1
|
Zheng Y, Ren Z, Liu Y, Yan J, Chen C, He Y, Shi Y, Cheng F, Wang Q, Li C, Wang X. T cell interactions with microglia in immune-inflammatory processes of ischemic stroke. Neural Regen Res 2025; 20:1277-1292. [PMID: 39075894 PMCID: PMC11624874 DOI: 10.4103/nrr.nrr-d-23-01385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 01/17/2024] [Accepted: 03/07/2024] [Indexed: 07/31/2024] Open
Abstract
The primary mechanism of secondary injury after cerebral ischemia may be the brain inflammation that emerges after an ischemic stroke, which promotes neuronal death and inhibits nerve tissue regeneration. As the first immune cells to be activated after an ischemic stroke, microglia play an important immunomodulatory role in the progression of the condition. After an ischemic stroke, peripheral blood immune cells (mainly T cells) are recruited to the central nervous system by chemokines secreted by immune cells in the brain, where they interact with central nervous system cells (mainly microglia) to trigger a secondary neuroimmune response. This review summarizes the interactions between T cells and microglia in the immune-inflammatory processes of ischemic stroke. We found that, during ischemic stroke, T cells and microglia demonstrate a more pronounced synergistic effect. Th1, Th17, and M1 microglia can co-secrete pro-inflammatory factors, such as interferon-γ, tumor necrosis factor-α, and interleukin-1β, to promote neuroinflammation and exacerbate brain injury. Th2, Treg, and M2 microglia jointly secrete anti-inflammatory factors, such as interleukin-4, interleukin-10, and transforming growth factor-β, to inhibit the progression of neuroinflammation, as well as growth factors such as brain-derived neurotrophic factor to promote nerve regeneration and repair brain injury. Immune interactions between microglia and T cells influence the direction of the subsequent neuroinflammation, which in turn determines the prognosis of ischemic stroke patients. Clinical trials have been conducted on the ways to modulate the interactions between T cells and microglia toward anti-inflammatory communication using the immunosuppressant fingolimod or overdosing with Treg cells to promote neural tissue repair and reduce the damage caused by ischemic stroke. However, such studies have been relatively infrequent, and clinical experience is still insufficient. In summary, in ischemic stroke, T cell subsets and activated microglia act synergistically to regulate inflammatory progression, mainly by secreting inflammatory factors. In the future, a key research direction for ischemic stroke treatment could be rooted in the enhancement of anti-inflammatory factor secretion by promoting the generation of Th2 and Treg cells, along with the activation of M2-type microglia. These approaches may alleviate neuroinflammation and facilitate the repair of neural tissues.
Collapse
Affiliation(s)
- Yuxiao Zheng
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Zilin Ren
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Ying Liu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Juntang Yan
- Library, Beijing University of Chinese Medicine, Beijing, China
| | - Congai Chen
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yanhui He
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yuyu Shi
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Fafeng Cheng
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Qingguo Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Changxiang Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xueqian Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
2
|
Yang D, Chen F, Ren J, Wang L, Zhu Z, Wu Z, Jin Q, Luo Y, Huang H, Zhu B, Zhang Y, Lin Y, Zhou L, Mu G, Chen G. Longitudinal associations between cerebrospinal fluid glial activation markers, depression, and dopamine transporter availability in patients with Parkinson's disease. J Neurol 2024; 272:23. [PMID: 39666148 DOI: 10.1007/s00415-024-12779-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/14/2024] [Accepted: 10/14/2024] [Indexed: 12/13/2024]
Abstract
BACKGROUND Depression and decreased dopamine transporter (DAT) availability are prevalent in Parkinson's disease (PD), yet early predictive biomarkers are lacking. This study investigates the longitudinal associations between cerebrospinal fluid (CSF) neuroglial activation markers, sTREM2 and YKL-40, and depression, as well as DAT availability, in PD patients. METHODS We analyzed data from 172 PD subjects and 80 matched healthy controls from a large longitudinal study. A generalized linear mixed-effects model assessed the longitudinal associations of CSF sTREM2 and YKL-40 with depression and DAT availability. Causal mediation analysis determined if DAT decline mediated the effects of sTREM2 and YKL-40 on depression. RESULTS Cross-sectional analysis revealed a negative correlation between CSF sTREM2 and baseline depression scores in PD patients. CSF YKL-40 negatively correlated with baseline left caudate nucleus, left anterior putamen, and right anterior putamen specific binding ratios (SBR). Longitudinally, higher baseline CSF sTREM2 predicted faster depression progression (β = 0.828, p < 0.001) and a rapid decline in right putamen SBR (β = 0.072, p = 0.016). Similarly, higher baseline CSF YKL-40 predicted faster depression progression (β = 0.586, p = 0.004) and a decline in left anterior putamen SBR (β = 0.058, p = 0.035). Causal mediation analysis indicated that baseline CSF sTREM2 accelerated depression progression via its effect on right putamen and right anterior putamen SBR (Indirect effect = 0.103, p = 0.020; Indirect effect = 0.129, p = 0.016). CONCLUSION CSF sTREM2 and YKL-40 are effective predictors for depression and DAT decline in PD, suggesting that neuroglial activation-induced dopaminergic neuron apoptosis significantly contributes to depression onset in PD.
Collapse
Affiliation(s)
- Dehao Yang
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Feng Chen
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Junli Ren
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Lingsheng Wang
- The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhangjing Zhu
- The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zihao Wu
- The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qiaoqiao Jin
- The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yuwen Luo
- The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Haoyang Huang
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Baoyi Zhu
- The School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yang Zhang
- The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yuchen Lin
- The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Linxuan Zhou
- The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Guozhu Mu
- Department of Radiology, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Guangyong Chen
- Department of Neurology, The Third Affiliated Hospital of Wenzhou Medical University, No.108 Wansong Road, Wenzhou, 325000, Zhejiang, China.
| |
Collapse
|
3
|
Sell GL, Barrow SL, McAllister AK. Glutamate Signaling and Neuroligin/Neurexin Adhesion Play Opposing Roles That Are Mediated by Major Histocompatibility Complex I Molecules in Cortical Synapse Formation. J Neurosci 2024; 44:e0797242024. [PMID: 39424368 PMCID: PMC11622183 DOI: 10.1523/jneurosci.0797-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 09/29/2024] [Accepted: 10/07/2024] [Indexed: 10/21/2024] Open
Abstract
Although neurons release neurotransmitter before contact, the role for this release in synapse formation remains unclear. Cortical synapses do not require synaptic vesicle release for formation (Verhage et al., 2000; Sando et al., 2017; Sigler et al., 2017; Held et al., 2020), yet glutamate clearly regulates glutamate receptor trafficking (Roche et al., 2001; Nong et al., 2004) and induces spine formation (Engert and Bonhoeffer, 1999; Maletic-Savatic et al., 1999; Toni et al., 1999; Kwon and Sabatini, 2011; Oh et al., 2016). Using rat and murine culture systems to dissect molecular mechanisms, we found that glutamate rapidly decreases synapse density specifically in young cortical neurons in a local and calcium-dependent manner through decreasing N-methyl-d-aspartate receptor (NMDAR) transport and surface expression as well as cotransport with neuroligin (NL1). Adhesion between NL1 and neurexin 1 protects against this glutamate-induced synapse loss. Major histocompatibility I (MHCI) molecules are required for the effects of glutamate in causing synapse loss through negatively regulating NL1 levels in both sexes. Thus, like acetylcholine at the neuromuscular junction, glutamate acts as a dispersal signal for NMDARs and causes rapid synapse loss unless opposed by NL1-mediated trans-synaptic adhesion. Together, glutamate, MHCI, and NL1 mediate a novel form of homeostatic plasticity in young neurons that induces rapid changes in NMDARs to regulate when and where nascent glutamatergic synapses are formed.
Collapse
Affiliation(s)
- Gabrielle L Sell
- Center for Neuroscience, University of California, Davis, Davis, California 95618
| | - Stephanie L Barrow
- Center for Neuroscience, University of California, Davis, Davis, California 95618
| | - A Kimberley McAllister
- Center for Neuroscience, University of California, Davis, Davis, California 95618
- Department of Biology, Wake Forest University, Winston-Salem, North Carolina 27109
- Department of Translational Neuroscience, Wake Forest School of Medicine, Winston-Salem, North Carolina 27101
| |
Collapse
|
4
|
He J, Zhang Y, Guo Y, Guo J, Chen X, Xu S, Xu X, Wu C, Liu C, Chen J, Ding Y, Fisher M, Jiang M, Liu G, Ji X, Wu D. Blood-derived factors to brain communication in brain diseases. Sci Bull (Beijing) 2024; 69:3618-3632. [PMID: 39353815 DOI: 10.1016/j.scib.2024.09.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 04/03/2024] [Accepted: 04/05/2024] [Indexed: 10/04/2024]
Abstract
Brain diseases, mainly including acute brain injuries, neurodegenerative diseases, and mental disorders, have posed a significant threat to human health worldwide. Due to the limited regenerative capability and the existence of the blood-brain barrier, the brain was previously thought to be separated from the rest of the body. Currently, various cross-talks between the central nervous system and peripheral organs have been widely described, including the brain-gut axis, the brain-liver axis, the brain-skeletal muscle axis, and the brain-bone axis. Moreover, several lines of evidence indicate that leveraging systemic biology intervention approaches, including but not limited to lifestyle interventions, exercise, diet, blood administration, and peripheral immune responses, have demonstrated a significant influence on the progress and prognosis of brain diseases. The advancement of innovative proteomic and transcriptomic technologies has enriched our understanding of the nuanced interplay between peripheral organs and brain diseases. An array of novel or previously underappreciated blood-derived factors have been identified to play pivotal roles in mediating these communications. In this review, we provide a comprehensive summary of blood-to-brain communication following brain diseases. Special attention is given to the instrumental role of blood-derived signals, positing them as significant contributors to the complex process of brain diseases. The insights presented here aim to bridge the current knowledge gaps and inspire novel therapeutic strategies for brain diseases.
Collapse
Affiliation(s)
- Jiachen He
- Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100053, China; Department of Neurobiology, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin Medical University, Harbin 150081, China
| | - Yanming Zhang
- Department of Rehabilitation, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Yansu Guo
- Beijing Geriatric Healthcare Center, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Jiaqi Guo
- Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100053, China
| | - Xi Chen
- Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100053, China
| | - Shuaili Xu
- Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100053, China
| | - Xiaohan Xu
- Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100053, China
| | - Chuanjie Wu
- Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Chengeng Liu
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China
| | - Jian Chen
- Department of Neurosurgery, Xuanwu Hospital, Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100053, China
| | - Yuchuan Ding
- Department of Neurological Surgery, Wayne State University School of Medicine, Detroit MI 46801, USA
| | - Marc Fisher
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston MA 02115, USA
| | - Miaowen Jiang
- Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100053, China.
| | - Guiyou Liu
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China; Department of Epidemiology and Biostatistics, School of Public Health, Wannan Medical College, Wuhu 241002, China; Brain Hospital, Shengli Oilfield Central Hospital, Dongying 257034, China.
| | - Xunming Ji
- Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100053, China.
| | - Di Wu
- Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100053, China.
| |
Collapse
|
5
|
Päeske L, Hinrikus H, Lass J, Põld T, Bachmann M. The Impact of the Natural Level of Blood Biochemicals on Electroencephalographic Markers in Healthy People. SENSORS (BASEL, SWITZERLAND) 2024; 24:7438. [PMID: 39685972 DOI: 10.3390/s24237438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/10/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024]
Abstract
This study aims to investigate the association between the natural level of blood biomarkers and electroencephalographic (EEG) markers. Resting EEG theta, alpha (ABP), beta, and gamma frequency band powers were selected as linear EEG markers indicating the level of EEG power, and Higuchi's fractal dimension (HFD) as a nonlinear EEG complexity marker reflecting brain temporal dynamics. The impact of seven different blood biomarkers, i.e., glucose, protein, lipoprotein, HDL, LDL, C-reactive protein, and cystatin C, was investigated. The study was performed on a group of 52 healthy participants. The results of the current study show that one linear EEG marker, ABP, is correlated with protein. The nonlinear EEG marker (HFD) is correlated with protein, lipoprotein, C-reactive protein, and cystatin C. A positive correlation with linear EEG power markers and a negative correlation with the nonlinear complexity marker dominate in all brain areas. The results demonstrate that EEG complexity is more sensitive to the natural level of blood biomarkers than the level of EEG power. The reported novel findings demonstrate that the EEG markers of healthy people are influenced by the natural levels of their blood biomarkers related to their everyday dietary habits. This knowledge is useful in the interpretation of EEG signals and contributes to obtaining information about people quality of life and well-being.
Collapse
Affiliation(s)
- Laura Päeske
- Department of Health Technologies, Tallinn University of Technology, 19086 Tallinn, Estonia
| | - Hiie Hinrikus
- Department of Health Technologies, Tallinn University of Technology, 19086 Tallinn, Estonia
| | - Jaanus Lass
- Department of Health Technologies, Tallinn University of Technology, 19086 Tallinn, Estonia
| | - Toomas Põld
- Meliva Medical Center, 10143 Tallinn, Estonia
| | - Maie Bachmann
- Department of Health Technologies, Tallinn University of Technology, 19086 Tallinn, Estonia
| |
Collapse
|
6
|
Torok Z, Luebbert L, Feldman J, Duffy A, Nevue AA, Wongso S, Mello CV, Fairhall A, Pachter L, Gonzalez WG, Lois C. Resilience of A Learned Motor Behavior After Chronic Disruption of Inhibitory Circuits. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.17.541057. [PMID: 37292888 PMCID: PMC10245685 DOI: 10.1101/2023.05.17.541057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Maintaining motor behaviors throughout life is crucial for an individual's survival and reproductive success. The neuronal mechanisms that preserve behavior are poorly understood. To address this question, we focused on the zebra finch, a bird that produces a highly stereotypical song after learning it as a juvenile. Using cell-specific viral vectors, we chronically silenced inhibitory neurons in the pre-motor song nucleus called the high vocal center (HVC), which caused drastic song degradation. However, after producing severely degraded vocalizations for around 2 months, the song rapidly improved, and animals could sing songs that highly resembled the original. In adult birds, single-cell RNA sequencing of HVC revealed that silencing interneurons elevated markers for microglia and increased expression of the Major Histocompatibility Complex I (MHC I), mirroring changes observed in juveniles during song learning. Interestingly, adults could restore their songs despite lesioning the lateral magnocellular nucleus of the anterior neostriatum (LMAN), a brain nucleus crucial for juvenile song learning. This suggests that while molecular mechanisms may overlap, adults utilize different neuronal mechanisms for song recovery. Chronic and acute electrophysiological recordings within HVC and its downstream target, the robust nucleus of the archistriatum (RA), revealed that neuronal activity in the circuit permanently altered with higher spontaneous firing in RA and lower in HVC compared to control even after the song had fully recovered. Together, our findings show that a complex learned behavior can recover despite extended periods of perturbed behavior and permanently altered neuronal dynamics. These results show that loss of inhibitory tone can be compensated for by recovery mechanisms partly local to the perturbed nucleus and do not require circuits necessary for learning.
Collapse
Affiliation(s)
- Zsofia Torok
- Division of Biology and Biological Engineering, California
Institute of Technology; Pasadena, CA, USA
| | - Laura Luebbert
- Division of Biology and Biological Engineering, California
Institute of Technology; Pasadena, CA, USA
| | - Jordan Feldman
- Division of Biology and Biological Engineering, California
Institute of Technology; Pasadena, CA, USA
| | | | | | - Shelyn Wongso
- Division of Biology and Biological Engineering, California
Institute of Technology; Pasadena, CA, USA
| | | | | | - Lior Pachter
- Division of Biology and Biological Engineering, California
Institute of Technology; Pasadena, CA, USA
- Department of Computing and Mathematical Sciences,
California Institute of Technology; Pasadena, CA, USA
| | - Walter G. Gonzalez
- Department of Physiology, University of San Francisco; San
Francisco, CA, USA
| | - Carlos Lois
- Division of Biology and Biological Engineering, California
Institute of Technology; Pasadena, CA, USA
| |
Collapse
|
7
|
Eder J, Pfeiffer L, Wichert SP, Keeser B, Simon MS, Popovic D, Glocker C, Brunoni AR, Schneider A, Gensichen J, Schmitt A, Musil R, Falkai P. Deconstructing depression by machine learning: the POKAL-PSY study. Eur Arch Psychiatry Clin Neurosci 2024; 274:1153-1165. [PMID: 38091084 PMCID: PMC11226486 DOI: 10.1007/s00406-023-01720-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 11/04/2023] [Indexed: 07/06/2024]
Abstract
Unipolar depression is a prevalent and disabling condition, often left untreated. In the outpatient setting, general practitioners fail to recognize depression in about 50% of cases mainly due to somatic comorbidities. Given the significant economic, social, and interpersonal impact of depression and its increasing prevalence, there is a need to improve its diagnosis and treatment in outpatient care. Various efforts have been made to isolate individual biological markers for depression to streamline diagnostic and therapeutic approaches. However, the intricate and dynamic interplay between neuroinflammation, metabolic abnormalities, and relevant neurobiological correlates of depression is not yet fully understood. To address this issue, we propose a naturalistic prospective study involving outpatients with unipolar depression, individuals without depression or comorbidities, and healthy controls. In addition to clinical assessments, cardiovascular parameters, metabolic factors, and inflammatory parameters are collected. For analysis we will use conventional statistics as well as machine learning algorithms. We aim to detect relevant participant subgroups by data-driven cluster algorithms and their impact on the subjects' long-term prognosis. The POKAL-PSY study is a subproject of the research network POKAL (Predictors and Clinical Outcomes in Depressive Disorders; GRK 2621).
Collapse
Affiliation(s)
- Julia Eder
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Nussbaumstrasse 7, 80336, Munich, Germany.
- Graduate Program "POKAL - Predictors and Outcomes in Primary Care" (DFG-GrK 2621, Munich, Germany.
| | - Lisa Pfeiffer
- Graduate Program "POKAL - Predictors and Outcomes in Primary Care" (DFG-GrK 2621, Munich, Germany
| | - Sven P Wichert
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Nussbaumstrasse 7, 80336, Munich, Germany
| | - Benjamin Keeser
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Nussbaumstrasse 7, 80336, Munich, Germany
| | - Maria S Simon
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Nussbaumstrasse 7, 80336, Munich, Germany
| | - David Popovic
- International Max Planck Research School for Translational Psychiatry (IMPRS-TP), Munich, Germany
- Max-Planck Institute of Psychiatry, Munich, Germany
| | - Catherine Glocker
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Nussbaumstrasse 7, 80336, Munich, Germany
| | - Andre R Brunoni
- Department of Psychiatry, Faculty of Medicine, University of São Paulo (FMUSP), São Paulo, SP, Brasil
| | - Antonius Schneider
- Graduate Program "POKAL - Predictors and Outcomes in Primary Care" (DFG-GrK 2621, Munich, Germany
- Institute of General Practice and Health Services Research, School of Medicine, Technical University Munich, Munich, Germany
| | - Jochen Gensichen
- Graduate Program "POKAL - Predictors and Outcomes in Primary Care" (DFG-GrK 2621, Munich, Germany
- Institute of General Practice and Family Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Andrea Schmitt
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Nussbaumstrasse 7, 80336, Munich, Germany
- Laboratory of Neuroscience (LIM27), Institute of Psychiatry, University of São Paulo, São Paulo, Brazil
| | - Richard Musil
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Nussbaumstrasse 7, 80336, Munich, Germany
- Oberberg Specialist Clinic Bad Tölz, Bad Tölz, Germany
| | - Peter Falkai
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Nussbaumstrasse 7, 80336, Munich, Germany
- Graduate Program "POKAL - Predictors and Outcomes in Primary Care" (DFG-GrK 2621, Munich, Germany
- International Max Planck Research School for Translational Psychiatry (IMPRS-TP), Munich, Germany
- Max-Planck Institute of Psychiatry, Munich, Germany
| |
Collapse
|
8
|
Branciamore S, Gogoshin G, Rodin AS, Myers AJ. Changes in expression of VGF, SPECC1L, HLA-DRA and RANBP3L act with APOE E4 to alter risk for late onset Alzheimer's disease. Sci Rep 2024; 14:14954. [PMID: 38942763 PMCID: PMC11213882 DOI: 10.1038/s41598-024-65010-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 06/16/2024] [Indexed: 06/30/2024] Open
Abstract
While there are currently over 40 replicated genes with mapped risk alleles for Late Onset Alzheimer's disease (LOAD), the Apolipoprotein E locus E4 haplotype is still the biggest driver of risk, with odds ratios for neuropathologically confirmed E44 carriers exceeding 30 (95% confidence interval 16.59-58.75). We sought to address whether the APOE E4 haplotype modifies expression globally through networks of expression to increase LOAD risk. We have used the Human Brainome data to build expression networks comparing APOE E4 carriers to non-carriers using scalable mixed-datatypes Bayesian network (BN) modeling. We have found that VGF had the greatest explanatory weight. High expression of VGF is a protective signal, even on the background of APOE E4 alleles. LOAD risk signals, considering an APOE background, include high levels of SPECC1L, HLA-DRA and RANBP3L. Our findings nominate several new transcripts, taking a combined approach to network building including known LOAD risk loci.
Collapse
Affiliation(s)
- Sergio Branciamore
- Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, Duarte, CA, 91010, USA
| | - Grigoriy Gogoshin
- Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, Duarte, CA, 91010, USA
| | - Andrei S Rodin
- Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, Duarte, CA, 91010, USA.
| | - Amanda J Myers
- Department of Cell Biology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.
- Institute for Data Science and Computing, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.
- Interdepartmental Program in Neuroscience, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.
- Interdepartmental Program in Human Genetics and Genomics, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.
| |
Collapse
|
9
|
Hofstra BM, Kas MJH, Verbeek DS. Comprehensive analysis of genetic risk loci uncovers novel candidate genes and pathways in the comorbidity between depression and Alzheimer's disease. Transl Psychiatry 2024; 14:253. [PMID: 38862462 PMCID: PMC11166962 DOI: 10.1038/s41398-024-02968-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 05/10/2024] [Accepted: 05/29/2024] [Indexed: 06/13/2024] Open
Abstract
There is growing evidence of a shared pathogenesis between Alzheimer's disease and depression. Therefore, we aimed to further investigate their shared disease mechanisms. We made use of publicly available brain-specific eQTL data and gene co-expression networks of previously reported genetic loci associated with these highly comorbid disorders. No direct genetic overlap was observed between Alzheimer's disease and depression in our dataset, but we did detect six shared brain-specific eQTL genes: SRA1, MICA, PCDHA7, PCDHA8, PCDHA10 and PCDHA13. Several pathways were identified as shared between Alzheimer's disease and depression by conducting clustering pathway analysis on hippocampal co-expressed genes; synaptic signaling and organization, myelination, development, and the immune system. This study highlights trans-synaptic signaling and synaptoimmunology in the hippocampus as main shared pathomechanisms of Alzheimer's disease and depression.
Collapse
Affiliation(s)
- Bente M Hofstra
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, the Netherlands
| | - Martien J H Kas
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, the Netherlands
| | - Dineke S Verbeek
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.
| |
Collapse
|
10
|
Gu R, Pan J, Awan MUN, Sun X, Yan F, Bai L, Bai J. The major histocompatibility complex participates in Parkinson's disease. Pharmacol Res 2024; 203:107168. [PMID: 38583689 DOI: 10.1016/j.phrs.2024.107168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 03/23/2024] [Accepted: 04/02/2024] [Indexed: 04/09/2024]
Abstract
Parkinson's disease (PD) is a common neurodegenerative disease characterized by progressive loss of dopaminergic neurons in the substantia nigra and the aggregation of alpha-synuclein (α-syn). The central nervous system (CNS) has previously been considered as an immune-privileged area. However, studies have shown that the immune responses are involved in PD. The major histocompatibility complex (MHC) presents antigens from antigen-presenting cells (APCs) to T lymphocytes, immune responses will be induced. MHCs are expressed in microglia, astrocytes, and dopaminergic neurons. Single nucleotide polymorphisms in MHC are related to the risk of PD. The aggregated α-syn triggers the expression of MHCs by activating glia cells. CD4+ and CD8+ T lymphocytes responses and microglia activation are detected in brains of PD patients. In addiction immune responses further increase blood-brain barrier (BBB) permeability and T cell infiltration in PD. Thus, MHCs are involved in PD through participating in immune and inflammatory responses.
Collapse
Affiliation(s)
- Rou Gu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; Medical School, Kunming University of Science and Technology, Kunming 650500, China
| | - Jianyu Pan
- Medical School, Kunming University of Science and Technology, Kunming 650500, China
| | - Maher Un Nisa Awan
- Medical School, Kunming University of Science and Technology, Kunming 650500, China; Department of Neurology, The Affiliated Hospital of Yunnan University, Kunming 650500, China
| | - Xiaowei Sun
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; Medical School, Kunming University of Science and Technology, Kunming 650500, China
| | - Fang Yan
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; Medical School, Kunming University of Science and Technology, Kunming 650500, China
| | - Liping Bai
- Medical School, Kunming University of Science and Technology, Kunming 650500, China
| | - Jie Bai
- Medical School, Kunming University of Science and Technology, Kunming 650500, China.
| |
Collapse
|
11
|
Engler-Chiurazzi E. B cells and the stressed brain: emerging evidence of neuroimmune interactions in the context of psychosocial stress and major depression. Front Cell Neurosci 2024; 18:1360242. [PMID: 38650657 PMCID: PMC11033448 DOI: 10.3389/fncel.2024.1360242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/25/2024] [Indexed: 04/25/2024] Open
Abstract
The immune system has emerged as a key regulator of central nervous system (CNS) function in health and in disease. Importantly, improved understanding of immune contributions to mood disorders has provided novel opportunities for the treatment of debilitating stress-related mental health conditions such as major depressive disorder (MDD). Yet, the impact to, and involvement of, B lymphocytes in the response to stress is not well-understood, leaving a fundamental gap in our knowledge underlying the immune theory of depression. Several emerging clinical and preclinical findings highlight pronounced consequences for B cells in stress and MDD and may indicate key roles for B cells in modulating mood. This review will describe the clinical and foundational observations implicating B cell-psychological stress interactions, discuss potential mechanisms by which B cells may impact brain function in the context of stress and mood disorders, describe research tools that support the investigation of their neurobiological impacts, and highlight remaining research questions. The goal here is for this discussion to illuminate both the scope and limitations of our current understanding regarding the role of B cells, stress, mood, and depression.
Collapse
Affiliation(s)
- Elizabeth Engler-Chiurazzi
- Department of Neurosurgery and Neurology, Clinical Neuroscience Research Center, Tulane Brain Institute, Tulane University School of Medicine, New Orleans, LA, United States
| |
Collapse
|
12
|
Sell GL, Barrow SL, McAllister AK. Glutamate signaling and neuroligin/neurexin adhesion play opposing roles that are mediated by major histocompatibility complex I molecules in cortical synapse formation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.05.583626. [PMID: 38496590 PMCID: PMC10942384 DOI: 10.1101/2024.03.05.583626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Although neurons release neurotransmitter before contact, the role for this release in synapse formation remains unclear. Cortical synapses do not require synaptic vesicle release for formation 1-4 , yet glutamate clearly regulates glutamate receptor trafficking 5,6 and induces spine formation 7-11 . Using a culture system to dissect molecular mechanisms, we found that glutamate rapidly decreases synapse density specifically in young cortical neurons in a local and calcium-dependent manner through decreasing NMDAR transport and surface expression as well as co-transport with neuroligin (NL1). Adhesion between NL1 and neurexin 1 protects against this glutamate-induced synapse loss. Major histocompatibility I (MHCI) molecules are required for the effects of glutamate in causing synapse loss through negatively regulating NL1 levels. Thus, like acetylcholine at the NMJ, glutamate acts as a dispersal signal for NMDARs and causes rapid synapse loss unless opposed by NL1-mediated trans-synaptic adhesion. Together, glutamate, MHCI and NL1 mediate a novel form of homeostatic plasticity in young neurons that induces rapid changes in NMDARs to regulate when and where nascent glutamatergic synapses are formed.
Collapse
|
13
|
Moss A, Kuttippurathu L, Srivastava A, Schwaber JS, Vadigepalli R. Dynamic dysregulation of transcriptomic networks in brainstem autonomic nuclei during hypertension development in the female spontaneously hypertensive rat. Physiol Genomics 2024; 56:283-300. [PMID: 38145287 PMCID: PMC11283910 DOI: 10.1152/physiolgenomics.00073.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 12/17/2023] [Accepted: 12/19/2023] [Indexed: 12/26/2023] Open
Abstract
Neurogenic hypertension stems from an imbalance in autonomic function that shifts the central cardiovascular control circuits toward a state of dysfunction. Using the female spontaneously hypertensive rat and the normotensive Wistar-Kyoto rat model, we compared the transcriptomic changes in three autonomic nuclei in the brainstem, nucleus of the solitary tract (NTS), caudal ventrolateral medulla, and rostral ventrolateral medulla (RVLM) in a time series at 8, 10, 12, 16, and 24 wk of age, spanning the prehypertensive stage through extended chronic hypertension. RNA-sequencing data were analyzed using an unbiased, dynamic pattern-based approach that uncovered dominant and several subtle differential gene regulatory signatures. Our results showed a persistent dysregulation across all three autonomic nuclei regardless of the stage of hypertension development as well as a cascade of transient dysregulation beginning in the RVLM at the prehypertensive stage that shifts toward the NTS at the hypertension onset. Genes that were persistently dysregulated were heavily enriched for immunological processes such as antigen processing and presentation, the adaptive immune response, and the complement system. Genes with transient dysregulation were also largely region-specific and were annotated for processes that influence neuronal excitability such as synaptic vesicle release, neurotransmitter transport, and an array of neuropeptides and ion channels. Our results demonstrate that neurogenic hypertension is characterized by brainstem region-specific transcriptomic changes that are highly dynamic with significant gene regulatory changes occurring at the hypertension onset as a key time window for dysregulation of homeostatic processes across the autonomic control circuits.NEW & NOTEWORTHY Hypertension is a major disease and is the primary risk factor for cardiovascular complications and stroke. The gene expression changes in the central nervous system circuits driving hypertension are understudied. Here, we show that coordinated and region-specific gene expression changes occur in the brainstem autonomic circuits over time during the development of a high blood pressure phenotype in a rat model of human essential hypertension.
Collapse
Affiliation(s)
- Alison Moss
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, United States
| | - Lakshmi Kuttippurathu
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, United States
| | - Ankita Srivastava
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, United States
| | - James S Schwaber
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, United States
| | - Rajanikanth Vadigepalli
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, United States
| |
Collapse
|
14
|
Bhuiyan P, Sun Z, Khan MA, Hossain MA, Rahman MH, Qian Y. System biology approaches to identify hub genes linked with ECM organization and inflammatory signaling pathways in schizophrenia pathogenesis. Heliyon 2024; 10:e25191. [PMID: 38322840 PMCID: PMC10844262 DOI: 10.1016/j.heliyon.2024.e25191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 12/18/2023] [Accepted: 01/22/2024] [Indexed: 02/08/2024] Open
Abstract
Schizophrenia (SZ) is a chronic and devastating mental illness that affects around 20 million individuals worldwide. Cognitive deficits and structural and functional changes of the brain, abnormalities of brain ECM components, chronic neuroinflammation, and devastating clinical manifestation during SZ are likely etiological factors shown by affected individuals. However, the pathophysiological events associated with multiple regulatory pathways involved in the brain of this complex disorder are still unclear. This study aimed to develop a pipeline based on bioinformatics and systems biology approaches for identifying potential therapeutic targets involving possible biological mechanisms from SZ patients and healthy volunteers. About 420 overlapping differentially expressed genes (DEGs) from three RNA-seq datasets were identified. Gene ontology (GO), and pathways analysis showed several biological mechanisms enriched by the commonly shared DEGs, including extracellular matrix organization (ECM) organization, collagen fibril organization, integrin signaling pathway, inflammation mediated by chemokines and cytokines signaling pathway, and GABA-B receptor II and IL4 mediated signaling. Besides, 15 hub genes (FN1, COL1A1, COL3A1, COL1A2, COL5A1, COL2A1, COL6A2, COL6A3, MMP2, THBS1, DCN, LUM, HLA-A, HLA-C, and FBN1) were discovered by comprehensive analysis, which was mainly involved in the ECM organization and inflammatory signaling pathway. Furthermore, the miRNA target of the hub genes was analyzed with the random-forest-based approach software miRTarBase. In addition, the transcriptional factors and protein kinases regulating overlapping DEGs in SZ, namely, SUZ12, EZH2, TRIM28, TP53, EGR1, CSNK2A1, GSK3B, CDK1, and MAPK14, were also identified. The results point to a new understanding that the hub genes (fibronectin 1, collagen, matrix metalloproteinase-2, and lumican) in the ECM organization and inflammatory signaling pathways may be involved in the SZ occurrence and pathogenesis.
Collapse
Affiliation(s)
- Piplu Bhuiyan
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, People's Republic of China
- Department of Biotechnology and Genetic Engineering, Faculty of Life Science, University of Development Alternative, Dhaka, 1209, Bangladesh
| | - Zhaochu Sun
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, People's Republic of China
| | - Md Arif Khan
- Department of Biotechnology and Genetic Engineering, Faculty of Life Science, University of Development Alternative, Dhaka, 1209, Bangladesh
- Bio-Bio-1 Bioinformatics Research Foundation, Dhaka, Bangladesh
| | - Md Arju Hossain
- Department of Microbiology, Primeasia University, Banani, Dhaka 1213, Bangladesh
| | - Md Habibur Rahman
- Department of Computer Science and Engineering, Faculty of Engineering and Technology, Islamic University, Kushtia-7003, Bangladesh
| | - Yanning Qian
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, People's Republic of China
| |
Collapse
|
15
|
Li X, Wu S, Feng Z, Ning K, Ji D, Yu L, Hu W. Label-Free and Real-Time Optical Detection of Affinity Binding of the Antibody on Adherent Live Cells. Anal Chem 2024; 96:1112-1120. [PMID: 38181398 DOI: 10.1021/acs.analchem.3c03899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2024]
Abstract
Oblique-incidence reflectivity difference (OIRD) is a novel real-time, label-free, and nondestructive optical detection method and exhibits encouraging application in the detection of antibody/DNA microarrays. In this study, for the first time, an OIRD label-free immunoassay was achieved by using adherent live cells as the probe. The cells were cultured on glass cells, and the affinity binding of antibodies targeted on the HLA class I antigen of the cell surface was detected with an OIRD. The results show that an OIRD is able to detect the binding process of anti-human HLA-A, B, and C antibodies on MDA-MB-231 cells and HUVEC cells. Control experiments and complementary fluorescence analysis confirmed the high detection specificity and good quantitative virtue of the OIRD label-free immunoassay. Label-free OIRD imaging analysis of cell microarrays was further demonstrated successfully, and the underlying optical mechanism was revealed by combining the theoretical modeling. This work explores the use of live cells as probes for an OIRD immunoassay, thus expanding the potential applications of the OIRD in the field of pathological analysis, disease diagnosis, and drug screening, among others.
Collapse
Affiliation(s)
- Xiaoyi Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Materials and Energy, Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, Southwest University, Chongqing 400715, P. R. China
| | - Shiming Wu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Materials and Energy, Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, Southwest University, Chongqing 400715, P. R. China
| | - Zhihao Feng
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Materials and Energy, Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, Southwest University, Chongqing 400715, P. R. China
| | - Ke Ning
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Materials and Energy, Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, Southwest University, Chongqing 400715, P. R. China
| | - Dandan Ji
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Materials and Energy, Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, Southwest University, Chongqing 400715, P. R. China
| | - Ling Yu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Materials and Energy, Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, Southwest University, Chongqing 400715, P. R. China
| | - Weihua Hu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Materials and Energy, Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, Southwest University, Chongqing 400715, P. R. China
- Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, P. R. China
| |
Collapse
|
16
|
Pan L, Huang C, Liu Y, Peng J, Lin R, Yu Y, Qin G. Quantile regression to explore association of sleep duration with depression among adults in NHANES and KNHANES. J Affect Disord 2024; 345:244-251. [PMID: 37871729 DOI: 10.1016/j.jad.2023.10.126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 10/08/2023] [Accepted: 10/20/2023] [Indexed: 10/25/2023]
Abstract
BACKGROUND Sleep duration has been associated with depression. However, mean regression, such as linear regression or logistic regression, may not capture relationships that occur mainly in the tails of outcome distribution. This study aimed to evaluate the associations between sleep duration and depression along the entire distribution of depression using quantile regression approach. METHODS This study included 55,954 adults aged 18 to 80 years from the National Health and Nutrition Examination Survey (N = 34,156) and the Korea National Health and Nutrition Examination Survey (N = 21,798). The coefficients corresponding to cross-group differences in PHQ-9 scores were estimated when comparing short or long sleep duration with normal sleep duration on deciles of PHQ-9 score distribution. RESULTS At lower quantiles, either short or long sleep duration was not associated with depression. At higher quantiles, the association of both short and long sleep duration with depression became much more pronounced. Compared with normal sleep duration, short and long sleep duration were associated with increases of 1.34 (95 % CI: 1.16, 1.51) and 0.28 (95 % CI: 0.04, 0.52) in PHQ-9 scores at the 50th quantile, while the corresponding increases were 3.27 (95 % CI: 2.83, 3.72) and 1.65 (95 % CI: 0.86, 2.45) at the 90th quantile, respectively. We also found that the magnitude of association between short sleep duration and depression was stronger among females and individuals with chronic diseases. CONCLUSIONS The beneficial effect of sufficient sleep in decreasing depression severity may be more evident among individuals with severe depression. Further studies could explore whether these heterogeneous associations can be generalized to populations with different characteristics.
Collapse
Affiliation(s)
- Lulu Pan
- Department of Biostatistics, School of Public Health, Key Laboratory of Public Health Safety of Ministry of Education, Key Laboratory for Health Technology Assessment, National Commission of Health, Fudan University, Shanghai 200032, China
| | - Chen Huang
- Department of Biostatistics, School of Public Health, Key Laboratory of Public Health Safety of Ministry of Education, Key Laboratory for Health Technology Assessment, National Commission of Health, Fudan University, Shanghai 200032, China
| | - Yahang Liu
- Department of Biostatistics, School of Public Health, Key Laboratory of Public Health Safety of Ministry of Education, Key Laboratory for Health Technology Assessment, National Commission of Health, Fudan University, Shanghai 200032, China
| | - Jiahuan Peng
- Department of Biostatistics, School of Public Health, Key Laboratory of Public Health Safety of Ministry of Education, Key Laboratory for Health Technology Assessment, National Commission of Health, Fudan University, Shanghai 200032, China
| | - Ruilang Lin
- Department of Biostatistics, School of Public Health, Key Laboratory of Public Health Safety of Ministry of Education, Key Laboratory for Health Technology Assessment, National Commission of Health, Fudan University, Shanghai 200032, China
| | - Yongfu Yu
- Department of Biostatistics, School of Public Health, Key Laboratory of Public Health Safety of Ministry of Education, Key Laboratory for Health Technology Assessment, National Commission of Health, Fudan University, Shanghai 200032, China.
| | - Guoyou Qin
- Department of Biostatistics, School of Public Health, Key Laboratory of Public Health Safety of Ministry of Education, Key Laboratory for Health Technology Assessment, National Commission of Health, Fudan University, Shanghai 200032, China; Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200032, China.
| |
Collapse
|
17
|
Ghinea FS, Ionică MV, Liliac IM, Pătru S, Olaru DG, Popa-Wagner A. The Impact of Juvenile Microglia Transcriptomics on the Adult Brain Regeneration after Cerebral Ischemia. CURRENT HEALTH SCIENCES JOURNAL 2024; 50:133-150. [PMID: 38846476 PMCID: PMC11151955 DOI: 10.12865/chsj.50.01.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 02/22/2024] [Indexed: 06/09/2024]
Abstract
Microglial cells play a pivotal role in the brain's health and operation through all stages of life and in the face of illness. The contributions of microglia during the developmental phase of the brain markedly contrast with their contributions in the brain of adults after injury. Enhancing our understanding of the pathological mechanisms that involve microglial activity in brains as they age and in cerebrovascular conditions is crucial for informing the creation of novel therapeutic approaches. In this work we provide results on microglia transcriptomics in the juvenile vs injured adult brain and its impact on adult brain regeneration after cerebral ischemia. During fetal brain development, microglia cells are involved in gliogenesis, angiogenesis, axonal outgrowth, synaptogenesis, neurogenesis and synaptic reorganization by engulfing neuronal extensions. Within the mature, intact brain, microglial cells exhibit reduced movement of their processes in response to minimal neuronal activity, while they continuously monitor their surroundings and clear away cellular debris. Following a stroke in the adult brain, inflammation, neurodegeneration, or disruptions in neural equilibrium trigger alterations in both the genetic blueprint and the structure and roles of microglia, a state often described as "activated" microglia. Such genetic shifts include a notable increase in the pathways related to phagosomes, lysosomes, and the presentation of antigens, coupled with a rise in the expression of genes linked to cell surface receptors. We conclude that a comparison of microglia transcriptomic activity during brain development and post-stroke adult brain might provide us with new clues about how neurodegeneration occurs in the adult brain. This information could very useful to develop drugs to slow down or limit the post-stroke pathology and improve clinical outcome.
Collapse
Affiliation(s)
- Flavia Semida Ghinea
- Experimental Research Center for Normal and Pathological Aging, University of Medicine and Medicine Craiova, Romania
| | - Marius Viorel Ionică
- Experimental Research Center for Normal and Pathological Aging, University of Medicine and Medicine Craiova, Romania
| | | | - Simion Pătru
- Experimental Research Center for Normal and Pathological Aging, University of Medicine and Medicine Craiova, Romania
| | - Denisa Greta Olaru
- Experimental Research Center for Normal and Pathological Aging, University of Medicine and Medicine Craiova, Romania
| | - Aurel Popa-Wagner
- Experimental Research Center for Normal and Pathological Aging, University of Medicine and Medicine Craiova, Romania
| |
Collapse
|
18
|
Branciamore S, Gogoshin G, Rodin AS, Myers AJ. The Human Brainome: changes in expression of VGF, SPECC1L, HLA-DRA and RANBP3L act with APOE E4 to alter risk for late onset Alzheimer's disease. RESEARCH SQUARE 2023:rs.3.rs-3678057. [PMID: 38168398 PMCID: PMC10760217 DOI: 10.21203/rs.3.rs-3678057/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
While there are currently over 40 replicated genes with mapped risk alleles for Late Onset Alzheimer's disease (LOAD), the Apolipoprotein E locus E4 haplotype is still the biggest driver of risk, with odds ratios for neuropathologically confirmed E44 carriers exceeding 30 (95% confidence interval 16.59-58.75). We sought to address whether the APOE E4 haplotype modifies expression globally through networks of expression to increase LOAD risk. We have used the Human Brainome data to build expression networks comparing APOE E4 carriers to non-carriers using scalable mixed-datatypes Bayesian network (BN) modeling. We have found that VGF had the greatest explanatory weight. High expression of VGF is a protective signal, even on the background of APOE E4 alleles. LOAD risk signals, considering an APOE background, include high levels of SPECC1L, HLA-DRA and RANBP3L. Our findings nominate several new transcripts, taking a combined approach to network building including known LOAD risk loci.
Collapse
|
19
|
Álvarez I, Tirado-Herranz A, Alvarez-Palomo B, Osete JR, Edel MJ. Proteomic Analysis of Human iPSC-Derived Neural Stem Cells and Motor Neurons Identifies Proteasome Structural Alterations. Cells 2023; 12:2800. [PMID: 38132120 PMCID: PMC10742145 DOI: 10.3390/cells12242800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/22/2023] [Accepted: 11/26/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND Proteins targeted by the ubiquitin proteasome system (UPS) are identified for degradation by the proteasome, which has been implicated in the development of neurodegenerative diseases. Major histocompatibility complex (MHC) molecules present peptides broken down by the proteasome and are involved in neuronal plasticity, regulating the synapse number and axon regeneration in the central or peripheral nervous system during development and in brain diseases. The mechanisms governing these effects are mostly unknown, but evidence from different compartments of the cerebral cortex indicates the presence of immune-like MHC receptors in the central nervous system. METHODS We used human induced pluripotent stem cells (iPSCs) differentiated into neural stem cells and then into motor neurons as a developmental model to better understand the structure of the proteasome in developing motor neurons. We performed a proteomic analysis of starting human skin fibroblasts, their matching iPSCs, differentiated neural stem cells and motor neurons that highlighted significant differences in the constitutive proteasome and immunoproteasome subunits during development toward motor neurons from iPSCs. RESULTS The proteomic analysis showed that the catalytic proteasome subunits expressed in fibroblasts differed from those in the neural stem cells and motor neurons. Western blot analysis confirmed the proteomic data, particularly the decreased expression of the β5i (PSMB8) subunit immunoproteasome in MNs compared to HFFs and increased β5 (PSMB5) in MNs compared to HFFs. CONCLUSION The constitutive proteasome subunits are upregulated in iPSCs and NSCs from HFFs. Immunoproteasome subunit β5i expression is higher in MNs than NSCs; however, overall, there is more of a constitutive proteasome structure in MNs when comparing HFFs to MNs. The proteasome composition may have implications for motor neuron development and neurodevelopmental diseases that warrant further investigation.
Collapse
Affiliation(s)
- Iñaki Álvarez
- Departament de Biologia Cellular, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Fisiologia i Immunologia, 08193 Barcelona, Spain; (I.Á.); (A.T.-H.)
| | - Adrián Tirado-Herranz
- Departament de Biologia Cellular, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Fisiologia i Immunologia, 08193 Barcelona, Spain; (I.Á.); (A.T.-H.)
| | - Belén Alvarez-Palomo
- Banc de Sang i Teixits, Edifici Dr. Frederic Duran i Jordà, Passeig Taulat, 116, 08005 Barcelona, Spain;
| | - Jordi Requena Osete
- Department of Medical Genetics, Oslo University Hospital, 0450 Oslo, Norway
- NORMENT, Institute of Clinical Medicine, University of Oslo, 0316 Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, 4956 Oslo, Norway
| | - Michael J. Edel
- Department of Anatomy and Embryology, Faculty of Medicine, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
- Discipline of Medical Sciences and Genetics, School of Biomedical Sciences, University of Western Australia, Perth 6009, Australia
| |
Collapse
|
20
|
Cardoso EM, Lourenço-Gomes V, Esgalhado AJ, Reste-Ferreira D, Oliveira N, Amaral AS, Martinho A, Gama JMR, Verde I, Lourenço O, Fonseca AM, Buchli R, Arosa FA. HLA-A23/HLA-A24 serotypes and dementia interaction in the elderly: Association with increased soluble HLA class I molecules in plasma. HLA 2023; 102:660-670. [PMID: 37400938 DOI: 10.1111/tan.15149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 06/16/2023] [Accepted: 06/22/2023] [Indexed: 07/05/2023]
Abstract
MHC class I molecules regulate brain development and plasticity in mice and HLA class I molecules are associated with brain disorders in humans. We investigated the relationship between plasma-derived soluble human HLA class I molecules (sHLA class I), HLA class I serotypes and dementia. A cohort of HLA class I serotyped elderly subjects with no dementia/pre-dementia (NpD, n = 28), or with dementia (D, n = 28) was studied. Multivariate analysis was used to examine the influence of dementia and HLA class I serotype on sHLA class I levels, and to compare sHLA class I within four groups according to the presence or absence of HLA-A23/A24 and dementia. HLA-A23/A24 and dementia, but not age, significantly influenced the level of sHLA class I. Importantly, the concurrent presence of HLA-A23/A24 and dementia was associated with higher levels of sHLA class I (p < 0.001). This study has shown that the simultaneous presence of HLA-A23/HLA-A24 and dementia is associated with high levels of serum sHLA class I molecules. Thus, sHLA class I could be considered a biomarker of neurodegeneration in certain HLA class I carriers.
Collapse
Affiliation(s)
- Elsa M Cardoso
- ESS-IPG, School of Health Sciences, Polytechnic of Guarda, Guarda, Portugal
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
- FCS-UBI, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal
| | | | - André J Esgalhado
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Débora Reste-Ferreira
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Nádia Oliveira
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Ana Saraiva Amaral
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - António Martinho
- Molecular Genetics Laboratory, Coimbra Blood and Transplantation Center, Coimbra, Portugal
| | - Jorge M R Gama
- Centre of Mathematics and Applications, Faculty of Sciences, University of Beira Interior, Covilhã, Portugal
| | - Ignácio Verde
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
- Centre of Mathematics and Applications, Faculty of Sciences, University of Beira Interior, Covilhã, Portugal
| | - Olga Lourenço
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
- FCS-UBI, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal
| | - Ana M Fonseca
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
- FCS-UBI, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal
| | - Rico Buchli
- Pure Protein LLC, Oklahoma City, Oklahoma, USA
| | - Fernando A Arosa
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
- FCS-UBI, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal
| |
Collapse
|
21
|
Arenella M, Matuleviciute R, Tamouza R, Leboyer M, McAlonan G, Bralten J, Murphy D. Immunogenetics of autism spectrum disorder: A systematic literature review. Brain Behav Immun 2023; 114:488-499. [PMID: 37717669 DOI: 10.1016/j.bbi.2023.09.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 09/19/2023] Open
Abstract
The aetiology of autism spectrum disorder (ASD) is complex and, partly, accounted by genetic factors. Nonetheless, the genetic underpinnings of ASD are poorly defined. The presence of immune dysregulations in autistic individuals, and their families, supports a role of the immune system and its genetic regulators. Albeit immune responses belong either to the innate or adaptive arms, the overall immune system genetics is broad, and encompasses a multitude of functionally heterogenous pathways which may have different influences on ASD. Hence, to gain insights on the immunogenetic underpinnings of ASD, we conducted a systematic literature review of previous immune genetic and transcription studies in ASD. We defined a list of immune genes relevant to ASD and explored their neuro-immune function. Our review confirms the presence of immunogenetic variability in ASD, accounted by inherited variations of innate and adaptive immune system genes and genetic expression changes in the blood and post-mortem brain of autistic individuals. Besides their immune function, the identified genes control neurodevelopment processes (neuronal and synaptic plasticity) and are highly expressed in pre/peri-natal periods. Hence, our synthesis bolsters the hypothesis that perturbation in immune genes may contribute to ASD by derailing the typical trajectory of neurodevelopment. Our review also helped identifying some of the limitations of prior immunogenetic research in ASD. Thus, alongside clarifying the neurodevelopment role of immune genes, we outline key considerations for future work into the aetiology of ASD and possible novel intervention targets.
Collapse
Affiliation(s)
- Martina Arenella
- Department of Forensic and Neurodevelopmental Science, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom; Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands; Donders Institute of Brain, Cognition and Behavior, Radboud University, Nijmegen, The Netherlands.
| | - Rugile Matuleviciute
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom; MRC Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom
| | - Ryad Tamouza
- University Paris Est Créteil (UPEC), INSERM, IMRB, Translational Neuropsychiatry Lab, AP-HP, Department of Addiction and Psychiatry (DMU IMPACT, FHU ADAPT), France; Fondation FondaMental, F-94010 Créteil, France
| | - Marion Leboyer
- University Paris Est Créteil (UPEC), INSERM, IMRB, Translational Neuropsychiatry Lab, AP-HP, Department of Addiction and Psychiatry (DMU IMPACT, FHU ADAPT), France; Fondation FondaMental, F-94010 Créteil, France
| | - Grainne McAlonan
- Department of Forensic and Neurodevelopmental Science, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom; South London and Maudsley NHS Foundation Trust, London, United Kingdom
| | - Janita Bralten
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands; Donders Institute of Brain, Cognition and Behavior, Radboud University, Nijmegen, The Netherlands
| | - Declan Murphy
- Department of Forensic and Neurodevelopmental Science, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom; South London and Maudsley NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
22
|
Mizrahi L, Choudhary A, Ofer P, Goldberg G, Milanesi E, Kelsoe JR, Gurwitz D, Alda M, Gage FH, Stern S. Immunoglobulin genes expressed in lymphoblastoid cell lines discern and predict lithium response in bipolar disorder patients. Mol Psychiatry 2023; 28:4280-4293. [PMID: 37488168 PMCID: PMC10827667 DOI: 10.1038/s41380-023-02183-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 07/03/2023] [Accepted: 07/06/2023] [Indexed: 07/26/2023]
Abstract
Bipolar disorder (BD) is a neuropsychiatric mood disorder manifested by recurrent episodes of mania and depression. More than half of BD patients are non-responsive to lithium, the first-line treatment drug, complicating BD clinical management. Given its unknown etiology, it is pertinent to understand the genetic signatures that lead to variability in lithium response. We discovered a set of differentially expressed genes (DEGs) from the lymphoblastoid cell lines (LCLs) of 10 controls and 19 BD patients belonging mainly to the immunoglobulin gene family that can be used as potential biomarkers to diagnose and treat BD. Importantly, we trained machine learning algorithms on our datasets that predicted the lithium response of BD subtypes with minimal errors, even when used on a different cohort of 24 BD patients acquired by a different laboratory. This proves the scalability of our methodology for predicting lithium response in BD and for a prompt and suitable decision on therapeutic interventions.
Collapse
Affiliation(s)
- Liron Mizrahi
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, 3498838, Israel
| | - Ashwani Choudhary
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, 3498838, Israel
| | - Polina Ofer
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, 3498838, Israel
| | - Gabriela Goldberg
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Elena Milanesi
- Victor Babes National Institute of Pathology, Bucharest, 050096, Romania
| | - John R Kelsoe
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, 92093, USA
| | - David Gurwitz
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Martin Alda
- Department of Psychiatry, Dalhousie University, Halifax, NS, B3H 2E2, Canada
| | - Fred H Gage
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Shani Stern
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, 3498838, Israel.
| |
Collapse
|
23
|
Tomiyama ALMR, Cartarozzi LP, de Oliveira Coser L, Chiarotto GB, Oliveira ALR. Neuroprotection by upregulation of the major histocompatibility complex class I (MHC I) in SOD1 G93A mice. Front Cell Neurosci 2023; 17:1211486. [PMID: 37711512 PMCID: PMC10498468 DOI: 10.3389/fncel.2023.1211486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 08/07/2023] [Indexed: 09/16/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease that progressively affects motoneurons, causing muscle atrophy and evolving to death. Astrocytes inhibit the expression of MHC-I by neurons, contributing to a degenerative outcome. The present study verified the influence of interferon β (IFN β) treatment, a proinflammatory cytokine that upregulates MHC-I expression, in SOD1G93A transgenic mice. For that, 17 days old presymptomatic female mice were subjected to subcutaneous application of IFN β (250, 1,000, and 10,000 IU) every other day for 20 days. Rotarod motor test, clinical score, and body weight assessment were conducted every third day throughout the treatment period. No significant intergroup variations were observed in such parameters during the pre-symptomatic phase. All mice were then euthanized, and the spinal cords collected for comparative analysis of motoneuron survival, reactive gliosis, synapse coverage, microglia morphology classification, cytokine analysis by flow cytometry, and RT-qPCR quantification of gene transcripts. Additionally, mice underwent Rotarod motor assessment, weight monitoring, and neurological scoring. The results show that IFN β treatment led to an increase in the expression of MHC-I, which, even at the lowest dose (250 IU), resulted in a significant increase in neuronal survival in the ALS presymptomatic period which lasted until the onset of the disease. The treatment also influenced synaptic preservation by decreasing excitatory inputs and upregulating the expression of AMPA receptors by astrocytes. Microglial reactivity quantified by the integrated density of pixels did not decrease with treatment but showed a less activated morphology, coupled with polarization to an M1 profile. Disease progression upregulated gene transcripts for pro- and anti-inflammatory cytokines, and IFN β treatment significantly decreased mRNA expression for IL4. Overall, the present results demonstrate that a low dosage of IFN β shows therapeutic potential by increasing MHC-I expression, resulting in neuroprotection and immunomodulation.
Collapse
Affiliation(s)
| | | | | | | | - Alexandre L. R. Oliveira
- Department of Structural and Functional Biology, Institute of Biology—University of Campinas (UNICAMP), Campinas, Brazil
| |
Collapse
|
24
|
Vera-Montecinos A, Rodríguez-Mias R, Vila È, Villén J, Ramos B. Analysis of networks in the dorsolateral prefrontal cortex in chronic schizophrenia: Relevance of altered immune response. Front Pharmacol 2023; 14:1003557. [PMID: 37033658 PMCID: PMC10076656 DOI: 10.3389/fphar.2023.1003557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 03/09/2023] [Indexed: 04/11/2023] Open
Abstract
The dorsolateral prefrontal cortex (DLPFC) has a crucial role in cognitive functioning and negative symptoms in schizophrenia. However, limited information of altered protein networks is available in this region in schizophrenia. We performed a proteomic analysis using single-shot liquid chromatography-tandem mass spectrometry of grey matter of postmortem DLPFC in chronic schizophrenia subjects (n = 20) and unaffected subjects (n = 20) followed by bioinformatic analysis to identify altered protein networks in schizophrenia (PXD024939 identifier in ProteomeXchange repository). Our results displayed a proteome profile in the DLPFC of 1989 proteins. 43 proteins were found significantly altered in schizophrenia. Analysis of this panel showed an enrichment of biological processes implicated in vesicle-mediated transport, processing and antigen presentation via MHC class II, intracellular transport and selenium metabolism. The enriched identified pathways were MHC class II antigen presentation, vesicle-mediated transport, Golgi ER retrograde transport, Nef mediated CD8 downregulation and the immune system. All these enriched categories were found to be downregulated. Furthermore, our network analyses showed crosstalk between proteins involved in MHC class II antigen presentation, membrane trafficking, Golgi-to-ER retrograde transport, Nef-mediated CD8 downregulation and the immune system with only one module built by 13 proteins. RAB7A showed eight interactions with proteins of all these pathways. Our results provide an altered molecular network involved in immune response in the DLPFC in schizophrenia with a central role of RAB7A. These results suggest that RAB7A or other proteins of this network could be potential targets for novel pharmacological strategies in schizophrenia for improving cognitive and negative symptoms.
Collapse
Affiliation(s)
- América Vera-Montecinos
- Psiquiatria Molecular, Parc Sanitari Sant Joan de Déu, Institut de Recerca Sant Joan de Déu, Sant Boi de Llobregat, Spain
| | - Ricard Rodríguez-Mias
- Department of Genome Sciences, School of Medicine, University of Washington, Seattle, WA, United States
| | - Èlia Vila
- Psiquiatria Molecular, Parc Sanitari Sant Joan de Déu, Institut de Recerca Sant Joan de Déu, Sant Boi de Llobregat, Spain
| | - Judit Villén
- Department of Genome Sciences, School of Medicine, University of Washington, Seattle, WA, United States
| | - Belén Ramos
- Psiquiatria Molecular, Parc Sanitari Sant Joan de Déu, Institut de Recerca Sant Joan de Déu, Sant Boi de Llobregat, Spain
- Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM (Biomedical Network Research Center of Mental Health), Ministry of Economy, Industry and Competitiveness, Institute of Health Carlos III, Madrid, Spain
- Department de Bioquímica i Biología Molecular, Facultat de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain
- Facultat de Medicina, Universitat de Vic-Universitat Central de Catalunya, Vic, Spain
| |
Collapse
|
25
|
Gao Y, Hong Y, Huang L, Zheng S, Zhang H, Wang S, Yao Y, Zhao Y, Zhu L, Xu Q, Chai X, Zeng Y, Zeng Y, Zheng L, Zhou Y, Luo H, Zhang X, Zhang H, Zhou Y, Fu G, Sun H, Huang TY, Zheng Q, Xu H, Wang X. β2-microglobulin functions as an endogenous NMDAR antagonist to impair synaptic function. Cell 2023; 186:1026-1038.e20. [PMID: 36868208 DOI: 10.1016/j.cell.2023.01.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 11/14/2022] [Accepted: 01/17/2023] [Indexed: 03/05/2023]
Abstract
Down syndrome (DS) is a neurological disorder with multiple immune-related symptoms; however, crosstalk between the CNS and peripheral immune system remains unexplored. Using parabiosis and plasma infusion, we found that blood-borne factors drive synaptic deficits in DS. Proteomic analysis revealed elevation of β2-microglobulin (B2M), a major histocompatibility complex class I (MHC-I) component, in human DS plasma. Systemic administration of B2M in wild-type mice led to synaptic and memory defects similar to those observed in DS mice. Moreover, genetic ablation of B2m or systemic administration of an anti-B2M antibody counteracts synaptic impairments in DS mice. Mechanistically, we demonstrate that B2M antagonizes NMDA receptor (NMDAR) function through interactions with the GluN1-S2 loop; blocking B2M-NMDAR interactions using competitive peptides restores NMDAR-dependent synaptic function. Our findings identify B2M as an endogenous NMDAR antagonist and reveal a pathophysiological role for circulating B2M in NMDAR dysfunction in DS and related cognitive disorders.
Collapse
Affiliation(s)
- Yue Gao
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neurology, the First Affiliated Hospital of Xiamen University, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361005, China; Shenzhen Research Institute of Xiamen University, Shenzhen, Guangdong 518057, China
| | - Yujuan Hong
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neurology, the First Affiliated Hospital of Xiamen University, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361005, China
| | - Lihong Huang
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neurology, the First Affiliated Hospital of Xiamen University, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361005, China
| | - Shuang Zheng
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neurology, the First Affiliated Hospital of Xiamen University, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361005, China
| | - Haibin Zhang
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neurology, the First Affiliated Hospital of Xiamen University, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361005, China
| | - Shihua Wang
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neurology, the First Affiliated Hospital of Xiamen University, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361005, China
| | - Yi Yao
- Department of Functional Neurosurgery, Xiamen Humanity Hospital, Fujian Medical University, Xiamen, Fujian 361003, China
| | - Yini Zhao
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neurology, the First Affiliated Hospital of Xiamen University, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361005, China
| | - Lin Zhu
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neurology, the First Affiliated Hospital of Xiamen University, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361005, China
| | - Qiang Xu
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neurology, the First Affiliated Hospital of Xiamen University, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361005, China
| | - Xuhui Chai
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neurology, the First Affiliated Hospital of Xiamen University, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361005, China
| | - Yuanyuan Zeng
- National Institute for Data Science in Health and Medicine, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Yuzhe Zeng
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neurology, the First Affiliated Hospital of Xiamen University, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361005, China
| | - Liangkai Zheng
- United Diagnostic and Research Center for Clinical Genetics, Women and Children's Hospital, School of Medicine and School of Public Health, Xiamen University, Xiamen 361103, China
| | - Yulin Zhou
- United Diagnostic and Research Center for Clinical Genetics, Women and Children's Hospital, School of Medicine and School of Public Health, Xiamen University, Xiamen 361103, China
| | - Hong Luo
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neurology, the First Affiliated Hospital of Xiamen University, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361005, China
| | - Xian Zhang
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neurology, the First Affiliated Hospital of Xiamen University, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361005, China
| | - Hongfeng Zhang
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neurology, the First Affiliated Hospital of Xiamen University, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361005, China; Shenzhen Research Institute of Xiamen University, Shenzhen, Guangdong 518057, China
| | - Ying Zhou
- National Institute for Data Science in Health and Medicine, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Guo Fu
- State Key Laboratory of Cellular Stress Biology, Cancer Research Center of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361005, China
| | - Hao Sun
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neurology, the First Affiliated Hospital of Xiamen University, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361005, China
| | - Timothy Y Huang
- Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Qiuyang Zheng
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neurology, the First Affiliated Hospital of Xiamen University, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361005, China; Shenzhen Research Institute of Xiamen University, Shenzhen, Guangdong 518057, China
| | - Huaxi Xu
- Center for Brain Sciences, the First Affiliated Hospital of Xiamen University, Institute of Neuroscience, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, School of Medicine, Xiamen University, Xiamen, Fujian 361005, China; Institute for Brain Science and Disease, Chongqing Medical University, Chongqing 400016, China
| | - Xin Wang
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neurology, the First Affiliated Hospital of Xiamen University, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361005, China; Shenzhen Research Institute of Xiamen University, Shenzhen, Guangdong 518057, China.
| |
Collapse
|
26
|
Pinosanu LR, Capitanescu B, Glavan D, Godeanu S, Cadenas IF, Doeppner TR, Hermann DM, Balseanu AT, Bogdan C, Popa-Wagner A. Neuroglia Cells Transcriptomic in Brain Development, Aging and Neurodegenerative Diseases. Aging Dis 2023; 14:63-83. [PMID: 36818562 PMCID: PMC9937697 DOI: 10.14336/ad.2022.0621] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 06/21/2022] [Indexed: 11/18/2022] Open
Abstract
Glia cells are essential for brain functioning during development, aging and disease. However, the role of astroglia plays during brain development is quite different from the role played in the adult lesioned brain. Therefore, a deeper understanding of pathomechanisms underlying astroglia activity in the aging brain and cerebrovascular diseases is essential to guide the development of new therapeutic strategies. To this end, this review provides a comparison between the transcriptomic activity of astroglia cells during development, aging and neurodegenerative diseases, including cerebral ischemia. During fetal brain development, astrocytes and microglia often affect the same developmental processes such as neuro-/gliogenesis, angiogenesis, axonal outgrowth, synaptogenesis, and synaptic pruning. In the adult brain astrocytes are a critical player in the synapse remodeling by mediating synapse elimination while microglia activity has been associated with changes in synaptic plasticity and remove cell debris by constantly sensing the environment. However, in the lesioned brain astrocytes proliferate and play essential functions with regard to energy supply to the neurons, neurotransmission and buildup of a protective scar isolating the lesion site from the surroundings. Inflammation, neurodegeneration, or loss of brain homeostasis induce changes in microglia gene expression, morphology, and function, generally referred to as "primed" microglia. These changes in gene expression are characterized by an enrichment of phagosome, lysosome, and antigen presentation signaling pathways and is associated with an up-regulation of genes encoding cell surface receptors. In addition, primed microglia are characterized by upregulation of a network of genes in response to interferon gamma. Conclusion. A comparison of astroglia cells transcriptomic activity during brain development, aging and neurodegenerative disorders might provide us with new therapeutic strategies with which to protect the aging brain and improve clinical outcome.
Collapse
Affiliation(s)
- Leonard Radu Pinosanu
- Experimental Research Center for Normal and Pathological Aging (ARES), University of Medicine and Pharmacy of Craiova, Craiova, Romania.
| | - Bogdan Capitanescu
- Experimental Research Center for Normal and Pathological Aging (ARES), University of Medicine and Pharmacy of Craiova, Craiova, Romania.
| | - Daniela Glavan
- Psychiatric clinic, University of Medicine and Pharmacy Craiova, Craiova, Romania.
| | - Sanziana Godeanu
- Experimental Research Center for Normal and Pathological Aging (ARES), University of Medicine and Pharmacy of Craiova, Craiova, Romania.
| | - Israel Ferna´ndez Cadenas
- Stroke Pharmacogenomics and Genetics group, Sant Pau Hospital Institute of Research, Barcelona, Spain.
| | - Thorsten R. Doeppner
- Department of Neurology, University Hospital Giessen, Giessen, Germany.,University of Göttingen Medical School, Department of Neurology, Göttingen, Germany.
| | - Dirk M. Hermann
- Vascular Neurology, Dementia and Ageing Research, Department of Neurology, University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, Germany.
| | - Adrian-Tudor Balseanu
- Experimental Research Center for Normal and Pathological Aging (ARES), University of Medicine and Pharmacy of Craiova, Craiova, Romania.
| | - Catalin Bogdan
- Experimental Research Center for Normal and Pathological Aging (ARES), University of Medicine and Pharmacy of Craiova, Craiova, Romania.,Vascular Neurology, Dementia and Ageing Research, Department of Neurology, University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, Germany.,Correspondence should be addressed to: Dr. Aurel Popa-Wagner () and Dr. Catalin Bogdan (), University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, 45147 Essen, Germany
| | - Aurel Popa-Wagner
- Experimental Research Center for Normal and Pathological Aging (ARES), University of Medicine and Pharmacy of Craiova, Craiova, Romania.,Vascular Neurology, Dementia and Ageing Research, Department of Neurology, University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, Germany.,Correspondence should be addressed to: Dr. Aurel Popa-Wagner () and Dr. Catalin Bogdan (), University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, 45147 Essen, Germany
| |
Collapse
|
27
|
Chen Y, Zhou Y, Zhou Z, Fang Y, Ma L, Zhang X, Xiong J, Liu L. Hypoimmunogenic human pluripotent stem cells are valid cell sources for cell therapeutics with normal self-renewal and multilineage differentiation capacity. Stem Cell Res Ther 2023; 14:11. [PMID: 36691086 PMCID: PMC9872349 DOI: 10.1186/s13287-022-03233-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 12/28/2022] [Indexed: 01/25/2023] Open
Abstract
Hypoimmunogenic human pluripotent stem cells (hPSCs) are expected to serve as an unlimited cell source for generating universally compatible "off-the-shelf" cell grafts. However, whether the engineered hypoimmunogenic hPSCs still preserve their advantages of unlimited self-renewal and multilineage differentiation to yield functional tissue cells remains unclear. Here, we systematically studied the self-renewal and differentiation potency of three types of hypoimmunogenic hPSCs, established through the biallelic lesion of B2M gene to remove all surface expression of classical and nonclassical HLA class I molecules (B2Mnull), biallelic homologous recombination of nonclassical HLA-G1 to the B2M loci to knockout B2M while expressing membrane-bound β2m-HLA-G1 fusion proteins (B2MmHLAG), and ectopic expression of soluble and secreted β2m-HLA-G5 fusion proteins in B2MmHLAG hPSCs (B2Mm/sHLAG) in the most widely used WA09 human embryonic stem cells. Our results showed that hypoimmunogenic hPSCs with variable expression patterns of HLA molecules and immune compromising spectrums retained their normal self-renewal capacity and three-germ-layer differentiation potency. More importantly, as exemplified by neurons, cardiomyocytes and hepatocytes, hypoimmunogenic hPSC-derived tissue cells were fully functional as of their morphology, electrophysiological properties, macromolecule transportation and metabolic regulation. Our findings thus indicate that engineered hypoimmunogenic hPSCs hold great promise of serving as an unlimited universal cell source for cell therapeutics.
Collapse
Affiliation(s)
- Yifan Chen
- Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China
- Key Laboratory of Neuroregeneration of Shanghai Universities, School of Medicine, Tongji University, Shanghai, China
| | - Yanjie Zhou
- Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China
- Key Laboratory of Neuroregeneration of Shanghai Universities, School of Medicine, Tongji University, Shanghai, China
| | - Zhongshu Zhou
- Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China
- Key Laboratory of Neuroregeneration of Shanghai Universities, School of Medicine, Tongji University, Shanghai, China
| | - Yujiang Fang
- Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China
- Key Laboratory of Neuroregeneration of Shanghai Universities, School of Medicine, Tongji University, Shanghai, China
| | - Lin Ma
- Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China
- Key Laboratory of Neuroregeneration of Shanghai Universities, School of Medicine, Tongji University, Shanghai, China
| | - Xiaoqing Zhang
- Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China.
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, Shanghai, China.
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China.
- Key Laboratory of Neuroregeneration of Shanghai Universities, School of Medicine, Tongji University, Shanghai, China.
- Clinical Center for Brain and Spinal Cord Research, Tongji University, Shanghai, China.
- Tsingtao Advanced Research Institute, Tongji University, Qingdao, China.
| | - Jie Xiong
- Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China.
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China.
- Key Laboratory of Neuroregeneration of Shanghai Universities, School of Medicine, Tongji University, Shanghai, China.
| | - Ling Liu
- Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China.
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China.
- Key Laboratory of Neuroregeneration of Shanghai Universities, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
28
|
Xue J, Wu Y, Bao Y, Zhao M, Li F, Sun J, Sun Y, Wang J, Chen L, Mao Y, Schweitzer JS, Song B. Clinical considerations in Parkinson's disease cell therapy. Ageing Res Rev 2023; 83:101792. [PMID: 36402405 DOI: 10.1016/j.arr.2022.101792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 11/13/2022] [Accepted: 11/13/2022] [Indexed: 11/18/2022]
Abstract
Cell replacement therapy is an area of increasing interest for treating Parkinson's disease (PD). However, to become a clinically practical option for PD patients, it must first overcome significant barriers, including establishment of safe and standardized surgical procedures, determination of appropriate perioperative medication regimens, demonstration of long-term graft survival and incorporation, and standardized, clinically meaningful follow-up measures. In this review, we will describe the current status of cell therapy for PD with special attention to these critical requirements, to define guideposts on the road to bring the benefit of this therapy to the Parkinson's clinic.
Collapse
Affiliation(s)
- Jun Xue
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China; National Center for Neurological Disorders, Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Neurosurgical Institute of Fudan University, Shanghai Clinical Medical Center of Neurosurgery, Shanghai 200040, China
| | - Yifan Wu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China; National Center for Neurological Disorders, Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Neurosurgical Institute of Fudan University, Shanghai Clinical Medical Center of Neurosurgery, Shanghai 200040, China
| | - Yuting Bao
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China; National Center for Neurological Disorders, Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Neurosurgical Institute of Fudan University, Shanghai Clinical Medical Center of Neurosurgery, Shanghai 200040, China
| | - Minglai Zhao
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China; National Center for Neurological Disorders, Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Neurosurgical Institute of Fudan University, Shanghai Clinical Medical Center of Neurosurgery, Shanghai 200040, China
| | - Fangzhou Li
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China; National Center for Neurological Disorders, Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Neurosurgical Institute of Fudan University, Shanghai Clinical Medical Center of Neurosurgery, Shanghai 200040, China
| | - Jing Sun
- Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Yimin Sun
- Institute of Neurology, National Clinical Research Center for Aging and Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Jian Wang
- Institute of Neurology, National Clinical Research Center for Aging and Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Liang Chen
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China; National Center for Neurological Disorders, Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Neurosurgical Institute of Fudan University, Shanghai Clinical Medical Center of Neurosurgery, Shanghai 200040, China
| | - Ying Mao
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China; National Center for Neurological Disorders, Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Neurosurgical Institute of Fudan University, Shanghai Clinical Medical Center of Neurosurgery, Shanghai 200040, China.
| | - Jeffrey S Schweitzer
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| | - Bin Song
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China; Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200032, China.
| |
Collapse
|
29
|
Sher AA, Lao YT, Coombs KM. HLA-A, HSPA5, IGFBP5 and PSMA2 Are Restriction Factors for Zika Virus Growth in Astrocytic Cells. Viruses 2022; 15:97. [PMID: 36680137 PMCID: PMC9863221 DOI: 10.3390/v15010097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 12/31/2022] Open
Abstract
(1) Background: Zika virus (ZIKV), an arbo-flavivirus, is transmitted via Aeges aegyptii mosquitoes Following its major outbreaks in 2013, 2014 and 2016, WHO declared it a Public Health Emergency of International Concern. Symptoms of ZIKV infection include acute fever, conjunctivitis, headache, muscle & joint pain and malaise. Cases of its transmission also have been reported via perinatal, sexual and transfusion transmission. ZIKV pathologies include meningo-encephalitis and myelitis in the central nervous system (CNS) and Guillain-Barré syndrome and acute transient polyneuritis in the peripheral nervous system (PNS). Drugs like azithromycin have been tested as inhibitors of ZIKV infection but no vaccines or treatments are currently available. Astrocytes are the most abundant cells in the CNS and among the first cells in CNS infected by ZIKV; (2) Methods: We previously used SOMAScan proteomics to study ZIKV-infected astrocytic cells. Here, we use mass spectrometric analyses to further explain dysregulations in the cellular expression profile of glioblastoma astrocytoma U251 cells. We also knocked down (KD) some of the U251 cellular proteins using siRNAs and observed the impact on ZIKV replication and infectivity; (3) Results & Conclusions: The top ZIKV dysregulated cellular networks were antimicrobial response, cell death, and energy production while top dysregulated functions were antigen presentation, viral replication and cytopathic impact. Th1 and interferon signaling pathways were among the top dysregulated canonical pathways. siRNA-mediated KD of HLA-A, IGFBP5, PSMA2 and HSPA5 increased ZIKV titers and protein synthesis, indicating they are ZIKV restriction factors. ZIKV infection also restored HLA-A expression in HLA-A KD cells by 48 h post-infection, suggesting interactions between this gene product and ZIKV.
Collapse
Affiliation(s)
- Affan A. Sher
- Department of Medical Microbiology & Infectious Diseases, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Ying Tenny Lao
- Manitoba Centre for Proteomics & Systems Biology, University of Manitoba, Winnipeg, MB R3E 3P4, Canada
| | - Kevin M. Coombs
- Department of Medical Microbiology & Infectious Diseases, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
- Manitoba Centre for Proteomics & Systems Biology, University of Manitoba, Winnipeg, MB R3E 3P4, Canada
- Children’s Hospital Research Institute of Manitoba, Winnipeg, MB R3E 3P4, Canada
| |
Collapse
|
30
|
Bilches Medinas D, Malik S, Yıldız‐Bölükbaşı E, Borgonovo J, Saaranen MJ, Urra H, Pulgar E, Afzal M, Contreras D, Wright MT, Bodaleo F, Quiroz G, Rozas P, Mumtaz S, Díaz R, Rozas C, Cabral‐Miranda F, Piña R, Valenzuela V, Uyan O, Reardon C, Woehlbier U, Brown RH, Sena‐Esteves M, Gonzalez‐Billault C, Morales B, Plate L, Ruddock LW, Concha ML, Hetz C, Tolun A. Mutation in protein disulfide isomerase A3 causes neurodevelopmental defects by disturbing endoplasmic reticulum proteostasis. EMBO J 2022; 41:e105531. [PMID: 34904718 PMCID: PMC8762563 DOI: 10.15252/embj.2020105531] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 09/23/2021] [Accepted: 10/14/2021] [Indexed: 01/19/2023] Open
Abstract
Recessive gene mutations underlie many developmental disorders and often lead to disabling neurological problems. Here, we report identification of a homozygous c.170G>A (p.Cys57Tyr or C57Y) mutation in the gene coding for protein disulfide isomerase A3 (PDIA3, also known as ERp57), an enzyme that catalyzes formation of disulfide bonds in the endoplasmic reticulum, to be associated with syndromic intellectual disability. Experiments in zebrafish embryos show that PDIA3C57Y expression is pathogenic and causes developmental defects such as axonal disorganization as well as skeletal abnormalities. Expression of PDIA3C57Y in the mouse hippocampus results in impaired synaptic plasticity and memory consolidation. Proteomic and functional analyses reveal that PDIA3C57Y expression leads to dysregulation of cell adhesion and actin cytoskeleton dynamics, associated with altered integrin biogenesis and reduced neuritogenesis. Biochemical studies show that PDIA3C57Y has decreased catalytic activity and forms disulfide-crosslinked aggregates that abnormally interact with chaperones in the endoplasmic reticulum. Thus, rare disease gene variant can provide insight into how perturbations of neuronal proteostasis can affect the function of the nervous system.
Collapse
|
31
|
From antioxidant to neuromodulator: The role of ascorbate in the management of major depression disorder. Biochem Pharmacol 2022; 206:115300. [DOI: 10.1016/j.bcp.2022.115300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/30/2022] [Accepted: 10/10/2022] [Indexed: 11/24/2022]
|
32
|
Lee KY. Common immunopathogenesis of central nervous system diseases: the protein-homeostasis-system hypothesis. Cell Biosci 2022; 12:184. [PMCID: PMC9668226 DOI: 10.1186/s13578-022-00920-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 10/30/2022] [Indexed: 11/17/2022] Open
Abstract
AbstractThere are hundreds of central nervous system (CNS) diseases, but there are few diseases for which the etiology or pathogenesis is understood as well as those of other organ-specific diseases. Cells in the CNS are selectively protected from external and internal insults by the blood–brain barrier. Thus, the neuroimmune system, including microglia and immune proteins, might control external or internal insults that the adaptive immune system cannot control or mitigate. The pathologic findings differ by disease and show a state of inflammation that reflects the relationship between etiological or inflammation-inducing substances and corresponding immune reactions. Current immunological concepts about infectious diseases and infection-associated immune-mediated diseases, including those in the CNS, can only partly explain the pathophysiology of disease because they are based on the idea that host cell injury is caused by pathogens. Because every disease involves etiological or triggering substances for disease-onset, the protein-homeostasis-system (PHS) hypothesis proposes that the immune systems in the host control those substances according to the size and biochemical properties of the substances. In this article, I propose a common immunopathogenesis of CNS diseases, including prion diseases, Alzheimer’s disease, and genetic diseases, through the PHS hypothesis.
Collapse
|
33
|
Interferon-beta induces major histocompatibility complex of class I (MHC-I) expression and a proinflammatory phenotype in cultivated human astrocytes. Differentiation 2022; 128:43-56. [DOI: 10.1016/j.diff.2022.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 11/21/2022]
|
34
|
Cukier HN, Kim H, Griswold AJ, Codreanu SG, Prince LM, Sherrod SD, McLean JA, Dykxhoorn DM, Ess KC, Hedera P, Bowman AB, Neely MD. Genomic, transcriptomic, and metabolomic profiles of hiPSC-derived dopamine neurons from clinically discordant brothers with identical PRKN deletions. NPJ Parkinsons Dis 2022; 8:84. [PMID: 35768426 PMCID: PMC9243035 DOI: 10.1038/s41531-022-00346-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 05/27/2022] [Indexed: 11/25/2022] Open
Abstract
We previously reported on two brothers who carry identical compound heterozygous PRKN mutations yet present with significantly different Parkinson's Disease (PD) clinical phenotypes. Juvenile cases demonstrate that PD is not necessarily an aging-associated disease. Indeed, evidence for a developmental component to PD pathogenesis is accumulating. Thus, we hypothesized that the presence of additional genetic modifiers, including genetic loci relevant to mesencephalic dopamine neuron development, could potentially contribute to the different clinical manifestations of the two brothers. We differentiated human-induced pluripotent stem cells (hiPSCs) derived from the two brothers into mesencephalic neural precursor cells and early postmitotic dopaminergic neurons and performed wholeexome sequencing and transcriptomic and metabolomic analyses. No significant differences in the expression of canonical dopamine neuron differentiation markers were observed. Yet our transcriptomic analysis revealed a significant downregulation of the expression of three neurodevelopmentally relevant cell adhesion molecules, CNTN6, CNTN4 and CHL1, in the cultures of the more severely affected brother. In addition, several HLA genes, known to play a role in neurodevelopment, were differentially regulated. The expression of EN2, a transcription factor crucial for mesencephalic dopamine neuron development, was also differentially regulated. We further identified differences in cellular processes relevant to dopamine metabolism. Lastly, wholeexome sequencing, transcriptomics and metabolomics data all revealed differences in glutathione (GSH) homeostasis, the dysregulation of which has been previously associated with PD. In summary, we identified genetic differences which could potentially, at least partially, contribute to the discordant clinical PD presentation of the two brothers.
Collapse
Affiliation(s)
- Holly N Cukier
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
- John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Hyunjin Kim
- School of Health Sciences, Purdue University, West Lafayette, Indiana, IN, USA
| | - Anthony J Griswold
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
- John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Simona G Codreanu
- Center for Innovative Technology, Vanderbilt University, Nashville, TN, USA
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA
| | - Lisa M Prince
- School of Health Sciences, Purdue University, West Lafayette, Indiana, IN, USA
| | - Stacy D Sherrod
- Center for Innovative Technology, Vanderbilt University, Nashville, TN, USA
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA
| | - John A McLean
- Center for Innovative Technology, Vanderbilt University, Nashville, TN, USA
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA
| | - Derek M Dykxhoorn
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
- John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Kevin C Ess
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Peter Hedera
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Neurology, University of Louisville, Louisville, KY, USA
| | - Aaron B Bowman
- School of Health Sciences, Purdue University, West Lafayette, Indiana, IN, USA.
| | - M Diana Neely
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA.
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
35
|
Lassmann Ł, Pollis M, Żółtowska A, Manfredini D. Gut Bless Your Pain—Roles of the Gut Microbiota, Sleep, and Melatonin in Chronic Orofacial Pain and Depression. Biomedicines 2022; 10:biomedicines10071528. [PMID: 35884835 PMCID: PMC9313154 DOI: 10.3390/biomedicines10071528] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 11/18/2022] Open
Abstract
Background. Increased attention has been paid to the gut–brain axis recently, but little is known so far regarding how this translates into pain susceptibility. Aim. The aim of this review is to determine whether gastroenterological disorders and sleep disorders (directly or indirectly) contribute to an increased susceptibility to depression and chronic orofacial pain. Method. A search was performed in the U.S. National Library of Medicine (PubMed) database in order to find studies published before 19 December 2021. We used the following terms: gut microbiome, OR sleep quality, OR melatonin, OR GERD, OR IBS, AND: depression OR chronic pain, in different configurations. Only papers in English were selected. Given the large number of papers retrieved in the search, their findings were described and organized narratively. Results. A link exists between sleep disorders and gastroenterological disorders, which, by adversely affecting the psyche and increasing inflammation, disturb the metabolism of tryptophan and cause excessive microglial activation, leading to increased susceptibility to pain sensation and depression. Conclusions. Pain therapists should pay close attention to sleep and gastrointestinal disorders in patients with chronic pain and depression.
Collapse
Affiliation(s)
- Łukasz Lassmann
- Dental Sense Medicover, 80-283 Gdańsk, Poland
- Correspondence:
| | - Matteo Pollis
- Department of Medical Biotechnology, School of Dentistry, University of Siena, 53100 Siena, Italy; (M.P.); (D.M.)
| | - Agata Żółtowska
- Department of Conservative Dentistry, Faculty of Medicine, Medical University of Gdańsk, 80-210 Gdańsk, Poland;
| | - Daniele Manfredini
- Department of Medical Biotechnology, School of Dentistry, University of Siena, 53100 Siena, Italy; (M.P.); (D.M.)
| |
Collapse
|
36
|
Marin IA, Gutman-Wei AY, Chew KS, Raissi AJ, Djurisic M, Shatz CJ. The nonclassical MHC class I Qa-1 expressed in layer 6 neurons regulates activity-dependent plasticity via microglial CD94/NKG2 in the cortex. Proc Natl Acad Sci U S A 2022; 119:e2203965119. [PMID: 35648829 PMCID: PMC9191652 DOI: 10.1073/pnas.2203965119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 04/20/2022] [Indexed: 12/30/2022] Open
Abstract
During developmental critical periods, circuits are sculpted by a process of activity-dependent competition. The molecular machinery involved in regulating the complex process of responding to different levels of activity is now beginning to be identified. Here, we show that the nonclassical major histocompatibility class I (MHCI) molecule Qa-1 is expressed in the healthy brain in layer 6 corticothalamic neurons. In the visual cortex, Qa-1 expression begins during the critical period for ocular dominance (OD) plasticity and is regulated by neuronal activity, suggesting a role in regulating activity-dependent competition. Indeed, in mice lacking Qa-1, OD plasticity is perturbed. Moreover, signaling through CD94/NKG2, a known cognate Qa-1 heterodimeric receptor in the immune system, is implicated: selectively targeting this interaction phenocopies the plasticity perturbation observed in Qa-1 knockouts. In the cortex, CD94/NKG2 is expressed by microglial cells, which undergo activity-dependent changes in their morphology in a Qa-1–dependent manner. Our study thus reveals a neuron–microglial interaction dependent upon a nonclassical MHCI molecule expressed in L6 neurons, which regulates plasticity in the visual cortex. These results also point to an unexpected function for the Qa-1/HLA-E (ligand) and CD94/NKG2 (receptor) interaction in the nervous system, in addition to that described in the immune system.
Collapse
Affiliation(s)
- Ioana A. Marin
- Department of Biology, Stanford University, Stanford, CA 94035
- Department of Neurobiology, Stanford University, Stanford, CA 94035
| | - Alan Y. Gutman-Wei
- Department of Biology, Stanford University, Stanford, CA 94035
- Department of Neurobiology, Stanford University, Stanford, CA 94035
| | - Kylie S. Chew
- Department of Biology, Stanford University, Stanford, CA 94035
- Department of Neurobiology, Stanford University, Stanford, CA 94035
| | - Aram J. Raissi
- Department of Biology, Stanford University, Stanford, CA 94035
- Department of Neurobiology, Stanford University, Stanford, CA 94035
| | - Maja Djurisic
- Department of Biology, Stanford University, Stanford, CA 94035
- Department of Neurobiology, Stanford University, Stanford, CA 94035
| | - Carla J. Shatz
- Department of Biology, Stanford University, Stanford, CA 94035
- Department of Neurobiology, Stanford University, Stanford, CA 94035
| |
Collapse
|
37
|
Luvsannyam E, Jain MS, Pormento MKL, Siddiqui H, Balagtas ARA, Emuze BO, Poprawski T. Neurobiology of Schizophrenia: A Comprehensive Review. Cureus 2022; 14:e23959. [PMID: 35541299 PMCID: PMC9080788 DOI: 10.7759/cureus.23959] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 04/08/2022] [Indexed: 12/21/2022] Open
Abstract
Schizophrenia is a debilitating disease that presents with both positive and negative symptoms affecting cognition and emotions. Extensive studies have analyzed the different factors that contribute to the disorder. There is evidence of significant genetic etiology involving multiple genes such as dystrobrevin binding protein 1 (DTNBP1) and neuregulin 1 (NRG1). There is no clear link between neurotransmitter changes and the pathophysiology of schizophrenia; however, studies have shown that subcortical dopamine dysfunction is the key mechanism. Specific regions of gray and white matter changes are observed in patients with schizophrenia; gray matter changes being more significant after the onset of psychosis. These pathological changes may be implicated in the impairment of executive functioning, attention, and working memory. The disease can be managed with pharmacological treatments based on individual patient profile, patient compliance, and disease severity. The challenge of disease management sometimes persists due to the side effects. A better understanding of the pathological processes in schizophrenia may lead to more specific and effective therapies.
Collapse
|
38
|
Liu X, Kumar V, Tsai NP, Auerbach BD. Hyperexcitability and Homeostasis in Fragile X Syndrome. Front Mol Neurosci 2022; 14:805929. [PMID: 35069112 PMCID: PMC8770333 DOI: 10.3389/fnmol.2021.805929] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 12/14/2021] [Indexed: 01/13/2023] Open
Abstract
Fragile X Syndrome (FXS) is a leading inherited cause of autism and intellectual disability, resulting from a mutation in the FMR1 gene and subsequent loss of its protein product FMRP. Despite this simple genetic origin, FXS is a phenotypically complex disorder with a range of physical and neurocognitive disruptions. While numerous molecular and cellular pathways are affected by FMRP loss, there is growing evidence that circuit hyperexcitability may be a common convergence point that can account for many of the wide-ranging phenotypes seen in FXS. The mechanisms for hyperexcitability in FXS include alterations to excitatory synaptic function and connectivity, reduced inhibitory neuron activity, as well as changes to ion channel expression and conductance. However, understanding the impact of FMR1 mutation on circuit function is complicated by the inherent plasticity in neural circuits, which display an array of homeostatic mechanisms to maintain activity near set levels. FMRP is also an important regulator of activity-dependent plasticity in the brain, meaning that dysregulated plasticity can be both a cause and consequence of hyperexcitable networks in FXS. This makes it difficult to separate the direct effects of FMR1 mutation from the myriad and pleiotropic compensatory changes associated with it, both of which are likely to contribute to FXS pathophysiology. Here we will: (1) review evidence for hyperexcitability and homeostatic plasticity phenotypes in FXS models, focusing on similarities/differences across brain regions, cell-types, and developmental time points; (2) examine how excitability and plasticity disruptions interact with each other to ultimately contribute to circuit dysfunction in FXS; and (3) discuss how these synaptic and circuit deficits contribute to disease-relevant behavioral phenotypes like epilepsy and sensory hypersensitivity. Through this discussion of where the current field stands, we aim to introduce perspectives moving forward in FXS research.
Collapse
Affiliation(s)
- Xiaopeng Liu
- Deparment of Molecular & Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- Beckman Institute for Advanced Science & Technology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Vipendra Kumar
- Deparment of Molecular & Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Nien-Pei Tsai
- Deparment of Molecular & Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Benjamin D. Auerbach
- Deparment of Molecular & Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- Beckman Institute for Advanced Science & Technology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- *Correspondence: Benjamin D. Auerbach
| |
Collapse
|
39
|
Ma H, Xu J, Li R, McIntyre RS, Teopiz KM, Cao B, Yang F. The Impact of Cognitive Behavioral Therapy on Peripheral Interleukin-6 Levels in Depression: A Systematic Review and Meta-Analysis. Front Psychiatry 2022; 13:844176. [PMID: 35633813 PMCID: PMC9136073 DOI: 10.3389/fpsyt.2022.844176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 03/28/2022] [Indexed: 11/28/2022] Open
Abstract
UNLABELLED There is interest in the role of peripheral interleukin-6 (IL-6) in depression and the effect of treatment (e. g., pharmacologic, psychosocial, neurostimulation). However, the relationship between cognitive behavioral therapy (CBT), IL-6 and depression has not yet been established. We conducted a meta-analysis to explore the association between CBT and change of peripheral IL-6 levels in depressive symptoms or major depressive disorder (MDD). A systematic search of online databases (i.e., PubMed, Web of Science, Google Scholar, PsycINFO, and Cochrane Library) was completed from inception to May 2021. In total, 10 eligible papers with 940 participants reporting peripheral IL-6 levels before and after CBT were included in the analysis. The main result indicates that peripheral levels of IL-6 were significantly lower after CBT intervention in individuals with depression, with a small effect (SMD = 0.38, 95% CI: 0.07, 0.69, p = 0.02). The results of subgroup analyses demonstrate that (1) there was a significant decrease in IL-6 for studies that were equal to or <8 weeks in duration vs. more than 8 weeks in duration, and (2) IL-6 was significantly reduced in the Diagnostic and Statistical Manual of Mental Disorders (DSM) diagnosis (i.e., DSM-IV, DSM-IV-TR, or DSM-V) of MDD, but not for the subgroup without DSM diagnosis. Publication year was identified as a potential contributor to heterogeneity of the results from our analysis. Taken together, our findings support the notion that CBT influences peripheral IL-6 in individuals with depression and represents a point of commonality with other antidepressant treatment modalities (e.g., antidepressants). SYSTEMATIC REVIEW REGISTRATION https://doi.org/10.17605/osf.io/tr9yh, identifier: 10.17605/osf.io/tr9yh.
Collapse
Affiliation(s)
- Haijing Ma
- Key Laboratory of Cognition and Personality, Faculty of Psychology, Ministry of Education, Southwest University, Chongqing, China
| | - Jiatong Xu
- Key Laboratory of Cognition and Personality, Faculty of Psychology, Ministry of Education, Southwest University, Chongqing, China
| | - Ruonan Li
- Key Laboratory of Cognition and Personality, Faculty of Psychology, Ministry of Education, Southwest University, Chongqing, China
| | - Roger S McIntyre
- Mood Disorders Psychopharmacology Unit, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Department of Pharmacology, University of Toronto, Toronto, ON, Canada
| | - Kayla M Teopiz
- Mood Disorders Psychopharmacology Unit, Toronto, ON, Canada
| | - Bing Cao
- Key Laboratory of Cognition and Personality, Faculty of Psychology, Ministry of Education, Southwest University, Chongqing, China.,National Demonstration Center for Experimental Psychology Education, Southwest University, Chongqing, China
| | - Fahui Yang
- Key Laboratory of Cognition and Personality, Faculty of Psychology, Ministry of Education, Southwest University, Chongqing, China.,National Demonstration Center for Experimental Psychology Education, Southwest University, Chongqing, China
| |
Collapse
|
40
|
Bian B, Couvy-Duchesne B, Wray NR, McRae AF. OUP accepted manuscript. Brain Commun 2022; 4:fcac078. [PMID: 35441133 PMCID: PMC9014537 DOI: 10.1093/braincomms/fcac078] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 12/08/2021] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
Genetic variants in the human leukocyte antigen and killer cell immunoglobulin-like receptor regions have been associated with many brain-related diseases, but how they shape brain structure and function remains unclear. To identify the genetic variants in HLA and KIR genes associated with human brain phenotypes, we performed a genetic association study of ∼30 000 European unrelated individuals using brain MRI phenotypes generated by the UK Biobank (UKB). We identified 15 HLA alleles in HLA class I and class II genes significantly associated with at least one brain MRI-based phenotypes (P < 5 × 10−8). These associations converged on several main haplotypes within the HLA. In particular, the human leukocyte antigen alleles within an ancestral haplotype 8.1 were associated with multiple MRI measures, including grey matter volume, cortical thickness (TH) and diffusion MRI (dMRI) metrics. These alleles have been strongly associated with schizophrenia. Additionally, associations were identified between HLA-DRB1*04∼DQA1*03:01∼DQB1*03:02 and isotropic volume fraction of diffusion MRI in multiple white matter tracts. This haplotype has been reported to be associated with Parkinson’s disease. These findings suggest shared genetic associations between brain MRI biomarkers and brain-related diseases. Additionally, we identified 169 associations between the complement component 4 (C4) gene and imaging phenotypes. We found that C4 gene copy number was associated with cortical TH and dMRI metrics. No KIR gene copy numbers were associated with image-derived phenotypes at genome-wide threshold. To address the multiple testing burden in the phenome-wide association study, we performed a multi-trait association analysis using trait-based association test that uses extended Simes procedure and identified MRI image-specific associations. This study contributes to insight into how critical immune genes affect brain-related traits as well as the development of neurological and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Beilei Bian
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Baptiste Couvy-Duchesne
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
- Paris Brain Institute, CNRS, INRIA, Paris, France
| | - Naomi R. Wray
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Allan F. McRae
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
- Correspondence to: Allan F. McRae The University of Queensland Brisbane, QLD 4072, Australia E-mail:
| |
Collapse
|
41
|
Perez Gomez AA, Karmakar M, Carroll RJ, Lawley KS, Amstalden K, Young CR, Threadgill DW, Welsh CJ, Brinkmeyer-Langford C. Genetic and immunological contributors to virus-induced paralysis. Brain Behav Immun Health 2021; 18:100395. [PMID: 34917987 PMCID: PMC8645428 DOI: 10.1016/j.bbih.2021.100395] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 10/25/2021] [Accepted: 11/21/2021] [Indexed: 02/06/2023] Open
Abstract
Infection by a single virus can evoke diverse immune responses, resulting in different neurological outcomes, depending on the host's genetic background. To study heterogenous viral response, we use Theiler's Murine Encephalomyelitis Virus (TMEV) to model virally induced neurological phenotypes and immune responses in Collaborative Cross (CC) mice. The CC resource consists of genetically distinct and reproducible mouse lines, thus providing a population model with genetic heterogeneity similar to humans. We examined different CC strains for the effect of chronic stage TMEV-induced immune responses on neurological outcomes throughout 90 days post infection (dpi), with a particular focus on limb paralysis, by measuring serum levels of 23 different cytokines and chemokines. Each CC strain demonstrated a unique set of immune responses, regardless of presence or absence of TMEV RNA. Using stepwise regression, significant associations were identified between IL-1α, RANTES, and paralysis frequency scores. To better understand these interactions, we evaluated multiple aspects of the different CC genetic backgrounds, including haplotypes of genomic regions previously linked with TMEV pathogenesis and viral clearance or persistence, individual cytokine levels, and TMEV-relevant gene expression. These results demonstrate how loci previously associated with TMEV outcomes provide incomplete information regarding TMEV-induced paralysis in the CC strains. Overall, these findings provide insight into the complex roles of immune response in the pathogenesis of virus-associated neurological diseases influenced by host genetic background.
Collapse
Key Words
- Amyotrophic Lateral Sclerosis, (ALS)
- Chromosome, (Chr)
- Chronic infection
- Collaborative Cross, (CC)
- Collaborative cross
- Cytokine
- Epstein-Barr Virus, (EBV)
- Host response
- IL-1 α
- Multiple Sclerosis, (MS)
- Paralysis
- Parkinson's disease, (PD)
- RANTES
- TMEV
- Theiler's murine encephalomyelitis virus, (TMEV)
- Viral infection
- blood brain barrier, (BBB)
- central nervous system, (CNS)
- days post infection, (dpi)
- experimental autoimmune encephalitis, (EAE)
- intraperitoneal, (IP)
- phosphate buffered saline, (PBS)
- plaque-forming units, (PFU)
- receptor for IL-1 α, (Il1r1)
Collapse
Affiliation(s)
- Aracely A. Perez Gomez
- Interdisciplinary Faculty of Toxicology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
- Corresponding author. Interdisciplinary Faculty of Toxicology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA.
| | - Moumita Karmakar
- Department of Statistics, College of Science, Texas A&M University, College Station, TX, USA
| | - Raymond J. Carroll
- Department of Statistics, College of Science, Texas A&M University, College Station, TX, USA
| | - Koedi S. Lawley
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Katia Amstalden
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Colin R. Young
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - David W. Threadgill
- Interdisciplinary Faculty of Toxicology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX, USA
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, Texas A&M University, College Station, TX, USA
| | - C. Jane Welsh
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
- Texas A&M Institute for Neuroscience (TAMIN), Texas A&M University, College Station, TX, USA
| | - Candice Brinkmeyer-Langford
- Interdisciplinary Faculty of Toxicology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
- Texas A&M Institute for Neuroscience (TAMIN), Texas A&M University, College Station, TX, USA
| |
Collapse
|
42
|
Duménieu M, Marquèze-Pouey B, Russier M, Debanne D. Mechanisms of Plasticity in Subcortical Visual Areas. Cells 2021; 10:3162. [PMID: 34831385 PMCID: PMC8621502 DOI: 10.3390/cells10113162] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 01/10/2023] Open
Abstract
Visual plasticity is classically considered to occur essentially in the primary and secondary cortical areas. Subcortical visual areas such as the dorsal lateral geniculate nucleus (dLGN) or the superior colliculus (SC) have long been held as basic structures responsible for a stable and defined function. In this model, the dLGN was considered as a relay of visual information travelling from the retina to cortical areas and the SC as a sensory integrator orienting body movements towards visual targets. However, recent findings suggest that both dLGN and SC neurons express functional plasticity, adding unexplored layers of complexity to their previously attributed functions. The existence of neuronal plasticity at the level of visual subcortical areas redefines our approach of the visual system. The aim of this paper is therefore to review the cellular and molecular mechanisms for activity-dependent plasticity of both synaptic transmission and cellular properties in subcortical visual areas.
Collapse
Affiliation(s)
| | | | | | - Dominique Debanne
- INSERM, Aix-Marseille Université, UNIS, 13015 Marseille, France; (M.D.); (B.M.-P.); (M.R.)
| |
Collapse
|
43
|
Shen Y, Zhang J. Tight Regulation of Major Histocompatibility Complex I for the Spatial and Temporal Expression in the Hippocampal Neurons. Front Cell Neurosci 2021; 15:739136. [PMID: 34658795 PMCID: PMC8517433 DOI: 10.3389/fncel.2021.739136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 09/06/2021] [Indexed: 11/16/2022] Open
Abstract
The expression and function of immune molecules, such as major histocompatibility complex (MHC), within the developing and adult brain have been discovered over the past few years. Studies utilizing classical class I MHC knockout animals suggest that these molecules, in fact, play essential roles in the establishment, function, and modification of synapses in the CNS. Altered neuronal expression of class I MHC, as has been reported in pathological conditions, leads to aberrations in neuronal development and repair. In the hippocampus, cellular and molecular mechanisms that regulate synaptic plasticity have heretofore been extensively studied. It is for this reason that multiple studies directed at better understanding the expression, regulation, and function of class I MHC within the hippocampus have been undertaken. Since several previous reviews have addressed the roles of class I MHC in the formation and function of hippocampal connections, the present review will focus on describing the spatial and temporal expression of class I MHC in developing, healthy adult, and aging hippocampus. Herein, we also review current literatures exploring mechanisms that regulate class I MHC expression in murine hippocampus. With this review, we aim to facilitate a deeper mechanistic understanding into the complex tight regulation of MHC I expression in hippocampus, which are needed as we explore the potential for targeting MHC I for therapeutic intervention in normal aging and in neurodegenerative diseases in the future.
Collapse
Affiliation(s)
- Yuqing Shen
- Department of Microbiology and Immunology, Medical School, Southeast University, Nanjing, China.,Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, China
| | - Jianqiong Zhang
- Department of Microbiology and Immunology, Medical School, Southeast University, Nanjing, China.,Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Southeast University, Nanjing, China.,Jiangsu Key Laboratory of Molecular and Functional Imaging, Medical School, Zhongda Hospital, Southeast University, Nanjing, China
| |
Collapse
|
44
|
Meng HR, Suenaga T, Edamura M, Fukuda A, Ishida Y, Nakahara D, Murakami G. Functional MHCI deficiency induces ADHD-like symptoms with increased dopamine D1 receptor expression. Brain Behav Immun 2021; 97:22-31. [PMID: 34022373 DOI: 10.1016/j.bbi.2021.05.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/23/2021] [Accepted: 05/17/2021] [Indexed: 11/29/2022] Open
Abstract
Inappropriate synaptic development has been proposed as a potential mechanism of neurodevelopmental disorders, including attention-deficit hyperactivity disorder (ADHD). Major histocompatibility complex class I (MHCI), an immunity-associated molecule expressed by neurons in the brain, regulates synaptic development; however, the involvement of MHCI in these disorders remains elusive. We evaluated whether functional MHCI deficiency induced by β2m-/-Tap1-/- double-knockout in mice leads to abnormalities akin to those seen in neurodevelopmental disorders. We found that functional MHCI deficiency induced locomotor hyperactivity, motor impulsivity, and attention deficits, three major symptoms of ADHD. In contrast, these mice showed normal spatial learning, behavioral flexibility, social behavior, and sensorimotor integration. In the analysis of the dopamine system, upregulation of dopamine D1 receptor (D1R) expression in the nucleus accumbens and a greater locomotor response to D1R agonist SKF 81297 were found in the functional MHCI-deficient mice. Low-dose methylphenidate, used for the treatment of ADHD patients, alleviated the three behavioral symptoms and suppressed c-Fos expression in the D1R-expressing medium spiny neurons of the mice. These findings reveal an unexpected role of MHCI in three major symptoms of ADHD and may provide a novel landmark in the pathogenesis of ADHD.
Collapse
Affiliation(s)
- Hong-Rui Meng
- Division of Psychology, Department of Integrated Human Sciences, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | - Toshiko Suenaga
- Division of Psychology, Department of Integrated Human Sciences, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan; School of Psychology, Tokyo University of Social Welfare, Tokyo 114-0004, Japan
| | - Mitsuhiro Edamura
- Division of Psychology, Department of Integrated Human Sciences, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | - Atsuo Fukuda
- Department of Neurophysiology, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan; Advanced Research Facilities and Services, Preeminent Medical Photonics Education and Research Center, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | - Yasushi Ishida
- Division of Psychiatry, Department of Clinical Neuroscience, Faculty of Medicine, University of Miyazaki, Miyazaki 889-16, Japan
| | - Daiichiro Nakahara
- Division of Psychology, Department of Integrated Human Sciences, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan; Department of Neurophysiology, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan; Division of Psychiatry, Department of Clinical Neuroscience, Faculty of Medicine, University of Miyazaki, Miyazaki 889-16, Japan.
| | - Gen Murakami
- Division of Psychology, Department of Integrated Human Sciences, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan; Department of Liberal Arts, Faculty of Medicine, Saitama Medical University, Saitama 350-0495, Japan.
| |
Collapse
|
45
|
Dehelean L, Papava I, Musat MI, Bondrescu M, Bratosin F, Bucatos BO, Bortun AMC, Mager DV, Romosan RS, Romosan AM, Paczeyka R, Cut TG, Pescariu SA, Laza R. Coping Strategies and Stress Related Disorders in Patients with COVID-19. Brain Sci 2021; 11:brainsci11101287. [PMID: 34679351 PMCID: PMC8533929 DOI: 10.3390/brainsci11101287] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/25/2021] [Accepted: 09/25/2021] [Indexed: 01/31/2023] Open
Abstract
Patients with severe COVID-19 experience high-stress levels and thus are at risk for developing acute stress disorder (ASD) and/or post-traumatic stress disorder (PTSD). The present study aims to search for correlations between psychiatric response to stress and coping strategies among individuals with acute vs. remitted COVID-19. Ninety subjects with COVID-19 were included in the study, divided into two samples by disease category. Our focus was analysing the perceived stress intensity according to NSESSS and PCL-C-17 scales, and coping strategies with COPE-60. High NSESSS scores were found in 40% of acute patients, and 15.6% of remitted patients had high PCL-C-17 scores fulfilling the criteria for PTSD. We found a negative correlation between stress level and disease category. Acute patients used significantly more engagement and emotion-focused coping methods, but less disengagement types of coping than patients in the remitted phase. Remitted patients under high stress levels are prone to use disengagement and emotion-focused coping strategies. In conclusion, remitted COVID-19 patients experience lower levels of stress and use less emotion-focused strategies, except among those who developed PTSD post-COVID-19 infection, presenting with high-stress levels and using more disengagement and emotion-focused types of coping strategies.
Collapse
Affiliation(s)
- Liana Dehelean
- Department of Neurosciences-Psychiatry, “Victor Babes” University of Medicine and Pharmacy, E. Murgu Square, Nr. 2, 300041 Timisoara, Romania; (L.D.); (M.B.); (B.O.B.); (A.-M.C.B.); (R.S.R.); (A.-M.R.)
- Center for Cognitive Research in Neuropsychiatric Pathology, “Victor Babes” University of Medicine and Pharmacy, E. Murgu Square, Nr. 2, 300041 Timisoara, Romania
- Timis County Emergency Clinical Hospital “Pius Brinzeu”, Liviu Rebreanu, Nr. 156, 300723 Timisoara, Romania;
| | - Ion Papava
- Department of Neurosciences-Psychiatry, “Victor Babes” University of Medicine and Pharmacy, E. Murgu Square, Nr. 2, 300041 Timisoara, Romania; (L.D.); (M.B.); (B.O.B.); (A.-M.C.B.); (R.S.R.); (A.-M.R.)
- Center for Cognitive Research in Neuropsychiatric Pathology, “Victor Babes” University of Medicine and Pharmacy, E. Murgu Square, Nr. 2, 300041 Timisoara, Romania
- Timis County Emergency Clinical Hospital “Pius Brinzeu”, Liviu Rebreanu, Nr. 156, 300723 Timisoara, Romania;
- Correspondence: (I.P.); (M.I.M.)
| | - Madalina Iuliana Musat
- Neuropsychiatry Hospital Craiova—Psychiatry Clinic I, Aleea Potelu 24, 200317 Craiova, Romania
- Correspondence: (I.P.); (M.I.M.)
| | - Mariana Bondrescu
- Department of Neurosciences-Psychiatry, “Victor Babes” University of Medicine and Pharmacy, E. Murgu Square, Nr. 2, 300041 Timisoara, Romania; (L.D.); (M.B.); (B.O.B.); (A.-M.C.B.); (R.S.R.); (A.-M.R.)
- Timis County Emergency Clinical Hospital “Pius Brinzeu”, Liviu Rebreanu, Nr. 156, 300723 Timisoara, Romania;
- Doctoral School, University of Medicine and Pharmacy ‘’Victor Babes’’ Timisoara, E. Murgu Square, Nr. 2, 300041 Timisoara, Romania;
| | - Felix Bratosin
- Department of Infectious Diseases, University of Medicine and Pharmacy ‘’Victor Babes’’ Timisoara, E. Murgu Square, Nr. 2, 300041 Timisoara, Romania; (F.B.); (R.L.)
- Clinical Hospital of Infectious Diseases and Pneumophtisiology ‘’Doctor Victor Babes’’ Timisoara, Gheorghe Adam, Nr. 13, 300310 Timisoara, Romania;
| | - Bianca Oana Bucatos
- Department of Neurosciences-Psychiatry, “Victor Babes” University of Medicine and Pharmacy, E. Murgu Square, Nr. 2, 300041 Timisoara, Romania; (L.D.); (M.B.); (B.O.B.); (A.-M.C.B.); (R.S.R.); (A.-M.R.)
- Timis County Emergency Clinical Hospital “Pius Brinzeu”, Liviu Rebreanu, Nr. 156, 300723 Timisoara, Romania;
- Doctoral School, University of Medicine and Pharmacy ‘’Victor Babes’’ Timisoara, E. Murgu Square, Nr. 2, 300041 Timisoara, Romania;
| | - Ana-Maria Cristina Bortun
- Department of Neurosciences-Psychiatry, “Victor Babes” University of Medicine and Pharmacy, E. Murgu Square, Nr. 2, 300041 Timisoara, Romania; (L.D.); (M.B.); (B.O.B.); (A.-M.C.B.); (R.S.R.); (A.-M.R.)
- Timis County Emergency Clinical Hospital “Pius Brinzeu”, Liviu Rebreanu, Nr. 156, 300723 Timisoara, Romania;
- Doctoral School, University of Medicine and Pharmacy ‘’Victor Babes’’ Timisoara, E. Murgu Square, Nr. 2, 300041 Timisoara, Romania;
| | - Daniela Violeta Mager
- Timis County Emergency Clinical Hospital “Pius Brinzeu”, Liviu Rebreanu, Nr. 156, 300723 Timisoara, Romania;
| | - Radu Stefan Romosan
- Department of Neurosciences-Psychiatry, “Victor Babes” University of Medicine and Pharmacy, E. Murgu Square, Nr. 2, 300041 Timisoara, Romania; (L.D.); (M.B.); (B.O.B.); (A.-M.C.B.); (R.S.R.); (A.-M.R.)
- Center for Cognitive Research in Neuropsychiatric Pathology, “Victor Babes” University of Medicine and Pharmacy, E. Murgu Square, Nr. 2, 300041 Timisoara, Romania
- Timis County Emergency Clinical Hospital “Pius Brinzeu”, Liviu Rebreanu, Nr. 156, 300723 Timisoara, Romania;
| | - Ana-Maria Romosan
- Department of Neurosciences-Psychiatry, “Victor Babes” University of Medicine and Pharmacy, E. Murgu Square, Nr. 2, 300041 Timisoara, Romania; (L.D.); (M.B.); (B.O.B.); (A.-M.C.B.); (R.S.R.); (A.-M.R.)
- Doctoral School, University of Medicine and Pharmacy ‘’Victor Babes’’ Timisoara, E. Murgu Square, Nr. 2, 300041 Timisoara, Romania;
| | - Roxana Paczeyka
- Clinical Hospital of Infectious Diseases and Pneumophtisiology ‘’Doctor Victor Babes’’ Timisoara, Gheorghe Adam, Nr. 13, 300310 Timisoara, Romania;
| | - Talida Georgiana Cut
- Doctoral School, University of Medicine and Pharmacy ‘’Victor Babes’’ Timisoara, E. Murgu Square, Nr. 2, 300041 Timisoara, Romania;
- Department of Infectious Diseases, University of Medicine and Pharmacy ‘’Victor Babes’’ Timisoara, E. Murgu Square, Nr. 2, 300041 Timisoara, Romania; (F.B.); (R.L.)
- Clinical Hospital of Infectious Diseases and Pneumophtisiology ‘’Doctor Victor Babes’’ Timisoara, Gheorghe Adam, Nr. 13, 300310 Timisoara, Romania;
| | - Silvius Alexandru Pescariu
- Department VI, Cardiology, University of Medicine and Pharmacy “Victor Babes” Timisoara, E. Murgu Square, Nr. 2, 300041 Timisoara, Romania;
| | - Ruxandra Laza
- Department of Infectious Diseases, University of Medicine and Pharmacy ‘’Victor Babes’’ Timisoara, E. Murgu Square, Nr. 2, 300041 Timisoara, Romania; (F.B.); (R.L.)
- Clinical Hospital of Infectious Diseases and Pneumophtisiology ‘’Doctor Victor Babes’’ Timisoara, Gheorghe Adam, Nr. 13, 300310 Timisoara, Romania;
| |
Collapse
|
46
|
Arosa FA, Esgalhado AJ, Reste-Ferreira D, Cardoso EM. Open MHC Class I Conformers: A Look through the Looking Glass. Int J Mol Sci 2021; 22:ijms22189738. [PMID: 34575902 PMCID: PMC8470049 DOI: 10.3390/ijms22189738] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 09/04/2021] [Accepted: 09/08/2021] [Indexed: 12/16/2022] Open
Abstract
Studies carried out during the last few decades have consistently shown that cell surface MHC class I (MHC-I) molecules are endowed with functions unrelated with antigen presentation. These include cis–trans-interactions with inhibitory and activating KIR and LILR, and cis-interactions with receptors for hormones, growth factors, cytokines, and neurotransmitters. The mounting body of evidence indicates that these non-immunological MHC-I functions impact clinical and biomedical settings, including autoimmune responses, tumor escape, transplantation, and neuronal development. Notably, most of these functions appear to rely on the presence in hematopoietic and non-hematopoietic cells of heavy chains not associated with β2m and the peptide at the plasma membrane; these are known as open MHC-I conformers. Nowadays, open conformers are viewed as functional cis-trans structures capable of establishing physical associations with themselves, with other surface receptors, and being shed into the extracellular milieu. We review past and recent developments, strengthening the view that open conformers are multifunctional structures capable of fine-tuning cell signaling, growth, differentiation, and cell communication.
Collapse
Affiliation(s)
- Fernando A Arosa
- Health Sciences Research Center (CICS-UBI), University of Beira Interior, 6200-506 Covilhã, Portugal
- Faculty of Health Sciences, University of Beira Interior, 6200-506 Covilhã, Portugal
| | - André J Esgalhado
- Health Sciences Research Center (CICS-UBI), University of Beira Interior, 6200-506 Covilhã, Portugal
| | - Débora Reste-Ferreira
- Health Sciences Research Center (CICS-UBI), University of Beira Interior, 6200-506 Covilhã, Portugal
| | - Elsa M Cardoso
- Health Sciences Research Center (CICS-UBI), University of Beira Interior, 6200-506 Covilhã, Portugal
- Faculty of Health Sciences, University of Beira Interior, 6200-506 Covilhã, Portugal
- Health School, Guarda Polytechnic Institute, 6300-749 Guarda, Portugal
| |
Collapse
|
47
|
Goddery EN, Fain CE, Lipovsky CG, Ayasoufi K, Yokanovich LT, Malo CS, Khadka RH, Tritz ZP, Jin F, Hansen MJ, Johnson AJ. Microglia and Perivascular Macrophages Act as Antigen Presenting Cells to Promote CD8 T Cell Infiltration of the Brain. Front Immunol 2021; 12:726421. [PMID: 34526998 PMCID: PMC8435747 DOI: 10.3389/fimmu.2021.726421] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 08/09/2021] [Indexed: 01/01/2023] Open
Abstract
CD8 T cell infiltration of the central nervous system (CNS) is necessary for host protection but contributes to neuropathology. Antigen presenting cells (APCs) situated at CNS borders are thought to mediate T cell entry into the parenchyma during neuroinflammation. The identity of the CNS-resident APC that presents antigen via major histocompatibility complex (MHC) class I to CD8 T cells is unknown. Herein, we characterize MHC class I expression in the naïve and virally infected brain and identify microglia and macrophages (CNS-myeloid cells) as APCs that upregulate H-2Kb and H-2Db upon infection. Conditional ablation of H-2Kb and H-2Db from CNS-myeloid cells allowed us to determine that antigen presentation via H-2Db, but not H-2Kb, was required for CNS immune infiltration during Theiler's murine encephalomyelitis virus (TMEV) infection and drives brain atrophy as a consequence of infection. These results demonstrate that CNS-myeloid cells are key APCs mediating CD8 T cell brain infiltration.
Collapse
Affiliation(s)
- Emma N. Goddery
- Department of Immunology, Mayo Clinic, Rochester, MN, United States
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, United States
| | - Cori E. Fain
- Department of Immunology, Mayo Clinic, Rochester, MN, United States
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, United States
| | - Chloe G. Lipovsky
- Department of Immunology, Mayo Clinic, Rochester, MN, United States
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, United States
| | | | - Lila T. Yokanovich
- Department of Immunology, Mayo Clinic, Rochester, MN, United States
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, United States
| | - Courtney S. Malo
- Department of Immunology, Mayo Clinic, Rochester, MN, United States
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, United States
| | - Roman H. Khadka
- Department of Immunology, Mayo Clinic, Rochester, MN, United States
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, United States
| | - Zachariah P. Tritz
- Department of Immunology, Mayo Clinic, Rochester, MN, United States
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, United States
| | - Fang Jin
- Department of Immunology, Mayo Clinic, Rochester, MN, United States
| | | | - Aaron J. Johnson
- Department of Immunology, Mayo Clinic, Rochester, MN, United States
- Department of Neurology, Mayo Clinic, Rochester, MN, United States
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
48
|
Katrinli S, Smith AK. Immune system regulation and role of the human leukocyte antigen in posttraumatic stress disorder. Neurobiol Stress 2021; 15:100366. [PMID: 34355049 PMCID: PMC8322450 DOI: 10.1016/j.ynstr.2021.100366] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 05/28/2021] [Accepted: 07/10/2021] [Indexed: 11/01/2022] Open
Abstract
Posttraumatic stress disorder (PTSD) is a debilitating condition that adversely affect mental and physical health. Recent studies have increasingly explored the role of the immune system in risk for PTSD and its related symptoms. Dysregulation of the immune system may lead to central nervous system tissue damage and impair learning and memory processes. Individuals with PTSD often have comorbid inflammatory or auto-immune disorders. Evidence shows associations between PTSD and multiple genes that are involved in immune-related or inflammatory pathways. In this review, we will summarize the evidence of immune dysregulation in PTSD, outlining the contributions of distinct cell types, genes, and biological pathways. We use the Human Leukocyte Antigen (HLA) locus to illustrate the contribution of genetic variation to function in different tissues that contribute to PTSD etiology, severity, and comorbidities.
Collapse
Affiliation(s)
- Seyma Katrinli
- Emory University, Department of Gynecology and Obstetrics, Atlanta, GA, USA
| | - Alicia K Smith
- Emory University, Department of Gynecology and Obstetrics, Atlanta, GA, USA.,Emory University School of Medicine, Department of Psychiatry and Behavioral Sciences, Atlanta, GA, USA
| |
Collapse
|
49
|
Morizane A, Takahashi J. Evading the Immune System: Immune Modulation and Immune Matching in Cell Replacement Therapies for Parkinson's Disease. JOURNAL OF PARKINSONS DISEASE 2021; 11:S167-S172. [PMID: 34024783 PMCID: PMC8543266 DOI: 10.3233/jpd-212608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Stem cell-based therapies for Parkinson’s disease are now being applied clinically. Notably, studies have shown that controlling the graft-induced immune response improves the results. In this mini-review, we concisely summarize current approaches used for this control. We focus on four modes of stem cell-based therapies: autologous transplantation, allogeneic transplantation with human leukocyte antigen-matching and allogeneic transplantation without, and finally the application of “universal” pluripotent stem cells. We also discuss immuno-suppressive treatments and the monitoring of immune reactions in the brain.
Collapse
Affiliation(s)
- Asuka Morizane
- Department of Regenerative Medicine, Center for Clinical Research and Innovation, Kobe City Medical Center General Hospital, Hyogo, Japan.,Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Jun Takahashi
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| |
Collapse
|
50
|
Devyatkin VA, Redina OE, Kolosova NG, Muraleva NA. Single-Nucleotide Polymorphisms Associated with the Senescence-Accelerated Phenotype of OXYS Rats: A Focus on Alzheimer's Disease-Like and Age-Related-Macular-Degeneration-Like Pathologies. J Alzheimers Dis 2021; 73:1167-1183. [PMID: 31929160 DOI: 10.3233/jad-190956] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Alzheimer's disease (AD) and age-related macular degeneration (AMD) are two complex incurable neurodegenerative disorders the common pathogenesis of which is actively discussed. There are overlapping risk factors and molecular mechanisms of the two diseases; at the same time, there are arguments in favor of the notion that susceptibility to each of these diseases is associated with a distinct genetic background. Here we identified single-nucleotide polymorphisms (SNPs) that are specific for senescence-accelerated OXYS rats, which simulate key characteristics of both sporadic AD and AMD. Transcriptomes of the hippocampus, prefrontal cortex, and retina (data of RNA-Seq) were analyzed. We detected SNPs in genes Rims2, AABR07072639.2, Lemd2, and AABR07045405.1, which thus can express significantly truncated proteins lacking functionally important domains. Additionally, 33 mutations in genes-which are related to various metabolic and signaling pathways-cause nonsynonymous amino acid substitutions presumably leading to disturbances in protein structure or functions. Some of the genes carrying these SNPs are associated with aging, neurodegenerative, and mental diseases. Thus, we revealed the SNPs can lead to abnormalities in protein structure or functions and affect the development of the senescence-accelerated phenotype of OXYS rats. Our data are consistent with the latest results of genome-wide association studies that highlight the importance of multiple pathways for the pathogenesis of AD and AMD. Identified SNPs can serve as promising research objects for further studies on the molecular mechanisms underlying this particular rat model as well as for the prediction of potential biomarkers of AD and AMD.
Collapse
Affiliation(s)
- Vasiliy A Devyatkin
- Institute of Cytology and Genetics, Novosibirsk, Russia.,Novosibirsk State University, Novosibirsk, Russia
| | - Olga E Redina
- Institute of Cytology and Genetics, Novosibirsk, Russia.,Novosibirsk State University, Novosibirsk, Russia
| | | | | |
Collapse
|