1
|
Le DC, Ngo MHT, Kuo YC, Chen SH, Lin CY, Ling TY, Pham QTT, Au HK, Myung J, Huang YH. Secretome from estrogen-responding human placenta-derived mesenchymal stem cells rescues ovarian function and circadian rhythm in mice with cyclophosphamide-induced primary ovarian insufficiency. J Biomed Sci 2024; 31:95. [PMID: 39390588 PMCID: PMC11468397 DOI: 10.1186/s12929-024-01085-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 09/11/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND Primary ovarian insufficiency (POI) is an early decline in ovarian function that leads to ovarian failure. Conventional treatments for POI are inadequate, and treatments based on mesenchymal stem cells (MSCs) have emerged as an option. However, the lack of consideration of the estrogen niche in ovarian tissue significantly reduces the therapeutic efficacy, with an unclear mechanism in the MSCs in POI treatment. Furthermore, the disruption of circadian rhythm associated with POI has not been previously addressed. METHODS Conditioned medium (CM) and estradiol-conditioned medium (E2-CM) were generated from estrogen receptor positive MSCs (ER+pcMSCs). Chemotherapy-induced POI models were established using C57BL/6 mice (in vivo) and KGN cells (in vitro) treated with cyclophosphamide (CTX) or 4-hydroperoxycyclophosphamide (4-OOH-CP). Gene/protein expressions were detected using RT-qPCR, Western blotting, and immunohistochemistry assays. Locomotor activity was monitored for behavioral circadian rhythmicity. Cytokine arrays and miRNA analysis were conducted to analyze potential factors within CM/E2-CM. RESULTS The secretome of ER+pcMSCs (CM and E2-CM) significantly reduced the CTX-induced defects in ovarian folliculogenesis and circadian rhythm. CM/E2-CM also reduced granulosa cell apoptosis and rescued angiogenesis in POI ovarian tissues. E2-CM had a more favorable effect than the CM. Notably, ER+pcMSC secretome restored CTX-induced circadian rhythm defects, including the gene expressions associated with the ovarian circadian clock (e.g., Rora, E4bp4, Rev-erbα, Per2 and Dbp) and locomotor activity. Additionally, the cytokine array analysis revealed a significant increase in cytokines and growth factors associated with immunomodulation and angiogenesis, including angiogenin. Neutralizing the angiogenin in CM/E2-CM significantly reduced its ability to promote HUVEC tube formation in vitro. Exosomal miRNA analysis revealed the miRNAs involved in targeting the genes associated with POI rescue (PTEN and PDCD4), apoptosis (caspase-3, BIM), estrogen synthesis (CYP19A1), ovarian clock regulation (E4BP4, REV-ERBα) and fibrosis (COL1A1). CONCLUSION This study is the first to demonstrate that, in considering the estrogen niche in ovarian tissue, an estrogen-priming ER+pcMSC secretome achieved ovarian regeneration and restored the circadian rhythm in a CTX-induced POI mouse model. The potential factors involved include angiogenin and exosomal miRNAs in the ER+pcMSC secretome. These findings offer insights into potential stem cell therapies for chemotherapy-induced POI and circadian rhythm disruption.
Collapse
Affiliation(s)
- Duy-Cuong Le
- International Ph.D. Program in Cell Therapy and Regenerative Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
- Laboratory, Vinmec International Hospital, Minh Khai Street, Hai Ba Trung, Hanoi, Vietnam
| | - Mai-Huong T Ngo
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan
| | - Yung-Che Kuo
- TMU Research Center for Cell Therapy and Regeneration Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan
| | - Shu-Hwa Chen
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, 11031, Taiwan
| | - Chung-Yen Lin
- Institute of Information Science, Academia Sinica, Taipei, 11529, Taiwan
- Institute of Fishery Sciences, College of Life Science, National Taiwan University, Taipei, 10617, Taiwan
- Genome and Systems Biology Degree Program, National Taiwan University, Taipei, 10617, Taiwan
| | - Thai-Yen Ling
- Department and Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, 10617, Taiwan
| | - Quoc Thao Trang Pham
- International Ph.D. Program in Cell Therapy and Regenerative Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
| | - Heng-Kien Au
- International Ph.D. Program in Cell Therapy and Regenerative Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan.
- Department of Obstetrics and Gynecology, School of Medicine, College of Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan.
- Department of Obstetrics and Gynecology, Taipei Medical University Hospital, Taipei, 11042, Taiwan.
- Center for Reproductive Medicine, Taipei Medical University Hospital, Taipei Medical University, Taipei, 11042, Taiwan.
| | - Jihwan Myung
- Graduate Institute of Mind, Brain and Consciousness, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan.
- Brain and Consciousness Research Centre (BCRC), TMU-Shuang Ho Hospital, New Taipei City, 23561, Taiwan.
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Wuxing Street, Taipei, 11031, Taiwan.
| | - Yen-Hua Huang
- International Ph.D. Program in Cell Therapy and Regenerative Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan.
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan.
- TMU Research Center for Cell Therapy and Regeneration Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan.
- Center for Reproductive Medicine, Taipei Medical University Hospital, Taipei Medical University, Taipei, 11042, Taiwan.
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Wuxing Street, Taipei, 11031, Taiwan.
| |
Collapse
|
2
|
Wang Q, Sun RY, Hu JX, Sun YH, Li CY, Huang H, Wang H, Li XM. Hypothalamic-hindbrain circuit for consumption-induced fear regulation. Nat Commun 2024; 15:7728. [PMID: 39231981 PMCID: PMC11375128 DOI: 10.1038/s41467-024-51983-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 08/21/2024] [Indexed: 09/06/2024] Open
Abstract
To ensure survival, animals must sometimes suppress fear responses triggered by potential threats during feeding. However, the mechanisms underlying this process remain poorly understood. In the current study, we demonstrated that when fear-conditioned stimuli (CS) were presented during food consumption, a neural projection from lateral hypothalamic (LH) GAD2 neurons to nucleus incertus (NI) relaxin-3 (RLN3)-expressing neurons was activated, leading to a reduction in CS-induced freezing behavior in male mice. LHGAD2 neurons established excitatory connections with the NI. The activity of this neural circuit, including NIRLN3 neurons, attenuated CS-induced freezing responses during food consumption. Additionally, the lateral mammillary nucleus (LM), which received NIRLN3 projections, along with RLN3 signaling in the LM, mediated the decrease in freezing behavior. Collectively, this study identified an LHGAD2-NIRLN3-LM circuit involved in modulating fear responses during feeding, thereby enhancing our understanding of how animals coordinate nutrient intake with threat avoidance.
Collapse
Affiliation(s)
- Qin Wang
- Department of Neurobiology and Department of Psychiatry of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Rui-Yue Sun
- Department of Neurobiology and Department of Psychiatry of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jia-Xue Hu
- Department of Neurobiology and Department of Psychiatry of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yan-Hui Sun
- Department of Neurobiology and Department of Psychiatry of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chun-Yue Li
- Department of Neurobiology and Department of Psychiatry of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Huiqian Huang
- Department of Neurobiology and Department of Psychiatry of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hao Wang
- Department of Neurobiology and Department of Psychiatry of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Nanhu Brain-computer Interface Institute, Hangzhou, China.
- Affiliated Mental Health Center and Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Xiao-Ming Li
- Department of Neurobiology and Department of Psychiatry of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Nanhu Brain-computer Interface Institute, Hangzhou, China.
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China.
- Center for Brain Science and Brain-Inspired Intelligence, Research Units for Emotion and Emotion Disorders, Chinese Academy of Medical Sciences, Hangzhou, China.
| |
Collapse
|
3
|
Stone BT, Rahamim OM, Katz DB, Lin JY. Changes in taste palatability across the estrous cycle are modulated by hypothalamic estradiol signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.01.587593. [PMID: 38617267 PMCID: PMC11014520 DOI: 10.1101/2024.04.01.587593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Food intake varies across the stages of a rat's estrous cycle. It is reasonable to hypothesize that this cyclic fluctuation in consumption reflects an impact of hormones on taste palatability/preference, but evidence for this hypothesis has been mixed, and critical within-subject experiments in which rats sample multiple tastes during each of the four main estrous phases (metestrus, diestrus, proestrus, and estrus) have been scarce. Here, we assayed licking for pleasant (sucrose, NaCl, saccharin) and aversive (quinine-HCl, citric acid) tastes each day for 5-10 days while tracking rats' estrous cycles through vaginal cytology. Initial analyses confirmed the previously-described increased consumption of pleasant stimuli 24-48 hours following the time of high estradiol. A closer look, however, revealed this effect to reflect a general magnification of palatability-higher than normal preferences for pleasant tastes and lower than normal preferences for aversive tastes-during metestrus. We hypothesized that this phenomenon might be related to estradiol processing in the lateral hypothalamus (LH), and tested this hypothesis by inhibiting LH estrogen receptor activity with ICI 182,780 during tasting. Control infusions replicated the metestrus magnification of palatability pattern; ICI infusions blocked this effect as predicted, but failed to render preferences "cycle free," instead delaying the palatability magnification until diestrus. Clearly, estrous phase mediates details of taste palatability in a manner involving hypothalamic actions of estradiol; further work will be needed to explain the lack of a flat response across the cycle with hypothalamic estradiol binding inhibited, a result which perhaps suggests dynamic interplay between brain regions or hormones. Significance Statement Consummatory behaviors are impacted by many variables, including naturally circulating hormones. While it is clear that consumption is particularly high during the stages following the high-estradiol stage of the rodent's estrous (and human menstrual) cycle, it is as of yet unclear whether this phenomenon reflects cycle stage-specific palatability (i.e., whether pleasant tastes are particularly delicious, and aversive tastes particularly disgusting, at particular phases). Here we show that palatability is indeed modulated by estrous phase, and that this effect is governed, at least in part, by the action of estradiol within the lateral hypothalamus. These findings shed light on the mechanisms underlying the adverse impact on human welfare due to irregularities observed across the otherwise cyclic menstrual process.
Collapse
|
4
|
Barbagallo F, Cucinella L, Tiranini L, Chedraui P, Calogero AE, Nappi RE. Obesity and sexual health: focus on postmenopausal women. Climacteric 2024; 27:122-136. [PMID: 38251874 DOI: 10.1080/13697137.2024.2302429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 12/20/2023] [Indexed: 01/23/2024]
Abstract
Menopause is a cardiometabolic transition with many women experiencing weight gain and redistribution of body fat. Hormonal changes may affect also several dimensions of well-being, including sexual function, with a high rate of female sexual dysfunction (FSD), which displays a multifactorial etiology. The most important biological factors range from chronic low-grade inflammation, associated with hypertrophic adipocytes that may translate into endothelial dysfunction and compromised blood flow through the genitourinary system, to insulin resistance and other neuroendocrine mechanisms targeting the sexual response. Psychosocial factors include poor body image, mood disorders, low self-esteem and life satisfaction, as well as partner's health and quality of relationship, and social stigma. Even unhealthy lifestyle, chronic conditions and putative weight-promoting medications may play a role. The aim of the present narrative review is to update and summarize the state of the art on the link between obesity and FSD in postmenopausal women, pointing to the paucity of high-quality studies and the need for further research with validated end points to assess both biomarkers of obesity and FSD. In addition, we provide general information on the diagnosis and treatment of FSD at menopause with a focus on dietary interventions, physical activity, anti-obesity drugs and bariatric surgery.
Collapse
Affiliation(s)
- F Barbagallo
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - L Cucinella
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
- Research Center for Reproductive Medicine, Gynecological Endocrinology and Menopause, IRCCS San Matteo Foundation, Pavia, Italy
| | - L Tiranini
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - P Chedraui
- Escuela de Posgrados en Salud, Universidad Espíritu Santo, Samborondón, Ecuador
| | - A E Calogero
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - R E Nappi
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
- Research Center for Reproductive Medicine, Gynecological Endocrinology and Menopause, IRCCS San Matteo Foundation, Pavia, Italy
| |
Collapse
|
5
|
Leidmaa E, Prodan AM, Depner LL, Komorowska-Müller JA, Beins EC, Schuermann B, Kolbe CC, Zimmer A. Astrocytic Dagla Deletion Decreases Hedonic Feeding in Female Mice. Cannabis Cannabinoid Res 2024; 9:74-88. [PMID: 38265773 PMCID: PMC10874831 DOI: 10.1089/can.2023.0194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024] Open
Abstract
Introduction: Endocannabinoids and exogenous cannabinoids are potent regulators of feeding behavior and energy metabolism. Stimulating cannabinoid receptor signaling enhances appetite, particularly for energy-dense palatable foods, and promotes energy storage. To elucidate the underlying cellular mechanisms, we investigate here the potential role of astrocytic endocannabinoid 2-arachidonoylglycerol (2-AG). Astrocytes provide metabolic support for neurons and contribute to feeding regulation but the effect of astrocytic 2-AG on feeding is unknown. Materials and Methods: We generated mice lacking the 2-AG synthesizing enzyme diacylglycerol lipase alpha (Dagla) in astrocytes (GLAST-Dagla KO) and investigated hedonic feeding behavior in male and female mice. Body weight and baseline water and food intake was characterized; additionally, the mice went through milk, saccharine, and sucrose preference tests in fed and fasted states. In female mice, the estrous cycle stages were identified and plasma levels of female sex hormones were measured. Results: We found that the effects of the inducible astrocytic Dagla deletion were sex-specific. Acute milk preference was decreased in female, but not in male mice and the effect was most evident in the estrus stage of the cycle. This prompted us to investigate sex hormone profiles, which were found to be altered in GLAST-Dagla KO females. Specifically, follicle-stimulating hormone was elevated in the estrus stage, luteinizing hormone in the proestrus, and progesterone was increased in both proestrus and estrus stages of the cycle compared with controls. Conclusions: Astrocytic Dagla regulates acute hedonic appetite for palatable food in females and not in males, possibly owing to a deregulated female sex hormone profile. It is plausible that endocannabinoid production by astrocytes at least partly contributes to the greater susceptibility to overeating in females. This finding may also be important for understanding the effects of exogenous cannabinoids on sex hormone profiles.
Collapse
Affiliation(s)
- Este Leidmaa
- Medical Faculty, Institute of Molecular Psychiatry, University of Bonn, Bonn, Germany
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Alexandra Maria Prodan
- Medical Faculty, Institute of Molecular Psychiatry, University of Bonn, Bonn, Germany
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Lena-Louise Depner
- Medical Faculty, Institute of Molecular Psychiatry, University of Bonn, Bonn, Germany
| | | | - Eva Carolina Beins
- Medical Faculty, Institute of Molecular Psychiatry, University of Bonn, Bonn, Germany
- Medical Faculty, Institute of Human Genetics, University of Bonn, Bonn, Germany
| | - Britta Schuermann
- Medical Faculty, Institute of Molecular Psychiatry, University of Bonn, Bonn, Germany
| | | | - Andreas Zimmer
- Medical Faculty, Institute of Molecular Psychiatry, University of Bonn, Bonn, Germany
| |
Collapse
|
6
|
Li C, Lyu S, Yan J, Meng X. The effect of gender in binge eating behavior in Chinese culture: the serial mediation model of body dissatisfaction and self-acceptance. Front Psychol 2023; 14:1285272. [PMID: 38144993 PMCID: PMC10739541 DOI: 10.3389/fpsyg.2023.1285272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/24/2023] [Indexed: 12/26/2023] Open
Abstract
Introduction The gender difference of binge eating behavior been highlighted by previous studies. However, psychological mechanisms underlying the gender difference of binge eating behavior remain unclear. This study addressed this issue from a sociocultural perspective. Methods Firstly, we investigated the mediation effect of body dissatisfaction on the gender difference of binge eating behavior. Secondly, we examine the serial mediating role of body dissatisfaction and self-acceptance in gender differences of binge eating behavior. Here, we analyzed data from 703 Chinese university students using SPSS 26.0 and SPSS PROCESS. Results In Chinese culture, body dissatisfaction and self-acceptance independently or through a serial way mediate the gender differences in binge eating behaviors. Discussion We discussed the implications and limitations of the present study.
Collapse
Affiliation(s)
- Chunlu Li
- Department of Histology and Embryology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, China
- Key Laboratory for Research on Autoimmune Diseases of Higher Education Schools in Guizhou Province, Guiyang, China
- Guizhou Health Development Research Center, Guiyang, China
| | - Shuhui Lyu
- Department of Psychology, School of Medical Humanitarians, Guizhou Medical University, Guiyang, China
| | - Jimin Yan
- Department of Psychology, School of Medical Humanitarians, Guizhou Medical University, Guiyang, China
| | - Xiaolu Meng
- Guizhou Health Development Research Center, Guiyang, China
- Department of Psychology, School of Medical Humanitarians, Guizhou Medical University, Guiyang, China
| |
Collapse
|
7
|
Rathod YD, Abdelgawad R, Hübner CA, Di Fulvio M. Slc12a2 loss in insulin-secreting β-cells links development of overweight and metabolic dysregulation to impaired satiation control of feeding. Am J Physiol Endocrinol Metab 2023; 325:E581-E594. [PMID: 37819196 PMCID: PMC10864024 DOI: 10.1152/ajpendo.00197.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/02/2023] [Accepted: 10/02/2023] [Indexed: 10/13/2023]
Abstract
Male mice lacking the Na+-K+-2Cl- cotransporter Slc12a2 (Nkcc1) specifically in insulin-secreting β-cells (Slc12a2βKO) have reduced β-cell mass and mild β-cell secretory dysfunction associated with overweight, glucose intolerance, insulin resistance, and metabolic abnormalities. Here, we confirmed and extended previous results to female Slc12a2βKO mice, which developed a similar metabolic syndrome-like phenotype as males, albeit milder. Notably, male and female Slc12a2βKO mice developed overweight without consuming excess calories. Analysis of the feeding microstructure revealed that young lean Slc12a2βKO male mice ate meals of higher caloric content and at a relatively lower frequency than normal mice, particularly during the night. In addition, overweight Slc12a2βKO mice consumed significantly larger meals than lean mice. Therefore, the reduced satiation control of feeding precedes the onset of overweight and is worsened in older Slc12a2βKO mice. However, the time spent between meals remained intact in lean and overweight Slc12a2βKO mice, indicating conserved satiety responses to ad libitum feeding. Nevertheless, satiety was intensified during and after refeeding only in overweight males. In lean females, satiety responses to refeeding were delayed relative to age- and body weight-matched control mice but normalized in overweight mice. Since meal size did not change during refeeding, these data suggested that the satiety control of eating after fasting is impaired in lean Slc12a2βKO mice before the onset of overweight and independently of their reduced satiation responses. Therefore, our results support the novel hypothesis that reduced satiation precedes the onset of overweight and the development of metabolic dysregulation.NEW & NOTEWORTHY Obesity, defined as excess fat accumulation, increases the absolute risk for metabolic diseases. Although obesity is usually attributed to increased food intake, we demonstrate that body weight gain can be hastened without consuming excess calories. In fact, impaired meal termination control, i.e., satiation, is detectable before the development of overweight in an animal model that develops a metabolic syndrome-like phenotype.
Collapse
Affiliation(s)
- Yakshkumar Dilipbhai Rathod
- Department of Pharmacology and Toxicology, School of Medicine Dayton, Wright State University, Ohio, United States
| | - Rana Abdelgawad
- Department of Pharmacology and Toxicology, School of Medicine Dayton, Wright State University, Ohio, United States
| | - Christian A Hübner
- Institut für Humangenetik Am Klinikum 1, Universitätsklinikum Jena, Jena, Germany
| | - Mauricio Di Fulvio
- Department of Pharmacology and Toxicology, School of Medicine Dayton, Wright State University, Ohio, United States
| |
Collapse
|
8
|
Ahmed SA, Zhang B, Abdel-Rahman AA. Estrogen-mediated mitigation of cardiac oxidative stress in ovariectomized rats is associated with upregulated cardiac circadian clock Per2 and heart-specific miRNAs. Life Sci 2023; 331:122038. [PMID: 37619835 PMCID: PMC10528738 DOI: 10.1016/j.lfs.2023.122038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/16/2023] [Accepted: 08/21/2023] [Indexed: 08/26/2023]
Abstract
AIM Estrogen (E2) confers cardioprotection in premenopausal women and in models of menopause and its effects, mostly studied in female reproductive organs, vary on a circadian rhythm basis in relation to the circadian clock genes. However, it remains unknown if a similar circadian pattern exists in the female heart in a manner that explains, at least partly, the cardioprotective effect of E2. The aim of the present investigation was to determine if upregulation of the circadian clock Per2 and its regulated heart-specific miRNAs, and redox enzymes contribute to the E2-mediated cardioprotection in ovariectomized rats. MAIN METHODS Rats were subjected to ovariectomy (OVX) 2-weeks prior to a 2-week E2 treatment. On the last treatment day, hearts were collected every 4 h. for ex-vivo biochemical measurements. In parallel studies, telemetric mean arterial pressure (MAP) was obtained at the tissue collection times. KEY FINDINGS OVX + E2 rats exhibited lower body weight during daytime and MAP during day and night times, and their hearts exhibited: (1) higher Per2 protein abundance, cardioprotective miRNAs (miRNA1, miRNA133a, miRNA208a, miRNA499), mALDH2, and catalase; (2) lower reactive oxygen species, cardio-detrimental miRNA652, carbonyl, MDA and HO-1 levels. The reciprocal Per2/HO-1 relationship was more evident during the daytime and correlated with the upregulated cardioprotective miRNAs in OVX + E2 rats. Finally, cardiac Per2, heart-specific miRNAs and reactive oxygen species levels and redox enzymes activities were similar in normal female and OVX + E2 rats. SIGNIFICANCE Enhancement of cardiac Per2, redox enzymes and heart-specific miRNAs likely contribute to E2-mediated mitigation of cardiac oxidative stress in OVX rats.
Collapse
Affiliation(s)
- Syed Anees Ahmed
- Department of Pharmacology and Toxicology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, United States of America
| | - Baohong Zhang
- Department of Biology, East Carolina University, Greenville, NC 27858, United States of America
| | - Abdel A Abdel-Rahman
- Department of Pharmacology and Toxicology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, United States of America.
| |
Collapse
|
9
|
Yasrebi A, Regan D, Roepke TA. The influence of estrogen response element ERα signaling in the control of feeding behaviors in male and female mice. Steroids 2023; 195:109228. [PMID: 36990195 PMCID: PMC10205686 DOI: 10.1016/j.steroids.2023.109228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/03/2023] [Accepted: 03/23/2023] [Indexed: 03/28/2023]
Abstract
Circulating 17β-estradiol (E2) controls energy homeostasis and feeding behaviors primarily by its nuclear receptor, estrogen receptor (ER) α. As such, it is important to understand the role of ERα signaling in the neuroendocrine control of feeding. Our previous data indicated that the loss of ERα signaling through estrogen response elements (ERE) alters food intake in a female mouse model. Hence, we hypothesize that ERE-dependent ERα is necessary for typical feeding behaviors in mice. To test this hypothesis, we examined feeding behaviors on low-fat diet (LFD) and high-fat diet (HFD) in three mouse strains: total ERα knockout (KO), ERα knockin/knockout (KIKO), which lack a functional DNA-binding domain, and their wild type (WT) C57 littermates comparing intact males and females and ovariectomized females with or without E2 replacement. All feeding behaviors were recorded using the Biological Data Acquisition monitoring system (Research Diets). In intact male mice, KO and KIKO consumed less than WT mice on LFD and HFD, while in intact female mice, KIKO consumed less than WT and KO. These differences were primarily driven by shorter meal duration in the KO and KIKO. In ovariectomized females, E2-treated WT and KIKO consumed more LFD than KO driven in part by an increase in meal frequency and a decrease in meal size. On HFD, WT consumed more than KO with E2, again due to effects on meal size and frequency. Collectively, these suggest that both ERE-dependent and -independent ERα signaling are involved in feeding behaviors in female mice depending on the diet consumed.
Collapse
Affiliation(s)
- Ali Yasrebi
- Department of Animal Sciences, School of Environmental & Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Daniel Regan
- Department of Animal Sciences, School of Environmental & Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Troy A Roepke
- Department of Animal Sciences, School of Environmental & Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA; Environmental and Occupational Health Sciences Institute, Rutgers, The State University of New Jersey, Piscataway, NJ, USA; Rutgers Center for Lipid Research, The Center for Nutrition, Microbiome, and Health, and the New Jersey Institute of Food, Nutrition, and Health, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA.
| |
Collapse
|
10
|
Finch JE, Xu Z, Girdler S, Baker JH. Network analysis of eating disorder symptoms in women in perimenopause and early postmenopause. Menopause 2023; 30:275-282. [PMID: 36728103 PMCID: PMC9974533 DOI: 10.1097/gme.0000000000002141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Eating disorders (EDs) are often stereotyped as disorders of adolescence and young adulthood; however, they can occur at any age. Prevalence of EDs at midlife are approximately 3.5% and specific symptoms at midlife can have prevalences as high as 29.3%. Studies also inconsistently suggest that EDs and related symptoms may be more prevalent in midlife aged women during perimenopause compared with midlife aged women at pre-menopause. To date few studies have examined the structure of and associations between ED symptoms in women specifically during perimenopause and early postmenopause. Thus, the purpose of the current study is to investigate the structure of ED symptoms specifically during perimenopause and early postmenopause. METHODS Participants included 36 participants (45-61 y old) in a larger clinical trial who completed the Eating Disorder Examination Questionnaire (EDE-Q) at a baseline study visit. Network analysis statistical models were used to examine the structure of and associations between ED symptoms assessed via the EDE-Q. RESULTS Shape dissatisfaction and weight dissatisfaction were the top 2 central symptoms in the network. CONCLUSIONS Results corroborate previous studies and indicate that, similar to young adult samples, dissatisfaction with body image is a core feature of ED pathology across the lifespan.
Collapse
Affiliation(s)
- Jody E. Finch
- Department of Psychology, Georgia State University, P.O. Box 5010, Atlanta, GA 30302-5010, USA
| | - Ziqian Xu
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, 235 E. Cameron Avenue, Chapel Hill, NC 27515, USA
| | - Susan Girdler
- Department of Psychiatry, University of North Carolina at Chapel Hill, CB #7160, 101 Manning Drive, Chapel Hill, NC 27599-7160, USA
| | - Jessica H. Baker
- Department of Psychiatry, University of North Carolina at Chapel Hill, CB #7160, 101 Manning Drive, Chapel Hill, NC 27599-7160, USA
| |
Collapse
|
11
|
Korgan AC, Oliveira-Abreu K, Wei W, Martin SLA, Bridges ZJD, Leal-Cardoso JH, Kaczorowski CC, O'Connell KMS. High sucrose consumption decouples intrinsic and synaptic excitability of AgRP neurons without altering body weight. Int J Obes (Lond) 2023; 47:224-235. [PMID: 36725979 PMCID: PMC10023568 DOI: 10.1038/s41366-023-01265-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 02/03/2023]
Abstract
BACKGROUND/OBJECTIVE As the obesity epidemic continues, the understanding of macronutrient influence on central nervous system function is critical for understanding diet-induced obesity and potential therapeutics, particularly in light of the increased sugar content in processed foods. Previous research showed mixed effects of sucrose feeding on body weight gain but has yet to reveal insight into the impact of sucrose on hypothalamic functioning. Here, we explore the impact of liquid sucrose feeding for 12 weeks on body weight, body composition, caloric intake, and hypothalamic AgRP neuronal function and synaptic plasticity. METHODS Patch-clamp electrophysiology of hypothalamic AgRP neurons, metabolic phenotyping and food intake were performed on C57BL/6J mice. RESULTS While mice given sugar-sweetened water do not gain significant weight, they do show subtle differences in body composition and caloric intake. When given sugar-sweetened water, mice show similar alterations to AgRP neuronal excitability as in high-fat diet obese models. Increased sugar consumption also primes mice for increased caloric intake and weight gain when given access to a HFD. CONCLUSIONS Our results show that elevated sucrose consumption increased activity of AgRP neurons and altered synaptic excitability. This may contribute to obesity in mice and humans with access to more palatable (HFD) diets.
Collapse
Affiliation(s)
- Austin C Korgan
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, ME, USA
| | - Klausen Oliveira-Abreu
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, ME, USA
- Instituto Superior de Ciências Biomédicas, Universidade Estadual do Ceará, Fortaleza, CE, Brazil
| | - Wei Wei
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, ME, USA
- Georgia State University, Atlanta, GA, USA
| | | | - Zoey J D Bridges
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, ME, USA
| | | | - Catherine C Kaczorowski
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, ME, USA
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, USA
- Neuroscience Program, Graduate School of Biomedical Science, Tufts University School of Medicine, Boston, MA, USA
| | - Kristen M S O'Connell
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, ME, USA.
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, USA.
- Neuroscience Program, Graduate School of Biomedical Science, Tufts University School of Medicine, Boston, MA, USA.
| |
Collapse
|
12
|
High-fat diet and estrogen modulate the gut microbiota in a sex-dependent manner in mice. Commun Biol 2023; 6:20. [PMID: 36624306 PMCID: PMC9829864 DOI: 10.1038/s42003-022-04406-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 12/23/2022] [Indexed: 01/10/2023] Open
Abstract
A high-fat diet can lead to gut microbiota dysbiosis, chronic intestinal inflammation, and metabolic syndrome. Notably, resulting phenotypes, such as glucose and insulin levels, colonic crypt cell proliferation, and macrophage infiltration, exhibit sex differences, and females are less affected. This is, in part, attributed to sex hormones. To investigate if there are sex differences in the microbiota and if estrogenic ligands can attenuate high-fat diet-induced dysbiosis, we used whole-genome shotgun sequencing to characterize the impact of diet, sex, and estrogenic ligands on the microbial composition of the cecal content of mice. We here report clear host sex differences along with remarkably sex-dependent responses to high-fat diet. Females, specifically, exhibited increased abundance of Blautia hansenii, and its levels correlated negatively with insulin levels in both sexes. Estrogen treatment had a modest impact on the microbiota diversity but altered a few important species in males. This included Collinsella aerofaciens F, which we show correlated with colonic macrophage infiltration. In conclusion, male and female mice exhibit clear differences in their cecal microbial composition and in how diet and estrogens impact the composition. Further, specific microbial strains are significantly correlated with metabolic parameters.
Collapse
|
13
|
Aladhami AK, Unger CA, Hope MC, Cotham WE, Velázquez KT, Enos RT. Augmenting Skeletal Muscle Estrogen Does not Prevent or Rescue Obesity-linked Metabolic Impairments in Female Mice. Endocrinology 2022; 163:6678809. [PMID: 36039699 DOI: 10.1210/endocr/bqac146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Indexed: 11/19/2022]
Abstract
AIMS We developed a novel mouse model with increased skeletal muscle estrogen content via inducible, skeletal-muscle-specific aromatase overexpression (SkM-Arom↑). We proposed to examine the effect that increased skeletal muscle estrogen both in gonadally intact and ovariectomized (OVX) female mice has on preventing or rescuing high-fat diet (HFD)-induced obesity. METHODS In the prevention experiment, gonadally intact and OVX SkM-Arom↑ mice and littermate controls were fed a low-fat diet (LFD) or HFD for 13 weeks. SkM-Arom↑ was induced at the initiation of dietary treatment. In the intervention experiment, gonadally intact and OVX SkM-Arom↑ mice and littermate controls were fed an HFD for 14 weeks before induction of SkM-Arom↑ for 6 weeks. Glucose tolerance, insulin action, adipose tissue inflammation, and body composition were assessed. Liquid chromatography-mass spectrometry was used to determine circulating and skeletal muscle steroid content. RESULTS SkM-Arom↑ significantly increased skeletal muscle 17β-estradiol (E2) and estrone (E1) in both experiments. Interestingly, this resulted in leakage of estrogens into circulation, producing a physiologically relevant E2 concentration. Consequently, bone mineral density (BMD) was enhanced and adipose tissue inflammation was reduced in the prevention experiment only. However, no benefits were seen with respect to changes in adiposity or metabolic outcomes. CONCLUSION We show that increasing skeletal muscle estrogen content does not provide a metabolic benefit in gonadally intact and OVX female mice in the setting of obesity. However, a chronic physiological concentration of circulating E2 can improve BMD and reduce adipose tissue inflammation independently of a metabolic benefit or changes in adiposity.
Collapse
Affiliation(s)
- Ahmed K Aladhami
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina 29209, USA
- University of Baghdad, Nursing College, Baghdad, Iraq
| | - Christian A Unger
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina 29209, USA
| | - Marion C Hope
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina 29209, USA
| | - William E Cotham
- Department of Chemistry and Biochemistry, College of Arts and Science, University of South Carolina, Columbia, South Carolina 29208, USA
| | - Kandy T Velázquez
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina 29209, USA
| | - Reilly T Enos
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina 29209, USA
| |
Collapse
|
14
|
Lacasse JM, Gomez-Perales E, Brake WG. Modeling hormonal contraception in female rats: A framework for studies in behavioral neurobiology. Front Neuroendocrinol 2022; 67:101020. [PMID: 35952797 DOI: 10.1016/j.yfrne.2022.101020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/19/2022] [Accepted: 08/03/2022] [Indexed: 12/12/2022]
Abstract
Research on hormonal contraceptives (HC) in animal models is lacking, and as a result, so is our understanding of the impact of HC on the brain and behavior. Here, we provide a review of the pharmacology of HC, as well as the methodology and best practices for designing a model of HC in female rats. We outline specific methodological considerations regarding dosing, route of administration, exposure time/timing, and selecting a control group. We also provide a framework outlining important levels of analysis for thinking about the impact of HC on behavioral and neurobiological outcomes. The purpose of this review is to equip researchers with foundational knowledge, and some basic elements of experimental design for future studies investigating the impact of HC on the brain and behavior of female rats.
Collapse
Affiliation(s)
- Jesse M Lacasse
- Centre for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montréal H4B 1R6, Canada.
| | - Eamonn Gomez-Perales
- Centre for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montréal H4B 1R6, Canada
| | - Wayne G Brake
- Centre for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montréal H4B 1R6, Canada.
| |
Collapse
|
15
|
Blackmore K, Young CN. Central Feminization of Obese Male Mice Reduces Metabolic Syndrome. Brain Sci 2022; 12:1324. [PMID: 36291259 PMCID: PMC9599293 DOI: 10.3390/brainsci12101324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/24/2022] [Accepted: 09/25/2022] [Indexed: 11/16/2022] Open
Abstract
Metabolic syndrome encompasses a spectrum of conditions that increases the risk for cardiovascular and metabolic diseases. It is widely accepted that the sex hormone estrogen plays a protective metabolic role in premenopausal women, in part through central nervous system (CNS) mechanisms. However, most work to date has focused on the loss of estrogen in females (e.g., menopause). Interestingly, transgender individuals receiving feminizing gender affirming therapy (i.e., estrogen) are relatively protected from metabolic syndrome conditions, pointing to a role for CNS estrogen in the development of metabolic syndrome in men. Here, we show that estrogen signaling in the brain protects males from metabolic syndrome and obesity related complications. First, short-term CNS specific supplementation of low-dose 17-β-estradiol in diet-induced obese male mice resulted in a significant reduction in body weight in parallel with a decrease in food intake without alterations in energy expenditure. In conjunction, central supplementation of estrogen reduced visceral adiposity, including epididymal and abdominal regions, with slighter decreases in subcutaneous inguinal and thermogenic brown adipose tissue. Furthermore, central estrogen administration reduced the liver manifestation of metabolic syndrome including hepatomegaly and hepatic steatosis. Collectively, these findings indicate that a lack of estrogen action in the brain may predispose males to metabolic syndrome pathogenesis.
Collapse
Affiliation(s)
- Katherine Blackmore
- School of Medicine and Health Sciences, George Washington University, 2300 I Street NW, Washington, DC 20037, USA
| | - Colin N. Young
- School of Medicine and Health Sciences, George Washington University, 2300 I Street NW, Washington, DC 20037, USA
| |
Collapse
|
16
|
Ghosh-Swaby OR, Reichelt AC, Sheppard PAS, Davies J, Bussey TJ, Saksida LM. Metabolic hormones mediate cognition. Front Neuroendocrinol 2022; 66:101009. [PMID: 35679900 DOI: 10.1016/j.yfrne.2022.101009] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 05/18/2022] [Accepted: 06/02/2022] [Indexed: 11/16/2022]
Abstract
Recent biochemical and behavioural evidence indicates that metabolic hormones not only regulate energy intake and nutrient content, but also modulate plasticity and cognition in the central nervous system. Disruptions in metabolic hormone signalling may provide a link between metabolic syndromes like obesity and diabetes, and cognitive impairment. For example, altered metabolic homeostasis in obesity is a strong determinant of the severity of age-related cognitive decline and neurodegenerative disease. Here we review the evidence that eating behaviours and metabolic hormones-particularly ghrelin, leptin, and insulin-are key players in the delicate regulation of neural plasticity and cognition. Caloric restriction and antidiabetic therapies, both of which affect metabolic hormone levels can restore metabolic homeostasis and enhance cognitive function. Thus, metabolic hormone pathways provide a promising target for the treatment of cognitive decline.
Collapse
Affiliation(s)
- Olivia R Ghosh-Swaby
- Schulich School of Medicine and Dentistry, Neuroscience Program, Western University, London, ON, Canada
| | - Amy C Reichelt
- Faculty of Health and Medical Sciences, Adelaide Medical School, Adelaide, Australia
| | - Paul A S Sheppard
- Schulich School of Medicine and Dentistry, Department of Physiology and Pharmacology, Western University, London, ON, Canada
| | - Jeffrey Davies
- Swansea University Medical School, Swansea University, Swansea, UK
| | - Timothy J Bussey
- Schulich School of Medicine and Dentistry, Neuroscience Program, Western University, London, ON, Canada; Schulich School of Medicine and Dentistry, Department of Physiology and Pharmacology, Western University, London, ON, Canada
| | - Lisa M Saksida
- Schulich School of Medicine and Dentistry, Neuroscience Program, Western University, London, ON, Canada; Schulich School of Medicine and Dentistry, Department of Physiology and Pharmacology, Western University, London, ON, Canada.
| |
Collapse
|
17
|
Effects of Early Weaning Associated with Alimentary Stress on Emotional and Feeding Behavior of Female Adult Wistar Rats. Behav Sci (Basel) 2022; 12:bs12060171. [PMID: 35735381 PMCID: PMC9220599 DOI: 10.3390/bs12060171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/03/2022] [Accepted: 02/09/2022] [Indexed: 02/01/2023] Open
Abstract
Maternal lactation proves crucial for mammals’ nutrition during their early development, influencing the development of adult physiological mechanisms. Its premature termination has been associated with several disorders, but these have been primarily documented in males, when they are most prevalent in women. Therefore, we subjected adult female Wistar rats to Early Weaning through maternal separation at age 15 days to acute alimentary stress in the form of visual and olfactory exposition to a cafeteria diet sans consumption for 22 days. We measured standard diet intake and water intake daily and cafeteria diet intake every 7 days. Additionally, we evaluated anxiety using the elevated plus maze and measured body weight in similar intervals. Results showed less consumption of the cafeteria diet among Early Weaning rats on day 2 and more time spent in the maze’s central area by the Early Weaning rats during the basal evaluation and in the maze’s open arms by control rats on day 7 when compared to the same group’s basal time. No other significant differences were found. These results show the importance of determining the impact that female steroidal gonadal hormones such as estradiol have upon feeding behavior and anxiety and determining to what degree these parameters are influenced by hormonal action.
Collapse
|
18
|
Mróz M, Gajęcka M, Brzuzan P, Lisieska-Żołnierczyk S, Leski D, Zielonka Ł, Gajęcki MT. Carry-Over of Zearalenone and Its Metabolites to Intestinal Tissues and the Expression of CYP1A1 and GSTπ1 in the Colon of Gilts before Puberty. Toxins (Basel) 2022; 14:354. [PMID: 35622600 PMCID: PMC9145504 DOI: 10.3390/toxins14050354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/14/2022] [Accepted: 05/17/2022] [Indexed: 02/01/2023] Open
Abstract
The objective of this study was to evaluate whether low doses of zearalenone (ZEN) affect the carry-over of ZEN and its metabolites to intestinal tissues and the expression of CYP1A1 and GSTπ1 in the large intestine. Prepubertal gilts (with a BW of up to 14.5 kg) were exposed in group ZEN to daily ZEN5 doses of 5 μg/kg BW (n = 15); in group ZEN10, 10 μg/kg BW (n = 15); in group ZEN15, 15 μg/kg BW (n = 15); or were administered a placebo (group C, n = 15) throughout the experiment. After euthanasia, tissues were sampled on exposure days 7, 21, and 42 (D1, D2, and D3, respectively). The results confirmed that the administered ZEN doses (LOAEL, NOAEL, and MABEL) were appropriate to reliably assess the carry-over of ZEN. Based on the observations made during 42 days of exposure to pure ZEN, it can be hypothesized that all mycotoxins (ZEN, α-zearalenol, and β-zearalenol) contribute to a balance between intestinal cells and the expression of selected genes encoding enzymes that participate in biotransformation processes in the large intestine; modulate feminization processes in prepubertal gilts; and elicit flexible, adaptive responses of the macroorganism to mycotoxin exposure at the analyzed doses.
Collapse
Affiliation(s)
- Magdalena Mróz
- Department of Veterinary Prevention and Feed Hygiene, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13/29, 10-718 Olsztyn, Poland; (M.M.); (Ł.Z.); (M.T.G.)
| | - Magdalena Gajęcka
- Department of Veterinary Prevention and Feed Hygiene, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13/29, 10-718 Olsztyn, Poland; (M.M.); (Ł.Z.); (M.T.G.)
| | - Paweł Brzuzan
- Department of Environmental Biotechnology, Faculty of Environmental Sciences and Fisheries, University of Warmia and Mazury in Olsztyn, Słoneczna 45G, 10-719 Olsztyn, Poland;
| | - Sylwia Lisieska-Żołnierczyk
- Independent Public Health Care Centre of the Ministry of the Interior and Administration, and the Warmia and Mazury Oncology Centre in Olsztyn, Wojska Polskiego 37, 10-228 Olsztyn, Poland;
| | - Dawid Leski
- Research and Development Department, Wipasz S.A., Wadąg 9, 10-373 Wadąg, Poland;
| | - Łukasz Zielonka
- Department of Veterinary Prevention and Feed Hygiene, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13/29, 10-718 Olsztyn, Poland; (M.M.); (Ł.Z.); (M.T.G.)
| | - Maciej T. Gajęcki
- Department of Veterinary Prevention and Feed Hygiene, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13/29, 10-718 Olsztyn, Poland; (M.M.); (Ł.Z.); (M.T.G.)
| |
Collapse
|
19
|
The central nervous system control of energy homeostasis: high fat diet induced hypothalamic microinflammation and obesity. Brain Res Bull 2022; 185:99-106. [PMID: 35525336 DOI: 10.1016/j.brainresbull.2022.04.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 04/27/2022] [Accepted: 04/30/2022] [Indexed: 11/22/2022]
Abstract
Obesity is believed to arise through the imbalance of energy homeostasis controlled by the central nervous system, where the hypothalamus plays the fundamental role in energy metabolism. In this review, we will provide an overview regarding the functions of POMC neurons and AgRP neurons in acute nucleus of the hypothalamus which mediated the energy metabolism, highlighting their interactions with peripheral organs derived hormones in control of energy homeostasis. Furthermore, the role of high fat diet induced hypothalamic microinflammation in the pathogenesis of obesity will be discussed. We hope this review could help researchers to understand the mechanism of hypothalamus in control of energy metabolism, and design related drugs to block the pathways involving in the impaired metabolism in obese patients.
Collapse
|
20
|
Abstract
Sex and gender differences are seen in cognitive disturbances in a variety of neurological and psychiatry diseases. Men are more likely to have cognitive symptoms in schizophrenia whereas women are more likely to have more severe cognitive symptoms with major depressive disorder and Alzheimer's disease. Thus, it is important to understand sex and gender differences in underlying cognitive abilities with and without disease. Sex differences are noted in performance across various cognitive domains - with males typically outperforming females in spatial tasks and females typically outperforming males in verbal tasks. Furthermore, there are striking sex differences in brain networks that are activated during cognitive tasks and in learning strategies. Although rarely studied, there are also sex differences in the trajectory of cognitive aging. It is important to pay attention to these sex differences as they inform researchers of potential differences in resilience to age-related cognitive decline and underlying mechanisms for both healthy and pathological cognitive aging, depending on sex. We review literature on the progressive neurodegenerative disorder, Alzheimer's disease, as an example of pathological cognitive aging in which human females show greater lifetime risk, neuropathology, and cognitive impairment, compared to human males. Not surprisingly, the relationships between sex and cognition, cognitive aging, and Alzheimer's disease are nuanced and multifaceted. As such, this chapter will end with a discussion of lifestyle factors, like education and diet, as modifiable factors that can alter cognitive aging by sex. Understanding how cognition changes across age and contributing factors, like sex differences, will be essential to improving care for older adults.
Collapse
|
21
|
Ponticorvo S, Prinster A, Cantone E, Di Salle F, Esposito F, Canna A. Sex differences in the taste-evoked functional connectivity network. Chem Senses 2022; 47:6617558. [PMID: 35749468 DOI: 10.1093/chemse/bjac015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The central gustatory pathway encompasses multiple subcortical and cortical regions whose neural functional connectivity can be modulated by taste stimulation. While gustatory perception has been previously linked to sex, whether and how the gustatory network differently responds to basic tastes between men and women is unclear. Here, we defined the regions of the central gustatory network by a meta-analysis of 35 fMRI taste activation studies and then analyzed the taste-evoked functional connectivity between these regions in 44 subjects (19 women) in a separate 3 Tesla activation study where sweet and bitter solutions, at five concentrations each, were administered during scanning. From the meta-analysis, a network model was set up, including bilateral anterior, middle and inferior insula, thalamus, precentral gyrus, left amygdala, caudate and dorsolateral prefrontal cortex. Higher functional connectivity than in women was observed in men between the right middle insula and bilateral thalami for bitter taste. Men exhibited higher connectivity than women at low bitter concentrations and middle-high sweet concentrations between bilateral thalamus and insula. A graph-based analysis expressed similar results in terms of nodal characteristics of strength and centrality. Our findings add new insights into the mechanisms of taste processing by highlighting sex differences in the functional connectivity of the gustatory network as modulated by the perception of sweet and bitter tastes. These results shed more light on the neural origin of sex-related differences in gustatory perception and may guide future research on the pathophysiology of taste perception in humans.
Collapse
Affiliation(s)
- Sara Ponticorvo
- Department of Medicine, Surgery and Dentistry, Scuola Medica Salernitana, University of Salerno, Baronissi, Italy
| | - Anna Prinster
- Biostructure and Bioimaging Institute, National Research Council, Naples, Italy
| | - Elena Cantone
- Section of ENT, Department of Neuroscience, Federico II University, Naples, Italy
| | - Francesco Di Salle
- Department of Medicine, Surgery and Dentistry, Scuola Medica Salernitana, University of Salerno, Baronissi, Italy.,University Hospital "San Giovanni di Dio e Ruggi D'Aragona", Scuola Medica Salernitana, Salerno, Italy
| | - Fabrizio Esposito
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Napoli, Italy
| | - Antonietta Canna
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Napoli, Italy
| |
Collapse
|
22
|
Ullah R, Rauf N, Nabi G, Yi S, Yu-Dong Z, Fu J. Mechanistic insight into high-fat diet-induced metabolic inflammation in the arcuate nucleus of the hypothalamus. Biomed Pharmacother 2021; 142:112012. [PMID: 34388531 DOI: 10.1016/j.biopha.2021.112012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 07/31/2021] [Accepted: 08/03/2021] [Indexed: 12/16/2022] Open
Abstract
A high-fat diet (HFD) is linked with cytokines production by non-neuronal cells within the hypothalamus, which mediates metabolic inflammation. These cytokines then activate different inflammatory mediators in the arcuate nucleus of the hypothalamus (ARC), a primary hypothalamic area accommodating proopiomelanocortin (POMC) and agouti-related peptide (AGRP) neurons, first-order neurons that sense and integrate peripheral metabolic signals and then respond accordingly. These mediators, such as inhibitor of κB kinase-β (IKKβ), suppression of cytokine signaling 3 (SOCS3), c-Jun N-terminal kinases (JNKs), protein kinase C (PKC), etc., cause insulin and leptin resistance in POMC and AGRP neurons and support obesity and related metabolic complications. On the other hand, inhibition of these mediators has been shown to counteract the impaired metabolism. Therefore, it is important to discuss the contribution of neuronal and non-neuronal cells in HFD-induced hypothalamic inflammation. Furthermore, understanding few other questions, such as the diets causing hypothalamic inflammation, the gender disparity in response to HFD feeding, and how hypothalamic inflammation affects ARC neurons to cause impaired metabolism, will be helpful for the development of therapeutic approaches to prevent or treat HFD-induced obesity.
Collapse
Affiliation(s)
- Rahim Ullah
- Department of Endocrinology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China; Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Naveed Rauf
- Department of Endocrinology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China
| | - Ghulam Nabi
- Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, Hebei Province, China; Department of Life Sciences, School of Science, University of Management and Technology (UMT), Lahore, Pakistan
| | - Shen Yi
- Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China.
| | - Zhou Yu-Dong
- Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China.
| | - Junfen Fu
- Department of Endocrinology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China; National Clinical Research Center for Child Health, Hangzhou 310052, China; National Children's Regional Medical Center, Hangzhou 310052, China.
| |
Collapse
|
23
|
Alvord VM, Kantra EJ, Pendergast JS. Estrogens and the circadian system. Semin Cell Dev Biol 2021; 126:56-65. [PMID: 33975754 DOI: 10.1016/j.semcdb.2021.04.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/06/2021] [Accepted: 04/09/2021] [Indexed: 11/26/2022]
Abstract
Circadian rhythms are ~24 h cycles of behavior and physiology that are generated by a network of molecular clocks located in nearly every tissue in the body. In mammals, the circadian system is organized hierarchically such that the suprachiasmatic nucleus (SCN) is the main circadian clock that receives light information from the eye and entrains to the light-dark cycle. The SCN then coordinates the timing of tissue clocks so internal rhythms are aligned with environmental cycles. Estrogens interact with the circadian system to regulate biological processes. At the molecular level, estrogens and circadian genes interact to regulate gene expression and cell biology. Estrogens also regulate circadian behavior across the estrous cycle. The timing of ovulation during the estrous cycle requires coincident estrogen and SCN signals. Studies using circadian gene reporter mice have also elucidated estrogen regulation of peripheral tissue clocks and metabolic rhythms. This review synthesizes current understanding of the interplay between estrogens and the circadian system, with a focus on female rodents, in regulating molecular, physiological, and behavioral processes.
Collapse
|
24
|
Rathod YD, Di Fulvio M. The feeding microstructure of male and female mice. PLoS One 2021; 16:e0246569. [PMID: 33539467 PMCID: PMC7861458 DOI: 10.1371/journal.pone.0246569] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 01/21/2021] [Indexed: 11/19/2022] Open
Abstract
The feeding pattern and control of energy intake in mice housed in groups are poorly understood. Here, we determined and quantified the normal feeding microstructure of social male and female mice of the C57BL/6J genetic background fed a chow diet. Mice at 10w, 20w and 30w of age showed the expected increase in lean and fat mass, being the latter more pronounced and variable in males than in females. Under ad libitum conditions, 20w and 30w old females housed in groups showed significantly increased daily energy intake when adjusted to body weight relative to age-matched males. This was the combined result of small increases in energy intake during the nocturnal and diurnal photoperiods of the day without major changes in the circadian pattern of energy intake or spontaneous ambulatory activity. The analysis of the feeding microstructure suggests sex- and age-related contributions of meal size, meal frequency and intermeal interval to the control of energy intake under stable energy balance, but not under negative energy balance imposed by prolonged fasting. During the night, 10-20w old females ate less frequently bigger meals and spent more time eating them resulting in reduced net energy intake relative to age-matched males. In addition, male and female mice at all ages tested significantly shortened the intermeal interval during the first hours of re-feeding in response to fasting without affecting meal size. Further, 20-30w old males lengthened their intermeal interval as re-feeding time increased to reach fed-levels faster than age-matched females. Collectively, our results suggest that the physiological mechanisms controlling meal size (satiation) and the non-eating time spent between meals (satiety) during stable or negative energy balance are regulated in a sex- and age-dependent manner in social mice.
Collapse
Affiliation(s)
- Yakshkumar Dilipbhai Rathod
- Department of Pharmacology and Toxicology, School of Medicine, Wright State University, Dayton, OH, United States of America
| | - Mauricio Di Fulvio
- Department of Pharmacology and Toxicology, School of Medicine, Wright State University, Dayton, OH, United States of America
| |
Collapse
|
25
|
Hases L, Archer A, Indukuri R, Birgersson M, Savva C, Korach-André M, Williams C. High-fat diet and estrogen impacts the colon and its transcriptome in a sex-dependent manner. Sci Rep 2020; 10:16160. [PMID: 32999402 PMCID: PMC7527340 DOI: 10.1038/s41598-020-73166-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/14/2020] [Indexed: 02/07/2023] Open
Abstract
There is a strong association between obesity and colorectal cancer (CRC), especially in men, whereas estrogen protects against both the metabolic syndrome and CRC. Colon is the first organ to respond to high-fat diet (HFD), and estrogen receptor beta (ERβ) can attenuate CRC development. How estrogen impacts the colon under HFD and related sex differences has, however, not been investigated. To dissect this, mice were fed control diet or HFD for 13 weeks and administered receptor-selective estrogenic ligands for the last three weeks. We recorded impact on metabolism, colon crypt proliferation, macrophage infiltration, and the colon transcriptome. We found clear sex differences in the colon transcriptome and in the impact by HFD and estrogens, including on clock genes. ERα-selective activation reduced body weight and generated systemic effects, whereas ERβ-selective activation had local effects in the colon, attenuating HFD-induced macrophage infiltration and epithelial cell proliferation. We here demonstrate how HFD and estrogens modulate the colon microenvironment in a sex- and ER-specific manner.
Collapse
Affiliation(s)
- L Hases
- Science for Life Laboratory, Department of Protein Science, KTH Royal Institute of Technology, Solna, Sweden.,Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - A Archer
- Science for Life Laboratory, Department of Protein Science, KTH Royal Institute of Technology, Solna, Sweden.,Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - R Indukuri
- Science for Life Laboratory, Department of Protein Science, KTH Royal Institute of Technology, Solna, Sweden.,Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - M Birgersson
- Science for Life Laboratory, Department of Protein Science, KTH Royal Institute of Technology, Solna, Sweden.,Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - C Savva
- Department of Medicine, Metabolism Unit and Integrated CardioMetabolic Center (ICMC), Karolinska Institutet and Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - M Korach-André
- Department of Medicine, Metabolism Unit and Integrated CardioMetabolic Center (ICMC), Karolinska Institutet and Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - C Williams
- Science for Life Laboratory, Department of Protein Science, KTH Royal Institute of Technology, Solna, Sweden. .,Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden.
| |
Collapse
|
26
|
Navarro VM. Metabolic regulation of kisspeptin - the link between energy balance and reproduction. Nat Rev Endocrinol 2020; 16:407-420. [PMID: 32427949 PMCID: PMC8852368 DOI: 10.1038/s41574-020-0363-7] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/16/2020] [Indexed: 12/17/2022]
Abstract
Hypothalamic kisspeptin neurons serve as the nodal regulatory centre of reproductive function. These neurons are subjected to a plethora of regulatory factors that ultimately affect the release of kisspeptin, which modulates gonadotropin-releasing hormone (GnRH) release from GnRH neurons to control the reproductive axis. The presence of sufficient energy reserves is critical to achieve successful reproduction. Consequently, metabolic factors impose a very tight control over kisspeptin synthesis and release. This Review offers a synoptic overview of the different steps in which kisspeptin neurons are subjected to metabolic regulation, from early developmental stages to adulthood. We cover an ample array of known mechanisms that underlie the metabolic regulation of KISS1 expression and kisspeptin release. Furthermore, the novel role of kisspeptin neurons as active players within the neuronal circuits that govern energy balance is discussed, offering evidence of a bidirectional role of these neurons as a nexus between metabolism and reproduction.
Collapse
Affiliation(s)
- Víctor M Navarro
- Department of Medicine, Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
- Harvard Graduate Program in Neuroscience, Boston, MA, USA.
| |
Collapse
|
27
|
Massa MG, Correa SM. Sexes on the brain: Sex as multiple biological variables in the neuronal control of feeding. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165840. [PMID: 32428559 DOI: 10.1016/j.bbadis.2020.165840] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 05/05/2020] [Accepted: 05/13/2020] [Indexed: 12/21/2022]
Abstract
Neuronal interactions at the level of vagal, homeostatic, and hedonic circuitry work to regulate the neuronal control of feeding. This integrative system appears to vary across sex and gender in the animal and human worlds. Most feeding research investigating these variations across sex and gender focus on how the organizational and activational mechanisms of hormones contribute to these differences. However, in limited studies spanning both the central and peripheral nervous systems, sex differences in feeding have been shown to manifest not just at the level of the hormonal, but also at the chromosomal, epigenetic, cellular, and even circuitry levels to alter food intake. In this review, we provide a brief orientation to the current understanding of how these neuronal systems interact before dissecting selected studies from the recent literature to exemplify how feeding physiology at all levels can be affected by the various components of sex.
Collapse
Affiliation(s)
- Megan G Massa
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, United States of America; Laboratory of Neuroendocrinology of the Brain Research Institute, University of California, Los Angeles, CA, United States of America; Neuroscience Interdepartmental Doctoral Program, University of California, Los Angeles, CA, United States of America.
| | - Stephanie M Correa
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, United States of America; Laboratory of Neuroendocrinology of the Brain Research Institute, University of California, Los Angeles, CA, United States of America.
| |
Collapse
|
28
|
van Veen JE, Kammel LG, Bunda PC, Shum M, Reid MS, Massa MG, Arneson D, Park JW, Zhang Z, Joseph AM, Hrncir H, Liesa M, Arnold AP, Yang X, Correa SM. Hypothalamic estrogen receptor alpha establishes a sexually dimorphic regulatory node of energy expenditure. Nat Metab 2020; 2:351-363. [PMID: 32377634 PMCID: PMC7202561 DOI: 10.1038/s42255-020-0189-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 03/12/2020] [Indexed: 12/26/2022]
Abstract
Estrogen receptor a (ERa) signaling in the ventromedial hypothalamus (VMH) contributes to energy homeostasis by modulating physical activity and thermogenesis. However, the precise neuronal populations involved remain undefined. Here, we describe six neuronal populations in the mouse VMH by using single-cell RNA transcriptomics and in situ hybridization. ERa is enriched in populations showing sex biased expression of reprimo (Rprm), tachykinin 1 (Tac1), and prodynorphin (Pdyn). Female biased expression of Tac1 and Rprm is patterned by ERa-dependent repression during male development, whereas male biased expression of Pdyn is maintained by circulating testicular hormone in adulthood. Chemogenetic activation of ERa positive VMH neurons stimulates heat generation and movement in both sexes. However, silencing Rprm gene function increases core temperature selectively in females and ectopic Rprm expression in males is associated with reduced core temperature. Together these findings reveal a role for Rprm in temperature regulation and ERa in the masculinization of neuron populations that underlie energy expenditure.
Collapse
Affiliation(s)
- J Edward van Veen
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, USA
- Laboratory of Neuroendocrinology of the Brain Research Institute, University of California, Los Angeles, CA, USA
- authors contributed equally
| | - Laura G Kammel
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, USA
- Laboratory of Neuroendocrinology of the Brain Research Institute, University of California, Los Angeles, CA, USA
- Molecular, Cellular, and Integrative Physiology Graduate Program, University of California, Los Angeles, CA, USA
- authors contributed equally
| | - Patricia C Bunda
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, USA
| | - Michael Shum
- Division of Endocrinology, Department of Medicine, and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Molecular Biology Institute, University of California, Los Angeles, CA, USA
| | - Michelle S Reid
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, USA
| | - Megan G Massa
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, USA
- Laboratory of Neuroendocrinology of the Brain Research Institute, University of California, Los Angeles, CA, USA
- Neuroscience Interdepartmental Doctoral Program, University of California, Los Angeles, CA, USA
| | - Douglas Arneson
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, USA
| | - Jae W Park
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, USA
| | - Zhi Zhang
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, USA
- Laboratory of Neuroendocrinology of the Brain Research Institute, University of California, Los Angeles, CA, USA
| | - Alexia M Joseph
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, USA
| | - Haley Hrncir
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, USA
| | - Marc Liesa
- Division of Endocrinology, Department of Medicine, and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Molecular Biology Institute, University of California, Los Angeles, CA, USA
| | - Arthur P Arnold
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, USA
- Laboratory of Neuroendocrinology of the Brain Research Institute, University of California, Los Angeles, CA, USA
| | - Xia Yang
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, USA
| | - Stephanie M Correa
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, USA
- Laboratory of Neuroendocrinology of the Brain Research Institute, University of California, Los Angeles, CA, USA
| |
Collapse
|
29
|
Yoest KE, Cummings JA, Becker JB. Ovarian Hormones Mediate Changes in Adaptive Choice and Motivation in Female Rats. Front Behav Neurosci 2019; 13:250. [PMID: 31780908 PMCID: PMC6861187 DOI: 10.3389/fnbeh.2019.00250] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 10/14/2019] [Indexed: 11/13/2022] Open
Abstract
In female rodents, sexual receptivity is coordinated with cyclic changes in the release of gonadal hormones. Increases in estradiol (E) and progesterone (P) during proestrus and estrus not only induce ovulation but also modulate behaviors that increase the likelihood that the female will find a mate and reproduce. This includes changes in receptive behaviors, such as lordosis, as well as changes in appetitive or proceptive behaviors, including motivation. Interestingly, the direction of these changes in motivation is dependent on the type of reward that is being pursued. While induction of sexual receptivity by E and P increases motivation for access to a male, motivation for a palatable food reward is decreased. These concurrent changes may facilitate adaptive choice across the estrous cycle; females bias their choice for sex when fertilization is most likely to occur, but for food when copulation is unlikely to result in impregnation. In order to test this hypothesis, we developed a novel paradigm to measure the motivated choice between a palatable food reward and access to a male conspecific. Ovariectomized, hormone primed females were trained to operantly respond for both food and sex on a fixed interval (FI) schedule. After training, unprimed and primed females were tested in a chamber that allows them to choose between food and sex while still requiring responding on the FI schedule for reach reward. From this we can not only determine the impact of hormone priming on female choice for food or sex, but also how this is reflected by changes in motivation for each specific reward, as measured by the average number of responses made during each fixed interval. Induction of sexual receptivity by hormone priming biases choice toward sex over food and this change is accompanied by an increase in motivation for sex but a decrease in motivation for food. This work provides evidence in support of a novel framework for understanding how the release of ovarian hormones over the course of the estrous cycle modulates adaptive behavioral choice in females by directly assessing motivation via operant responding when multiple rewards are available.
Collapse
Affiliation(s)
- Katie E Yoest
- Department of Psychology, College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, MI, United States.,Department of Psychology, Michigan State University, East Lansing, MI, United States
| | - Jennifer A Cummings
- Department of Psychology, College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, MI, United States
| | - Jill B Becker
- Department of Psychology, College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, MI, United States.,Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
30
|
Novelle MG, Diéguez C. Updating gender differences in the control of homeostatic and hedonic food intake: Implications for binge eating disorder. Mol Cell Endocrinol 2019; 497:110508. [PMID: 31319096 DOI: 10.1016/j.mce.2019.110508] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 07/11/2019] [Accepted: 07/13/2019] [Indexed: 12/30/2022]
Abstract
In an obesity pandemic context, eating disorders (ED) have arisen as serious illnesses associated with severe disturbances and has a clear gender dependent bias. In this manuscript, we provide an overview of the oestrogen role in the homeostatic and hedonic control of food intake. We draw attention to the role of oestrogens in the various reward processes and their possible implication in the development of ED, a condition much more common in women. In here, we have summarized the most relevant studies conducted in animal models over the last few years. In particular, we want to emphasize on the importance of continuing thorough investigations in female animal models. We believe that understanding the molecular mechanisms that regulate gender differences in food intake may provide new potential targets for ED treatment.
Collapse
Affiliation(s)
- Marta G Novelle
- Department of Physiology, Centre for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela-Instituto de Investigación Sanitaria (IDIS), CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Santiago de Compostela, Spain.
| | - Carlos Diéguez
- Department of Physiology, Centre for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela-Instituto de Investigación Sanitaria (IDIS), CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Santiago de Compostela, Spain.
| |
Collapse
|
31
|
Alonso-Caraballo Y, Ferrario CR. Effects of the estrous cycle and ovarian hormones on cue-triggered motivation and intrinsic excitability of medium spiny neurons in the Nucleus Accumbens core of female rats. Horm Behav 2019; 116:104583. [PMID: 31454509 PMCID: PMC7256930 DOI: 10.1016/j.yhbeh.2019.104583] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 08/01/2019] [Accepted: 08/20/2019] [Indexed: 11/08/2022]
Abstract
Naturally occurring alterations in estradiol influence food intake in females. However, how motivational responses to food cues are affected by the estrous cycle or ovarian hormones is unknown. In addition, while individual susceptibility to obesity is accompanied by enhanced incentive motivational responses to food cues and increased NAc intrinsic excitability in males, studies in females are absent. Therefore, we examined basal differences in intrinsic NAc excitability of obesity-prone vs. obesity-resistant females and determined how conditioned approach (a measure of cue-triggered motivation), food intake, and motivation for food vary with the cycle in naturally cycling female obesity-prone, obesity-resistant, and outbred Sprague-Dawley rats. Finally, we used ovariectomy followed by hormone treatment to determine the role of ovarian hormones in cue-triggered motivation in selectively-bred and outbred female rats. We found that intrinsic excitability of NAc MSNs and conditioned approach are enhanced in female obesity-prone vs. obesity-resistant rats. These effects were driven by greater MSN excitability and conditioned approach behavior during metestrus/diestrus vs. proestrus/estrus in obesity-prone but not obesity-resistant rats, despite similar regulation of food intake and food motivation by the cycle in these groups. Furthermore, estradiol and progesterone treatment reduced conditioned approach behavior in obesity-prone and outbred Sprague-Dawley females. To our knowledge, these data are the first to demonstrate cycle- and hormone-dependent effects on the motivational response to a food cue, and the only studies to date to determine how individual susceptibility to obesity influences NAc excitability, cue-triggered food-seeking, and differences in the regulation of these neurobehavioral responses by the estrous cycle.
Collapse
Affiliation(s)
| | - Carrie R Ferrario
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, United States of America; Department of Pharmacology, University of Michigan, Ann Arbor, MI, United States of America.
| |
Collapse
|
32
|
Rykaczewska A, Gajęcka M, Onyszek E, Cieplińska K, Dąbrowski M, Lisieska-Żołnierczyk S, Bulińska M, Babuchowski A, Gajęcki MT, Zielonka Ł. Imbalance in the Blood Concentrations of Selected Steroids in Pre-pubertal Gilts Depending on the Time of Exposure to Low Doses of Zearalenone. Toxins (Basel) 2019; 11:E561. [PMID: 31557818 PMCID: PMC6832454 DOI: 10.3390/toxins11100561] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/19/2019] [Accepted: 09/22/2019] [Indexed: 12/31/2022] Open
Abstract
Zearalenone (ZEN) is a mycotoxin that not only binds to estrogen receptors, but also interacts with steroidogenic enzymes and acts as an endocrine disruptor. The aim of this study was to verify the hypothesis that low doses, minimal anticipated biological effect level (MABEL), no-observed-adverse-effect level (NOAEL) and lowest-adverse-effect level (LOAEL), of ZEN administered orally for 42 days can induce changes in the peripheral blood concentrations of selected steroid hormones (estradiol, progesterone and testosterone) in pre-pubertal gilts. The experiment was performed on 60 clinically healthy gilts with average BW of 14.5 ± 2 kg, divided into three experimental groups and a control group. Group ZEN5 animals were orally administered ZEN at 5 μg ZEN/kg BW, group ZEN10 - at 10 μg ZEN/kg BW, group ZEN15 - at 15 μg ZEN/kg BW, whereas group C received a placebo. Five gilts from every group were euthanized on analytical dates 1, 2 and 3 (days 7, 14 and 42 of the experiment). Qualitative and quantitative changes in the biotransformation of low ZEN doses were observed. These processes were least pronounced in group ZEN5 (MABEL dose) where ZEN metabolites were not detected on the first analytical date, and where β-ZEL was the predominant metabolite on successive dates. The above was accompanied by an increase in the concentration of estradiol (E2) which, together with "free ZEN", probably suppressed progesterone (P4) and testosterone (T) levels.
Collapse
Affiliation(s)
- Anna Rykaczewska
- Department of Veterinary Prevention and Feed Hygiene, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13/29, 10-718 Olsztyn, Poland.
| | - Magdalena Gajęcka
- Department of Veterinary Prevention and Feed Hygiene, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13/29, 10-718 Olsztyn, Poland.
| | - Ewa Onyszek
- Dairy Industry Innovation Institute Ltd., 11-700 Mrągowo, Poland.
| | - Katarzyna Cieplińska
- Microbiology Laboratory, Non-Public Health Care Centre, ul. Limanowskiego 31A, 10-342 Olsztyn, Poland.
| | - Michał Dąbrowski
- Department of Veterinary Prevention and Feed Hygiene, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13/29, 10-718 Olsztyn, Poland.
| | - Sylwia Lisieska-Żołnierczyk
- Independent Public Health Care Centre of the Ministry of the Interior and Administration, and the Warmia and Mazury Oncology Centre in Olsztyn, Wojska Polskiego 37, 10-228 Olsztyn, Poland.
| | - Maria Bulińska
- Department of Discrete Mathematics and Theoretical Computer Science, Faculty of Mathematics and Computer Science, University of Warmia and Mazury in Olsztyn, Słoneczna 34, 10-710 Olsztyn, Poland.
| | | | - Maciej T Gajęcki
- Department of Veterinary Prevention and Feed Hygiene, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13/29, 10-718 Olsztyn, Poland.
| | - Łukasz Zielonka
- Department of Veterinary Prevention and Feed Hygiene, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13/29, 10-718 Olsztyn, Poland.
| |
Collapse
|
33
|
Estradiol Drives the Anorexigenic Activity of Proopiomelanocortin Neurons in Female Mice. eNeuro 2018; 5:eN-NWR-0103-18. [PMID: 30310864 PMCID: PMC6179576 DOI: 10.1523/eneuro.0103-18.2018] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 06/11/2018] [Accepted: 07/02/2018] [Indexed: 12/14/2022] Open
Abstract
Energy balance is regulated by anorexigenic proopiomelanocortin (POMC) and orexigenic neuropeptide Y/agouti-related peptide (NPY/AgRP) neurons of the hypothalamic arcuate nucleus. POMC neurons make extensive projections and are thought to release both amino acid and peptide neurotransmitters. However, whether they communicate directly with NPY/AgRP neurons is debated. Initially, using single-cell RT-PCR, we determined that mouse POMCeGFP neurons express Slc17a6 (Vglut2) and Slc18a2 (Vmat2), but not Slc31a1 (Vgat) mRNA, suggesting glutamate and non-canonical GABA release. Quantitative (q)RT-PCR of POMCeGFP cells revealed that Vglut2 and Vmat2 expression was significantly increased in E2- versus oil-treated, ovariectomized (OVX) female mice. Since 17β-estradiol (E2) is anorexigenic, we hypothesized that an underlying mechanism is enhancement of POMC signaling. Therefore, we optogenetically stimulated POMC neurons in hypothalamic slices to examine evoked release of neurotransmitters onto NPY/AgRP neurons. Using brief light pulses, we primarily observed glutamatergic currents and, based on the paired pulse ratio (PPR), determined that release probability was higher in E2- versus oil-treated, OVX female, congruent with increased Vlgut2 expression. Moreover, bath perfusion of the Gq-coupled membrane estrogen receptor (ER) agonist STX recapitulated the effects of E2 treatment. In addition, high-frequency (20 Hz) stimulation generated a slow outward current that reversed near Ek+ and was antagonized by naloxone, indicative of β-endorphin release. Furthermore, individual NPY/AgRP neurons were found to express Oprm1, the transcript for μ-opioid receptor, and DAMGO, a selective agonist, elicited an outward current. Therefore, POMC excitability and neurotransmission are enhanced by E2, which would facilitate decreased food consumption through marked inhibition of NPY/AgRP neurons.
Collapse
|