza sativa L.) seedlings in hydroponics: From the perspective of oxidative response, phototoxicity and molecular metabolism. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132176. [PMID: 37523959 DOI: 10.1016/j.jhazmat.2023.132176] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/16/2023] [Accepted: 07/26/2023] [Indexed: 08/02/2023]
Abstract
Antibiotics and microplastics (MPs) are two emerging pollutants in agroecosystems, however the effects of co-exposure to antibiotics and MPs remain unclear. The toxicity of florfenicol (FF) and polystyrene microplastics (PS-MPs) on rice seedlings was investigated. FF and PS-MPs caused colloidal agglomeration, which changed the environmental behavior of FF. FF inhibited rice growth and altered antioxidant enzyme (superoxide dismutase, peroxidase, and catalase) activities, leading to membrane lipid peroxidation; impaired photosynthetic systems, decreased photosynthetic pigments (Chlorophyll a, Chlorophyll b, and carotene), chlorophyll precursors (Proto IX, Mg-Proto IX, and Pchlide), photosynthetic and respiratory rates. The key photosynthesis related genes (PsaA, PsaB, PsbA, PsbB, PsbC, and PsbD) were significantly down-regulated. The ultrastructure of mesophyll cells was destroyed with chloroplast swelling, membrane surface blurring, irregular thylakoid lamellar structure, and number of peroxisomes increased. PS-MPs mitigated FF toxicity, and the IBR index values showed that 10 mg∙L-1 PS-MPs were more effective. Metabolomic analysis revealed that the abundance of metabolites and metabolic pathways were altered by FF, was greater than the combined "MPs-FF" contamination. The metabolism of amino acids, sugars, and organic acids were severely interfered. Among these, 15 metabolic pathways were significantly altered, with the most significant effects on phenylalanine metabolism and the citric acid cycle (p < 0.05).
Collapse
Affiliation(s)
- Luoqin Shen
- School of Environmental Science and Engineering, Key Laboratory of Solid Waste Treatment and Recycling of Zhejiang Province, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China
| | - Ping Zhang
- School of Environmental Science and Engineering, Key Laboratory of Solid Waste Treatment and Recycling of Zhejiang Province, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China
| | - Yanyao Lin
- School of Environmental Science and Engineering, Key Laboratory of Solid Waste Treatment and Recycling of Zhejiang Province, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China
| | - Xinting Huang
- School of Environmental Science and Engineering, Key Laboratory of Solid Waste Treatment and Recycling of Zhejiang Province, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China
| | - Siyi Zhang
- School of Environmental Science and Engineering, Key Laboratory of Solid Waste Treatment and Recycling of Zhejiang Province, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China
| | - Zhiheng Li
- School of Environmental Science and Engineering, Key Laboratory of Solid Waste Treatment and Recycling of Zhejiang Province, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China
| | - Zhiguo Fang
- School of Environmental Science and Engineering, Key Laboratory of Solid Waste Treatment and Recycling of Zhejiang Province, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China
| | - Yuezhong Wen
- MOE Key Laboratory of Environmental Remediation & Ecosystem Health, Institute of Environmental Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Huijun Liu
- School of Environmental Science and Engineering, Key Laboratory of Solid Waste Treatment and Recycling of Zhejiang Province, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China.
| |
Collapse
|
24
|
Narciso A, Barra Caracciolo A, De Carolis C. Overview of Direct and Indirect Effects of Antibiotics on Terrestrial Organisms. Antibiotics (Basel) 2023; 12:1471. [PMID: 37760767 PMCID: PMC10525971 DOI: 10.3390/antibiotics12091471] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/15/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023] Open
Abstract
Antibiotics (ABs) have made it possible to treat bacterial infections, which were in the past untreatable and consequently fatal. Regrettably, their use and abuse among humans and livestock led to antibiotic resistance, which has made them ineffective in many cases. The spread of antibiotic resistance genes (ARGs) and bacteria is not limited to nosocomial environments, but also involves water and soil ecosystems. The environmental presence of ABs and ARGs is a hot topic, and their direct and indirect effects, are still not well known or clarified. A particular concern is the presence of antibiotics in agroecosystems due to the application of agro-zootechnical waste (e.g., manure and biosolids), which can introduce antibiotic residues and ARGs to soils. This review provides an insight of recent findings of AB direct and indirect effects on terrestrial organisms, focusing on plant and invertebrates. Possible changing in viability and organism growth, AB bioaccumulation, and shifts in associated microbiome composition are reported. Oxidative stress responses of plants (such as reactive oxygen species production) to antibiotics are also described.
Collapse
Affiliation(s)
- Alessandra Narciso
- Water Research Institute, National Research Council (IRSA-CNR), SP 35d, km 0.7 Montelibretti, 00010 Rome, Italy; (A.N.); (C.D.C.)
- Department of Ecological and Biological Sciences, Tuscia University, Largo dell’Università s.n.c., 01100 Viterbo, Italy
| | - Anna Barra Caracciolo
- Water Research Institute, National Research Council (IRSA-CNR), SP 35d, km 0.7 Montelibretti, 00010 Rome, Italy; (A.N.); (C.D.C.)
| | - Chiara De Carolis
- Water Research Institute, National Research Council (IRSA-CNR), SP 35d, km 0.7 Montelibretti, 00010 Rome, Italy; (A.N.); (C.D.C.)
- Department of Environmental Biology, La Sapienza’ University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
25
|
Rocha CS, Kochi LY, Brito JCM, Kitamura RSA, Carneiro DM, Dos Reis MV, Gomes MP. Pharmaceutical-contaminated irrigation water: implications for ornamental plant production and phytoremediation using enrofloxacin-accumulating species. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:97253-97266. [PMID: 37587399 DOI: 10.1007/s11356-023-29317-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 08/09/2023] [Indexed: 08/18/2023]
Abstract
Enrofloxacin (Enro) has been widely encountered in natural water sources, and that water is often used for irrigation in crop production systems. Due to its phytotoxicity and accumulation in plant tissues, the presence of Enro in water used for crop irrigation may represent economical and toxicological concerns. Here, we irrigated two ornamental plant species (Zantedeschia rehmannii Engl. and Spathiphyllum wallisii Regel.) with water artificially contaminated with the antimicrobial enrofloxacin (Enro; 0, 5, 10, 100, and 1000 μg L-1) to evaluate its effects on ornamental plant production, as well as its accumulation and distribution among different plant organs (roots, leaves, bulbs, and flower stems), and examined the economic and environmental safety of commercializing plants produced under conditions of pharmaceutical contamination. The presence of Enro in irrigation water was not found to disrupt plant growth (biomass) or flower production. Both species accumulated Enro, with its internal concentrations distributed as the following: roots > leaves > bulbs > flower stems. In addition to plant tolerance, the content of Enro in plant organs indicated that both Z. rehmannii and S. wallisii could be safety produced under Enro-contaminated conditions and would not significantly contribute to contaminant transfer. The high capacity of those plants to accumulate Enro in their tissues, associated with their tolerance to it, indicates them for use in Enro-phytoremediation programs.
Collapse
Affiliation(s)
- Camila Silva Rocha
- Laboratório de Fisiologia de Plantas Sob Estresse, Departamento de Botânica, Setor de Ciências Biológicas, Universidade Federal Do Paraná, Avenida Coronel Francisco H. Dos Santos, 100, Centro Politécnico Jardim das Américas, C.P. 19031, Curitiba, Paraná, 81531-980, Brazil
| | - Leticia Yoshie Kochi
- Laboratório de Fisiologia de Plantas Sob Estresse, Departamento de Botânica, Setor de Ciências Biológicas, Universidade Federal Do Paraná, Avenida Coronel Francisco H. Dos Santos, 100, Centro Politécnico Jardim das Américas, C.P. 19031, Curitiba, Paraná, 81531-980, Brazil
| | - Júlio Cesar Moreira Brito
- Fundação Ezequiel Dias, Rua Conde Pereira Carneiro, 80, Belo Horizonte, Minas Gerais, 30510-010, Brazil
- Laboratório de Micropropagação de Plantas, Departamento de Fitotecnia E Fitossanidade, Setor de Ciências Agrárias, Universidade Federal Do Paraná, Rua Dos Funcionário, 1540, Juvevê, Curitiba, Paraná, 80035-050, Brazil
| | - Rafael Shinji Akiyama Kitamura
- Laboratório de Fisiologia de Plantas Sob Estresse, Departamento de Botânica, Setor de Ciências Biológicas, Universidade Federal Do Paraná, Avenida Coronel Francisco H. Dos Santos, 100, Centro Politécnico Jardim das Américas, C.P. 19031, Curitiba, Paraná, 81531-980, Brazil
| | - Daniella Moreira Carneiro
- Horto Botânico, Departamento de Agricultura, Universidade Federal de Lavras, Lavras, Minas Gerais, 37200-900, Brazil
| | - Michele Valquíria Dos Reis
- Horto Botânico, Departamento de Agricultura, Universidade Federal de Lavras, Lavras, Minas Gerais, 37200-900, Brazil
| | - Marcelo Pedrosa Gomes
- Laboratório de Fisiologia de Plantas Sob Estresse, Departamento de Botânica, Setor de Ciências Biológicas, Universidade Federal Do Paraná, Avenida Coronel Francisco H. Dos Santos, 100, Centro Politécnico Jardim das Américas, C.P. 19031, Curitiba, Paraná, 81531-980, Brazil.
| |
Collapse
|
26
|
Fang L, Chen C, Li S, Ye P, Shi Y, Sharma G, Sarkar B, Shaheen SM, Lee SS, Xiao R, Chen X. A comprehensive and global evaluation of residual antibiotics in agricultural soils: Accumulation, potential ecological risks, and attenuation strategies. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 262:115175. [PMID: 37379666 DOI: 10.1016/j.ecoenv.2023.115175] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 06/18/2023] [Accepted: 06/20/2023] [Indexed: 06/30/2023]
Abstract
The occurrence of antibiotics in agricultural soils has raised concerns due to their potential risks to ecosystems and human health. However, a comprehensive understanding of antibiotic accumulation, distribution, and potential risks to terrestrial ecosystems on a global scale is still limited. Therefore, in this study, we evaluated the accumulation of antibiotics and their potential risks to soil microorganisms and plants, and highlighted the driving factors of antibiotic accumulation in agricultural soils based on 134 peer-reviewed studies (between 2000 and 2022). The results indicated that 56 types of antibiotics were detected at least once in agricultural soils with concentrations ranging from undetectable to over 7000 µg/kg. Doxycycline, tylosin, sulfamethoxazole, and enrofloxacin, belonging to the tetracyclines, macrolides, sulfonamides, and fluoroquinolones, respectively, were the most accumulated antibiotics in agricultural soil. The accumulation of TCs, SAs, and FQs was found to pose greater risks to soil microorganisms (average at 29.3%, 15.4%, and 21.8%) and plants (42.4%, 26.0%, and 38.7%) than other antibiotics. East China was identified as a hot spot for antibiotic contamination due to high levels of antibiotic concentration and ecological risk to soil microorganisms and plants. Antibiotic accumulation was found to be higher in vegetable fields (245.5 µg/kg) and orchards (212.4 µg/kg) compared to croplands (137.2 µg/kg). Furthermore, direct land application of manure resulted in a greater accumulation of TCs, SAs, and FQs accumulation in soils than compost fertilization. The level of antibiotics decreased with increasing soil pH and organic matter content, attributed to decreasing adsorption and enhancing degradation of antibiotics. In conclusion, this study highlights the need for further research on the impacts of antibiotics on soil ecological function in agricultural fields and their interaction mechanisms. Additionally, a whole-chain approach, consisting of antibiotic consumption reduction, manure management strategies, and remediation technology for soil contaminated with antibiotics, is needed to eliminate the potential environmental risks of antibiotics for sustainable and green agriculture.
Collapse
Affiliation(s)
- Linfa Fang
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China; Key Laboratory of Low-carbon Green Agriculture in Southwestern China, Ministry of Agriculture and Rural Affairs, China
| | - Chengyu Chen
- College of Natural Resources and Environment, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, South China Agricultural University, 483 Wushan Road, Guangzhou, Guangdong 510642, China
| | - ShiYang Li
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Pingping Ye
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Yujia Shi
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Gaurav Sharma
- International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, Solan 173212 Himachal Pradesh, India
| | - Binoy Sarkar
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia
| | - Sabry M Shaheen
- International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, Solan 173212 Himachal Pradesh, India; University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water, and Waste-Management, Laboratory of Soil, and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; King Abdulaziz University, Faculty of Meteorology, Environment, and Arid Land Agriculture, Department of Arid Land Agriculture, 21589 Jeddah, Saudi Arabia.
| | - Sang Soo Lee
- Department of Environmental and Energy Engineering, Yonsei University, Wonju 26493, Republic of Korea.
| | - Ran Xiao
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China; Key Laboratory of Low-carbon Green Agriculture in Southwestern China, Ministry of Agriculture and Rural Affairs, China.
| | - Xinping Chen
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China; Key Laboratory of Low-carbon Green Agriculture in Southwestern China, Ministry of Agriculture and Rural Affairs, China
| |
Collapse
|
27
|
Venu V, Nishil B, Kashyap A, Sonkar V, Thatikonda S. Phytotoxic Effects of Tetracycline and its Removal Using Canna indica in a Hydroponic System. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2023; 111:4. [PMID: 37347310 DOI: 10.1007/s00128-023-03767-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 06/13/2023] [Indexed: 06/23/2023]
Abstract
Wetland plants are gaining interest as potential agents for removing emerging contaminants. However, there have been limited studies examining the ability of these plant species to remove antibiotics and their tolerance to stress. This study aimed to investigate the potential of Canna indica, an indigenous wetland plant species in India, for tetracycline-induced oxidative stress, antioxidant activity, and removal of antibiotics from nutrient media and domestic wastewater. Canna indica exhibited a removal rate of approximately 91.05 ± 0.18% for tetracycline in antibiotic containing nutrient media and 87.97 ± 0.39% in domestic wastewater. Notably, the exposure to the drug during the 30 d reaction period led to the accumulation of reactive oxygen species in the plant tissues. Consequently, there was a decline in chlorophyll content, alongside an increase in antioxidant activity, membrane permeability, and K + ion leakage. These findings emphasize the importance of monitoring tolerance levels induced by antibiotics in plant species. Thus, monitoring the antibiotic-induced-tolerance levels in plant species is crucial for maintaining plant health and effectively managing abiotic stress, ensuring efficient recovery and facilitating an effective wetland treatment system.
Collapse
Affiliation(s)
- Vishnudatha Venu
- Environmental Engineering Division, Department of Civil Engineering, Indian Institute of Technology Hyderabad (IITH), Kandi, Sangareddy, Telangana, 502285, India
| | - Benita Nishil
- Environmental Engineering Division, Department of Civil Engineering, Indian Institute of Technology Hyderabad (IITH), Kandi, Sangareddy, Telangana, 502285, India
| | - Arun Kashyap
- Environmental Engineering Division, Department of Civil Engineering, Indian Institute of Technology Hyderabad (IITH), Kandi, Sangareddy, Telangana, 502285, India
| | - Vikas Sonkar
- Environmental Engineering Division, Department of Civil Engineering, Indian Institute of Technology Hyderabad (IITH), Kandi, Sangareddy, Telangana, 502285, India
| | - Shashidhar Thatikonda
- Environmental Engineering Division, Department of Civil Engineering, Indian Institute of Technology Hyderabad (IITH), Kandi, Sangareddy, Telangana, 502285, India.
| |
Collapse
|
28
|
Yang D, Meng F, Zhang Z, Liu X. Enhanced Catalytic Ozonation by Mn-Ce Oxide-Loaded Al 2O 3 Catalyst for Ciprofloxacin Degradation. ACS OMEGA 2023; 8:21823-21829. [PMID: 37360444 PMCID: PMC10286253 DOI: 10.1021/acsomega.3c01302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/16/2023] [Indexed: 06/28/2023]
Abstract
Catalytic ozonation is an effective and promising advanced oxidation technology for organic pollutant removal. Herein, CexMn1-xO2 metal oxides loaded on Al2O3 catalysts (Mn-Ce/Al2O3) were synthesized for catalytic ozonation of the wastewater containing ciprofloxacin. The morphology, crystal structure, and specific surface area of the prepared catalyst were characterized. The characteristics of the Mn-Ce/Al2O3 catalyst revealed that the loaded MnO2 could interfere with the formed CeO2 crystals and then produced complex CexMn1-xO2 oxides. Compared with an ozone-alone system (47.4%), the ciprofloxacin degradation efficiency in the Mn-Ce/Al2O3 catalytic ozonation system elevated to 85.1% within 60 min. The ciprofloxacin degradation kinetic rate over the Mn-Ce/Al2O3 catalyst is 3.0 times that of the ozone-alone system. The synergetic corporation of redox pairs between Mn(III)/Mn(IV) and Ce(III)/Ce(IV) in the Mn-Ce/Al2O3 catalyst could accelerate ozone decomposition to generate active oxygen species and further significantly improve the mineralization efficiency of ciprofloxacin. The work demonstrates the great potential of developing dual-site ozone catalysts for advanced treatment of wastewater.
Collapse
Affiliation(s)
- Dajie Yang
- School
of Environment, Tsinghua University, Beijing 10084, China
- Ministry
of Water Resources, Beijing 10053, China
| | - Fanbin Meng
- SINOPEC
Research Institute of Petroleum Processing Co., Ltd., Beijing 100083, China
| | - Zhuoran Zhang
- School
of Environment, Tsinghua University, Beijing 10084, China
| | - Xiang Liu
- School
of Environment, Tsinghua University, Beijing 10084, China
| |
Collapse
|
29
|
Khan KY, Ali B, Ghani HU, Fu L, Shohag MJUI, Zhang S, Cui X, Xia Q, Tan J, Ali Z, Guo Y. Single and combined effect of tetracycline and polyethylene microplastics on two drought contrasting cultivars of Oryza sativa L. (Rice) under drought stress. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 101:104191. [PMID: 37343773 DOI: 10.1016/j.etap.2023.104191] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/13/2023] [Accepted: 06/16/2023] [Indexed: 06/23/2023]
Abstract
Co-exposure of tetracycline (TC) and polyethylene microplastic (MP-PE) pollution might result in more intricate effects on rice growth and grain quality. In present study, two different rice cultivars of contrasting drought tolerance, Hanyou73 (H73, drought-resistant) and Quanyou280 (Q280, drought-sensitive) were grown on MP-PE and TC-contaminated soils under drought. It was found that drought stress had different influence on TC accumulation in the two rice cultivars. H73 accumulated more TC in leaves and grains without drought stress while Q280 accumulated more TC under drought stress. Furthermore, metabolomics results demonstrated that under drought stress, about 80% of metabolites in H73 and 95% in Q280 were down-regulated as compared to non-drought treatments. These findings provide insights into the effects of TC and MP-PE with and without drought stress on potential risks to rice growth and grain quality, which has implications on rice production and cultivar election under multiple-stress conditions.
Collapse
Affiliation(s)
- Kiran Yasmin Khan
- Key Laboratory of Advanced Process Control for Light Industry, Ministry of Education, Jiangnan University, Wuxi 214122, China; School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Barkat Ali
- The Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Food Sciences Research Institute, National Agricultural Research Centre, Islamabad, 44000, Pakistan
| | | | - Lijiang Fu
- Key Laboratory of Advanced Process Control for Light Industry, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Mohammad Jahid Ul Islam Shohag
- Indian River Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Fort Pierce, Florida 34945, USA
| | - Shuang Zhang
- The Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xiaoqiang Cui
- School of Environmental Science and Engineering/Tianjin Key Lab of Biomass Waste Utilization, Tianjin University, Tianjin 300072, China
| | - Qian Xia
- Key Laboratory of Advanced Process Control for Light Industry, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Jinglu Tan
- Department of Biomedical, Biological & Chemical Engineering, University of Missouri, Columbia, MO 65211, USA
| | - Zeshan Ali
- Ecotoxicology Research Program, Institute of Plant and Environmental Protection, National Agriculture Research Center, Islamabad, 44000, Pakistan
| | - Ya Guo
- Key Laboratory of Advanced Process Control for Light Industry, Ministry of Education, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
30
|
Xu Z, Huang J, Chu Z, Meng F, Liu J, Li K, Chen X, Jiang Y, Ban Y. Plant and microbial communities responded to copper and/or tetracyclines in mycorrhizal enhanced vertical flow constructed wetlands microcosms with Canna indica L. JOURNAL OF HAZARDOUS MATERIALS 2023; 451:131114. [PMID: 36870129 DOI: 10.1016/j.jhazmat.2023.131114] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/17/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) play a significant role in pollutants removal in constructed wetlands (CWs). However, the purification effects of AMF on combined copper (Cu) and tetracycline (TC) pollution in CWs remains unknown. This study investigated the growth, physiological characteristics and AMF colonization of Canna indica L. living in vertical flow CWs (VFCWs) treated for Cu and/or TC pollution, the purification effects of AMF enhanced VFCWs on Cu and TC, and the microbial community structures. The results showed that (1) Cu and TC inhibited plant growth and decreased AMF colonization; (2) the removal rates of TC and Cu by VFCWs were 99.13-99.80% and 93.17-99.64%, respectively; (3) the growth, Cu and TC uptakes of C. indica and Cu removal rates were enhanced by AMF inoculation; (4) TC and Cu stresses reduced and AMF inoculation increased bacterial operational taxonomic units (OTUs) in the VFCWs, Proteobacteria, Bacteroidetes, Firmicutes and Acidobacteria were the dominant bacteria, and AMF inoculation decreased the relative abundance of Novosphingobium and Cupriavidus. Therefore, AMF could enhance the pollutants purification in VFCWs by promoting plant growth and altering the microbial community structures.
Collapse
Affiliation(s)
- Zhouying Xu
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, Hubei, China
| | - Jun Huang
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, Hubei, China
| | - Zhenya Chu
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, Hubei, China
| | - Fake Meng
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, Hubei, China
| | - Jianjun Liu
- POWERCHINA Huadong Engineering Corporation Limited, Hangzhou 311122, Zhejiang, China
| | - Kaiguo Li
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, Hubei, China
| | - Xi Chen
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, Hubei, China
| | - Yinghe Jiang
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, Hubei, China
| | - Yihui Ban
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, Hubei, China.
| |
Collapse
|
31
|
Fiaz M, Ahmed I, Hassan SMU, Niazi AK, Khokhar MF, Farooq MA, Arshad M. Antibiotics induced changes in nitrogen metabolism and antioxidative enzymes in mung bean (Vigna radiata). THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 873:162449. [PMID: 36841411 DOI: 10.1016/j.scitotenv.2023.162449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/18/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Excessive use and release of antibiotics into the soil environment in the developing world have resulted in altered soil processes affecting terrestrial organisms and posing a serious threat to crop growth and productivity. The present study investigated the influence of exogenously applied oxytetracycline (OXY) and levofloxacin (LEV) on plant physiological responses, key enzymes involved in nitrogen metabolism (e.g., nitrate reductase, glutamine synthetase), nitrogen contents and oxidative stress response of mung bean (Vigna radiata). Plants were irrigated weekly with antibiotics containing water for exposing the plants to different concentrations i.e., 1, 10, 20, 50, and 100 mg L-1. Results showed a significant decrease in nitrate reductase activity in both antibiotic treatments and their mixtures and increased antioxidant enzymatic activities in plants. At lower concentrations of antibiotics (≤20 mg L-1), 53.9 % to 78.4 % increase in nitrogen content was observed in levofloxacin and mixtures compared to the control, resulting in an increase in the overall plant biomass. Higher antibiotic (≥50 mg L-1) concentration showed 58 % decrease in plant biomass content and an overall decrease in plant nitrogen content upon exposure to the mixtures. This was further complemented by 22 % to 42 % increase in glutamine synthetase activity observed in the plants treated with levofloxacin and mixtures. The application of low doses of antibiotics throughout the experiments resulted in lower toxicity symptoms in the plants. However, significantly higher malondialdehyde (MDA) concentrations at higher doses (20 mg L-1 and above) than the control showed that plants' tolerance against oxidative stress was conceded with increasing antibiotic concentrations. The toxicity trend was: levofloxacin > mixture > oxytetracycline.
Collapse
Affiliation(s)
- Marium Fiaz
- Institute of Environmental Sciences and Engineering, School of Civil and Environmental Engineering, National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Iftikhar Ahmed
- National Culture Collection of Pakistan (NCCP), Land Resources Research Institute (LRRI), National Agriculture Research Center (NARC), Islamabad, Pakistan
| | - Sumara Masood Ul Hassan
- School of Social Sciences and Humanities, National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Adnan Khan Niazi
- Centre for Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Fahim Khokhar
- Institute of Environmental Sciences and Engineering, School of Civil and Environmental Engineering, National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Muhammad Ansar Farooq
- Institute of Environmental Sciences and Engineering, School of Civil and Environmental Engineering, National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Muhammad Arshad
- Institute of Environmental Sciences and Engineering, School of Civil and Environmental Engineering, National University of Sciences and Technology (NUST), Islamabad, Pakistan.
| |
Collapse
|
32
|
Kitamura RSA, Marques RZ, Kubis GC, Kochi LY, Barbato ML, Maranho LT, Juneau P, Gomes MP. The phytoremediation capacity of Lemna minor prevents deleterious effects of anti-HIV drugs to nontarget organisms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 329:121672. [PMID: 37080511 DOI: 10.1016/j.envpol.2023.121672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 05/03/2023]
Abstract
We investigated physiological responses of Lemna minor plants and their capacity to remove tenofovir (TNF; 412 ng l-1), lamivudine (LMV; 5428 ng l-1) and/or efavirenz (EFV; 4000 ng l-1) from water through phytoremediation. In addition, the toxicological safety of water contaminated with these drugs after treatment with L. minor plants to photosynthetic microorganisms (Synechococcus elongatus and Chlorococcum infusionum) was evaluated. The tested environmental representative concentrations of drugs did not have a toxic effect on L. minor, and their tolerance mechanisms involved an increase in the activity of P450 and antioxidant enzymes (catalase and ascorbate peroxidase). L. minor accumulated significant quantities of TNF, LMV and EFV from the media (>70%), and the interactive effect of LMV and EFV increased EFV uptake by plants submitted to binary or tertiary mixture of drugs. Photosynthetic microorganisms exposed to TNF + LMV + EFV showed toxicological symptoms which were not observed when exposed to contaminated water previously treated with L. minor. An increased H2O2 concentrations but no oxidative damage in S. elongatus cells exposed to non-contaminated water treated with L. minor was observed. Due to its capacity to tolerate and reclaim anti-HIV drugs, L. minor plants must be considered in phytoremediation programs. They constitute a natural-based solution to decrease environmental contamination by anti-HIV drugs and toxicological effects of these pharmaceuticals to nontarget organisms.
Collapse
Affiliation(s)
- Rafael Shinji Akiyama Kitamura
- Programa de Pós-Graduação em Genérica, Universidade Federal do Paraná, Curitiba, Paraná, Brazil; Laboratório de Fisiologia de Plantas sob Estresse, Departamento de Botânica, Setor de Ciências Biológicas, Universidade Federal do Paraná, Avenida Coronel Francisco H. dos Santos, 100, Centro Politécnico Jardim das Américas, C.P. 19031, 81531-980, Curitiba, Paraná, Brazil
| | - Raizza Zorman Marques
- Laboratório de Fisiologia de Plantas sob Estresse, Departamento de Botânica, Setor de Ciências Biológicas, Universidade Federal do Paraná, Avenida Coronel Francisco H. dos Santos, 100, Centro Politécnico Jardim das Américas, C.P. 19031, 81531-980, Curitiba, Paraná, Brazil; Programa de Pós-Graduação em Ciência dos Solo, Universidade Federal do Paraná, Rua dos Funcionários, 140, Juvevê, 80035-050, Curitiba, Paraná, Brazil
| | - Gabrielly Cristina Kubis
- Laboratório de Fisiologia de Plantas sob Estresse, Departamento de Botânica, Setor de Ciências Biológicas, Universidade Federal do Paraná, Avenida Coronel Francisco H. dos Santos, 100, Centro Politécnico Jardim das Américas, C.P. 19031, 81531-980, Curitiba, Paraná, Brazil
| | - Letícia Yoshi Kochi
- Laboratório de Fisiologia de Plantas sob Estresse, Departamento de Botânica, Setor de Ciências Biológicas, Universidade Federal do Paraná, Avenida Coronel Francisco H. dos Santos, 100, Centro Politécnico Jardim das Américas, C.P. 19031, 81531-980, Curitiba, Paraná, Brazil; Programa de Pós-Graduação em Ecologia e Conservação, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | - Marcello Locatelli Barbato
- Laboratório de Fisiologia de Plantas sob Estresse, Departamento de Botânica, Setor de Ciências Biológicas, Universidade Federal do Paraná, Avenida Coronel Francisco H. dos Santos, 100, Centro Politécnico Jardim das Américas, C.P. 19031, 81531-980, Curitiba, Paraná, Brazil; Programa de Pós-Graduação em Ciência dos Solo, Universidade Federal do Paraná, Rua dos Funcionários, 140, Juvevê, 80035-050, Curitiba, Paraná, Brazil
| | - Leila Teresinha Maranho
- Laboratório de Fisiologia de Plantas sob Estresse, Departamento de Botânica, Setor de Ciências Biológicas, Universidade Federal do Paraná, Avenida Coronel Francisco H. dos Santos, 100, Centro Politécnico Jardim das Américas, C.P. 19031, 81531-980, Curitiba, Paraná, Brazil; Programa de Pós-Graduação em Ecologia e Conservação, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | - Philippe Juneau
- Ecotoxicology of Aquatic Microorganisms Laboratory, GRIL, EcotoQ, TOXEN, Department of Biological Sciences, Université du Québec à Montréal, Montréal, Succ. Centre-Ville, H3C 3P8, Montréal, QC, Canada
| | - Marcelo Pedrosa Gomes
- Laboratório de Fisiologia de Plantas sob Estresse, Departamento de Botânica, Setor de Ciências Biológicas, Universidade Federal do Paraná, Avenida Coronel Francisco H. dos Santos, 100, Centro Politécnico Jardim das Américas, C.P. 19031, 81531-980, Curitiba, Paraná, Brazil.
| |
Collapse
|
33
|
Jin J, Xu L, Zhang S, Jin M, Zhang P, Shen L, Chen J, Li Z, Zhao W, Liu H. Oxidative response of rice (Oryza sativa L.) seedlings to quinolone antibiotics and its correlation with phyllosphere microbes and antibiotic resistance genes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 867:161544. [PMID: 36642277 DOI: 10.1016/j.scitotenv.2023.161544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/07/2023] [Accepted: 01/07/2023] [Indexed: 06/17/2023]
Abstract
With the increasing use of veterinary antibiotics, quinolone antibiotics may enter farmland systems after livestock manure has been composted. However, the phytotoxicity mechanism of antibiotics in crops is still unclear. In this study, the oxidative responses of rice (Oryza sativa L.) seedlings to three typical quinolone antibiotics and their underlying mechanisms were investigated. The bioconcentration factor values were 1.47, 0.55, and 0.23 in the levofloxacin, enrofloxacin and norfloxacin treatment, respectively. The inhibitory effects on rice seedlings were in the order of levofloxacin > enrofloxacin > norfloxacin, which may be due to the high uptake of levofloxacin. The H2O2 level, MDA content, and ion leakage rate increased significantly (p < 0.05), and cell plasmolysis was observed, showing that antibiotics can cause membrane lipid peroxidation and damage the cell membrane structure. Antioxidant enzyme activities (superoxide dismutase, catalase, and peroxidase) changed with the antibiotic concentration. Integrated biomarker response analysis showed that levofloxacin caused the greatest oxidative stress in rice seedlings. Transcriptomic analysis identified 5880 differentially expressed genes, and these were annotated as 20 biological functions; the greatest abundances were cellular and metabolic processes, cell part, and membrane part and organelle; SOD and CAT related genes were up-regulated. The richness and diversity of the phyllosphere microbial community decreased significantly (p < 0.05) and the microbiome changed at the phylum and genus levels. The H2O2 level was correlated with changes in phyllosphere microbial communities. The number of antibiotic resistance genes (ARGs) and mobile genetic elements decreased, while their abundance increased. In conclusion, enrofloxacin exposure not only affects the microbial community but may also affect the ARGs carried by microbes. The relative abundance of MGEs and ARGs was significantly positively correlated (R2 = 0.760, p = 0.0148), indicating that MGEs can significantly promote the spread of ARGs.
Collapse
Affiliation(s)
- Jiaojun Jin
- School of Environmental Science and Engineering, Instrumental Analysis Center, Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Linling Xu
- School of Environmental Science and Engineering, Instrumental Analysis Center, Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Siyi Zhang
- School of Environmental Science and Engineering, Instrumental Analysis Center, Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - MingKang Jin
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Ping Zhang
- School of Environmental Science and Engineering, Instrumental Analysis Center, Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Luoqin Shen
- School of Environmental Science and Engineering, Instrumental Analysis Center, Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Jiayao Chen
- School of Environmental Science and Engineering, Instrumental Analysis Center, Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Zhiheng Li
- School of Environmental Science and Engineering, Instrumental Analysis Center, Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Wenlu Zhao
- School of Environmental Science and Engineering, Instrumental Analysis Center, Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Huijun Liu
- School of Environmental Science and Engineering, Instrumental Analysis Center, Zhejiang Gongshang University, Hangzhou 310018, PR China.
| |
Collapse
|
34
|
Chen H, Jin J, Hu S, Shen L, Zhang P, Li Z, Fang Z, Liu H. Metabolomics and proteomics reveal the toxicological mechanisms of florfenicol stress on wheat (Triticum aestivum L.) seedlings. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130264. [PMID: 36327828 DOI: 10.1016/j.jhazmat.2022.130264] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/16/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Although the ecological impacts of antibiotics have received attention worldwide, research on the toxicity of florfenicol is still limited. We conducted a metabolomic and proteomic study on wheat (Triticum aestivum L.) seedlings to reveal the toxicological mechanism of florfenicol. The growth of the wheat seedlings was found to be inhibited by florfenicol. Antioxidant enzyme activities (superoxide dismutase, peroxidase and catalase), malondialdehyde content and membrane permeability increased with increasing florfenicol concentration. The contents of chlorophyll and chlorophyll synthesis precursor substances (Proto IX, Mg-proto IX and Pchlide), photosynthetic and respiration rates, and chlorophyll fluorescence parameters decreased, indicating that photosynthesis was inhibited. The ultrastructure of chloroplasts was destroyed, as evidenced by the blurred membrane surface, irregular grana arrangement, irregular thylakoid lamella structure, and increased plastoglobuli number. Proteome analysis revealed that up-regulated proteins were highly involved in protein refolding, translation, oxidation-reduction, tricarboxylic acid cycle (TCA cycle), reactive oxygen species metabolic process, cellular oxidant detoxification, and response to oxidative stress. The down-regulated proteins were mainly enriched in photosynthesis-related pathways. In the metabolome analysis, the content of most of the metabolites in wheat leaves, such as carbohydrates and amino acids increased significantly (p < 0.05). Combined pathway analysis showed that florfenicol stress stimulated the TCA cycle pathway and downregulated the photosynthesis pathway.
Collapse
Affiliation(s)
- Hanmei Chen
- School of Environmental Science and Engineering, Instrumental analysis center, Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Jiaojun Jin
- School of Environmental Science and Engineering, Instrumental analysis center, Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Shuhao Hu
- School of Environmental Science and Engineering, Instrumental analysis center, Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Luoqin Shen
- School of Environmental Science and Engineering, Instrumental analysis center, Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Ping Zhang
- School of Environmental Science and Engineering, Instrumental analysis center, Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Zhiheng Li
- School of Environmental Science and Engineering, Instrumental analysis center, Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Zhiguo Fang
- School of Environmental Science and Engineering, Instrumental analysis center, Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Huijun Liu
- School of Environmental Science and Engineering, Instrumental analysis center, Zhejiang Gongshang University, Hangzhou 310018, PR China.
| |
Collapse
|
35
|
Kitamura RSA, Vicentini M, Bitencourt V, Vicari T, Motta W, Brito JCM, Cestari MM, Prodocimo MM, de Assis HCS, Gomes MP. Salvinia molesta phytoremediation capacity as a nature-based solution to prevent harmful effects and accumulation of ciprofloxacin in Neotropical catfish. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:41848-41863. [PMID: 36639588 DOI: 10.1007/s11356-023-25226-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 01/05/2023] [Indexed: 01/15/2023]
Abstract
Phytoremediation has been a potential solution for the removal of pharmaceuticals from water. Here, we evaluated the toxicological safety of ciprofloxacin-contaminated water treated by 96 h with Salvinia molesta. The Neotropical catfish Rhamdia quelen was used as a model, and the potential of the phytoremediation technique for mitigating the drug accumulation in the fishes was also studied. Fish exposed to Cipro (1 and 10 µg·L-1) in untreated water showed toxic responses (alteration of hematological, genotoxicity, biochemical, and histopathological biomarkers) and accumulated Cipro in their muscles at concentrations high for human consumption (target hazardous quotient > 1). Fish exposed to water treated with S. molesta showed no toxic effect and no accumulation of Cipro in their tissues. This must be related to the fact that S. molesta removed up to 97% of Cipro from the water. The decrease in Cipro concentrations after water treatment with S. molesta not only prevented the toxic effects of Cipro on R. quelen fish but also prevented the antimicrobial accumulation in fish flesh, favouring safe consumption by humans. For the very first time, we showed the potential of phytoremediation as an efficiently nature-based solution to prevent environmental toxicological effects of antimicrobials to nontarget organisms such as fish and humans. The use of S. molesta for Cipro-removal from water is a green technology to be considered in the combat against antimicrobial resistance.
Collapse
Affiliation(s)
- Rafael Shinji Akiyama Kitamura
- Ecology and Conservation Post-Graduation Program, Federal University of Paraná, PO Box 19031, Curitiba, PR, 81530-980, Brazil.
- Department of Pharmacology, Federal University of Paraná, PO Box 19031, Curitiba, PR, 81530-980, Brazil.
- Department of Botany, Federal University of Paraná, PO Box 19031, Curitiba, PR, 81530-980, Brazil.
| | - Maiara Vicentini
- Ecology and Conservation Post-Graduation Program, Federal University of Paraná, PO Box 19031, Curitiba, PR, 81530-980, Brazil
- Department of Pharmacology, Federal University of Paraná, PO Box 19031, Curitiba, PR, 81530-980, Brazil
| | - Vitória Bitencourt
- Department of Pharmacology, Federal University of Paraná, PO Box 19031, Curitiba, PR, 81530-980, Brazil
| | - Taynah Vicari
- Department of Genetics, Federal University of Paraná, PO Box 19071, Curitiba, PR, 81530-980, Brazil
| | - Welton Motta
- Department of Genetics, Federal University of Paraná, PO Box 19071, Curitiba, PR, 81530-980, Brazil
| | | | - Marta Margarete Cestari
- Department of Genetics, Federal University of Paraná, PO Box 19071, Curitiba, PR, 81530-980, Brazil
| | - Maritana Mela Prodocimo
- Department of Cell Biology, Federal University of Paraná, PO Box 19031, Curitiba, PR, 81537-980, Brazil
| | - Helena Cristina Silva de Assis
- Ecology and Conservation Post-Graduation Program, Federal University of Paraná, PO Box 19031, Curitiba, PR, 81530-980, Brazil
- Department of Pharmacology, Federal University of Paraná, PO Box 19031, Curitiba, PR, 81530-980, Brazil
| | - Marcelo Pedrosa Gomes
- Ecology and Conservation Post-Graduation Program, Federal University of Paraná, PO Box 19031, Curitiba, PR, 81530-980, Brazil
- Department of Botany, Federal University of Paraná, PO Box 19031, Curitiba, PR, 81530-980, Brazil
| |
Collapse
|
36
|
Kitamura RSA, Brito JCM, Silva de Assis HC, Gomes MP. Physiological responses and phytoremediation capacity of floating and submerged aquatic macrophytes exposed to ciprofloxacin. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:622-639. [PMID: 35904744 DOI: 10.1007/s11356-022-22253-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
Ciprofloxacin (Cipro) water contamination is a global concern, having reached disturbing concentrations and threatening the aquatic ecosystems. We investigated the physiological responses and Cipro-phytoremediation capacity of one floating (Salvinia molesta D.S. Mitchell) and one submerged (Egeria densa Planch.) species of aquatic macrophytes. The plants were exposed to increased concentrations of Cipro (0, 1, 10, and 100 µg.Cipro.L-1) in artificially contaminated water for 96 and 168 h. Although the antibiotic affected the activities of mitochondrial electron transport chain enzymes, the resulting increases in H2O2 concentrations were not associated with oxidative damage or growth reductions, mainly due to the activation of antioxidant systems for both species. In addition to being tolerant to Cipro, after only 96 h, plants were able to reclaim more than 58% of that from the media. The phytoremediation capacity did not differ between the species, however, while S. molesta bioaccumulate, E. densa appears to metabolize Cipro in their tissues. Both macrophytes are indicated for Cipro-phytoremediation projects.
Collapse
Affiliation(s)
- Rafael Shinji Akiyama Kitamura
- Laboratório de Fisiologia de Plantas Sob Estresse, Departamento de Botânica, Setor de Ciências Biológicas, Universidade Federal Do Paraná, Avenida Coronel Francisco H. Dos Santos, 100, Centro Politécnico Jardim das Américas, C.P. 19031, Curitiba , Paraná, 81531-980, Brazil
- Laboratório de Toxicologia Ambiental, Departamento de Farmacologia, Setor de Ciências Biológicas, Universidade Federal Do Paraná, Avenida Coronel Francisco H. Dos Santos, 100, Centro Politécnico Jardim das Américas, C.P. 19031, Curitiba , Paraná, 81531-980, Brazil
- Ecology and Conservation Program Post-Graduation, Federal University of Paraná, Avenue Coronel Francisco Heráclito dos Santos, 100, Jardim das Américas, Curitiba , Paraná, 81531-980, Brazil
| | - Júlio César Moreira Brito
- Fundação Ezequiel Dias, Rua Conde Pereira Carneiro, 80, Belo Horizonte, Minas Gerais, 30510-010, Brazil
| | - Helena Cristina Silva de Assis
- Laboratório de Toxicologia Ambiental, Departamento de Farmacologia, Setor de Ciências Biológicas, Universidade Federal Do Paraná, Avenida Coronel Francisco H. Dos Santos, 100, Centro Politécnico Jardim das Américas, C.P. 19031, Curitiba , Paraná, 81531-980, Brazil
| | - Marcelo Pedrosa Gomes
- Laboratório de Fisiologia de Plantas Sob Estresse, Departamento de Botânica, Setor de Ciências Biológicas, Universidade Federal Do Paraná, Avenida Coronel Francisco H. Dos Santos, 100, Centro Politécnico Jardim das Américas, C.P. 19031, Curitiba , Paraná, 81531-980, Brazil.
| |
Collapse
|
37
|
Geng J, Liu X, Wang J, Li S. Accumulation and risk assessment of antibiotics in edible plants grown in contaminated farmlands: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 853:158616. [PMID: 36089029 DOI: 10.1016/j.scitotenv.2022.158616] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/04/2022] [Accepted: 09/04/2022] [Indexed: 06/15/2023]
Abstract
The extensive occurrence of antibiotics in farmland soil might threaten food safety. The bioaccumulation potential of antibiotics in edible vegetables and crops grown under realistic farming scenarios was reviewed and the human health risk was assessed. A total of 51 antibiotics were documented in 37 species of daily consumed crops. Among different classes of antibiotics, tetracyclines (TCs) exhibited higher residue levels in plants than quinolones (QNs), sulfonamides (SAs), and macrolides (MLs), with median values ranging from 5.10 to 15.4 μg/kg dry weight. The favored accumulation of TCs in plants was probably linked to their relatively higher residual concentrations in soils and greater bioconcentration factors. Compared with the plants grown in open field, accumulation of antibiotics was higher in plant grown under greenhouse condition, probably due to the higher residue levels of antibiotics in the greenhouse soil with intensive application of manure. Cocktails of antibiotics were investigated in potato, corn, carrot, tomato, lettuce, and wheat. Among them, corn exhibited relatively high median concentrations of antibiotics (0.400-203 μg/kg dry weight). Antibiotics tended to accumulate in plant root and their concentrations in fruit were generally low. Risk assessment revealed that human health risk was under the alert line through the daily consumption of antibiotic contaminated vegetables and food crops.
Collapse
Affiliation(s)
- Jiagen Geng
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Xiaoying Liu
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Jie Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Si Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; Yantai Institute of China Agriculture University, Yantai 264670, China.
| |
Collapse
|
38
|
Adane WD, Chandravanshi BS, Tessema M. A simple, ultrasensitive and cost-effective electrochemical sensor for the determination of ciprofloxacin in various types of samples. SENSING AND BIO-SENSING RESEARCH 2022. [DOI: 10.1016/j.sbsr.2022.100547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
39
|
Matamoros V, Casas ME, Pastor E, Tadić Đ, Cañameras N, Carazo N, Bayona JM. Effects of tetracycline, sulfonamide, fluoroquinolone, and lincosamide load in pig slurry on lettuce: Agricultural and human health implications. ENVIRONMENTAL RESEARCH 2022; 215:114237. [PMID: 36084673 DOI: 10.1016/j.envres.2022.114237] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/24/2022] [Accepted: 08/26/2022] [Indexed: 06/15/2023]
Abstract
The application of pig slurry as fertilizer in agriculture provides nutrients, but it can also contain veterinary medicines, including antibiotic residues (ABs), which can have an ecotoxicological impact on agroecosystems. Furthermore, uptake, translocation, and accumulation of ABs in crops can mobilize them throughout the food chain. This greenhouse study aims to assess AB uptake from soil fertilized with pig slurry and its phenotypical effects on Lactuca sativa L. The plants were cropped in loamy clay soil dosed at 140 kg total N/ha and containing antibiotics (lincomycin, sulfadiazine, oxytetracycline, and enrofloxacin) at different concentration levels (0, 0.05, 0.5, 5, 50, and 500 mg/kg fresh weight, fw). Whereas sulfadiazine (11.8 ng/g fw) was detected in lettuce leaves at the intermediate doses (0.5 mg/kg), lincomycin and its transformation products (hydroxy/sulfate) were only detected at the 50 mg/kg fw dose. In addition, increased AB doses in the pig slurry resulted in decreased lettuce fresh weight and lipid and carbohydrate content and became lethal to lettuce at the highest AB concentrations (500 mg/kg fw). Nevertheless, even at higher doses, the AB content in lettuce following pig-slurry fertilization did not pose any direct significant human health risk (total hazard quotient<0.01). However, the promotion of antimicrobial resistance in humans due to the intake of these vegetables cannot be ruled out.
Collapse
Affiliation(s)
- V Matamoros
- Department of Environmental Chemistry, IDAEA-CSIC, C/Jordi Girona, 18-26, E-08034, Barcelona, Spain.
| | - M Escolà Casas
- Department of Environmental Chemistry, IDAEA-CSIC, C/Jordi Girona, 18-26, E-08034, Barcelona, Spain
| | - E Pastor
- Department of Environmental Chemistry, IDAEA-CSIC, C/Jordi Girona, 18-26, E-08034, Barcelona, Spain
| | - Đ Tadić
- Department of Environmental Chemistry, IDAEA-CSIC, C/Jordi Girona, 18-26, E-08034, Barcelona, Spain
| | - N Cañameras
- Department of Agri-Food Engineering and Biotechnology DEAB-UPC, Esteve Terrades 8, Building 4, Castelldefels, Spain
| | - N Carazo
- Department of Agri-Food Engineering and Biotechnology DEAB-UPC, Esteve Terrades 8, Building 4, Castelldefels, Spain
| | - J M Bayona
- Department of Environmental Chemistry, IDAEA-CSIC, C/Jordi Girona, 18-26, E-08034, Barcelona, Spain
| |
Collapse
|
40
|
Jin MK, Yang YT, Zhao CX, Huang XR, Chen HM, Zhao WL, Yang XR, Zhu YG, Liu HJ. ROS as a key player in quinolone antibiotic stress on Arabidopsis thaliana: From the perspective of photosystem function, oxidative stress and phyllosphere microbiome. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 848:157821. [PMID: 35931174 DOI: 10.1016/j.scitotenv.2022.157821] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/31/2022] [Accepted: 07/31/2022] [Indexed: 06/15/2023]
Abstract
With the increasing use of antibiotics, their ecological impacts have received widespread attention. However, research on the toxicity of quinolone antibiotics is still limited, especially regarding the oxidative stress and phyllosphere of plants. In this study, the toxic effects of enrofloxacin, norfloxacin, and levofloxacin on Arabidopsis thaliana and their underlying mechanisms were investigated. The toxicity of the three quinolone antibiotics decreased in the following order: enrofloxacin > norfloxacin > levofloxacin. Physiological cellular changes, such as plasmolysis and chloroplast swelling, were observed using electron microscopy. Photosynthetic efficiency was inhibited with a decline in the effective photochemical quantum yield of photosystem II (Y(II)) and non-photochemical quenching (NPQ), indicating that quinolone antibiotics might reduce light energy conversion efficiency and excess light energy dissipation. Oxidative stress occurred in A. thaliana after quinolone antibiotic treatment, with an increase in reactive oxygen species (ROS) levels and malondialdehyde (MDA) content. High ROS levels stimulated the over-expression of superoxide-responsive genes for self-protection. Structural equation modeling (SEM) analysis showed that photosynthesis inhibition and cellular damage caused by oxidative stress were critical factors for growth inhibition, suggesting that the antioxidant response activated by ROS might be a potential mechanism. Furthermore, the diversity of the phyllospheric microbial communities decreased after enrofloxacin exposure. Additionally, specific microbes were preferentially recruited to the phyllosphere because of the higher ROS levels.
Collapse
Affiliation(s)
- Ming-Kang Jin
- School of Environmental Science and Engineering, Instrumental Analysis Center, Zhejiang Gongshang University, Hangzhou 310018, PR China; Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China
| | - Yu-Tian Yang
- Centre for Environmental Policy, Faculty of Natural Sciences, Imperial College London, London SW7 2AZ, UK
| | - Cai-Xia Zhao
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China
| | - Xin-Rong Huang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China
| | - Han-Mei Chen
- School of Environmental Science and Engineering, Instrumental Analysis Center, Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Wen-Lu Zhao
- School of Environmental Science and Engineering, Instrumental Analysis Center, Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Xiao-Ru Yang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China
| | - Yong-Guan Zhu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China; State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Hui-Jun Liu
- School of Environmental Science and Engineering, Instrumental Analysis Center, Zhejiang Gongshang University, Hangzhou 310018, PR China; International Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development, Zhejiang Gongshang University, Hangzhou, Zhejiang 310012, PR China.
| |
Collapse
|
41
|
Qian X, Huang J, Yan C, Xiao J. Ecological restoration performance enhanced by nano zero valent iron treatment in constructed wetlands under perfluorooctanoic acid stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 846:157413. [PMID: 35870581 DOI: 10.1016/j.scitotenv.2022.157413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/12/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
Perfluorooctanoic acid (PFOA) of widespread use can enter constructed wetlands (CWs) via migration, and inevitably causes negative impacts on removal efficiencies of conventional pollutants due to its ecotoxicity. However, little attention has been paid to strengthen performance of CWs under PFOA stress. In this study, influences of nano zero valent iron (nZVI), which has been demonstrated to improve nutrients removal, were explored after exemplifying threats of PFOA to operation performance in CWs. The results revealed that 1 mg/L PFOA suppressed the nitrification capacity and phosphorus removal, and nZVI distinctly improved the removal efficiency of ammonia and total phosphorus in CWs compared to PFOA exposure group without nZVI, with the maximum increases of 3.65 % and 16.76 %. Furthermore, nZVI significantly stimulated dehydrogenase (390.64 % and 884.54 %) and urease (118.15 % and 246.92 %) activities during 0-30 d and 30-60 d in comparison to PFOA group. On the other hand, nitrifying enzymes were also promoted, in which ammonia monooxygenase increased by 30.90 % during 0-30 d, and nitrite oxidoreductase was raised by 117.91 % and 232.10 % in two stages. Besides, the content of extracellular polymeric substances (EPS) under nZVI treatment was 72.98 % higher than PFOA group. Analyses of Illumina Miseq sequencing further certified that nZVI effectively improved the community richness and caused the enrichment of microorganisms related to nitrogen and phosphorus removal and EPS secreting. These results could provide valuable information for ecological restoration and decontamination performance enhancement of CWs exposed to PFOA.
Collapse
Affiliation(s)
- Xiuwen Qian
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 211189, China
| | - Juan Huang
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 211189, China.
| | - Chunni Yan
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 211189, China
| | - Jun Xiao
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 211189, China
| |
Collapse
|
42
|
Lv M, Zhang D, Niu X, Ma J, Lin Z, Fu M. Insights into the fate of antibiotics in constructed wetland systems: Removal performance and mechanisms. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 321:116028. [PMID: 36104874 DOI: 10.1016/j.jenvman.2022.116028] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/12/2022] [Accepted: 08/14/2022] [Indexed: 06/15/2023]
Abstract
Antibiotics have been recognized as emerging contaminants that are widely distributed and accumulated in aquatic environment, posing a risk to ecosystem at trace level. Constructed wetlands (CWs) have been regarded as a sustainable and cost-effective alternative for efficient elimination of antibiotics. This review summarizes the removal of 5 categories of widely used antibiotics in CWs, and discusses the roles of the key components in CW system, i.e., substrate, macrophytes, and microorganisms, in removing antibiotics. Overall, the vertical subsurface flow CWs have proven to perform better in terms of antibiotic removal (>78%) compared to other single CWs. The adsorption behavior of antibiotics in wetland substrates is determined by the physicochemical properties of antibiotics, substrate configuration and operating parameters. The effects of wetland plants on antibiotic removal mainly include direct (e.g., plant uptake and degradation) and indirect (e.g., rhizosphere processes) manners. The possible interactions between microorganisms and antibiotics include biosorption, bioaccumulation and biodegradation. The potential strategies for further enhancement of the antibiotic removal performance in CWs included optimizing operation parameters, innovating substrate, strengthening microbial activity, and integrating with other treatment technologies. Taken together, this review provides useful information for facilitating the development of feasible, innovative and intensive antibiotic removal technologies in CWs, as well as enhancing the economic viability and ecological sustainability.
Collapse
Affiliation(s)
- Mengyu Lv
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China.
| | - Dongqing Zhang
- School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China.
| | - Xiaojun Niu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China.
| | - Jinling Ma
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China.
| | - Zhang Lin
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China.
| | - Mingli Fu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China.
| |
Collapse
|
43
|
Maldonado I, Moreno Terrazas EG, Vilca FZ. Application of duckweed (Lemna sp.) and water fern (Azolla sp.) in the removal of pharmaceutical residues in water: State of art focus on antibiotics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156565. [PMID: 35690203 DOI: 10.1016/j.scitotenv.2022.156565] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 05/09/2022] [Accepted: 06/05/2022] [Indexed: 06/15/2023]
Abstract
In recent decades, antibiotic residues in the environment have increased, affecting components of biological communities, from bacteria to plants and animals. Different methods have been used to remove these compounds, including phytoremediation with floating aquatic species such as duckweed and aquatic fern, with positive results. This study analyses information about the removal efficiency of drugs, with a focus on antibiotics, using Lemna and Azolla, which will allow a better understanding of phytoremediation processes from the perspective of plant physiology. The physiological processes of macrophytes in an environment with this type of pollutant and the phytotoxic effects on plants at high concentrations are also analysed. The metabolization of toxic compounds occurs in three phases: phase I begins with the absorption of antibiotics and the secretion of reactive oxygen species (ROS); in phase II, the effects of ROS are neutralized and minimized by conjugation with enzymes such as glutathione transferase or metabolites such as glutathione; and phase III culminates with the storage of the assimilated compounds in the vacuoles, apoplast and cell wall. In this way, plants contribute to the removal of toxic compounds. In summary, there is sufficient scientific evidence on the efficiency of the elimination of pharmaceutical compounds by these floating macrophytes at the laboratory scale, which indicates that their application under real conditions can have good results.
Collapse
Affiliation(s)
- Ingrid Maldonado
- Programa de Doctorado en Ciencia, Tecnología y Medio Ambiente, Escuela de Posgrado, Universidad Nacional del Altiplano de Puno, Av. Floral N° 1153, Puno, Peru.
| | - Edmundo G Moreno Terrazas
- Facultad de Ciencias Biológicas, Universidad Nacional del Altiplano de Puno, Av. Floral N° 1153, Puno 21001, Peru
| | - Franz Zirena Vilca
- Laboratorio de Contaminantes Orgánicos y Ambiente del IINDEP de la Universidad Nacional de Moquegua, Perú, Urb Ciudad Jardín-Pacocha-Ilo, Peru; Instituto de Investigación para el Desarrollo Sostenible y Cambio Climático INDESC de la Universidad Nacional de Frontera, Perú, San Hilarión N° 101 - Sullana, Piura, Peru
| |
Collapse
|
44
|
Matamoros V, Casas ME, Mansilla S, Tadić Đ, Cañameras N, Carazo N, Portugal J, Piña B, Díez S, Bayona JM. Occurrence of antibiotics in Lettuce (Lactuca sativa L.) and Radish (Raphanus sativus L.) following organic soil fertilisation under plot-scale conditions: Crop and human health implications. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129044. [PMID: 35525220 DOI: 10.1016/j.jhazmat.2022.129044] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 04/25/2022] [Accepted: 04/28/2022] [Indexed: 06/14/2023]
Abstract
Recent studies have demonstrated the crop uptake of antibiotics (ABs) from soils treated with AB-carrying fertilisers. However, there is a lack of plot-scale studies linking their effects at the agronomic and metabolomic/transcriptomic level to their impact on human health. This paper assesses the plant uptake of 23 ABs following two productive cycles of lettuce and radish cropped with sewage sludge, pig slurry, the organic fraction of municipal solid waste, or chemical fertilisation under plot-scale conditions (32 plots spanning 3-10 m2 each). AB uptake by plants depended on both the vegetable and the AB class and was higher in radish than in lettuce edible parts. Levels ranged from undetectable to up to 76 ng/g (fresh weight). Repetitive organic fertilisation resulted in an increase in the concentration of ABs in lettuce leaves, but not in radish roots. Significant metabolomic and transcriptomic changes were observed following soil fertilisation. Nevertheless, a human health risk assessment indicates that the occurrence of ABs in lettuce or radish edible parts does not pose any risk. To our knowledge, this is the first holistic plot-scale study demonstrating that the use of organic fertilisers containing ABs is safe for crop security and human health.
Collapse
Affiliation(s)
- V Matamoros
- Department of Environmental Chemistry, IDAEA-CSIC, c/Jordi Girona, 18-26, E-08034 Barcelona, Spain; Department of Agri-Food Engineering and Biotechnology DEAB-UPC, Esteve Terrades 8, Building 4, Castelldefels, Spain.
| | - M Escolà Casas
- Department of Environmental Chemistry, IDAEA-CSIC, c/Jordi Girona, 18-26, E-08034 Barcelona, Spain; Department of Agri-Food Engineering and Biotechnology DEAB-UPC, Esteve Terrades 8, Building 4, Castelldefels, Spain
| | - S Mansilla
- Department of Environmental Chemistry, IDAEA-CSIC, c/Jordi Girona, 18-26, E-08034 Barcelona, Spain; Department of Agri-Food Engineering and Biotechnology DEAB-UPC, Esteve Terrades 8, Building 4, Castelldefels, Spain
| | - Đ Tadić
- Department of Environmental Chemistry, IDAEA-CSIC, c/Jordi Girona, 18-26, E-08034 Barcelona, Spain; Department of Agri-Food Engineering and Biotechnology DEAB-UPC, Esteve Terrades 8, Building 4, Castelldefels, Spain
| | - N Cañameras
- Department of Environmental Chemistry, IDAEA-CSIC, c/Jordi Girona, 18-26, E-08034 Barcelona, Spain; Department of Agri-Food Engineering and Biotechnology DEAB-UPC, Esteve Terrades 8, Building 4, Castelldefels, Spain
| | - N Carazo
- Department of Environmental Chemistry, IDAEA-CSIC, c/Jordi Girona, 18-26, E-08034 Barcelona, Spain; Department of Agri-Food Engineering and Biotechnology DEAB-UPC, Esteve Terrades 8, Building 4, Castelldefels, Spain
| | - J Portugal
- Department of Environmental Chemistry, IDAEA-CSIC, c/Jordi Girona, 18-26, E-08034 Barcelona, Spain; Department of Agri-Food Engineering and Biotechnology DEAB-UPC, Esteve Terrades 8, Building 4, Castelldefels, Spain
| | - B Piña
- Department of Environmental Chemistry, IDAEA-CSIC, c/Jordi Girona, 18-26, E-08034 Barcelona, Spain; Department of Agri-Food Engineering and Biotechnology DEAB-UPC, Esteve Terrades 8, Building 4, Castelldefels, Spain
| | - S Díez
- Department of Environmental Chemistry, IDAEA-CSIC, c/Jordi Girona, 18-26, E-08034 Barcelona, Spain; Department of Agri-Food Engineering and Biotechnology DEAB-UPC, Esteve Terrades 8, Building 4, Castelldefels, Spain
| | - J M Bayona
- Department of Environmental Chemistry, IDAEA-CSIC, c/Jordi Girona, 18-26, E-08034 Barcelona, Spain; Department of Agri-Food Engineering and Biotechnology DEAB-UPC, Esteve Terrades 8, Building 4, Castelldefels, Spain
| |
Collapse
|
45
|
Stando K, Korzeniewska E, Felis E, Harnisz M, Bajkacz S. Uptake of Pharmaceutical Pollutants and Their Metabolites from Soil Fertilized with Manure to Parsley Tissues. Molecules 2022; 27:molecules27144378. [PMID: 35889250 PMCID: PMC9317704 DOI: 10.3390/molecules27144378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/05/2022] [Accepted: 07/05/2022] [Indexed: 02/06/2023] Open
Abstract
Manure is a major source of soil and plant contamination with veterinary drugs residues. The aim of this study was to evaluate the uptake of 14 veterinary pharmaceuticals by parsley from soil fertilized with manure. Pharmaceutical content was determined in roots and leaves. Liquid chromatography coupled with tandem mass spectrometry was used for targeted analysis. Screening analysis was performed to identify transformation products in the parsley tissues. A solid-liquid extraction procedure was developed combined with solid-phase extraction, providing recoveries of 61.9–97.1% for leaves and 51.7–95.6% for roots. Four analytes were detected in parsley: enrofloxacin, tylosin, sulfamethoxazole, and doxycycline. Enrofloxacin was detected at the highest concentrations (13.4–26.3 ng g−1). Doxycycline accumulated mainly in the roots, tylosin in the leaves, and sulfamethoxazole was found in both tissues. 14 transformation products were identified and their distribution were determined. This study provides important data on the uptake and transformation of pharmaceuticals in plant tissues.
Collapse
Affiliation(s)
- Klaudia Stando
- Department of Inorganic, Analytical Chemistry and Electrochemistry, Faculty of Chemistry, Silesian University of Technology, B. Krzywoustego 6 Str., 44-100 Gliwice, Poland
- Correspondence: (K.S.); (S.B.)
| | - Ewa Korzeniewska
- Department of Engineering of Water Protection and Environmental Microbiology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1 Str., 10-720 Olsztyn, Poland; (E.K.); (M.H.)
| | - Ewa Felis
- Centre for Biotechnology, Silesian University of Technology, B. Krzywoustego 8 Str., 44-100 Gliwice, Poland;
- Environmental Biotechnology Department, Faculty of Power and Environmental Engineering, Silesian University of Technology, Akademicka 2 Str., 44-100 Gliwice, Poland
| | - Monika Harnisz
- Department of Engineering of Water Protection and Environmental Microbiology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1 Str., 10-720 Olsztyn, Poland; (E.K.); (M.H.)
| | - Sylwia Bajkacz
- Department of Inorganic, Analytical Chemistry and Electrochemistry, Faculty of Chemistry, Silesian University of Technology, B. Krzywoustego 6 Str., 44-100 Gliwice, Poland
- Centre for Biotechnology, Silesian University of Technology, B. Krzywoustego 8 Str., 44-100 Gliwice, Poland;
- Correspondence: (K.S.); (S.B.)
| |
Collapse
|
46
|
Deng Y, Qian X, Wu Y, Ma T, Xu X, Li J, Wang G, Yan Y. Effects of ciprofloxacin on Eichhornia crassipes phytoremediation performance and physiology under hydroponic conditions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:47363-47372. [PMID: 35179691 DOI: 10.1007/s11356-022-19008-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
Antibiotics can be absorbed by aquatic plants, but they seriously affect the health of aquatic plants and threaten the steady state of aquatic ecosystem. The phytoremediation performance and physiology of floating macrophyte (Eichhornia crassipes) under antibiotic ciprofloxacin (CIP) hydroponic conditions were investigated. It was found that CIP absorption of E. crassipes was up to 84.38% and the root was the main absorption tissue. Hydrolysis and microbial degradation were the second removal pathway of CIP followed the plant absorption. After 7 days of CIP exposure, the photosynthesis efficiency of E. crassipes remained stable, and the presence of CIP did not inhibit the growth of the plant. On the 14th day, the superoxide dismutase and catalase activities were increased in response to the CIP stress. However, the tender leaves of E. crassipes turned white and shrivel, attributed to a decrease in chlorophyll content and chlorophyll fluorescence parameters after 21 days of CIP exposure. These findings will have significant implications for E. crassipes to absorb CIP on a limited time-scale and provide a phytoremediation technology for antibiotics in water.
Collapse
Affiliation(s)
- Yang Deng
- School of Environment, Nanjing Normal University, 1, Wenyuan Road, Xianlin University District, Nanjing, 210023, China
| | - Xiyi Qian
- School of Geographical Sciences, Nantong University, Nantong, 226019, China
| | - Yiting Wu
- School of Environment, Nanjing Normal University, 1, Wenyuan Road, Xianlin University District, Nanjing, 210023, China
| | - Tian Ma
- School of Environment, Nanjing Normal University, 1, Wenyuan Road, Xianlin University District, Nanjing, 210023, China
| | - Xiaoguang Xu
- School of Environment, Nanjing Normal University, 1, Wenyuan Road, Xianlin University District, Nanjing, 210023, China
| | - Jiayi Li
- College of Zhong Bei, Nanjing Normal University, Zhenjiang, 210046, China
| | - Guoxiang Wang
- School of Environment, Nanjing Normal University, 1, Wenyuan Road, Xianlin University District, Nanjing, 210023, China.
| | - Yan Yan
- Jiangsu Provincial Academy of Environmental Science, Nanjing, 210036, China.
| |
Collapse
|
47
|
Effects of Typical Antimicrobials on Growth Performance, Morphology and Antimicrobial Residues of Mung Bean Sprouts. Antibiotics (Basel) 2022; 11:antibiotics11060807. [PMID: 35740213 PMCID: PMC9219749 DOI: 10.3390/antibiotics11060807] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/13/2022] [Accepted: 06/13/2022] [Indexed: 01/11/2023] Open
Abstract
Antimicrobials may be used to inhibit the growth of micro-organisms in the cultivation of mung bean sprouts, but the effects on mung bean sprouts are unclear. In the present study, the growth performance, morphology, antimicrobial effect and antimicrobial residues of mung bean sprouts cultivated in typical antimicrobial solutions were investigated. A screening of antimicrobial residues in thick-bud and rootless mung bean sprouts from local markets showed that the positive ratios of chloramphenicol, enrofloxacin, and furazolidone were 2.78%, 22.22%, and 13.89%, respectively. The cultivating experiment indicated that the production of mung bean sprouts in antimicrobial groups was significantly reduced over 96 h (p < 0.05). The bud and root length of mung bean sprouts in enrofloxacin, olaquindox, doxycycline and furazolidone groups were significantly shortened (p < 0.05), which cultivated thick-bud and rootless mung bean sprouts similar to the 6-benzyl-adenine group. Furthermore, linear regression analysis showed average optical density of 450 nm in circulating water and average production had no obvious correlation in mung bean sprouts (p > 0.05). Antimicrobial residues were found in both mung bean sprouts and circulating water. These novel findings reveal that the antimicrobials could cultivate thick-bud and rootless mung bean sprouts due to their toxicity. This study also proposed a new question regarding the abuse of antimicrobials in fast-growing vegetables, which could be a potential food safety issue.
Collapse
|
48
|
Fu L, Mao S, Chen F, Zhao S, Su W, Lai G, Yu A, Lin CT. Graphene-based electrochemical sensors for antibiotic detection in water, food and soil: A scientometric analysis in CiteSpace (2011-2021). CHEMOSPHERE 2022; 297:134127. [PMID: 35240147 DOI: 10.1016/j.chemosphere.2022.134127] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/11/2022] [Accepted: 02/24/2022] [Indexed: 05/25/2023]
Abstract
The residues of antibiotics in the environment pose a potential health hazard, so highly sensitive detection of antibiotics has always appealed to analytical chemists. With the widespread use of new low-dimensional materials, graphene-modified electrochemical sensors have emerged as an excellent candidate for highly sensitive detection of antibiotics. Graphene, its derivatives and its composites have been used in this field of exploration in the last decade. In this review, we have not only described the field using traditional summaries, but also used bibliometrics to quantify the development of the field. The literature between 2011 and 2021 was included in the analysis. Also, the sensing performance and detection targets of different sensors were compared. We were able to trace not only the flow of research themes, but also the future areas of development. Graphene is a material that has a high potential to be used on a large scale in the preparation of electrochemical sensors. How to design a sensor with selectivity and low cost is the key to bring this material from the laboratory to practical applications.
Collapse
Affiliation(s)
- Li Fu
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China.
| | - Shuduan Mao
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310021, China.
| | - Fei Chen
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Shichao Zhao
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Weitao Su
- School of Sciences, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Guosong Lai
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, China
| | - Aimin Yu
- Department of Chemistry and Biotechnology, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia
| | - Cheng-Te Lin
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
| |
Collapse
|
49
|
Tran TTT, Do MN, Dang TNH, Tran QH, Le VT, Dao AQ, Vasseghian Y. A state-of-the-art review on graphene-based nanomaterials to determine antibiotics by electrochemical techniques. ENVIRONMENTAL RESEARCH 2022; 208:112744. [PMID: 35065928 DOI: 10.1016/j.envres.2022.112744] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/09/2021] [Accepted: 01/13/2022] [Indexed: 06/14/2023]
Abstract
Antibiotics might build up into the human body by foodstuff metabolism, posing a serious threat to human health and safety. Establishing simple and sensitive technology for quick antibiotic evaluation is thus extremely important. Nanomaterials (or NMTs) with the advantage of possessing merits such as remarkable optical, thermal, mechanical, and electrical capabilities have been highlighted as a piece of the best promising materials for rising new paths in the creation of the future generation biosensors. This paper presents the most recent advances in the use of graphene NMTs-based biosensors to determine antibiotics. Gr-NMTs (or graphene nanomaterials) have been used in the development of a biosensor for the electrochemical signal-transducing process. The rising issues and potential chances of this field are contained to give a plan for forthcoming research orientations. As a result, this review provides a comprehensive evaluation of the nanostructured electrochemical sensing approach for antibiotic residues in various systems. In this review, various electrochemical techniques such as CV, DPV, Stripping, EIS, LSV, chronoamperometry, SWV were employed to determine antibiotics. Additionally, this also demonstrates how graphene nanomaterials are employed to detect antibiotics.
Collapse
Affiliation(s)
- Thanh Tam Toan Tran
- Institute of Applied Technology, Thu Dau Mot University, Binh Duong Province, 590000, Viet Nam
| | - Mai Nguyen Do
- Institute of Applied Technology, Thu Dau Mot University, Binh Duong Province, 590000, Viet Nam
| | - Thi Ngoc Hoa Dang
- University of Medicine and Pharmacy, Hue University, 49000, Hue, Viet Nam
| | - Quang Huy Tran
- University of Medicine and Pharmacy, Hue University, 49000, Hue, Viet Nam
| | - Van Thuan Le
- Center for Advanced Chemistry, Institute of Research and Development, Duy Tan University, 03 Quang Trung, Da Nang, 55000, Viet Nam; The Faculty of Environment and Natural Sciences, Duy Tan University, 03 Quang Trung, Da Nang, 55000, Viet Nam
| | - Anh Quang Dao
- Institute of Applied Technology, Thu Dau Mot University, Binh Duong Province, 590000, Viet Nam.
| | - Yasser Vasseghian
- Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran.
| |
Collapse
|
50
|
Cela-Dablanca R, Barreiro A, López LR, Santás-Miguel V, Arias-Estévez M, Núñez-Delgado A, Álvarez-Rodríguez E, Fernández-Sanjurjo MJ. Relevance of sorption in bio-reduction of amoxicillin taking place in forest and crop soils. ENVIRONMENTAL RESEARCH 2022; 208:112753. [PMID: 35074354 DOI: 10.1016/j.envres.2022.112753] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/07/2022] [Accepted: 01/14/2022] [Indexed: 06/14/2023]
Abstract
The fate of antibiotics reaching soils is a matter of concern, given its potential repercussions on public health and the environment. In this work, the potential bio-reduction of the antibiotic amoxicillin (AMX), affected by sorption and desorption, is studied for 17 soils with clearly different characteristics. To carry out these studies, batch-type tests were performed, adding increasing concentrations of AMX (0, 2.5, 5, 10, 20, 30, 40, and 50 μmol L-1) to the soils. For the highest concentration added (50 μmol L-1), the adsorption values for forest soils ranged from 90.97 to 102.54 μmol kg-1 (74.21-82.41% of the amounts of antibiotic added), while the range was 69.96-94.87 μmol kg-1 (68.31-92.56%) for maize soils, and 52.72-85.40 μmol kg-1 (50.96-82.55%) for vineyard soils. When comparing the results for all soils, the highest adsorption corresponded to those more acidic and with high organic matter and non-crystalline minerals contents. The best adjustment to adsorption models corresponded to Freundlich's. AMX desorption was generally <10%; specifically, the maximum was 6.5% in forest soils, and 16.9% in agricultural soils. These results can be considered relevant since they cover agricultural and forest soils with a wide range of pH and organic matter contents, for an antibiotic that, reaching the environment as a contaminant, can pose a potential danger to human and environmental health.
Collapse
Affiliation(s)
- Raquel Cela-Dablanca
- Department of Soil Science and Agricultural Chemistry, Engineering Polytechnic School, Univ. Santiago de Compostela, 27002, Lugo, Spain
| | - Ana Barreiro
- Department of Soil Science and Agricultural Chemistry, Engineering Polytechnic School, Univ. Santiago de Compostela, 27002, Lugo, Spain
| | - Lucia Rodríguez López
- Soil Science and Agricultural Chemistry, Fac. Sciences, Univ. Vigo, 32004, Ourense, Spain
| | - Vanesa Santás-Miguel
- Soil Science and Agricultural Chemistry, Fac. Sciences, Univ. Vigo, 32004, Ourense, Spain
| | - Manuel Arias-Estévez
- Soil Science and Agricultural Chemistry, Fac. Sciences, Univ. Vigo, 32004, Ourense, Spain
| | - Avelino Núñez-Delgado
- Department of Soil Science and Agricultural Chemistry, Engineering Polytechnic School, Univ. Santiago de Compostela, 27002, Lugo, Spain.
| | - Esperanza Álvarez-Rodríguez
- Department of Soil Science and Agricultural Chemistry, Engineering Polytechnic School, Univ. Santiago de Compostela, 27002, Lugo, Spain
| | - María J Fernández-Sanjurjo
- Department of Soil Science and Agricultural Chemistry, Engineering Polytechnic School, Univ. Santiago de Compostela, 27002, Lugo, Spain
| |
Collapse
|