1
|
Xu J, Kann RJ, Mohammed D, Huang CH. Far-UVC 222 nm Treatment: Effects of Nitrate/Nitrite on Disinfection Byproduct Formation Potential. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58. [PMID: 39133232 PMCID: PMC11360365 DOI: 10.1021/acs.est.4c04258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 08/13/2024]
Abstract
Irradiation at far ultraviolet C (far-UVC) 222 nm by krypton chloride (KrCl*) excilamps can enhance microbial disinfection and micropollutant photolysis/oxidation. However, nitrate/nitrite, which absorbs strongly at 222 nm, may affect the formation of disinfection byproducts (DBPs). Herein, we evaluated model organic matter and real water samples and observed a substantial increase in the formation potential for trichloronitromethane (chloropicrin) (TCNM-FP), a nitrogenous DBP, by nitrate or nitrite after irradiation at 222 nm. At a disinfection dose of 100 mJ·cm-2, TCNM-FP of humic acids and fulvic acids increased from ∼0.4 to 25 and 43 μg·L-1, respectively, by the presence of 10 mg-N·L-1 nitrate. For the effect of nitrate concentration, the TCNM-FP peak was observed at 5-10 mg-N·L-1. Stronger fluence caused a greater increase of TCNM-FP. Similarly, the increase of TCNM-FP was also observed for wastewater and drinking water samples containing nitrate. Pretreatment using ozonation and coagulation, flocculation, and filtration or the addition of H2O2 can effectively control TCNM-FP. The formation potential of other DBPs was minorly affected by irradiation at 222 nm regardless of whether nitrate/nitrite was present. Overall, far-UVC 222 nm treatment poses the risk of increasing TCNM-FP of waters containing nitrate or nitrite at environmentally relevant concentrations and the mitigation strategies merit further research.
Collapse
Affiliation(s)
- Jiale Xu
- Department
of Civil, Construction and Environmental Engineering, North Dakota State University, Fargo, North Dakota 58102, United States
- School
of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Ryan J. Kann
- School
of Biological Sciences, Georgia Institute
of Technology, Atlanta, Georgia 30332, United States
| | - Dauda Mohammed
- Department
of Civil, Construction and Environmental Engineering, North Dakota State University, Fargo, North Dakota 58102, United States
| | - Ching-Hua Huang
- School
of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
2
|
Su Y, Wang Y, Wan J, Zuo S, Lin Y. Mechanism of directed activation of peroxymonosulfate by Fe-N/O unsymmetrical coordination-modulated polarized electric field. J Colloid Interface Sci 2024; 664:779-789. [PMID: 38492379 DOI: 10.1016/j.jcis.2024.03.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/05/2024] [Accepted: 03/07/2024] [Indexed: 03/18/2024]
Abstract
Iron-nitrogen co-doped carbon materials as heterogeneous catalysts have attracted much attention in advanced oxidation processes involving peroxymonosulfate (PMS) due to their unique structure and enormous catalytic potential. However, there is limited research on the influence of different coordination structures on the central iron atoms. Through simple pyrolysis, we introduced oxygen atoms into the Fe-N coordination structure, constructing Fe-N/O@C catalysts with Fe-N2O2 coordination structure, and achieved efficient degradation of bisphenol A (BPA). Quenching experiments, electron paramagnetic resonance, and electrochemical analysis indicate that compared to the free radical activation pathway of Fe-N@C, high-valent iron-oxo species (≡Fe(Ⅳ) = O) are the main reactive oxygen species (ROS) in the Fe-N/O@C/PMS system. Meanwhile, we compared the differences in the oxidation states of Fe atoms and electron density in different coordination structures, revealing the formation of high-valent iron-oxo species and the mechanism of interfacial electron transfer. Therefore, this study provides new insights into the design and development of Fe-N co-doped catalysts for resource-efficient and environmentally friendly catalytic oxidation systems.
Collapse
Affiliation(s)
- Yi Su
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Yan Wang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Jinquan Wan
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Shiyu Zuo
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Yining Lin
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
3
|
Sun W, Zhang Y, Lu Z, Ke Y, Wang X, Wu J. Fate of Naturally Dissolved Organic Matter and Synthetic Organic Compounds Subjected to Drinking Water Treatment Using Membrane, Activated Carbon, and UV/H 2O 2 Technologies. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:5558-5568. [PMID: 36951375 DOI: 10.1021/acs.est.2c06727] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Organic pollutants are toxic and are present in drinking water. The conventional processes of most water plants can basically meet the discharge standard. However, based on the improvement of the objective of organic pollutants control and the constant change of water characteristics, the results may not be ideal. This study evaluates the effectiveness of different treatments such as microfiltration, nanofiltration, reverse osmosis, activated carbon, and ultraviolet irradiation/H2O2 in terms of the removal of organic pollutants. Among the DOM results, nanofiltration, reverse osmosis, and activated carbon showed optimal performance due to the characteristics of processes and the compound properties. However, the risks of low-molecular-weight organic residue and byproduct formation are still present. Thirty-nine species of synthetic organic compounds (SOC) were qualitatively and semiquantitatively analyzed. Different technologies showed varying removal capabilities for SOC based on their properties and many substances coexisted leading to abnormal removal performances. These residual organics showed the characteristics of lower molecular weight, more hydrophilicity, further unknown impacts, and with risk of DBPs. Based on the above insights, possible methods can be rationally chosen for on-demand decontamination of organics in unconfined aquatic environment and long-time impact on water characteristics and human health also should be considered.
Collapse
Affiliation(s)
- Wenjun Sun
- School of Environment, Tsinghua University, Beijing 100084, China
- Research Institute for Environmental Innovation (Suzhou) Tsinghua, Suzhou 215163, China
| | - Yuanna Zhang
- School of Environment, Tsinghua University, Beijing 100084, China
- Biomass Energy and Environmental Engineering Research Center, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zedong Lu
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Yanchu Ke
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Xuelin Wang
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Jing Wu
- School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
4
|
Degradation of benzothiazole by the UV/persulfate process: Degradation kinetics, mechanism and toxicity. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2022.114355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
5
|
Ibuprofen: Toxicology and Biodegradation of an Emerging Contaminant. Molecules 2023; 28:molecules28052097. [PMID: 36903343 PMCID: PMC10004696 DOI: 10.3390/molecules28052097] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/12/2023] [Accepted: 02/19/2023] [Indexed: 02/26/2023] Open
Abstract
The anti-inflammatory drug ibuprofen is considered to be an emerging contaminant because of its presence in different environments (from water bodies to soils) at concentrations with adverse effects on aquatic organisms due to cytotoxic and genotoxic damage, high oxidative cell stress, and detrimental effects on growth, reproduction, and behavior. Because of its high human consumption rate and low environmental degradation rate, ibuprofen represents an emerging environmental problem. Ibuprofen enters the environment from different sources and accumulates in natural environmental matrices. The problem of drugs, particularly ibuprofen, as contaminants is complicated because few strategies consider them or apply successful technologies to remove them in a controlled and efficient manner. In several countries, ibuprofen's entry into the environment is an unattended contamination problem. It is a concern for our environmental health system that requires more attention. Due to its physicochemical characteristics, ibuprofen degradation is difficult in the environment or by microorganisms. There are experimental studies that are currently focused on the problem of drugs as potential environmental contaminants. However, these studies are insufficient to address this ecological issue worldwide. This review focuses on deepening and updating the information concerning ibuprofen as a potential emerging environmental contaminant and the potential for using bacteria for its biodegradation as an alternative technology.
Collapse
|
6
|
Liu Y, Xi Y, Xie T, Liu H, Su Z, Huang Y, Xu W, Wang D, Zhang C, Li X. Enhanced removal of diclofenac via coupling Pd catalytic and microbial processes in a H 2-based membrane biofilm reactor: Performance, mechanism and biofilm microbial ecology. CHEMOSPHERE 2022; 307:135597. [PMID: 35817179 DOI: 10.1016/j.chemosphere.2022.135597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 06/29/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
Diclofenac (DCF) is a most widely used anti-inflammatory drug, which has attracted worldwide attention given its low biodegradability and ecological damage, especially toxic effects on mammals including humans. In this study, a H2-based membrane biofilm reactor (H2-MBfR) was constructed with well-dispersed Pd nanoparticles generated in situ. The Pd-MBfR was applied for catalytic reductive dechlorination of DCF. In batch tests, DCF concentration had significantly effect on the rate and extent DCF removal, and NO3- had negative impact on DCF reductive dechlorination. Over 67% removal of 0.5 mg/L DCF and 99% removal of 10 mg/L NO3--N were achieved in 90 min, and the highest removal of 97% was obtained at 0.5 mg/L DCF in the absence of NO3-. Over 78 days of continuous operation, the highest steady-state removal flux of DCF was 0.0097 g/m2/d. LC-MS analysis indicated that the major product was 2-anilinephenylacetic acid (APA). Dechlorination was the main removal process of DCF mainly owing to the catalytic reduction by PdNPs, microbial reduction, and the synergistic reduction of microbial and PdNPs catalysis using direct delivery of H2. Moreover, DCF reductive Dechlorination shifted the microbial community in the biofilms and Sporomusa was responsible for DCF degradation. In summary, this work expands a remarkable feasibility of sustainable catalytic removal of DCF.
Collapse
Affiliation(s)
- Yanfen Liu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Yanni Xi
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Tanghuan Xie
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Huinian Liu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Zhu Su
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Yicai Huang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Weihua Xu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Dongbo Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Chang Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Xin Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| |
Collapse
|
7
|
Del Puerto O, Gonçalves NPF, Medana C, Prevot AB, Roslev P. Attenuation of toxicity and occurrence of degradation products of the fungicide tebuconazole after combined vacuum UV and UVC treatment of drinking water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:58312-58325. [PMID: 35364793 PMCID: PMC9395489 DOI: 10.1007/s11356-022-19691-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 03/09/2022] [Indexed: 06/10/2023]
Abstract
Antifungal azoles are the most frequently used fungicides worldwide and occur as active ingredients in many antifungal pharmaceuticals, biocides, and pesticides. Azole fungicides are frequent environmental contaminants and can affect the quality of surface waters, groundwater, and drinking water. This study examined the potential of combined vacuum UV (185 nm) and UVC (254 nm) irradiation (VUV/UVC) of the azole fungicide tebuconazole and the transformation product 1,2,4-trizole on degradation and changes in ecotoxicity. In vivo ecotoxicity was examined before and after UV treatment using bioassays with test organisms from different trophic levels to integrate changes in biological effect of the parent compound and the degradation products. The test battery included the luminescent bacterium Aliivibrio fischeri, the Gram-positive bacterium Bacillus subtilis, the fungus Fusarium graminearum, the green microalga Raphidocelis subcapitata, and the crustacean Daphnia magna. The combined VUV/UVC treatment of tebuconazole in drinking water efficiently degraded the parent compound at the µg/L-mg/L level and resulted in transformation products with lower toxicity than the parent compound. A direct positive correlation was observed between the applied UV dose (fluence, J/cm2), the disappearance of tebuconazole, and the decrease in ecotoxicity. The combined VUV/UVC process does not require addition of supplementary oxidants or catalysts and our study suggests that VUV/UVC-mediated photolysis of azole fungicides in water can decrease the overall toxicity and represent a potentially environmentally friendly treatment method.
Collapse
Affiliation(s)
- Oihane Del Puerto
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9200, Aalborg, Denmark
| | | | - Claudio Medana
- Dipartimento Di Biotechnologie Molecolari E Scienze Della Salute, Università Di Torino, Torino, Italy
| | | | - Peter Roslev
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9200, Aalborg, Denmark.
| |
Collapse
|
8
|
Topolovec B, Škoro N, Puаč N, Petrovic M. Pathways of organic micropollutants degradation in atmospheric pressure plasma processing - A review. CHEMOSPHERE 2022; 294:133606. [PMID: 35033511 DOI: 10.1016/j.chemosphere.2022.133606] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/28/2021] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
Concern of toxic compounds and their, potentially more harmful degradation products, present in aquatic environment alarmed scientific community and research on the development of novel technologies for wastewater treatment had become of great interest. Up to this date, many papers pointed out the challenges and limitations of conventional wastewater treatment and of some advanced oxidation processes. Advanced technologies based on the use of non-equilibrium or non-thermal plasma had been recognized as a possible solution for, not only degradation, but for complete removal of recalcitrant organic micropollutants. While previous review papers have been focused on plasma physics and chemistry of different types of discharges for few organic micropollutants, this paper brings comprehensive review of current knowledge on the chemistry and degradation pathways by using different non-thermal plasma types for several micropollutants' classes, such as pharmaceuticals, perfluorinated compounds, pesticides, phenols and dyes and points out some major research gaps.
Collapse
Affiliation(s)
- Barbara Topolovec
- Catalan Institute for Water Research (ICRA), Emili Grahit 101, 17003, Girona, Spain; University of Girona, Girona, Spain
| | - Nikola Škoro
- Institute of Physics, University of Belgrade, Pregrevica 118, 11080, Belgrade, Serbia
| | - Nevena Puаč
- Institute of Physics, University of Belgrade, Pregrevica 118, 11080, Belgrade, Serbia
| | - Mira Petrovic
- Catalan Institute for Water Research (ICRA), Emili Grahit 101, 17003, Girona, Spain; Catalan Institution for Research and Advanced Studies (ICREA), Passeig Lluis Companys 23, 08010, Barcelona, Spain.
| |
Collapse
|
9
|
Dwinandha D, Zhang B, Fujii M. Prediction of reaction mechanism for OH radical-mediated phenol oxidation using quantum chemical calculation. CHEMOSPHERE 2022; 291:132763. [PMID: 34740699 DOI: 10.1016/j.chemosphere.2021.132763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 10/29/2021] [Accepted: 10/31/2021] [Indexed: 06/13/2023]
Abstract
Understanding the reaction mechanism of OH•-mediated oxidation of organic micropollutants (OMPs) contributes to the assessment and development of advanced oxidation processes (AOPs) for removal of OMPs in water environment. In this study, a theoretical approach using quantum chemical calculation (QCC) was employed to investigate the prediction accuracy of the reaction mechanism (i.e., reaction site and rate) for OH•-mediated oxidation of phenol, where the hydroquinone and catechol are generated as transformation products (TPs) via radical and electrophilic reactions. We compared three different levels of theory (Hartree-Fock, B3LYP, and M06-2X) with 6-311 + G (2d,2p)/SMD, and the reaction site and rate constants were predicted by the Fukui function and transition state theory, respectively. Overall, the prediction accuracy of the TPs formation mechanism was the highest in the calculations using M06-2X. For example, the initial OH• addition to phenol was predicted to occur with a probability of 77% for the ortho position and 23% for the para position, which was consistent with the experimental observation. By applying the transition state theory, the rate constants toward TPs formation pathway can be reasonably reproduced, suggesting that M06-2X has an effective function for polycyclic reactions. However, the observed discrepancies in rate constants are inferred from dispersion effects and the multi-reference property in the computational system or derived from mismatch of target reactions between theoretical calculations and experiments. Overall, this study provides an insight into QCC application for investigating the formation mechanism of TPs in AOPs for removal of OMPs in water environment.
Collapse
Affiliation(s)
- Dhimas Dwinandha
- Department of Civil and Environmental Engineering, Tokyo Institute of Technology, Meguro-ku, Tokyo, 152-8552, Japan
| | - Bei Zhang
- Department of Civil and Environmental Engineering, Tokyo Institute of Technology, Meguro-ku, Tokyo, 152-8552, Japan
| | - Manabu Fujii
- Department of Civil and Environmental Engineering, Tokyo Institute of Technology, Meguro-ku, Tokyo, 152-8552, Japan.
| |
Collapse
|
10
|
Xiao T, Wang Y, Wan J, Ma Y, Yan Z, Huang S, Zeng C. Fe-N-C catalyst with Fe-N X sites anchored nano carboncubes derived from Fe-Zn-MOFs activate peroxymonosulfate for high-effective degradation of ciprofloxacin: Thermal activation and catalytic mechanism. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127380. [PMID: 34879571 DOI: 10.1016/j.jhazmat.2021.127380] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 09/06/2021] [Accepted: 09/26/2021] [Indexed: 06/13/2023]
Abstract
Developing high-efficient catalysts is crucial for activating peroxymonosulfate (PMS). Fe-N-C catalysts exhibit excellent performance for PMS activation because of the contribution of doped N, Fe-Nx and Fe3C sites. In our work, a series of Fe-N-C catalysts with high-performance was obtained by pyrolyzing Fe-Zn-MOFs precursors. During pyrolysis process, the change of chemical bonds and formation of active sites in the precursor were elucidated by characterization analysis and related catalytic experiments. Graphitic N, Fe-Nx and Fe3C were confirmed to activate PMS synergistically for ciprofloxacin (CIP) degradation. Besides, the catalytic performance was proportional to the amount of doped iron and calcination temperature. Moreover, the Fe-N-C-3-800/PMS system not only displayed good recycling performance, but also had high anti-interference ability. Integrated with quenching and electron paramagnetic resonance (EPR) experiments, a non-radical pathway dominated by 1O2 was proposed. Furthermore, PMS could bond to Fe-N-C-3-800 to form intermediate for charge transfer, thus accelerate electron transfer between CIP and PMS to realize degradation of CIP. Six main pathways of CIP degradation were proposed, which include bond fission of N-C on piperazine ring and direct oxidation of CIP. This study provided a new idea for the design of heterogeneous carbon catalysts in advanced oxidation field.
Collapse
Affiliation(s)
- Tong Xiao
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Yan Wang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China.
| | - Jinquan Wan
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; Guangdong Plant Fiber High-Valued Cleaning Utilization Engineering Technology Research Center, Guangzhou 510640, China
| | - Yongwen Ma
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; Guangdong Plant Fiber High-Valued Cleaning Utilization Engineering Technology Research Center, Guangzhou 510640, China
| | - Zhicheng Yan
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Shuhong Huang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Cheng Zeng
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
11
|
A Multi-Criteria Decision-Making Approach to Evaluate Different UVC/H2O2 Systems in Wastewater Treatment. Processes (Basel) 2021. [DOI: 10.3390/pr9122252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
High azoxystrobin (AZO), difenoconazole (DFZ), and imidacloprid (IMD) pesticide removal rates in sixteen bench-scale experiments concerning tomato washing water treatment were obtained through a UVC/H2O2 advanced oxidative process. Experimental conditions ([H2O2]0) and irradiance (EUVC) were optimized for higher degradation rates (pseudo-first-order reaction). To consider both economic aspects and environmental impacts when defining the treatment technology, as well as technological requirements, this study applied a multi-criteria decision-making method (MCDM) to assess and differentiate similar UVC/H2O2 process configurations. This allowed for the identification of the cheapest experimental arrangement with the lowest associated environmental impacts, coupled to the highest degradation rate (kIMD). After consulting experts to determine the importance of the applied criteria and measuring alternative performances, experiment E7 ([H2O2]0 = 43.5 mg L−1; EUVC = 15.0 W m−2; kIMD = 0.236 s−1) was determined as meeting the three criteria in a balanced manner. Although E7′s technological performance regarding degradation rate did not achieve the best individual result, it presented the lowest impacts and costs among the analyzed series, although alternatives are sensitive to decision-maker priorities. This study considered different factors of a process displaying potential industrial applications still in the design stage to achieve a more efficient and balanced solution.
Collapse
|
12
|
Duan Y, Sedlak DL. An electrochemical advanced oxidation process for the treatment of urban stormwater. WATER RESEARCH X 2021; 13:100127. [PMID: 34927040 PMCID: PMC8649961 DOI: 10.1016/j.wroa.2021.100127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/22/2021] [Accepted: 11/24/2021] [Indexed: 06/14/2023]
Abstract
Recharge of urban stormwater has often been limited by the high cost of land and concerns about contamination of groundwater. To provide a possible solution, we developed an electrochemical advanced oxidation system (UV/H2O2) that is compatible with high-capacity stormwater recharge systems (e.g., drywells). The system employed an air-diffusion cathode to generate a H2O2 stock solution (i.e., typically around 600 mM) prior to the storm event. The H2O2 stock solution was then metered into stormwater and converted into hydroxyl radical (•OH) by an ultraviolet lamp. The energy consumption for H2O2 generation was optimized by adjusting the applied current density and adding an inert salt (e.g., Na2SO4) to stormwater. H2O2 in the stock solution was unstable. By mixing the basic H2O2 containing catholyte and the acidic anolyte, the stability increased, enabling generation of the H2O2 stock solution up to three days prior the storm event with loss of less than 20% of the H2O2. Lab-scale experiments and a kinetic model were used to assess the feasibility of the full-scale advanced oxidation system. System performance decreased at elevated concentrations of dissolved organic carbon in stormwater, due to enhanced light reflection and backscattering at the water-air interface in the UV reactor, competition for UV light absorption with H2O2 and the tendency of organic matter to act as a •OH scavenger. The proposed system can be incorporated into drywells to remove greater than 90% of trace organic contaminants under typical operating conditions. The electrical energy per order of the system is estimated to range from 0.5 to 2 kWh/m3, depending on the dissolved organic carbon concentration.
Collapse
|
13
|
Preparation of new triptycene- and pentiptycene-based crosslinked polymers and their adsorption behavior towards aqueous dyes and phenolic organic pollutants. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119495] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
14
|
Vieira MM, Pereira Dornelas AS, Carlos TD, Pallini A, Gravato C, Pereira DH, Sarmento RA, Cavallini GS. When treatment increases the contaminant's ecotoxicity: A study of the Fenton process in the degradation of methylene blue. CHEMOSPHERE 2021; 283:131117. [PMID: 34134044 DOI: 10.1016/j.chemosphere.2021.131117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/27/2021] [Accepted: 05/31/2021] [Indexed: 06/12/2023]
Abstract
The degradation of dyes can generate harmful by-products, thereby requiring the need to evaluate the toxicity to aquatic organisms. This study aims to evaluate the chronic ecotoxicity of methylene blue dye degraded by the Fenton process using the non-target planarian Girardia tigrina as a sensitive bioindicator of environmental contamination. The bioassays evaluated the lethality of several concentrations of the untreated and degraded dye methylene blue (MB), as well as, their sub-lethal effects on locomotion, feeding, regeneration, and reproduction. In both acute and chronic tests, the degraded dye had a stronger toxic effect when compared to the untreated dye. This negative effect after treatment was mainly associated with the presence of residual hydrogen peroxide and iron (and consequently the hydroxyl radical formed). We conclude that the utilization of the Fenton process using less oxidizing agents should be considered as important alternatives for the protection of aquatic ecosystems, without compromising the efficient removal of MB.
Collapse
Affiliation(s)
- Mayane Marques Vieira
- Curso de Química Ambiental, Universidade Federal Do Tocantins, 77.402-970, Gurupi, Tocantins, Brazil.
| | | | - Thayrine Dias Carlos
- Programa de Pós-Graduação Em Química, Universidade Federal Do Tocantins, 77.402-970, Gurupi, Tocantins, Brazil.
| | - Angelo Pallini
- Departamento de Entomologia - Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil.
| | - Carlos Gravato
- Faculdade de Ciências & CESAM, Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal.
| | - Douglas Henrique Pereira
- Programa de Pós-Graduação Em Química, Universidade Federal Do Tocantins, 77.402-970, Gurupi, Tocantins, Brazil.
| | - Renato Almeida Sarmento
- Programa de Pós-Graduação Em Produção Vegetal e Programa de Pós-Graduação Em Biodiversidade e Biotecnologia da Amazônia Legal - Bionorte, Universidade Federal Do Tocantins, 77.402-970, Gurupi, Tocantins, Brazil.
| | | |
Collapse
|
15
|
Kim MS, Lee C, Kim JH. Occurrence of unknown reactive species in UV/H 2O 2 system leading to false interpretation of hydroxyl radical probe reactions. WATER RESEARCH 2021; 201:117338. [PMID: 34171647 DOI: 10.1016/j.watres.2021.117338] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/29/2021] [Accepted: 06/03/2021] [Indexed: 06/13/2023]
Abstract
The UV/H2O2 process is a benchmark advanced oxidation process (AOP) that in situ generates highly reactive and nonselective hydroxyl radical (•OH) to oxidatively destroy a wide range of organic compounds. Accurately quantifying the concentration of short-lived •OH is essential to predict process performance, optimize the operation parameters, and compare with other process options. The •OH concentration is typically measured using organic probe molecules that react with •OH but not with other oxidants. In the extremely well-characterized UV/H2O2 system in which •OH is proven to be the dominant oxidant, using photolysis-resistant probes such as benzoic acid and its derivatives is a widely agreed and practiced norm. We herein report that certain •OH probe compounds can be degraded in UV/H2O2 system by unknown reactive species that has not been reported in the past. Several common organic probes, particularly p-substituted benzoic acid compounds (i.e., p-hydroxybenzoic acid, p-chlorobenzoic acid, and p-phthalic acid), were found to be vulnerable to attack by the unknown reactive species, leading to false quantification of •OH concentration under high radical scavenging conditions. Lines of evidence obtained from a series of •OH scavenging experiments performed under various conditions (i.e., different concentrations of H2O2, •OH probe compounds, and dissolved oxygen) point toward excited state H2O2. The results from this study suggest the importance of using appropriate •OH probe compounds in mechanistic studies and needs for considering the unidentified role of excited state of H2O2 on the UV/H2O2 process and related AOPs.
Collapse
Affiliation(s)
- Min Sik Kim
- Department of Environmental Engineering and Soil Environment Research Center, Jeonbuk National University, Jeonju, Jeollabukdo 54896, Republic of Korea; School of Chemical and Biological Engineering, Institute of Chemical Process (ICP), Institute of Engineering Research, Seoul National University, Seoul 08826, Republic of Korea; Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06511, United States
| | - Changha Lee
- School of Chemical and Biological Engineering, Institute of Chemical Process (ICP), Institute of Engineering Research, Seoul National University, Seoul 08826, Republic of Korea.
| | - Jae-Hong Kim
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06511, United States.
| |
Collapse
|
16
|
Effectiveness of Advanced Oxidation Processes in Wastewater Treatment: State of the Art. WATER 2021. [DOI: 10.3390/w13152094] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In recent years, many scientific studies have focused their efforts on quantifying the different types of pollutants that are not removed in wastewater treatment plants. Compounds of emerging concern (CECs) have been detected in different natural environments. The presence of these compounds in wastewater is not new, but they may have consequences in the future. These compounds reach the natural environment through various routes, such as wastewater. This review focuses on the study of tertiary treatment with advanced oxidation processes (AOPs) for the degradation of CECs. The main objective of the different existing AOPs applied to the treatment of wastewater is the degradation of pollutants that are not eliminated by means of traditional wastewater treatment.
Collapse
|
17
|
Quiroz-Jara M, Casini S, Fossi MC, Orrego R, Gavilán JF, Barra R. Integrated Physiological Biomarkers Responses in Wild Fish Exposed to the Anthropogenic Gradient in the Biobío River, South-Central Chile. ENVIRONMENTAL MANAGEMENT 2021; 67:1145-1157. [PMID: 33811498 DOI: 10.1007/s00267-021-01465-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 03/18/2021] [Indexed: 06/12/2023]
Abstract
To evaluate the physiological state of the wild fish inhabiting the Biobío River in South-Central Chile, susceptible to the chemical contamination from different sources, biochemical and physiological biomarkers were applied to wild fish Percilia irwini and Trichomycterus areolatus in situ. Fish caught in the Biobío river in low, medium, and high anthropic impacts areas, with different pollution degrees along the river. Ethoxyresorufin O-O deethylase (EROD) activity was evaluated in fish liver. Length, weight, Gonad weight and Liver weight, Physiological Index, and gill and liver histopathology were conducted. Physicochemical parameters (pH, Temperature, Conductivity, and TDS) were measured at each sampling site. The results indicated a deteriorating condition in the biological parameters of both species in a high anthropic zone. Fishes show an increase in physiological indices and EROD liver activity, agreeing with previous studies supporting evidence of reproductive change development as we move downstream the river. Also, an increase in histopathological lesions towards the lower third stretch of the Biobío River. The Integrated Index of Physiological Biomarkers (IPBR) indicated that sites located in the high impact area (P. irwini: BC: 4.09; RC: 3.38; PC: 3.50; SJ: 2.34 and T. areolatus BC: 6.06, PC: 5.37; SJ: 5.42) have the most detrimental environmental quality, compared to reference area. The integrated biomarker analysis demonstrates that the alterations observed are related to the high anthropic activity levels downstream from the sites with the least intervention, demonstrating that the IPBR used is a complementary tool for studies of the Environmental Effects Monitoring approach.
Collapse
Affiliation(s)
- Mauricio Quiroz-Jara
- Department of Aquatic Systems, Faculty of Environmental Sciences and EULA-Chile Centre, University of Concepción, PO Box 160-C, Concepción, Chile.
| | - Silvia Casini
- Department of Physical, Earth and Environmental Sciences, Università di Siena, via Pier Andrea Mattioli, 4, Siena, Italy
| | - Maria Cristina Fossi
- Department of Physical, Earth and Environmental Sciences, Università di Siena, via Pier Andrea Mattioli, 4, Siena, Italy
| | - Rodrigo Orrego
- Natural Science Institute Alexander von Humboldt, Aquatic Toxicology Laboratory, Faculty of Marine Sciences and Biological Resources, University of Antofagasta, Av. Universidad de Antofagasta, 02800, Antofagasta, Chile
| | - Juan F Gavilán
- Department of Cellular Biology, Faculty of Biological Science, Universidad of Concepción, PO Box 160-C, Concepción, Chile
| | - Ricardo Barra
- Department of Aquatic Systems, Faculty of Environmental Sciences and EULA-Chile Centre, University of Concepción, PO Box 160-C, Concepción, Chile
| |
Collapse
|
18
|
Lian J, Sun L, Jiang C, Li W, Zhu Y, Qin X, Liu Z. Computational fluid dynamics modelling of quasi-collimated beam apparatus - a typical bench scale UV apparatus for water treatment. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2021; 83:2526-2535. [PMID: 34032628 DOI: 10.2166/wst.2021.144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Quasi-collimated beam apparatus (QCBA), a typical bench scale UV apparatus, is crucial for the biodosimetry determination of UV dose in target reactors. However, the key parameters for the QCBA construction are usually estimated via rule-of-thumb calculations. Computational fluid dynamics models are applied in this study to simulate the UV fluence rate (FR) distributions in QCBAs. QCBAs with either a cylindrical tube or successive apertures irradiate quasi parallel light into selected dishes. The simulated Petri factors (PF) in the target QCBAs with a single aperture were all >0.84, and increased with the extended distance (L1) from the UV lamp to the upper aperture. QCBAs with two successive apertures are recommended compared with those with three apertures or cylindrical tube. A trend of FR distribution from dispersed to concentrated is observed when L1 or the interval distance between each aperture increases in a dual-aperture QCBA. QCBAs with multiple lamps were favorable to increase the UV output power, while having a nearly negligible loss of parallelism. An actual QCBA was constructed, and the maximal and average FR and PF values in a 60-mm dish were 0.159 and 0.164 W/m2, and 0.967, respectively, in accordance with the simulated results.
Collapse
Affiliation(s)
- Junfeng Lian
- Ganzhou Key Laboratory of Basin Pollution Simulation and Control, Jiangxi University of Science and Technology, Ganzhou 341000, China E-mail:
| | - Liangmin Sun
- Ganzhou Key Laboratory of Basin Pollution Simulation and Control, Jiangxi University of Science and Technology, Ganzhou 341000, China E-mail:
| | - Chong Jiang
- Ganzhou Key Laboratory of Basin Pollution Simulation and Control, Jiangxi University of Science and Technology, Ganzhou 341000, China E-mail:
| | - Wentao Li
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yichun Zhu
- Ganzhou Key Laboratory of Basin Pollution Simulation and Control, Jiangxi University of Science and Technology, Ganzhou 341000, China E-mail:
| | - Xinxin Qin
- Ganzhou Key Laboratory of Basin Pollution Simulation and Control, Jiangxi University of Science and Technology, Ganzhou 341000, China E-mail:
| | - Zuwen Liu
- Ganzhou Key Laboratory of Basin Pollution Simulation and Control, Jiangxi University of Science and Technology, Ganzhou 341000, China E-mail:
| |
Collapse
|
19
|
Bugueño-Carrasco S, Monteil H, Toledo-Neira C, Sandoval MÁ, Thiam A, Salazar R. Elimination of pharmaceutical pollutants by solar photoelectro-Fenton process in a pilot plant. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:23753-23766. [PMID: 33099736 DOI: 10.1007/s11356-020-11223-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 10/11/2020] [Indexed: 06/11/2023]
Abstract
In this study, the simultaneous degradation of antibiotics (ampicillin, sulfamethazine, and tetracycline; and non-steroidal anti-inflammatories (diclofenac and salicylic acid)) including the total organic carbon abatement by solar photoelectro-Fenton process was assessed. Eight liters of solution containing the mixture of the five pharmaceuticals in 1 mmol L-1 Fe2+, 0.05 mol L-1 Na2SO4 at pH 3 and 35 °C were electrolyzed applying different current densities (j = 10, 25, and 50 mA cm-2) in a solar-electrochemical pilot plant. The pilot plant was equipped with an electrochemical filter press cell with a dimensionally stable anode (DSA type) and an air-diffusion cathode coupled to a solar photoreactor exposed directly to sunlight radiation. All pharmaceuticals were degraded during the first 10 min. A TOC removal efficiency of 99.2% after 100 min of treatment with an energy consumption of 534.23 kW h (kgTOC)-1 and 7.15 kW h m-3 was achieved. The pharmaceutical concentration decay followed a pseudo-first-order kinetics. The specific energy per unit of mass of ampicillin, diclofenac, salicylic acid, sulfamethazine, and tetracycline was obtained at 11.73, 19.56, 35.2, 11.73, and 39.32 kW h (kgPD)-1 for ampicillin, diclofenac, salicylic acid, sulfamethazine, and tetracycline, respectively. With our results, we demonstrated that SPEF is an emerging technology for the treatment of this type of pollutants in short time.
Collapse
Affiliation(s)
- Sebastián Bugueño-Carrasco
- Departamento de Química de los Materiales, Laboratorio de Electroquímica Medio Ambiental, LEQMA, Facultad de Química y Biología, Universidad de Santiago de Chile, USACH, Casilla 40, Correo 33, Santiago, Chile
| | - Hélène Monteil
- Laboratoire Géomatériaux et Environnement, LGE, Université Paris-Est, EA 4508, UPEM, 77454, Marne-la-Vallée, France
| | - Carla Toledo-Neira
- Departamento de Química de los Materiales, Laboratorio de Electroquímica Medio Ambiental, LEQMA, Facultad de Química y Biología, Universidad de Santiago de Chile, USACH, Casilla 40, Correo 33, Santiago, Chile
| | - Miguel Ángel Sandoval
- Departamento de Química de los Materiales, Laboratorio de Electroquímica Medio Ambiental, LEQMA, Facultad de Química y Biología, Universidad de Santiago de Chile, USACH, Casilla 40, Correo 33, Santiago, Chile
- Departamento de Ingeniería Química, Universidad de Guanajuato, Noria Alta S/N, 36050, Guanajuato, Guanajuato, Mexico
| | - Abdoulaye Thiam
- Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación (PIDi), Universidad Tecnológica Metropolitana, Santiago, Chile
| | - Ricardo Salazar
- Departamento de Química de los Materiales, Laboratorio de Electroquímica Medio Ambiental, LEQMA, Facultad de Química y Biología, Universidad de Santiago de Chile, USACH, Casilla 40, Correo 33, Santiago, Chile.
| |
Collapse
|
20
|
A Simple Device for the On-Site Photodegradation of Pesticide Mixes Remnants to Avoid Environmental Point Pollution. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11083593] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The worldwide increase in the number and use of agrochemicals impacts nearby soil and freshwater ecosystems. Beyond the excess in applications and dosages, the inadequate management of remnants and the rinsing water of containers and application equipment worsen this problem, creating point sources of pollution. Advanced oxidation processes (AOPs) such as photocatalytic and photo-oxidation processes have been successfully applied in degrading organic pollutants. We developed a simple prototype to be used at farms for quickly degrading pesticides in water solutions by exploiting a UV–H2O2-mediated AOP. As representative compounds, we selected the insecticide imidacloprid, the herbicide terbuthylazine, and the fungicide azoxystrobin, all in their commercial formulation. The device efficiency was investigated through the disappearance of the parent molecule and the degree of mineralization. The toxicity of the pesticide solutions, before and during the treatment, was assessed by Vibrio fischeri and Pseudokirchneriella subcapitata inhibition assays. The results obtained have demonstrated a cost-effective, viable alternative for detoxifying the pesticide solutions before their disposal into the environment, even though the compounds, or their photoproducts, showed different sensitivities to physicochemical degradation. The bioassays revealed changes in the inhibitory effects on the organisms in agreement with the analytical data.
Collapse
|
21
|
Surma R, Wojcieszyńska D, Karcz J, Guzik U. Effect of Pseudomonas moorei KB4 Cells' Immobilisation on Their Degradation Potential and Tolerance towards Paracetamol. Molecules 2021; 26:820. [PMID: 33557429 PMCID: PMC7915102 DOI: 10.3390/molecules26040820] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/26/2021] [Accepted: 02/02/2021] [Indexed: 11/17/2022] Open
Abstract
Pseudomonas moorei KB4 is capable of degrading paracetamol, but high concentrations of this drug may cause an accumulation of toxic metabolites. It is known that immobilisation can have a protective effect on bacterial cells; therefore, the toxicity and degradation rate of paracetamol by the immobilised strain KB4 were assessed. Strain KB4 was immobilised on a plant sponge. A toxicity assessment was performed by measuring the concentration of ATP using the colony-forming unit (CFU) method. The kinetic parameters of paracetamol degradation were estimated using the Hill equation. Toxicity analysis showed a protective effect of the carrier at low concentrations of paracetamol. Moreover, a pronounced phenomenon of hormesis was observed in the immobilised systems. The obtained kinetic parameters and the course of the kinetic curves clearly indicate a decrease in the degradation activity of cells after their immobilisation. There was a delay in degradation in the systems with free cells without glucose and immobilised cells with glucose. However, it was demonstrated that the immobilised systems can degrade at least ten succeeding cycles of 20 mg/L paracetamol degradation. The obtained results indicate that the immobilised strain may become a useful tool in the process of paracetamol degradation.
Collapse
Affiliation(s)
| | | | | | - Urszula Guzik
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Science, University of Silesia in Katowice, Jagiellonska 28, 40-032 Katowice, Poland; (R.S.); (D.W.); (J.K.)
| |
Collapse
|
22
|
Li S, Wen J, He B, Wang J, Hu X, Liu J. Occurrence of caffeine in the freshwater environment: Implications for ecopharmacovigilance. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 263:114371. [PMID: 32217417 DOI: 10.1016/j.envpol.2020.114371] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 02/18/2020] [Accepted: 03/12/2020] [Indexed: 05/08/2023]
Abstract
Owing to the substantial consumption of caffeinated food, beverages, and medicines worldwide, caffeine is considered the most representative pharmaceutically active compound (PhAC) pollutant based on its high abundance in the environment and its suitability as an indicator of the anthropogenic inputs of PhACs in water bodies. This review presents a worldwide analysis of 132 reports of caffeine residues in freshwater environments. The results indicated that more than 70% of the studies reported were from Asia and Europe, which have densely populated and industrially developed areas. However, caffeine pollution was also found to affect areas isolated from human influence, such as Antarctica. In addition, the maximum concentrations of caffeine in raw wastewater, treated wastewater, river, drinking water, groundwater, lake, catchment, reservoir, and rainwater samples were reported to be 3.60 mg/L, 55.5, 19.3, 3.39, 0.683, 174, 44.6, 4.87, and 5.40 μg/L, respectively. The seasonal variation in caffeine residues in the freshwater environment has been demonstrated. In addition, despite the fact that there was a small proportion of wastewater treatment plants in which the elimination rates of caffeine were below 60%, wastewater treatment is generally believed to have a high caffeine removal efficiency. From a pharmacy perspective, we proposed to adopt effective measures to minimize the environmental risks posed by PhACs, represented by caffeine, through a new concept known as ecopharmacovigilance (EPV). Some measures of EPV aimed at caffeine pollution have been advised, as follows: improving knowledge and perceptions about caffeine pollution among the public; listing caffeine as a high-priority PhAC pollutant, which should be targeted in EPV practices; promoting green design and production, rational consumption, and environmentally preferred disposal of caffeinated medicines, foods, and beverages; implementing intensive EPV measures in high-risk areas and during high-risk seasons; and integrating EPV into wastewater treatment programs.
Collapse
Affiliation(s)
- Shulan Li
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Jing Wen
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Bingshu He
- Hubei Province Woman and Child Hospital, Wuhan, 430070, China
| | - Jun Wang
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, 430065, China.
| | - Xianmin Hu
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Juan Liu
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, 430065, China
| |
Collapse
|
23
|
Kong X, Wang L, Wu Z, Zeng F, Sun H, Guo K, Hua Z, Fang J. Solar irradiation combined with chlorine can detoxify herbicides. WATER RESEARCH 2020; 177:115784. [PMID: 32299021 DOI: 10.1016/j.watres.2020.115784] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 03/30/2020] [Accepted: 04/01/2020] [Indexed: 05/28/2023]
Abstract
The solar/chlorine process is an energy-efficient advanced oxidation process that can produce reactive species such as hydroxyl radical, reactive chlorine species and ozone. This study investigated the process' ability to detoxify the typical herbicides atrazine and mecoprop (methylchlorophenoxypropionic acid). Both herbicides are resistant to direct solar photolysis or chlorination alone, but they can be degraded by the solar/chlorine process effectively. Atrazine inhibited the development of Arabidopsis thaliana, but such inhibition was negligible after solar/chlorine treatment of an atrazine solution. The transformation of atrazine in the process was shown to be through hydroxylation, hydrogen abstraction and dechlorination but did not involve chlorine substitution or addition. Cl• reacts with atrazine and mecoprop with rate constants of 6.87 × 109 M-1s-1 and 1.08 × 1010 M-1s-1, respectively, while ClO• reacts with mecoprop with a rate constant of 1.11 × 108 M-1s-1. The degradation kinetics of atrazine and mecoprop by solar/chlorine was simulated by modeling, which fitted the experimental results well. Hydroxyl radicals (HO•) mainly contributed to the degradation of atrazine by solar/chlorine at pH 7 with the contribution of 65%, whereas ClO• and O3 were main species responsible for the degradation of mecoprop with the contribution of 72% and 17%, respectively. The pseudo-first-order rate constants (k's) of the two degradations increased substantially (by 28.8% for atrazine and by 198% for mecoprop) when the chlorine dosage was increased from 50 μM to 200 μM. The k's decreased with increasing pH. The presence of natural organic matter inhibited the degradation of both herbicides, while the presence of bromide enhanced their degradation. This work reveals a feasible method for the detoxifying herbicides by combining chlorine with solar radiation.
Collapse
Affiliation(s)
- Xiujuan Kong
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Liping Wang
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Zihao Wu
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Fanli Zeng
- Hebei Provincial Key Laboratory of Molecular Plant-Microbe Interaction, School of Life Sciences, Hebei Agricultural University, Baoding, Hebei, 071000, China
| | - Huiying Sun
- Hebei Provincial Key Laboratory of Molecular Plant-Microbe Interaction, School of Life Sciences, Hebei Agricultural University, Baoding, Hebei, 071000, China
| | - Kaiheng Guo
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Zhechao Hua
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Jingyun Fang
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China.
| |
Collapse
|
24
|
Chopra S, Kumar D. Ibuprofen as an emerging organic contaminant in environment, distribution and remediation. Heliyon 2020; 6:e04087. [PMID: 32510000 PMCID: PMC7265064 DOI: 10.1016/j.heliyon.2020.e04087] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 02/08/2020] [Accepted: 05/26/2020] [Indexed: 12/25/2022] Open
Abstract
Pharmaceutical and personal care products (PPCPs) are the one of sub-class under emerging organic contaminants (EOCs). Ibuprofen is the world's third most consumable drug. This drug enters into our water system through human pharmaceutical use. It attracts the attention of environmentalist on the basis of risk associated, presence and transformation in the environment. The detection and removal are the two key area where we need to focus. The concentration of such compounds in waterbodies detected through conventional and also by the advanced methods. This review we described the available technologies including chemical, physical and biological methods, etc used the for removal of Ibuprofen. The pure culture based method, mixed culture approach and activated sludge culture approach focused and pathway of degradation of ibuprofen was deciphered by using the various methods of structure determination. The various degradation methods used for Ibuprofen are discussed. The advanced methods coupled with physical, chemical, biological, chemical methods like ozonolysis, oxidation and adsorption, nanotechnology based methods, nanocatalysis and use of nonosensors to detect the presence of small amount in waterbodies can enhance the future degradation of this drug. It is necessary to develop the new detection methods to enhance the detection of such pollutants. With the developments in new detection methods based on GC-MS//MS, HPLC, LC/MS and nanotechnology based sensors makes easier detection of these compounds which can detect even very minute amount with great sensitivity and in less time. Also, the isolation and characterization of more potent microbial strains and nano-photocatalysis will significantly increase the future degradation of such harmful compounds from the environment.
Collapse
Affiliation(s)
- Sunil Chopra
- Department of Biotechnology, Deenbandhu Chhotu Ram University of Science and Technology, Murthal 131039 Sonepat, Haryana, India
| | - Dharmender Kumar
- Department of Biotechnology, Deenbandhu Chhotu Ram University of Science and Technology, Murthal 131039 Sonepat, Haryana, India
| |
Collapse
|
25
|
Gao Y, Niu X, Qin Y, Guo T, Ji Y, Li G, An T. Unexpected culprit of increased estrogenic effects: Oligomers in the photodegradation of preservative ethylparaben in water. WATER RESEARCH 2020; 176:115745. [PMID: 32234607 DOI: 10.1016/j.watres.2020.115745] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/18/2020] [Accepted: 03/20/2020] [Indexed: 05/06/2023]
Abstract
Widespread occurrence of emerging organic contaminants (EOCs) in water have been explicitly associated with adverse effects on human health, therefore representing a major risk to public health. Especially the increased toxicity is frequently observed during the photodegradation of EOCs in natural water, and even wastewater treatment plants. However, the culprit of increased toxicity and formation mechanism has yet to be recognized regarding the estrogenic activity. In this study, by combining laboratory experiments with quantum chemical calculations, the induction of human estrogenic activity was investigated using the yeast two-hybrid reporter assay during the photodegradation of preservatives ethylparaben (EP), along with identification of toxic products and formation mechanisms. Results showed that the increase in estrogenic effect was induced by photochemically generated oligomers, rather than the expected OH-adduct. The maximum estrogenic activity corresponded to the major formation of oligomers, while OH-adducts were less than 12%. Two photochemically generated oligomers were found to contribute to estrogenic activity, produced from the cleavage of excited triplet state molecules and subsequent radical-radical reactions. Computational toxicology results showed that the increased estrogenic activity was attributed to oligomer [4-Hydroxy-isophthalic acid 1-ethyl ester 3-(4-hydroxy-phenyl)] and its EC50 was lower than that of the parent EP. In contrast, OH-adducts exhibited higher EC50 values than the parent EP, while still possessing estrogenic activity. Therefore, more attention should be paid to these photodegradation products of EOCs, including OH-adducts.
Collapse
Affiliation(s)
- Yanpeng Gao
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Xiaolin Niu
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yaxin Qin
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Teng Guo
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yuemeng Ji
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Guiying Li
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Taicheng An
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
26
|
Effects of Low Concentration of Selected Analgesics and Successive Bioaugmentation of the Activated Sludge on Its Activity and Metabolic Diversity. WATER 2020. [DOI: 10.3390/w12041133] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this study, we evaluated the impact of the successive bioaugmentation of the activated sludge (AS) with the defined bacterial consortium on the activity and functional capacity of the AS microorganisms. In parallel, the removal of low concentrations of the selected non-steroidal anti-inflammatory drugs (ibuprofen, naproxen, diclofenac) and analgesic paracetamol was studied. We found that the addition of the bacterial consortium consisting of three pharmaceuticals-degrading strains Bacillus thuringiensis B1 (2015b), Stenotrophomonas maltophilia KB2, and Pseudomonas moorei KB4 into the AS did not cause any significant changes in the biomass abundance and metabolic activity of the AS microorganisms. Although, the successive bioaugmentation of the AS caused a slight increase in the metabolic diversity, the intensity of carbohydrates usage, and metabolic richness. Microorganisms in the bioaugmented and non-bioaugmented AS were able to degrade the mixture of the analyzed drugs with similar efficiency, however, diclofenac was removed more effectively in the bioaugmented AS. Several metabolites were identified and efficiently utilized, with the exception of 4-OH diclofenac. Two new diclofenac-degrading strains assigned as Serratia proteamaculans AS4 and Rahnella bruchi AS7 were isolated from the diclofenac-treated AS.
Collapse
|
27
|
Barbosa AA, Aquino RVS, Silva MG, Nascimento Júnior WJ, Duarte MMMB, Dantas RF, Rocha ORS. New aluminum mesh from recyclable material for immobilization of TiO
2
in heterogeneous photocatalysis. CAN J CHEM ENG 2020. [DOI: 10.1002/cjce.23706] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Ada A. Barbosa
- Department of Chemical Engineering Universidade Federal de Pernambuco (UFPE) Recife Brazil
| | - Ramon V. S. Aquino
- Department of Chemical Engineering Universidade Federal de Pernambuco (UFPE) Recife Brazil
| | - Marina G. Silva
- Department of Chemical Engineering Universidade Federal de Pernambuco (UFPE) Recife Brazil
| | | | - Marta M. M. B. Duarte
- Department of Chemical Engineering Universidade Federal de Pernambuco (UFPE) Recife Brazil
| | - Renato F. Dantas
- School of Technology University of Campinas (UNICAMP) Limeira Brazil
| | - Otidene R. S. Rocha
- Department of Chemical Engineering Universidade Federal de Pernambuco (UFPE) Recife Brazil
| |
Collapse
|
28
|
Fernandes JMC, Sousa RMOF, Fraga I, Sampaio A, Amaral C, Bezerra RMF, Dias AA. Fungal biodegradation and multi-level toxicity assessment of vinasse from distillation of winemaking by-products. CHEMOSPHERE 2020; 238:124572. [PMID: 31422312 DOI: 10.1016/j.chemosphere.2019.124572] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 08/05/2019] [Accepted: 08/09/2019] [Indexed: 06/10/2023]
Abstract
The wastewaters from distilleries of winemaking by-products, a scarcely studied type of vinasse, were treated by white-rot fungal strains from species Irpex lacteus, Ganoderma resinaceum, Trametes versicolor, Phlebia rufa and Bjerkandera adusta. The main objectives of this study were to evaluate fungal performance during vinasse biodegradation, their enzyme patterns and ecotoxicity evolution throughout treatment. Despite all strains were able to promote strong (>80%) dephenolization and reduction of total organic carbon (TOC), P. rufa was less affected by vinasse toxicity and exhibit better decolorization. In batch cultures at 28 °C and pH 4.0, the first phase of P. rufa biodegradation kinetics was characterized by strong metabolic activity with simultaneous depletion of TOC, phenolics and sugars. The main events of second phase are the increase of peroxidases production after the peak of laccase activity, and strong color removal. At the end of treatment, it was observed highly significant (p < 0.001) abatement of pollution parameters (83-100% removal). Since water reclamation and reuse for e.g. crop irrigation is a priority issue, vinasse ecotoxicity was assessed with bioindicators representing three different phylogenetic and trophic levels: a marine bacterium (Aliivibrio fischeri), a freshwater microcrustacean (Daphnia magna) and a dicotyledonous macrophyte (Lepidium sativum). It was observed significant (p < 0.05) reduction of initial vinasse toxicity, as evaluated by these bioindicators, deserving special mention an almost complete phytotoxicity elimination.
Collapse
Affiliation(s)
- Joana M C Fernandes
- CITAB - Centre for the Research and Technology of Agro-Environmental and Biological Sciences, UTAD - Universidade de Trás-os-Montes e Alto Douro, 5000-801, Vila Real, Portugal
| | - Rose Marie O F Sousa
- CITAB - Centre for the Research and Technology of Agro-Environmental and Biological Sciences, UTAD - Universidade de Trás-os-Montes e Alto Douro, 5000-801, Vila Real, Portugal
| | - Irene Fraga
- CITAB - Centre for the Research and Technology of Agro-Environmental and Biological Sciences, UTAD - Universidade de Trás-os-Montes e Alto Douro, 5000-801, Vila Real, Portugal
| | - Ana Sampaio
- CITAB - Centre for the Research and Technology of Agro-Environmental and Biological Sciences, UTAD - Universidade de Trás-os-Montes e Alto Douro, 5000-801, Vila Real, Portugal
| | - Carla Amaral
- CITAB - Centre for the Research and Technology of Agro-Environmental and Biological Sciences, UTAD - Universidade de Trás-os-Montes e Alto Douro, 5000-801, Vila Real, Portugal
| | - Rui M F Bezerra
- CITAB - Centre for the Research and Technology of Agro-Environmental and Biological Sciences, UTAD - Universidade de Trás-os-Montes e Alto Douro, 5000-801, Vila Real, Portugal
| | - Albino A Dias
- CITAB - Centre for the Research and Technology of Agro-Environmental and Biological Sciences, UTAD - Universidade de Trás-os-Montes e Alto Douro, 5000-801, Vila Real, Portugal.
| |
Collapse
|
29
|
Zhang L, Liu Y, Fu Y. Degradation kinetics and mechanism of diclofenac by UV/peracetic acid. RSC Adv 2020; 10:9907-9916. [PMID: 35498603 PMCID: PMC9050214 DOI: 10.1039/d0ra00363h] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 02/29/2020] [Indexed: 11/21/2022] Open
Abstract
In this work, the degradation kinetics and mechanism of diclofenac (DCF) by UV/peracetic acid (PAA) was investigated.
Collapse
Affiliation(s)
- Li Zhang
- Faculty of Geosciences and Environmental Engineering
- Southwest Jiaotong University
- Chengdu 611756
- China
| | - Yiqing Liu
- Faculty of Geosciences and Environmental Engineering
- Southwest Jiaotong University
- Chengdu 611756
- China
| | - Yongsheng Fu
- Faculty of Geosciences and Environmental Engineering
- Southwest Jiaotong University
- Chengdu 611756
- China
| |
Collapse
|
30
|
Reichert G, Hilgert S, Fuchs S, Azevedo JCR. Emerging contaminants and antibiotic resistance in the different environmental matrices of Latin America. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 255:113140. [PMID: 31541833 DOI: 10.1016/j.envpol.2019.113140] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 08/14/2019] [Accepted: 08/29/2019] [Indexed: 05/24/2023]
Abstract
This review aims to gather and summarize information about the occurrence of emerging contaminants and antibiotic resistance genes in environmental matrices in Latin America. We aim to contribute to future research by compiling a list of priority pollutants adjusted to the needs and characteristics of Latin America, according to the data presented in this study. In order to perform a comprehensive research and secure a representative and unbiased amount of quality data concerning emerging contaminants in Latin America, the research was performed within the Scopus® database in a time frame from 2000 to July 2019. The countries with higher numbers of published articles were Brazil and México, while most studies were performed in the surroundings of Mexico City and in Southern and Southeastern Brazil. The main investigated environmental matrices were drinking water and surface water. The presence of antibiotic resistance was frequently reported, mainly in Brazil. Monitoring efforts should be performed in other countries in Latin America, as well as in other regions of Brazil and México. The suggested priority list for monitoring of emerging contaminants in Latin America covers: di(2-ethylhexyl) phthalate (DEHP), bisphenol-A (BP-A), 4-nonylphenol (4-NP), triclosan (TCS), estrone (E1), estradiol (E2), ethinylestradiol (EE2), tetracycline (TC), amoxicillin (AMOX), norfloxacin (NOR), ampicillin (AMP) and imipenem (IMP). We hope this list serves as a basis for the orientation of the future research and monitoring projects to better understand the distribution and concentration of the listed emerging substances.
Collapse
Affiliation(s)
- Gabriela Reichert
- Department of Hydraulics and Sanitation, Federal University of Parana, Av. Coronel Francisco Heráclito dos Santos, 210, 81531-980, Curitiba PR, Brazil; Capes Foundation, Ministry of Education of Brazil, Brasilia, 70040-020, DF, Brazil.
| | - Stephan Hilgert
- Institute for Water and River Basin Management, Department of Aquatic Environmental Engineering, Karlsruhe Institute of Technology, Gotthard-Franz-Str. 3, Building 50.31, 3rd Floor, 76131 Karlsruhe, Germany
| | - Stephan Fuchs
- Institute for Water and River Basin Management, Department of Aquatic Environmental Engineering, Karlsruhe Institute of Technology, Gotthard-Franz-Str. 3, Building 50.31, 3rd Floor, 76131 Karlsruhe, Germany
| | - Júlio César Rodrigues Azevedo
- Department of Hydraulics and Sanitation, Federal University of Parana, Av. Coronel Francisco Heráclito dos Santos, 210, 81531-980, Curitiba PR, Brazil; Capes Foundation, Ministry of Education of Brazil, Brasilia, 70040-020, DF, Brazil; Department of Chemistry and Biology, Federal Technology University of Paraná, Rua Deputado Heitor Alencar Furtado, 5000, 81280-340, Curitiba PR, Brazil
| |
Collapse
|
31
|
He Z, Zhang Q, Wei Z, Zhao Y, Pan X. Cultivation of a versatile manganese-oxidizing aerobic granular sludge for removal of organic micropollutants from wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 690:417-425. [PMID: 31299574 DOI: 10.1016/j.scitotenv.2019.06.509] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 06/28/2019] [Accepted: 06/29/2019] [Indexed: 05/25/2023]
Abstract
Organic micropollutants (OMPs) are frequently detected in water and wastewater, and have attracted wide attention due to potential adverse effects on ecosystems and human health. In this work, manganese-oxidizing aerobic granular sludge (Mn-AGS) was successfully cultivated and applied to remove OMPs from wastewater. Biogenic manganese (III,IV) oxides (bio-MnOx) were generated and accumulated to 22.0-28.3 mg Mn/g SS in the final sludge. Neither the addition of allochthonous manganese-oxidizing bacteria (MnOB; Pseudomonas putida MnB1) nor the reduction in hydraulic retention time (HRT) facilitated the cultivation of Mn-AGS. Batch experiments of OMPs degradation indicated that Mn-AGS significantly improved (1.3-3.9 times) degradation rates of most OMPs. Removal rates of bisphenol A (BPA), 17α‑ethinylestradiol (EE2), tetracycline (TC), and chloramphenicol (CAP) were 3.0-12.6 μg/h/g SS by the traditional AGS and 8.0-16.3 μg/h/g SS by Mn-AGS; those of imazethapyr (IM) were relatively high, 64.7 ± 0.1 and 127.8 ± 2.5 μg/h/g SS by AGS and Mn-AGS, respectively. However, degradation of dichlorophenyl phosphine (DCPP) was slower by Mn-AGS than AGS, 9.0 ± 0.4 vs. 21.2 ± 0.9 μg/h/g SS, possibly due to inhibition of microbial activity by bio-MnOx. This work provides a promising method for treating OMPs in organic wastewater, but the possible inhibition of microbes by bio-MnOx should be noted.
Collapse
Affiliation(s)
- Zhanfei He
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Qingying Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Zhen Wei
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Yuanhai Zhao
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Xiangliang Pan
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China; Xinjiang Key Laboratory of Environmental Pollution and Bioremediation, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China.
| |
Collapse
|
32
|
Yao Y, Wang C, Wang X, Yang Y, Wan Y, Chen J, Ding F, Tang Y, Wang Z, Liu L, Xie J, Gao B, Li YC, Sigua GC. Activation of fulvic acid-like in paper mill effluents using H 2O 2/TiO 2 catalytic oxidation: Characterization and salt stress bioassays. JOURNAL OF HAZARDOUS MATERIALS 2019; 378:120702. [PMID: 31202064 DOI: 10.1016/j.jhazmat.2019.05.095] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 04/15/2019] [Accepted: 05/28/2019] [Indexed: 06/09/2023]
Abstract
Increasing environmental concerns about organic waste in paper mill effluents demand alternative wastewater management technology. We reported novel activation of fulvic acid-like in paper mill effluents using hydrogen peroxide (H2O2) as oxidizer and titanium oxide (TiO2) as catalyst. Spectroscopic characteristics of fulvic acid-like in paper mill effluents before and after activation (PFA and PFA-Os, respectively) were compared with a benchmark fulvic acid extracted from leonardite (LFA). Results indicated that PFA-Os exhibited less lignin structures, more functional groups and lower molecular weight than PFA, sharing much similarity with LFA. Among PFA-Os with varying degrees of oxidation, PFA-O-3 activated with 1:2 vol ratio of paper mill effluent and 30% H2O2 for 20 min digestion at 90 °C stands out to be the optimal for further examination of its biological activity. Bioassays with rice seed/seedling indicated that applications of LFA at 2-5 mg-C/L and PFA-O-3 at 60-100 mg-C/L significantly increased rice seed germination rate and seedling growth under salt stress imposed with 100 mM NaCl. The mechanism was mainly through reduced oxidative damage via activation of antioxidative enzymes and lipid peroxidation. This study provides the needed technical basis of safer and cleaner technologies for innovative management of paper mill effluents.
Collapse
Affiliation(s)
- Yuanyuan Yao
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, National Engineering & Technology Research Center for Slow and Controlled Release Fertilizers, College of Resources and Environment, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Chun Wang
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, National Engineering & Technology Research Center for Slow and Controlled Release Fertilizers, College of Resources and Environment, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Xiaoqi Wang
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, National Engineering & Technology Research Center for Slow and Controlled Release Fertilizers, College of Resources and Environment, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Yuechao Yang
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, National Engineering & Technology Research Center for Slow and Controlled Release Fertilizers, College of Resources and Environment, Shandong Agricultural University, Taian, Shandong, 271018, China.
| | - Yongshan Wan
- Department of Soil and Water Science, Tropical Research and Education Center, IFAS, University of Florida, Homestead, FL, 33031, USA
| | - Jianqiu Chen
- State Key Laboratory of Nutrition Resources Integrated Utilization, Kinggenta Ecological Engineering Group Co., Ltd, Linshu, Shandong, 276700, China
| | - Fangjun Ding
- Key Laboratory of Humic Acid Fertilizer of Ministry of Agriculture, Shandong Agricultural University Fertilizer Technology Co. Ltd, Feicheng, Shandong, 271600, China
| | - Yafu Tang
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, National Engineering & Technology Research Center for Slow and Controlled Release Fertilizers, College of Resources and Environment, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Zhonghua Wang
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, National Engineering & Technology Research Center for Slow and Controlled Release Fertilizers, College of Resources and Environment, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Lu Liu
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, National Engineering & Technology Research Center for Slow and Controlled Release Fertilizers, College of Resources and Environment, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - JiaZhuo Xie
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, National Engineering & Technology Research Center for Slow and Controlled Release Fertilizers, College of Resources and Environment, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Bin Gao
- Department of Agricultural and Biological Engineering, IFAS, University of Florida, Gainesville, FL, 32611, USA
| | - Yuncong C Li
- Department of Soil and Water Science, Tropical Research and Education Center, IFAS, University of Florida, Homestead, FL, 33031, USA
| | - Gilbert C Sigua
- United States Department of Agriculture-Agricultural Research Service, Florence, SC, 29501, USA
| |
Collapse
|
33
|
Electrochemical Characterization of Mancozeb Degradation for Wastewater Treatment Using a Sensor Based on Poly (3,4-ethylenedioxythiophene) (PEDOT) Modified with Carbon Nanotubes and Gold Nanoparticles. Polymers (Basel) 2019; 11:polym11091449. [PMID: 31487849 PMCID: PMC6780876 DOI: 10.3390/polym11091449] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/18/2019] [Accepted: 08/30/2019] [Indexed: 01/03/2023] Open
Abstract
Mancozeb is a worldwide fungicide used on a large scale in agriculture. The active component and its main metabolite, ethylene thiourea, has been related to health issues. Robust, fast, and reliable methodologies to quantify its presence in water are of great importance for environmental and health reasons. The electrochemical evaluation of mancozeb using a low-cost electrochemical electrode modified with poly (3,4-ethylene dioxythiophene), multi-walled carbon nanotubes, and gold nanoparticles is a novel strategy to provide an in-situ response for water pollution from agriculture. Additionally, the thermal-, electrochemical-, and photo-degradation of mancozeb and the production of ethylene thiourea under controlled conditions were evaluated in this research. The mancozeb solutions were characterized by electrochemical oxidation and ultraviolet-visible spectrophotometry, and the ethylene thiourea concentration was measured using ultra-high-performance liquid chromatography high-resolution mass spectrometry. The degradation study of mancozeb may provide routes for treatment in wastewater treatment plants. Therefore, a low-cost electrochemical electrode was fabricated to detect mancozeb in water with a robust electrochemical response in the linear range as well as a quick response at a reduced volume. Hence, our novel modified electrode provides a potential technique to be used in environmental monitoring for pesticide detection.
Collapse
|
34
|
Synergistic effects of C, N, S, Fe-multidoped TiO2 for photocatalytic degradation of methyl orange dye under UV and visible light irradiations. SN APPLIED SCIENCES 2019. [DOI: 10.1007/s42452-019-0857-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
35
|
Peña-Guzmán C, Ulloa-Sánchez S, Mora K, Helena-Bustos R, Lopez-Barrera E, Alvarez J, Rodriguez-Pinzón M. Emerging pollutants in the urban water cycle in Latin America: A review of the current literature. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 237:408-423. [PMID: 30822645 DOI: 10.1016/j.jenvman.2019.02.100] [Citation(s) in RCA: 137] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 02/19/2019] [Accepted: 02/20/2019] [Indexed: 05/12/2023]
Abstract
Emerging pollutants (EP) are increasingly studied and characterized worldwide to improve the understanding of their environmental and toxicological impacts and their occurrence and behaviors in different environmental systems. Latin America has been subject to both environmental and toxicological impacts due to EP. To better understand these impacts, studies concerning pollutants have increased for the last ten years. The current study presents a critical review on the occurrence of different emerging pollutants in various components of the urban water cycle (UWC) in Latin America. The review is based on studies performed in 11 different countries between 1999 and 2018. The countries where the higher number of investigations were conducted are Brazil (53%) and Mexico (15%). The EP most often studied within the literature are pharmaceuticals, followed by personal care products. The most common EP reported were 17β-estradiol, bisphenol A and estrone; The UWC component with the greatest number of measurements in the reported studies were effluents from wastewater treatment plants.
Collapse
Affiliation(s)
- Carlos Peña-Guzmán
- INAM-USTA Group, Program of Environmental Engineering, St. Thomas University, Bogotá, Colombia.
| | - Stefanie Ulloa-Sánchez
- INAM-USTA Group, Program of Environmental Engineering, St. Thomas University, Bogotá, Colombia
| | - Karen Mora
- Institute of Water and Environmental Sciences, University of Alicante, Alicante, Spain
| | - Rosa Helena-Bustos
- Evidence-Based Therapeutics Group, Clinical Pharmacology, Universidad de La Sabana, Chía, Colombia
| | - Ellie Lopez-Barrera
- Institute of Environmental Studies and Services, Program of Environmental Engineering, Sergio Arboleda University, Bogotá, Colombia
| | - Johan Alvarez
- INAM-USTA Group, Program of Environmental Engineering, St. Thomas University, Bogotá, Colombia
| | - Manuel Rodriguez-Pinzón
- École Supérieure D'aménagement Du Territoire et de Développement Régional, Université Laval, Québec, Canada
| |
Collapse
|
36
|
Zhang H, Li G, Deng L, Zeng H, Shi Z. Heterogeneous activation of hydrogen peroxide by cysteine intercalated layered double hydroxide for degradation of organic pollutants: Performance and mechanism. J Colloid Interface Sci 2019; 543:183-191. [DOI: 10.1016/j.jcis.2019.02.059] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 02/18/2019] [Accepted: 02/19/2019] [Indexed: 01/22/2023]
|
37
|
Khan MF, Yu L, Achari G, Tay JH. Degradation of sulfolane in aqueous media by integrating activated sludge and advanced oxidation process. CHEMOSPHERE 2019; 222:1-8. [PMID: 30684685 DOI: 10.1016/j.chemosphere.2019.01.097] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 01/10/2019] [Accepted: 01/16/2019] [Indexed: 06/09/2023]
Abstract
In this study, the performance of an integrated technology, combining biological treatment with advanced oxidation process in sequence, was evaluated for the degradation of sulfolane in aqueous media. In addition, the impact of biological process on AOP was also studied by assessing residual sulfolane, nutrient and total suspended solids (TSS) concentrations. The integration of activated sludge process with UVC/H2O2 resulted in more than 81% of sulfolane degradation in less than 24 h. It was observed that mineralization was much faster in biological system compared to AOP. Mechanistically, the process of degradation is different in the two processes as various by-products were identified during UVC/H2O2 but not during the biological process. The impact of residual sulfolane concentration on UVC/H2O2 was significant beyond a concentration of 30 mg L-1, while below 30 mg L-1 the rate of degradation was independent of sulfolane concentration. Residual nutrients from biological systems did not impact AOP performance. Nevertheless, presence of TSS >44 mg L-1 had a negative impact on the performance of UVC/H2O2 by reducing UV transmittance which led to retardation of sulfolane degradation. The application of UVC/H2O2 after biological treatment was an advantage as UVC/H2O2 could perform dual roles of oxidant and disinfectant.
Collapse
Affiliation(s)
- Muhammad Faizan Khan
- Department of Civil Engineering, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada
| | - Linlong Yu
- Department of Civil Engineering, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada
| | - Gopal Achari
- Department of Civil Engineering, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada.
| | - Joo Hwa Tay
- Department of Civil Engineering, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada
| |
Collapse
|
38
|
Kümmerer K, Dionysiou DD, Olsson O, Fatta-Kassinos D. Reducing aquatic micropollutants - Increasing the focus on input prevention and integrated emission management. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 652:836-850. [PMID: 30380490 DOI: 10.1016/j.scitotenv.2018.10.219] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 10/15/2018] [Accepted: 10/15/2018] [Indexed: 06/08/2023]
Abstract
Pharmaceuticals and many other chemicals are an important basis for nearly all sectors including for example, food and agriculture, medicine, plastics, electronics, transport, communication, and many other products used nowadays. This comes along with a tremendous chemicalization of the globe, including ubiquitous presence of products of chemical and pharmaceutical industries in the aquatic environment. Use of these products will increase with population growth and living standard as will the need for clean water. In addition, climate change will exacerbate availability of water in sufficient quantity and quality. Since its implementation, conventional wastewater treatment has increasingly contributed to environmental protection and health of humans. However, with the increasing pollution of water by chemicals, conventional treatment turned out to be insufficient. It was also found that advanced effluent treatment methods such as extended filtration, the sorption to activated charcoal or advanced oxidation methods have their own limitations. These are, for example, increased demand for energy and hazardous chemicals, incomplete or even no removal of pollutants, the generation of unwanted products from parent compounds (transformation products, TPs) of often-unknown chemical structure, fate and toxicity. In many countries, effluent treatment is available only rarely if at all let alone advanced treatment. The past should teach us, that focusing only on technological approaches is not constructive for a sustainable water quality control. Therefore, in addition to conventional and advanced treatment optimization more emphasis on input prevention is urgently needed, including more and better control of what is present in the source water. Measures for input prevention are known for long. The main focus though has always been on the treatment, and measures taken at the source have gained only little attention so far. A more effective and efficient approach, however, would be to avoid pollution at the source, which would in turn allow more targeted treatment to meet treated water quality objectives globally. New developments within green and sustainable chemistry are offering new approaches that allow for input prevention and a more targeted treatment to succeed in pollution elimination in and at the source. To put this into practice, engineers, water scientists and chemists as well as microbiologists and scientists of other related disciplines need to cooperate more extensively than in the past. Applying principles such as the precautionary principle, or keeping water flows separate where possible will add to this. This implies not minimizing the efforts to improve wastewater treatment but to design effluents and chemicals in such a way that treatment systems and water environments can cope successfully with the challenge of micropollutants globally (Kümmerer et al., 2018). This paper therefore presents in its first part some of the limitations of effluent treatment in order to demonstrate the urgent need for minimizing water pollution at the source and, information on why source management is urgently needed to improve water quality and stimulate discussions how to protect water resources on a global level. Some principles of green and sustainable chemistry as well as other approaches, which are part of source management, are presented in the second part in order to stimulate discussion.
Collapse
Affiliation(s)
- Klaus Kümmerer
- Institute of Sustainable and Environmental Chemistry, Leuphana University Lüneburg, Universitätsallee 1, 21335 Lüneburg, Germany; International Sustainable Chemistry Collaboration Center (ISC(3)), Research and Education, Leuphana University Lüneburg, Universitätsallee 1, 21335 Lüneburg, Germany.
| | - Dionysios D Dionysiou
- Environmental Engineering and Science Program, Department of Chemical and Environmental Engineering (DCEE), 705 Engineering Research Center, University of Cincinnati, Cincinnati, OH 45221-0012, USA; Nireas-International Water Research Center, University of Cyprus, P.O. Box 20537, 1678, Nicosia, Cyprus
| | - Oliver Olsson
- Institute of Sustainable and Environmental Chemistry, Leuphana University Lüneburg, Universitätsallee 1, 21335 Lüneburg, Germany
| | - Despo Fatta-Kassinos
- Nireas-International Water Research Center, University of Cyprus, P.O. Box 20537, 1678, Nicosia, Cyprus; Department of Civil and Environmental Engineering, University of Cyprus, P.O. Box 20537, 1678, Nicosia, Cyprus
| |
Collapse
|
39
|
Rubio-Clemente A, Chica E, Peñuela G. Evaluation of the UV/H 2O 2 system for treating natural water with a mixture of anthracene and benzo[a]pyrene at ultra-trace levels. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:4381-4392. [PMID: 29872982 DOI: 10.1007/s11356-018-2411-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 05/24/2018] [Indexed: 06/08/2023]
Abstract
The presence of polycyclic aromatic hydrocarbons, such as anthracene (AN) and benzo[a]pyrene (BaP), in water has become a problem of great concern due to the detrimental health effects caused to humans and living beings. In this work, the efficiency of the UV/H2O2 system for degrading the target compounds at ultra-trace levels in surface water has been evaluated. For this purpose, a previous optimization step using a face-centered central composite experimental design has been conducted, considering the effect of the UV-C irradiance and the initial concentration of H2O2. It was evidenced that under optimal operating conditions (11 mg L-1 H2O2 and 0.63 mW cm-2 irradiance), AN and BaP removal percentages were higher than 99.8%. Additionally, 69.3% of the organic matter, in terms of total organic carbon, was mineralized without the production of transformation by-products more harmful than the parent compounds. These findings demonstrate the oxidation capacity of the examined system in a natural matrix for degrading micropollutants that cannot be converted through conventional treatment processes. Consequently, new horizons are opened for the effective use of the UV/H2O2 system for drinking water production, providing the accomplishment of other regulated parameters related to water quality.
Collapse
Affiliation(s)
- Ainhoa Rubio-Clemente
- Facultad de Ciencias de la Salud, Universidad Católica de Murcia UCAM, Avenida de los Jerónimos, s/n, Murcia, Spain.
- Grupo GDCON, Facultad de Ingeniería, Sede de Investigaciones Universitarias (SIU), Universidad de Antioquia UdeA, Calle 70, No. 52-51, Medellín, Colombia.
- Facultad de Ingeniería, Tecnológico de Antioquia-Institución Universitaria TdeA, Calle 78b, No. 72A-220, Medellín, Colombia.
| | - Edwin Chica
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Antioquia UdeA, Calle 70, No. 52-51, Medellín, Colombia
| | - Gustavo Peñuela
- Grupo GDCON, Facultad de Ingeniería, Sede de Investigaciones Universitarias (SIU), Universidad de Antioquia UdeA, Calle 70, No. 52-51, Medellín, Colombia
| |
Collapse
|
40
|
Bosio M, Satyro S, Bassin JP, Saggioro E, Dezotti M. Removal of pharmaceutically active compounds from synthetic and real aqueous mixtures and simultaneous disinfection by supported TiO 2/UV-A, H 2O 2/UV-A, and TiO 2/H 2O 2/UV-A processes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:4288-4299. [PMID: 29717425 DOI: 10.1007/s11356-018-2108-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 04/23/2018] [Indexed: 05/25/2023]
Abstract
Pharmaceutically active compounds are carried into aquatic bodies along with domestic sewage, industrial and agricultural wastewater discharges. Psychotropic drugs, which can be toxic to the biota, have been detected in natural waters in different parts of the world. Conventional water treatments, such as activated sludge, do not properly remove these recalcitrant substances, so the development of processes able to eliminate these compounds becomes very important. Advanced oxidation processes are considered clean technologies, capable of achieving high rates of organic compounds degradation, and can be an efficient alternative to conventional treatments. In this study, the degradation of alprazolam, clonazepam, diazepam, lorazepam, and carbamazepine was evaluated through TiO2/UV-A, H2O2/UV-A, and TiO2/H2O2/UV-A, using sunlight and artificial irradiation. While using TiO2 in suspension, best results were found at [TiO2] = 0.1 g L-1. H2O2/UV-A displayed better results under acidic conditions, achieving from 60 to 80% of removal. When WWTP was used, degradation decreased around 50% for both processes, TiO2/UV-A and H2O2/UV-A, indicating a strong matrix effect. The combination of both processes was shown to be an adequate approach, since removal increased up to 90%. H2O2/UV-A was used for disinfecting the aqueous matrices, while mineralization was obtained by TiO2-photocatalysis.
Collapse
Affiliation(s)
- Morgana Bosio
- Center of Studies on Worker's Health and Human Ecology, Sergio Arouca National School of Public Health, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
- COPPE-Chemical Engineering Program, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Suéllen Satyro
- Chemical & Biological Engineering, University of British Columbia, Vancouver, BC, Canada
| | - João Paulo Bassin
- COPPE-Chemical Engineering Program, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Enrico Saggioro
- Sanitation and Environment Health Department, Sergio Arouca National School of Public Health, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil.
| | - Márcia Dezotti
- COPPE-Chemical Engineering Program, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
41
|
Wang D, Zou J, Cai H, Huang Y, Li F, Cheng Q. Effective degradation of Orange G and Rhodamine B by alkali-activated hydrogen peroxide: roles of HO 2- and O 2·. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:1445-1454. [PMID: 30426376 DOI: 10.1007/s11356-018-3710-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 11/06/2018] [Indexed: 06/09/2023]
Abstract
Advanced oxidation processes offer effective solutions in treating wastewater from various industries. The process of alkali-activated hydrogen peroxide (H2O2) was superior for the treatment of alkaline dye wastewater because no additional reagents were required except H2O2. However, an important and interesting phenomenon had been observed that the primary reactive species were found different for degrading organic pollutants with the process of alkali-activated H2O2. Azo dye of Orange G (OG) and triphenylmethane dye of Rhodamine B (RhB) were chosen as the target organic pollutants. The influences of various parameters on OG and RhB degradation by alkali-activated H2O2 were evaluated. Furthermore, different scavengers, including ascorbic acid, methanol, t-butanol, isopropyl alcohol, furfuryl alcohol, and nitro blue tetrazolium, have been tested to identify the active species involved in dye degradation, and it was found that O2·- was mainly responsible for degrading OG, while HO2- anion was the primary oxidant for degrading RhB.
Collapse
Affiliation(s)
- Daiyao Wang
- Institute of Municipal and Environmental Engineering, College of Civil Engineering, Huaqiao University, Xiamen, 361021, Fujian, People's Republic of China
| | - Jing Zou
- Institute of Municipal and Environmental Engineering, College of Civil Engineering, Huaqiao University, Xiamen, 361021, Fujian, People's Republic of China.
| | - Huahua Cai
- Institute of Municipal and Environmental Engineering, College of Civil Engineering, Huaqiao University, Xiamen, 361021, Fujian, People's Republic of China
| | - Yixin Huang
- Institute of Municipal and Environmental Engineering, College of Civil Engineering, Huaqiao University, Xiamen, 361021, Fujian, People's Republic of China
| | - Fei Li
- Institute of Municipal and Environmental Engineering, College of Civil Engineering, Huaqiao University, Xiamen, 361021, Fujian, People's Republic of China
| | - Qingfeng Cheng
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu, 610225, Sichuan, People's Republic of China
| |
Collapse
|
42
|
Sharma A, Ahmad J, Flora SJS. Application of advanced oxidation processes and toxicity assessment of transformation products. ENVIRONMENTAL RESEARCH 2018; 167:223-233. [PMID: 30055452 DOI: 10.1016/j.envres.2018.07.010] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 06/09/2018] [Accepted: 07/05/2018] [Indexed: 05/03/2023]
Abstract
Advanced Oxidation Processes (AOPs) are the techniques employed for oxidation of various organic contaminants in polluted water with the objective of making it suitable for human consumption like household and drinking purpose. AOPs use potent chemical oxidants to bring down the contaminant level in the water. In addition to this function, these processes are also capable to kills microbes (as disinfectant) and remove odor as well as improve taste of the drinking water. The non-photochemical AOPs methods include generation of hydroxyl radical in absence of light either by ozonation or through Fenton reaction. The photochemical AOPs methods use UV light along with H2O2, O3 and/or Fe+2 to generate reactive hydroxyl radical. Non-photochemical method is the commonly used whereas, photochemical method is used when conventional O3 and H2O2 cannot completely oxidize organic pollutants. However, the choice of AOPs methods is depended upon the type of contaminant to be removed. AOPs cause loss of biological activity of the pollutant present in drinking water without generation of any toxicity. Conventional ozonation and AOPs can inactivate estrogenic compounds, antiviral compounds, antibiotics, and herbicides. However, the study of different AOPs methods for the treatment of drinking water has shown that oxidation of parent compound can also lead to the generation of a degradation/transformation product having biological activity/chemical toxicity similar to or different from the parent compound. Furthermore, an increased toxicity can also occur in AOPs treated drinking water. This review discusses various methods of AOPs, their merits, its application in drinking water treatment, the related issue of the evolution of toxicity in AOPs treated drinking water, biocatalyst, and analytical methods for identification of pollutants /transformed products and provides future directions to address such an issue.
Collapse
Affiliation(s)
- Abha Sharma
- National Institute of Pharmaceutical Education and Research, Shree Bhawani Paper Mill Road, ITI Compound, Raebareli 229010, Uttar Pradesh, India
| | - Javed Ahmad
- National Institute of Pharmaceutical Education and Research, Shree Bhawani Paper Mill Road, ITI Compound, Raebareli 229010, Uttar Pradesh, India
| | - S J S Flora
- National Institute of Pharmaceutical Education and Research, Shree Bhawani Paper Mill Road, ITI Compound, Raebareli 229010, Uttar Pradesh, India.
| |
Collapse
|
43
|
García-Córcoles MT, Rodríguez-Gómez R, de Alarcón-Gómez B, Çipa M, Martín-Pozo L, Kauffmann JM, Zafra-Gómez A. Chromatographic Methods for the Determination of Emerging Contaminants in Natural Water and Wastewater Samples: A Review. Crit Rev Anal Chem 2018; 49:160-186. [DOI: 10.1080/10408347.2018.1496010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- M. T. García-Córcoles
- Department of Analytical Chemistry, Research Group of Analytical Chemistry and Life Sciences, University of Granada, Granada, Spain
| | - R. Rodríguez-Gómez
- Department of Analytical Chemistry, Research Group of Analytical Chemistry and Life Sciences, University of Granada, Granada, Spain
- Laboratory of Instrumental Analysis and Bioelectrochemistry, Faculty of Pharmacy, Université libre de Bruxelles, Brussels, Belgium
| | - B. de Alarcón-Gómez
- Department of Analytical Chemistry, Research Group of Analytical Chemistry and Life Sciences, University of Granada, Granada, Spain
| | - M. Çipa
- Department of Chemistry, University of Tirana, Tirana, Albania
| | | | - J.-M. Kauffmann
- Laboratory of Instrumental Analysis and Bioelectrochemistry, Faculty of Pharmacy, Université libre de Bruxelles, Brussels, Belgium
| | - A. Zafra-Gómez
- Department of Analytical Chemistry, Research Group of Analytical Chemistry and Life Sciences, University of Granada, Granada, Spain
| |
Collapse
|
44
|
Antonio da Silva D, Cavalcante RP, Cunha RF, Machulek A, César de Oliveira S. Optimization of nimesulide oxidation via a UV-ABC/H 2O 2 treatment process: Degradation products, ecotoxicological effects, and their dependence on the water matrix. CHEMOSPHERE 2018; 207:457-468. [PMID: 29807345 DOI: 10.1016/j.chemosphere.2018.05.115] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 05/14/2018] [Accepted: 05/20/2018] [Indexed: 06/08/2023]
Abstract
Nimesulide (Nim) degradation in ultrapure water (UW) and municipal sewage (MS) via UV-ABC/H2O2 was investigated. The variables included in the experimental design were time, initial Nim, and initial H2O2 concentrations. Resulting decreases in Nim concentration (monitored by high performance liquid chromatography (HPLC) using a photodiode array detector operating at a maximum UV absorbance of 300 nm), mineralization (from total organic carbon (TOC) measurements), and ecotoxicity (assays employing the bioindicators Daphnia similis, Artemia salina, and Allium cepa) were also studied. Degradation rates of 90% or higher were found for 15-20 min reaction times, employing combinations of [H2O2] = 50-150 mg L-1 and [Nim] = 8.5-15 mg L-1 prepared with MS. Mineralization rates of 70% and higher were attained within 60 min of reaction for [Nim] = 15 mg L-1 prepared in MS with [H2O2] = 100 mg L-1. Nim by-products were detected and possible degradation pathways proposed. Ecotoxicity evaluation using A. salina, D. similis, and A. cepa revealed that the treated samples had significantly lower toxicity. Exposure to treated samples resulted in survival rates of 79% for A. salina and over 90% for D. similis. No root growth inhibition was observed in A. cepa exposed to treated samples, whereas exposure to untreated samples inhibited root growth by 60%. Statistical analysis revealed elimination of cytotoxicity and reduction of genotoxicity against A. cepa. The results showed that the UV-ABC/H2O2 process can be employed as a pre- or post-treatment method to remove Nim from contaminated wastewater.
Collapse
Affiliation(s)
- Débora Antonio da Silva
- Institute of Chemistry, Federal University of Mato Grosso do Sul, Av. Senador Filinto Muller, 1555, CP 549, Campo Grande, MS 79074-460, Brazil
| | - Rodrigo Pereira Cavalcante
- Institute of Chemistry, Federal University of Mato Grosso do Sul, Av. Senador Filinto Muller, 1555, CP 549, Campo Grande, MS 79074-460, Brazil
| | - Rebeca Fabbro Cunha
- Institute of Chemistry, Federal University of Mato Grosso do Sul, Av. Senador Filinto Muller, 1555, CP 549, Campo Grande, MS 79074-460, Brazil
| | - Amilcar Machulek
- Institute of Chemistry, Federal University of Mato Grosso do Sul, Av. Senador Filinto Muller, 1555, CP 549, Campo Grande, MS 79074-460, Brazil.
| | - Silvio César de Oliveira
- Institute of Chemistry, Federal University of Mato Grosso do Sul, Av. Senador Filinto Muller, 1555, CP 549, Campo Grande, MS 79074-460, Brazil.
| |
Collapse
|
45
|
Liu N, Huang WY, Li ZM, Shao HY, Wu MH, Lei JQ, Tang L. Radiolytic decomposition of sulfonamide antibiotics: Implications to the kinetics, mechanisms and toxicity. Sep Purif Technol 2018. [DOI: 10.1016/j.seppur.2018.03.060] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
46
|
Żur J, Piński A, Marchlewicz A, Hupert-Kocurek K, Wojcieszyńska D, Guzik U. Organic micropollutants paracetamol and ibuprofen-toxicity, biodegradation, and genetic background of their utilization by bacteria. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:21498-21524. [PMID: 29923050 PMCID: PMC6063337 DOI: 10.1007/s11356-018-2517-x] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 06/07/2018] [Indexed: 05/26/2023]
Abstract
Currently, analgesics and nonsteroidal anti-inflammatory drugs (NSAIDs) are classified as one of the most emerging group of xenobiotics and have been detected in various natural matrices. Among them, monocyclic paracetamol and ibuprofen, widely used to treat mild and moderate pain are the most popular. Since long-term adverse effects of these xenobiotics and their biological and pharmacokinetic activity especially at environmentally relevant concentrations are better understood, degradation of such contaminants has become a major concern. Moreover, to date, conventional wastewater treatment plants (WWTPs) are not fully adapted to remove that kind of micropollutants. Bioremediation processes, which utilize bacterial strains with increased degradation abilities, seem to be a promising alternative to the chemical methods used so far. Nevertheless, despite the wide prevalence of paracetamol and ibuprofen in the environment, toxicity and mechanism of their microbial degradation as well as genetic background of these processes remain not fully characterized. In this review, we described the current state of knowledge about toxicity and biodegradation mechanisms of paracetamol and ibuprofen and provided bioinformatics analysis concerning the genetic bases of these xenobiotics decomposition.
Collapse
Affiliation(s)
- Joanna Żur
- Department of Biochemistry, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Jagiellońska 28, 40-032, Katowice, Poland
| | - Artur Piński
- Department of Plant Anatomy and Cytology, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Jagiellońska 28, 40-032, Katowice, Poland
| | - Ariel Marchlewicz
- Department of Biochemistry, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Jagiellońska 28, 40-032, Katowice, Poland
| | - Katarzyna Hupert-Kocurek
- Department of Biochemistry, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Jagiellońska 28, 40-032, Katowice, Poland
| | - Danuta Wojcieszyńska
- Department of Biochemistry, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Jagiellońska 28, 40-032, Katowice, Poland
| | - Urszula Guzik
- Department of Biochemistry, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Jagiellońska 28, 40-032, Katowice, Poland.
| |
Collapse
|
47
|
Diez MC, Leiva B, Gallardo F. Novel insights in biopurification system for dissipation of a pesticide mixture in repeated applications. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:21440-21450. [PMID: 28914414 DOI: 10.1007/s11356-017-0130-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 09/07/2017] [Indexed: 06/07/2023]
Abstract
A biopurification system based on the adsorption and degradation capacity of a biomixture to degrade a mixture of pesticides (atrazine, chlorpyrifos, iprodione; 50 mg kg-1 each) in repeated applications (0, 30, and 60 days) was evaluated. Tanks of 1 m3 packed with a biomixture (ρ 0.29 g mL-1) with and without vegetal cover were used. The biomixture contained soil, peat, and wheat straw in a proportion 1:1:2 by volume, respectively. Pesticide concentrations, biological activities (urease, phenoloxidase, and dehydrogenase), and microbial community changes (DGGE and qPCR) were evaluated periodically. Pesticide dissipation was higher in tanks with vegetal cover (> 95%) and no variation was observed after the three applications; contrarily, pesticide dissipation decreased in the tank without vegetal cover after each application. The presence of vegetal cover decreased the half-life of pesticides by at least twice. Biological activities were in general not affected by the application and reapplication of pesticides in the same treatment; however, they exhibited some differences between tanks containing and lacking the vegetal cover. High similarity between microbial groups (actinobacteria, bacteria, and fungi) was observed, suggesting no influence ascribable to the successive pesticide applications. The number of copies of bacteria and actinobacteria remained almost constant during the assay. However, the number of copies of fungi was significantly higher in the uncontaminated tank without vegetal cover.
Collapse
Affiliation(s)
- Maria Cristina Diez
- Chemical Engineering Department, La Frontera University, Temuco, Chile.
- Biotechnological Research Center Applied to the Environment - Scientific and Technological Bioresource Nucleus (CIBAMA-BIOREN), Temuco, Chile.
| | - Bárbara Leiva
- Biotechnological Research Center Applied to the Environment - Scientific and Technological Bioresource Nucleus (CIBAMA-BIOREN), Temuco, Chile
| | - Felipe Gallardo
- Biotechnological Research Center Applied to the Environment - Scientific and Technological Bioresource Nucleus (CIBAMA-BIOREN), Temuco, Chile
- Chemical Sciences and Natural Resource Department, La Frontera University, Temuco, Chile
| |
Collapse
|
48
|
Gackowska A, Studziński W, Kudlek E, Dudziak M, Gaca J. Estimation of physicochemical properties of 2-ethylhexyl-4-methoxycinnamate (EHMC) degradation products and their toxicological evaluation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:16037-16049. [PMID: 29594898 PMCID: PMC5984635 DOI: 10.1007/s11356-018-1796-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 03/19/2018] [Indexed: 05/16/2023]
Abstract
The organic UV filters, commonly used in personal protection products, are of concern because of their potential risk to aquatic ecosystems and living organisms. One of UV filters is ethylhexyl-4-methoxycinnamate (EHMC) acid. Studies have shown that, in the presence of oxidizing and chlorinating factors, EHMC forms a series of products with different properties than the substrate. In this study, the toxicities of EHMC and its transformation/degradation products formed under the influence of NaOCl/UV and H2O2/UV systems in the water medium were tested using Microtox® bioassay and by observation of mortality of juvenile crustaceans Daphnia magna and Artemia Salina. We have observed that oxidation and chlorination products of EHMC show significantly higher toxicity than EHMC alone. The toxicity of chemicals is related to their physicochemical characteristic such as lipophilicity and substituent groups. With the increase in lipophilicity of products, expressed as log KOW, the toxicity (EC50) increases. On the basis of physicochemical properties such as vapour pressure (VP), solubility (S), octanol-water partition coefficient (KOW), bioconcentration factor (BCF) and half-lives, the overall persistence (POV) and long-range transport potential (LRTP) of all the products and EHMC were calculated. It was shown that the most persistent and traveling on the long distances in environment are methoxyphenol chloroderivatives, then methoxybenzene chloroderivatives, EHMC chloroderivatives, methoxybenzaldehyde chloroderivatives and methoxycinnamate acid chloroderivatives. These compounds are also characterised by high toxicity.
Collapse
Affiliation(s)
- Alicja Gackowska
- Faculty of Chemical Technology and Engineering, UTP University of Science and Technology, Seminaryjna 3, 85-326, Bydgoszcz, Poland.
| | - Waldemar Studziński
- Faculty of Chemical Technology and Engineering, UTP University of Science and Technology, Seminaryjna 3, 85-326, Bydgoszcz, Poland
| | - Edyta Kudlek
- Institute of Water and Wastewater Engineering, Silesian University of Technology, Konarskiego 18, 44-100, Gliwice, Poland
| | - Mariusz Dudziak
- Institute of Water and Wastewater Engineering, Silesian University of Technology, Konarskiego 18, 44-100, Gliwice, Poland
| | - Jerzy Gaca
- Faculty of Chemical Technology and Engineering, UTP University of Science and Technology, Seminaryjna 3, 85-326, Bydgoszcz, Poland
| |
Collapse
|
49
|
Martínez-Alcalá I, Pellicer-Martínez F, Fernández-López C. Pharmaceutical grey water footprint: Accounting, influence of wastewater treatment plants and implications of the reuse. WATER RESEARCH 2018; 135:278-287. [PMID: 29482095 DOI: 10.1016/j.watres.2018.02.033] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 02/12/2018] [Accepted: 02/14/2018] [Indexed: 06/08/2023]
Abstract
Emerging pollutants, including pharmaceutical compounds, are producing water pollution problems around the world. Some pharmaceutical pollutants, which mainly reach ecosystems within wastewater discharges, are persistent in the water cycle and can also reach the food chain. This work addresses this issue, accounting the grey component of the water footprint (GWFP) for four of the most common pharmaceutical compounds (carbamazepine (CBZ), diclofenac (DCF), ketoprofen (KTP) and naproxen (NPX)). In addition, the GWFC for the main conventional pollutants is also accounted (nitrate, phosphates and organic matter). The case study is the Murcia Region of southeastern Spain, where wastewater treatment plants (WWTPs) purify 99.1% of the wastewater discharges and there is an important direct reuse of the treated wastewater in irrigation. Thus, the influence of WWTPs and reuse on the GWF is analysed. The results reveal that GWFP, only taking into account pharmaceutical pollutants, has a value of 301 m3 inhabitant-1 year-1; considering only conventional pollutants (GWFC), this value increases to 4718 m3 inhabitant-1 year-1. So, the difference between these values is such that in other areas with consumption habits similar to those of the Murcia Region, and without wastewater purification, conventional pollutants may well establish the value of the GWF. On average, the WWTPs reduce the GWFC by 90% and the GWFP by 26%. These different reductions of the pollutant concentrations in the treated effluents show that the GWF is not only due to conventional pollutants, and other contaminants can became critical, such as the pharmaceutical pollutants. The reuse further reduces the value of the GWF for the Murcia Region, by around 43.6%. However, the reuse of treated wastewater is controversial, considering the pharmaceutical contaminants and their possible consequences in the food chain. In these cases, the GWF of pharmaceutical pollutants can be used to provide a first approximation of the dilution that should be applied to the treated wastewater discharges when they are reused for another economic activity that imposes quality restrictions. For the case of agriculture in the Murcia Region, the dilution required is 2 (fresh water) to 1 (treated wastewater), taking into account the pollution thresholds established in this work.
Collapse
Affiliation(s)
- Isabel Martínez-Alcalá
- UCAM, Catholic University of Murcia, Campus de los Jerónimos, 135 Guadalupe, 30107 Murcia, Spain
| | | | - Carmen Fernández-López
- UCAM, Catholic University of Murcia, Campus de los Jerónimos, 135 Guadalupe, 30107 Murcia, Spain
| |
Collapse
|
50
|
Zhang R, Wang X, Zhou L, Liu Z, Crump D. The impact of dissolved oxygen on sulfate radical-induced oxidation of organic micro-pollutants: A theoretical study. WATER RESEARCH 2018; 135:144-154. [PMID: 29466718 DOI: 10.1016/j.watres.2018.02.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 02/09/2018] [Accepted: 02/12/2018] [Indexed: 06/08/2023]
Abstract
Sulfate radical (SO4.-)-induced oxidation is an important technology in advanced oxidation processes (AOPs) for the removal of pollutants. To date, few studies have assessed the effects of dissolved oxygen (DO) on the SO4.--induced oxidation of organic micro-pollutants. In the present work, a quantum chemical calculation was used to investigate the influence of the external oxygen molecule on the Gibbs free energy (Gpollutant) and HOMO-LUMO gap (ΔE) of 15 organic micro-pollutants representing four chemical categories. Several thermodynamic and statistical models were combined with the data from the quantum chemical calculation to illustrate the impact of DO on the oxidation of organic micro-pollutants by SO4.-. Results indicated that the external oxygen molecule increased Gpollutant of all studied chemicals, which implies DO has the potential to decrease the energy barrier of the SO4.--induced oxidation and shift the chemical equilibrium of the reaction towards the side of products. From the perspective of kinetics, DO can accelerate the oxidation by decreasing ΔE of organic micro-pollutants. In addition, changes of Gpollutant and ΔE of the SO4.--induced oxidation were both significantly different between open-chain and aromatic chemicals, and these differences were partially attributed to the difference of polarizability of these two types of chemicals. Furthermore, we revealed that all changes of Gpollutant and ΔE induced by DO were dependent on the DO content. Our study emphasizes the significance of DO on the oxidation of organic micro-pollutants by SO4.-, and also provides a theoretical method to study the effect of components in wastewater on removal of organic pollutants in AOPs.
Collapse
Affiliation(s)
- Rui Zhang
- School of Resources and Environment, University of Jinan, 250022, Jinan, PR China.
| | - Xiaoxiang Wang
- Association of Chinese Chemists and Chemical Engineers in Germany, 67117, Limburgerh of, Germany; State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, 210023, Nanjing, PR China
| | - Lei Zhou
- State Environmental Protection Key Lab of Environmental Risk Assessment and Control on Chemical Processes, School of Resources & Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, PR China; Univ Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, F-69c626, 2 Avenue Albert Einstein, Villeurbanne, France.
| | - Zhu Liu
- Association of Chinese Chemists and Chemical Engineers in Germany, 67117, Limburgerh of, Germany; Theoretical Chemistry and Catalysis Research Center, Technische Universität München, 85747, Garching, Germany
| | - Doug Crump
- Environment and Climate Change Canada, National Wildlife Research Centre, 1125, Colonel By Drive, K1A 0H3, Ottawa, Canada
| |
Collapse
|