1
|
Božić M, Ignjatović Micić D, Anđelković V, Delić N, Nikolić A. Maize transcriptome profiling reveals low temperatures affect photosynthesis during the emergence stage. FRONTIERS IN PLANT SCIENCE 2025; 16:1527447. [PMID: 39935955 PMCID: PMC11810925 DOI: 10.3389/fpls.2025.1527447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 01/03/2025] [Indexed: 02/13/2025]
Abstract
Introduction Earlier sowing is a promising strategy of ensuring sufficiently high maize yields in the face of negative environmental factors caused by climate change. However, it leads to the low temperature exposure of maize plants during emergence, warranting a better understanding of their response and acclimation to suboptimal temperatures. Materials and Methods To achieve this goal, whole transcriptome sequencing was performed on two maize inbred lines - tolerant/susceptible to low temperatures, at the 5-day-old seedling stage. Sampling was performed after 6h and 24h of treatment (10/8°C). The data was filtered, mapped, and the identified mRNAs, lncRNAs, and circRNAs were quantified. Expression patterns of the RNAs, as well as the interactions between them, were analyzed to reveal the ones important for low-temperature response. Results and Discussion Genes involved in different steps of photosynthesis were downregulated in both genotypes: psa, psb, lhc, and cab genes important for photosystem I and II functioning, as well as rca, prk, rbcx1 genes necessary for the Calvin cycle. The difference in low-temperature tolerance between genotypes appeared to arise from their ability to mitigate damage caused by photoinhibition: ctpa2, grx, elip, UF3GT genes showed higher expression in the tolerant genotype. Certain identified lncRNAs also targeted these genes, creating an interaction network induced by the treatment (XLOC_016169-rca; XLOC_002167-XLOC_006091-elip2). These findings shed light on the potential mechanisms of low-temperature acclimation during emergence and lay the groundwork for subsequent analyses across diverse maize genotypes and developmental stages. As such, it offers valuable guidance for future research directions in the molecular breeding of low-temperature tolerant maize.
Collapse
Affiliation(s)
- Manja Božić
- Laboratory for Molecular Genetics and Physiology, Research Department, Maize Research Institute Zemun Polje, Belgrade, Serbia
| | - Dragana Ignjatović Micić
- Laboratory for Molecular Genetics and Physiology, Research Department, Maize Research Institute Zemun Polje, Belgrade, Serbia
| | - Violeta Anđelković
- Gene Bank, Research Department, Maize Research Institute Zemun Polje, Belgrade, Serbia
| | - Nenad Delić
- Maize Breeding Group, Breeding Department, Maize Research Institute Zemun Polje, Belgrade, Serbia
| | - Ana Nikolić
- Laboratory for Molecular Genetics and Physiology, Research Department, Maize Research Institute Zemun Polje, Belgrade, Serbia
| |
Collapse
|
2
|
Li W, Zhang J, Ma S, Zhou M, Li R, Tang H, Qiu H, Ren P, Tang Y, Lu Y, Huang R, Chen K. The formaldehyde stress on photosynthetic efficiency and oxidative stress response of moss Racomitrium japonicum L. FRONTIERS IN PLANT SCIENCE 2025; 15:1525522. [PMID: 39898266 PMCID: PMC11782196 DOI: 10.3389/fpls.2024.1525522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 12/24/2024] [Indexed: 02/04/2025]
Abstract
Introduction Formaldehyde is a common gaseous pollutant emitted by buildings and decorative materials. In recent years, growing concerns have been raised regarding its harmful effects on health in indoor air. Therefore, this study aims to investigate the physiological and photosynthetic response mechanisms of Racomitrium japonicum under formaldehyde stress. Methods R. japonicum was exposed to dynamic fumigation with formaldehyde for 7 days, with each day comprising an 8-h exposure period within a sealed container. The effects on plant structure, pigment content, photosynthetic efficiency, and reactive oxygen species (ROS) generation were assessed. Results and discussion Our findings revealed that formaldehyde stress caused structural damage, reduced pigment content, decreased photosynthetic efficiency, and increased ROS production in R. japonicum. Significantly, distinct stress-response pathways were observed at different formaldehyde concentrations. In response to low and moderate formaldehyde concentrations, R. japonicum activated its antioxidant enzyme system to mitigate ROS accumulation. In contrast, the high-concentration treatment group demonstrated suppressed antioxidant enzyme activity. In response, R. japonicum used nonphotochemical quenching and activated cyclic electron flow to mitigate severe cellular damage. This study provides an in-depth understanding of the physiological changes in R. japonicum under formaldehyde stress, elucidating its response mechanisms. The findings offer valuable insights for developing effective indoor formaldehyde monitoring and purification methods.
Collapse
Affiliation(s)
- Wanting Li
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, China
- College of Biological Engineering, Jingchu University of Technology, Jingmen, Hubei, China
| | - Jiawen Zhang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, China
| | - Siqi Ma
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, China
| | - Min Zhou
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, China
- College of Biological Engineering, Jingchu University of Technology, Jingmen, Hubei, China
| | - Ruixin Li
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, China
- College of Biological Engineering, Jingchu University of Technology, Jingmen, Hubei, China
| | - Hao Tang
- Ecological Protection and Development Research Institute of Aba Tibetan and Qiang Autonomous Prefecture, Wenchuan, Sichuan, China
| | - Haiyan Qiu
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, China
| | - Peng Ren
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, China
| | - Yunlai Tang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, China
| | - Yunmei Lu
- College of Biological Engineering, Jingchu University of Technology, Jingmen, Hubei, China
| | - Renhua Huang
- College of Biological Engineering, Jingchu University of Technology, Jingmen, Hubei, China
| | - Ke Chen
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, China
- Engineering Research Center of Biomass Materials, Ministry of Education, Southwest University of Science and Technology, Mianyang, Sichuan, China
| |
Collapse
|
3
|
Li YY, Wang XQ, Yang YJ, Huang W. Chloroplast ATP synthase restricts photosynthesis under fluctuating light in tomato but not in maize. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 216:109115. [PMID: 39260262 DOI: 10.1016/j.plaphy.2024.109115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/28/2024] [Accepted: 09/08/2024] [Indexed: 09/13/2024]
Abstract
Photosynthesis in fluctuating light requires coordinated adjustments of diffusion conductance and biochemical capacity, but the role of chloroplast ATP synthase activity (gH+) in dynamic photosynthesis is not well understood. In this study, we measured gas exchange, chlorophyll fluorescence and electrochromic shift signals in fluctuating light for leaves of tomato (Solanum lycopersicum) and maize (Zea mays). During the transition from sun to shade, simultaneous increases in gH+, effective quantum yield of PSII, and net CO2 assimilation rate (AN) occurred in tomato but uncoupled in maize, indicating that gH + limited AN during the sun-to-shade transition in tomato but not in maize. During the shade-to-sun transition, gH + increased simultaneously with stomatal conductance, mesophyll conductance and Rubisco carboxylation capacity in tomato, suggesting that gH+ is an overlooked factor affecting light induction of AN in tomato. By comparison, gH + maintained at high levels in maize and its AN was mainly restricted by stomatal conductance. Our results reveal that the kinetics of gH+ in fluctuating light differs between species, and chloroplast ATP synthase may be a potential target for improving dynamic photosynthesis in crops such as tomato.
Collapse
Affiliation(s)
- Yi-Yun Li
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiao-Qian Wang
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Ying-Jie Yang
- Flower Research Institute of Yunnan Academy of Agricultural Sciences, Kunming, 650205, China.
| | - Wei Huang
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
| |
Collapse
|
4
|
Bechtold U, Burow M, Kangasjärvi S. Translational photobiology: towards dynamic lighting in indoor horticulture. TRENDS IN PLANT SCIENCE 2024:S1360-1385(24)00274-7. [PMID: 39482192 DOI: 10.1016/j.tplants.2024.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/07/2024] [Accepted: 10/10/2024] [Indexed: 11/03/2024]
Abstract
Crop productivity depends on the ability of plants to thrive across different growth environments. In nature, light conditions fluctuate due to diurnal and seasonal changes in direction, duration, intensity, and spectrum. Laboratory studies, predominantly conducted with arabidopsis (Arabidopsis thaliana), have provided valuable insights into the metabolic and regulatory strategies that plants employ to cope with varying light intensities. However, there has been less focus on how horticultural crops tolerate dynamically changing light conditions during the photoperiod. In this review we connect insights from photobiology in model plants to the application of dynamic lighting in indoor horticulture. We explore how model species respond to fluctuating light intensities and discuss how this knowledge could be translated for new lighting solutions in controlled environment agriculture.
Collapse
Affiliation(s)
- Ulrike Bechtold
- Department of Bioscience, Durham University, Durham DH1 3LE, UK
| | - Meike Burow
- Section for Molecular Plant Biology, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Saijaliisa Kangasjärvi
- Faculty of Biological and Environmental Sciences, Organismal and Evolutionary Biology Research Programme, 00014 University of Helsinki, Helsinki, Finland; Faculty of Agriculture and Forestry, Department of Agricultural Sciences, 00014 University of Helsinki, Helsinki, Finland; Viikki Plant Science Centre, 00014 University of Helsinki, Helsinki, Finland.
| |
Collapse
|
5
|
Demircan N, Sonmez MC, Akyol TY, Ozgur R, Turkan I, Dietz KJ, Uzilday B. Alternative electron sinks in chloroplasts and mitochondria of halophytes as a safety valve for controlling ROS production during salinity. PHYSIOLOGIA PLANTARUM 2024; 176:e14397. [PMID: 38894507 DOI: 10.1111/ppl.14397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/07/2024] [Accepted: 05/12/2024] [Indexed: 06/21/2024]
Abstract
Electron flow through the electron transport chain (ETC) is essential for oxidative phosphorylation in mitochondria and photosynthesis in chloroplasts. Electron fluxes depend on environmental parameters, e.g., ionic and osmotic conditions and endogenous factors, and this may cause severe imbalances. Plants have evolved alternative sinks to balance the reductive load on the electron transport chains in order to avoid overreduction, generation of reactive oxygen species (ROS), and to cope with environmental stresses. These sinks act primarily as valves for electron drainage and secondarily as regulators of tolerance-related metabolism, utilizing the excess reductive energy. High salinity is an environmental stressor that stimulates the generation of ROS and oxidative stress, which affects growth and development by disrupting the redox homeostasis of plants. While glycophytic plants are sensitive to high salinity, halophytic plants tolerate, grow, and reproduce at high salinity. Various studies have examined the ETC systems of glycophytic plants, however, information about the state and regulation of ETCs in halophytes under non-saline and saline conditions is scarce. This review focuses on alternative electron sinks in chloroplasts and mitochondria of halophytic plants. In cases where information on halophytes is lacking, we examined the available knowledge on the relationship between alternative sinks and gradual salinity resilience of glycophytes. To this end, transcriptional responses of involved components of photosynthetic and respiratory ETCs were compared between the glycophyte Arabidopsis thaliana and the halophyte Schrenkiella parvula, and the time-courses of these transcripts were examined in A. thaliana. The observed regulatory patterns are discussed in the context of reactive molecular species formation in halophytes and glycophytes.
Collapse
Affiliation(s)
- Nil Demircan
- Department of Biology, Faculty of Science, Ege University, Izmir, Türkiye
| | | | - Turgut Yigit Akyol
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Rengin Ozgur
- Department of Biology, Faculty of Science, Ege University, Izmir, Türkiye
| | - Ismail Turkan
- Department of Soil and Plant Nutrition, Faculty of Agricultural Sciences and Technologies, Yasar University, İzmir, Türkiye
| | - Karl-Josef Dietz
- Faculty of Biology, Department of Biochemistry and Physiology of Plants, University of Bielefeld, Bielefeld, Germany
| | - Baris Uzilday
- Department of Biology, Faculty of Science, Ege University, Izmir, Türkiye
| |
Collapse
|
6
|
Yudina L, Popova A, Zolin Y, Grebneva K, Sukhova E, Sukhov V. Local Action of Moderate Heating and Illumination Induces Electrical Signals, Suppresses Photosynthetic Light Reactions, and Increases Drought Tolerance in Wheat Plants. PLANTS (BASEL, SWITZERLAND) 2024; 13:1173. [PMID: 38732388 PMCID: PMC11085084 DOI: 10.3390/plants13091173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/18/2024] [Accepted: 04/20/2024] [Indexed: 05/13/2024]
Abstract
Local actions of stressors induce electrical signals (ESs), influencing photosynthetic processes and probably increasing tolerance to adverse factors in higher plants. However, the participation of well-known depolarization ESs (action potentials and variation potentials) in these responses seems to be rare under natural conditions, particularly in the case of variation potentials, which are induced by extreme stressors (e.g., burning). Earlier, we showed that the local action of moderate heating and illumination can induce low-amplitude hyperpolarization ESs influencing photosynthetic light reactions in wheat plants cultivated in a vegetation room. In the current work, we analyzed ESs and changes in photosynthetic light reactions and drought tolerance that were induced by a combination of moderate heating and illumination in wheat plants cultivated under open-ground conditions. It was shown that the local heating and illumination induced low-amplitude ESs, and the type of signal (depolarization or hyperpolarization) was dependent on distance from the irritated zone and wheat age. Induction of depolarization ESs was not accompanied by photosynthetic changes in plants under favorable conditions or under weak drought. In contrast, the changes were observed after induction of these signals under moderate drought. Increasing drought tolerance was also observed in the last case. Thus, low-amplitude ESs can participate in photosynthetic regulation and increase tolerance to drought in plants cultivated under open-ground conditions.
Collapse
Affiliation(s)
| | | | | | | | | | - Vladimir Sukhov
- Department of Biophysics, N.I. Lobachevsky State University of Nizhny Novgorod, 603950 Nizhny Novgorod, Russia; (L.Y.); (A.P.); (Y.Z.); (K.G.); (E.S.)
| |
Collapse
|
7
|
Verhoeven A, Kornkven J. Differences in photoprotective strategy during winter in Eastern white pine and white spruce. TREE PHYSIOLOGY 2024; 44:tpad131. [PMID: 37861656 DOI: 10.1093/treephys/tpad131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/22/2023] [Accepted: 10/16/2023] [Indexed: 10/21/2023]
Abstract
Conifers growing in temperate forests utilize sustained forms of thermal dissipation during winter to protect the photosynthetic apparatus from damage, which can be monitored via pronounced reductions in photochemical efficiency (Fv/Fm) during winter. Eastern white pine (Pinus strobus L.) and white spruce (Picea glauca (Moench) Voss) are known to recover from winter stress at different rates, with pine recovering more slowly than spruce, suggesting different mechanisms for sustained dissipation in these species. Our objectives were to monitor pine and spruce throughout spring recovery in order to provide insights into key mechanisms for sustained dissipation in both species. We measured chlorophyll fluorescence, pigments, and abundance and phosphorylation status of key photosynthetic proteins. We found that both species rely on two forms of sustained dissipation involving retention of high amounts of antheraxanthin (A) + zeaxanthin (Z), one that is very slowly reversible and temperature independent and one that is more dynamic and occurs only on subzero days. Differences in protein abundance suggest that spruce, but not pine, likely upregulates cyclic or alternative pathways of electron transport involving the cytochrome b6f complex and photosystem I (PSI). Both species show an increased sustained phosphorylation of the D1 protein on subzero days, and spruce additionally shows dramatic increases in the sustained phosphorylation of light-harvesting complex II (LHCII) and other PSII core proteins on subzero days only, suggesting that a mechanism of sustained dissipation that is temperature dependent requires sustained phosphorylation of photosynthetic proteins in spruce, possibly allowing for direct energy transfer from PSII to PSI as a mechanism of photoprotection. The data suggest differences in strategy among conifers in mechanisms of sustained thermal dissipation in response to winter stress. Additionally, the flexible induction of sustained A + Z and phosphorylation of photosynthetic proteins in response to subzero temperatures during spring recovery seem to be important in providing photoprotection during transitional periods with high temperature fluctuation.
Collapse
Affiliation(s)
- Amy Verhoeven
- Biology Department (OWS352), University of St Thomas, 2115 Summit Ave, St Paul, MN 55105 USA
| | - Joan Kornkven
- Biology Department (OWS352), University of St Thomas, 2115 Summit Ave, St Paul, MN 55105 USA
| |
Collapse
|
8
|
Yang QY, Wang XQ, Yang YJ, Huang W. Fluctuating light induces a significant photoinhibition of photosystem I in maize. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108426. [PMID: 38340689 DOI: 10.1016/j.plaphy.2024.108426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/19/2024] [Accepted: 02/04/2024] [Indexed: 02/12/2024]
Abstract
In nature, light intensity usually fluctuates and a sudden shade-sun transition can induce photodamage to photosystem I (PSI) in many angiosperms. Photosynthetic regulation in fluctuating light (FL) has been studied extensively in C3 plants; however, little is known about how C4 plants cope FL to prevent PSI photoinhibition. We here compared photosynthetic responses to FL between maize (Zea mays, C4) and tomato (Solanum lycopersicum, C3) grown under full sunlight. Maize leaves had significantly higher cyclic electron flow (CEF) activity and lower photorespiration activity than tomato. Upon a sudden shade-sun transition, maize showed a significant stronger transient PSI over-reduction than tomato, resulting in a significant greater PSI photoinhibition in maize after FL treatment. During the first seconds upon shade-sun transition, CEF was stimulated in maize at a much higher extent than tomato, favoring the rapid formation of trans-thylakoid proton gradient (ΔpH), which was helped by a transient down-regulation of chloroplast ATP synthase activity. Therefore, modulation of ΔpH by regulation of CEF and chloroplast ATP synthase adjusted PSI redox state at donor side, which partially compensated for the deficiency of photorespiration. We propose that C4 plants use different photosynthetic strategies for coping with FL as compared with C3 plants.
Collapse
Affiliation(s)
- Qiu-Yan Yang
- School of Life Sciences, Shannxi Normal University, Xi'an, 710119, China; Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Xiao-Qian Wang
- School of Life Sciences, Shannxi Normal University, Xi'an, 710119, China
| | - Ying-Jie Yang
- Flower Research Institute of Yunnan Academy of Agricultural Sciences, Kunming, 650205, China.
| | - Wei Huang
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
| |
Collapse
|
9
|
Chaturvedi AK, Dym O, Levin Y, Fluhr R. PGR5-LIKE PHOTOSYNTHETIC PHENOTYPE1A redox states alleviate photoinhibition during changes in light intensity. PLANT PHYSIOLOGY 2024; 194:1059-1074. [PMID: 37787609 DOI: 10.1093/plphys/kiad518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/06/2023] [Accepted: 09/11/2023] [Indexed: 10/04/2023]
Abstract
Plants have evolved photosynthetic regulatory mechanisms to maintain homeostasis in response to light changes during diurnal transitions and those caused by passing clouds or by wind. One such adaptation directs photosynthetic electron flow to a cyclic pathway to alleviate excess energy surges. Here, we assign a function to regulatory cysteines of PGR5-like protein 1A (PGRL1A), a constituent of the PROTON GRADIENT REGULATION5 (PGR5)-dependent cyclic electron flow (CEF) pathway. During step increases from darkness to low light intensity in Arabidopsis (Arabidopsis thaliana), the intermolecular disulfide of the PGRL1A 59-kDa complex was reduced transiently within seconds to the 28-kDa form. In contrast, step increases from darkness to high light stimulated a stable, partially reduced redox state in PGRL1A. Mutations of 2 cysteines in PGRL1A, Cys82 and Cys183, resulted in a constitutively pseudo-reduced state. The mutant displayed higher proton motive force (PMF) and nonphotochemical quenching (NPQ) than the wild type (WT) and showed altered donor and acceptor dynamic flow around PSI. These changes were found to correspond with the redox state of PGRL1A. Continuous light regimes did not affect mutant growth compared to the WT. However, under fluctuating regimes of high light, the mutant showed better growth than the WT. In contrast, in fluctuating regimes of low light, the mutant displayed a growth penalty that can be attributed to constant stimulation of CEF under low light. Treatment with photosynthetic inhibitors indicated that PGRL1A redox state control depends on the penultimate Fd redox state. Our results showed that redox state changes in PGRL1A are crucial to optimize photosynthesis.
Collapse
Affiliation(s)
- Amit Kumar Chaturvedi
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Orly Dym
- Department of Life Science Core Facilities, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Yishai Levin
- The Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Robert Fluhr
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
10
|
Rodrigues AP, Pais IP, Leitão AE, Dubberstein D, Lidon FC, Marques I, Semedo JN, Rakocevic M, Scotti-Campos P, Campostrini E, Rodrigues WP, Simões-Costa MC, Reboredo FH, Partelli FL, DaMatta FM, Ribeiro-Barros AI, Ramalho JC. Uncovering the wide protective responses in Coffea spp. leaves to single and superimposed exposure of warming and severe water deficit. FRONTIERS IN PLANT SCIENCE 2024; 14:1320552. [PMID: 38259931 PMCID: PMC10801242 DOI: 10.3389/fpls.2023.1320552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 11/30/2023] [Indexed: 01/24/2024]
Abstract
Climate changes boosted the frequency and severity of drought and heat events, with aggravated when these stresses occur simultaneously, turning crucial to unveil the plant response mechanisms to such harsh conditions. Therefore, plant responses/resilience to single and combined exposure to severe water deficit (SWD) and heat were assessed in two cultivars of the main coffee-producing species: Coffea arabica cv. Icatu and C. canephora cv. Conilon Clone 153 (CL153). Well-watered plants (WW) were exposed to SWD under an adequate temperature of 25/20°C (day/night), and thereafter submitted to a gradual increase up to 42/30°C, and a 14-d recovery period (Rec14). Greater protective response was found to single SWD than to single 37/28°C and/or 42/30°C (except for HSP70) in both cultivars, but CL153-SWD plants showed the larger variations of leaf thermal imaging crop water stress index (CWSI, 85% rise at 37/28°C) and stomatal conductance index (IG, 66% decline at 25/20°C). Both cultivars revealed great resilience to SWD and/or 37/28°C, but a tolerance limit was surpassed at 42/30°C. Under stress combination, Icatu usually displayed lower impacts on membrane permeability, and PSII function, likely associated with various responses, usually mostly driven by drought (but often kept or even strengthened under SWD and 42/30°C). These included the photoprotective zeaxanthin and lutein, antioxidant enzymes (superoxide dismutase, Cu,Zn-SOD; ascorbate peroxidase, APX), HSP70, arabinose and mannitol (involving de novo sugar synthesis), contributing to constrain lipoperoxidation. Also, only Icatu showed a strong reinforcement of glutathione reductase activity under stress combination. In general, the activities of antioxidative enzymes declined at 42/30°C (except Cu,Zn-SOD in Icatu and CAT in CL153), but HSP70 and raffinose were maintained higher in Icatu, whereas mannitol and arabinose markedly increased in CL153. Overall, a great leaf plasticity was found, especially in Icatu that revealed greater responsiveness of coordinated protection under all experimental conditions, justifying low PIChr and absence of lipoperoxidation increase at 42/30°C. Despite a clear recovery by Rec14, some aftereffects persisted especially in SWD plants (e.g., membranes), relevant in terms of repeated stress exposure and full plant recovery to stresses.
Collapse
Affiliation(s)
- Ana P. Rodrigues
- Laboratório de Interações Planta-Ambiente e Biodiversidade (PlantStress & Biodiversity), Centro de Estudos Florestais (CEF), Instituto Superior de Agronomia, Universidade de Lisboa, (ISA/ULisboa), Oeiras, Lisboa, Portugal
- Laboratório Associado TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, (ISA/ULisboa), Lisboa, Portugal
| | - Isabel P. Pais
- Unidade de Investigação em Biotecnologia e Recursos Genéticos, Instituto Nacional de Investigação Agrária e Veterinária, I.P. (INIAV), Oeiras, Portugal
- Unidade de GeoBiociências, GeoEngenharias e GeoTecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), Caparica, Portugal
| | - António E. Leitão
- Laboratório de Interações Planta-Ambiente e Biodiversidade (PlantStress & Biodiversity), Centro de Estudos Florestais (CEF), Instituto Superior de Agronomia, Universidade de Lisboa, (ISA/ULisboa), Oeiras, Lisboa, Portugal
- Laboratório Associado TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, (ISA/ULisboa), Lisboa, Portugal
- Unidade de GeoBiociências, GeoEngenharias e GeoTecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), Caparica, Portugal
| | - Danielly Dubberstein
- Laboratório de Interações Planta-Ambiente e Biodiversidade (PlantStress & Biodiversity), Centro de Estudos Florestais (CEF), Instituto Superior de Agronomia, Universidade de Lisboa, (ISA/ULisboa), Oeiras, Lisboa, Portugal
- Laboratório Associado TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, (ISA/ULisboa), Lisboa, Portugal
- Centro Univ. Norte do Espírito Santo (CEUNES), Dept. Ciências Agrárias e Biológicas (DCAB), Univ. Federal Espírito Santo (UFES), São Mateus, ES, Brazil
- Assistência Técnica e Gerencial em Cafeicultura - Serviço Nacional de Aprendizagem Rural (SENAR), Porto Velho, RO, Brazil
| | - Fernando C. Lidon
- Unidade de GeoBiociências, GeoEngenharias e GeoTecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), Caparica, Portugal
| | - Isabel Marques
- Laboratório de Interações Planta-Ambiente e Biodiversidade (PlantStress & Biodiversity), Centro de Estudos Florestais (CEF), Instituto Superior de Agronomia, Universidade de Lisboa, (ISA/ULisboa), Oeiras, Lisboa, Portugal
- Laboratório Associado TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, (ISA/ULisboa), Lisboa, Portugal
| | - José N. Semedo
- Unidade de Investigação em Biotecnologia e Recursos Genéticos, Instituto Nacional de Investigação Agrária e Veterinária, I.P. (INIAV), Oeiras, Portugal
- Unidade de GeoBiociências, GeoEngenharias e GeoTecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), Caparica, Portugal
| | - Miroslava Rakocevic
- Centro Univ. Norte do Espírito Santo (CEUNES), Dept. Ciências Agrárias e Biológicas (DCAB), Univ. Federal Espírito Santo (UFES), São Mateus, ES, Brazil
| | - Paula Scotti-Campos
- Unidade de Investigação em Biotecnologia e Recursos Genéticos, Instituto Nacional de Investigação Agrária e Veterinária, I.P. (INIAV), Oeiras, Portugal
- Unidade de GeoBiociências, GeoEngenharias e GeoTecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), Caparica, Portugal
| | - Eliemar Campostrini
- Setor de Fisiologia Vegetal, Laboratório de Melhoramento Genético Vegetal, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual do Norte Fluminense, Rio de Janeiro, Brazil
| | - Weverton P. Rodrigues
- Setor de Fisiologia Vegetal, Laboratório de Melhoramento Genético Vegetal, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual do Norte Fluminense, Rio de Janeiro, Brazil
- Centro de Ciências Agrárias, Naturais e Letras, Universidade Estadual da Região Tocantina do Maranhão, Maranhão, Brazil
| | - Maria Cristina Simões-Costa
- Laboratório de Interações Planta-Ambiente e Biodiversidade (PlantStress & Biodiversity), Centro de Estudos Florestais (CEF), Instituto Superior de Agronomia, Universidade de Lisboa, (ISA/ULisboa), Oeiras, Lisboa, Portugal
- Laboratório Associado TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, (ISA/ULisboa), Lisboa, Portugal
| | - Fernando H. Reboredo
- Unidade de GeoBiociências, GeoEngenharias e GeoTecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), Caparica, Portugal
| | - Fábio L. Partelli
- Centro Univ. Norte do Espírito Santo (CEUNES), Dept. Ciências Agrárias e Biológicas (DCAB), Univ. Federal Espírito Santo (UFES), São Mateus, ES, Brazil
| | - Fábio M. DaMatta
- Departamento de Biologia Vegetal, Universidade Federal Viçosa (UFV), Viçosa, MG, Brazil
| | - Ana I. Ribeiro-Barros
- Laboratório de Interações Planta-Ambiente e Biodiversidade (PlantStress & Biodiversity), Centro de Estudos Florestais (CEF), Instituto Superior de Agronomia, Universidade de Lisboa, (ISA/ULisboa), Oeiras, Lisboa, Portugal
- Laboratório Associado TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, (ISA/ULisboa), Lisboa, Portugal
- Unidade de GeoBiociências, GeoEngenharias e GeoTecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), Caparica, Portugal
| | - José C. Ramalho
- Laboratório de Interações Planta-Ambiente e Biodiversidade (PlantStress & Biodiversity), Centro de Estudos Florestais (CEF), Instituto Superior de Agronomia, Universidade de Lisboa, (ISA/ULisboa), Oeiras, Lisboa, Portugal
- Laboratório Associado TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, (ISA/ULisboa), Lisboa, Portugal
- Unidade de GeoBiociências, GeoEngenharias e GeoTecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), Caparica, Portugal
| |
Collapse
|
11
|
Nelson N. Coupling and Slips in Photosynthetic Reactions-From Femtoseconds to Eons. PLANTS (BASEL, SWITZERLAND) 2023; 12:3878. [PMID: 38005774 PMCID: PMC10674687 DOI: 10.3390/plants12223878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023]
Abstract
Photosynthesis stands as a unique biological phenomenon that can be comprehensively explored across a wide spectrum, from femtoseconds to eons. Across each timespan, a delicate interplay exists between coupling and inherent deviations that are essential for sustaining the overall efficiency of the system. Both quantum mechanics and thermodynamics act as guiding principles for the diverse processes occurring from femtoseconds to eons. Processes such as excitation energy transfer and the accumulation of oxygen in the atmosphere, along with the proliferation of organic matter on the Earth's surface, are all governed by the coupling-slip principle. This article will delve into select time points along this expansive scale. It will highlight the interconnections between photosynthesis, the global population, disorder, and the issue of global warming.
Collapse
Affiliation(s)
- Nathan Nelson
- Department of Biochemistry and Molecular Biology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
12
|
Liu L, Fu Z, Wang X, Xu C, Gan C, Fan D, Soon Chow W. Exposed anthocyanic leaves of Prunus cerasifera are special shade leaves with high resistance to blue light but low resistance to red light against photoinhibition of photosynthesis. ANNALS OF BOTANY 2023; 132:163-177. [PMID: 37382489 PMCID: PMC10550276 DOI: 10.1093/aob/mcad086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 06/28/2023] [Indexed: 06/30/2023]
Abstract
BACKGROUND AND AIMS The photoprotective role of foliar anthocyanins has long been ambiguous: exacerbating, being indifferent to or ameliorating the photoinhibition of photosynthesis. The photoinhibitory light spectrum and failure to separate photo-resistance from repair, as well as the different methods used to quantify the photo-susceptibility of the photosystems, could lead to such a discrepancy. METHODS We selected two congeneric deciduous shrubs, Prunus cerasifera with anthocyanic leaves and Prunus triloba with green leaves, grown under identical growth conditions in an open field. The photo-susceptibilities of photosystem II (PSII) and photosystem I (PSI) to red light and blue light, in the presence of lincomycin (to block the repair), of exposed leaves were quantified by a non-intrusive P700+ signal from PSI. Leaf absorption, pigments, gas exchange and Chl a fluorescence were also measured. KEY RESULTS The content of anthocyanins in red leaves (P. cerasifera) was >13 times greater than that in green leaves (P. triloba). With no difference in maximum quantum efficiency of PSII photochemistry (Fv/Fm) and apparent CO2 quantum yield (AQY) in red light, anthocyanic leaves (P. cerasifera) showed some shade-acclimated suites, including lower Chl a/b ratio, lower photosynthesis rate, lower stomatal conductance and lower PSII/PSI ratio (on an arbitrary scale), compared with green leaves (P. triloba). In the absence of repair of PSII, anthocyanic leaves (P. cerasifera) showed a rate coefficient of PSII photoinactivation (ki) that was 1.8 times higher than that of green leaves (P. triloba) under red light, but significantly lower (-18 %) under blue light. PSI of both types of leaves was not photoinactivated under blue or red light. CONCLUSIONS In the absence of repair, anthocyanic leaves exhibited an exacerbation of PSII photoinactivation under red light and a mitigation under blue light, which can partially reconcile the existing controversy in terms of the photoprotection by anthocyanins. Overall, the results demonstrate that appropriate methodology applied to test the photoprotection hypothesis of anthocyanins is critical.
Collapse
Affiliation(s)
- Lu Liu
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, 100083, China
| | - Zengjuan Fu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Xiangping Wang
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100083, China
| | - Chengyang Xu
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, 100083, China
| | - Changqing Gan
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, 100083, China
| | - Dayong Fan
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, 100083, China
| | - Wah Soon Chow
- Division of Plant Sciences, Research School of Biology, The Australian National University, Acton, ACT 2601, Australia
| |
Collapse
|
13
|
Sukhova EM, Yudina LM, Sukhov VS. Changes in Activity of the Plasma Membrane H+-ATPase as a Link Between Formation of Electrical Signals and Induction of Photosynthetic Responses in Higher Plants. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:1488-1503. [PMID: 38105019 DOI: 10.1134/s0006297923100061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/05/2023] [Accepted: 09/13/2023] [Indexed: 12/19/2023]
Abstract
Action of numerous adverse environmental factors on higher plants is spatially-heterogenous; it means that induction of a systemic adaptive response requires generation and transmission of the stress signals. Electrical signals (ESs) induced by local action of stressors include action potential, variation potential, and system potential and they participate in formation of fast physiological changes at the level of a whole plant, including photosynthetic responses. Generation of these ESs is accompanied by the changes in activity of H+-ATPase, which is the main system of electrogenic proton transport across the plasma membrane. Literature data show that the changes in H+-ATPase activity and related changes in intra- and extracellular pH play a key role in the ES-induced inactivation of photosynthesis in non-irritated parts of plants. This inactivation is caused by both suppression of CO2 influx into mesophyll cells in leaves, which can be induced by the apoplast alkalization and, probably, cytoplasm acidification, and direct influence of acidification of stroma and lumen of chloroplasts on light and, probably, dark photosynthetic reactions. The ES-induced inactivation of photosynthesis results in the increasing tolerance of photosynthetic machinery to the action of adverse factors and probability of the plant survival.
Collapse
Affiliation(s)
- Ekaterina M Sukhova
- Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, 603022, Russia
| | - Lyubov' M Yudina
- Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, 603022, Russia
| | - Vladimir S Sukhov
- Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, 603022, Russia.
| |
Collapse
|
14
|
Ratnitsyna D, Yudina L, Sukhova E, Sukhov V. Development of Modified Farquhar-von Caemmerer-Berry Model Describing Photodamage of Photosynthetic Electron Transport in C 3 Plants under Different Temperatures. PLANTS (BASEL, SWITZERLAND) 2023; 12:3211. [PMID: 37765375 PMCID: PMC10536443 DOI: 10.3390/plants12183211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/31/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023]
Abstract
Photodamage of photosynthetic electron transport is a key mechanism of disruption of photosynthesis in plants under action of stressors. This means that investigation of photodamage is an important task for basic and applied investigations. However, its complex mechanisms restrict using experimental methods of investigation for this process; the development of mathematical models of photodamage and model-based analysis can be used for overcoming these restrictions. In the current work, we developed the modified Farquhar-von Caemmerer-Berry model which describes photodamage of photosynthetic electron transport in C3 plants. This model was parameterized on the basis of experimental results (using an example of pea plants). Analysis of the model showed that combined inactivation of linear electron flow and Rubisco could induce both increasing and decreasing photodamage at different magnitudes of inactivation of these processes. Simulation of photodamage under different temperatures and light intensities showed that simulated temperature dependences could be multi-phase; particularly, paradoxical increases in the thermal tolerance of photosynthetic electron transport could be observed under high temperatures (37-42 °C). Finally, it was shown that changes in temperature optimums of linear electron flow and Rubisco could modify temperature dependences of the final activity of photosynthetic electron transport under photodamage induction; however, these changes mainly stimulated its photodamage. Thus, our work provides a new theoretical tool for investigation of photodamage of photosynthetic processes in C3 plants and shows that this photodamage can be intricately dependent on parameters of changes in activities of linear electron flow and Rubisco including changes induced by temperature.
Collapse
Affiliation(s)
| | | | | | - Vladimir Sukhov
- Department of Biophysics, N. I. Lobachevsky State University of Nizhny Novgorod, 603950 Nizhny Novgorod, Russia; (D.R.); (L.Y.); (E.S.)
| |
Collapse
|
15
|
Yadav RM, Marriboina S, Zamal MY, Pandey J, Subramanyam R. High light-induced changes in whole-cell proteomic profile and its correlation with the organization of thylakoid super-complex in cyclic electron transport mutants of Chlamydomonas reinhardtii. FRONTIERS IN PLANT SCIENCE 2023; 14:1198474. [PMID: 37521924 PMCID: PMC10374432 DOI: 10.3389/fpls.2023.1198474] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 05/11/2023] [Indexed: 08/01/2023]
Abstract
Light and nutrients are essential components of photosynthesis. Activating the signaling cascades is critical in starting adaptive processes in response to high light. In this study, we have used wild-type (WT), cyclic electron transport (CET) mutants like Proton Gradient Regulation (PGR) (PGRL1), and PGR5 to elucidate the actual role in regulation and assembly of photosynthetic pigment-protein complexes under high light. Here, we have correlated the biophysical, biochemical, and proteomic approaches to understand the targeted proteins and the organization of thylakoid pigment-protein complexes in the photoacclimation. The proteomic analysis showed that 320 proteins were significantly affected under high light compared to the control and are mainly involved in the photosynthetic electron transport chain, protein synthesis, metabolic process, glycolysis, and proteins involved in cytoskeleton assembly. Additionally, we observed that the cytochrome (Cyt) b6 expression is increased in the pgr5 mutant to regulate proton motive force and ATPase across the thylakoid membrane. The increased Cyt b6 function in pgr5 could be due to the compromised function of chloroplast (cp) ATP synthase subunits for energy generation and photoprotection under high light. Moreover, our proteome data show that the photosystem subunit II (PSBS) protein isoforms (PSBS1 and PSBS2) expressed more than the Light-Harvesting Complex Stress-Related (LHCSR) protein in pgr5 compared to WT and pgrl1 under high light. The immunoblot data shows the photosystem II proteins D1 and D2 accumulated more in pgrl1 and pgr5 than WT under high light. In high light, CP43 and CP47 showed a reduced amount in pgr5 under high light due to changes in chlorophyll and carotenoid content around the PSII protein, which coordinates as a cofactor for efficient energy transfer from the light-harvesting antenna to the photosystem core. BN-PAGE and circular dichroism studies indicate changes in macromolecular assembly and thylakoid super-complexes destacking in pgrl1 and pgr5 due to changes in the pigment-protein complexes under high light. Based on this study, we emphasize that this is an excellent aid in understanding the role of CET mutants in thylakoid protein abundances and super-complex organization under high light.
Collapse
|
16
|
Soufi HR, Roosta HR, Stępień P, Malekzadeh K, Hamidpour M. Manipulation of light spectrum is an effective tool to regulate biochemical traits and gene expression in lettuce under different replacement methods of nutrient solution. Sci Rep 2023; 13:8600. [PMID: 37237093 PMCID: PMC10219983 DOI: 10.1038/s41598-023-35326-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
The use of light-emitting diode (LED) technology represents a promising approach to improve plant growth and metabolic activities. The aim of this study was to investigate the effect of different light spectra: red (656 nm), blue (450 nm), red/blue (3:1), and white (peak at 449 nm) on biochemical properties, photosynthesis and gene expression in two lettuce cultivars (Lollo Rossa and Lollo Bionda) grown under different methods of nutrient solution replacement in hydroponics. Complete replacement and EC-based replacement of nutrient solution increased content of proline and soluble sugars and activity of antioxidant enzymes (CAT, GPX and SOD) under the red/blue LED and red LED light treatments in both cultivars. In addition, the red/blue and the monochromatic red light increased the soluble protein content and the antioxidant activity in the Lollo Rosa cultivar under the replacement method according to the needs of the plant. An increase in flavonoid content in the EC-based method in the Lollo Rosa variety treated with a combination of red and blue light was also observed. The red/blue light had the greatest induction effect on anthocyanin content, expression of the UFGT, CHS, and Rubisco small subunit genes, and the net photosynthetic rate. Data presented here will directly contribute to the development of nutrient solution and LED spectrum management strategies to significantly improve plant growth and metabolism, while avoiding water and nutrient waste, and environmental pollution.
Collapse
Affiliation(s)
- Hamid Reza Soufi
- Department of Horticultural Sciences, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran
| | - Hamid Reza Roosta
- Department of Horticultural Sciences, Faculty of Agriculture and Natural Resources, Arak University, Arāk, Iran.
| | - Piotr Stępień
- Department of Plant Nutrition, Institute of Soil Science, Plant Nutrition and Environmental Protection, Wroclaw University of Environmental and Life Sciences, ul. Grunwaldzka 53, 50-357, Wrocław, Poland.
| | - Khalil Malekzadeh
- Department of Genetics and Plant Production, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran
| | - Mohsen Hamidpour
- Department of Soil Science and Engineering, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran
| |
Collapse
|
17
|
Gunell S, Lempiäinen T, Rintamäki E, Aro EM, Tikkanen M. Enhanced function of non-photoinhibited photosystem II complexes upon PSII photoinhibition. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2023; 1864:148978. [PMID: 37100340 DOI: 10.1016/j.bbabio.2023.148978] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 04/06/2023] [Accepted: 04/12/2023] [Indexed: 04/28/2023]
Abstract
Light induced photosystem (PS)II photoinhibition inactivates and irreversibly damages the reaction center protein(s) but the light harvesting complexes continue the collection of light energy. Here we addressed the consequences of such a situation on thylakoid light harvesting and electron transfer reactions. For this purpose, Arabidopsis thaliana leaves were subjected to investigation of the function and regulation of the photosynthetic machinery after a distinct portion of PSII centers had experienced photoinhibition in the presence and absence of Lincomycin (Lin), a commonly used agent to block the repair of damaged PSII centers. In the absence of Lin, photoinhibition increased the relative excitation of PSII and decreased NPQ, together enhancing the electron transfer from still functional PSII centers to PSI. In contrast, in the presence of Lin, PSII photoinhibition increased the relative excitation of PSI and led to strong oxidation of the electron transfer chain. We hypothesize that plants are able to minimize the detrimental effects of high-light illumination on PSII by modulating the energy and electron transfer, but lose such a capability if the repair cycle is arrested. It is further hypothesized that dynamic regulation of the LHCII system has a pivotal role in the control of excitation energy transfer upon PSII damage and repair cycle to maintain the photosynthesis safe and efficient.
Collapse
Affiliation(s)
- Sanna Gunell
- Molecular Plant Biology, Department of Life Technologies, University of Turku, FI-20014, Turku, Finland
| | - Tapio Lempiäinen
- Molecular Plant Biology, Department of Life Technologies, University of Turku, FI-20014, Turku, Finland
| | - Eevi Rintamäki
- Molecular Plant Biology, Department of Life Technologies, University of Turku, FI-20014, Turku, Finland
| | - Eva-Mari Aro
- Molecular Plant Biology, Department of Life Technologies, University of Turku, FI-20014, Turku, Finland
| | - Mikko Tikkanen
- Molecular Plant Biology, Department of Life Technologies, University of Turku, FI-20014, Turku, Finland.
| |
Collapse
|
18
|
Sun H, Shi Q, Liu NY, Zhang SB, Huang W. Drought stress delays photosynthetic induction and accelerates photoinhibition under short-term fluctuating light in tomato. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 196:152-161. [PMID: 36706694 DOI: 10.1016/j.plaphy.2023.01.044] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/04/2022] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
Fluctuating light (FL) and drought stress usually occur concomitantly. However, whether drought stress affects photosynthetic performance under FL remains unknown. Here, we measured gas exchange, chlorophyll fluorescence, and P700 redox state under FL in drought-stressed tomato (Solanum lycopersicum) seedlings. Drought stress significantly delayed the induction kinetics of stomatal and mesophyll conductances after transition from low to high light and thus delayed photosynthetic induction under FL. Therefore, drought stress exacerbated the loss of carbon gain under FL. Furthermore, restriction of CO2 fixation under drought stress aggravated the over-reduction of photosystem I (PSI) upon transition from low to high light. The resulting stronger FL-induced PSI photoinhibition significantly suppressed linear electron flow and PSI photoprotection. These results indicated that drought stress not only caused a larger loss of carbon gain under FL but also accelerated FL-induced photoinhibition of PSI. Furthermore, drought stress enhanced relative cyclic electron flow in FL, which partially compensated for restricted CO2 fixation and thus favored PSI photoprotection under FL. To our knowledge, we here show new insight into how drought stress affects photosynthetic performance under FL.
Collapse
Affiliation(s)
- Hu Sun
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qi Shi
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ning-Yu Liu
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shi-Bao Zhang
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
| | - Wei Huang
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
| |
Collapse
|
19
|
Yudina L, Sukhova E, Gromova E, Mudrilov M, Zolin Y, Popova A, Nerush V, Pecherina A, Grishin AA, Dorokhov AA, Sukhov V. Effect of Duration of LED Lighting on Growth, Photosynthesis and Respiration in Lettuce. PLANTS (BASEL, SWITZERLAND) 2023; 12:442. [PMID: 36771527 PMCID: PMC9921278 DOI: 10.3390/plants12030442] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
Parameters of illumination including the spectra, intensity, and photoperiod play an important role in the cultivation of plants under greenhouse conditions, especially for vegetables such as lettuce. We previously showed that illumination by a combination of red, blue, and white LEDs with a high red light intensity, was optimal for lettuce cultivation; however, the effect of the photoperiod on lettuce cultivation was not investigated. In the current work, we investigated the influence of photoperiod on production (total biomass and dry weight) and parameters of photosynthesis, respiration rate, and relative chlorophyll content in lettuce plants. A 16 h (light):8 h (dark) illumination regime was used as the control. In this work, we investigated the effect of photoperiod on total biomass and dry weight production in lettuce plants as well as on photosynthesis, respiration rate and chlorophyll content. A lighting regime 16:8 h (light:dark) was used as control. A shorter photoperiod (8 h) decreased total biomass and dry weight in lettuce, and this effect was related to the suppression of the linear electron flow caused by the decreasing content of chlorophylls and, therefore, light absorption. A longer photoperiod (24 h) increased the total biomass and dry weight, nevertheless an increase in photosynthetic processes, light absorption by leaves and chlorophyll content was not recorded, nor were differences in respiration rate, thus indicating that changes in photosynthesis and respiration are not necessary conditions for stimulating plant production. A simple model to predict plant production was also developed to address the question of whether increasing the duration of illumination stimulates plant production without inducing changes in photosynthesis and respiration. Our results indicate that increasing the duration of illumination can stimulate dry weight accumulation and that this effect can also be induced using the equal total light integrals for day (i.e., this stimulation can be also caused by increasing the light period while decreasing light intensity). Increasing the duration of illumination is therefore an effective approach to stimulating lettuce production under artificial lighting.
Collapse
Affiliation(s)
- Lyubov Yudina
- Department of Biophysics, N.I. Lobachevsky State University of Nizhny Novgorod, 603950 Nizhny Novgorod, Russia
| | - Ekaterina Sukhova
- Department of Biophysics, N.I. Lobachevsky State University of Nizhny Novgorod, 603950 Nizhny Novgorod, Russia
| | - Ekaterina Gromova
- Department of Biophysics, N.I. Lobachevsky State University of Nizhny Novgorod, 603950 Nizhny Novgorod, Russia
| | - Maxim Mudrilov
- Department of Biophysics, N.I. Lobachevsky State University of Nizhny Novgorod, 603950 Nizhny Novgorod, Russia
| | - Yuriy Zolin
- Department of Biophysics, N.I. Lobachevsky State University of Nizhny Novgorod, 603950 Nizhny Novgorod, Russia
| | - Alyona Popova
- Department of Biophysics, N.I. Lobachevsky State University of Nizhny Novgorod, 603950 Nizhny Novgorod, Russia
| | - Vladimir Nerush
- Department of Biophysics, N.I. Lobachevsky State University of Nizhny Novgorod, 603950 Nizhny Novgorod, Russia
| | - Anna Pecherina
- Department of Biophysics, N.I. Lobachevsky State University of Nizhny Novgorod, 603950 Nizhny Novgorod, Russia
| | - Andrey A. Grishin
- Federal State Budgetary Scientific Institution “Federal Scientific Agroengineering Center VIM” (FSAC VIM), 109428 Moscow, Russia
| | - Artem A. Dorokhov
- Federal State Budgetary Scientific Institution “Federal Scientific Agroengineering Center VIM” (FSAC VIM), 109428 Moscow, Russia
| | - Vladimir Sukhov
- Department of Biophysics, N.I. Lobachevsky State University of Nizhny Novgorod, 603950 Nizhny Novgorod, Russia
| |
Collapse
|
20
|
Daems S, Ceusters N, Valcke R, Ceusters J. Effects of chilling on the photosynthetic performance of the CAM orchid Phalaenopsis. FRONTIERS IN PLANT SCIENCE 2022; 13:981581. [PMID: 36507447 PMCID: PMC9732388 DOI: 10.3389/fpls.2022.981581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 11/11/2022] [Indexed: 06/17/2023]
Abstract
INTRODUCTION Crassulacean acid metabolism (CAM) is one of the three main metabolic adaptations for CO2 fixation found in plants. A striking feature for these plants is nocturnal carbon fixation and diurnal decarboxylation of malic acid to feed Rubisco with CO2 behind closed stomata, thereby saving considerable amounts of water. Compared to the effects of high temperatures, drought, and light, much less information is available about the effects of chilling temperatures on CAM plants. In addition a lot of CAM ornamentals are grown in heated greenhouses, urging for a deeper understanding about the physiological responses to chilling in order to increase sustainability in the horticultural sector. METHODS The present study focuses on the impact of chilling temperatures (10°C) for 3 weeks on the photosynthetic performance of the obligate CAM orchid Phalaenopsis 'Edessa'. Detailed assessments of the light reactions were performed by analyzing chlorophyll a fluorescence induction (OJIP) parameters and the carbon fixation reactions by measuring diel leaf gas exchange and diel metabolite patterns. RESULTS AND DISCUSSION Results showed that chilling already affected the light reactions after 24h. Whilst the potential efficiency of photosystem II (PSII) (Fv/Fm) was not yet influenced, a massive decrease in the performance index (PIabs) was noticed. This decrease did not depict an overall downregulation of PSII related energy fluxes since energy absorption and dissipation remained uninfluenced whilst the trapped energy and reduction flux were upregulated. This might point to the presence of short-term adaptation mechanisms to chilling stress. However, in the longer term the electron transport chain from PSII to PSI was affected, impacting both ATP and NADPH provision. To avoid over-excitation and photodamage plants showed a massive increase in thermal dissipation. These considerations are also in line with carbon fixation data showing initial signs of cold adaptation by achieving comparable Rubisco activity compared to unstressed plants but increasing daytime stomatal opening in order to capture a higher proportion of CO2 during daytime. However, in accordance with the light reactions data, Rubisco activity declined and stomatal conductance and CO2 uptake diminished to near zero levels after 3 weeks, indicating that plants were not successful in cold acclimation on the longer term.
Collapse
Affiliation(s)
- Stijn Daems
- Research Group for Sustainable Crop Production & Protection, Division of Crop Biotechnics, Department of Biosystems, KU Leuven, Geel, Belgium
- KU Leuven Plant Institute (LPI), KU Leuven, Leuven, Belgium
| | - Nathalie Ceusters
- Research Group for Sustainable Crop Production & Protection, Division of Crop Biotechnics, Department of Biosystems, KU Leuven, Geel, Belgium
| | - Roland Valcke
- Molecular and Physical Plant Physiology, UHasselt, Diepenbeek, Belgium
| | - Johan Ceusters
- Research Group for Sustainable Crop Production & Protection, Division of Crop Biotechnics, Department of Biosystems, KU Leuven, Geel, Belgium
- KU Leuven Plant Institute (LPI), KU Leuven, Leuven, Belgium
- Centre for Environmental Sciences, Environmental Biology, UHasselt, Diepenbeek, Belgium
| |
Collapse
|
21
|
Dukic E, Gollan PJ, Grebe S, Paakkarinen V, Herdean A, Aro EM, Spetea C. The Arabidopsis thylakoid chloride channel ClCe regulates ATP availability for light-harvesting complex II protein phosphorylation. FRONTIERS IN PLANT SCIENCE 2022; 13:1050355. [PMID: 36483957 PMCID: PMC9722747 DOI: 10.3389/fpls.2022.1050355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 10/31/2022] [Indexed: 06/17/2023]
Abstract
Coping with changes in light intensity is challenging for plants, but well-designed mechanisms allow them to acclimate to most unpredicted situations. The thylakoid K+/H+ antiporter KEA3 and the voltage-dependent Cl- channel VCCN1 play important roles in light acclimation by fine-tuning electron transport and photoprotection. Good evidence exists that the thylakoid Cl- channel ClCe is involved in the regulation of photosynthesis and state transitions in conditions of low light. However, a detailed mechanistic understanding of this effect is lacking. Here we report that the ClCe loss-of-function in Arabidopsis thaliana results in lower levels of phosphorylated light-harvesting complex II (LHCII) proteins as well as lower levels of the photosystem I-LHCII complexes relative to wild type (WT) in low light conditions. The phosphorylation of the photosystem II core D1/D2 proteins was less affected either in low or high light conditions. In low light conditions, the steady-state levels of ATP synthase conductivity and of the total proton flux available for ATP synthesis were lower in ClCe loss-of-function mutants, but comparable to WT at standard and high light intensity. As a long-term acclimation strategy, expression of the ClCe gene was upregulated in WT plants grown in light-limiting conditions, but not in WT plants grown in standard light even when exposed for up to 8 h to low light. Taken together, these results suggest a role of ClCe in the regulation of the ATP synthase activity which under low light conditions impacts LHCII protein phosphorylation and state transitions.
Collapse
Affiliation(s)
- Emilija Dukic
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Peter J. Gollan
- Molecular Plant Biology Unit, Department of Life Technologies, University of Turku, Turku, Finland
| | - Steffen Grebe
- Molecular Plant Biology Unit, Department of Life Technologies, University of Turku, Turku, Finland
| | - Virpi Paakkarinen
- Molecular Plant Biology Unit, Department of Life Technologies, University of Turku, Turku, Finland
| | - Andrei Herdean
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, Australia
| | - Eva-Mari Aro
- Molecular Plant Biology Unit, Department of Life Technologies, University of Turku, Turku, Finland
| | - Cornelia Spetea
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
22
|
Landi M, Guidi L. Effects of abiotic stress on photosystem II proteins. PHOTOSYNTHETICA 2022; 61:148-156. [PMID: 39650668 PMCID: PMC11515818 DOI: 10.32615/ps.2022.043] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 09/01/2022] [Indexed: 12/11/2024]
Abstract
Photosystem II (PSII) represents the most vulnerable component of the photosynthetic machinery and its response in plants subjected to abiotic stress has been widely studied over many years. PSII is a thylakoid membrane-located multiprotein pigment complex that catalyses the light-induced electron transfer from water to plastoquinone with the concomitant production of oxygen. PSII is rich in intrinsic (PsbA and PsbD, namely D1 and D2, CP47 or PsbB and CP43 or PsbC) but also extrinsic proteins. The first ones are more largely conserved from cyanobacteria to higher plants while the extrinsic proteins are different among species. It has been found that extrinsic proteins involved in oxygen evolution change dramatically the PSII efficiency and PSII repair systems. However, little information is available on the effects of abiotic stress on their function and structure.
Collapse
Affiliation(s)
- M. Landi
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - L. Guidi
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| |
Collapse
|
23
|
Lempiäinen T, Rintamäki E, Aro E, Tikkanen M. Plants acclimate to Photosystem I photoinhibition by readjusting the photosynthetic machinery. PLANT, CELL & ENVIRONMENT 2022; 45:2954-2971. [PMID: 35916195 PMCID: PMC9546127 DOI: 10.1111/pce.14400] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 05/12/2023]
Abstract
Photosynthetic light reactions require strict regulation under dynamic environmental conditions. Still, depending on environmental constraints, photoinhibition of Photosystem (PSII) or PSI occurs frequently. Repair of photodamaged PSI, in sharp contrast to that of PSII, is extremely slow and leads to a functional imbalance between the photosystems. Slow PSI recovery prompted us to take advantage of the PSI-specific photoinhibition treatment and investigate whether the imbalance between functional PSII and PSI leads to acclimation of photosynthesis to PSI-limited conditions, either by short-term or long-term acclimation mechanisms as tested immediately after the photoinhibition treatment or after 24 h recovery in growth conditions, respectively. Short-term acclimation mechanisms were induced directly upon inhibition, including thylakoid protein phosphorylation that redirects excitation energy to PSI as well as changes in the feedback regulation of photosynthesis, which relaxed photosynthetic control and excitation energy quenching. Longer-term acclimation comprised reprogramming of the stromal redox system and an increase in ATP synthase and Cytochrome b6 f abundance. Acclimation to PSI-limited conditions restored the CO2 assimilation capacity of plants without major PSI repair. Response to PSI inhibition demonstrates that plants efficiently acclimate to changes occurring in the photosynthetic apparatus, which is likely a crucial component in plant acclimation to adverse environmental conditions.
Collapse
Affiliation(s)
- Tapio Lempiäinen
- Molecular Plant Biology, Department of Life TechnologiesUniversity of TurkuTurkuFinland
| | - Eevi Rintamäki
- Molecular Plant Biology, Department of Life TechnologiesUniversity of TurkuTurkuFinland
| | - Eva‐Mari Aro
- Molecular Plant Biology, Department of Life TechnologiesUniversity of TurkuTurkuFinland
| | - Mikko Tikkanen
- Molecular Plant Biology, Department of Life TechnologiesUniversity of TurkuTurkuFinland
| |
Collapse
|
24
|
Utesch T, Staffa J, Katz S, Yao G, Kozuch J, Hildebrandt P. Potential Distribution across Model Membranes. J Phys Chem B 2022; 126:7664-7675. [PMID: 36137267 DOI: 10.1021/acs.jpcb.2c05372] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Membrane models assembled on electrodes are widely used tools to study potential-dependent molecular processes at or in membranes. However, the relationship between the electrode potential and the potential across the membrane is not known. Here we studied lipid bilayers immobilized on mixed self-assembled monolayers (SAM) on Au electrodes. The mixed SAM was composed of thiol derivatives of different chain lengths such that between the islands of the short one, mercaptobenzonitrile (MBN), and the tethered lipid bilayer an aqueous compartment was formed. The nitrile function of MBN, which served as a reporter group for the vibrational Stark effect (VSE), was probed by surface-enhanced infrared absorption spectroscopy to determine the local electric field as a function of the electrode potential for pure MBN, mixed SAM, and the bilayer system. In parallel, we calculated electric fields at the VSE probe by molecular dynamics (MD) simulations for different charge densities on the metal, thereby mimicking electrode potential changes. The agreement with the experiments was very good for the calculations of the pure MBN SAM and only slightly worse for the mixed SAM. The comparison with the experiments also guided the design of the bilayer system in the MD setups, which were selected to calculate the electrode potential dependence of the transmembrane potential, a quantity that is not directly accessible by the experiments. The results agree very well with estimates in previous studies and thus demonstrate that the present combined experimental-theoretical approach is a promising tool for describing potential-dependent processes at biomimetic interfaces.
Collapse
Affiliation(s)
- Tillmann Utesch
- Leibniz-Institut für Molekulare Pharmakologie (FMP), Robert-Rössle-Strasse 10, D-13125 Berlin, Germany
| | - Jana Staffa
- Institut für Chemie, Technische Universität Berlin, Sekr. PC14, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Sagie Katz
- Institut für Chemie, Technische Universität Berlin, Sekr. PC14, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Guiyang Yao
- Institut für Chemie, Technische Universität Berlin, Sekr. PC14, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Jacek Kozuch
- Fachbereich Physik, Experimentelle Molekulare Biophysik, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany.,Forschungsbau SupraFAB, Altensteinstr. 23a, D-14195 Berlin, Germany
| | - Peter Hildebrandt
- Institut für Chemie, Technische Universität Berlin, Sekr. PC14, Straße des 17. Juni 135, D-10623 Berlin, Germany
| |
Collapse
|
25
|
Zhang X, Li H, Zhuo G, He Z, Zhang C, Shi Z, Li C, Wang Y. Improvement in the photoprotective capability benefits the productivity of a yellow-green wheat mutant in N-deficient conditions. PHOTOSYNTHETICA 2022; 60:476-488. [PMID: 39649395 PMCID: PMC11558583 DOI: 10.32615/ps.2022.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 08/18/2022] [Indexed: 12/10/2024]
Abstract
Wheat yellow-green mutant Jimai5265yg has a more efficient photosynthetic system and higher productivity than its wild type under N-deficient conditions. To understand the relationship between photosynthetic properties and the grain yield, we conducted a field experiment under different N application levels. Compared to wild type, the Jimai5265yg flag leaves had higher mesophyll conductance, photosynthetic N-use efficiency, and photorespiration in the field without N application. Chlorophyll a fluorescence analysis showed that PSII was more sensitive to photoinhibition due to lower nonphotochemical quenching (NPQ) and higher nonregulated heat dissipation. In N-deficient condition, the PSI acceptor side of Jimai5265yg was less reduced. We proposed that the photoinhibited PSII protected PSI from over-reduction through downregulation of electron transport. PCA analysis also indicated that PSI photoprotection and electron transport regulation were closely associated with grain yield. Our results suggested that the photoprotection mechanism of PSI independent of NPQ was critical for crop productivity.
Collapse
Affiliation(s)
- X.H. Zhang
- College of Agronomy, Northwest A&F University, 712100 Yangling, Shaanxi, China
| | - H.X. Li
- College of Agronomy, Northwest A&F University, 712100 Yangling, Shaanxi, China
| | - G. Zhuo
- College of Agronomy, Northwest A&F University, 712100 Yangling, Shaanxi, China
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, Tibet, China
| | - Z.Z. He
- College of Agronomy, Northwest A&F University, 712100 Yangling, Shaanxi, China
| | - C.Y. Zhang
- College of Agronomy, Northwest A&F University, 712100 Yangling, Shaanxi, China
| | - Z. Shi
- College of Agronomy, Northwest A&F University, 712100 Yangling, Shaanxi, China
| | - C.C. Li
- College of Agronomy, Northwest A&F University, 712100 Yangling, Shaanxi, China
| | - Y. Wang
- College of Agronomy, Northwest A&F University, 712100 Yangling, Shaanxi, China
| |
Collapse
|
26
|
Cheng JB, Zhang SB, Wu JS, Huang W. The Dynamic Changes of Alternative Electron Flows upon Transition from Low to High Light in the Fern Cyrtomium fortune and the Gymnosperm Nageia nagi. Cells 2022; 11:cells11172768. [PMID: 36078176 PMCID: PMC9455243 DOI: 10.3390/cells11172768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/10/2022] [Accepted: 08/22/2022] [Indexed: 12/02/2022] Open
Abstract
In photosynthetic organisms except angiosperms, an alternative electron sink that is mediated by flavodiiron proteins (FLVs) plays the major role in preventing PSI photoinhibition while cyclic electron flow (CEF) is also essential for normal growth under fluctuating light. However, the dynamic changes of FLVs and CEF has not yet been well clarified. In this study, we measured the P700 signal, chlorophyll fluorescence, and electrochromic shift spectra in the fern Cyrtomium fortune and the gymnosperm Nageia nagi. We found that both species could not build up a sufficient proton gradient (∆pH) within the first 30 s after light abruptly increased. During this period, FLVs-dependent alternative electron flow was functional to avoid PSI over-reduction. This functional time of FLVs was much longer than previously thought. By comparison, CEF was highly activated within the first 10 s after transition from low to high light, which favored energy balancing rather than the regulation of a PSI redox state. When FLVs were inactivated during steady-state photosynthesis, CEF was re-activated to favor photoprotection and to sustain photosynthesis. These results provide new insight into how FLVs and CEF interact to regulate photosynthesis in non-angiosperms.
Collapse
Affiliation(s)
- Jun-Bin Cheng
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shi-Bao Zhang
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Jin-Song Wu
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Wei Huang
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- Correspondence:
| |
Collapse
|
27
|
Jonwal S, Verma N, Sinha AK. Regulation of photosynthetic light reaction proteins via reversible phosphorylation. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 321:111312. [PMID: 35696912 DOI: 10.1016/j.plantsci.2022.111312] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 04/10/2022] [Accepted: 05/04/2022] [Indexed: 06/15/2023]
Abstract
The regulation of photosynthesis occurs at different levels including the control of nuclear and plastid genes transcription, RNA processing and translation, protein translocation, assemblies and their post translational modifications. Out of all these, post translational modification enables rapid response of plants towards changing environmental conditions. Among all post-translational modifications, reversible phosphorylation is known to play a crucial role in the regulation of light reaction of photosynthesis. Although, phosphorylation of PS II subunits has been extensively studied but not much attention is given to other photosynthetic complexes such as PS I, Cytochrome b6f complex and ATP synthase. Phosphorylation reaction is known to protect photosynthetic apparatus in challenging environment conditions such as high light, elevated temperature, high salinity and drought. Recent studies have explored the role of photosynthetic protein phosphorylation in conferring plant immunity against the rice blast disease. The evolution of phosphorylation of different subunits of photosynthetic proteins occurred along with the evolution of plant lineage for their better adaptation to the changing environment conditions. In this review, we summarize the progress made in the research field of phosphorylation of photosynthetic proteins and highlights the missing links that need immediate attention.
Collapse
Affiliation(s)
- Sarvesh Jonwal
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Neetu Verma
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Alok Krishna Sinha
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India.
| |
Collapse
|
28
|
Xu E, Tikkanen M, Seyednasrollah F, Kangasjärvi S, Brosché M. Simultaneous Ozone and High Light Treatments Reveal an Important Role for the Chloroplast in Co-ordination of Defense Signaling. FRONTIERS IN PLANT SCIENCE 2022; 13:883002. [PMID: 35873979 PMCID: PMC9303991 DOI: 10.3389/fpls.2022.883002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 06/06/2022] [Indexed: 06/15/2023]
Abstract
Plants live in a world of changing environments, where they are continuously challenged by alternating biotic and abiotic stresses. To transfer information from the environment to appropriate protective responses, plants use many different signaling molecules and pathways. Reactive oxygen species (ROS) are critical signaling molecules in the regulation of plant stress responses, both inside and between cells. In natural environments, plants can experience multiple stresses simultaneously. Laboratory studies on stress interaction and crosstalk at regulation of gene expression, imply that plant responses to multiple stresses are distinctly different from single treatments. We analyzed the expression of selected marker genes and reassessed publicly available datasets to find signaling pathways regulated by ozone, which produces apoplastic ROS, and high light treatment, which produces chloroplastic ROS. Genes related to cell death regulation were differentially regulated by ozone versus high light. In a combined ozone + high light treatment, the light treatment enhanced ozone-induced cell death in leaves. The distinct responses from ozone versus high light treatments show that plants can activate stress signaling pathways in a highly precise manner.
Collapse
Affiliation(s)
- Enjun Xu
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Mikko Tikkanen
- Department of Biochemistry, Molecular Plant Biology, University of Turku, Turku, Finland
| | - Fatemeh Seyednasrollah
- Institute of Biotechnology, HILIFE – Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Saijaliisa Kangasjärvi
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Mikael Brosché
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| |
Collapse
|
29
|
Regulation of Chloroplast ATP Synthase Modulates Photoprotection in the CAM Plant Vanilla planifolia. Cells 2022; 11:cells11101647. [PMID: 35626684 PMCID: PMC9139848 DOI: 10.3390/cells11101647] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 11/27/2022] Open
Abstract
Generally, regulation of cyclic electron flow (CEF) and chloroplast ATP synthase play key roles in photoprotection for photosystems I and II (PSI and PSII) in C3 and C4 plants, especially when CO2 assimilation is restricted. However, how CAM plants protect PSI and PSII when CO2 assimilation is restricted is largely known. In the present study, we measured PSI, PSII, and electrochromic shift signals in the CAM plant Vanilla planifolia. The quantum yields of PSI and PSII photochemistry largely decreased in the afternoon compared to in the morning, indicating that CO2 assimilation was strongly restricted in the afternoon. Meanwhile, non-photochemical quenching (NPQ) in PSII and the donor side limitation of PSI (Y(ND)) significantly increased to protect PSI and PSII. Under such conditions, proton gradient (∆pH) across the thylakoid membranes largely increased and CEF was slightly stimulated, indicating that the increased ∆pH was not caused by the regulation of CEF. In contrast, the activity of chloroplast ATP synthase (gH+) largely decreased in the afternoon. At a given proton flux, the decreasing gH+ increased ∆pH and thus contributed to the enhancement of NPQ and Y(ND). Therefore, in the CAM plant V. planifolia, the ∆pH-dependent photoprotective mechanism is mainly regulated by the regulation of gH+ rather than CEF when CO2 assimilation is restricted.
Collapse
|
30
|
Physiological attributes and transcriptomics analyses reveal the mechanism response of Helictotrichon virescens to low temperature stress. BMC Genomics 2022; 23:280. [PMID: 35392804 PMCID: PMC8991566 DOI: 10.1186/s12864-022-08526-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 03/28/2022] [Indexed: 01/04/2023] Open
Abstract
Background Helictotrichon virescens is a perennial grass that is primarily distributed in high altitude areas of 2000 ~ 4500 m. It is widely cultivated in the Qinghai-Tibet Plateau of China, strongly resistant to cold, and an essential part of the wild herbs in this region. However, the molecular mechanism of the response of H. virescens to low temperature stress and the key regulatory genes for specific biological processes are poorly understood. Results Physiological and transcriptome analyses were used to study the cold stress response mechanism in H virescens. During the low temperature stress period, the content of chlorophyll a and b decreased more and more with the delay of the treatment time. Among them, the difference between the controls was not significant, and the difference between the control and the treatment was significant. At the same time, the expression of related differential genes was up-regulated during low temperature treatment. In addition, the plant circadian pathway is crucial for their response to cold stress. The expression of differentially expressed genes that encode LHY and HY5 were strongly up-regulated during cold stress. Conclusions This study should help to fully understand how H. virescens responds to low temperatures. It answers pertinent questions in the response of perennial herbs to cold stress, i.e., how light and low temperature signals integrate to regulate plant circadian rhythms and Decrease of content of chlorophylls (which can be also accompanied with decrease of total quantity of reaction centers) leads to an increase in photosynthetic damage. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08526-4.
Collapse
|
31
|
Influence of Burning-Induced Electrical Signals on Photosynthesis in Pea Can Be Modified by Soil Water Shortage. PLANTS 2022; 11:plants11040534. [PMID: 35214867 PMCID: PMC8878130 DOI: 10.3390/plants11040534] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/13/2022] [Accepted: 02/15/2022] [Indexed: 11/24/2022]
Abstract
Local damage to plants can induce fast systemic physiological changes through generation and propagation of electrical signals. It is known that electrical signals influence numerous physiological processes including photosynthesis; an increased plant tolerance to actions of stressors is a result of these changes. It is probable that parameters of electrical signals and fast physiological changes induced by these signals can be modified by the long-term actions of stressors; however, this question has been little investigated. Our work was devoted to the investigation of the parameters of burning-induced electrical signals and their influence on photosynthesis under soil water shortage in pea seedlings. We showed that soil water shortage decreased the amplitudes of the burning-induced depolarization signals (variation potential) and the magnitudes of photosynthetic inactivation (decreasing photosynthetic CO2 assimilation and linear electron flow and increasing non-photochemical quenching of the chlorophyll fluorescence and cyclic electron flow around photosystem I) caused by these signals. Moreover, burning-induced hyperpolarization signals (maybe, system potentials) and increased photosynthetic CO2 assimilation could be observed under strong water shortage. It was shown that the electrical signal-induced increase of the leaf stomatal conductance was a potential mechanism for the burning-induced activation of photosynthetic CO2 assimilation under strong water shortage; this mechanism was not crucial for photosynthetic response under control conditions or weak water shortage. Thus, our results show that soil water shortage can strongly modify damage-induced electrical signals and fast physiological responses induced by these signals.
Collapse
|
32
|
Yang YJ, Shi Q, Sun H, Mei RQ, Huang W. Differential Response of the Photosynthetic Machinery to Fluctuating Light in Mature and Young Leaves of Dendrobium officinale. FRONTIERS IN PLANT SCIENCE 2022; 12:829783. [PMID: 35185969 PMCID: PMC8850366 DOI: 10.3389/fpls.2021.829783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 12/27/2021] [Indexed: 06/14/2023]
Abstract
A key component of photosynthetic electron transport chain, photosystem I (PSI), is susceptible to the fluctuating light (FL) in angiosperms. Cyclic electron flow (CEF) around PSI and water-water cycle (WWC) are both used by the epiphytic orchid Dendrobium officinale to protect PSI under FL. This study examined whether the ontogenetic stage of leaf has an impact on the photoprotective mechanisms dealing with FL. Thus, chlorophyll fluorescence and P700 signals under FL were measured in D. officinale young and mature leaves. Upon transition from dark to actinic light, a rapid re-oxidation of P700 was observed in mature leaves but disappeared in young leaves, indicating that WWC existed in mature leaves but was lacking in young leaves. After shifting from low to high light, PSI over-reduction was clearly missing in mature leaves. By comparison, young leaves showed a transient PSI over-reduction within the first 30 s, which was accompanied with highly activation of CEF. Therefore, the effect of FL on PSI redox state depends on the leaf ontogenetic stage. In mature leaves, WWC is employed to avoid PSI over-reduction. In young leaves, CEF around PSI is enhanced to compensate for the lack of WWC and thus to prevent an uncontrolled PSI over-reduction induced by FL.
Collapse
Affiliation(s)
- Ying-Jie Yang
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Qi Shi
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hu Sun
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ren-Qiang Mei
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Wei Huang
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Bio-Innovation Center of DR PLANT, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
33
|
Zeng ZL, Sun H, Wang XQ, Zhang SB, Huang W. Regulation of Leaf Angle Protects Photosystem I under Fluctuating Light in Tobacco Young Leaves. Cells 2022; 11:252. [PMID: 35053368 PMCID: PMC8773500 DOI: 10.3390/cells11020252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 12/31/2021] [Accepted: 01/04/2022] [Indexed: 02/05/2023] Open
Abstract
Fluctuating light is a typical light condition in nature and can cause selective photodamage to photosystem I (PSI). The sensitivity of PSI to fluctuating light is influenced by the amplitude of low/high light intensity. Tobacco mature leaves are tended to be horizontal to maximize the light absorption and photosynthesis, but young leaves are usually vertical to diminish the light absorption. Therefore, we tested the hypothesis that such regulation of the leaf angle in young leaves might protect PSI against photoinhibition under fluctuating light. We found that, upon a sudden increase in illumination, PSI was over-reduced in extreme young leaves but was oxidized in mature leaves. After fluctuating light treatment, such PSI over-reduction aggravated PSI photoinhibition in young leaves. Furthermore, the leaf angle was tightly correlated to the extent of PSI photoinhibition induced by fluctuating light. Therefore, vertical young leaves are more susceptible to PSI photoinhibition than horizontal mature leaves when exposed to the same fluctuating light. In young leaves, the vertical leaf angle decreased the light absorption and thus lowered the amplitude of low/high light intensity. Therefore, the regulation of the leaf angle was found for the first time as an important strategy used by young leaves to protect PSI against photoinhibition under fluctuating light. To our knowledge, we show here new insight into the photoprotection for PSI under fluctuating light in nature.
Collapse
Affiliation(s)
- Zhi-Lan Zeng
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (Z.-L.Z.); (H.S.); (X.-Q.W.); (S.-B.Z.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hu Sun
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (Z.-L.Z.); (H.S.); (X.-Q.W.); (S.-B.Z.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao-Qian Wang
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (Z.-L.Z.); (H.S.); (X.-Q.W.); (S.-B.Z.)
| | - Shi-Bao Zhang
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (Z.-L.Z.); (H.S.); (X.-Q.W.); (S.-B.Z.)
| | - Wei Huang
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (Z.-L.Z.); (H.S.); (X.-Q.W.); (S.-B.Z.)
| |
Collapse
|
34
|
Shi Q, Sun H, Timm S, Zhang S, Huang W. Photorespiration Alleviates Photoinhibition of Photosystem I under Fluctuating Light in Tomato. PLANTS 2022; 11:plants11020195. [PMID: 35050082 PMCID: PMC8780929 DOI: 10.3390/plants11020195] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 12/30/2021] [Accepted: 12/31/2021] [Indexed: 12/12/2022]
Abstract
Fluctuating light (FL) is a typical natural light stress that can cause photodamage to photosystem I (PSI). However, the effect of growth light on FL-induced PSI photoinhibition remains controversial. Plants grown under high light enhance photorespiration to sustain photosynthesis, but the contribution of photorespiration to PSI photoprotection under FL is largely unknown. In this study, we examined the photosynthetic performance under FL in tomato (Lycopersicon esculentum) plants grown under high light (HL-plants) and moderate light (ML-plants). After an abrupt increase in illumination, the over-reduction of PSI was lowered in HL-plants, resulting in a lower FL-induced PSI photoinhibition. HL-plants displayed higher capacities for CO2 fixation and photorespiration than ML-plants. Within the first 60 s after transition from low to high light, PSII electron transport was much higher in HL-plants, but the gross CO2 assimilation rate showed no significant difference between them. Therefore, upon a sudden increase in illumination, the difference in PSII electron transport between HL- and ML-plants was not attributed to the Calvin–Benson cycle but was caused by the change in photorespiration. These results indicated that the higher photorespiration in HL-plants enhanced the PSI electron sink downstream under FL, which mitigated the over-reduction of PSI and thus alleviated PSI photoinhibition under FL. Taking together, we here for the first time propose that photorespiration acts as a safety valve for PSI photoprotection under FL.
Collapse
Affiliation(s)
- Qi Shi
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (Q.S.); (H.S.); (S.Z.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hu Sun
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (Q.S.); (H.S.); (S.Z.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Stefan Timm
- Plant Physiology Department, University of Rostock, D-18051 Rostock, Germany;
| | - Shibao Zhang
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (Q.S.); (H.S.); (S.Z.)
| | - Wei Huang
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (Q.S.); (H.S.); (S.Z.)
- Correspondence:
| |
Collapse
|
35
|
Yao X, Lan Y, Liao L, Huang Y, Yu S, Ye S, Yang M. Effects of nitrogen supply rate on photosynthesis, nitrogen uptake and growth of seedlings in a Eucalyptus/Dalbergia odorifera intercropping system. PLANT BIOLOGY (STUTTGART, GERMANY) 2022; 24:192-204. [PMID: 34569130 DOI: 10.1111/plb.13341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
The introduction of N2 -fixing species into a Eucalyptus plantation resulted in a successful planting system. It is essential to understand the contribution of nitrogen (N) competition and photosynthetic efficiency to plant dry matter yield to shed more light on the growth mechanism of the Eucalyptus/legume system. We compared N competition, photosynthesis and dry matter yield of Eucalyptus urophylla × E. grandis and the N2 -fixing tree species Dalbergia odorifera in intercropping and monoculture systems under different N levels. The photosynthesis of E. urophylla × E. grandis was improved, while that of D. odorifera was inhibited in the intercropping system. Intercropped E. urophylla × E. grandis increased the N utilization and the dry matter yield by 6.57-48.46% and 7.59-97.26%, and decreased those of D. odorifera by 10.21-30.33% and 0.48-13.19%, respectively. Furthermore, N application enhanced the competitive ability of E. urophylla × E. grandis relative to D. odorifera and changed the N contents and chlorophyll synthesis to optimize the photosynthetic structure of both species. Our results reveal Eucalyptus for photosynthesis, N absorption and increasing the growth benefit from the introduction of N2 -fixing species, which hence can be considered to be an effective sustainable management option of Eucalyptus plantations.
Collapse
Affiliation(s)
- X Yao
- College of Forestry, Guangxi University, Nanning, Guangxi, China
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Y Lan
- College of Forestry, Guangxi University, Nanning, Guangxi, China
| | - L Liao
- College of Forestry, Guangxi University, Nanning, Guangxi, China
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Y Huang
- College of Forestry, Guangxi University, Nanning, Guangxi, China
| | - S Yu
- College of Forestry, Guangxi University, Nanning, Guangxi, China
| | - S Ye
- College of Forestry, Guangxi University, Nanning, Guangxi, China
| | - M Yang
- College of Forestry, Guangxi University, Nanning, Guangxi, China
| |
Collapse
|
36
|
Yudina L, Sukhova E, Mudrilov M, Nerush V, Pecherina A, Smirnov AA, Dorokhov AS, Chilingaryan NO, Vodeneev V, Sukhov V. Ratio of Intensities of Blue and Red Light at Cultivation Influences Photosynthetic Light Reactions, Respiration, Growth, and Reflectance Indices in Lettuce. BIOLOGY 2022; 11:60. [PMID: 35053058 PMCID: PMC8772897 DOI: 10.3390/biology11010060] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/24/2021] [Accepted: 12/31/2021] [Indexed: 11/16/2022]
Abstract
LED illumination can have a narrow spectral band; its intensity and time regime are regulated within a wide range. These characteristics are the potential basis for the use of a combination of LEDs for plant cultivation because light is the energy source that is used by plants as well as the regulator of photosynthesis, and the regulator of other physiological processes (e.g., plant development), and can cause plant damage under certain stress conditions. As a result, analyzing the influence of light spectra on physiological and growth characteristics during cultivation of different plant species is an important problem. In the present work, we investigated the influence of two variants of LED illumination (red light at an increased intensity, the "red" variant, and blue light at an increased intensity, the "blue" variant) on the parameters of photosynthetic dark and light reactions, respiration rate, leaf reflectance indices, and biomass, among other factors in lettuce (Lactuca sativa L.). The same light intensity (about 180 µmol m-2s-1) was used in both variants. It was shown that the blue illumination variant increased the dark respiration rate (35-130%) and cyclic electron flow around photosystem I (18-26% at the maximal intensity of the actinic light) in comparison to the red variant; the effects were dependent on the duration of cultivation. In contrast, the blue variant decreased the rate of the photosynthetic linear electron flow (13-26%) and various plant growth parameters, such as final biomass (about 40%). Some reflectance indices (e.g., the Zarco-Tejada and Miller Index, an index that is related to the core sizes and light-harvesting complex of photosystem I), were also strongly dependent on the illumination variant. Thus, our results show that the red illumination variant contributes a great deal to lettuce growth; in contrast, the blue variant contributes to stress changes, including the activation of cyclic electron flow around photosystem I.
Collapse
Affiliation(s)
- Lyubov Yudina
- Department of Biophysics, N.I. Lobachevsky State University of Nizhny Novgorod, 603950 Nizhny Novgorod, Russia; (L.Y.); (E.S.); (M.M.); (V.N.); (A.P.); (V.V.)
| | - Ekaterina Sukhova
- Department of Biophysics, N.I. Lobachevsky State University of Nizhny Novgorod, 603950 Nizhny Novgorod, Russia; (L.Y.); (E.S.); (M.M.); (V.N.); (A.P.); (V.V.)
| | - Maxim Mudrilov
- Department of Biophysics, N.I. Lobachevsky State University of Nizhny Novgorod, 603950 Nizhny Novgorod, Russia; (L.Y.); (E.S.); (M.M.); (V.N.); (A.P.); (V.V.)
| | - Vladimir Nerush
- Department of Biophysics, N.I. Lobachevsky State University of Nizhny Novgorod, 603950 Nizhny Novgorod, Russia; (L.Y.); (E.S.); (M.M.); (V.N.); (A.P.); (V.V.)
| | - Anna Pecherina
- Department of Biophysics, N.I. Lobachevsky State University of Nizhny Novgorod, 603950 Nizhny Novgorod, Russia; (L.Y.); (E.S.); (M.M.); (V.N.); (A.P.); (V.V.)
| | - Alexandr A. Smirnov
- Lighting Laboratory, Federal State Budgetary Scientific Institution “Federal Scientific Agroengineering Center VIM” (FSAC VIM), 109428 Moscow, Russia;
| | - Alexey S. Dorokhov
- Department of Closed Artificial Agroecosystems, Federal State Budgetary Scientific Institution “Federal Scientific Agroengineering Center VIM” (FSAC VIM), 109428 Moscow, Russia;
| | - Narek O. Chilingaryan
- Agricultural Materials Laboratory, Federal State Budgetary Scientific Institution “Federal Scientific Agroengineering Center VIM” (FSAC VIM), 109428 Moscow, Russia;
| | - Vladimir Vodeneev
- Department of Biophysics, N.I. Lobachevsky State University of Nizhny Novgorod, 603950 Nizhny Novgorod, Russia; (L.Y.); (E.S.); (M.M.); (V.N.); (A.P.); (V.V.)
| | - Vladimir Sukhov
- Department of Biophysics, N.I. Lobachevsky State University of Nizhny Novgorod, 603950 Nizhny Novgorod, Russia; (L.Y.); (E.S.); (M.M.); (V.N.); (A.P.); (V.V.)
| |
Collapse
|
37
|
Lima-Melo Y, Kılıç M, Aro EM, Gollan PJ. Photosystem I Inhibition, Protection and Signalling: Knowns and Unknowns. FRONTIERS IN PLANT SCIENCE 2021; 12:791124. [PMID: 34925429 PMCID: PMC8671627 DOI: 10.3389/fpls.2021.791124] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/11/2021] [Indexed: 05/22/2023]
Abstract
Photosynthesis is the process that harnesses, converts and stores light energy in the form of chemical energy in bonds of organic compounds. Oxygenic photosynthetic organisms (i.e., plants, algae and cyanobacteria) employ an efficient apparatus to split water and transport electrons to high-energy electron acceptors. The photosynthetic system must be finely balanced between energy harvesting and energy utilisation, in order to limit generation of dangerous compounds that can damage the integrity of cells. Insight into how the photosynthetic components are protected, regulated, damaged, and repaired during changing environmental conditions is crucial for improving photosynthetic efficiency in crop species. Photosystem I (PSI) is an integral component of the photosynthetic system located at the juncture between energy-harnessing and energy consumption through metabolism. Although the main site of photoinhibition is the photosystem II (PSII), PSI is also known to be inactivated by photosynthetic energy imbalance, with slower reactivation compared to PSII; however, several outstanding questions remain about the mechanisms of damage and repair, and about the impact of PSI photoinhibition on signalling and metabolism. In this review, we address the knowns and unknowns about PSI activity, inhibition, protection, and repair in plants. We also discuss the role of PSI in retrograde signalling pathways and highlight putative signals triggered by the functional status of the PSI pool.
Collapse
Affiliation(s)
- Yugo Lima-Melo
- Post-graduation Programme in Cellular and Molecular Biology (PPGBCM), Department of Botany, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Mehmet Kılıç
- Molecular Plant Biology, Department of Life Technologies, University of Turku, Turku, Finland
| | - Eva-Mari Aro
- Molecular Plant Biology, Department of Life Technologies, University of Turku, Turku, Finland
| | - Peter J. Gollan
- Molecular Plant Biology, Department of Life Technologies, University of Turku, Turku, Finland
| |
Collapse
|
38
|
Diurnal Response of Photosystem I to Fluctuating Light Is Affected by Stomatal Conductance. Cells 2021; 10:cells10113128. [PMID: 34831351 PMCID: PMC8621556 DOI: 10.3390/cells10113128] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 11/17/2022] Open
Abstract
Upon a sudden transition from low to high light, electrons transported from photosystem II (PSII) to PSI should be rapidly consumed by downstream sinks to avoid the over-reduction of PSI. However, the over-reduction of PSI under fluctuating light might be accelerated if primary metabolism is restricted by low stomatal conductance. To test this hypothesis, we measured the effect of diurnal changes in stomatal conductance on photosynthetic regulation under fluctuating light in tomato (Solanum lycopersicum) and common mulberry (Morus alba). Under conditions of high stomatal conductance, we observed PSI over-reduction within the first 10 s after transition from low to high light. Lower stomatal conductance limited the activity of the Calvin–Benson–Bassham cycle and aggravated PSI over-reduction within 10 s after the light transition. We also observed PSI over-reduction after transition from low to high light for 30 s at the low stomatal conductance typical of the late afternoon, indicating that low stomatal conductance extends the period of PSI over-reduction under fluctuating light. Therefore, diurnal changes in stomatal conductance significantly affect the PSI redox state under fluctuating light. Moreover, our analysis revealed an unexpected inhibition of cyclic electron flow by the severe over-reduction of PSI seen at low stomatal conductance. In conclusion, stomatal conductance can have a large effect on thylakoid reactions under fluctuating light.
Collapse
|
39
|
Yang YJ, Sun H, Zhang SB, Huang W. Roles of alternative electron flows in response to excess light in Ginkgo biloba. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 312:111030. [PMID: 34620434 DOI: 10.1016/j.plantsci.2021.111030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/17/2021] [Accepted: 08/20/2021] [Indexed: 06/13/2023]
Abstract
Ginkgo biloba L., the only surviving species of Ginkgoopsida, is a famous relict gymnosperm, it may provide new insight into the evolution of photosynthetic mechanisms. Flavodiiron proteins (FDPs) are conserved in nonflowering plants, but the role of FDPs in gymnosperms has not yet been clarified. In particular, how gymnosperms integrate FDPs and cyclic electron transport (CET) to better adapt to excess light is poorly understood. To elucidate these questions, we measured the P700 signal, chlorophyll fluorescence and electrochromic shift signal under fluctuating and constant light in G. biloba. Within the first seconds after light increased, G. biloba could not build up a sufficient proton gradient (ΔpH). Concomitantly, photo-reduction of O2 mediated by FDPs contributed to the rapid oxidation of P700 and protected PSI under fluctuating light. Therefore, in G. biloba, FDPs mainly protect PSI under fluctuating light at acceptor side. Under constant high light, the oxidation of PSI and the induction of non-photochemical quenching were attributed to the increase in ΔpH formation, which was mainly caused by the increase in CET rather than linear electron transport. Therefore, under constant light, CET finely regulates the PSI redox state and non-photochemical quenching through ΔpH formation, protecting PSI and PSII against excess light. We conclude that, in G. biloba, FDPs are particularly important under fluctuating light while CET is essential under constant high light. The coordination of FDPs and CET fine-tune photosynthetic apparatus under excess light.
Collapse
Affiliation(s)
- Ying-Jie Yang
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hu Sun
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shi-Bao Zhang
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Wei Huang
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
| |
Collapse
|
40
|
Shi Q, Zhang SB, Wang JH, Huang W. Pre-illumination at high light significantly alleviates the over-reduction of photosystem I under fluctuating light. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 312:111053. [PMID: 34620448 DOI: 10.1016/j.plantsci.2021.111053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/29/2021] [Accepted: 09/04/2021] [Indexed: 06/13/2023]
Abstract
Photosystem I (PSI) is the primary target of photoinhibition under fluctuating light (FL). In angiosperms, cyclic electron flow (CEF) around PSI is thought to be the main player protecting PSI under FL. The activation of CEF is linked to the thylakoid stacking, which is in turn affected by light intensity. However, it is unknown how pre-illumination affects the CEF activation and PSI redox state under FL. To address this question, we conducted a spectroscopic analysis under FL in Bletilla striata and Morus alba after pre-illumination at moderate light (ML, 611 μmol photons m-2 s-1) or high light (HL, 1455 μmol photons m-2 s-1). Our results indicated that both species displayed a transient over-reduction of PSI after a transition from low to high light, but the extent of PSI over-reduction under FL was largely alleviated by pre-illumination at HL when compared with pre-illumination under ML. Furthermore, pre-illumination at HL accelerated the activation rate of CEF but did not affect the activation of non-photochemical quenching and linear electron flow from photosystem II under FL. Therefore, such increased CEF activity by pre-illumination under HL alleviated PSI over-reduction under FL by facilitating the electron sink downstream of PSI. Taking together, pre-illumination at HL protects PSI under FL through acceptor-side regulation.
Collapse
Affiliation(s)
- Qi- Shi
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Shi-Bao Zhang
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Ji-Hua Wang
- Flower Research Institute of Yunnan Academy of Agricultural Sciences, Kunming, 650205, Yunnan, China
| | - Wei Huang
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
| |
Collapse
|
41
|
Tan SL, Huang X, Li WQ, Zhang SB, Huang W. Elevated CO 2 Concentration Alters Photosynthetic Performances under Fluctuating Light in Arabidopsis thaliana. Cells 2021; 10:cells10092329. [PMID: 34571978 PMCID: PMC8471415 DOI: 10.3390/cells10092329] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/20/2021] [Accepted: 08/20/2021] [Indexed: 01/16/2023] Open
Abstract
In view of the current and expected future rise in atmospheric CO2 concentrations, we examined the effect of elevated CO2 on photoinhibition of photosystem I (PSI) under fluctuating light in Arabidopsis thaliana. At 400 ppm CO2, PSI showed a transient over-reduction within the first 30 s after transition from dark to actinic light. Under the same CO2 conditions, PSI was highly reduced after a transition from low to high light for 20 s. However, such PSI over-reduction greatly decreased when measured in 800 ppm CO2, indicating that elevated atmospheric CO2 facilitates the rapid oxidation of PSI under fluctuating light. Furthermore, after fluctuating light treatment, residual PSI activity was significantly higher in 800 ppm CO2 than in 400 ppm CO2, suggesting that elevated atmospheric CO2 mitigates PSI photoinhibition under fluctuating light. We further demonstrate that elevated CO2 does not affect PSI activity under fluctuating light via changes in non-photochemical quenching or cyclic electron transport, but rather from a rapid electron sink driven by CO2 fixation. Therefore, elevated CO2 mitigates PSI photoinhibition under fluctuating light at the acceptor rather than the donor side. Taken together, these observations indicate that elevated atmospheric CO2 can have large effects on thylakoid reactions under fluctuating light.
Collapse
Affiliation(s)
- Shun-Ling Tan
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (S.-L.T.); (X.H.); (W.-Q.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xing Huang
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (S.-L.T.); (X.H.); (W.-Q.L.)
| | - Wei-Qi Li
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (S.-L.T.); (X.H.); (W.-Q.L.)
| | - Shi-Bao Zhang
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (S.-L.T.); (X.H.); (W.-Q.L.)
- Correspondence: (S.-B.Z.); (W.H.)
| | - Wei Huang
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (S.-L.T.); (X.H.); (W.-Q.L.)
- Correspondence: (S.-B.Z.); (W.H.)
| |
Collapse
|
42
|
Electrical Signals, Plant Tolerance to Actions of Stressors, and Programmed Cell Death: Is Interaction Possible? PLANTS 2021; 10:plants10081704. [PMID: 34451749 PMCID: PMC8401951 DOI: 10.3390/plants10081704] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 01/22/2023]
Abstract
In environmental conditions, plants are affected by abiotic and biotic stressors which can be heterogenous. This means that the systemic plant adaptive responses on their actions require long-distance stress signals including electrical signals (ESs). ESs are based on transient changes in the activities of ion channels and H+-ATP-ase in the plasma membrane. They influence numerous physiological processes, including gene expression, phytohormone synthesis, photosynthesis, respiration, phloem mass flow, ATP content, and many others. It is considered that these changes increase plant tolerance to the action of stressors; the effect can be related to stimulation of damages of specific molecular structures. In this review, we hypothesize that programmed cell death (PCD) in plant cells can be interconnected with ESs. There are the following points supporting this hypothesis. (i) Propagation of ESs can be related to ROS waves; these waves are a probable mechanism of PCD initiation. (ii) ESs induce the inactivation of photosynthetic dark reactions and activation of respiration. Both responses can also produce ROS and, probably, induce PCD. (iii) ESs stimulate the synthesis of stress phytohormones (e.g., jasmonic acid, salicylic acid, and ethylene) which are known to contribute to the induction of PCD. (iv) Generation of ESs accompanies K+ efflux from the cytoplasm that is also a mechanism of induction of PCD. Our review argues for the possibility of PCD induction by electrical signals and shows some directions of future investigations in the field.
Collapse
|
43
|
Pashayeva A, Wu G, Huseynova I, Lee CH, Zulfugarov IS. Role of Thylakoid Protein Phosphorylation in Energy-Dependent Quenching of Chlorophyll Fluorescence in Rice Plants. Int J Mol Sci 2021; 22:ijms22157978. [PMID: 34360743 PMCID: PMC8347447 DOI: 10.3390/ijms22157978] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/18/2021] [Accepted: 07/23/2021] [Indexed: 11/16/2022] Open
Abstract
Under natural environments, light quality and quantity are extremely varied. To respond and acclimate to such changes, plants have developed a multiplicity of molecular regulatory mechanisms. Non-photochemical quenching of chlorophyll fluorescence (NPQ) and thylakoid protein phosphorylation are two mechanisms that protect vascular plants. To clarify the role of thylakoid protein phosphorylation in energy-dependent quenching of chlorophyll fluorescence (qE) in rice plants, we used a direct Western blot assay after BN-PAGE to detect all phosphoproteins by P-Thr antibody as well as by P-Lhcb1 and P-Lhcb2 antibodies. Isolated thylakoids in either the dark- or the light-adapted state from wild type (WT) and PsbS-KO rice plants were used for this approach to detect light-dependent interactions between PsbS, PSII, and LHCII proteins. We observed that the bands corresponding to the phosphorylated Lhcb1 and Lhcb2 as well as the other phosphorylated proteins were enhanced in the PsbS-KO mutant after illumination. The qE relaxation became slower in WT plants after 10 min HL treatment, which correlated with Lhcb1 and Lhcb2 protein phosphorylation in the LHCII trimers under the same experimental conditions. Thus, we concluded that light-induced phosphorylation of PSII core and Lhcb1/Lhcb2 proteins is enhanced in rice PsbS-KO plants which might be due to more reactive-oxygen-species production in this mutant.
Collapse
Affiliation(s)
- Aynura Pashayeva
- Institute of Molecular Biology and Biotechnologies, Azerbaijan National Academy of Sciences, 11 Izzat Nabiyev Str., Baku AZ 1073, Azerbaijan; (A.P.); (I.H.)
- Department of Integrated Biological Science, Department of Molecular Biology, Pusan National University, Busan 46241, Korea;
| | - Guangxi Wu
- Department of Integrated Biological Science, Department of Molecular Biology, Pusan National University, Busan 46241, Korea;
| | - Irada Huseynova
- Institute of Molecular Biology and Biotechnologies, Azerbaijan National Academy of Sciences, 11 Izzat Nabiyev Str., Baku AZ 1073, Azerbaijan; (A.P.); (I.H.)
| | - Choon-Hwan Lee
- Department of Integrated Biological Science, Department of Molecular Biology, Pusan National University, Busan 46241, Korea;
- Correspondence: (C.-H.L.); or (I.S.Z.)
| | - Ismayil S. Zulfugarov
- Institute of Molecular Biology and Biotechnologies, Azerbaijan National Academy of Sciences, 11 Izzat Nabiyev Str., Baku AZ 1073, Azerbaijan; (A.P.); (I.H.)
- Correspondence: (C.-H.L.); or (I.S.Z.)
| |
Collapse
|
44
|
Yousef AF, Ali MM, Rizwan HM, Tadda SA, Kalaji HM, Yang H, Ahmed MAA, Wróbel J, Xu Y, Chen F. Photosynthetic apparatus performance of tomato seedlings grown under various combinations of LED illumination. PLoS One 2021; 16:e0249373. [PMID: 33858008 PMCID: PMC8049771 DOI: 10.1371/journal.pone.0249373] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/17/2021] [Indexed: 02/04/2023] Open
Abstract
It is already known that the process of photosynthesis depends on the quality and intensity of light. However, the influence of the new light sources recently used in horticulture, known as Light Emitting Diodes (LEDs), on this process is not yet fully understood. Chlorophyll a fluorescence measurement has been widely used as a rapid, reliable, and noninvasive tool to study the efficiency of the photosystem II (PSII) and to evaluate plant responses to various environmental factors, including light intensity and quality. In this work, we tested the responses of the tomato photosynthetic apparatus to different light spectral qualities. Our results showed that the best performance of the photosynthetic apparatus was observed under a mixture of red and blue light (R7:B3) or a mixture of red, green and blue light (R3:G2:B5). This was demonstrated by the increase in the effective photochemical quantum yield of PSII (Y[II]), photochemical quenching (qP) and electron transport rate (ETR). On the other hand, the mixture of red and blue light with a high proportion of blue light led to an increase in non-photochemical quenching (NPQ). Our results can be used to improve the production of tomato plants under artificial light conditions. However, since we found that the responses of the photosynthetic apparatus of tomato plants to a particular light regime were cultivar-dependent and there was a weak correlation between the growth and photosynthetic parameters tested in this work, special attention should be paid in future research.
Collapse
Affiliation(s)
- Ahmed F. Yousef
- College of Horticulture, Fujian Agricultural and Forestry University, Fuzhou, China
- Department of Horticulture, College of Agriculture, University of Al-Azhar (branch Assiut), Assiut, Egypt
| | - Muhammad M. Ali
- College of Horticulture, Fujian Agricultural and Forestry University, Fuzhou, China
| | - Hafiz M. Rizwan
- College of Horticulture, Fujian Agricultural and Forestry University, Fuzhou, China
| | - Shehu Abubakar Tadda
- College of Horticulture, Fujian Agricultural and Forestry University, Fuzhou, China
- Department of Crop Production and Protection, Faculty of Agriculture and Agric. Technology, Federal University, Dutsin-Ma, Katsina, Nigeria
| | - Hazem M. Kalaji
- Department of Plant Physiology, Institute of Biology, Warsaw University of Life Sciences SGGW, Warsaw, Poland
| | - Hao Yang
- College of Mechanical and Electronic Engineering, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Mohamed A. A. Ahmed
- College of Horticulture, Fujian Agricultural and Forestry University, Fuzhou, China
- Plant Production Department (Horticulture—Medicinal and Aromatic Plants), Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, Egypt
| | - Jacek Wróbel
- Department of Bioengineering, West Pomeranian University of Technology in Szczecin, Szczecin, Poland
| | - Yong Xu
- College of Mechanical and Electronic Engineering, Fujian Agriculture and Forestry University, Fuzhou, China
- Institute of Machine Learning and Intelligent Science, Fujian University of Technology, Fuzhou, China
| | - Faxing Chen
- College of Horticulture, Fujian Agricultural and Forestry University, Fuzhou, China
| |
Collapse
|
45
|
Huang W, Sun H, Tan SL, Zhang SB. The water-water cycle is not a major alternative sink in fluctuating light at chilling temperature. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 305:110828. [PMID: 33691962 DOI: 10.1016/j.plantsci.2021.110828] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 11/30/2020] [Accepted: 01/12/2021] [Indexed: 05/13/2023]
Abstract
The water-water cycle (WWC) has the potential to alleviate photoinhibition of photosystem I (PSI) in fluctuating light (FL) at room temperature and moderate heat stress. However, it is unclear whether WWC can function as a safety valve for PSI in FL at chilling temperature. In this study, we measured P700 redox state and chlorophyll fluorescence in FL at 25 °C and 4 °C in the high WWC activity plant Dendrobium officinale. At 25 °C, the operation of WWC contributed to the rapid re-oxidation of P700 upon dark-to-light transition. However, such rapid re-oxidation of P700 was not observed at 4 °C. Upon a sudden increase in light intensity, WWC rapidly consumed excess electrons in PSI and thus avoided an over-reduction of PSI at 25 °C. On the contrary, PSI was highly reduced within the first seconds after transition from low to high light at 4 °C. Therefore, in opposite to 25 °C, the WWC is not a major alternative sink in FL at chilling temperature. Upon transition from low to high light, cyclic electron transport was highly stimulated at 4 °C when compared with 25 °C. These results indicate that D. officinale enhances cyclic electron transport to partially compensate for the inactivation of WWC in FL at 4 °C.
Collapse
Affiliation(s)
- Wei Huang
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China; Bio-Innovation Center of DR PLANT, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
| | - Hu Sun
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shun-Ling Tan
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shi-Bao Zhang
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| |
Collapse
|
46
|
Yavari N, Tripathi R, Wu BS, MacPherson S, Singh J, Lefsrud M. The effect of light quality on plant physiology, photosynthetic, and stress response in Arabidopsis thaliana leaves. PLoS One 2021; 16:e0247380. [PMID: 33661984 PMCID: PMC7932170 DOI: 10.1371/journal.pone.0247380] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 12/13/2020] [Indexed: 12/15/2022] Open
Abstract
The impacts of wavelengths in 500-600 nm on plant response and their underlying mechanisms remain elusive and required further investigation. Here, we investigated the effect of light quality on leaf area growth, biomass, pigments content, and net photosynthetic rate (Pn) across three Arabidopsis thaliana accessions, along with changes in transcription, photosynthates content, and antioxidative enzyme activity. Eleven-leaves plants were treated with BL; 450 nm, AL; 595 nm, RL; 650 nm, and FL; 400-700 nm as control. RL significantly increased leaf area growth, biomass, and promoted Pn. BL increased leaf area growth, carotenoid and anthocyanin content. AL significantly reduced leaf area growth and biomass, while Pn remained unaffected. Petiole elongation was further observed across accessions under AL. To explore the underlying mechanisms under AL, expression of key marker genes involved in light-responsive photosynthetic reaction, enzymatic activity of antioxidants, and content of photosynthates were monitored in Col-0 under AL, RL (as contrast), and FL (as control). AL induced transcription of GSH2 and PSBA, while downregulated NPQ1 and FNR2. Photosynthates, including proteins and starches, showed lower content under AL. SOD and APX showed enhanced enzymatic activity under AL. These results provide insight into physiological and photosynthetic responses to light quality, in addition to identifying putative protective-mechanisms that may be induced to cope with lighting-stress in order to enhance plant stress tolerance.
Collapse
Affiliation(s)
- Nafiseh Yavari
- Department of Bioresource Engineering, McGill University–Macdonald Campus, Sainte-Anne-de-Bellevue, Quebec, Canada
- * E-mail: (ML); (NY)
| | - Rajiv Tripathi
- Department of Plant Science, McGill University–Macdonald Campus, Sainte-Anne-de-Bellevue, Quebec, Canada
| | - Bo-Sen Wu
- Department of Bioresource Engineering, McGill University–Macdonald Campus, Sainte-Anne-de-Bellevue, Quebec, Canada
| | - Sarah MacPherson
- Department of Bioresource Engineering, McGill University–Macdonald Campus, Sainte-Anne-de-Bellevue, Quebec, Canada
| | - Jaswinder Singh
- Department of Plant Science, McGill University–Macdonald Campus, Sainte-Anne-de-Bellevue, Quebec, Canada
| | - Mark Lefsrud
- Department of Bioresource Engineering, McGill University–Macdonald Campus, Sainte-Anne-de-Bellevue, Quebec, Canada
- * E-mail: (ML); (NY)
| |
Collapse
|
47
|
Verhoeven AS, Berkowitz JM, Walton BN, Berube BK, Willour JJ, Polich SB. Is zeaxanthin needed for desiccation tolerance? Sustained forms of thermal dissipation in tolerant versus sensitive bryophytes. PHYSIOLOGIA PLANTARUM 2021; 171:453-467. [PMID: 33161567 DOI: 10.1111/ppl.13263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 09/04/2020] [Accepted: 10/26/2020] [Indexed: 06/11/2023]
Abstract
Desiccation tolerant (DT) plants engage and disengage sustained forms of energy dissipation in response to desiccation and rehydration. This project sought to characterize the role of zeaxanthin and thylakoid protein phosphorylation status in sustained energy dissipation during desiccation in bryophytes with varying DT. Tolerant (Polytrichum piliferum, Dicranum species, Calliergon stramineum) and sensitive (Grimmia species, Schistidium rivulare, Sphagnum species) moss were desiccated in darkness or natural light conditions for up to three weeks. Desiccation caused pronounced reductions in Fv /Fm in all cases which was enhanced by light exposure during desiccation. Desiccation in darkness resulted in no accumulation of Z in any species, however, in natural light conditions there was significant accumulation of Z in tolerant but not sensitive species. Desiccation in natural light, relative to darkness, resulted in more pronounced reductions in Fo in tolerant but not sensitive species. Recovery of Fv /Fm upon rehydration occurred in two phases, a rapid phase (minutes) and a slower phase (hours). Increased time of desiccation, and light exposure, resulted in a reduction in the rapid phase. Desiccation in light conditions resulted in some accumulation of the phosphorylated form of the major light harvesting trimer (LHCII). Data are consistent with two mechanisms of sustained quenching, neither of which requires Z. However, when desiccation occurs in natural light conditions, accumulation of Z likely contributes to one or both of the sustained forms of dissipation. Increases in LHCII phosphorylation during desiccation are consistent with increased connectivity between the photosystems. The absence of Z formation in sensitive species may contribute to their lack of desiccation tolerance.
Collapse
Affiliation(s)
- Amy S Verhoeven
- Biology Department, University of St. Thomas, St. Paul, Minnesota, USA
| | | | - Brenna N Walton
- Molecular and Environmental Toxicology Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Brandt K Berube
- Biology Department, University of St. Thomas, St. Paul, Minnesota, USA
| | - Jerry J Willour
- Biology Department, University of St. Thomas, St. Paul, Minnesota, USA
| | - Sidney B Polich
- Biology Department, University of St. Thomas, St. Paul, Minnesota, USA
| |
Collapse
|
48
|
Ferroni L, Colpo A, Baldisserotto C, Pancaldi S. In an ancient vascular plant the intermediate relaxing component of NPQ depends on a reduced stroma: Evidence from dithiothreitol treatment. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2021; 215:112114. [PMID: 33385824 DOI: 10.1016/j.jphotobiol.2020.112114] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/17/2020] [Accepted: 12/19/2020] [Indexed: 10/22/2022]
Abstract
In plants, the non-photochemical quenching of chlorophyll fluorescence (NPQ) induced by high light reveals the occurrence of a multiplicity of regulatory processes of photosynthesis, primarily devoted to photoprotection of photosystem I and II (PSI and PSII). The study of NPQ relaxation in darkness allows the separation of three kinetically distinct phases: the fast relaxing high-energy quenching qE, the intermediate relaxing phase and the nearly non-relaxatable photoinhibitory quenching. Several processes can underlie the intermediate phase. In the ancient vascular plant Selaginella martensii (Lycopodiophyta) this component, here termed qX, was previously proposed to reflect mainly a photoprotective energy-spillover from PSII to PSI. It is hypothesized that qX is induced by an over-reduced photosynthetic electron transport chain from PSII to final acceptors. To test this hypothesis the leaves were treated with the reductant dithiothreitol (DTT) and the chlorophyll fluorescence changes were analysed during the induction with high irradiance and the subsequent relaxation in darkness. DTT treatment caused the well-known decrease in NPQ induction and expectedly resulted in a disturbed photosynthetic electron flow. The relaxation curves of Y(NPQ), formally representing the quantum yield of the regulatory thermal dissipation, revealed a DTT dose-dependent decrease in amplitude not only of qE, but also of qX, up to the complete disappearance of the latter. Modelling of the relaxation curves under alternative scenarios led to the conclusion that DTT is permissive with respect to qX induction but suppresses its dark relaxation. The strong dependence of qX on the chloroplast redox state is discussed with respect to its proposed energy-spillover photoprotective significance in a lycophyte.
Collapse
Affiliation(s)
- Lorenzo Ferroni
- Laboratory of Plant Cytophysiology, Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy.
| | - Andrea Colpo
- Laboratory of Plant Cytophysiology, Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Costanza Baldisserotto
- Laboratory of Plant Cytophysiology, Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Simonetta Pancaldi
- Laboratory of Plant Cytophysiology, Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| |
Collapse
|
49
|
Yang YJ, Tan SL, Sun H, Huang JL, Huang W, Zhang SB. Photosystem I is tolerant to fluctuating light under moderate heat stress in two orchids Dendrobium officinale and Bletilla striata. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 303:110795. [PMID: 33487367 DOI: 10.1016/j.plantsci.2020.110795] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/03/2020] [Accepted: 12/05/2020] [Indexed: 06/12/2023]
Abstract
Under natural field conditions, plants usually experience fluctuating light (FL) under moderate heat stress in summer. However, responses of photosystems I and II (PSI and PSII) to such combined stresses are not well known. Furthermore, the role of water-water cycle (WWC) in photoprotection in FL under moderate heat stress is poorly understood. In this study, we examined chlorophyll fluorescence and P700 redox state in FL at 42 °C in two orchids, Dendrobium officinale (with high WWC activity) and Bletilla striata (with low WWC activity). After FL treatment at 42 °C, PSI activity maintained stable while PSII activity decreased significantly in these two orchids. In D. officinale, the WWC could rapidly consume the excess excitation energy in PSI and thus avoided an over-reduction of PSI upon any increase in illumination. Therefore, in D. officinale, WWC likely protected PSI in FL at 42 °C. In B. striata, heat-induced PSII photoinhibition down-regulated electron flow from PSII and thus prevented an over-reduction of PSI after transition from low to high light. Consequently, in B. striata moderate PSII photoinhibition could protected PSI in FL at 42 °C. We conclude that, in addition to cyclic electron flow, WWC and PSII photoinhibition-repair cycle are two important strategies for preventing PSI photoinhibition in FL under moderate heat stress.
Collapse
Affiliation(s)
- Ying-Jie Yang
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shun-Ling Tan
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hu Sun
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jia-Lin Huang
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Wei Huang
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China; Bio-Innovation Center of DR PLANT, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
| | - Shi-Bao Zhang
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
| |
Collapse
|
50
|
Jangir MM, Chowdhury S, Bhagavatula V. Differential response of photosynthetic apparatus towards alkaline pH treatment in NIES-39 and PCC 7345 strains of Arthrospira platensis. Int Microbiol 2021; 24:219-231. [PMID: 33438119 DOI: 10.1007/s10123-021-00160-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/21/2020] [Accepted: 01/04/2021] [Indexed: 10/22/2022]
Abstract
Alkaline stress is one of the severe abiotic stresses, which is not well studied so far, especially among cyanobacteria. To affirm the characteristics of alkaline stress and the subsequent adaptive responses in Arthrospira platensis NIES-39 and Arthrospira platensis PCC 7345, photosynthetic pigments, spectral properties of thylakoids, PSII and PSI activities, and pigment-protein profiles of thylakoids under different pH regimes were examined. The accessory pigments showed a pH-mediated sensitivity. The pigment-protein complexes of thylakoids are also affected, resulting in the altered fluorescence emission profile. At pH 11, a possible shift of the PBsome antenna complex from PSII to PSI is observed. PSII reaction center is found to be more susceptible to alkaline stress in comparison to the PSI. In Arthrospira platensis NIES-39 at pH 11, a drop of 68% in the oxygen evolution with a significant increase of PSI activity by 114% is recorded within 24 h of pH treatment. Alterations in the cellular ultrastructure of Arthrospira platensis NIES-39 at pH 11 were observed, along with the increased number of plastoglobules attached with the thylakoid membranes. Arthrospira platensis NIES-39 is more adaptable to pH variation than Arthrospira platensis PCC 7345.
Collapse
Affiliation(s)
- Monika Mahesh Jangir
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Rajasthan, 333031, India
| | - Shibasish Chowdhury
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Rajasthan, 333031, India.
| | - Vani Bhagavatula
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Rajasthan, 333031, India.
| |
Collapse
|