1
|
Qadafi M, Rosmalina RT, Meirinawati H, Widyarani, Wulan DR. Formation and estimated cytotoxicity of trihalomethanes and haloacetic acids during ozonation of nonylphenol in bromide-containing water after chlorination process: Impact of ozonation initial pH. Toxicol Rep 2024; 13:101769. [PMID: 39469100 PMCID: PMC11513847 DOI: 10.1016/j.toxrep.2024.101769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 10/04/2024] [Accepted: 10/11/2024] [Indexed: 10/30/2024] Open
Abstract
The presence of nonylphenol (NP) in bromide-containing water contributed to the formation of regulated disinfection by-products (DBPs): trihalomethanes-4 (THM4) and haloacetic acids-5 (HAA5). This study investigates the effects of ozonation pH on the degradation of NP, DBP formation, and DBP-estimated cytotoxicity. The ozonation pH was varied to 5, 7, and 9 to determine the effect of acidic, neutral, and alkaline conditions. The increase of ozonation initial pH improved the NP degradation. Ozonation of all initial pH conditions could decrease TCM, BDCM, and BDCM formation but increase the TBM formation at alkaline conditions. The formation of mono-HAA5 on the other hand, increased at all ozonation initial pH. Ozonation at acidic and neutral initial conditions can reduce the estimated cytotoxicity of the total formation of THM4 and HAA5 by 74.34 % and 93.31 %, respectively. In contrast, DBP's estimated cytotoxicity was raised by 33.72 % upon ozonation at an initial pH of alkaline. According to the study's findings, lowering the cytotoxicity of DBPs in acidic or alkaline environments can be achieved without changing the ozonation's pH. Based on these findings, pH changes are not required to reduce DBP during ozonation of NP-bromide-containing water. Future research on the impact of natural organic matter is recommended to investigate ozonation's capacity to reduce DBP production during ozonation of NP-containing natural water.
Collapse
Affiliation(s)
- Muammar Qadafi
- Research Center for Environmental and Clean Technology, National Research and Innovation Agency, Bandung, Jalan Sangkuriang 40135, Indonesia
| | - Raden Tina Rosmalina
- Research Center for Environmental and Clean Technology, National Research and Innovation Agency, Bandung, Jalan Sangkuriang 40135, Indonesia
| | - Hanny Meirinawati
- Research Center for Environmental and Clean Technology, National Research and Innovation Agency, Bandung, Jalan Sangkuriang 40135, Indonesia
| | - Widyarani
- Research Center for Environmental and Clean Technology, National Research and Innovation Agency, Bandung, Jalan Sangkuriang 40135, Indonesia
- Collaborative Research Center for Zero Waste and Sustainability, Jl. Kalijudan 37, Surabaya 60114, Indonesia
| | - Diana Rahayuning Wulan
- Research Center for Environmental and Clean Technology, National Research and Innovation Agency, Bandung, Jalan Sangkuriang 40135, Indonesia
- Collaborative Research Center for Zero Waste and Sustainability, Jl. Kalijudan 37, Surabaya 60114, Indonesia
| |
Collapse
|
2
|
Zhou N, Sui S, Liu H, Yang X, Hong H, Patterson TA. Determining high priority disinfection byproducts based on experimental aquatic toxicity data and predictive models: Virtual screening and in vivo study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175489. [PMID: 39142401 DOI: 10.1016/j.scitotenv.2024.175489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 07/03/2024] [Accepted: 08/11/2024] [Indexed: 08/16/2024]
Abstract
Only about 100 disinfection byproducts (DBPs) have been tested for their potential aquatic toxicity. It is not known which specific DBPs, DBP main groups, and DBP subgroups are more toxic due to the lack of experimental toxicity data. Herein, high priority specific DBPs, DBP main groups, DBP subgroups, most sensitive model aquatic species, potential PBT and PMT (persistent, bioaccumulative/mobile, and toxic) DBPs were virtually screened for 1187 updated DBPs inventory. Priority setting based on experimental and predicted acute and chronic aquatic toxicity data found that the aromatic and alicyclic DBPs in four DBPs main groups showed high priority because larger proportions of aromatic and alicyclic DBPs are in high hazard categories (i.e. Acute and/or Chronic Toxic-1 or Toxic-2) according to the criteria in GHS system compared to the aliphatic and heterocyclic DBPs. The halophenols, estrogen-DBPs, nonhalogenated esters, and nonhalogenated aldehydes were recognized as high priority DBPs subgroups. For specific DBPs, 19 and 31 DBPs should be highly concerned in the future study because both acute and chronic toxicity of those DBPs to all of the three aquatic life (algae, Daphnia magna, fish) were classified as Toxic-1 and Toxic-2, respectively. The Daphnia magna and algae were sensitive to the acute toxicity of DBPs, while the fish and Daphnia magna were sensitive to the chronic toxicity of DBPs. One potential PBT (Tetrachlorobisphenol A) and four potential PMT DBPs were identified. For verification, the acute toxicity of four DBPs on three aquatic organism were performed, and their tested acute toxicity data to three aquatic organisms were consistent with the predictions. Our results could be beneficial to government regulators to adopt effective measures to limit the discharge of high priority DBPs and help the scientific community to develop or improve disinfection processes to reduce the production of high priority DBPs.
Collapse
Affiliation(s)
- Nan Zhou
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Shuxin Sui
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Huihui Liu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Xianhai Yang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Huixiao Hong
- National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA
| | - Tucker A Patterson
- National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA
| |
Collapse
|
3
|
Jiang Y, Zang S, Qiao Y, Tan Y, Tao H, Li Q, Ma Y, Wang X, Ma J. Occurrence, toxicity, and control of halogenated aliphatic and phenolic disinfection byproducts in the chlorinated and chloraminated desalinated water. WATER RESEARCH 2024; 268:122566. [PMID: 39393182 DOI: 10.1016/j.watres.2024.122566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/23/2024] [Accepted: 10/01/2024] [Indexed: 10/13/2024]
Abstract
Seawater desalination is widely used to overcome the freshwater shortage worldwide. However, even after three-stage reverse osmosis treatment, the desalinated water still contained 14.6 μg/L of aliphatic disinfection byproducts (DBPs), 384.2 ng/L of bromophenolic DBPs, 3.5 ng/L of iodophenolic DBPs, 1024.7 μg/L of Br-, 2.8 μg/L of I-, and 2.4 mg C/L of dissolved organic carbon (DOC). After the desalinated water was disinfected with chlor(am)ine, the concentrations of halogenated aliphatic and phenolic DBPs further increased, and bromophenolic DBPs were the toxicity forcing agents. When surface water was mixed with desalinated water and then chlorinated, the yield of aliphatic and phenolic DBPs significantly elevated. Separately chlorinating desalinated water and surface water before mixing could mitigate this adverse situation. Chloramine disinfection was more conducive to reducing the total calculated toxicity of disinfected desalinated waters and mixed waters compared to chlorine disinfection. The treatment of desalinated water with granular activated carbon could effectively remove DOC and UV254, leading to a reduction in the content of total organic halogen after chlor(am)ination. Although anion exchange resin could adsorb Br-, it also released the organic precursors of DBPs, ultimately increasing the yield of DBPs. The results of this study can provide a reference for the seawater desalination industry to improve seawater pre-treatment and desalination processes and thus minimize the DBPs.
Collapse
Affiliation(s)
- Youwei Jiang
- College of Hydraulic and Civil Engineering, Xinjiang Agricultural University, Urumqi 830052, China; Xinjiang Key Laboratory of Hydraulic Engineering Security and Water Disasters Prevention, Urumqi 830052, China
| | - Shuang Zang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yue Qiao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yirang Tan
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Hongfei Tao
- College of Hydraulic and Civil Engineering, Xinjiang Agricultural University, Urumqi 830052, China; Xinjiang Key Laboratory of Hydraulic Engineering Security and Water Disasters Prevention, Urumqi 830052, China
| | - Qiao Li
- College of Hydraulic and Civil Engineering, Xinjiang Agricultural University, Urumqi 830052, China; Xinjiang Key Laboratory of Hydraulic Engineering Security and Water Disasters Prevention, Urumqi 830052, China
| | - Yingjie Ma
- College of Hydraulic and Civil Engineering, Xinjiang Agricultural University, Urumqi 830052, China; Xinjiang Key Laboratory of Hydraulic Engineering Security and Water Disasters Prevention, Urumqi 830052, China
| | - Xianshi Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
4
|
Gong X, He M, Hao Z, Zhao R, Liu J. Freeze-induced acceleration of iodide oxidation and consequent iodination of dissolved organic matter to form organoiodine compounds. J Environ Sci (China) 2024; 144:67-75. [PMID: 38802239 DOI: 10.1016/j.jes.2023.12.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 12/25/2023] [Accepted: 12/25/2023] [Indexed: 05/29/2024]
Abstract
Freeze-induced acceleration of I- oxidation and the consequent iodination of dissolved organic matter (DOM) contribute to the formation of organoiodine compounds (OICs) in cold regions. The formed OICs may be a potentially important source of risk and are very closely with the environment and human health. Herein, we investigated the acceleration effects of the freeze process on I- oxidation and the formation of OICs. In comparison to reactive iodine species (RIS) formed in aqueous solutions, I- oxidation and RIS formation were greatly enhanced in frozen solution and were affected by pH, and the content of I- and O2. Freeze-thaw process further promoted I- oxidation and the concentration of RIS reached 45.7 µmol/L after 6 freeze-thaw cycles. The consequent products of DOM iodination were greatly promoted in terms of both concentration and number. The total content of OICs ranged from 0.02 to 2.83 µmol/L under various conditions. About 183-1197 OICs were detected by Fourier transform ion cyclotron resonance mass spectrometry, and more than 96.2% contained one or two iodine atoms. Most OICs had aromatic structures and were formed via substitution and addition reactions. Our findings reveal an important formation pathway for OICs and shed light on the biogeochemical cycling of iodine in the natural aquatic environment.
Collapse
Affiliation(s)
- Xuexin Gong
- School of Resources and Environment, Yangtze University, Wuhan 430100, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Mei He
- School of Resources and Environment, Yangtze University, Wuhan 430100, China
| | - Zhineng Hao
- School of Resources and Environment, Yangtze University, Wuhan 430100, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Rusong Zhao
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Jinan 250014, China
| | - Jingfu Liu
- Institute of Environment and Health, Jianghan University, Wuhan 430056, China.
| |
Collapse
|
5
|
Yang S, Guo T, Fu H, Zheng S, Sun J, Qu X. Catalytic hydrodehalogenation activity and selectivity of polyiodinated phenolic disinfection byproducts at ambient conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 944:173905. [PMID: 38871330 DOI: 10.1016/j.scitotenv.2024.173905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/08/2024] [Accepted: 06/08/2024] [Indexed: 06/15/2024]
Abstract
Iodo-phenolic disinfection byproducts (DBPs) widely occur in disinfected water, posing potential risks to human health and the ecosystem as they possess higher toxicity than the bromo- and chloro-analogs. Herein, we elucidated the catalytic hydrodehalogenation (HDH) activity and selectivity of polyiodinated phenolic DBPs on supported noble metal catalysts at ambient conditions. Both 2,4,6-triiodophenol and 4-chloro-2,6-diiodophenol can be efficiently eliminated on Pd/TiO2 and Rh/TiO2 within 20 min, with Pd/TiO2 exhibiting higher turnover frequency. The HDH reactions proceeded in both stepwise and concerted pathways on Pd/TiO2, while they were dominantly stepwise on Rh/TiO2. Experimental results and theoretical calculations revealed that the HDH selectivity depends on the position and the bond energy of halo-substitutions. For the HDH of 2,4,6-triiodophenol, the para-substituted iodine was more favorable to be dehalogenated than the ortho-substituted ones due to the steric hindrance of the hydroxyl group. For the HDH of 4-chloro-2,6-diiodophenol, the ortho-substituted iodine was removed before the para-substituted chlorine as CI bond had higher reactivity than CCl bond. Significant catalyst deactivation was observed for the HDH of 4-chloro-2,6-diiodophenol on Pd/TiO2 due to iodine poisoning, resulting in 4-chlorophenol as the dominant product. In contrast, Rh/TiO2 can completely hydrodehalogenate 4-chloro-2,6-diiodophenol into cyclohexanone with little iodine poisoning. Our results suggest that HDH is an efficient process for abating iodo-phenolic DBPs. Rh/TiO2 is a more promising HDH catalyst for iodinated DBP removal than Pd/TiO2 with excellent resistance to iodine poisoning.
Collapse
Affiliation(s)
- Shuxue Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu 210023, China; Nanjing University (Suzhou) High-tech Institute, Suzhou 215123, China
| | - Tao Guo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu 210023, China
| | - Heyun Fu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu 210023, China; Nanjing University (Suzhou) High-tech Institute, Suzhou 215123, China
| | - Shourong Zheng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu 210023, China
| | - Jingya Sun
- School of Environmental Science, Nanjing XiaoZhuang University, Nanjing 211171, China.
| | - Xiaolei Qu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu 210023, China; Nanjing University (Suzhou) High-tech Institute, Suzhou 215123, China.
| |
Collapse
|
6
|
Hu S, Li X, Li G, Li Z, He F, Tian G, Zhao X, Liu R. New Species and Cytotoxicity Mechanism of Halohydroxybenzonitrile Disinfection Byproducts in Drinking Water. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:15816-15826. [PMID: 39166926 DOI: 10.1021/acs.est.4c06163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Recently, seven dihalohydroxybenzonitriles (diHHBNs) have been determined as concerning nitrogenous aromatic disinfection byproducts (DBPs) in drinking water. Herein, eight new monohalohydroxybenzonitriles (monoHHBNs), including 3-chloro-2-hydroxybenzonitrile, 5-chloro-2-hydroxybenzonitrile, 3-chloro-4-hydroxybenzonitrile, 3-bromo-2-hydroxybenzonitrile, 5-bromo-2-hydroxybenzonitrile, 3-bromo-4-hydroxybenzonitrile, 5-iodo-2-hydroxybenzonitrile, and 3-iodo-4-hydroxybenzonitrile, were detected and identified in drinking water for the first time. Thereafter, the relative concentration-cytotoxicity contribution of each HHBN was calculated based on the acquired occurrence level and cytotoxicity data in this study, the genome-scale cytotoxicity mechanism was explored, and a quantitative structure-activity relationship (QSAR) model was developed. Results indicated that new monoHHBNs were present in drinking water at concentrations of 0.04-1.83 ng/L and exhibited higher cytotoxicity than some other monohalogenated aromatic DBPs. Notably, monoHHBNs showed concentration-cytotoxicity contribution comparable to diHHBNs, which have been previously identified as potential toxicity drivers in drinking water. Transcriptomic analysis revealed immunotoxicity and genotoxicity as dominant cytotoxicity mechanisms for HHBNs in Chinese hamster ovary (CHO-K1) cells, with potential carcinogenic effects. The QSAR model suggested oxidative stress and cellular uptake efficiency as important factors for their cytotoxicity, highlighting the importance of potential iodinated HHBNs in drinking water, such as 3,5-diiodo-2-hydroxybenzonitrile, for future studies. These findings are meaningful for better understanding the health risk and toxicological significance of HHBNs in drinking water.
Collapse
Affiliation(s)
- Shaoyang Hu
- School of Environmental Science and Engineering, China-America CRC for Environment & Health, Shandong University, Qingdao 266237, China
| | - Xiangxiang Li
- School of Environmental Science and Engineering, China-America CRC for Environment & Health, Shandong University, Qingdao 266237, China
| | - Guangzhao Li
- School of Environmental Science and Engineering, China-America CRC for Environment & Health, Shandong University, Qingdao 266237, China
| | - Zhigang Li
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Falin He
- School of Environmental Science and Engineering, China-America CRC for Environment & Health, Shandong University, Qingdao 266237, China
| | - Guang Tian
- School of Environmental Science and Engineering, China-America CRC for Environment & Health, Shandong University, Qingdao 266237, China
| | - Xingchen Zhao
- School of Environmental Science and Engineering, China-America CRC for Environment & Health, Shandong University, Qingdao 266237, China
| | - Rutao Liu
- School of Environmental Science and Engineering, China-America CRC for Environment & Health, Shandong University, Qingdao 266237, China
| |
Collapse
|
7
|
Jerie S, Mutekwa TV, Mudyazhezha OC, Shabani T, Shabani T. Environmental and Human Health Problems Associated with Hospital Wastewater Management in Zimbabwe. Curr Environ Health Rep 2024; 11:380-389. [PMID: 38849638 DOI: 10.1007/s40572-024-00452-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/28/2024] [Indexed: 06/09/2024]
Abstract
PURPOSE OF THE REVIEW Wastewater is a term used to describe water that has undergone degradation in quality owing to anthropogenic activities or natural processes. Wastewater encompasses liquid waste originating from academic institutions, households, agricultural sector, industries, mines and hospitals. Hospital wastewater contains potentially hazardous substances including residues of pharmaceuticals, radioisotopes, detergents and pathogens, with detrimental impacts to the environment and human health. Nevertheless, studies related to hospital waste management are limited in Africa, particularly in Southern Africa. This research offers an overview of aspects surrounding hospital wastewater in Southern Africa, focusing on Zimbabwe. Already published and grey literature was reviewed to compile the paper. RECENT FINDINGS Number of patients, nature of medical services offered and hospital size influences generation of hospital wastewater. Partially and non-treated hospital wastewater is managed together with municipal wastewater. Management of hospital wastewater is impeded by shortage of resources, lack of co-ordination among responsible authorities and ineffective legal framework enforcement, among other challenges. Inappropriate hospital wastewater management results in environmental contamination, causing human ailments. Attainment of sustainable hospital wastewater management requires clearly defined and enforced legislation, collaboration of accountable stakeholders, sufficient resources and enhanced awareness of involved stakeholders. Application of technologies that uphold recycling and reuse of wastewater is essential to reach Sustainable Development Goals, Zimbabwe Vision 2030 and National Development Strategy 1 targets, particularly those dealing with environmental protection while upholding human health.
Collapse
Affiliation(s)
- Steven Jerie
- Midlands State University, Department of Geography, Environmental Sustainability and Resilience Building P. Bag, 9055, Gweru, Zimbabwe
| | - Timothy Vurayayi Mutekwa
- Midlands State University, Department of Geography, Environmental Sustainability and Resilience Building P. Bag, 9055, Gweru, Zimbabwe
| | - Olivia C Mudyazhezha
- Midlands State University, Department of Geography, Environmental Sustainability and Resilience Building P. Bag, 9055, Gweru, Zimbabwe
| | - Tapiwa Shabani
- Midlands State University, Department of Geography, Environmental Sustainability and Resilience Building P. Bag, 9055, Gweru, Zimbabwe
| | - Takunda Shabani
- Midlands State University, Department of Geography, Environmental Sustainability and Resilience Building P. Bag, 9055, Gweru, Zimbabwe.
| |
Collapse
|
8
|
Yang Y, Zhang X, Han J, Li W, Chang X, He Y, Yee Leung KM. Nanoplastics enhanced the developmental toxicity of aromatic disinfection byproducts to a marine polychaete at non-feeding early life stage. CHEMOSPHERE 2024; 364:143062. [PMID: 39127188 DOI: 10.1016/j.chemosphere.2024.143062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 08/05/2024] [Accepted: 08/07/2024] [Indexed: 08/12/2024]
Abstract
Micro/nanoplastics can act as vectors for organic pollutants and enhance their toxicity, which has been attributed to the ingestion by organisms and the "Trojan horse effect". In this study, we disclosed a non-ingestion pathway for the toxicity enhancement effect of nanoplastics. Initially, the combined toxicity of polystyrene microplastics (40 μm) or nanoplastics (50 nm) with three disinfection byproducts (DBPs) to a marine polychaete, Platynereis dumerilii, was investigated. No toxic effect was observed for the micro/nanoplastics alone. The microplastics showed no effect on the toxicity of the three DBPs, whereas the nanoplastics significantly enhanced the toxicity of two aromatic DBPs when the polychaete was in its non-feeding early life stage throughout the exposure period. The microplastics showed no interaction with the P. dumerilii embryos, whereas the nanoplastics agglomerated strongly on the embryonic chorion and fully encapsulated the embryos. This could contribute to higher actual exposure concentrations in the microenvironment around the embryos, as the concentrations of the two aromatic DBPs on the nanoplastics were 1200 and 120 times higher than those in bulk solution. Our findings highlight an important and previously overlooked mechanism by which nanoplastics and organic pollutants, such as DBPs, pose a higher risk to marine species at their vulnerable early life stages. This study may contribute to a broader understanding of the environmental impacts of plastic pollution and underscore the necessity to mitigate their risks associated with DBPs.
Collapse
Affiliation(s)
- Yun Yang
- Department of Civil and Environmental Engineering, Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Xiangru Zhang
- Department of Civil and Environmental Engineering, Hong Kong University of Science and Technology, Hong Kong SAR, China.
| | - Jiarui Han
- Department of Civil and Environmental Engineering, Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Wanxin Li
- Department of Civil and Environmental Engineering, Hong Kong University of Science and Technology, Hong Kong SAR, China; Department of Health and Environmental Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Xinyi Chang
- Department of Civil and Environmental Engineering, Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Yuhe He
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China
| | - Kenneth Mei Yee Leung
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
9
|
Cai R, Yao P, Yi Y, Merder J, Li P, He D. The Hunt for Chemical Dark Matter across a River-to-Ocean Continuum. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:11988-11997. [PMID: 38875444 DOI: 10.1021/acs.est.4c00648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2024]
Abstract
Thousands of mass peaks emerge during molecular characterization of natural dissolved organic matter (DOM) using ultrahigh-resolution mass spectrometry. While mass peaks assigned to certain molecular formulas have been extensively studied, the uncharacterized mass peaks that represent a significant fraction of organic matter and convey biogenic elements and energy have been previously ignored. In this study, we introduce the term dark DOM (DDOM) for unassigned mass peaks and have explored its characteristics and environmental behaviors using a data set of 38 DOM extracts covering the Yangtze River-to-ocean continuum. We identified a total of 9141 DDOM molecules, which exhibited higher molecular weight and greater diversity than the DOM subset with assigned DOM formulas. Although DDOM contributed a smaller fraction of relative abundance, it significantly impacted the molecular weight and molecular composition of bulk DOM. A portion of DDOM with higher molecular weight was found to increase molecular abundance across the river-to-ocean continuum. These compounds could contain halogenated organic molecules and might have a high potential to contribute to the refractory organic carbon pool. With this study, we underline the contribution of dark matter to the total DOM pool and emphasize that more DDOM research is needed to understand its contribution to global biogeochemical cycles and carbon sequestration.
Collapse
Affiliation(s)
- Ruanhong Cai
- Department of Ocean Science, Center for Ocean Research in Hong Kong and Macau, The Hong Kong University of Science and Technology, Kowloon 999077, Hong Kong SAR, China
| | - Piao Yao
- Department of Ocean Science, Center for Ocean Research in Hong Kong and Macau, The Hong Kong University of Science and Technology, Kowloon 999077, Hong Kong SAR, China
| | - Yuanbi Yi
- Department of Ocean Science, Center for Ocean Research in Hong Kong and Macau, The Hong Kong University of Science and Technology, Kowloon 999077, Hong Kong SAR, China
| | - Julian Merder
- Department of Global Ecology, Carnegie Institution for Science, Stanford, California 94305, United States
| | - Penghui Li
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai 519082, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
| | - Ding He
- Department of Ocean Science, Center for Ocean Research in Hong Kong and Macau, The Hong Kong University of Science and Technology, Kowloon 999077, Hong Kong SAR, China
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon 999077, Hong Kong SAR, China
| |
Collapse
|
10
|
Liu Y, Hou X, Li X, Liu J, Jiang G. Simultaneous determination of 19 bromophenols by gas chromatography-mass spectrometry (GC-MS) after derivatization. Talanta 2024; 274:126015. [PMID: 38581850 DOI: 10.1016/j.talanta.2024.126015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/26/2024] [Accepted: 03/29/2024] [Indexed: 04/08/2024]
Abstract
Bromophenols (BPs) are a class of ubiquitous emerging halogenated pollutants. Their 19 congeners are problematically separated and detected. This work described the separation and detection of 19 BP congeners by gas chromatography-mass spectrometry (GC-MS). Investigations into the derivatization of bromophenols were carried out using two silylation reagents (N,O-bis(trimethylsilyl)trifluoroacetamide and N-methyl-N-(trimethylsily)trifluoroacetamide), two alkylation reagents (methyl iodide and trimethylsilyldiazomethane) and acetic anhydride prior to GC-MS analysis. Optimal chromatographic separation, sensitivity, and linearity were achieved after BP derivatization using acetic anhydride, featuring the equipment detection limits of 0.39-1.26 pg and correlation coefficients of 0.9948-0.9999 (linear range: 0.5-250 ng mL-1) for all 19 BP congeners. Furthermore, the simultaneous determination of 19 bromophenols and 19 bromoanisoles, common environmental transformation products of BPs, is also demonstrated. The improved analytical performance on GC-MS after derivatization would benefit investigations on the environmental origins, behaviors and fates of BPs and their environmental metabolites.
Collapse
Affiliation(s)
- Yanwei Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Xingwang Hou
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Xiaoying Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China
| | - Jiyan Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, China.
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, China
| |
Collapse
|
11
|
Sun H, Liu Y, Wu C, Ma LQ, Guan D, Hong H, Yu H, Lin H, Huang X, Gao P. Dihalogenated nitrophenols in drinking water: Prevalence, resistance to household treatment, and cardiotoxic impact on zebrafish embryo. ECO-ENVIRONMENT & HEALTH 2024; 3:183-191. [PMID: 38646095 PMCID: PMC11031730 DOI: 10.1016/j.eehl.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/27/2024] [Accepted: 02/03/2024] [Indexed: 04/23/2024]
Abstract
Dihalogenated nitrophenols (2,6-DHNPs), an emerging group of aromatic disinfection byproducts (DBPs) detected in drinking water, have limited available information regarding their persistence and toxicological risks. The present study found that 2,6-DHNPs are resistant to major drinking water treatment processes (sedimentation and filtration) and households methods (boiling, filtration, microwave irradiation, and ultrasonic cleaning). To further assess their health risks, we conducted a series of toxicology studies using zebrafish embryos as the model organism. Our findings reveal that these emerging 2,6-DHNPs showed lethal toxicity 248 times greater than that of the regulated DBP, dichloroacetic acid. Specifically, at sublethal concentrations, exposure to 2,6-DHNPs generated reactive oxygen species (ROS), caused apoptosis, inhibited cardiac looping, and induced cardiac failure in zebrafish. Remarkably, the use of a ROS scavenger, N-acetyl-l-cysteine, considerably mitigated these adverse effects, emphasizing the essential role of ROS in 2,6-DHNP-induced cardiotoxicity. Our findings highlight the cardiotoxic potential of 2,6-DHNPs in drinking water even at low concentrations of 19 μg/L and the beneficial effect of N-acetyl-l-cysteine in alleviating the 2,6-DHNP-induced cardiotoxicity. This study underscores the urgent need for increased scrutiny of these emerging compounds in public health discussions.
Collapse
Affiliation(s)
- Hongjie Sun
- Key Laboratory of Watershed Earth Surface Processes and Ecological Security, College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China
| | - Yingying Liu
- Key Laboratory of Watershed Earth Surface Processes and Ecological Security, College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China
| | - Chunxiu Wu
- College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, China
| | - Lena Q. Ma
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Dongxing Guan
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Huachang Hong
- Key Laboratory of Watershed Earth Surface Processes and Ecological Security, College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China
| | - Haiying Yu
- Key Laboratory of Watershed Earth Surface Processes and Ecological Security, College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China
| | - Hongjun Lin
- Key Laboratory of Watershed Earth Surface Processes and Ecological Security, College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China
| | - Xianfeng Huang
- National and Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Peng Gao
- Department of Environmental and Occupational Health, and Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, PA 15261, United States
- UPMC Hillman Cancer Center, Pittsburgh, PA 15232, United States
| |
Collapse
|
12
|
Sui S, Zhou N, Liu H, Watson P, Yang X. Recognizing high-priority disinfection byproducts based on experimental and predicted endocrine disrupting data: Virtual screening and in vitro study. CHEMOSPHERE 2024; 358:142239. [PMID: 38705414 DOI: 10.1016/j.chemosphere.2024.142239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 04/25/2024] [Accepted: 05/02/2024] [Indexed: 05/07/2024]
Abstract
So far, about 130 disinfection by-products (DBPs) and several DBPs-groups have had their potential endocrine-disrupting effects tested on some endocrine endpoints. However, it is still not clear which specific DBPs, DBPs-groups/subgroups may be the most toxic substances or groups/subgroups for any given endocrine endpoint. In this study, we attempt to address this issue. First, a list of relevant DBPs was updated, and 1187 DBPs belonging to 4 main-groups (aliphatic, aromatic, alicyclic, heterocyclic) and 84 subgroups were described. Then, the high-priority endocrine endpoints, DBPs-groups/subgroups, and specific DBPs were determined from 18 endpoints, 4 main-groups, 84 subgroups, and 1187 specific DBPs by a virtual-screening method. The results demonstrate that most of DBPs could not disturb the endocrine endpoints in question because the proportion of active compounds associated with the endocrine endpoints ranged from 0 (human thyroid receptor beta) to 32% (human transthyretin (hTTR)). All the endpoints with a proportion of active compounds greater than 10% belonged to the thyroid system, highlighting that the potential disrupting effects of DBPs on the thyroid system should be given more attention. The aromatic and alicyclic DBPs may have higher priority than that of aliphatic and heterocyclic DBPs by considering the activity rate and potential for disrupting effects. There were 2 (halophenols and estrogen DBPs), 12, and 24 subgroups that belonged to high, moderate, and low priority classes, respectively. For individual DBPs, there were 23 (2%), 193 (16%), and 971 (82%) DBPs belonging to the high, moderate, and low priority groups, respectively. Lastly, the hTTR binding affinity of 4 DBPs was determined by an in vitro assay and all the tested DBPs exhibited dose-dependent binding potency with hTTR, which was consistent with the predicted result. Thus, more efforts should be performed to reveal the potential endocrine disruption of those high research-priority main-groups, subgroups, and individual DBPs.
Collapse
Affiliation(s)
- Shuxin Sui
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Nan Zhou
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Huihui Liu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Peter Watson
- Los Alamos National Laboratory, Los Alamos, 87545, New Mexico, United States
| | - Xianhai Yang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| |
Collapse
|
13
|
Huang X, Lu G, Zhu X, Pu C, Guo J, Liang X. Insight into the generation of toxic by-products during UV/H 2O 2 degradation of carbamazepine: Mechanisms, N-transformation and toxicity. CHEMOSPHERE 2024; 358:142175. [PMID: 38679173 DOI: 10.1016/j.chemosphere.2024.142175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/23/2024] [Accepted: 04/26/2024] [Indexed: 05/01/2024]
Abstract
Carbamazepine (CBZ) is a widely used anticonvulsant drug that has been detected in aquatic environments. This study investigated the toxicity of its by-products (CBZ-BPs), which may surpass CBZ. Unlike the previous studies, this study offered a more systematic approach to identifying toxic BPs and inferring degradation pathways. Furthermore, quadrupole time-of-flight (QTOF) and density functional theory (DFT) calculations were employed to analyze CBZ-BP structures and degradation pathways. Evaluation of total organic carbon (TOC) and total nitrogen (TN) mineralization rates, revealed carbon (C) greater susceptibility to mineralization compared with nitrogen (N). Furthermore, three rules were established for CBZ decarbonization and N removal during degradation, observing the transformation of aromatic compounds into aliphatic hydrocarbons and stable N-containing organic matter over time. Five potentially highly toxic BPs were screened from 14 identified BPs, with toxicity predictions guiding the selection of commercial standards for quantification and true toxicity testing. Additionally, BP207 emerged as the most toxic, supported by the predictive toxicity accumulation model (PTAM). Notably, highly toxic BPs feature an acridine structure, indicating its significant contribution to toxicity. These findings offered valuable insights into the degradation mechanisms of emerging contaminants and the biosafety of aquatic environments during deep oxidation.
Collapse
Affiliation(s)
- Xiaohan Huang
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, 510632, China
| | - Gang Lu
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, 510632, China.
| | - Xuanjin Zhu
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, 510632, China
| | - Chuan Pu
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, 510632, China
| | - Junjie Guo
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, 510632, China
| | - Xiangxing Liang
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, 510632, China
| |
Collapse
|
14
|
Yang W, Zhang Y, Huang J, Yang X, Jiang N. Analysis of brominide disinfection by-products (DBPs) in aquaculture water using ultra-high performance liquid chromatography-quadrupole-time of flight mass spectrometry (UPLC-Q-tof/MS). ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:3209-3219. [PMID: 38713168 DOI: 10.1039/d4ay00396a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
BACKGROUND halogenic disinfectants have been shown to produce toxic and carcinogenic disinfection by-products in the water disinfection process. Dibromohydantoin (DBDMH) is a commonly used water disinfectant in aquaculture. Aquaculture water has more complex matrix, and the analytical method for disinfection by-products (DBPs) have not been reported. Since the content of DBPs is related to the external conditions such as ultraviolet irradiation, temperatures, pH and humic acid. The semi-target screening method for mainly DBPs based on tracing mass spectrometry fragments of bromide and accurate mass of high resolution mass spectrometry was established by ultra performance liquid chromatography-quadrupole-time of flight-mass spectrometry (UPLC-Q-tof/MS). Br-DBPs as a important class of DBPs from DBDMH, which quantification analysis methods were developed based on accurate mass of high resolution mass spectrometry. METHODS through screening method to identify unknown Br-DBPs and quantitative analysis of the typical 4-bromophenol by-product of accurate mass was established. The conditions of the instrument parameters of mass spectrometry and SPE sample preparation procedure in complex real sample were optimized. The high efficiency method was demonstrated for the determination of Br-DBPs with a good linear correlation (R2 = 0.999) in the range of 0.500-200 μg L-1 and limit of detections (LODs) and limit of quantifications (LOQs) were 0.0250 ng L-1 and 0.0834 ng L-1, respectively. CONCLUSION the developed screening and quantification analytical strategy for Br-DBPs is rapid, accurate and sensitivity applicable for environmental in aquaculture water monitoring.
Collapse
Affiliation(s)
- Weimin Yang
- Physics Laboratory, Industrial Training Centre, Shenzhen Polytechinc University, Shahe River Road, Shenzhen 518055, Guangdong, China.
| | - Yi Zhang
- School of Materials and Environmental Engineering, Shenzhen Polytechinc University, Shahe River Road, Shenzhen 518055, Guangdong, China.
| | - Jilong Huang
- School of Materials and Environmental Engineering, Shenzhen Polytechinc University, Shahe River Road, Shenzhen 518055, Guangdong, China.
| | - Xing Yang
- School of Materials and Environmental Engineering, Shenzhen Polytechinc University, Shahe River Road, Shenzhen 518055, Guangdong, China.
| | - Ning Jiang
- School of Materials and Environmental Engineering, Shenzhen Polytechinc University, Shahe River Road, Shenzhen 518055, Guangdong, China.
| |
Collapse
|
15
|
Sikder R, Zhang H, Gao P, Ye T. Machine learning framework for predicting cytotoxicity and identifying toxicity drivers of disinfection byproducts. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133989. [PMID: 38461660 DOI: 10.1016/j.jhazmat.2024.133989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 03/06/2024] [Accepted: 03/06/2024] [Indexed: 03/12/2024]
Abstract
Drinking water disinfection can result in the formation disinfection byproducts (DBPs, > 700 have been identified to date), many of them are reportedly cytotoxic, genotoxic, or developmentally toxic. Analyzing the toxicity levels of these contaminants experimentally is challenging, however, a predictive model could rapidly and effectively assess their toxicity. In this study, machine learning models were developed to predict DBP cytotoxicity based on their chemical information and exposure experiments. The Random Forest model achieved the best performance (coefficient of determination of 0.62 and root mean square error of 0.63) among all the algorithms screened. Also, the results of a probabilistic model demonstrated reliable model predictions. According to the model interpretation, halogen atoms are the most prominent features for DBP cytotoxicity compared to other chemical substructures. The presence of iodine and bromine is associated with increased cytotoxicity levels, while the presence of chlorine is linked to a reduction in cytotoxicity levels. Other factors including chemical substructures (CC, N, CN, and 6-member ring), cell line, and exposure duration can significantly affect the cytotoxicity of DBPs. The similarity calculation indicated that the model has a large applicability domain and can provide reliable predictions for DBPs with unknown cytotoxicity. Finally, this study showed the effectiveness of data augmentation in the scenario of data scarcity.
Collapse
Affiliation(s)
- Rabbi Sikder
- Department of Civil and Environmental Engineering, South Dakota School of Mines and Technology, Rapid City, SD 57701, United States
| | - Huichun Zhang
- Department of Civil and Environmental Engineering, Case Western Reserve University, Cleveland, OH 44106, United States
| | - Peng Gao
- Department of Environmental and Occupational Health, and Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, PA 15261, United States; UPMC Hillman Cancer Center, Pittsburgh, PA 15232, United States
| | - Tao Ye
- Department of Civil and Environmental Engineering, South Dakota School of Mines and Technology, Rapid City, SD 57701, United States.
| |
Collapse
|
16
|
Yang Y, Zhang X, Fu L, Li C, Zhang S. The number of test organisms might influence the toxicity evaluation of hydrophobic micropollutants. CHEMOSPHERE 2024; 355:141814. [PMID: 38554862 DOI: 10.1016/j.chemosphere.2024.141814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/08/2024] [Accepted: 03/25/2024] [Indexed: 04/02/2024]
Abstract
Evaluating the toxicity of micropollutants forms the basis for understanding their potential risks to the ecosystem and/or human health. To accurately evaluate the toxicity of micropollutants in toxicity tests, many factors have been carefully considered, while the impact of the number of test organisms on toxicity results has rarely been taken into account. In this study, the role of the organism number on the developmental toxicity of five micropollutants was investigated using embryos of the marine polychaete Platynereis dumerilii. The toxicity of hydrophobic micropollutants was found to decrease significantly with increasing the number of embryos used in the test. A quantitative model was developed to better describe how the number of embryos affected developmental toxicity. The model showed a satisfactory fit to the raw data in all scenarios tested. The intrinsic half-maximal effective concentration EC50,int was then determined using the model. For a given compound, the EC50,int was a stable parameter that did not depend on the number of test embryos and thus provided an indication of the intrinsic toxicity of the compounds tested. Compared with the EC50 values determined with the commonly used embryo number (around 120), the EC50,int values of all tested hydrophobic micropollutants were lower. The more hydrophobic the compounds tested, the more pronounced the reduction in toxicity. This suggested that hydrophobic micropollutants could be more toxic than reported in the literature. Some suggestions were also made to eliminate the effect of the number of organisms used in the toxicity evaluation.
Collapse
Affiliation(s)
- Yun Yang
- Department of Civil and Environmental Engineering, Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Xiangru Zhang
- Department of Civil and Environmental Engineering, Hong Kong University of Science and Technology, Hong Kong SAR, China.
| | - Longshan Fu
- Department of Civil and Environmental Engineering, Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Can Li
- Department of Civil and Environmental Engineering, Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Siwei Zhang
- Department of Civil and Environmental Engineering, Hong Kong University of Science and Technology, Hong Kong SAR, China
| |
Collapse
|
17
|
Kalita I, Kamilaris A, Havinga P, Reva I. Assessing the Health Impact of Disinfection Byproducts in Drinking Water. ACS ES&T WATER 2024; 4:1564-1578. [PMID: 38633371 PMCID: PMC11019713 DOI: 10.1021/acsestwater.3c00664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/10/2024] [Accepted: 02/13/2024] [Indexed: 04/19/2024]
Abstract
This study provides a comprehensive investigation of the impact of disinfection byproducts (DBPs) on human health, with a particular focus on DBPs present in chlorinated drinking water, concentrating on three primary DBP categories (aliphatic, alicyclic, and aromatic). Additionally, it explores pivotal factors influencing DBP formation, encompassing disinfectant types, water source characteristics, and environmental conditions, such as the presence of natural materials in water. The main objective is to discern the most hazardous DBPs, considering criteria such as regulation standards, potential health impacts, and chemical diversity. It provides a catalog of 63 key DBPs alongside their corresponding parameters. From this set, 28 compounds are meticulously chosen for in-depth analysis based on the above criteria. The findings strive to guide the advancement of water treatment technologies and intelligent sensory systems for the efficient water quality surveillance. This, in turn, enables reliable DBP detection within water distribution networks. By enriching the understanding of DBP-associated health hazards and offering valuable insights, this research is aimed to contribute to influencing policy-making in regulations and treatment strategies, thereby protecting public health and improving safety related to chlorinated drinking water quality.
Collapse
Affiliation(s)
- Indrajit Kalita
- Computing
& Data Sciences (CDS), Boston University, Boston, Massachusetts 02215, United States
- CYENS
Centre of Excellence, Nicosia 1016, Cyprus
| | - Andreas Kamilaris
- CYENS
Centre of Excellence, Nicosia 1016, Cyprus
- Pervasive
Systems Group, University of Twente, Enschede 7522, Netherlands
| | - Paul Havinga
- Pervasive
Systems Group, University of Twente, Enschede 7522, Netherlands
| | - Igor Reva
- Department
of Chemical Engineering, CERES, University
of Coimbra, Coimbra 3030-790, Portugal
| |
Collapse
|
18
|
Xie Y, Zhang K, Shen Z, Feng M, Wang C. Simulated sunlight/periodate-triggered formation of toxic halogenated bisphenols in highly saline water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:26320-26329. [PMID: 38523216 DOI: 10.1007/s11356-024-32962-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 03/13/2024] [Indexed: 03/26/2024]
Abstract
Periodate (PI)-based oxidation using the activators, such as metal ions and light irradiation, has emerged as a feasible treatment strategy for the effective remediation of contaminated water and wastewater. Given the pervasive nature of PI residues and solar exposure during application, the role of solar light in remediating the challenging highly saline water matrices needs to be elucidated. In this study, bisphenol A (BPA) was selected as the targeted micropollutant, which can be efficiently eliminated by the simulated sunlight (SSL)/PI system in the presence of high-level Cl- (up to 846.0 mM) at pH 7.0. The presence of different background constituents of water, such as halides, nitrate, and dissolved organic matter, had no effect, or even accelerated BPA abatement. Particularly, the ubiquitous Br- or I- appreciably enhanced the BPA transformation efficiency, which may be ascribed to the generation of high-selective reactive HOBr or HOI. The in silico predictions suggested that the transformation products generated by halide-mediated SSL/PI systems via halogen substitutions showed greater persistence, bioaccumulation, and aquatic toxicity than BPA itself. These findings highlighted a widespread phenomenon during PI-based oxidative treatment of highly saline water, which needs special attention under solar light illumination.
Collapse
Affiliation(s)
- Yuwei Xie
- College of the Environment & Ecology, Xiamen University, Xiamen, 361100, People's Republic of China
| | - Kaiting Zhang
- College of the Environment & Ecology, Xiamen University, Xiamen, 361100, People's Republic of China
| | - Zhen Shen
- College of the Environment & Ecology, Xiamen University, Xiamen, 361100, People's Republic of China
| | - Mingbao Feng
- College of the Environment & Ecology, Xiamen University, Xiamen, 361100, People's Republic of China
| | - Chong Wang
- College of Resources and Environment, Southwest University, Chongqing, 400715, People's Republic of China.
| |
Collapse
|
19
|
Sun X, Wei D, Wang F, Yang F, Du Y, Xiao H, Wei X, Xiao A. Formation of nitrogen-containing disinfection by-products during the chloramination treatment of an emerging pollutant. CHEMOSPHERE 2024; 353:141536. [PMID: 38423150 DOI: 10.1016/j.chemosphere.2024.141536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/20/2024] [Accepted: 02/23/2024] [Indexed: 03/02/2024]
Abstract
Chloramination was commonly used as disinfectant for killing pathogens in water. However, in this process, nitrogen-containing disinfection by-products (N-DBPs) would accidently form and subsequently rise toxicity. Here, we investigated acute toxicity variation and by-products formation during chloramination treatment on UV filter 2-hydroxy-4-methoxy-5-sulfonic acid benzophenone (BP-4). Under alkaline conditions, the acute toxicity of this system had significant increase. A total of 17 transformation products were tentatively identified, and for them, plausible transformation pathways were proposed. Noticeably, numerous aniline and nitrosobenzene analogs were detected, and the dramatic increase of acute toxicity in this system might be primarily attributed to the formation of benzoquinone and aniline analogs. Besides, bromophenol, iodophenol and iodobenzoquinone analogs exhibiting high toxicity were generated in the presence of bromine and iodide ions. This study indicates that chloramination treatment may significantly increase potential health risk, further management on disinfection system is reasonable.
Collapse
Affiliation(s)
- Xuefeng Sun
- State Key Laboratory of Chemical Safety, SINOPEC Research Institute of Safety Engineering Co., Ltd., Qingdao, 266000, Shandong, China.
| | - Dongbin Wei
- State Key Laboratory of Environmental Chemistry and Eco-Toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Feipeng Wang
- State Key Laboratory of Environmental Chemistry and Eco-Toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fan Yang
- State Key Laboratory of Environmental Chemistry and Eco-Toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuguo Du
- State Key Laboratory of Environmental Chemistry and Eco-Toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Han Xiao
- State Key Laboratory of Chemical Safety, SINOPEC Research Institute of Safety Engineering Co., Ltd., Qingdao, 266000, Shandong, China
| | - Xinming Wei
- State Key Laboratory of Chemical Safety, SINOPEC Research Institute of Safety Engineering Co., Ltd., Qingdao, 266000, Shandong, China
| | - Anshan Xiao
- State Key Laboratory of Chemical Safety, SINOPEC Research Institute of Safety Engineering Co., Ltd., Qingdao, 266000, Shandong, China
| |
Collapse
|
20
|
Jiang YW, Wang GJ, Zang S, Qiao Y, Tao HF, Li Q, Zhang H, Wang XS, Ma J. Halogenated aliphatic and phenolic disinfection byproducts in chlorinated and chloraminated dairy wastewater: Occurrence and ecological risk evaluation. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:132985. [PMID: 38000285 DOI: 10.1016/j.jhazmat.2023.132985] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/02/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023]
Abstract
The increasing demand for dairy products has led to the production of a large amount of wastewater in dairy plants, and disinfection is an essential treatment process before wastewater discharge. Disinfection byproducts (DBPs) in disinfected dairy wastewater may negatively influence the aquatic organisms in receiving water. During chlorine and chloramine disinfection of dairy wastewater, the concentrations of aliphatic DBPs increased from below the detection limits to 485.1 μg/L and 26.6 μg/L, respectively. Brominated and iodinated phenolic DBPs produced during chlor(am)ination could further react with chlorine/chloramine to be transformed. High level of bromide in dairy wastewater (12.9 mg/L) could be oxidized to active bromine species by chlorine/chloramine, promoting the formation of highly toxic brominated DBPs (Br-DBPs), and they accounted for 80.3% and 71.1% of the total content of DBPs in chlorinated and chloraminated dairy wastewater, respectively. Moreover, Br-DBPs contributed 49.9-75.9% and 34.2-96.4% to the cumulative risk quotient of DBPs in chlorinated and chloraminated wastewater, respectively. The cumulative risk quotient of DBPs on green algae, daphnid, and fish in chlorinated wastewater was 2.8-11.4 times higher than that in chloraminated wastewater. Shortening disinfection time or adopting chloramine disinfection can reduce the ecological risks of DBPs.
Collapse
Affiliation(s)
- You-Wei Jiang
- College of Hydraulic and Civil Engineering, Xinjiang Agricultural University, Urumqi 830052, Xinjiang, China
| | - Gui-Jing Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shuang Zang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yue Qiao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Hong-Fei Tao
- College of Hydraulic and Civil Engineering, Xinjiang Agricultural University, Urumqi 830052, Xinjiang, China
| | - Qiao Li
- College of Hydraulic and Civil Engineering, Xinjiang Agricultural University, Urumqi 830052, Xinjiang, China
| | - Han Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xian-Shi Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Jun Ma
- College of Hydraulic and Civil Engineering, Xinjiang Agricultural University, Urumqi 830052, Xinjiang, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
21
|
Zhang C, Li S, Sun H, Li X, Fu L, Zhang C, Sun S, Zhou D. Assessing the impact of low organic loading on effluent safety in wastewater treatment: Insights from an activated sludge reactor study. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133083. [PMID: 38181593 DOI: 10.1016/j.jhazmat.2023.133083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/11/2023] [Accepted: 11/22/2023] [Indexed: 01/07/2024]
Abstract
In this study, an organic loading (OL) of 300 mg/(L d) was set as the relative normal condition (OL-300), while 150 mg/(L d) was chosen as the condition reflecting excessively low organic loading (OL-150) to thoroughly assess the associated risks in the effluent of the biological wastewater treatment process. Compared with OL-300, OL-150 did not lead to a significant decrease in dissolved organic carbon (DOC) concentration, but it did improve dissolved organic nitrogen (DON) levels by ∼63 %. Interestingly, the dissolved organic matter (DOM) exhibited higher susceptibility to transformation into chlorinated disinfection by-products (Cl-DBPs) in OL-150, resulting in an increase in the compound number of Cl-DBPs by ∼16 %. Additionally, OL-150 induced nutrient stress, which promoted engendered human bacterial pathogens (HBPs) survival by ∼32 % and led to ∼51 % increase in the antibiotic resistance genes (ARGs) abundance through horizontal gene transfer (HGT). These findings highlight the importance of carefully considering the potential risks associated with low organic loading strategies in wastewater treatment processes.
Collapse
Affiliation(s)
- Chongjun Zhang
- Engineering Research Center of Low-Carbon Treatment and Green Development of Polluted Water in Northeast China, Ministry of Education, Northeast Normal University, Changchun 130117, China; Jilin Engineering Lab for Water Pollution Control and Resources Recovery, Northeast Normal University, Changchun 130117, China
| | - Shaoran Li
- Engineering Research Center of Low-Carbon Treatment and Green Development of Polluted Water in Northeast China, Ministry of Education, Northeast Normal University, Changchun 130117, China; Jilin Engineering Lab for Water Pollution Control and Resources Recovery, Northeast Normal University, Changchun 130117, China
| | - Haoran Sun
- Engineering Research Center of Low-Carbon Treatment and Green Development of Polluted Water in Northeast China, Ministry of Education, Northeast Normal University, Changchun 130117, China; Jilin Engineering Lab for Water Pollution Control and Resources Recovery, Northeast Normal University, Changchun 130117, China
| | - Xiaoshuang Li
- Engineering Research Center of Low-Carbon Treatment and Green Development of Polluted Water in Northeast China, Ministry of Education, Northeast Normal University, Changchun 130117, China; Jilin Engineering Lab for Water Pollution Control and Resources Recovery, Northeast Normal University, Changchun 130117, China
| | - Liang Fu
- Engineering Research Center of Low-Carbon Treatment and Green Development of Polluted Water in Northeast China, Ministry of Education, Northeast Normal University, Changchun 130117, China; Jilin Engineering Lab for Water Pollution Control and Resources Recovery, Northeast Normal University, Changchun 130117, China
| | - Chaofan Zhang
- Engineering Research Center of Low-Carbon Treatment and Green Development of Polluted Water in Northeast China, Ministry of Education, Northeast Normal University, Changchun 130117, China; Jilin Engineering Lab for Water Pollution Control and Resources Recovery, Northeast Normal University, Changchun 130117, China
| | - Shijun Sun
- Engineering Research Center of Low-Carbon Treatment and Green Development of Polluted Water in Northeast China, Ministry of Education, Northeast Normal University, Changchun 130117, China; Jilin Engineering Lab for Water Pollution Control and Resources Recovery, Northeast Normal University, Changchun 130117, China.
| | - Dandan Zhou
- Engineering Research Center of Low-Carbon Treatment and Green Development of Polluted Water in Northeast China, Ministry of Education, Northeast Normal University, Changchun 130117, China; Jilin Engineering Lab for Water Pollution Control and Resources Recovery, Northeast Normal University, Changchun 130117, China.
| |
Collapse
|
22
|
Liu Y, Lv W, Li H, Xie P, Liu S, Chen J, Yuan Z. 2,2-Dichloroacetamide exposure induces behavior and memory disorders in mice: Detrimental effects of long-term dietary restriction on neurotoxicity. Food Chem Toxicol 2024; 185:114477. [PMID: 38296181 DOI: 10.1016/j.fct.2024.114477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/10/2024] [Accepted: 01/20/2024] [Indexed: 02/05/2024]
Abstract
2, 2-dichloroacetamide (DCAcAm), a nitrogen-containing disinfection byproduct (DBPs), is commonly found in potable water. This study aimed to compare the neurotoxicity of DCAcAm in C57/BL6 mice at both environmentally relevant and higher doses through oral exposure over a 28-day period. Furthermore, the potential effects of dietary restriction (DR) on the cerebral toxicity induced by 20 ppb DCAcAm were examined. The findings indicated that DCAcAm exposure and DR treatment resulted in reduced memory retention and cognitive adaptability in mice. Additionally, higher doses of DCAcAm exposure induced severe brain inflammation and oxidative stress. Metabolic profiling revealed disruptions in fatty acid, energy, and amino acid metabolism in the brain. Remarkably, the negative impacts of 20 ppb DCAcAm on the mice brain were worsened by DR treatment. Analysis of 16S rRNA sequencing revealed notable changes in the composition and structure of intestinal microorganisms after exposure to DCAcAm. This study discovered that DCAcAm has both direct effects on the brain and indirect effects through the microbial-brain-intestinal axis, which collectively result in neurotoxicity and dietary restriction exacerbates these effects. This study provides emerging views on the assessment of the toxicity of nitrogen containing DBPs.
Collapse
Affiliation(s)
- Yafeng Liu
- School of Engineering, China Pharmaceutical University, Nanjing, 211198, China
| | - Wang Lv
- School of Engineering, China Pharmaceutical University, Nanjing, 211198, China
| | - Huan Li
- School of Engineering, China Pharmaceutical University, Nanjing, 211198, China
| | - Pengfei Xie
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Su Liu
- School of Engineering, China Pharmaceutical University, Nanjing, 211198, China; School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China.
| | - Jianqiu Chen
- School of Engineering, China Pharmaceutical University, Nanjing, 211198, China.
| | - Zhenwei Yuan
- School of Engineering, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
23
|
Han J, Zhai H, Zhang X, Liu J, Sharma VK. Effects of ozone dose on brominated DBPs in subsequent chlor(am)ination: A comprehensive study of aliphatic, alicyclic and aromatic DBPs. WATER RESEARCH 2024; 250:121039. [PMID: 38142503 DOI: 10.1016/j.watres.2023.121039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 12/11/2023] [Accepted: 12/18/2023] [Indexed: 12/26/2023]
Abstract
Ozone‒chlor(am)ine is a commonly used combination of disinfectants in drinking water treatment. Although there are quite a few studies on the formation of some individual DBPs in the ozone‒chlor(am)ine disinfection, an overall picture of the DBP formation in the combined disinfection is largely unavailable. In this study, the effects of ozone dose on the formation and speciation of organic brominated disinfection byproducts (DBPs) in subsequent chlorination, chloramination, or chlorination‒chloramination of simulated drinking water were investigated. High-molecular-weight, aliphatic, alicyclic and aromatic brominated DBPs were selectively detected and studied using a powerful precursor ion scan method with ultra performance liquid chromatography/electrospray ionization triple quadrupole mass spectrometry (UPLC/ESI-tqMS). Two groups of unregulated yet relatively toxic DBPs, dihalonitromethanes and dihaloacetaldehydes, were detected by the UPLC/ESI-tqMS for the first time. With increasing ozone dose, the levels of high-molecular-weight (m/z 300-500) and alicyclic and aromatic brominated DBPs generally decreased, the levels of brominated aliphatic acids were slightly affected, and the levels of dihalonitromethanes and dihaloacetaldehydes generally increased in the subsequent disinfection processes. Despite different molecular compositions of the detected DBPs, increasing ozone dose generally shifted the formation of DBPs from chlorinated ones to brominated analogues in the subsequent disinfection processes. This study provided a comprehensive analysis of the impact of ozone dose on the DBP formation and speciation in subsequent chlor(am)ine disinfection.
Collapse
Affiliation(s)
- Jiarui Han
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Hongyan Zhai
- School of Environmental Science and Engineering, Tianjin University, Tianjin, China.
| | - Xiangru Zhang
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, China.
| | - Jiaqi Liu
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, China; Department of Environmental and Occupational Health, Texas A&M University, TX, USA
| | - Virender K Sharma
- Department of Environmental and Occupational Health, Texas A&M University, TX, USA
| |
Collapse
|
24
|
Pérez-Albaladejo E, Casado M, Postigo C, Porte C. Non-regulated haloaromatic water disinfection byproducts act as endocrine and lipid disrupters in human placental cells. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 342:123092. [PMID: 38072025 DOI: 10.1016/j.envpol.2023.123092] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/27/2023] [Accepted: 12/01/2023] [Indexed: 12/17/2023]
Abstract
The disinfection of drinking water generates hundreds of disinfection byproducts (DBPs), including haloaromatic DBPs. These haloaromatic DBPs are suspected to be more toxic than haloaliphatic ones, and they are currently not regulated. This work investigates their toxicity and ability to interfere with estrogen synthesis in human placental JEG-3 cells, and their genotoxic potential in human alveolar A549 cells. Among the haloaromatic DBPs studied, halobenzoquinones (2,6-dichloro-1,4-benzoquinone (DCBQ) and 2,6-dibromo-1,4-benzoquinone (DBBQ)) showed the highest cytotoxicity (EC50: 18-26 μg/mL). They induced the generation of very high levels of reactive oxygen species (ROS) and up-regulated the expression of genes involved in estrogen synthesis (cyp19a1, hsd17b1). Increased ROS was linked to significant depletion of polyunsaturated lipid species from inner cell membranes. The other DBPs tested showed low or no significant cytotoxicity (EC50 ≥ 100 μg/mL), while 2,4,6-trichloro-phenol (TCP), 2,4,6-tribromo-phenol (TBP) and 3,5-dibromo-4-hydroxybenzaldehyde (DCHB) induced the formation of micronuclei at concentrations much higher than those typically found in water (100 μg/mL). This study reveals the different modes of action of haloaromatic DBPs, and highlights the toxic potential of halobenzoquinones, which had a significant impact on the expression of placenta steroid metabolism related genes and induce oxidative stress, implying potential adverse health effects.
Collapse
Affiliation(s)
| | - Marta Casado
- Environmental Chemistry Department, IDAEA -CSIC-, C/ Jordi Girona, 18-26, 08034, Barcelona, Spain
| | - Cristina Postigo
- Technologies for Water Management and Treatment Research Group, Department of Civil Engineering, University of Granada, Avda Severo Ochoa s/n, Campus de Fuentenueva, Granada, 18071, Spain; Institute for Water Research (IdA), University of Granada, Ramón y Cajal 4, 18071, Granada, Spain
| | - Cinta Porte
- Environmental Chemistry Department, IDAEA -CSIC-, C/ Jordi Girona, 18-26, 08034, Barcelona, Spain.
| |
Collapse
|
25
|
Koley S, Dash S, Khwairakpam M, Kalamdhad AS. Perspectives and understanding on the occurrence, toxicity and abatement technologies of disinfection by-products in drinking water. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119770. [PMID: 38096765 DOI: 10.1016/j.jenvman.2023.119770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/23/2023] [Accepted: 12/03/2023] [Indexed: 01/14/2024]
Abstract
Disinfection by-products (DBPs) are one of the significant emerging contaminants that have caught the attention of researchers worldwide due to their pervasiveness. Their presence in drinking water, even in shallow concentrations (in levels of parts per billion), poses considerable health risks. Therefore, it is crucial to understand their kinetics to understand better their formation and persistence in the water supply systems. This manuscript demonstrates different aspects of research carried out on DBPs in the past. A systematic approach was adopted for the bibliographical research that started with choosing appropriate keywords and identifying the most relevant manuscripts through the screening process. This follows a quantitative assessment of the extracted literature sample, which included the most productive and influential journal sources, the most widely used keywords, the most influential authors active in the research domain, the most cited articles, and the countries most actively engaged in the research field. Critical observations on the literature sample led to the qualitative assessment, wherein the past and current research trends were observed and reported. Finally, we identified the essential gaps in the available literature, which further led to recommending the course ahead in the research domain. This study will prove fruitful for young and established researchers who are or wish to work in this emerging field of research.
Collapse
Affiliation(s)
- Sumona Koley
- Centre for the Environment, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| | - Siddhant Dash
- Department of Civil Engineering, School of Engineering and Sciences, SRM University-AP, Andhra Pradesh, 522502, India; Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterey, Monterrey, 64849, Nuevo Leon, Mexico.
| | - Meena Khwairakpam
- School of Agro and Rural Technology, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Ajay S Kalamdhad
- Centre for the Environment, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India; School of Agro and Rural Technology, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India; Department of Civil Engineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| |
Collapse
|
26
|
Yun X, Zhang L, Wang W, Gu J, Wang Y, He Y, Ji R. Composition, Release, and Transformation of Earthworm Tissue-Bound Residues of Tetrabromobisphenol A in Soil. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:2069-2077. [PMID: 38237036 DOI: 10.1021/acs.est.3c09051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
Earthworms accumulate organic pollutants to form earthworm tissue-bound residues (EBRs); however, the composition and fate of EBRs in soil remain largely unknown. Here, we investigated the fate of tetrabromobisphenol A (TBBPA)-derived EBRs in soil for 250 days using a 14C-radioactive isotope tracer and the geophagous earthworm Metaphire guillelmi. The EBRs of TBBPA in soil were rapidly transformed into nonextractable residues (NERs), mainly in the form of sequestered and ester-linked residues. After 250 days of incubation, 4.9% of the initially applied EBRs were mineralized and 69.3% were released to extractable residues containing TBBPA and its transformation products (TPs, generated mainly via debromination, O-methylation, and skeletal cleavage). Soil microbial activity and autolytic enzymes of earthworms jointly contributed to the release process. In their full-life period, the earthworms overall retained 24.1% TBBPA and its TPs in soil and thus prolonged the persistence of these pollutants. Our study explored, for the first time, the composition and fate of organic pollutant-derived EBRs in soil and indicated that the decomposition of earthworms may release pollutants and cause potential environmental risks of concern, which should be included in both environmental risk assessment and soil remediation using earthworms.
Collapse
Affiliation(s)
- Xiaoming Yun
- State Key Laboratory of Pollution Control and Resource Reuse, School of The Environment, Nanjing University, Nanjing 210023, China
| | - Lidan Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of The Environment, Nanjing University, Nanjing 210023, China
| | - Wenji Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of The Environment, Nanjing University, Nanjing 210023, China
| | - Jianqiang Gu
- State Key Laboratory of Pollution Control and Resource Reuse, School of The Environment, Nanjing University, Nanjing 210023, China
| | - Yongfeng Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of The Environment, Nanjing University, Nanjing 210023, China
| | - Yujie He
- State Key Laboratory of Pollution Control and Resource Reuse, School of The Environment, Nanjing University, Nanjing 210023, China
| | - Rong Ji
- State Key Laboratory of Pollution Control and Resource Reuse, School of The Environment, Nanjing University, Nanjing 210023, China
| |
Collapse
|
27
|
Parveen N, Mondal P, Vanapalli KR, Das A, Goel S. Phytotoxicity of trihalomethanes and trichloroacetic acid on Vigna radiata and Allium cepa plant models. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:5100-5115. [PMID: 38110686 DOI: 10.1007/s11356-023-31419-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 12/04/2023] [Indexed: 12/20/2023]
Abstract
Disinfection by-products (DBPs) are a concern due to their presence in chlorinated wastewater, sewage treatment plant discharge, and surface water, and their potential for environmental toxicity. Despite some attention to their ecotoxicity, little is known about the phytotoxicity of DBPs. This study aimed to evaluate the individual and combined phytotoxicity of four trihalomethanes (THMs: trichloromethane (TCM), bromodichloromethane (BDCM), dibromochloromethane (DBCM), and tribromomethane (TBM) and their mixture (THM4)), and trichloroacetic acid (TCAA) using genotoxic and cytotoxic assays. The analysis included seed germination tests using Vigna radiata and root growth tests, mitosis studies, oxidative stress response, chromosomal aberrations (CA), and DNA laddering using Allium cepa. The results showed a progressive increase in root growth inhibition for both plant species as the concentration of DBPs increased. High concentrations of mixtures of four THMs resulted in significant (p < 0.05) antagonistic interactions. The effective concentration (EC50) value for V. radiata was 5655, 3145, 2690, 1465, 3570, and 725 mg/L for TCM, BDCM, DBCM, TBM, THM4, and TCAA, respectively. For A. cepa, the EC50 for the same contaminants was 700, 400, 350, 250, 450, and 105 mg/L, respectively. DBP cytotoxicity was observed through CAs, including C-metaphase, unseparated anaphase, lagging chromosome, sticky metaphase, and bridging. Mitotic depression (MD) increased with dose, reaching up to 54.4% for TCAA (50-500 mg/L). The electrophoresis assay showed DNA fragmentation and shearing, suggesting genotoxicity for some DBPs. The order of phytotoxicity for the tested DBPs was TCAA > TBM > DBCM > BDCM > THM4 > TCM. These findings underscore the need for further research on the phytotoxicity of DBPs, especially given their common use in agricultural practices such as irrigation and the use of sludge as manure.
Collapse
Affiliation(s)
- Naseeba Parveen
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
- Department of Civil Engineering, National Institute of Technology Mizoram, Aizawl, Mizoram, 796012, India
| | - Papiya Mondal
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| | - Kumar Raja Vanapalli
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India.
- Department of Civil Engineering, National Institute of Technology Mizoram, Aizawl, Mizoram, 796012, India.
| | - Abhijit Das
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| | - Sudha Goel
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| |
Collapse
|
28
|
Zhang Z, Hu S, Sun G, Wang W. Target analysis, occurrence and cytotoxicity of halogenated polyhydroxyphenols as emerging disinfection byproducts in drinking water. WATER RESEARCH 2024; 248:120883. [PMID: 38007884 DOI: 10.1016/j.watres.2023.120883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/06/2023] [Accepted: 11/14/2023] [Indexed: 11/28/2023]
Abstract
Halogenated aromatic disinfection byproducts (DBPs) in drinking water, such as halogenated phenols, have received widespread attention due to their high toxicity and ubiquitous occurrence in recent years. This study identified a group of emerging halogenated aromatic DBPs, known as halogenated polyhydroxyphenols (HPPs), and investigated their occurrence and cytotoxicity. We developed a highly sensitive solid-phase extraction ultra-performance liquid chromatography-tandem mass spectrometry (SPE-UPLC-MS/MS) method under multiple reaction monitoring (MRM) mode, with recoveries ranging from 86 to 115% and method detection limits (MDLs) ranging from 0.10 to 1.87 ng/L for the analysis of 15 HPPs. Eleven of these HPP DBPs were detected in collected drinking water samples using this method with detection frequencies ranging from 14 to 100% and a maximum concentration of 24 ng/L. The IC50 of the 15 HPPs in Chinese hamster ovary (CHO-K1) cells were ranged from 15.13 µM to 6.08×103 µM. The tested HPPs with -CHO substitution exhibited higher cytotoxicity compared to those with -COOH substitution. The TIC-Tox values of HPPs were calculated to be higher than those of HPs, indicating a potential necessity to pay attention to HPP DBPs. A quantitative structure-activity relationship (QSAR) model was developed for the cytotoxicity of HPPs, which was shown to be significantly associated with acid dissociation constant (pKa) and total valence connectivity (TVCon). To the best of our knowledge, this study reported the analysis, occurrence, and cytotoxicity of HPP DBPs in drinking water for the first time.
Collapse
Affiliation(s)
- Zhe Zhang
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| | - Shaoyang Hu
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| | - Guangrong Sun
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| | - Wei Wang
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China.
| |
Collapse
|
29
|
Wang HY, Wu DX, Du Y, Lv XT, Wu QY. Multi-endpoint assays reveal more severe toxicity induced by chloraminated effluent organic matter than chloraminated natural organic matter. J Environ Sci (China) 2024; 135:310-317. [PMID: 37778806 DOI: 10.1016/j.jes.2023.01.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/07/2023] [Accepted: 01/08/2023] [Indexed: 10/03/2023]
Abstract
Disinfection by chloramination produces toxic byproducts and the difference in toxicity of reclaimed and drinking water treated by chloramination remains unclear. This study investigated cytotoxic effects at the same concentrations of dissolved organic matter and showed that chloraminated effluent organic matter (EfOM) induced 1.7 times higher cytotoxicity than chloraminated natural organic matter (NOM) applied to simulate drinking water. Chloraminated EfOM induced more reactive nitrogen species than chloraminated NOM, and chloraminated EfOM and NOM induced similar and higher levels of reactive oxygen species than the negative control, respectively. Consequently, intracellular macromolecule damage indicated by DNA/RNA damage marker 8‑hydroxy-(deoxy)guanosine and the intracellular protein carbonyl concentration induced by chloraminated EfOM was higher and slightly more than that induced by chloraminated NOM, respectively. These data were consistent with the effects on cell physiological processes. Cell cycle arrest mainly occurred in G2 phase by chloraminated EfOM and NOM. Early apoptotic cells, which could return to normal, increased upon exposure to high concentrations of chloraminated EfOM and NOM. Moreover, necrotic cells were significantly increased from 0.5% to 2.5% when the concentration increased from 20- to 60-fold chloraminated EfOM, but were not obviously changed by chloraminated NOM. These results indicated that the comprehensive intracellular changes induced by toxic substances in chloraminated EfOM were more irreversible and induced more cell death than chloraminated NOM.
Collapse
Affiliation(s)
- Hai-Yan Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - De-Xiu Wu
- Environmental Protection Key Laboratory of Microorganism Application and Risk Control, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
| | - Ye Du
- College of Architecture and Environment, Sichuan University, Chengdu 610000, China
| | - Xiao-Tong Lv
- Environmental Protection Key Laboratory of Microorganism Application and Risk Control, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Qian-Yuan Wu
- Environmental Protection Key Laboratory of Microorganism Application and Risk Control, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| |
Collapse
|
30
|
Li JJ, Dai MJ, Xue JZ. Investigation on toxicity and mechanism to Daphnia magna for 14 disinfection by-products: Enzyme activity and molecular docking. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167059. [PMID: 37709078 DOI: 10.1016/j.scitotenv.2023.167059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/03/2023] [Accepted: 09/11/2023] [Indexed: 09/16/2023]
Abstract
Exposure to disinfection by-products (DBPs) has been found to induce a range of toxic effects in aquatic organism. Previous studies have consistently demonstrated that a majority of DBPs have the ability to induce in vivo toxicity in aquatic organisms. However, the impact of DBPs on the metabolic processes of Daphnia magna (D. magna) and the underlying molecular toxicity mechanisms are still not well understood. Therefore, we investigated the effects of 14 DBPs on two oxidative stress enzymes and malondialdehyde (MDA) levels in D. magna. Additionally, we employed molecular docking to simulate the toxicity of DBPs to D. magna at the molecular level. This comprehensive analysis allowed us to gain further insights into the toxicity of DBPs on D. magna. The results showed that among the aliphatic DBPs, the more bromine substituents, the lower the toxicity effect, and it's opposite in the aromatic DBPs. In the detection of oxidative stress level, catalase (CAT) enzyme and superoxide dismutase (SOD) enzyme in D. magna under compound stress showed a low increase and decrease with the increase of concentration. The level of MDA showed a positive correlation with the concentration. In the last, molecular docking simulations have shown promise in predicting the toxicity of DBPs and providing insights into their toxic effects to a certain extent, and the docking situation of P53 is slightly different. Hence, it is imperative to further regulate the presence of aromatic DBPs due to their pronounced toxic effects on D. magna, and these simulations can be complemented with actual experiments to enhance our understanding of the toxicity mechanisms of DBPs.
Collapse
Affiliation(s)
- Jin J Li
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, PR China
| | - Min J Dai
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, PR China
| | - Jun Z Xue
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, PR China.
| |
Collapse
|
31
|
Ma Y, Li M, Huo Y, Zhou Y, Jiang J, Xie J, He M. Differences in the degradation behavior of disinfection by-products in UV/PDS and UV/H 2O 2 processes and the effect of their chemical properties. CHEMOSPHERE 2023; 345:140457. [PMID: 37839744 DOI: 10.1016/j.chemosphere.2023.140457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/12/2023] [Accepted: 10/13/2023] [Indexed: 10/17/2023]
Abstract
In this work, sixteen typical chlorinated and brominated aromatic disinfection by-products (DBPs) were selected as examples to investigate their different degradation mechanisms initiated by HO• and SO4•-. Addition reactions were the main mode of degradation of DBPs by HO•, while SO4•- dominated H-abstraction reactions and single electron transfer reactions. Chlorinated compounds had higher reactivity than brominated compounds. Furthermore, substituents with stronger electron-donating effects promoted the electrophilic reaction of DBPs with the two radicals. In addition, we developed a model based on the chemical properties LUMO, fmax-, and hardness for predicting the average reaction energy barriers for the initial reactions of DBPs with HO• and SO4•-. The model had good predictive performance for the difficulty of degradation of different DPBs by HO• and SO4•-, with R2 values of 0.85 and 0.87, respectively. Through the degradation efficiency simulation, we found that longer reaction times, higher oxidant concentrations and lower pollutant concentrations were more favorable for the removal of DBPs. The UV/PDS process showed better degradation of DBPs than the UV/H2O2 process. In addition, most degradation products of DBPs exhibited less toxicity to aquatic organisms than their parent compounds. This study provided theoretical guidance for the degradation and removal of other aromatic DBPs at the molecular level.
Collapse
Affiliation(s)
- Yuhui Ma
- Environment Research Institute, Shandong University, Qingdao, 266237, PR China
| | - Mingxue Li
- Environment Research Institute, Shandong University, Qingdao, 266237, PR China
| | - Yanru Huo
- Environment Research Institute, Shandong University, Qingdao, 266237, PR China
| | - Yuxin Zhou
- Environment Research Institute, Shandong University, Qingdao, 266237, PR China
| | - Jinchan Jiang
- Weihai Water Conservancy Service Center, Weihai, 264200, PR China
| | - Ju Xie
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, PR China
| | - Maoxia He
- Environment Research Institute, Shandong University, Qingdao, 266237, PR China.
| |
Collapse
|
32
|
Wang XS, Ma CN, Liu YL, Wang GJ, Tang B, Song H, Gao Z, Ma J, Wang L. High efficiency removal of organic and inorganic iodine with ferrate[Fe(VI)] through oxidation and adsorption. WATER RESEARCH 2023; 246:120671. [PMID: 37804804 DOI: 10.1016/j.watres.2023.120671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/13/2023] [Accepted: 09/24/2023] [Indexed: 10/09/2023]
Abstract
I- is a halogen species existing in natural waters, and the transformation of organic and inorganic iodine in natural and artificial processes would impact the quality of drinking water. Herein, it was found that Fe(VI) could oxidize organic and inorganic iodine to IO3-and simultaneously remove the resulted IO3- through Fe(III) particles. For the river water, wastewater treatment plant (WWTP) effluent, and shale gas wastewater treated by 5 mg/L of Fe(VI) (as Fe), around 63 %, 55 % and 71 % of total iodine (total-I) had been removed within 10 min, respectively. Fe(VI) was superior to coagulants in removing organic and inorganic iodine from the source water. Adsorption kinetic analysis suggested that the equilibrium adsorption amount of I- and IO3- were 11 and 10.1 μg/mg, respectively, and the maximum adsorption capacity of IO3- by Fe(VI) resulted Fe(III) particles was as high as 514.7 μg/mg. The heterogeneous transformation of Fe(VI) into Fe(III) effectively improved the interaction probability of IO3- with iron species. Density functional theory (DFT) calculation suggested that the IO3- was mainly adsorbed in the cavity (between the γ-FeOOH shell and γ-Fe2O3 core) of Fe(III) particles through electrostatic adsorption, van der Waals force and hydrogen bond. Fe(VI) treatment is effective for inhibiting the formation of iodinated disinfection by-products in chlor(am)inated source water.
Collapse
Affiliation(s)
- Xian-Shi Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Cai-Ni Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yu-Lei Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Gui-Jing Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Bo Tang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Heng Song
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Zhi Gao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Lu Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
33
|
Yang S, He Y, Hua Z, Xie Z, He CS, Xiong Z, Du Y, Liu Y, Xing G, Fang J, Mu Y, Lai B. pH-dependent bisphenol A transformation and iodine disinfection byproduct generation by peracetic acid: Kinetic and mechanistic explorations. WATER RESEARCH 2023; 246:120695. [PMID: 37812978 DOI: 10.1016/j.watres.2023.120695] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/06/2023] [Accepted: 10/03/2023] [Indexed: 10/11/2023]
Abstract
Peracetic acid (PAA) is regarded as an environmentally friendly oxidant because of its low formation of toxic byproducts. However, this study revealed the potential risk of generating disinfection byproducts (DBPs) when treating iodine-containing wastewater with PAA. The transformation efficiency of bisphenol A (BPA), a commonly detected phenolic contaminant and a surrogate for phenolic moieties in dissolved organic matter, by PAA increased rapidly in the presence of I-, which was primarily attributed to the formation of active iodine (HOI/I2) in the system. Kinetic model simulations demonstrated that the second-order rate constant between PAA and HOI was 54.0 M-1 s-1 at pH 7.0, which was lower than the generation rate of HOI via the reaction between PAA and I-. Therefore, HOI can combine with BPA to produce iodine disinfection byproducts (I-DBPs). The transformation of BPA and the generation of I-DBPs in the I-/PAA system were highly pH-dependent. Specifically, acidic conditions were more favorable for BPA degradation because of the higher reaction rates of BPA and HOI. More iodinated aromatic products were detected after 5 min of the reaction under acidic and neutral conditions, resulting in higher toxicity towards E. coli. After 12 h of the reaction, more adsorbable organic iodine (AOI) was generated at alkaline conditions because HOI was not able to efficiency transform to IO3-. The presence of H2O2 in the PAA solution played a role in the reaction with HOI, particularly under alkaline conditions. This study significantly advances the understanding of the role of I- in BPA oxidation by PAA and provides a warning to further evaluate the potential environmental risk during the treatment of iodine-bearing wastewater with PAA.
Collapse
Affiliation(s)
- Shurun Yang
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Yongli He
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Zhechao Hua
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Zhihui Xie
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Chuan-Shu He
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China.
| | - Zhaokun Xiong
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Ye Du
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Yang Liu
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Guowei Xing
- College of Environment & Ecology, Xiamen University, Xiamen 361000, China
| | - Jingyun Fang
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yang Mu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Bo Lai
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
34
|
Li JJ, Yue YX, Shi SJ, Xue JZ. Investigation on toxicity mechanism of halogenated aromatic disinfection by-products to zebrafish based on molecular docking and QSAR model. CHEMOSPHERE 2023; 341:139916. [PMID: 37633607 DOI: 10.1016/j.chemosphere.2023.139916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/18/2023] [Accepted: 08/19/2023] [Indexed: 08/28/2023]
Abstract
Halogenated aromatic disinfection by-products (DBPs) are a new type of DBPs that have been detected in various water bodies. Previous studies have shown that most of them can induce in vivo toxicity in aquatic organisms. In this study, in order to further investigate the toxic effects and mechanisms of aromatic DBPs, the toxicity and ecological risks of 10 halogenated aromatic DBPs were assessed using the model organism zebrafish. It was found that the toxicity of DBPs was related to the number, type, and position of halogen and the type of substituent, and the 24 h-toxicity value of DBPs in this experiment could replace their 96 h-toxicity value to reduce the test time and save the test cost. Halogenated phenol and halogenated nitrophenol were more toxic, but the current ecological risks of DBPs were relatively low. In addition, the toxicity mechanism of DBPs was analyzed based on molecular docking and quantitative structure-activity relationship (QSAR) models. The molecular docking results showed that all 10 DBPs could bind to zebrafish's catalase (CAT), cytochrome P450 (CYP450), p53, and acetylcholinesterase (AChE), thereby affecting their normal life activities. QSAR models indicated that the toxicity of halogenated aromatic DBPs to zebrafish mainly depended on their hydrophobicity (log D), the interaction with CAT (ECAT), and hydrogen bonding acidity (A).
Collapse
Affiliation(s)
- Jin Jie Li
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, PR China
| | - Ya Xin Yue
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, PR China
| | - Sheng Jie Shi
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, PR China
| | - Jun Zeng Xue
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, PR China.
| |
Collapse
|
35
|
Ding S, Deng Y, Wu M, Qu R, Du Z, Chu W. Leaching of organic matter and iodine, formation of iodinated disinfection by-products and toxic risk from Laminaria japonica during simulated household cooking. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132241. [PMID: 37567136 DOI: 10.1016/j.jhazmat.2023.132241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/16/2023] [Accepted: 08/05/2023] [Indexed: 08/13/2023]
Abstract
Iodinated disinfection by-products (I-DBPs) exhibited potential health risk owing to the high toxicity. Our recent study demonstrated that I-DBPs from Laminaria japonica (Haidai), the commonly edible seaweed, upon simulated household cooking condition were several hundred times more than the concentration of drinking water. Here, the characterization of Haidai and its leachate tandem with the formation, identification and toxicity of I-DBPs from the cooking of Haidai were systemically investigated. The dominant organic matter in Haidai leachate were polysaccharides, while the highest iodine specie was iodide (∼90% of total iodine). Several unknown I-DBPs generated from the cooking of Haidai were tentatively proposed, of which 3,5-diiodo-4-hydroxybenzaldehyde was dominant specie. Following a simulated household cooking with real chloraminated tap water, the presence of Haidai sharply increased aggregate iodinated trihalomethanes, iodinated haloacetic acids, and total organic iodine concentrations to 97.4 ± 7.6 μg/L,16.4 ± 2.1 μg/L, and 0.53 ± 0.06 mg/L, respectively. Moreover, the acute toxicity of Haidai soup to Vibrio qinghaiensis sp.-Q67 was around 7.3 times higher than that of tap water in terms of EC50. These results demonstrated that the yield of I-DBPs from the cooking of Haidai and other seaweed should be carefully considered.
Collapse
Affiliation(s)
- Shunke Ding
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Yang Deng
- Department of Earth and Environmental Studies, Montclair State University, Montclair, NJ 07043, USA
| | - Menglin Wu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Ruixin Qu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Zhenqi Du
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Wenhai Chu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
36
|
Mahmudiono T, Ramaiah P, Maleki H, Doewes RI, Shalaby MN, Alsaikhan F, Mohammadi MJ. Evaluation of the impact of different disinfectants on new coronavirus and human health. REVIEWS ON ENVIRONMENTAL HEALTH 2023; 38:451-460. [PMID: 35508445 DOI: 10.1515/reveh-2022-0051] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 04/17/2022] [Indexed: 02/07/2023]
Abstract
A new health threat was appeared in 2019 known as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) or coronavirus disease 2019 (COVID-19). The new coronavirus distributed all over the world and caused millions of deaths. One way to incomplete the process of COVID-19 transfer from one person to another is using disinfectants. A narrative review study was done on manuscript published documents about the stability of the virus, different types of disinfectants and the effects of disinfectants on SARS-CoV2 and environment from 2005 to 2022 based on Searched databases included Google Scholar, Springer, PubMed, Web of Science and Science Direct (Scopus). All relevant studies published 2005 until 2022 gathered. According to the databases, 670 articles were retrieved. Thirty studies were screened after review and 30 full-text articles entered into the analysis process. Finally, 14 articles were selected in this study. New coronavirus could survive until 9 days in room temperature; the surviving time decreases if temperature increases. The virus can survive in various plastic, glass, and metal surfaces for hours to days. Disinfectants, such as alcohol, isopropanol, formaldehyde, glutaraldehyde, and ethanol, can kill 70-90% viruses in up to 30 s but should be noted that these disinfectants are recognized by Occupational Safety and Health Administration (OSHA) as a potential carcinogen. According to the different reports, increased duration and level of disinfectant exposure can have negative impacts on human and animal health including upper and lower respiratory tract irritation, inflammation, edema, ulceration, and allergic reactions.
Collapse
Affiliation(s)
- Trias Mahmudiono
- Department of Nutrition, Faculty of Public Health, Universitas Airlangga, Surabaya, Indonesia
| | | | - Heydar Maleki
- Department of Environmental Health Engineering, School of Public Health, Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Mohammed Nader Shalaby
- Biological Sciences and Sports Health Department, Faculty of Physical Education, Suez Canal University, Ismailia, Egypt
| | - Fahad Alsaikhan
- Department of Clinical Pharmacy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Kingdom of Saudi Arabia
| | - Mohammad Javad Mohammadi
- Department of Environmental Health Engineering, School of Public Health and Environmental Technologies Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
37
|
Liu Y, Gao J, Zhu Q, Zhou X, Chu W, Huang J, Liu C, Yang B, Yang M. Zerovalent Iron/Cu Combined Degradation of Halogenated Disinfection Byproducts and Quantitative Structure-Activity Relationship Modeling. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:11241-11250. [PMID: 37461144 DOI: 10.1021/acs.est.3c01960] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Previous studies have reported that zerovalent iron (ZVI) can reduce several aliphatic groups of disinfection byproducts (DBPs) (e.g., haloacetic acids and haloacetamides) effectively, and the removal efficiency can be significantly improved by metallic copper. Information regarding ZVI/Cu combined degradation of different types of halogenated DBPs can help understand the fate of overall DBPs in drinking water distribution and storage systems consisting of unlined cast iron/copper pipes and related potential control strategies. In this study, we found that, besides aliphatic DBPs, many groups of new emerging aromatic DBPs formed in chlorinated and chloraminated drinking water can be effectively degraded by ZVI/Cu; meanwhile, total organic halogen and total ion intensity were reduced significantly after treatment. Moreover, a robust quantitative structure-activity relationship model was developed and validated based on the ZVI/Cu combined degradation rate constants of 14 typical aromatic DBPs; it can predict the degradation rate constants of other aromatic DBPs for screening and comparative purposes, and the optimized descriptors indicate that DBPs possessing a lower value of the lowest unoccupied molecular orbital energy and a higher value of dipole moment tend to present higher degradation rate constants. In addition, toxicity data of 47 DBPs (belonging to 18 groups) were predicted by two previously established toxicity models, demonstrating that, although most DBPs exhibit higher toxicity than their dehalogenated products, some DBPs show lower toxicity than their lowly halogenated analogs.
Collapse
Affiliation(s)
- Yan Liu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jianfa Gao
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Qingyao Zhu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Xi Zhou
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Wenhai Chu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Jingxiong Huang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Changkun Liu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Bo Yang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Mengting Yang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
38
|
Vellingiri K, Kumar PG, Kumar PS, Jagannathan S, Kanmani S. Status of disinfection byproducts research in India. CHEMOSPHERE 2023; 330:138694. [PMID: 37062389 DOI: 10.1016/j.chemosphere.2023.138694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/12/2023] [Accepted: 04/12/2023] [Indexed: 05/14/2023]
Abstract
India faces high incidents of waterborne disease outbreaks owing to their limited access to safe drinking water. In many ways, the effort to improve the quality of drinking water is performed, and it has been keenly monitored. Among those, the disinfection of drinking water is considered a necessary and important step as it controls the microbial population. Chlorination is the most practiced (greater than 80%) disinfection process in India, and it is known to generate various disinfection byproducts (DBPs). Although the toxicity and trend of DBPs are regularly monitored and investigated in most countries, still in India, the research is at the toddler level. This review summarizes i) the status of drinking water disinfection in India, ii) types of disinfection processes in centralized water treatment plants, iii) concentrations and occurrence patterns of DBPs in a different region of India, iv) a literature survey on the toxicity of DBPs, and v) removal methodologies or alternative technologies to mitigate the DBPs formation. Overall, this review may act as a roadmap to understand the trend of disinfection practices in India and their impacts on securing the goal of safe drinking water for all.
Collapse
Affiliation(s)
- Kowsalya Vellingiri
- Water Technology Centre, Water and Effluent Treatment IC, Larsen and Toubro, Kancheepuram, 631561, Tamil Nadu, India
| | - P Ganesh Kumar
- Water Technology Centre, Water and Effluent Treatment IC, Larsen and Toubro, Kancheepuram, 631561, Tamil Nadu, India; Water and Effluent Treatment IC, Larsen and Toubro, Chennai, 600089, Tamil Nadu, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110, Tamil Nadu, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110, Tamil Nadu, India; School of Engineering, Lebanese American University, Byblos, Lebanon.
| | - S Jagannathan
- Water and Effluent Treatment IC, Larsen and Toubro, Chennai, 600089, Tamil Nadu, India
| | - S Kanmani
- Department of Civil Engineering, Centre for Environmental Studies, Anna University 600025, Chennai, India.
| |
Collapse
|
39
|
Cai L, Huang H, Li Q, Deng J, Ma X, Zou J, Li G, Chen G. Formation characteristics and acute toxicity assessment of THMs and HAcAms from DOM and its different fractions in source water during chlorination and chloramination. CHEMOSPHERE 2023; 329:138696. [PMID: 37062392 DOI: 10.1016/j.chemosphere.2023.138696] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/22/2023] [Accepted: 04/13/2023] [Indexed: 05/03/2023]
Abstract
The formation characteristics of trihalomethanes (THMs) and haloacetamides (HAcAms) from dissolved organic matter and its fractions were investigated during chlorine-based disinfection processes. The relationships between water quality parameters, fluorescence parameters, and the formation levels of THMs and HAcAms were analyzed. The fractions contributing most to the acute toxicity were identified. The trichloromethane (TCM) generation level (72 h) generally followed the order of Cl2 > NH2Cl > NHCl2 process. The NHCl2 process was superior to the NH2Cl process in controlling TCM formation. Hydrophobic acidic substance (HOA), hydrophobic neutral substance (HON), and hydrophilic substance (HIS) were identified as primary precursors of 2,2-dichloroacetamide and trichloroacetamide during chlorination and chloramination. The formation of TCM mainly resulted from HOA, HON and HIS fractions relatively uniformly, while HOA and HIS fractions contributed more to the formation of bromodichloromethane and dibromomonochloromethane. UV254 could be used as an alternative indicator for the amount of ΣTHMs formed during chlorination and chloramination processes. Dissolved organic nitrogen was a potential precursor of 2,2-dichloroacetamide during chlorination process. The fractions with the highest potential acute toxicity after the chlorination were water-dependent.
Collapse
Affiliation(s)
- Litong Cai
- Water Resources and Environmental Institute, Xiamen University of Technology, Xiamen, 361005, China; Fujian Metrology Institute, Fujian, Fuzhou, 350003, China.
| | - Huahan Huang
- Water Resources and Environmental Institute, Xiamen University of Technology, Xiamen, 361005, China; Xiamen Key Laboratory of Water Resources Utilization and Protection, Xiamen, 361005, China.
| | - Qingsong Li
- Water Resources and Environmental Institute, Xiamen University of Technology, Xiamen, 361005, China; Xiamen Key Laboratory of Water Resources Utilization and Protection, Xiamen, 361005, China.
| | - Jing Deng
- College of Civil Engineering and Architecture, Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Xiaoyan Ma
- College of Civil Engineering and Architecture, Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Jing Zou
- College of Civil Engineering, Huaqiao University, Xiamen, 361021, China.
| | - Guoxin Li
- Water Resources and Environmental Institute, Xiamen University of Technology, Xiamen, 361005, China.
| | - Guoyuan Chen
- Water Resources and Environmental Institute, Xiamen University of Technology, Xiamen, 361005, China.
| |
Collapse
|
40
|
Huang W, Yuan Y, Zhong D, Zhang P, Liangdy A, Lim TT, Ma W, Yuan Y. Catalytic activity of H 2O 2 by goethite and lepidocrocite: Insight from 5-bromosalicylic acid removal mechanism and density functional theory calculation (ID:CHEM114760). CHEMOSPHERE 2023; 329:138551. [PMID: 37003437 DOI: 10.1016/j.chemosphere.2023.138551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 05/03/2023]
Abstract
We have compared the elimination of 5-bromosalicylic acid (BSA) in the systems of goethite (α-FeOOH)/H2O2 and lepidocrocite (γ-FeOOH)/H2O2. The results demonstrated that BSA (10 mg L-1) could be successfully adsorbed on α- and γ-FeOOH (0.5 g L-1) and then effectively degraded after the addition of H2O2 (14.7 mM). BSA adsorption on both α- and γ-FeOOH followed pseudo-second order adsorption kinetic models, with γ-FeOOH having greater adsorption ability than α-FeOOH. In the α-FeOOH/H2O2 system, BSA degradation was well fitted with the pseudo-second order kinetics, whereas the oxidation in γ-FeOOH/H2O2 system had a two-stage pseudo-first order kinetics. Electron paramagnetic resonance (EPR) results for these two systems revealed the presence of •OH and •OOH, and further tests with radical captures demonstrated their dominance in degrading BSA. Based on the electronic structure analysis, electrons were more easily transferred from the H2O2 molecule to the Fe atoms of α-FeOOH, explaining the density functional theory (DFT) calculation results, which showed that α-FeOOH performed better in catalyzing the decomposition of H2O2. However, the free radicals are more likely to desorb from γ-FeOOH, which made the γ-FeOOH/H2O2 system more efficient in degrading BSA.
Collapse
Affiliation(s)
- Wanyi Huang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Yixing Yuan
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Dan Zhong
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Peng Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Arvin Liangdy
- School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore; Nanyang Environment and Water Research Institute (NEWRI), Nanyang Technological University, 1 Cleantech Loop, CleanTech One, Singapore, 637141, Singapore.
| | - Teik-Thye Lim
- School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore; Nanyang Environment and Water Research Institute (NEWRI), Nanyang Technological University, 1 Cleantech Loop, CleanTech One, Singapore, 637141, Singapore.
| | - Wencheng Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Yuan Yuan
- School of Biological Engineering, Beijing Polytechnic, Beijing, 100176, China.
| |
Collapse
|
41
|
Wu XN, Yuan CJ, Huo ZY, Wang TT, Chen Y, Liu M, Wang WL, Du Y, Wu QY. Reduction of byproduct formation and cytotoxicity to mammalian cells during post-chlorination by the combined pretreatment of ferrate(VI) and biochar. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131935. [PMID: 37385095 DOI: 10.1016/j.jhazmat.2023.131935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 05/28/2023] [Accepted: 06/23/2023] [Indexed: 07/01/2023]
Abstract
Ferrate [Fe(VI)] can efficiently degrade various pollutants in wastewater. Biochar application can reduce resource use and waste emission. This study investigated the performance of Fe(VI)/biochar pretreatment to reduce disinfection byproducts (DBPs) and cytotoxicity to mammalian cells of wastewater during post-chlorination. Fe(VI)/biochar was more effective at inhibiting the cytotoxicity formation than Fe(VI) alone, reducing the cytotoxicity from 12.7 to 7.6 mg-phenol/L. The concentrations of total organic chlorine and total organic bromine decreased from 277 to 130 μg/L and from 51 to 39 μg/L, compared to the samples without pretreatment. Orbitrap ultra-high resolution mass spectrometry revealed that the number of molecules of DBPs decreased substantially from 517 to 229 by Fe(VI)/biochar, with the greatest reduction for phenols and highly unsaturated aliphatic compounds. In combination with the substantial reduction of 1Cl-DBPs and 2Cl-DBPs, 1Br-DBPs and 2Br-DBPs were also reduced. Fluorescence excitation-emission matrix coupled with parallel factor analysis suggested that fulvic acid-like substances and aromatic amino acid was obviously reduce likely due to the enhanced oxidation of Fe(IV)/Fe(V) produced by Fe(VI)/biochar and adsorption of biochar. Furthermore, the DBPs generated by electrophilic addition and electrophilic substitution of precursors were reduced. This study shows that Fe(VI)/biochar pretreatment can effectively reduce cytotoxicity formation during post-chlorination by transforming DBPs and their precursors.
Collapse
Affiliation(s)
- Xiao-Nan Wu
- College of Architecture and Environment, Sichuan University, Chengdu 610000, China
| | - Chang-Jie Yuan
- College of Architecture and Environment, Sichuan University, Chengdu 610000, China
| | - Zheng-Yang Huo
- School of Environment and Natural Resources, Renmin University of China, Beijing 100872, China
| | - Ting-Ting Wang
- College of Architecture and Environment, Sichuan University, Chengdu 610000, China
| | - Ying Chen
- College of Architecture and Environment, Sichuan University, Chengdu 610000, China.
| | - Min Liu
- College of Architecture and Environment, Sichuan University, Chengdu 610000, China
| | - Wen-Long Wang
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Ye Du
- College of Architecture and Environment, Sichuan University, Chengdu 610000, China.
| | - Qian-Yuan Wu
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| |
Collapse
|
42
|
An Z, Yang D, Li M, Huo Y, Jiang J, Zhou Y, Ma Y, Hou W, Zhang J, He M. Hydroxylation of some emerging disinfection byproducts (DBPs) in water environment: Halogenation induced strong pH-dependency. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131233. [PMID: 36948122 DOI: 10.1016/j.jhazmat.2023.131233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/24/2023] [Accepted: 03/15/2023] [Indexed: 06/18/2023]
Abstract
In this work, the hydroxylation mechanisms and kinetics of some emerging disinfection byproducts (DBPs) have been systematically investigated through theoretical calculation methods. Five chlorophenols and eleven halogenated pyridinols were chosen as the model compounds to study their pH-dependent reaction laws in UV/H2O2 system. For the reactions of HO• with 37 different dissociation forms, radical adduct formation (RAF) was the main reaction pathway, and the reactivity decreased with the increase of halogenation degree. The kapp values (at 298 K) increased with the increase of pH from 0 to 10, and decreased with the increase of pH from 10 to 14. Compared with phenol, the larger the chlorination degree in chlorophenols was, the stronger the pH sensitivity of the kapp values; compared with chlorophenols, the pH sensitivity in halogenated pyridinols was further enhanced. As the pH increased from 2 to 10.5, the degradation efficiency increased at first and then decreased. With the increase of halogenation degree, the degradation efficiency range increased, the pH sensitivity increased, the optimal degradation efficiency slightly increased, and the optimal degradation pH value decreased. The ecotoxicity and bioaccumulation of most hydroxylated products were lower than their parental compounds. These findings provided meaningful insights into the strong pH-dependent hydroxylation of emerging DBPs on molecular level.
Collapse
Affiliation(s)
- Zexiu An
- College of Plant Protection, Hebei Agricultural University, Baoding 071000, China; Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Dongchen Yang
- College of Plant Protection, Hebei Agricultural University, Baoding 071000, China
| | - Mingxue Li
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Yanru Huo
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Jinchan Jiang
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Yuxin Zhou
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Yuhui Ma
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Wenlong Hou
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Jinlin Zhang
- College of Plant Protection, Hebei Agricultural University, Baoding 071000, China.
| | - Maoxia He
- Environment Research Institute, Shandong University, Qingdao 266237, China.
| |
Collapse
|
43
|
Yang M, Li J, Wu H. Toxicity evaluation of chlorinated natural water using Photobacterium phosphoreum: Implications for ballast water management. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 335:117471. [PMID: 36863148 DOI: 10.1016/j.jenvman.2023.117471] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 01/23/2023] [Accepted: 02/05/2023] [Indexed: 06/18/2023]
Abstract
Chlorination of ballast water could produce harmful disinfection by-products (DBPs) and total residual oxidants. The International Maritime Organization calls for toxicity testing of discharged ballast water with fish, crustacea and algae to reduce the risk, but it is difficult to evaluate the toxicity of treated ballast water in a short time. Therefore, the purpose of this study was to analyze the applicability of luminescent bacteria to the assessment of residual toxicity of chlorinated ballast water. The toxicity unit for all treated samples were higher for Photobacterium phosphoreum than for microalgae (Selenastrum capricornutum and Chlorella pyrenoidosa), after adding neutralizer, all samples showed little effect on the luminescent bacteria and microalgae. For the DBPs, except for 2,4,6-Tribromophenol, Photobacterium phosphoreum could produce more sensitive and rapid test results than other species, the results in Photobacterium phosphoreum showed that the toxicity of DBPs in order of: 2,4-Dibromophenol > 2,6-Dibromophenol > 2,4,6-Tribromophenol > Monobromoacetic acid > Dibromoacetic acid > Tribromoacetic acid, and most binary mixtures (aromatic DBPs and aliphatic DBPs) presented synergistic effects based on the CA model. The aromatic DBPs in ballast water deserve more attention. In general, for ballast water management, the use of luminescent bacteria to evaluate the toxicity of treated ballast water and DBPs is desirable, this study could provide beneficial information for enhancing ballast water management.
Collapse
Affiliation(s)
- Min Yang
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China; Centre for Research on the Ecological Security of Ports and Shipping, Shanghai Ocean University, Shanghai, 201306, China
| | - Jinjie Li
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China; Centre for Research on the Ecological Security of Ports and Shipping, Shanghai Ocean University, Shanghai, 201306, China
| | - Huixian Wu
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China; Centre for Research on the Ecological Security of Ports and Shipping, Shanghai Ocean University, Shanghai, 201306, China.
| |
Collapse
|
44
|
Li L, Yu SJ, Zheng RG, Li P, Li QC, Liu JF. Removal of iodide anions in water by silver nanoparticles supported on polystyrene anion exchanger. J Environ Sci (China) 2023; 128:45-54. [PMID: 36801041 DOI: 10.1016/j.jes.2022.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/06/2022] [Accepted: 08/06/2022] [Indexed: 06/18/2023]
Abstract
The removal of iodide (I-) from source waters is an effective strategy to minimize the formation of iodinated disinfection by-products (DBPs), which are more toxic than their brominated and chlorinated analogues. In this work, a nanocomposite Ag-D201 was synthesized by multiple in situ reduction of Ag-complex in D201 polymer matrix, to achieve highly efficient removal of iodide from water. Scanning electron microscope /energy dispersive spectrometer characterization showed that uniform cubic silver nanoparticles (AgNPs) evenly dispersed in the D201 pores. The equilibrium isotherms data for iodide adsorption onto Ag-D201 was well fitted with Langmuir isotherm with the adsorption capacity of 533 mg/g at neutral pH. The adsorption capacity of Ag-D201 increased with the decrease of pH in acidic aqueous solution, and reached the maximum value of 802 mg/g at pH 2. This was attributed to the oxidization of I-, by dissolved oxygen under the catalysis of AgNPs, to I2 which was finally adsorbed as AgI3. However, the aqueous solutions at pH 7 - 11 could hardly affect the iodide adsorption. The adsorption of I- was barely affected by real water matrixes such as competitive anions (SO42-, NO3-, HCO3-, Cl-) and natural organic matter, of which interference of NOM was offset by the presence of Ca2+. The proposed synergistic mechanism for the excellent performance of iodide adsorption by the absorbent was ascribed to the Donnan membrane effect caused by the D201 resin, the chemisorption of I- by AgNPs, and the catalytic effect of AgNPs.
Collapse
Affiliation(s)
- Li Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; Department of Ecology and Resources Engineering, He Tao College, Inner Mongolia 015000, China
| | - Su-Juan Yu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rong-Gang Zheng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peng Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qing-Cun Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing-Fu Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, Wuhan 430056, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
45
|
Zhou N, Liu H, Yang X, Watson P, Yang F. Disinfection byproducts of iopamidol, iohexol, diatrizoate and their distinct acute toxicity on Scenedesmus sp., Daphnia magna and Danio rerio. CHEMOSPHERE 2023; 333:138885. [PMID: 37209847 DOI: 10.1016/j.chemosphere.2023.138885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 02/24/2023] [Accepted: 05/06/2023] [Indexed: 05/22/2023]
Abstract
The COVID-19 pandemic resulted in increasing the usage of iodinated contrast media (ICM), and thus an increase in the prevalence of ICM-contaminated wastewater. While ICM is generally safe, this has the potential to be problematic because as medical wastewater is treated and disinfected, various ICM-derived disinfection byproducts (DBPs) may be generated and released into the environment. However, little information was available about whether ICM-derived DBPs are toxic to aquatic organisms. In this study, the degradation of three typical ICM (iopamidol, iohexol, diatrizoate) at initial concentration of 10 μM and 100 μM in chlorination and peracetic acid without or with NH4+ was investigated, and the potential acute toxicity of treated disinfected water containing potential ICM-derived DBPs on Daphnia magna, Scenedesmus sp. and Danio rerio was tested. The degradation results suggested that only iopamidol was significantly degraded (level of degradation >98%) by chlorination, and the degradation rate of iohexol and diatrizoate were significantly increased in chlorination with NH4+. All three ICM were not degraded in peracetic acid. The toxicity analysis results indicate that only the disinfected water of iopamidol and iohexol by chlorination with NH4+ were toxic to at least one aquatic organism. These results highlighted that the potential ecological risk of ICM-contained medical wastewater by chlorination with NH4+ should not be neglected, and peracetic acid may be an environment-friendly alternative for the disinfection of wastewater containing ICM.
Collapse
Affiliation(s)
- Nan Zhou
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Huihui Liu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Xianhai Yang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| | - Peter Watson
- Department of Civil and Environmental Engineering, University of Connecticut, Storrs, 06268, CT, United States
| | - Feifei Yang
- Department of Civil and Environmental Engineering, University of Connecticut, Storrs, 06268, CT, United States
| |
Collapse
|
46
|
Zhuang Y, Li D, Shi B. Perfluorooctanoic Acid (PFOA) Incorporated into Iron Particles Promoted the Formation of Disinfection Byproducts under Drinking Water Conditions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:4863-4869. [PMID: 36917752 DOI: 10.1021/acs.est.2c09372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Perfluorooctanoic acid (PFOA) is an emerging persistent organic pollutant that is frequently detected throughout the drinking water supply system. Here, we first found that PFOA could significantly increase the formation of disinfection byproducts (DBPs) in unlined iron pipes (UIPs) during the distribution process. The increased DBPs were not due to the reaction of PFOA itself with free chlorine, but the in situ formed Fe-PFOA complex played a key role. Notably, PFOA could enhance iron release from UIPs and was greatly incorporated into the iron particles to form Fe-PFOA complex. The •OH generated by the Fe-PFOA heterogeneous reaction could break large dissolved organic matter into small molecules that had higher reactivity with chlorine. In addition, DBP precursors with more aromatic structures were favorable for forming strong Fe-π interactions with Fe-PFOA complex, resulting in more •OH for the formation of aromatic DBPs. The cytotoxicity test showed that the viability of cells exposed to DBPs from UIPs with 100 ng/L PFOA was 46.9%, while that without PFOA was 67.91%. Overall, this study provided a new perspective on the risk of PFOA, with a focus not on PFOA itself but on its potential to promote DBP-associated toxicity in iron-based drinking water distribution pipes.
Collapse
Affiliation(s)
- Yuan Zhuang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Donghan Li
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Baoyou Shi
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
47
|
Qadafi M, Rosmalina RT, Pitoi MM, Wulan DR. Chlorination disinfection by-products in Southeast Asia: A review on potential precursor, formation, toxicity assessment, and removal technologies. CHEMOSPHERE 2023; 316:137817. [PMID: 36640978 DOI: 10.1016/j.chemosphere.2023.137817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/10/2023] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
This review discusses disinfection by-products' (DBPs) potential precursors, formation, and toxicity, alongside available research on the treatment of DBPs in Southeast Asian countries' water sources. Although natural organic matter (NOM) in the form of humic and fulvic acids is the major precursor of DBPs formation, the presence of anthropogenic organic matter (AOM) also plays essential roles during disinfection using chlorine. NOM has been observed in water sources in Southeast Asian countries, with a relatively high concentration in peat-influenced water sources and a relatively low concentration in non-peat-influenced water sources. Similarly, AOMs, such as microplastics, pharmaceuticals, pesticides, and endocrine-disrupting chemicals (EDCs), have also been detected in water sources in Southeast Asian countries. Although studies regarding DBPs in Southeast Asian countries are available, they focus on regulated DBPs. Here, the formation potential of unregulated DBPs is also discussed. In addition, the toxicity associated with extreme DBPs' formation potential, as well as the effectiveness of treatments such as conventional coagulation, filtration, adsorption, and ozonation in reducing DBPs' formation potential in Southeast Asian sources of water, is also analyzed.
Collapse
Affiliation(s)
- Muammar Qadafi
- Research Center for Environmental and Clean Technology, National Research and Innovation Agency, Jalan Sangkuriang, Bandung, 40135, Indonesia.
| | - Raden Tina Rosmalina
- Research Center for Environmental and Clean Technology, National Research and Innovation Agency, Jalan Sangkuriang, Bandung, 40135, Indonesia
| | - Mariska M Pitoi
- Research Center for Environmental and Clean Technology, National Research and Innovation Agency, Jalan Sangkuriang, Bandung, 40135, Indonesia
| | - Diana Rahayuning Wulan
- Research Center for Environmental and Clean Technology, National Research and Innovation Agency, Jalan Sangkuriang, Bandung, 40135, Indonesia.
| |
Collapse
|
48
|
Wu DX, Wang WL, Du Y, He L, Wu QY. Changes in toxicity and adsorbable organic bromine concentrations in ozonated reclaimed water irradiated with sunlight. WATER RESEARCH 2023; 230:119512. [PMID: 36580801 DOI: 10.1016/j.watres.2022.119512] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 11/16/2022] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
Disinfecting reclaimed water for safe reuse can produce toxic disinfection by-products such as adsorbable organic bromine (AOBr). Irradiating stored reclaimed water with sunlight is a "green" and free method for eliminating some toxic disinfection by-products, but the effects of irradiation with sunlight on ozonated reclaimed water containing bromide are not well understood. In this study, AOBr was found at concentrations of 171-180 (µg Br)/L in ozonated reclaimed water containing bromide at a concentration of 2 (mg Br)/L and dissolved organic carbon at a concentration of ∼5 (mg C)/L. Irradiation with sunlight degraded 53-74% of the AOBr in two reclaimed water samples in 8 h, and the pseudo-first-order rate constants (k) were 0.09-0.17 h-1. The concentration of tribromomethane, a typical Br-containing disinfection by-product, was decreased by >96% by irradiation for 8 h (k = 0.42-0.47 h-1). Irradiation with sunlight decreased the toxicity of ozonated reclaimed water to Chinese hamster ovary cells. Irradiation with sunlight decreased the degree of intracellular oxidative stress and oxidative damage caused by ozonated reclaimed water. Irradiation with sunlight for 8 h decreased cytotoxicity of the ozonated reclaimed water samples by 79% and 65%. The change in AOBr concentration correlated with the change in toxicity (R2=0.69, p<0.05). The relationships between sunlight wavelength and decreases in the AOBr concentration and toxicity were assessed, and it was found that UV in sunlight was predominantly responsible for decreasing the AOBr concentration and toxicity by reclaimed water. During irradiation for 8 h, UV was responsible for 65%-66% of the decrease in the AOBr concentration and 65-79% of the decrease in reclaimed water induced cytotoxicity. Irradiation with sunlight is a promising method for degrading AOBr and detoxifying ozonated reclaimed water during storage to allow the water to be reused.
Collapse
Affiliation(s)
- De-Xiu Wu
- Environmental Protection Key Laboratory of Microorganism Application and Risk Control, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Wen-Long Wang
- Environmental Protection Key Laboratory of Microorganism Application and Risk Control, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Ye Du
- College of Architecture and Environment, Sichuan University, Chengdu 610000, China
| | - Liu He
- Environmental Protection Key Laboratory of Microorganism Application and Risk Control, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Qian-Yuan Wu
- Environmental Protection Key Laboratory of Microorganism Application and Risk Control, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
| |
Collapse
|
49
|
Li J, Song Y, Jiang J, Yang T, Cao Y. Oxidative treatment of NOM by selective oxidants in drinking water treatment and its impact on DBP formation in postchlorination. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159908. [PMID: 36336058 DOI: 10.1016/j.scitotenv.2022.159908] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/26/2022] [Accepted: 10/29/2022] [Indexed: 06/16/2023]
Abstract
Natural organic matter (NOM), as a ubiquitous component in aqueous environments, has raised continuous scientific concerns due to its role as an organic precursor to disinfection by-products (DBPs) in the subsequent chlorination process. Selective oxidants, including ozone (O3), chlorine dioxide (ClO2), permanganate (Mn(VII)), and ferrate (Fe(VI)) are widely used in the preoxidation stage in drinking water treatment. The selective reactivity of those oxidants toward NOM is expected to alternate NOM properties and consequently DBP formation in postchlorination. Despite extensive studies on the interactions of NOM with selective oxidants, there is currently a lack of an overview of this area. To fill this gap, this study presents the current knowledge of the modification of NOM properties by selective oxidants and its impact on DBP formation in postchlorination. The NOM property changes in three aspects, including bulk property (e.g., total organic carbon, ultraviolet absorbance), fractional constituent (e.g., molecular size, hydrophilicity/hydrophobicity), and elemental composition (e.g., functional group) by the four selective oxidants (i.e., O3, ClO2, Mn(VII), and Fe(VI)) were discussed. Thereafter, the impacts of alteration of NOM properties by those selective oxidants on DBP formation in the subsequent chlorination were summarized, wherein the key influencing factors were discussed. Finally, the future perspectives in this area were forwarded, which highlighted the significance of process optimization, the attention to the less studied but more toxic DBPs, and the need for the identification of unknown DBPs. This review presented a state-of-the-art knowledge pool of the fate of NOM in oxidation and chlorination processes, promoted our understanding of the relationship between NOM properties and DBP formation, and identified further research needs in this area.
Collapse
Affiliation(s)
- Juan Li
- Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University, Zhu Hai 519087, China.
| | - Yang Song
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Jin Jiang
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Tao Yang
- School of Biotechnology and Health Science, Wuyi University, Jiangmen 529020, Guangdong Province, China
| | - Ying Cao
- School of Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
50
|
Wang R, Zhou J, Qu G, Wang T, Jia H, Zhu L. Formation of emerging disinfection byproducts from agricultural biomass-derived DOM: Overlooked health risk source. WATER RESEARCH 2023; 229:119482. [PMID: 36527871 DOI: 10.1016/j.watres.2022.119482] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 11/15/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
Carbon-derived dissolved organic matter (CDOM) are inevitably released to surface water during returning agricultural biomass carbon to farmland, which are potential precursors of disinfection byproducts (DBPs). In this study, CDOM was extracted from aerobic incineration ("OX") and anoxic pyrolysis ("PY") of three kinds of straw (wheat, corn, and rice), and the emerging DBPs from them were deciphered. The CDOM with molecular weight < 1 kDa in the OX and PY groups accounted for 53-87%, and it was higher in the PY group. A total 1343-2107 of CHO and 641-1761 of CHNO formulas were detected in the CDOM derived from the OX group, among which 74%-83% contained aromatic structures rich in oxygen containing groups. 1919-3289 of CHO and 785-1954 of CHNO formulas were observed in the PY group, and 77%-86% of them were lignins/CRAM-like compounds. Surprisingly, 765-2158 and 895-1648 of emerging DBPs were identified in the OX and PY groups, and the proportions of N-DBPs were 20.3-54.8% and 2.8-4.8%, respectively. Based on HOCl addition and Cl substitution mechanisms, the H/C ratios of the DBP precursors in the OX and PY groups were in the range of 0.2-1.5 and 0.6-2.0, respectively. The DBPs derived from the OX group exhibited higher cytotoxicity and genotoxicity due to the higher aromaticity and more N-DBPs. Thus, returning agricultural biomass carbon, particularly that produced by direct combustion, to farmland brought potential threat to drinking water safety.
Collapse
Affiliation(s)
- Ruigang Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Jian Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Guangzhou Qu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Tiecheng Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China.
| | - Hanzhong Jia
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Lingyan Zhu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China.
| |
Collapse
|