1
|
McCarthy SF, Tucker JAL, Hazell TJ. Exercise-induced appetite suppression: An update on potential mechanisms. Physiol Rep 2024; 12:e70022. [PMID: 39187396 PMCID: PMC11347021 DOI: 10.14814/phy2.70022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/16/2024] [Accepted: 08/16/2024] [Indexed: 08/28/2024] Open
Abstract
The first systematic reviews of the effects of exercise on appetite-regulation and energy intake demonstrated changes in appetite-regulating hormones consistent with appetite suppression and decreases in subsequent relative energy intake over a decade ago. More recently, an intensity-dependent effect and several potential mechanisms were proposed, and this review aims to highlight advances in this field. While exercise-induced appetite suppression clearly involves acylated ghrelin, glucagon-like peptide-1 may also be involved, though recent evidence suggests peptide tyrosine tyrosine may not be relevant. Changes in subjective appetite perceptions and energy intake continue to be equivocal, though these results are likely due to small sample sizes and methodological inconsistencies. Of the proposed mechanisms responsible for exercise-induced appetite suppression, lactate has garnered the most support through in vitro and in vivo rodent studies as well as a growing amount of work in humans. Other potential modulators of exercise-induced appetite suppression may include sex hormones, growth-differentiation factor 15, Lac-Phe, brain-derived neurotrophic factor, and asprosin. Research should focus on the mechanisms responsible for the changes and consider these other modulators (i.e., myokines/exerkines) of appetite to improve our understanding of the role of exercise on appetite regulation.
Collapse
Affiliation(s)
- Seth F. McCarthy
- Department of Kinesiology and Physical EducationWilfrid Laurier UniversityWaterlooOntarioCanada
| | - Jessica A. L. Tucker
- Department of Kinesiology and Physical EducationWilfrid Laurier UniversityWaterlooOntarioCanada
| | - Tom J. Hazell
- Department of Kinesiology and Physical EducationWilfrid Laurier UniversityWaterlooOntarioCanada
| |
Collapse
|
2
|
Howell BE, Navarroli G, DePasquale SW, Cooke SJ, Hasler CT. Sex and season influence behaviour and physiology of lake trout following angling. CONSERVATION PHYSIOLOGY 2024; 12:coae041. [PMID: 38974501 PMCID: PMC11224997 DOI: 10.1093/conphys/coae041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/15/2024] [Accepted: 06/07/2024] [Indexed: 07/09/2024]
Abstract
Catch-and-release angling exposes fish to challenges that may result in sub-lethal effects or mortality. Lake trout (Salvelinus namaycush) undergo high rates of release because of size-based harvest regulations or voluntary angler behaviour. Here, we examine short-term impairment in lake trout angled during the summer (n = 74) and fall spawning period (n = 33) to inform best practices for angling. Immediately following capture or 0.5 h post-capture, fish underwent reflex and barotrauma assessments, and a small blood sample was collected. Fish were also fitted with an externally mounted biologger equipped with depth, temperature and tri-axial acceleration sensors, that was tethered to allow retrieval of the logger after 14 min. In the summer, reflex impairment and barotrauma at 0 and 0.5 h were significantly correlated. Loss of orientation and bloating were the most observed indicators. Larger fish and those captured at increased depth had higher barotrauma scores, while prolonged fight times decreased the barotrauma score regardless of sampling time. Plasma cortisol, lactate and glucose increased 0.5 h after capture, and extracellular and intracellular pH decreased, all signs that angling was inducing a metabolic response. However, no relationships were found between blood indices and mortality (18.9%). The time required to reach maximum depth after release was longer for fish with increased air exposure but shorter for those with longer fight times. During the fall, fish displayed no mortality or reflex impairment. Anal prolapse was the most observed indicator of barotrauma but only observed in females. Blood indices were most altered 0.5 h after capture, with increased cortisol values for fish that were female, particularly large or captured at deeper depth. Locomotor activity was highest for males and increased with depth. Together, our findings suggest that the effects of catch-and-release angling may be dependent on several factors, including sex, season and angling depth.
Collapse
Affiliation(s)
- Bradley E Howell
- Fish Biology and Conservation Laboratory, Department of Biology, The University of Winnipeg, 515 Portage Avenue, Winnipeg, MB R3B 2E9, Canada
| | - Giulio Navarroli
- Fish Biology and Conservation Laboratory, Department of Biology, The University of Winnipeg, 515 Portage Avenue, Winnipeg, MB R3B 2E9, Canada
| | - Simon W DePasquale
- Fish Biology and Conservation Laboratory, Department of Biology, The University of Winnipeg, 515 Portage Avenue, Winnipeg, MB R3B 2E9, Canada
| | - Steven J Cooke
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology and Institute of Environmental and Interdisciplinary Science, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada
| | - Caleb T Hasler
- Fish Biology and Conservation Laboratory, Department of Biology, The University of Winnipeg, 515 Portage Avenue, Winnipeg, MB R3B 2E9, Canada
| |
Collapse
|
3
|
Torres T, Adam N, Mhaouty-Kodja S, Naulé L. Reproductive function and behaviors: an update on the role of neural estrogen receptors alpha and beta. Front Endocrinol (Lausanne) 2024; 15:1408677. [PMID: 38978624 PMCID: PMC11228153 DOI: 10.3389/fendo.2024.1408677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/29/2024] [Indexed: 07/10/2024] Open
Abstract
Infertility is becoming a major public health problem, with increasing frequency due to medical, environmental and societal causes. The increasingly late age of childbearing, growing exposure to endocrine disruptors and other reprotoxic products, and increasing number of medical reproductive dysfunctions (endometriosis, polycystic ovary syndrome, etc.) are among the most common causes. Fertility relies on fine-tuned control of both neuroendocrine function and reproductive behaviors, those are critically regulated by sex steroid hormones. Testosterone and estradiol exert organizational and activational effects throughout life to establish and activate the neural circuits underlying reproductive function. This regulation is mediated through estrogen receptors (ERs) and androgen receptor (AR). Estradiol acts mainly via nuclear estrogen receptors ERα and ERβ. The aim of this review is to summarize the genetic studies that have been undertaken to comprehend the specific contribution of ERα and ERβ in the neural circuits underlying the regulation of the hypothalamic-pituitary-gonadal axis and the expression of reproductive behaviors, including sexual and parental behavior. Particular emphasis will be placed on the neural role of these receptors and the underlying sex differences.
Collapse
Affiliation(s)
| | | | | | - Lydie Naulé
- Sorbonne Université, CNRS UMR8246, INSERM U1130, Neuroscience Paris Seine – Institut de Biologie Paris Seine, Paris, France
| |
Collapse
|
4
|
Nemeth M, Meidlinger B, Barnreiter E, Wallner B, Millesi E. Metabolic rates in female guinea pigs during different reproductive stages. ZOOLOGY 2023; 161:126132. [PMID: 37931560 DOI: 10.1016/j.zool.2023.126132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 10/26/2023] [Accepted: 10/28/2023] [Indexed: 11/08/2023]
Abstract
Reproduction in female mammals is characterized by major changes in steroid hormone concentrations, which can be linked to fluctuations in energy expenditure (EE). Estradiol and cortisol can increase EE and metabolic rates (MRs), but knowledge on MR changes during the estrous cycle and gestation is scarce for many species. This also applies to the domestic guinea pig, a species exhibiting an exceptional estrous cycle among rodents. In this study, MRs were measured through oxygen (O2) consumption in female guinea pigs during different reproductive stages. Mean O2 consumption over 2.5 h, resting metabolic rate (RMR, lowest and most stable O2 consumption over 3 min), body mass, fecal estrogen and progesterone, and saliva cortisol concentrations were measured in twelve female guinea pigs in a repeated measurements design during diestrus, estrus, and the second trimester of gestation. In estrus, body mass was significantly lower and estrogen and cortisol concentrations were significantly higher compared to diestrus and gestation. Mean O2 consumption and RMR both were significantly increased in estrus compared to diestrus. Additionally, a positive effect of body mass on MRs detected during diestrus and gestation was not found during estrus. Mean O2 consumption was also higher during gestation compared to diestrus, and a significant increase in cortisol concentrations during the 2.5-h MR measurement was recorded. The results indicate that estrus in guinea pigs is energetically demanding, which probably reflects catabolic effects of estrogens and cortisol that uncoupled MRs from body mass. Knowledge on the energetic requirements associated with different reproductive stages is important for future physiological and behavioral studies on female guinea pigs.
Collapse
Affiliation(s)
- Matthias Nemeth
- Department of Behavioral and Cognitive Biology, Faculty of Life Sciences, University of Vienna, University of Vienna Biology Building, Djerassiplatz 1, 1030 Vienna, Austria.
| | - Bettina Meidlinger
- Department of Behavioral and Cognitive Biology, Faculty of Life Sciences, University of Vienna, University of Vienna Biology Building, Djerassiplatz 1, 1030 Vienna, Austria
| | - Elisabeth Barnreiter
- Department of Behavioral and Cognitive Biology, Faculty of Life Sciences, University of Vienna, University of Vienna Biology Building, Djerassiplatz 1, 1030 Vienna, Austria
| | - Bernard Wallner
- Department of Behavioral and Cognitive Biology, Faculty of Life Sciences, University of Vienna, University of Vienna Biology Building, Djerassiplatz 1, 1030 Vienna, Austria
| | - Eva Millesi
- Department of Behavioral and Cognitive Biology, Faculty of Life Sciences, University of Vienna, University of Vienna Biology Building, Djerassiplatz 1, 1030 Vienna, Austria
| |
Collapse
|
5
|
Zhao H, He X, Zhang X, Shi J, Zhou R, Mai R, Su Q, Cai G, Huang S, Xu Z, Wu Z, Li Z. Progesterone and Androstenedione Are Important Follicular Fluid Factors Regulating Porcine Oocyte Maturation Quality. Animals (Basel) 2023; 13:1811. [PMID: 37889685 PMCID: PMC10251964 DOI: 10.3390/ani13111811] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/25/2023] [Accepted: 05/29/2023] [Indexed: 10/29/2023] Open
Abstract
Oocytes matured in vitro are useful for assisted human and farm animal reproduction. However, the quality of in vitro matured oocytes is usually lower than that of in vivo matured oocytes, possibly due to the absence of some important signal regulators in vitro. In this study, untargeted metabolomics was used to detect the changes in the metabolites in the follicular fluid (FF) during in vivo pig oocyte maturation and in the culture medium during in vitro maturation. Our results showed that the total metabolite changing profile of the in vivo FF was different from that of the in vitro maturation medium, but the levels of 23 differentially expressed metabolites (DEMs) changed by following the same trend during both in vivo and in vitro pig oocyte maturation. These 23 metabolites may be important regulators of porcine oocyte maturation. We found that progesterone and androstenedione, two factors in the ovarian steroidogenesis pathway enriched from the DEMs, were upregulated in the FF during in vivo pig oocyte maturation. The levels of these two factors were 31 and 20 fold, respectively, and they were higher in the FF than in the culture medium at the oocyte mature stage. The supplementation of progesterone and androstenedione during in vitro maturation significantly improved the pig oocyte maturation rate and subsequent embryo developmental competence. Our finding suggests that a metabolic abnormality during in vitro pig oocyte maturation affects the quality of the matured oocytes. This study identified some important metabolites that regulate oocyte maturation and their developmental potential, which will be helpful to improve assisted animal and human reproduction.
Collapse
Affiliation(s)
- Huaxing Zhao
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; (H.Z.)
- State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, Guangzhou 510642, China
| | - Xiaohua He
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; (H.Z.)
- State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, Guangzhou 510642, China
| | - Xianjun Zhang
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; (H.Z.)
- State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, Guangzhou 510642, China
| | - Junsong Shi
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, Guangzhou 510642, China
- Guangdong Wens Breeding Swine Technology Co., Ltd., Yunfu 527439, China
| | - Rong Zhou
- Guangdong Wens Breeding Swine Technology Co., Ltd., Yunfu 527439, China
| | - Ranbiao Mai
- Guangdong Wens Breeding Swine Technology Co., Ltd., Yunfu 527439, China
| | - Qiaoyun Su
- Guangdong Wens Breeding Swine Technology Co., Ltd., Yunfu 527439, China
| | - Gengyuan Cai
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; (H.Z.)
- State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, Guangzhou 510642, China
| | - Sixiu Huang
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; (H.Z.)
- State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, Guangzhou 510642, China
| | - Zheng Xu
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; (H.Z.)
- State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, Guangzhou 510642, China
| | - Zhenfang Wu
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; (H.Z.)
- State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Zicong Li
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; (H.Z.)
- State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| |
Collapse
|
6
|
Aldeli N, Soukkarie C, Hanano A. Transcriptional, hormonal and histological alterations in the ovaries of BALB/c mice exposed to TCDD in connection with multigenerational female infertility. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 258:114990. [PMID: 37156038 DOI: 10.1016/j.ecoenv.2023.114990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/01/2023] [Accepted: 05/04/2023] [Indexed: 05/10/2023]
Abstract
2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), the most toxic congener of dioxins, has a proven reproductive toxicity. Due to the lack of evidence on the multigenerational female reproductive toxicity of TCDD through the maternal exposure, the current study aims to evaluate, on the one hand, the acute reproductive toxicity of TCDD on adult female pre-gestational exposed to a critical single dose of TCDD (25 μg/kg) for a week (group referred to as AFnG; adult female/non-gestation). On the other hand, the transcription, hormonal and histological effects of TCDD on the females of two generations F1 and F2, were also investigated after the exposure of pregnant females to TCDD on gestational day 13 (GD13) (group referred to as AFG; adult female/gestation). First, our data showed alternations in the ovarian expressional pattern of certain key genes involved in the detoxification of TCDD as well as in the biosynthesis of steroidal hormones. The expression of Cyp1a1 was highly induced in TCDD-AFnG group, but reduced in both F1 and F2. While the transcripts levels of Cyp11a1 and 3βhsd2 were decreased, Cyp19a1 transcripts were increased as a function of TCDD exposure. This was synchronized with a dramatic increase in the level of estradiol hormone in the females of both experimental groups. Beside a significant reduce in their size and weight, ovaries of TCDD-exposed females showed serious histological alterations marked by atrophy of the ovary, congestion in the blood vessels, necrosis in the layer of granular cells, dissolution of the oocyte and nucleus of ovarian follicles. Finally, the female fertility was dramatically affected across generations with a reduced male\female ratio. Our data indicate that the exposure of pregnant female to TCDD has serious negative effects in the female productive system across generations and suggest the use of hormonal alternation as biomarker to monitor and assess the indirect exposure of these generations to TCDD.
Collapse
Affiliation(s)
- Nour Aldeli
- Department of Animal Biology, Faculty of Sciences, University of Damascus, Damascus, Syria
| | - Chadi Soukkarie
- Department of Animal Biology, Faculty of Sciences, University of Damascus, Damascus, Syria
| | - Abdulsamie Hanano
- Department of Molecular Biology and Biotechnology, Atomic Energy Commission of Syria (AECS), Damascus, Syria.
| |
Collapse
|
7
|
Snider AP, Yake HK, Granger CD, Rosasco SL, McDaneld TG, Snelling WM, Chase CC, Miles JR, Lents CA, Quail LK, Rich JJ, Epperson KM, Crouse MS, Summers AF, Perry GA, Bennett GL, Cushman RA. Polymorphism of the follicle stimulating hormone receptor does not impact reproductive performance or in-vitro embryo production in beef heifers. Theriogenology 2023; 195:131-137. [DOI: 10.1016/j.theriogenology.2022.10.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 10/17/2022] [Accepted: 10/20/2022] [Indexed: 11/17/2022]
|
8
|
Salem AM, Latif R, Rafique N, Aldawlan MI, Almulla LB, Alghirash DY, Fallatah OA, Alotaibi FM, Aljabbari FH, Yar T. Variations of Ghrelin and Obestatin Hormones During the Menstrual Cycle of Women of Different BMIs. Int J Womens Health 2022; 14:1297-1305. [PMID: 36105791 PMCID: PMC9464778 DOI: 10.2147/ijwh.s375594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 09/01/2022] [Indexed: 11/23/2022] Open
Abstract
Introduction The cyclical changes of hormones during the menstrual cycle are responsible not only for reproductive function but also have other effects on dietary intake and appetite. The current study aimed to investigate the variations of appetite-related hormones (ghrelin and obestatin) during the menstrual cycle and their association with adipokines, estrogen, and BMI. Methods Fifty-six regularly menstruating female students were grouped into normal weight (BMI ≤24.9; n = 26), and overweight/obese subjects (BMI ≥25; n = 30). Serum ghrelin, obestatin, leptin, adiponectin, and estrogen levels were measured during the early follicular, preovulatory, and luteal phases of the menstrual cycle using the ELISA technique. Results There were insignificant differences in the levels of serum ghrelin, obestatin, and ghrelin/obestatin ratio across menstrual cycle phases in the whole cohort as well as in each group separately (p > 0.05). Serum ghrelin was significantly less in OW-OB as compared to the NW group (p = 0.005), whereas the average serum obestatin did not show any significant differences between the two groups. No significant correlation was seen between ghrelin and obestatin with the adipokines and estradiol. Conclusion Significant low level of ghrelin was observed in obese group during the follicular phase. This finding may provide new insights into the altered ghrelin patterns in OW-OB individuals, as a cause or a consequence of obesity and related menstrual disorders.
Collapse
Affiliation(s)
- Ayad Mohammed Salem
- Department of Physiology, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Rabia Latif
- Department of Physiology, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Nazish Rafique
- Department of Physiology, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Mubarak I Aldawlan
- College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Layan B Almulla
- College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Duaa Y Alghirash
- College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Ola A Fallatah
- College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Faleh M Alotaibi
- College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Fahad H Aljabbari
- College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Talay Yar
- Department of Physiology, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| |
Collapse
|
9
|
Andriyanto A, Widi LN, Subangkit M, Tarigan E, Irarang Y, Nengsih RF, Manalu W. Potential use of Indonesian basil (Ocimum basilicum) maceration to increase estradiol and progesterone synthesis and secretion to improve prenatal growth of offspring using female albino rats as an animal model. Vet World 2022; 15:1197-1207. [PMID: 35765474 PMCID: PMC9210833 DOI: 10.14202/vetworld.2022.1197-1207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 03/24/2022] [Indexed: 11/24/2022] Open
Abstract
Background and Aim: Basil is well known as a medicinal plant that contains high essential oils and antioxidant compounds that have the potential to improve ovarian development. Thus, basil may have the potential to improve the growth and development of the uterus and placenta for optimal prenatal growth of offspring. This study aimed to evaluate the effect of Indonesian basil maceration on gonad development of mature female albino rats. Materials and Methods: Fifteen 8-week-old female Sprague-Dawley rats, at the diestrus stage of the estrus cycle, were divided into three different treatment groups: Control group (mineral water), bas-low group (1% of basil maceration), and bas-high group (5% of basil maceration). Basil maceration was dissolved and administered in mineral drinking water, and the treatments were given for 20 days (4 estrus cycles). At the end of the treatment period, serum follicle-stimulating hormone (FSH), estradiol, and progesterone (Pg) were measured using enzyme-linked immunosorbent assay. The relative weight of the ovary and uterus; diameter and length of uterine cornual; vascularization of uterus; the diameter of uterine glands; the number of primary, secondary, and tertiary de Graaf follicles; the number of corpora luteum; as well as the expression of vascular endothelial growth factor (VEGF) in the ovary were determined. Results: There was no significant difference (p>0.05) in the serum FSH level of rats treated with basil maceration drinking water doses of 1% and 5% compared to the control group. However, serum estradiol and Pg concentrations in the 1% and 5% basil maceration groups were significantly higher (p<0.05) than those of the control group. Furthermore, 1% and 5% basil maceration significantly increased the uterus’s relative weight, diameter, and vascularization. Serum estradiol concentrations contributed to the elevated expression of VEGF compared to Pg. Conclusion: Administration of basil maceration for 20 days before mating could improve follicle growth and development, eventually increasing estradiol synthesis and secretion, thus improving the uterus’s preparation for implantation. This makes basil maceration an attractive candidate in clinical research to enhance the growth and development of the uterus and placenta, which will better support the optimum prenatal growth and development of embryos and fetuses, resulting in superior offspring.
Collapse
Affiliation(s)
- Andriyanto Andriyanto
- Department of Anatomy, Physiology, and Pharmacology, Faculty of Veterinary Medicine, IPB University, Bogor, Indonesia
| | - Leliana Nugrahaning Widi
- Department of Anatomy, Physiology, and Pharmacology, Faculty of Veterinary Medicine, IPB University, Bogor, Indonesia
| | - Mawar Subangkit
- Department of Clinic, Reproduction, and Pathology, Faculty of Veterinary Medicine, IPB University, Bogor, Indonesia
| | - Elpita Tarigan
- Department of Anatomy, Physiology, and Pharmacology, Faculty of Veterinary Medicine, IPB University, Bogor, Indonesia
| | - Yusa Irarang
- Graduate School of Veterinary Biomedical Science, Faculty of Veterinary Medicine, IPB University, Bogor, Indonesia
| | - Rindy Fazni Nengsih
- Department of Anatomy, Physiology, and Pharmacology, Faculty of Veterinary Medicine, IPB University, Bogor, Indonesia
| | - Wasmen Manalu
- Department of Anatomy, Physiology, and Pharmacology, Faculty of Veterinary Medicine, IPB University, Bogor, Indonesia
| |
Collapse
|
10
|
Zheng S, Wu L, Fan C, Lin J, Zhang Y, Simoncini T, Fu X. The role of Gα protein signaling in the membrane estrogen receptor-mediated signaling. Gynecol Endocrinol 2021; 37:2-9. [PMID: 33412963 DOI: 10.1080/09513590.2020.1851674] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Estrogens exert rapid, extranuclear effects by their action on the plasma membrane estrogen receptors (mERs). Gα protein associated with the cell membrane is involved in many important processes regulated by estrogens. However, the Gα's role in the mER-mediated signaling and the signaling pathways involved are poorly understood. This review aims to outline the Gα's role in the mER-mediated signaling. Immunoblotting, immunofluorescence, co-immunoprecipitation, and RNA interference were carried out using vascular endothelial cells (ECs) and human breast carcinoma cell lines as experimental models. Electrophysiology and immunocytochemistry were carried out using guinea pigs as animal models. Recent advances suggest that the signaling of mERα through Gα is required for vascular EC migration or endothelial H2S release, while Gα13 is involved in estrogen-induced breast cancer cell invasion. Besides, the Gαq-coupled PLC-PKC-PKA pathway is critical for the neural regulation of energy homeostasis. This review summarizes the contributions of Gα to mER-mediated signaling, including cardiovascular protection, breast cancer metastasis, neural regulation of homeostatic functions, and osteogenesis.
Collapse
Affiliation(s)
- Shuhui Zheng
- Research Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Lin Wu
- Department of Cardiology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Chao Fan
- Department of Gynecology and Obstetrics, The Sixth Affiliated Hospital, Key Laboratory of Cardiovascular Diseases, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, P.R. China
| | - Jingxia Lin
- Department of Blood Transfusion, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yaxing Zhang
- Department of Traditional Chinese Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Tommaso Simoncini
- Molecular and Cellular Gynecological Endocrinology Laboratory (MCGEL), Department of Reproductive Medicine and Child Development, University of Pisa, Pisa, Italy
| | - Xiaodong Fu
- Department of Gynecology and Obstetrics, The Sixth Affiliated Hospital, Key Laboratory of Cardiovascular Diseases, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, P.R. China
| |
Collapse
|
11
|
Wang C, Fei X, Zhang H, Zhou W, Cheng Z, Feng Y. Proteomic Analysis of the Alterations in Follicular Fluid Proteins During Oocyte Maturation in Humans. Front Endocrinol (Lausanne) 2021; 12:830691. [PMID: 35185790 PMCID: PMC8850365 DOI: 10.3389/fendo.2021.830691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 12/31/2021] [Indexed: 11/13/2022] Open
Abstract
Many components in ovarian follicles (follicular fluid, cumulus cells, granular cells, etc.) dynamically change during folliculogenesis and play a positive or negative role in oocyte maturation. Infertile women who underwent intracytoplasmic sperm injection (ICSI) treatment in the reproductive medicine centre of Hangzhou Women's Hospital between October 2018 and October 2021 were included. The ovarian follicular fluid and cumulus cells of diminished ovarian response (DOR) patients and control subjects with medical records of clinical data were collected. In total, 31 differentially expressed proteins, including 10 upregulated proteins (>1.50-fold, P<0.05) and 21 downregulated proteins (<0.67-fold, P<0.05), were identified in mature vs. immature oocytes by iTRAQ labelling coupled with 2D LC-MS/MS. GO analysis revealed that 'cell population proliferation' was the most diverse enrichment trend between up/downregulated proteins, while phagosome process and the PI3K-Akt signaling pathway were the two most significant pathways revealed by KEGG enrichment classification. Human prostatic acid phosphatase (PAP, ACPP) and CD5 antigen-like (CD5L) were two proteins verified by ELISA to be differentially expressed between MII and Gv oocytes (P<0.0001 and P<0.0001, respectively). Further measurement found significantly lower level of ACPP in follicular fluids and cumulus cells of DOR patients (P=0.028 and P=0.004, respectively), as an indicator of oocyte quality. Otherwise, CD5L level is upregulated in follicular fluid of DOR patients (P<0.0001). Our study provided experimental data to establish the objective indicator of oocyte maturation in the microenvironment of ovarian follicles, and also provided new insight into the measurement of oocyte quality.
Collapse
Affiliation(s)
- Chong Wang
- Reproductive Medicine Center, Hangzhou Women’s Hospital (Hangzhou Maternity and Child Health Care Hospital), Hangzhou, China
- Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoyang Fei
- Reproductive Medicine Center, Hangzhou Women’s Hospital (Hangzhou Maternity and Child Health Care Hospital), Hangzhou, China
| | - Hongyan Zhang
- Reproductive Medicine Center, Hangzhou Women’s Hospital (Hangzhou Maternity and Child Health Care Hospital), Hangzhou, China
| | - Wenjing Zhou
- Reproductive Medicine Center, Hangzhou Women’s Hospital (Hangzhou Maternity and Child Health Care Hospital), Hangzhou, China
| | - Zhaojun Cheng
- Reproductive Medicine Center, Hangzhou Women’s Hospital (Hangzhou Maternity and Child Health Care Hospital), Hangzhou, China
| | - Ying Feng
- Reproductive Medicine Center, Hangzhou Women’s Hospital (Hangzhou Maternity and Child Health Care Hospital), Hangzhou, China
- *Correspondence: Ying Feng,
| |
Collapse
|
12
|
Microglial and Astrocytic Function in Physiological and Pathological Conditions: Estrogenic Modulation. Int J Mol Sci 2020; 21:ijms21093219. [PMID: 32370112 PMCID: PMC7247358 DOI: 10.3390/ijms21093219] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/24/2020] [Accepted: 04/30/2020] [Indexed: 12/20/2022] Open
Abstract
There are sexual differences in the onset, prevalence, and outcome of numerous neurological diseases. Thus, in Alzheimer’s disease, multiple sclerosis, and major depression disorder, the incidence in women is higher than in men. In contrast, men are more likely to present other pathologies, such as amyotrophic lateral sclerosis, Parkinson’s disease, and autism spectrum. Although the neurological contribution to these diseases has classically always been studied, the truth is that neurons are not the only cells to be affected, and there are other cells, such as glial cells, that are also involved and could be key to understanding the development of these pathologies. Sexual differences exist not only in pathology but also in physiological processes, which shows how cells are differentially regulated in males and females. One of the reasons these sexual differences may occur could be due to the different action of sex hormones. Many studies have shown an increase in aromatase levels in the brain, which could indicate the main role of estrogens in modulating proinflammatory processes. This review will highlight data about sex differences in glial physiology and how estrogenic compounds, such as estradiol and tibolone, could be used as treatment in neurological diseases due to their anti-inflammatory effects and the ability to modulate glial cell functions.
Collapse
|
13
|
Feng Y, Zhang J, Tian X, Wu J, Lu J, Shi R. Mechanical stretch activates glycometabolism-related enzymes via estrogen in C 2 C 12 myoblasts. J Cell Physiol 2020; 235:5702-5710. [PMID: 31975415 DOI: 10.1002/jcp.29502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Accepted: 01/08/2020] [Indexed: 01/12/2023]
Abstract
Moderate exercise improves glycometabolic disorder and type 2 diabetes mellitus in menopausal females. So far, the effect of exercise-induced estrogen on muscular glycometabolism is not well defined. The current study was designed to explore the effect of mechanical stretch-induced estrogen on glycometabolism in mouse C2 C12 myoblasts. The mouse C2 C12 myoblasts in vitro were assigned randomly to the control (C), stretch (S), and stretch plus aromatase inhibitor anastrozole (SA) groups. Cells in the S group were stretched by the Flexcell FX-5000™ system (15% magnitude, 1 Hz frequency, and 6-hr duration) whereas those in the SA group were treated with 400 μg/ml anastrozole before the same stretching. Glucose uptake, estradiol levels, PFK-1 levels, and oxygen consumption rate were determined, and the expression of HK, PI3K, p-AKT, AKT, and GLUT4 proteins were semiquantified with western blot analysis. Compared to the control, the estradiol level, oxygen consumption rate, expression of HK, PI3K, and PFK-1 proteins, the ratio of p-AKT to AKT, and the ratio of GLUT4 in the cell membrane to that in the whole cell were higher in the S group. On the other hand, the estradiol level, glucose uptake, expression of PFK-1 and GLUT4 proteins, oxygen consumption rate, expression of HK protein, and the ratio of p-AKT/AKT were lower in the myoblasts in the SA group than those in the S group. The level of estradiol was positively correlated with glucose uptake (p < .01, r = .818). Therefore, mechanical stretch-induced estrogen increased the expression of glycometabolism-related enzymes and proteins in the mouse C2 C12 myoblasts.
Collapse
Affiliation(s)
- Yu Feng
- Department of Exercise Biochemistry, School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Jin Zhang
- Department of Exercise Biochemistry, School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Xiangyang Tian
- Department of Exercise Biochemistry, School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Jiaxi Wu
- Central Laboratories, Xuhui Central Hospital, Shanghai Clinical Research Center, Chinese Academy of Sciences, Shanghai, China
| | - Jianqiang Lu
- Department of Exercise Biochemistry, School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Rengfei Shi
- Department of Exercise Biochemistry, School of Kinesiology, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
14
|
Sun LH, Zhang WX, Xu Q, Wu H, Jiao CC, Chen XZ. Estrogen modulation of visceral pain. J Zhejiang Univ Sci B 2020; 20:628-636. [PMID: 31273960 DOI: 10.1631/jzus.b1800582] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
It is commonly accepted that females and males differ in their experience of pain. Gender differences have been found in the prevalence and severity of pain in both clinical and animal studies. Sex-related hormones are found to be involved in pain transmission and have critical effects on visceral pain sensitivity. Studies have pointed out the idea that serum estrogen is closely related to visceral nociceptive sensitivity. This review aims to summarize the literature relating to the role of estrogen in modulating visceral pain with emphasis on deciphering the potential central and peripheral mechanisms.
Collapse
Affiliation(s)
- Li-Hong Sun
- Department of Anesthesiology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Wen-Xin Zhang
- Department of Anesthesiology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Qi Xu
- Department of Anesthesiology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Hui Wu
- Department of Anesthesiology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Cui-Cui Jiao
- Department of Anesthesiology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Xin-Zhong Chen
- Department of Anesthesiology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| |
Collapse
|
15
|
Liu H, Xu Y, Hu F. AMPK in the Ventromedial Nucleus of the Hypothalamus: A Key Regulator for Thermogenesis. Front Endocrinol (Lausanne) 2020; 11:578830. [PMID: 33071984 PMCID: PMC7538541 DOI: 10.3389/fendo.2020.578830] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 08/24/2020] [Indexed: 12/19/2022] Open
Abstract
Obesity has become a global health issue, but effective therapies remain very limited. Adaptive thermogenesis promotes weight loss by dissipating energy in the form of heat, thereby representing a promising target to counteract obesity. Notably, the regulation of thermogenesis is tightly orchestrated by complex neuronal networks, especially those in the hypothalamus. Recent evidence highlights the importance of adenosine monophosphate-activated protein kinase (AMPK) within the ventromedial nucleus of the hypothalamus (VMH) in modulating thermogenesis. Various molecules, such as GLP-1, leptin, estradiol, and thyroid hormones, have been reported to act on the VMH to inhibit AMPK, which subsequently increases thermogenesis through the activation of the sympathetic nervous system (SNS). In this review, we summarize the critical role of AMPK within the VMH in the control of energy balance, focusing on its contribution to thermogenesis and the associated mechanisms.
Collapse
Affiliation(s)
- Hailan Liu
- Department of Metabolism and Endocrinology, Metabolic Syndrome Research Center, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha, China
- Department of Pediatrics, Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX, United States
| | - Yong Xu
- Department of Pediatrics, Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX, United States
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
| | - Fang Hu
- Department of Metabolism and Endocrinology, Metabolic Syndrome Research Center, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha, China
- *Correspondence: Fang Hu
| |
Collapse
|
16
|
Sergio RP, Susana RM, Alberto DJ, Socorro RM. Leucaena leucocephala extract has estrogenic and antiestrogenic actions on female rat reproduction. Physiol Behav 2019; 211:112683. [PMID: 31533020 DOI: 10.1016/j.physbeh.2019.112683] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 09/13/2019] [Accepted: 09/14/2019] [Indexed: 01/26/2023]
Abstract
Leucaena feed has been reported to cause disruptive effects on livestock reproduction, such as low calving percentages in cows, abortion in female goats and pigs, dead fetuses and fetal resorption in pregnant rats. In this study, the effects of Leucaena on different female reproductive variables were analyzed in two different reproductive conditions: gonadally intact and ovariectomized (OVX) female rats. Leucaena (LEU) was administered to females in both experimental conditions for 30 consecutive days. The effects of the legume extract were compared with those of Daidzein (DAI), a phytoestrogen, and of the female hormone estradiol (E2). In intact females, LEU disrupted the estrous cycle and female sexual behavior, decreased the number of follicles and corpora lutea, increased uterine and vaginal epithelium in proestrus and diestrus periods, increased uterine and vaginal relative weights during diestrus, and decreased serum progesterone during proestrus. All these effects were similar to those of DAI but lower than E2-induced effects. In OVX females, LEU decreased body weight, induced lordosis, stimulated vaginal epithelium cornification, increased vaginal weight, and augmented vaginal epithelium thickness. Again, these effects were similar to the effects of DAI and lower than the effects observed with E2. These results indicate that, in gonadally intact females, LEU can produce antiestrogenic effects in sexual behavior but estrogenic effects on uterine and vaginal weight and epithelia, without modifying serum levels of E2. In OVX females, in total absence of endogenous E2, LEU induced estrogenic effects on vaginal weight and epithelia, as well as on sexual behavior.
Collapse
Affiliation(s)
- Romero-Palacios Sergio
- Maestría en Biología de la Reproducción Animal, Universidad Autónoma Metropolitana-Iztapalapa, Mexico
| | - Rojas-Maya Susana
- Departamento de Neuroendocrinología de la Conducta Reproductiva, Facultad de Veterinaria, Universidad Nacional Autónoma de Mexico, Mexico
| | - Delgadillo José Alberto
- Centro de Investigación en Reproducción Caprina, Universidad Autónoma Agraria Antonio Narro, Torreón, Coahuila, Mexico
| | - Retana-Márquez Socorro
- Departamento de Biología de la Reproducción, Universidad Autónoma Metropolitana-Iztapalapa, San Rafael Atlixco 186, México City C.P. 09340, Mexico.
| |
Collapse
|
17
|
Wong A, Santos AM, Fava EL, Fatibello-Filho O, Sotomayor MDPT. Voltammetric determination of 17β-estradiol in different matrices using a screen-printed sensor modified with CuPc, Printex 6L carbon and Nafion film. Microchem J 2019. [DOI: 10.1016/j.microc.2019.03.052] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
18
|
Tran TKA, Yu RMK, Islam R, Nguyen THT, Bui TLH, Kong RYC, O'Connor WA, Leusch FDL, Andrew-Priestley M, MacFarlane GR. The utility of vitellogenin as a biomarker of estrogenic endocrine disrupting chemicals in molluscs. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 248:1067-1078. [PMID: 31091639 DOI: 10.1016/j.envpol.2019.02.056] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/31/2019] [Accepted: 02/18/2019] [Indexed: 06/09/2023]
Abstract
Estrogenic endocrine disrupting chemicals (EDCs) are natural hormones, synthetic compounds or industrial chemicals that mimic estrogens due to their structural similarity with estrogen's functional moieties. They typically enter aquatic environments through wastewater treatment plant effluents or runoff from intensive livestock operations. Globally, most natural and synthetic estrogens in receiving aquatic environments are in the low ng/L range, while industrial chemicals (such as bisphenol A, nonylphenol and octylphenol) are present in the μg to low mg/L range. These environmental concentrations often exceed laboratory-based predicted no effect concentrations (PNECs) and have been evidenced to cause negative reproductive impacts on resident aquatic biota. In vertebrates, such as fish, a well-established indicator of estrogen-mediated endocrine disruption is overexpression of the egg yolk protein precursor vitellogenin (Vtg) in males. Although the vertebrate Vtg has high sensitivity and specificity to estrogens, and the molecular basis of its estrogen inducibility has been well studied, there is growing ethical concern over the use of vertebrate animals for contaminant monitoring. The potential utility of the invertebrate Vtg as a biomonitor for environmental estrogens has therefore gained increasing attention. Here we review evidence providing support that the molluscan Vtg holds promise as an invertebrate biomarker for exposure to estrogens. Unlike vertebrates, estrogen signalling in invertebrates remains largely unclarified and the classical genomic pathway only partially explains estrogen-mediated activation of Vtg. In light of this, in the latter part of this review, we summarise recent progress towards understanding the molecular mechanisms underlying the activation of the molluscan Vtg gene by estrogens and present a hypothetical model of the interplay between genomic and non-genomic pathways in the transcriptional regulation of the gene.
Collapse
Affiliation(s)
- Thi Kim Anh Tran
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, 2308, Australia; Institute for Agriculture and Resources, Vinh University, Viet Nam
| | - Richard Man Kit Yu
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Rafiquel Islam
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, 2308, Australia; Department of Applied Chemistry and Chemical Engineering, Islamic University, Kushtia, 7003, Bangladesh
| | - Thi Hong Tham Nguyen
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, 2308, Australia; Institute for Agriculture and Resources, Vinh University, Viet Nam
| | - Thi Lien Ha Bui
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, 2308, Australia; Division of Experimental Biology, Research Institute for Aquaculture No 2, Viet Nam
| | - Richard Yuen Chong Kong
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region, China
| | - Wayne A O'Connor
- New South Wales Department of Primary Industries, Port Stephens Fisheries Institute, Taylors Beach, NSW, 2316, Australia
| | - Frederic D L Leusch
- Australian Rivers Institute, Griffith School of Environment and Science, Griffith University, QLD, 4111, Australia
| | | | - Geoff R MacFarlane
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, 2308, Australia.
| |
Collapse
|
19
|
Nguyen TV, Jones SL, Gower T, Lew J, Albaugh MD, Botteron KN, Hudziak JJ, Fonov VS, Collins DL, Campbell BC, Booij L, Herba CM, Monnier P, Ducharme S, Waber D, McCracken JT. Age-specific associations between oestradiol, cortico-amygdalar structural covariance, and verbal and spatial skills. J Neuroendocrinol 2019; 31:e12698. [PMID: 30776161 PMCID: PMC6482064 DOI: 10.1111/jne.12698] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 01/19/2019] [Accepted: 02/13/2019] [Indexed: 01/02/2023]
Abstract
Oestradiol is known to play an important role in the developing human brain, although little is known about the entire network of potential regions that might be affected and how these effects may vary from childhood to early adulthood, which in turn can explain sexually differentiated behaviours. In the present study, we examined the relationships between oestradiol, cortico-amygdalar structural covariance, and cognitive or behavioural measures typically showing sex differences (verbal/spatial skills, anxious-depressed symptomatology) in 152 children and adolescents (aged 6-22 years). Cortico-amygdalar structural covariance shifted from positive to negative across the age range. Oestradiol was found to diminish the impact of age on cortico-amygdalar covariance for the pre-supplementary motor area/frontal eye field and retrosplenial cortex (across the age range), as well as for the posterior cingulate cortex (in older children). Moreover, the influence of oestradiol on age-related cortico-amygdalar networks was associated with higher word identification and spatial working memory (across the age range), as well as higher reading comprehension (in older children), although it did not impact anxious-depressed symptoms. There were no significant sex effects on any of the above relationships. These findings confirm the importance of developmental timing on oestradiol-related effects and hint at the non-sexually dimorphic role of oestradiol-related cortico-amygdalar structural networks in aspects of cognition distinct from emotional processes.
Collapse
Affiliation(s)
- Tuong-Vi Nguyen
- Department of Psychiatry, McGill University, Montreal, QC, Canada, H3A1A1
- Department of Obstetrics-Gynecology, McGill University Health Center, Montreal, QC, Canada, H4A 3J1
- Research Institute of the McGill University Health Center, Montreal, QC, Canada, H4A 3J1
| | - Sherri Lee Jones
- Department of Psychology, McGill University, Montreal, QC, Canada, H4A 3J1
- Douglas Mental Health University Institute, Verdun, QC, Canada, H4H 1R3
| | - Tricia Gower
- Department of Psychology, McGill University, Montreal, QC, Canada, H4A 3J1
| | - Jimin Lew
- Department of Psychology, McGill University, Montreal, QC, Canada, H4A 3J1
| | - Matthew D Albaugh
- Department of Psychology, University of Vermont, College of Medicine, Burlington, VT, USA, 05405
| | - Kelly N Botteron
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA, 63110
- Brain Development Cooperative Group
| | - James J Hudziak
- Department of Psychology, University of Vermont, College of Medicine, Burlington, VT, USA, 05405
- Brain Development Cooperative Group
| | - Vladimir S Fonov
- McConnell Brain imaging Centre, Montreal Neurological Institute, Montreal, QC Canada H3A 2B4
| | - D. Louis Collins
- McConnell Brain imaging Centre, Montreal Neurological Institute, Montreal, QC Canada H3A 2B4
| | - Benjamin C Campbell
- Department of Anthropology, University of Wisconsin-Milwaukee, Milwaukee, WI, USA, 53211
| | - Linda Booij
- Department of Psychiatry, McGill University, Montreal, QC, Canada, H3A1A1
- Department of Psychology, Concordia University, Montreal, QC, Canada, H4B 1R6
- CHU Sainte Justine Hospital Research Centre, University of Montreal, Montreal, QC, Canada, H3T1C5
| | - Catherine M. Herba
- CHU Sainte Justine Hospital Research Centre, University of Montreal, Montreal, QC, Canada, H3T1C5
- Department of Psychology, Université du Québec à Montréal, Montreal, QC,
Canada
| | - Patricia Monnier
- Department of Obstetrics-Gynecology, McGill University Health Center, Montreal, QC, Canada, H4A 3J1
- Research Institute of the McGill University Health Center, Montreal, QC, Canada, H4A 3J1
| | - Simon Ducharme
- Department of Psychiatry, McGill University, Montreal, QC, Canada, H3A1A1
- McConnell Brain imaging Centre, Montreal Neurological Institute, Montreal, QC Canada H3A 2B4
- Department of Neurology & Neurosurgery, McGill University, Montreal, QC, Canada, H3A 1A1
| | - Deborah Waber
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA, 02115
| | - James T McCracken
- Brain Development Cooperative Group
- Department of Child and Adolescent Psychiatry, University of California in Los Angeles, Los Angeles, CA,
USA, 90024
| |
Collapse
|
20
|
Activation of G protein-coupled estrogen receptor protects intestine from ischemia/reperfusion injury in mice by protecting the crypt cell proliferation. Clin Sci (Lond) 2019; 133:449-464. [PMID: 30705108 DOI: 10.1042/cs20180919] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 01/14/2019] [Accepted: 01/30/2019] [Indexed: 12/13/2022]
Abstract
The intestinal ischemia/reperfusion (I/R) injury is a common clinical event related with high mortality in patients undergoing surgery or trauma. Estrogen exerts salutary effect on intestinal I/R injury, but the receptor type is not totally understood. We aimed to identify whether the G protein-coupled estrogen receptor (GPER) could protect the intestine against I/R injury and explored the mechanism. Adult male C57BL/6 mice were subjected to intestinal I/R injury by clamping (45 min) of the superior mesenteric artery followed by 4 h of intestinal reperfusion. Our results revealed that the selective GPER blocker abolished the protective effect of estrogen on intestinal I/R injury. Selective GPER agonist G-1 significantly alleviated I/R-induced intestinal mucosal damage, neutrophil infiltration, up-regulation of TNF-α and cyclooxygenase-2 (Cox-2) expression, and restored impaired intestinal barrier function. G-1 could ameliorate the impaired crypt cell proliferation ability induced by I/R and restore the decrease in villus height and crypt depth. The up-regulation of inducible nitric oxide synthase (iNOS) expression after I/R treatment was attenuated by G-1 administration. Moreover, selective iNOS inhibitor had a similar effect with G-1 on promoting the proliferation of crypt cells in the intestinal I/R model. Both GPER and iNOS were expressed in leucine-rich repeat containing G-protein coupled receptor 5 (Lgr5) positive stem cells in crypt. Together, these findings demonstrate that GPER activation can prompt epithelial cell repair following intestinal injury, which occurred at least in part by inhibiting the iNOS expression in intestinal stem cells (ISCs). GPER may be a novel therapeutic target for intestinal I/R injury.
Collapse
|
21
|
Estradiol Drives the Anorexigenic Activity of Proopiomelanocortin Neurons in Female Mice. eNeuro 2018; 5:eN-NWR-0103-18. [PMID: 30310864 PMCID: PMC6179576 DOI: 10.1523/eneuro.0103-18.2018] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 06/11/2018] [Accepted: 07/02/2018] [Indexed: 12/14/2022] Open
Abstract
Energy balance is regulated by anorexigenic proopiomelanocortin (POMC) and orexigenic neuropeptide Y/agouti-related peptide (NPY/AgRP) neurons of the hypothalamic arcuate nucleus. POMC neurons make extensive projections and are thought to release both amino acid and peptide neurotransmitters. However, whether they communicate directly with NPY/AgRP neurons is debated. Initially, using single-cell RT-PCR, we determined that mouse POMCeGFP neurons express Slc17a6 (Vglut2) and Slc18a2 (Vmat2), but not Slc31a1 (Vgat) mRNA, suggesting glutamate and non-canonical GABA release. Quantitative (q)RT-PCR of POMCeGFP cells revealed that Vglut2 and Vmat2 expression was significantly increased in E2- versus oil-treated, ovariectomized (OVX) female mice. Since 17β-estradiol (E2) is anorexigenic, we hypothesized that an underlying mechanism is enhancement of POMC signaling. Therefore, we optogenetically stimulated POMC neurons in hypothalamic slices to examine evoked release of neurotransmitters onto NPY/AgRP neurons. Using brief light pulses, we primarily observed glutamatergic currents and, based on the paired pulse ratio (PPR), determined that release probability was higher in E2- versus oil-treated, OVX female, congruent with increased Vlgut2 expression. Moreover, bath perfusion of the Gq-coupled membrane estrogen receptor (ER) agonist STX recapitulated the effects of E2 treatment. In addition, high-frequency (20 Hz) stimulation generated a slow outward current that reversed near Ek+ and was antagonized by naloxone, indicative of β-endorphin release. Furthermore, individual NPY/AgRP neurons were found to express Oprm1, the transcript for μ-opioid receptor, and DAMGO, a selective agonist, elicited an outward current. Therefore, POMC excitability and neurotransmission are enhanced by E2, which would facilitate decreased food consumption through marked inhibition of NPY/AgRP neurons.
Collapse
|
22
|
Micevych PE, Sinchak K. Extranuclear signaling by ovarian steroids in the regulation of sexual receptivity. Horm Behav 2018; 104:4-14. [PMID: 29753716 PMCID: PMC6240501 DOI: 10.1016/j.yhbeh.2018.05.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 05/02/2018] [Accepted: 05/03/2018] [Indexed: 01/06/2023]
Affiliation(s)
- Paul E Micevych
- Dept of Neurobiology, David Geffen School of Medicine at UCLA, Laboratory of Neuroendocrinology of the UCLA Brain Research Institute, United States
| | - Kevin Sinchak
- Dept of Biological Sciences, California State University, Long Beach, United States.
| |
Collapse
|
23
|
Stincic TL, Rønnekleiv OK, Kelly MJ. Diverse actions of estradiol on anorexigenic and orexigenic hypothalamic arcuate neurons. Horm Behav 2018; 104:146-155. [PMID: 29626486 PMCID: PMC6196116 DOI: 10.1016/j.yhbeh.2018.04.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 03/29/2018] [Accepted: 04/02/2018] [Indexed: 12/13/2022]
Abstract
Contribution to Special Issue on Fast effects of steroids. There is now compelling evidence for membrane-associated estrogen receptors in hypothalamic neurons that are critical for the hypothalamic control of homeostatic functions. It has been known for some time that estradiol (E2) can rapidly alter hypothalamic neuronal activity within seconds, indicating that some cellular effects can occur via membrane initiated events. However, our understanding of how E2 signals via membrane-associated receptors and how these signals impact physiological functions is only just emerging. Thus, E2 can affect second messenger systems including calcium mobilization and a plethora of kinases to alter cell excitability and even gene transcription in hypothalamic neurons. One population of hypothalamic neurons, the anorexigenic proopiomelanocortin (POMC) neurons, has long been considered to be a target of E2's actions based on gene (Pomc) expression studies. However, we now know that E2 can rapidly alter POMC neuronal activity within seconds and activate several intracellular signaling cascades that ultimately affect gene expression, actions which are critical for maintaining sensitivity to insulin in metabolically stressed states. E2 also affects the orexigenic Neuropeptide Y/Agouti-related Peptide (NPY/AgRP) neurons in similarly rapid but antagonistic manner. Therefore, this review will summarize our current state of knowledge of how E2 signals via rapid membrane-initiated and intracellular signaling cascades in POMC and NPY/AgRP neurons to regulate energy homeostasis.
Collapse
Affiliation(s)
- Todd L Stincic
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Oline K Rønnekleiv
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, OR 97239, USA; Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, OR 97239, USA; Division of Neuroscience, Oregon Regional Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Martin J Kelly
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, OR 97239, USA; Division of Neuroscience, Oregon Regional Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA.
| |
Collapse
|
24
|
Céspedes Rubio ÁE, Pérez-Alvarez MJ, Lapuente Chala C, Wandosell F. Sex steroid hormones as neuroprotective elements in ischemia models. J Endocrinol 2018; 237:R65-R81. [PMID: 29654072 DOI: 10.1530/joe-18-0129] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 03/19/2018] [Indexed: 12/14/2022]
Abstract
Among sex steroid hormones, progesterone and estradiol have a wide diversity of physiological activities that target the nervous system. Not only are they carried by the blood stream, but also they are locally synthesized in the brain and for this reason, estradiol and progesterone are considered 'neurosteroids'. The physiological actions of both hormones range from brain development and neurotransmission to aging, illustrating the importance of a deep understanding of their mechanisms of action. In this review, we summarize key roles that estradiol and progesterone play in the brain. As numerous reports have confirmed a substantial neuroprotective role for estradiol in models of neurodegenerative disease, we focus this review on traumatic brain injury and stroke models. We describe updated data from receptor and signaling events triggered by both hormones, with an emphasis on the mechanisms that have been reported as 'rapid' or 'cytoplasmic actions'. Data showing the therapeutic effects of the hormones, used alone or in combination, are also summarized, with a focus on rodent models of middle cerebral artery occlusion (MCAO). Finally, we draw attention to evidence that neuroprotection by both hormones might be due to a combination of 'cytoplasmic' and 'nuclear' signaling.
Collapse
Affiliation(s)
- Ángel Enrique Céspedes Rubio
- Departamento de Sanidad AnimalGrupo de Investigación en Enfermedades Neurodegenerativas, Universidad del Tolima, Ibagué, Colombia
| | - Maria José Pérez-Alvarez
- Departamento de Biología (Fisiología Animal)Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Biología Molecular 'Severo Ochoa'Departamento de Neuropatología Molecular CSIC-UAM, Madrid, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)Madrid, Spain
| | - Catalina Lapuente Chala
- Grupo de Investigación en Enfermedades NeurodegenerativasInvestigador Asociado Universidad del Tolima, Ibagué, Colombia
| | - Francisco Wandosell
- Centro de Biología Molecular 'Severo Ochoa'Departamento de Neuropatología Molecular CSIC-UAM, Madrid, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)Madrid, Spain
| |
Collapse
|
25
|
Borgert CJ, Matthews JC, Baker SP. Human-relevant potency threshold (HRPT) for ERα agonism. Arch Toxicol 2018; 92:1685-1702. [PMID: 29632997 PMCID: PMC5962616 DOI: 10.1007/s00204-018-2186-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Accepted: 03/13/2018] [Indexed: 11/30/2022]
Abstract
The European Commission has recently proposed draft criteria for the identification of endocrine disrupting chemicals (EDCs) that pose a significant hazard to humans or the environment. Identifying and characterizing toxic hazards based on the manner by which adverse effects are produced rather than on the nature of those adverse effects departs from traditional practice and requires a proper interpretation of the evidence regarding the chemical’s ability to produce physiological effect(s) via a specific mode of action (MoA). The ability of any chemical to produce a physiological effect depends on its pharmacokinetics and the potency by which it acts via the various MoAs that can lead to the particular effect. A chemical’s potency for a specific MoA—its mechanistic potency—is determined by two properties: (1) its affinity for the functional components that comprise the MoA, i.e., its specific receptors, enzymes, transporters, transcriptional elements, etc., and (2) its ability to alter the functional state of those components (activity). Using the agonist MoA via estrogen receptor alpha, we illustrate an empirical method for determining a human-relevant potency threshold (HRPT), defined as the minimum level of mechanistic potency necessary for a chemical to be able to act via a particular MoA in humans. One important use for an HRPT is to distinguish between chemicals that may be capable of, versus those likely to be incapable of, producing adverse effects in humans via the specified MoA. The method involves comparing chemicals that have different ERα agonist potencies with the ability of those chemicals to produce ERα-mediated agonist responses in human clinical trials. Based on this approach, we propose an HRPT for ERα agonism of 1E-04 relative to the potency of the endogenous estrogenic hormone 17β-estradiol or the pharmaceutical estrogen, 17α-ethinylestradiol. This approach provides a practical way to address Hazard Identification according to the draft criteria for identification of EDCs recently proposed by the European Commission.
Collapse
Affiliation(s)
- Christopher J Borgert
- Applied Pharmacology and Toxicology, Inc. and CEHT, Univ. FL College of Vet. Med., Gainesville, FL, USA.
| | - John C Matthews
- University of Mississippi School of Pharmacy, University, MS, USA
| | - Stephen P Baker
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine, Gainesville, FL, USA
| |
Collapse
|
26
|
Avila JA, Alliger AA, Carvajal B, Zanca RM, Serrano PA, Luine VN. Estradiol rapidly increases GluA2-mushroom spines and decreases GluA2-filopodia spines in hippocampus CA1. Hippocampus 2017; 27:1224-1229. [PMID: 28833901 PMCID: PMC5744887 DOI: 10.1002/hipo.22768] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 07/18/2017] [Accepted: 08/07/2017] [Indexed: 01/15/2023]
Abstract
Hippocampal dendritic spine density rapidly increases following estradiol (E2 ) treatment, but the types of spines and trafficking of synaptic markers have received little investigation. We assessed rapid effects of E2 over time on the density of four spine types (stubby, filopodial, long thin, and mushroom) and trafficking of AMPA receptor subunit GluA2 and PSD95 on tertiary, apical dendrites in CA1. Castrated male rats received 20 μg kg-1 of E2 or vehicle and were sacrificed 30 or 120 min later. Images of Golgi-Cox impregnated and PSD95/GluA2 stained dendrites were captured under the confocal microscope and quantified with IMARIS-XT. Stubby and filopodial spine densities did not change following treatment. Long-thin spines significantly decreased at 30 min while mushroom spines significantly increased at 120 min. GluA2, PSD95, and GluA2/PSD95 colocalization levels in stubby or long thin spines did not change, but filopodial spines had significantly reduced GluA2 levels at 30 min. Mushroom spines showed significantly increased levels for GluA2, PSD95 and GluA2/PSD95 colocalization at 120 min. Because GluA2 is important for memory consolidation, current results present novel data suggesting that trafficking of GluA2 to mushroom spines provides one mechanism contributing to estradiol's ability to enhance learning and memory by the PI3 signaling pathway.
Collapse
Affiliation(s)
- Jorge A Avila
- Department of Psychology, Hunter College, City University of New York, New York
- Behavioral and Cognitive Neuroscience Program, The Graduate Center of CUNY, New York, New York
| | - Amber A Alliger
- Department of Psychology, Hunter College, City University of New York, New York
| | - Brigett Carvajal
- Department of Psychology, Hunter College, City University of New York, New York
| | - Roseanna M Zanca
- Department of Psychology, Hunter College, City University of New York, New York
- Behavioral and Cognitive Neuroscience Program, The Graduate Center of CUNY, New York, New York
| | - Peter A Serrano
- Department of Psychology, Hunter College, City University of New York, New York
- Behavioral and Cognitive Neuroscience Program, The Graduate Center of CUNY, New York, New York
| | - Victoria N Luine
- Department of Psychology, Hunter College, City University of New York, New York
- Behavioral and Cognitive Neuroscience Program, The Graduate Center of CUNY, New York, New York
| |
Collapse
|
27
|
Micevych PE, Mermelstein PG, Sinchak K. Estradiol Membrane-Initiated Signaling in the Brain Mediates Reproduction. Trends Neurosci 2017; 40:654-666. [PMID: 28969926 DOI: 10.1016/j.tins.2017.09.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 08/28/2017] [Accepted: 09/10/2017] [Indexed: 12/21/2022]
Abstract
Over the past few years our understanding of estrogen signaling in the brain has expanded rapidly. Estrogens are synthesized in the periphery and in the brain, acting on multiple receptors to regulate gene transcription, neural function, and behavior. Various estrogen-sensitive signaling pathways often operate in concert within the same cell, increasing the complexity of the system. In females, estrogen concentrations fluctuate over the estrous/menstrual cycle, dynamically modulating estrogen receptor (ER) expression, activity, and trafficking. These dynamic changes influence multiple behaviors but are particularly important for reproduction. Using the female rodent model, we review our current understanding of estradiol signaling in the regulation of sexual receptivity.
Collapse
Affiliation(s)
- Paul E Micevych
- Department of Neurobiology, David Geffen School of Medicine at the University of California Los Angeles (UCLA), and Laboratory of Neuroendocrinology of the UCLA Brain Research Institute, Los Angeles, CA 90095, USA.
| | - Paul G Mermelstein
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Kevin Sinchak
- Department of Biological Sciences, California State University, Long Beach, Long Beach, CA 90840, USA
| |
Collapse
|
28
|
Actions of Steroids: New Neurotransmitters. J Neurosci 2017; 36:11449-11458. [PMID: 27911748 DOI: 10.1523/jneurosci.2473-16.2016] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 08/30/2016] [Accepted: 09/09/2016] [Indexed: 02/07/2023] Open
Abstract
Over the past two decades, the classical understanding of steroid action has been updated to include rapid, membrane-initiated, neurotransmitter-like functions. While steroids were known to function on very short time spans to induce physiological and behavioral changes, the mechanisms by which these changes occur are now becoming more clear. In avian systems, rapid estradiol effects can be mediated via local alterations in aromatase activity, which precisely regulates the temporal and spatial availability of estrogens. Acute regulation of brain-derived estrogens has been shown to rapidly affect sensorimotor function and sexual motivation in birds. In rodents, estrogens and progesterone are critical for reproduction, including preovulatory events and female sexual receptivity. Membrane progesterone receptor as well as classical progesterone receptor trafficked to the membrane mediate reproductive-related hypothalamic physiology, via second messenger systems with dopamine-induced cell signals. In addition to these relatively rapid actions, estrogen membrane-initiated signaling elicits changes in morphology. In the arcuate nucleus of the hypothalamus, these changes are needed for lordosis behavior. Recent evidence also demonstrates that membrane glucocorticoid receptor is present in numerous cell types and species, including mammals. Further, membrane glucocorticoid receptor influences glucocorticoid receptor translocation to the nucleus effecting transcriptional activity. The studies presented here underscore the evidence that steroids behave like neurotransmitters to regulate CNS functions. In the future, we hope to fully characterize steroid receptor-specific functions in the brain.
Collapse
|
29
|
Kaikaew K, Steenbergen J, Themmen APN, Visser JA, Grefhorst A. Sex difference in thermal preference of adult mice does not depend on presence of the gonads. Biol Sex Differ 2017; 8:24. [PMID: 28693572 PMCID: PMC5504804 DOI: 10.1186/s13293-017-0145-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 06/28/2017] [Indexed: 11/17/2022] Open
Abstract
Background The thermoneutral zone (TNZ) is a species-specific range of ambient temperature (Ta), at which mammals can maintain a constant body temperature with the lowest metabolic rate. The TNZ for an adult mouse is between 26 and 34 °C. Interestingly, female mice prefer a higher Ta than male mice although the underlying mechanism for this sex difference is unknown. Here, we tested whether gonadal hormones are dominant factors controlling temperature preference in male and female mice. Methods We performed a temperature preference test in which 10-week-old gonadectomized and sham-operated male and female C57BL/6J mice were allowed to choose to reside at the thermoneutral cage of 29 °C or an experimental cage of 26, 29, or 32 °C. Results All mice preferred a Ta higher than 26 °C, especially in the inactive phase. Choosing between 29 and 32 °C, female mice resided more at 32 °C while male mice had no preference between the temperatures. Hence, the preferred Ta for female mice was significantly higher (0.9 ± 0.2 °C) than that for male mice. However, gonadectomy did not influence the Ta preference. Conclusions Female mice prefer a warmer environment than male mice, a difference not affected by gonadectomy. This suggests that thermal-sensing mechanisms may be influenced by sex-specific pathways other than gonadal factors or that the thermoregulatory set point has already been determined prior to puberty. Electronic supplementary material The online version of this article (doi:10.1186/s13293-017-0145-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kasiphak Kaikaew
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, PO Box 2040, 3000 CA, Rotterdam, The Netherlands.,Department of Physiology, Faculty of Medicine, Chulalongkorn University, 1873, Rama IV Road, Pathumwan, Bangkok, 10330, Thailand
| | - Jacobie Steenbergen
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Axel P N Themmen
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Jenny A Visser
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Aldo Grefhorst
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, PO Box 2040, 3000 CA, Rotterdam, The Netherlands.
| |
Collapse
|
30
|
Zielińska M, Fichna J, Bashashati M, Habibi S, Sibaev A, Timmermans JP, Storr M. G protein-coupled estrogen receptor and estrogen receptor ligands regulate colonic motility and visceral pain. Neurogastroenterol Motil 2017; 29. [PMID: 28191706 DOI: 10.1111/nmo.13025] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 11/21/2016] [Accepted: 12/08/2016] [Indexed: 12/11/2022]
Abstract
BACKGROUND Diarrhea-predominant irritable bowel syndrome (IBS-D) is a functional gastrointestinal (GI) disorder, which occurs more frequently in women than men. The aim of our study was to determine the role of activation of classical estrogen receptors (ER) and novel membrane receptor, G protein-coupled estrogen receptor (GPER) in human and mouse tissue and to assess the possible cross talk between these receptors in the GI tract. METHODS Immunohistochemistry was used to determine the expression of GPER in human and mouse intestines. The effect of G-1, a GPER selective agonist, and estradiol, a non-selective ER agonist, on muscle contractility was characterized in isolated preparations of the human and mouse colon. To characterize the effect of G-1 and estradiol in vivo, colonic bead expulsion test was performed. G-1 and estradiol activity on the visceral pain signaling was assessed in the mustard oil-induced abdominal pain model. KEY RESULTS GPER is expressed in the human colon and in the mouse colon and ileum. G-1 and estradiol inhibited muscle contractility in vitro in human and mouse colon. G-1 or estradiol administered intravenously at the dose of 20 mg/kg significantly prolonged the time to bead expulsion in females. Moreover, G-1 prolonged the time to bead expulsion and inhibited GI hypermotility in both genders. The injection of G-1 or estradiol resulted in a significant reduction in the number of pain-induced behaviors in mice. CONCLUSIONS AND INFERENCES GPER and ER receptors are involved in the regulation of GI motility and visceral pain. Both may thus constitute an important pharmacological target in the IBS-D therapy.
Collapse
Affiliation(s)
- M Zielińska
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - J Fichna
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - M Bashashati
- Division of Gastroenterology, Department of Internal Medicine, Texas Tech University Health Sciences Center/Paul L. Foster School of Medicine, El Paso, TX, USA.,Hotchkiss Brain Institute and Snyder Institute for Chronic Diseases, Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| | - S Habibi
- Hotchkiss Brain Institute and Snyder Institute for Chronic Diseases, Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| | - A Sibaev
- Division of Gastroenterology, Department of Medicine, Ludwig Maximilians University of Munich, Munich, Germany
| | - J-P Timmermans
- Department of Veterinary Sciences, Laboratory of Cell Biology and Histology, University of Antwerp, Antwerp, Belgium
| | - M Storr
- Hotchkiss Brain Institute and Snyder Institute for Chronic Diseases, Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada.,Division of Gastroenterology, Department of Medicine, Ludwig Maximilians University of Munich, Munich, Germany.,Walter Brendel Center of Experimental Medicine, University of Munich, Munich, Germany
| |
Collapse
|
31
|
Abstract
The hypothalamus is most often associated with innate behaviors such as is hunger, thirst and sex. While the expression of these behaviors important for survival of the individual or the species is nested within the hypothalamus, the desire (i.e., motivation) for them is centered within the mesolimbic reward circuitry. In this review, we will use female sexual behavior as a model to examine the interaction of these circuits. We will examine the evidence for a hypothalamic circuit that regulates consummatory aspects of reproductive behavior, i.e., lordosis behavior, a measure of sexual receptivity that involves estradiol membrane-initiated signaling in the arcuate nucleus (ARH), activating β-endorphin projections to the medial preoptic nucleus (MPN), which in turn modulate ventromedial hypothalamic nucleus (VMH) activity-the common output from the hypothalamus. Estradiol modulates not only a series of neuropeptides, transmitters and receptors but induces dendritic spines that are for estrogenic induction of lordosis behavior. Simultaneously, in the nucleus accumbens of the mesolimbic system, the mating experience produces long term changes in dopamine signaling and structure. Sexual experience sensitizes the response of nucleus accumbens neurons to dopamine signaling through the induction of a long lasting early immediate gene. While estrogen alone increases spines in the ARH, sexual experience increases dendritic spine density in the nucleus accumbens. These two circuits appear to converge onto the medial preoptic area where there is a reciprocal influence of motivational circuits on consummatory behavior and vice versa. While it has not been formally demonstrated in the human, such circuitry is generally highly conserved and thus, understanding the anatomy, neurochemistry and physiology can provide useful insight into the motivation for sexual behavior and other innate behaviors in humans.
Collapse
Affiliation(s)
- Paul E Micevych
- Laboratory of Neuroendocrinology, Department of Neurobiology, David Geffen School of Medicine at University of California, Los AngelesLos Angeles, CA, United States.,Brain Research Institute, University of California, Los AngelesLos Angeles, CA, United States
| | - Robert L Meisel
- Department of Neuroscience, University of MinnesotaMinneapolis, MN, United States
| |
Collapse
|
32
|
Long N, Long B, Mana A, Le D, Nguyen L, Chokr S, Sinchak K. Tamoxifen and ICI 182,780 activate hypothalamic G protein-coupled estrogen receptor 1 to rapidly facilitate lordosis in female rats. Horm Behav 2017; 89:98-103. [PMID: 28063803 PMCID: PMC5359066 DOI: 10.1016/j.yhbeh.2016.12.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 12/02/2016] [Accepted: 12/20/2016] [Indexed: 11/16/2022]
Abstract
In the female rat, sexual receptivity (lordosis) can be facilitated by sequential activation of estrogen receptor (ER) α and G protein-coupled estrogen receptor 1 (GPER) by estradiol. In the estradiol benzoate (EB) primed ovariectomized (OVX) rat, EB initially binds to ERα in the plasma membrane that complexes with and transactivates metabotropic glutamate receptor 1a to activate β-endorphin neurons in the arcuate nucleus of the hypothalamus (ARH) that project to the medial preoptic nucleus (MPN). This activates MPN μ-opioid receptors (MOP), inhibiting lordosis. Infusion of non-esterified 17β-estradiol into the ARH rapidly reduces MPN MOP activation and facilitates lordosis via GPER. Tamoxifen (TAM) and ICI 182,780 (ICI) are selective estrogen receptor modulators that activate GPER. Therefore, we tested the hypothesis that TAM and ICI rapidly facilitate lordosis via activation of GPER in the ARH. Our first experiment demonstrated that injection of TAM intraperitoneal, or ICI into the lateral ventricle, deactivated MPN MOP and facilitated lordosis in EB-primed rats. We then tested whether TAM and ICI were acting rapidly through a GPER dependent pathway in the ARH. In EB-primed rats, ARH infusion of either TAM or ICI facilitated lordosis and reduced MPN MOP activation within 30min compared to controls. These effects were blocked by pretreatment with the GPER antagonist, G15. Our findings demonstrate that TAM and ICI deactivate MPN MOP and facilitate lordosis in a GPER dependent manner. Thus, TAM and ICI may activate GPER in the CNS to produce estrogenic actions in neural circuits that modulate physiology and behavior.
Collapse
Affiliation(s)
- Nathan Long
- Department of Biological Sciences, California State University, Long Beach, Long Beach, CA, United States
| | - Bertha Long
- Department of Biological Sciences, California State University, Long Beach, Long Beach, CA, United States
| | - Asma Mana
- Department of Biological Sciences, California State University, Long Beach, Long Beach, CA, United States
| | - Dream Le
- Department of Biological Sciences, California State University, Long Beach, Long Beach, CA, United States
| | - Lam Nguyen
- Department of Biological Sciences, California State University, Long Beach, Long Beach, CA, United States
| | - Sima Chokr
- Department of Biological Sciences, California State University, Long Beach, Long Beach, CA, United States
| | - Kevin Sinchak
- Department of Biological Sciences, California State University, Long Beach, Long Beach, CA, United States.
| |
Collapse
|
33
|
Conde K, Fabelo C, Krause WC, Propst R, Goethel J, Fischer D, Hur J, Meza C, Ingraham HA, Wagner EJ. Testosterone Rapidly Augments Retrograde Endocannabinoid Signaling in Proopiomelanocortin Neurons to Suppress Glutamatergic Input from Steroidogenic Factor 1 Neurons via Upregulation of Diacylglycerol Lipase-α. Neuroendocrinology 2017; 105:341-356. [PMID: 27871072 PMCID: PMC5839320 DOI: 10.1159/000453370] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 11/12/2016] [Indexed: 01/09/2023]
Abstract
Testosterone exerts profound effects on reproduction and energy homeostasis. Like other orexigenic hormones, it increases endocannabinoid tone within the hypothalamic feeding circuitry. Therefore, we tested the hypothesis that testosterone upregulates the expression of diacylglycerol lipase (DAGL)α in the hypothalamic arcuate nucleus (ARC) to increase energy intake via enhanced endocannabinoid-mediated retrograde inhibition of anorexigenic proopiomelanocortin (POMC) neurons. Energy intake, meal patterns, and energy expenditure were evaluated in orchidectomized, male guinea pigs treated subcutaneously with testosterone propionate (TP; 400 μg) or its sesame oil vehicle (0.1 mL). TP rapidly increased energy intake, meal size, O2 consumption, CO2 production, and metabolic heat production, all of which were antagonized by prior administration of the DAGL inhibitor orlistat (3 μg) into the third ventricle. These orlistat-sensitive, TP-induced increases in energy intake and expenditure were temporally associated with a significant elevation in ARC DAGLα expression. Electrophysiological recordings in hypothalamic slices revealed that TP potentiated depolarization-induced suppression of excitatory glutamatergic input onto identified ARC POMC neurons, which was also abolished by orlistat (3 μM), the CB1 receptor antagonist AM251 (1 μM), and the AMP-activated protein kinase inhibitor compound C (30 μM) and simulated by transient bath application of the dihydrotestosterone mimetic Cl-4AS-1 (100 nM) and testosterone-conjugated bovine serum albumin (100 nM). Thus, testosterone boosts DAGLα expression to augment retrograde, presynaptic inhibition of glutamate release onto ARC POMC neurons that, in turn, increases energy intake and expenditure. These studies advance our understanding of how androgens work within the hypothalamic feeding circuitry to affect changes in energy balance.
Collapse
Affiliation(s)
- Kristie Conde
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA
| | - Carolina Fabelo
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA
| | - William C. Krause
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA
| | - Robert Propst
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA
| | - Jordan Goethel
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA
| | - Daniel Fischer
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA
| | - Jin Hur
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA
| | - Cecilia Meza
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA
| | - Holly A. Ingraham
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA
| | - Edward J. Wagner
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA
| |
Collapse
|
34
|
De Bond JAP, Tolson KP, Nasamran C, Kauffman AS, Smith JT. Unaltered Hypothalamic Metabolic Gene Expression in Kiss1r Knockout Mice Despite Obesity and Reduced Energy Expenditure. J Neuroendocrinol 2016; 28:10.1111/jne.12430. [PMID: 27601011 PMCID: PMC5083214 DOI: 10.1111/jne.12430] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 08/08/2016] [Accepted: 09/03/2016] [Indexed: 11/28/2022]
Abstract
Kisspeptin controls reproduction by stimulating gonadotrophin-releasing hormone neurones via its receptor Kiss1r. Kiss1r is also expressed other brain areas and in peripheral tissues, suggesting additional nonreproductive roles. We recently determined that Kiss1r knockout (KO) mice develop an obese and diabetic phenotype. In the present study, we investigated whether Kiss1r KOs develop this metabolic phenotype as a result of alterations in the expression of metabolic genes involved in the appetite regulating system of the hypothalamus, including neuropeptide Y (Npy) and pro-opiomelanocortin (Pomc), as well as leptin receptor (Lepr), ghrelin receptor (Ghsr), and melanocortin receptors 3 and 4 (Mc3r, Mc4r). Body weights, leptin levels and hypothalamic gene expression were measured in both gonad-intact and gonadectomised (GNX) mice at 8 and 20 weeks of age that had received either normal chow or a high-fat diet. We detected significant increases in Pomc expression in gonad-intact Kiss1r KO mice at 8 and 20 weeks, although there were no alterations in the other metabolic-related genes. However, the Pomc increases appeared to reflect genotype differences in circulating sex steroids, because GNX wild-type and Kiss1r KO mice exhibited similar Pomc levels, along with similar Npy levels. The altered Pomc gene expression in gonad-intact Kiss1r KO mice is consistent with previous reports of reduced food intake in these mice and may serve to increase the anorexigenic drive, perhaps compensating for the obese state. However, the surprising overall lack of changes in any of the hypothalamic metabolic genes in GNX KO mice suggests that the aetiology of obesity in the absence of kisspeptin signalling may reflect peripheral rather than central metabolic impairments.
Collapse
MESH Headings
- Animals
- Appetite
- Body Weight
- Energy Metabolism
- Female
- Gene Expression
- Gonads/metabolism
- Hypothalamus/metabolism
- Leptin/blood
- Male
- Mice
- Mice, Knockout
- Neuropeptide Y/genetics
- Neuropeptide Y/metabolism
- Obesity/genetics
- Obesity/metabolism
- Pro-Opiomelanocortin/genetics
- Pro-Opiomelanocortin/metabolism
- Receptor, Melanocortin, Type 3/genetics
- Receptor, Melanocortin, Type 3/metabolism
- Receptor, Melanocortin, Type 4/genetics
- Receptor, Melanocortin, Type 4/metabolism
- Receptors, Ghrelin/genetics
- Receptors, Ghrelin/metabolism
- Receptors, Kisspeptin-1/genetics
- Receptors, Kisspeptin-1/metabolism
Collapse
Affiliation(s)
- Julie-Ann P De Bond
- School of Anatomy, Physiology and Human Biology, University of Western Australia, Perth, Australia
| | - Kristen P Tolson
- Department of Reproductive Medicine, University of California San Diego, La Jolla, CA, USA
| | - Chanond Nasamran
- Department of Reproductive Medicine, University of California San Diego, La Jolla, CA, USA
| | - Alexander S Kauffman
- Department of Reproductive Medicine, University of California San Diego, La Jolla, CA, USA
| | - Jeremy T Smith
- School of Anatomy, Physiology and Human Biology, University of Western Australia, Perth, Australia.
| |
Collapse
|
35
|
Tran TKA, MacFarlane GR, Kong RYC, O'Connor WA, Yu RMK. Potential mechanisms underlying estrogen-induced expression of the molluscan estrogen receptor (ER) gene. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 179:82-94. [PMID: 27592181 DOI: 10.1016/j.aquatox.2016.08.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 08/23/2016] [Indexed: 06/06/2023]
Abstract
In vertebrates, estrogens and estrogen mimicking chemicals modulate gene expression mainly through a genomic pathway mediated by the estrogen receptors (ERs). Although the existence of an ER orthologue in the mollusc genome has been known for some time, its role in estrogen signalling has yet to be deciphered. This is largely due to its constitutive (ligand-independent) activation and a limited mechanistic understanding of its regulation. To fill this knowledge gap, we cloned and characterised an ER cDNA (sgER) and the 5'-flanking region of the gene from the Sydney rock oyster Saccostrea glomerata. The sgER cDNA is predicted to encode a 477-amino acid protein that contains a DNA-binding domain (DBD) and a ligand-binding domain (LBD) typically conserved among both vertebrate and invertebrate ERs. A comparison of the sgER LBD sequence with those of other ligand-dependent ERs revealed that the sgER LBD is variable at several conserved residues known to be critical for ligand binding and receptor activation. Ligand binding assays using fluorescent-labelled E2 and purified sgER protein confirmed that sgER is devoid of estrogen binding. In silico analysis of the sgER 5'-flanking sequence indicated the presence of three putative estrogen responsive element (ERE) half-sites and several putative sites for ER-interacting transcription factors, suggesting that the sgER promoter may be autoregulated by its own gene product. sgER mRNA is ubiquitously expressed in adult oyster tissues, with the highest expression found in the ovary. Ovarian expression of sgER mRNA was significantly upregulated following in vitro and in vivo exposure to 17β-estradiol (E2). Notably, the activation of sgER expression by E2 in vitro was abolished by the specific ER antagonist ICI 182, 780. To determine whether sgER expression is epigenetically regulated, the in vivo DNA methylation status of the putative proximal promoter in ovarian tissues was assessed using bisulfite genomic sequencing. The results showed that the promoter is predominantly hypomethylated (with 0-3.3% methylcytosines) regardless of sgER mRNA levels. Overall, our investigations suggest that the estrogen responsiveness of sgER is regulated by a novel ligand-dependent receptor, presumably via a non-genomic pathway(s) of estrogen signalling.
Collapse
Affiliation(s)
- Thi Kim Anh Tran
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia; Department of Agriculture, Forestry and Fisheries, Vinh University, 182 Le Duan St., Vinh City, Nghe An, Vietnam
| | - Geoff R MacFarlane
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Richard Yuen Chong Kong
- Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region, China
| | - Wayne A O'Connor
- New South Wales Department of Primary Industries, Port Stephens Fisheries Institute, Taylors Beach, NSW 2316, Australia
| | - Richard Man Kit Yu
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia.
| |
Collapse
|
36
|
Radzinskii VE, Kuznetsova IV, Uspenskaya YB, Repina NB, Gusak YK, Zubova OM, Burchakov DI, Osmakova AA. Treatment of climacteric symptoms with an ammonium succinate-based dietary supplement: a randomized, double-blind, placebo-controlled trial. Gynecol Endocrinol 2016; 32:64-68. [PMID: 27759458 DOI: 10.1080/09513590.2016.1232686] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Peri- and postmenopausal women commonly suffer from climacteric symptoms. We evaluated the effectiveness and safety of dietary supplement Amberen to relieve vasomotor and psychosomatic symptoms during the course of a 3-month, randomized, double-blind, placebo-controlled study. General clinical assessment, evaluation using the Greene climacteric test and Spielberger-Hanin test, determination of plasma levels of gonadotropins, estradiol, leptin and apolipoproteins were used to evaluate 42-60-year-old women with vasomotor and psychosomatic menopausal symptoms. One hundred and twenty-five women were enrolled in the study and randomized between two groups. Based on the Greene test results, there was a statistically significant improvement (р < 0.05) in 13 out of 21 menopausal symptoms in women who took Amberen. During the course and by the end of the study, patients showed statistically significant changes in the levels of estradiol, gonadotropins and leptin, and decreases in body weight and waist circumference. Spielberger-Hanin test showed that Amberen stabilizes patients' psychological state with a statistically significant decrease in anxiety, increased stress resistance and improved adaptability. Comparative analysis of the vital signs measurements, blood tests and urinalysis did not show any negative effects of Amberen on the patients. Our findings indicate that Amberen can be considered a method of choice to relief mild/moderate climacteric symptoms.
Collapse
Affiliation(s)
- V E Radzinskii
- a Department of Obstetrics and Gynecology , the Peoples' Friendship University of Russia, Medical Institute , Moscow , Russia
| | - I V Kuznetsova
- b Women's Health Research Institute, Research Center, I.M. Sechenov First Moscow State Medical University , Moscow , Russia
| | - Y B Uspenskaya
- b Women's Health Research Institute, Research Center, I.M. Sechenov First Moscow State Medical University , Moscow , Russia
| | - N B Repina
- c Department of Obstetrics and Gynecology , Ryazan State Medical University named after academician I.P. Pavlov , Ryazan , Russia , and
| | - Y K Gusak
- c Department of Obstetrics and Gynecology , Ryazan State Medical University named after academician I.P. Pavlov , Ryazan , Russia , and
| | - O M Zubova
- d Department of Therapy , M.V. Lomonosov Moscow State University , Moscow , Russia
| | - D I Burchakov
- b Women's Health Research Institute, Research Center, I.M. Sechenov First Moscow State Medical University , Moscow , Russia
| | - A A Osmakova
- a Department of Obstetrics and Gynecology , the Peoples' Friendship University of Russia, Medical Institute , Moscow , Russia
| |
Collapse
|
37
|
Luine V. Estradiol: Mediator of memories, spine density and cognitive resilience to stress in female rodents. J Steroid Biochem Mol Biol 2016; 160:189-95. [PMID: 26241030 PMCID: PMC4734902 DOI: 10.1016/j.jsbmb.2015.07.022] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 07/28/2015] [Accepted: 07/30/2015] [Indexed: 01/05/2023]
Abstract
Estradiol rapidly activates, within minutes, various physiological functions and behaviors including cognition in rodents. This review describes rapid effects of estradiol on hippocampal dependent learning and memory tasks in rodents. Mechanisms underlying the memory enhancements including the activation of signaling molecules and the enhancement of dendritic spinogenesis are briefly reviewed. In addition, the role of estradiol in the cognitive resilience to chronic stress exhibited only in females is discussed including contributions of ovarian as well as intra-hippocampally derived estrogens to this sex difference. Finally, speculations on possible physiologic functions for rapid mnemonic changes mediated by estrogens are made. Overall, the emergence of a novel and powerful mechanism for regulation of cognition by estradiol is described.
Collapse
Affiliation(s)
- Victoria Luine
- Department of Psychology, Hunter College of CUNY, 695 Park Ave., Rm 611 HN, New York, NY 10065, United States.
| |
Collapse
|
38
|
Mela V, Vargas A, Meza C, Kachani M, Wagner EJ. Modulatory influences of estradiol and other anorexigenic hormones on metabotropic, Gi/o-coupled receptor function in the hypothalamic control of energy homeostasis. J Steroid Biochem Mol Biol 2016; 160:15-26. [PMID: 26232394 PMCID: PMC4732935 DOI: 10.1016/j.jsbmb.2015.07.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 07/22/2015] [Accepted: 07/26/2015] [Indexed: 11/22/2022]
Abstract
The appetite suppressant actions of estradiol are due to its ability to attenuate orexigenic signals and potentiate anorexigenic signals. The work from my laboratory has shown that male guinea pigs are more sensitive to the hyperphagic and hypothermic effects of cannabinoids than their female counterparts. Cannabinoid sensitivity is further dampened by the activational effects of estradiol. This occurs via the hypothalamic feeding circuitry, where estradiol rapidly attenuates the cannabinoid CB1 receptor-mediated presynaptic inhibition of glutamatergic input onto anorexigenic proopiomelanocortin (POMC) neurons in the arcuate nucleus. This disruption is blocked by the estrogen receptor antagonist ICI 182,780, and associated with increased expression of phosphatidylinositol-3-kinase (PI3K). Moreover, the ability of estradiol to reduce both the cannabinoid-induced hyperphagia and glutamate release onto POMC neurons is abrogated by the PI3K inhibitor PI 828. The peptide orphanin FQ/nociceptin (OFQ/N) activates opioid receptor-like (ORL)1 receptors to hyperpolarize and inhibit POMC neurons via the activation of postsynaptic G protein-gated, inwardly-rectifying (GIRK) channels. We have demonstrated that the fasting-induced hyperphagia observed in ORL1-null mice is blunted compared to wild type controls. In addition, the ORL1 receptor-mediated activation of GIRK channels in POMC neurons from ovariectomized female rats is markedly impaired by estradiol. The estrogenic attenuation of presynaptic CB1 and postsynaptic ORL1 receptor function may be part of a more generalized mechanism through which anorexigenic hormones suppress orexigenic signaling. Indeed, we have found that leptin robustly suppresses the OFQ/N-induced activation of GIRK channels in POMC neurons. Furthermore, its ability to augment excitatory input onto POMC neurons is blocked by PI 828. Thus, estradiol and other hormones like leptin reduce energy intake at least partly by activating PI3K to disrupt the pleiotropic functions of Gi/o-coupled receptors that inhibit anorexigenic POMC neurons.
Collapse
Affiliation(s)
- Virginia Mela
- Department of Basic Medical Sciences, Western University of Health Sciences, Pomona, CA 91766, United States
| | - Amanda Vargas
- Department of Basic Medical Sciences, Western University of Health Sciences, Pomona, CA 91766, United States
| | - Cecilia Meza
- Department of Basic Medical Sciences, Western University of Health Sciences, Pomona, CA 91766, United States
| | - Malika Kachani
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA 91766, United States
| | - Edward J Wagner
- Department of Basic Medical Sciences, Western University of Health Sciences, Pomona, CA 91766, United States.
| |
Collapse
|
39
|
Li Y, Xu J, Jiang F, Jiang Z, Liu C, Li L, Luo Y, Lu R, Mu Y, Liu Y, Xue B. G protein-coupled estrogen receptor is involved in modulating colonic motor function via nitric oxide release in C57BL/6 female mice. Neurogastroenterol Motil 2016; 28:432-42. [PMID: 26661936 DOI: 10.1111/nmo.12743] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 11/02/2015] [Indexed: 12/17/2022]
Abstract
BACKGROUND Estrogen may regulate gastrointestinal motor functions, but the mechanism(s) is not totally understood. Here, we investigated whether G protein-coupled estrogen receptor (GPER/GPR30) was involved in regulating colonic motor functions and explored the underlying physiological mechanisms. METHODS Adult female C57BL/6 mice were used. The expression and localization of GPER were examined by RT-PCR, western blot, and immuno-labeling. The role of GPER in modulating colonic motor functions was assessed by the bead propulsion test in vivo and organ bath experiments in vitro. KEY RESULTS GPER was expressed in colonic myenteric neurons. The colonic transit time (CTT) in proestrus and estrus was significantly longer than that in diestrus. In vivo treatment with the selective GPER blocker G15 significantly shortened CTT in proestrus and estrus. In ovariectomized mice, acute estrogen supplementation increased CTT, which could be abolished by G15 co-administration. The GPER agonist G-1 caused a concentration-dependent inhibition of carbachol -induced circular muscle strips contraction, which was abolished by tetrodotoxin and the neuronal nitric oxide synthase (nNOS) inhibitor N-propyl-l-arginine. G-1 stimulated NO production in isolated longitudinal muscle myenteric plexus and cultured myenteric neurons, which was dependent on nNOS. Immunofluorescence labeling showed co-localization of GPER with nNOS in the myenteric plexus. CONCLUSIONS & INFERENCES We suggest that activation of GPER exerts an inhibitory effect on colonic motility by promoting NO release from myenteric nitrergic nerves. These results raise a possibility that GPER may be involved in mediating the inhibitory effect of estrogen on colonic motor functions, via a non-genomic, neurogenic mechanism.
Collapse
Affiliation(s)
- Y Li
- Department of Pathophysiology, Medical School, Shandong University, Jinan, China
| | - J Xu
- Department of Pathophysiology, Medical School, Shandong University, Jinan, China
| | - F Jiang
- Department of Pathophysiology, Medical School, Shandong University, Jinan, China
| | - Z Jiang
- Department of Pathophysiology, Medical School, Shandong University, Jinan, China
| | - C Liu
- Department of Physiology, Medical School, Shandong University, Jinan, China
| | - L Li
- Department of Pathophysiology, Medical School, Shandong University, Jinan, China
| | - Y Luo
- Department of Pathophysiology, Medical School, Shandong University, Jinan, China
| | - R Lu
- Department of Pathophysiology, Medical School, Shandong University, Jinan, China
| | - Y Mu
- Department of Pathophysiology, Medical School, Shandong University, Jinan, China
| | - Y Liu
- Department of Pathophysiology, Medical School, Shandong University, Jinan, China
| | - B Xue
- Department of Pathophysiology, Medical School, Shandong University, Jinan, China
| |
Collapse
|
40
|
Hoeflich A, Reyer A, Ohde D, Schindler N, Brenmoehl J, Spitschak M, Langhammer M, Tuchscherer A, Wirthgen E, Renner‐Müller I, Wanke R, Metzger F, Bielohuby M, Wolf E. Dissociation of somatic growth, time of sexual maturity, and life expectancy by overexpression of an RGD-deficient IGFBP-2 variant in female transgenic mice. Aging Cell 2016; 15:111-7. [PMID: 26507795 PMCID: PMC4717279 DOI: 10.1111/acel.12413] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/18/2015] [Indexed: 12/20/2022] Open
Abstract
Impaired growth is often associated with an extension of lifespan. However, the negative correlation between somatic growth and life expectancy is only true within, but not between, species. This can be observed because smaller species have, as a rule, a shorter lifespan than larger species. In insects and worms, reduced reproductive development and increased fat storage are associated with prolonged lifespan. However, in mammals the relationship between the dynamics of reproductive development, fat metabolism, growth rate, and lifespan are less clear. To address this point, female transgenic mice that were overexpressing similar levels of either intact (D‐mice) or mutant insulin‐like growth factor‐binding protein‐2 (IGFBP‐2) lacking the Arg‐Gly‐Asp (RGD) motif (E‐ mice) were investigated. Both lines of transgenic mice exhibited a similar degree of growth impairment (−9% and −10%) in comparison with wild‐type controls (C‐mice). While in D‐mice, sexual maturation was found to be delayed and life expectancy was significantly increased in comparison with C‐mice, these parameters were unaltered in E‐mice in spite of their reduced growth rate. These observations indicate that the RGD‐domain has a major influence on the pleiotropic effects of IGFBP‐2 and suggest that somatic growth and time of sexual maturity or somatic growth and life expectancy are less closely related than thought previously.
Collapse
Affiliation(s)
- Andreas Hoeflich
- Institute for Genome Biology Leibniz Institute for Farm Animal Biology (FBN) 18196 Dummerstorf Germany
| | - Anja Reyer
- Institute for Genome Biology Leibniz Institute for Farm Animal Biology (FBN) 18196 Dummerstorf Germany
| | - Daniela Ohde
- Institute for Genome Biology Leibniz Institute for Farm Animal Biology (FBN) 18196 Dummerstorf Germany
| | - Nancy Schindler
- Institute for Genome Biology Leibniz Institute for Farm Animal Biology (FBN) 18196 Dummerstorf Germany
| | - Julia Brenmoehl
- Institute for Genome Biology Leibniz Institute for Farm Animal Biology (FBN) 18196 Dummerstorf Germany
| | - Marion Spitschak
- Institute for Genome Biology Leibniz Institute for Farm Animal Biology (FBN) 18196 Dummerstorf Germany
| | - Martina Langhammer
- Institute for Genetics and Biometry Leibniz Institute for Farm Animal Biology (FBN) 18196 Dummerstorf Germany
| | - Armin Tuchscherer
- Institute for Genetics and Biometry Leibniz Institute for Farm Animal Biology (FBN) 18196 Dummerstorf Germany
| | - Elisa Wirthgen
- Institute for Genome Biology Leibniz Institute for Farm Animal Biology (FBN) 18196 Dummerstorf Germany
- Ligandis GbR 18276 Gülzow‐Prüzen Germany
| | - Ingrid Renner‐Müller
- Institute of Molecular Animal Breeding and Biotechnology Gene Center LMU Munich 81377 Munich Germany
| | - Rüdiger Wanke
- Institute of Veterinary Pathology LMU Munich 80539 Munich Germany
| | - Friedrich Metzger
- F. Hoffmann‐La Roche Ltd. pRED Pharma Research & Early Development DTA Neuroscience 4070 Basel Switzerland
| | - Maximilian Bielohuby
- Endocrine Research Unit Medizinische Klinik und Poliklinik IV Klinikum der Universität 80336 Munich Germany
| | - Eckhard Wolf
- Institute of Molecular Animal Breeding and Biotechnology Gene Center LMU Munich 81377 Munich Germany
- German Center for Diabetes Research (DZD) 85764 Neuherberg Germany
| |
Collapse
|
41
|
Conde K, Meza C, Kelly MJ, Sinchak K, Wagner EJ. Estradiol Rapidly Attenuates ORL-1 Receptor-Mediated Inhibition of Proopiomelanocortin Neurons via Gq-Coupled, Membrane-Initiated Signaling. Neuroendocrinology 2016; 103:787-805. [PMID: 26765570 PMCID: PMC4947458 DOI: 10.1159/000443765] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 01/04/2016] [Indexed: 12/14/2022]
Abstract
Estradiol rapidly regulates the activity of arcuate nucleus (ARH) proopiomelanocortin (POMC) neurons that project to the medial preoptic nucleus (MPN) to regulate lordosis. Orphanin FQ/nociceptin (OFQ/N) acts via opioid receptor-like (ORL)-1 receptors to inhibit these POMC neurons. Therefore, we tested the hypothesis that estradiol excites POMC neurons by rapidly attenuating inhibitory ORL-1 signaling in these cells. Hypothalamic slices through the ARH were prepared from ovariectomized rats injected with Fluorogold into the MPN. Electrophysiological recordings were generated in ARH neurons held at or near -60 mV, and neuronal phenotype was determined post hoc by immunohistofluorescence. OFQ/N application induced robust outward currents and hyperpolarizations via G protein-gated, inwardly rectifying K+ (GIRK) channels that were attenuated by pretreatment with either 17-β estradiol (E2) or E2 conjugated to bovine serum albumin. This was blocked by the estrogen receptor (ER) antagonist ICI 182,780 and mimicked by the Gq-coupled membrane ER (Gq-mER) ligand STX and the ERα agonist PPT. Inhibiting phosphatidylinositol-3-kinase (PI3K) blocked the estrogenic attenuation of ORL-1/GIRK currents. Antagonizing either phospholipase C (PLC), protein kinase C (PKC), protein kinase A (PKA) or neuronal nitric oxide synthase (nNOS) also abrogated E2 inhibition of ORL-1/GIRK currents, whereas activation of PKC, PKA, protein kinase B (Akt) and nNOS substrate L-arginine all attenuated the OFQ/N response. This was observed in 92 MPN-projecting, POMC-positive ARH neurons. Thus, ORL-1 receptor-mediated inhibition of POMC neurons is rapidly and negatively modulated by E2, an effect which is stereoselective and membrane initiated via Gq-mER and ERα activation that signals through PLC, PKC, PKA, PI3K and nNOS.
Collapse
Affiliation(s)
- Kristie Conde
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91766
| | - Cecilia Meza
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA 91766
| | - Martin J. Kelly
- Department of Physiology & Pharmacology, Oregon Health & Science University, Portland, OR 97239
| | - Kevin Sinchak
- Department of Biological Sciences, California State University, Long Beach, Long Beach, CA 90840
| | - Edward J. Wagner
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91766
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA 91766
| |
Collapse
|
42
|
Wagner EJ. Sex differences in cannabinoid-regulated biology: A focus on energy homeostasis. Front Neuroendocrinol 2016; 40:101-9. [PMID: 26800649 PMCID: PMC4783283 DOI: 10.1016/j.yfrne.2016.01.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 12/31/2015] [Accepted: 01/19/2016] [Indexed: 11/18/2022]
Abstract
Considerable strides have been made over the past 20 years in our understanding of the ligands, receptor subtypes, signal transduction mechanisms and biological actions comprising the endocannabinoid system. From the ever-expanding number of studies that have been conducted during this time, it has become increasingly clear that sex differences are the cornerstone of cannabinoid-regulated biology. Available evidence has demonstrated that these sex differences endure in the absence of gonadal steroids, and are modulated by the acute, activational effects of these hormones. This review focuses on select aspects of sexually differentiated, cannabinoid-regulated biology, with a particular emphasis on the control of energy balance. It is anticipated that it will lend impactful insight into the pervasive and diverse disparities in how males and females respond to cannabinoids--from the organismal level down to the molecular level. Additionally, it will furnish a newfound appreciation for the need to recalibrate our thinking in terms of how cannabinoids are used as therapeutic adjuvants for a broad range of clinical disorders and associated comorbidities, including body wasting and obesity.
Collapse
Affiliation(s)
- Edward J Wagner
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, 309 E. Second Street, Pomona, CA 91766, United States.
| |
Collapse
|
43
|
Estradiol Preferentially Induces Progestin Receptor-A (PR-A) Over PR-B in Cells Expressing Nuclear Receptor Coactivators in the Female Mouse Hypothalamus. eNeuro 2015; 2:eN-NWR-0012-15. [PMID: 26465008 PMCID: PMC4596027 DOI: 10.1523/eneuro.0012-15.2015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 07/24/2015] [Accepted: 07/25/2015] [Indexed: 11/29/2022] Open
Abstract
Estrogens act in brain to profoundly influence neurogenesis, sexual differentiation, neuroprotection, cognition, energy homeostasis, and female reproductive behavior and physiology through a variety of mechanisms, including the induction of progestin receptors (PRs). PRs are expressed as two isoforms, PR-A and PR-B, that have distinct functions in physiology and behavior. Because these PR isoforms cannot be distinguished using cellular resolution techniques, the present study used isoform-specific null mutant mice that lack PR-A or PR-B for the first time to investigate whether 17β-estradiol benzoate (EB) regulates the differential expression of the PR isoforms in the ventromedial nucleus of the hypothalamus (VMN), arcuate nucleus, and medial preoptic area, brain regions that are rich in EB-induced PRs. Interestingly, EB induced more PR-A than PR-B in all three brain regions, suggesting that PR-A is the predominant isoform in these regions. Given that steroid receptor coactivator (SRC)-1 and SRC-2 are important in estrogen receptor (ER)-dependent transcription in brain, including PR induction, we tested whether the expression of these coactivators was correlated with PR isoform expression. The majority of EB-induced PR cells expressed both SRC-1 and SRC-2 in the three brain regions of all genotypes. Interestingly, the intensity of PR-A immunoreactivity correlated with SRC-2 expression in the VMN, providing a potential mechanism for selective ER-mediated transactivation of PR-A over PR-B in a brain region-specific manner. In summary, these novel findings indicate that estrogens differentially regulate PR-A and PR-B expression in the female hypothalamus, and provide a mechanism by which steroid action in brain can selectively modulate behavior and physiology.
Collapse
|
44
|
Heimovics SA, Trainor BC, Soma KK. Rapid Effects of Estradiol on Aggression in Birds and Mice: The Fast and the Furious. Integr Comp Biol 2015; 55:281-93. [PMID: 25980562 DOI: 10.1093/icb/icv048] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Across invertebrates and vertebrates, steroids are potent signaling molecules that affect nearly every cell in the organism, including cells of the nervous system. Historically, researchers have focused on the genomic (or "nuclear-initiated") effects of steroids. However, all classes of steroids also have rapid non-genomic (or "membrane-initiated") effects, although there is far less basic knowledge of these non-genomic effects. In particular, steroids synthesized in the brain ("neurosteroids") have genomic and non-genomic effects on behavior. Here, we review evidence that estradiol has rapid effects on aggression, an important social behavior, and on intracellular signaling cascades in relevant regions of the brain. In particular, we focus on studies of song sparrows (Melospiza melodia) and Peromyscus mice, in which estradiol has rapid behavioral effects under short photoperiods only. Furthermore, in captive Peromyscus, estrogenic compounds (THF-diols) in corncob bedding profoundly alter the rapid effects of estradiol. Environmental factors in the laboratory, such as photoperiod, diet, and bedding, are critical variables to consider in experimental design. These studies are consistent with the hypothesis that locally-produced steroids are more likely than systemic steroids to act via non-genomic mechanisms. Furthermore, these studies illustrate the dynamic balance between genomic and non-genomic signaling for estradiol, which is likely to be relevant for other steroids, behaviors, and species.
Collapse
Affiliation(s)
- Sarah A Heimovics
- *Department of Biology, University of St Thomas, St Paul, MN 55105, USA;
| | - Brian C Trainor
- Department of Psychology, University of California-Davis, Davis, CA 95616, USA
| | - Kiran K Soma
- Departments of Psychology and Zoology, Graduate Program in Neuroscience, University of British Columbia, Vancouver, British Columbia, V6T 1Z7, Canada
| |
Collapse
|
45
|
Go EH, Lee SH. Effect of Long Term Reverse Feeding on the Reproductive and Non-reproductive Tissues in Male Mice. Dev Reprod 2015; 18:161-6. [PMID: 25949185 PMCID: PMC4282209 DOI: 10.12717/dr.2014.18.3.161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 08/11/2014] [Accepted: 08/18/2014] [Indexed: 01/17/2023]
Abstract
Previously, we demonstrated that the shift and/or restriction of feeding time during relatively short-term period (4 weeks) could alter the pituitary gonadotropin expression and the weights of seminal vesicle and prostate in rats. We also found that the reverse feeding (RF) schedule (up to 8 weeks) might induce an adaptable metabolic stress and cause impairment of androgen-dependent reproductive tissues. In the present study, we extended the RF time regimen up to 12 weeks, and measured the reproductive tissue weights. After 4 and 8 weeks of RF, the weights of epididymis were not significantly different. After 12 weeks, however, epididymis weights of RF animals were significantly different (CON 12W : RF 12W = 48.26±0.62 mg : 44.05±1.57 mg, p<0.05). After 4 and 12 weeks of feeding, seminal vesicle weights of RF animals were significantly decreased (CON 4W : RF 4W = 79.36±8.34 mg : 46.28±2.43 mg, p<0.001; CON 12W : RF 12W = 72.04±3.76 mg : 46.71±2.27 mg, p<0.001, respectively). Prostate weights were not changed by RF. Kidney and spleen weights of RF animals were significantly different on weeks 4 and 12 (Kidney, CON 4W : RF 4W = 249.72±4.20 mg : 228.41±3.03 mg, p<0.001; CON 12W : RF 12W = 309.15±7.49 mg : 250.72±6.13 mg, p<0.001, respectively, Spleen, CON 4W : RF 4W = 111.26±3.76 mg : 96.88±4.69 mg, p<0.05; CON 12W : RF 12W = 123.93±10.72 mg : 94.68±5.65 mg, p<0.05, respectively). Histology analysis of seminal vesicle revealed that the thinner epithelial cell layers, reduced complexities of swollen papilla folding in the exocrine glands on weeks 4 and 12 of RF. There was no histological difference between control and RF group on week 8. The present study indicates that up to 12 weeks RF induced differential changes in tissue weights of male mice. In particular, seminal vesicle, kidney and spleen seemed to temporarily adapted to the RF-induced metabolic stress on week 8 of feeding schedule. These results confirmed the our previous study that the RF might induce an adaptable metabolic stress and cause impairment of androgen-dependent reproductive tissues such as epididymis and seminal vesicle as well as non-reproductive tissues such as kidney and spleen. Further studies will be needed to achieve a better understanding of the how does mealtime shift affect the reproductive function and exact nature of adaptation.
Collapse
Affiliation(s)
- Eun Hye Go
- Department of Life Science, Sangmyung University, Seoul 110-743, Korea
| | - Sung-Ho Lee
- Department of Life Science, Sangmyung University, Seoul 110-743, Korea
| |
Collapse
|
46
|
Sinchak K, Dalhousay L, Sanathara N. Orphanin FQ-ORL-1 regulation of reproduction and reproductive behavior in the female. VITAMINS AND HORMONES 2015; 97:187-221. [PMID: 25677773 DOI: 10.1016/bs.vh.2014.11.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Orphanin FQ (OFQ/N) and its receptor, opioid receptor-like receptor-1 (ORL-1), are expressed throughout steroid-responsive limbic and hypothalamic circuits that regulate female ovarian hormone feedback and reproductive behavior circuits. The arcuate nucleus of the hypothalamus (ARH) is a brain region that expresses OFQ/N and ORL-1 important for both sexual behavior and modulating estradiol feedback loops. Within the ARH, the activation of the OFQ/N-ORL-1 system facilitates sexual receptivity (lordosis) through the inhibition of β-endorphin neuronal activity. Estradiol initially activates ARH β-endorphin neurons to inhibit lordosis. Simultaneously, estradiol upregulates coexpression of OFQ/N and progesterone receptors and ORL-1 in ARH β-endorphin neurons. Ovarian hormones regulate pre- and postsynaptic coupling of ORL-1 to its G protein-coupled signaling pathways. When the steroid-primed rat is nonreceptive, estradiol acts pre- and postsynaptically to decrease the ability of the OFQ/N-ORL-1 system to inhibit ARH β-endorphin neurotransmission. Conversely, when sexually receptive, ORL-1 signaling is restored to inhibit β-endorphin neurotransmission. Although steroid signaling that facilitates lordosis converges to deactivate ARH β-endorphin neurons, estradiol-only facilitation of lordosis requires the activation of ORL-1, but estradiol+progesterone does not, indicating that multiple circuits mediate ovarian hormone signaling to deactivate ARH β-endorphin neurons. Research on the role of OFQ/N-ORL-1 in ovarian hormone feedback loops is just beginning. In the rat, OFQ/N may act to terminate gonadotropin-releasing hormone and luteinizing hormone release under positive and negative feedbacks. In the ewe, it appears to directly inhibit gonadotropin-releasing hormone release to mediate progesterone-negative feedback. As a whole, the localization and actions of OFQ/N-ORL-1 system indicate that it may mediate the actions of estradiol and progesterone to synchronize reproductive behavior and ovarian hormone feedback loops.
Collapse
Affiliation(s)
- Kevin Sinchak
- Department of Biological Sciences, California State University, Long Beach, California, USA.
| | - Lauren Dalhousay
- Department of Biological Sciences, California State University, Long Beach, California, USA
| | - Nayna Sanathara
- Department of Pharmacological Sciences, University of California, Irvine, California, USA
| |
Collapse
|
47
|
Geraghty AC, Kaufer D. Glucocorticoid Regulation of Reproduction. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015. [PMID: 26215998 DOI: 10.1007/978-1-4939-2895-8_11] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
It is well accepted that stress, measured by increased glucocorticoid secretion, leads to profound reproductive dysfunction. In times of stress, glucocorticoids activate many parts of the fight or flight response, mobilizing energy and enhancing survival, while inhibiting metabolic processes that are not necessary for survival in the moment. This includes reproduction, an energetically costly procedure that is very finely regulated. In the short term, this is meant to be beneficial, so that the organism does not waste precious energy needed for survival. However, long-term inhibition can lead to persistent reproductive dysfunction, even if no longer stressed. This response is mediated by the increased levels of circulating glucocorticoids, which orchestrate complex inhibition of the entire reproductive axis. Stress and glucocorticoids exhibits both central and peripheral inhibition of the reproductive hormonal axis. While this has long been recognized as an issue, understanding the complex signaling mechanism behind this inhibition remains somewhat of a mystery. What makes this especially difficult is attempting to differentiate the many parts of both of these hormonal axes, and new neuropeptide discoveries in the last decade in the reproductive field have added even more complexity to an already complicated system. Glucocorticoids (GCs) and other hormones within the hypothalamic-pituitary-adrenal (HPA) axis (as well as contributors in the sympathetic system) can modulate the hypothalamic-pituitary-gonadal (HPG) axis at all levels-GCs can inhibit release of GnRH from the hypothalamus, inhibit gonadotropin synthesis and release in the pituitary, and inhibit testosterone synthesis and release from the gonads, while also influencing gametogenesis and sexual behavior. This chapter is not an exhaustive review of all the known literature, however is aimed at giving a brief look at both the central and peripheral effects of glucocorticoids on the reproductive function.
Collapse
Affiliation(s)
- Anna C Geraghty
- Department of Integrative Biology, University of California, Berkeley, CA, USA
| | | |
Collapse
|
48
|
Long N, Serey C, Sinchak K. 17β-estradiol rapidly facilitates lordosis through G protein-coupled estrogen receptor 1 (GPER) via deactivation of medial preoptic nucleus μ-opioid receptors in estradiol primed female rats. Horm Behav 2014; 66:663-6. [PMID: 25245158 PMCID: PMC4254307 DOI: 10.1016/j.yhbeh.2014.09.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 09/09/2014] [Accepted: 09/11/2014] [Indexed: 01/10/2023]
Abstract
In female rats sexual receptivity (lordosis) can be induced with either a single large dose of estradiol benzoate (EB), or a priming dose of EB that does not induce sexual receptivity followed by 17β-estradiol (E2). Estradiol priming initially inhibits lordosis through a multi-synaptic circuit originating in the arcuate nucleus of the hypothalamus (ARH) that activates and internalizes μ-opioid receptors (MOR) in medial preoptic nucleus (MPN) neurons. Lordosis is facilitated when MPN MOR are deactivated after the initial estradiol-induced activation. We tested the hypothesis that E2 given 47.5 h post EB acts rapidly through G protein-coupled estrogen receptor 1 (GPER) in the ARH to deactivate MPN MOR and facilitate lordosis. Ovariectomized Long Evans rats implanted with a third ventricle cannula were primed with 2 μg EB. DMSO control, E2, or G1 (GPER selective agonist) was infused 47.5 h later, and rats were tested for sexual receptivity. E2 and G1 infusions significantly increased levels of sexual receptivity compared to DMSO controls and pretreatment with G15 (GPER antagonist) blocked the facilitation of sexual receptivity. Brains were processed for MPN MOR immunohistochemistry to measure MPN MOR activation levels. E2 and G1 both significantly reduced MPN MOR activation compared to DMSO controls, while pretreatment with G15 blocked MPN MOR deactivation. In another group of EB treated ovariectomized rats, GPER immunofluorescence positive staining was observed throughout the ARH. Together these data indicate that in the 2 μg EB primed rat, E2 rapidly signals through GPER in the ARH to deactivate MPN MOR and facilitate lordosis.
Collapse
Affiliation(s)
- Nathan Long
- Department of Biological Sciences, California State University, Long Beach, Long Beach, CA, United States
| | - Chhorvann Serey
- Department of Biological Sciences, California State University, Long Beach, Long Beach, CA, United States
| | - Kevin Sinchak
- Department of Biological Sciences, California State University, Long Beach, Long Beach, CA, United States.
| |
Collapse
|
49
|
Jones SL, Pfaus JG. Sensitization of sexual behaviors in ovariectomized Long-Evans rats is induced by a subthreshold dose of estradiol benzoate and attenuated by repeated copulation. Horm Behav 2014; 66:655-62. [PMID: 25251978 DOI: 10.1016/j.yhbeh.2014.09.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 09/10/2014] [Accepted: 09/15/2014] [Indexed: 02/06/2023]
Abstract
Ovariectomy (OVX) abolishes the expression sexual behaviors in the rat, but they can be fully reinstated by sequential administration of estradiol benzoate (EB) followed by progesterone (P). When administered alone, 5 or 10 μg EB (but not 2 μg) acutely induce only low levels of lordosis, whereas repeated administration potentiates lordosis and induces sexually appetitive behaviors (e.g., hops, darts, solicitations, ear wiggles). The mechanisms mediating this behavioral sensitization are poorly understood, and it is not clear whether stimulation from the male during repeated copulation plays a role. OVX Long-Evans rats were given 4 sexual training sessions with EB (10 μg) and P (500 μg) 48 and 4h prior to testing, respectively, in a unilevel 4-hole pacing chamber followed by a 2-week hormone washout. Females were then treated with 2 μg or 10 μg EB 48 h prior to copulation on Tests 1 and 8. On Tests 2-7, a group of females was treated with 10 μg EB and allowed to copulate with a male (10 μg EB/Male, n = 16), or treated with 2 μg or 10 μg EB and placed in the chamber alone (2 μg EB/Alone, n = 6; 10 μg EB/Alone, n = 18). A negative control group was treated with the oil vehicle and placed in the chamber alone (Oil/Alone, n = 6) on Tests 2-7, but treated with 2 μg EB prior to copulatory Tests 1 and 8. All groups, except Oil, displayed behavioral sensitization to EB, suggesting that repeated administration EB is both necessary and sufficient to induce sensitization. Appetitive behaviors were attenuated in those that copulated on every session. Pacing was disrupted in all groups. Together these results suggest that EB activates excitatory mechanisms to promote the expression of sexual behaviors, which are potentiated across time under certain conditions. In contrast, copulatory stimulation attenuates behavioral sensitization to EB.
Collapse
Affiliation(s)
- Sherri Lee Jones
- Center for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montreal, QC H4B 1R6, Canada.
| | - James G Pfaus
- Center for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montreal, QC H4B 1R6, Canada
| |
Collapse
|
50
|
Ko BS, Lee HW, Kim DS, Kang S, Ryuk JA, Park S. Supplementing with Opuntia ficus-indica Mill and Dioscorea nipponica Makino extracts synergistically attenuates menopausal symptoms in estrogen-deficient rats. JOURNAL OF ETHNOPHARMACOLOGY 2014; 155:267-276. [PMID: 24875644 DOI: 10.1016/j.jep.2014.05.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 05/04/2014] [Accepted: 05/17/2014] [Indexed: 06/03/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Prickly pear cactus grown in Korea (Opuntia ficus-indica Mill, KC) and Buchema (Dioscorea nipponica Makino, B) have been traditionally used in East Asia and South America to treat various metabolic diseases. The aim of the present study was to determine whether the extracts of KC, B, and KC+B can prevent the impairments of energy, glucose, lipid and bone homeostasis in estrogen-deficient ovariectomized (OVX) rats and to explore their mechanisms. MATERIALS AND METHODS OVX rats were divided into 4 groups and fed high fat diets supplemented with either 3% dextrin (control), 3% KC, 3% B or 1.5% KC+1.5% B. Sham rats were fed 3% dextrin. After 12 weeks of diet consumption, energy, lipid, glucose and bone metabolisms were analyzed and Wnt signaling in the femur and hepatic signaling were determined. RESULTS OVX impaired energy, glucose and lipid metabolism and decreased uterine and bone masses. B and KC+B prevented the decrease in energy expenditure, especially from fat oxidation, in OVX rats, but did not affect food intake. KC+B and B reduced body weight and visceral fat levels, as compared to the OVX-control, by decreasing fat synthesis and inhibiting FAS and SREBP-1c expression. KC+B and B prevented the increases in serum lipid levels and insulin resistance by improving hepatic insulin signaling (pIRS→pAkt→pGSK-3β). KC and KC+B also prevented decreases in bone mineral density (BMD) in the femur and lumbar spine in OVX rats. This was related to decreased expressions of bone turnover markers such as serum osteocalcin, alkaline phosphatase (ALP) and bone-specific ALP levels, and increased serum P levels. KC and KC+B upregulated low-density lipoprotein receptor-related protein 5 and β-catenin in OVX rats, but suppressed the expression of dickkopf-related protein 1. B alone improved energy, lipid and glucose homeostasis, but not bone loss, whereas KC alone enhanced BMD, but not energy, lipid or glucose homeostasis. CONCLUSION KC+B synergistically attenuated impairments of bone, energy, lipid and glucose metabolism by OVX, suggesting potential efficacy of the combination for alleviating menopausal symptoms.
Collapse
Affiliation(s)
- Byoung-Seob Ko
- Korea Institute of Oriental Medicine, Daejeon, South Korea
| | - Hye Won Lee
- Korea Institute of Oriental Medicine, Daejeon, South Korea
| | - Da Sol Kim
- Food & Nutrition, Obesity/Diabetes Center, Hoseo University, Asan, South Korea
| | - Suna Kang
- Food & Nutrition, Obesity/Diabetes Center, Hoseo University, Asan, South Korea
| | - Jin Ah Ryuk
- Korea Institute of Oriental Medicine, Daejeon, South Korea
| | - Sunmin Park
- Food & Nutrition, Obesity/Diabetes Center, Hoseo University, Asan, South Korea.
| |
Collapse
|