1
|
Thomas R, Ponting DJ, Thresher A, Schlingemann J, Wills JW, Johnson GE. Critical comparison of BMD and TD 50 methods for the calculation of acceptable intakes for N-nitroso compounds. Arch Toxicol 2025:10.1007/s00204-024-03951-8. [PMID: 39751876 DOI: 10.1007/s00204-024-03951-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 12/17/2024] [Indexed: 01/04/2025]
Abstract
The tumorigenic dose 50 (TD50) is a widely used measure of carcinogenic potency which has historically been used to determine acceptable intake limits for carcinogenic compounds. Although broadly used, the TD50 model was not designed to account for important biological factors such as DNA repair and cell compensatory mechanisms, changes in absorption, etc., leading to the development of benchmark dose (BMD) approaches, which use more flexible dose-response models that are better able to account for these processes. Using a nitrosamine dataset as a case study, we compare the impact of moving to a BMD-based limit as opposed to a TD50-based limit. Although there are differences in individual potency estimates between the two approaches for some compounds, we show that the key metrics such as the 5th percentile of the respective potency distributions, used when calculating class-specific default acceptable intakes, are not greatly affected. Furthermore, potency estimates for nitrosamine compounds relevant to read-across do not vary by more than a factor of 3, which is little in the context of the inherent variability in a biological response, in an overall landscape wherein potencies can vary by four orders of magnitude. This suggests a move to BMD-based limits is achievable without significant disruption to existing limits while utilising a more robust methodology.
Collapse
Affiliation(s)
- Robert Thomas
- Lhasa Limited, Granary Wharf House, 2 Canal Wharf, Leeds, UK
| | - David J Ponting
- Lhasa Limited, Granary Wharf House, 2 Canal Wharf, Leeds, UK
| | - Andrew Thresher
- Lhasa Limited, Granary Wharf House, 2 Canal Wharf, Leeds, UK
| | | | - John W Wills
- GlaxoSmithKline R&D, Gunnels Wood Road, Stevenage, UK
| | - George E Johnson
- Institute of Life Science, Swansea University Medical School, Swansea, UK.
| |
Collapse
|
2
|
Bercu J, Dirat O, Dobo K, Jolly R, Kenyon M, Harvey J, Nudelman R, Smith G, Trejo-Martin A, Urquhart M. N-Nitrosamine drug substance related impurities (NDSRIs) - A proposal for the addition of subcategories to carcinogenic potency categorization approach categories 1 and 2 for NDSRIs with a molecular weight > 200 Da. Regul Toxicol Pharmacol 2024; 154:105704. [PMID: 39326488 DOI: 10.1016/j.yrtph.2024.105704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/13/2024] [Accepted: 09/16/2024] [Indexed: 09/28/2024]
Abstract
The carcinogenicity potency categorization approach (CPCA) derived and harmonized by Health Authorities was a significant milestone, as it defined molecular properties that allowed for the rapid evaluation of the chemical structures of N-nitrosamine drug substance related impurities (NDSRIs) and the assignment of associated lifetime Acceptable Intake (AI) limits to inform on appropriate impurity control strategies in certain drug products. Nonetheless, it is important to continue to refine and improve on the CPCA based upon data-derived evidence. Herein, we focus on the default CPCA AI for NDSRIs, which is largely based on the small molecule N-nitrosamines (NAs). Considering the carcinogenic potency of NAs with a molecular weight >200 Da (NDSRIs molecular weight is typically 200-600 Da), we propose that in the absence of any compound specific data, the lowest lifetime Acceptable Intake for NAs, such as NDSRIs, should be 10x less (i.e., 150 ng/day) than the ICH M7 Threshold of Toxicological Concern of 1500 ng/day, (even for NDSRIs that are considered CPCA Category 1 and 2) which would conservatively result in a theoretical cancer risk of <1 in 100,000.
Collapse
Affiliation(s)
- Joel Bercu
- Gilead Sciences, Inc., Nonclinical Safety and Pathobiology, Foster City, CA, USA
| | - Olivier Dirat
- Global CMC, Pfizer Global Product Development, Sandwich, CT13 9NJ, UK
| | - Krista Dobo
- Pfizer Worldwide Research, Development and Medical, Drug Safety Research and Development, Groton, CT, USA
| | | | - Michelle Kenyon
- Pfizer Worldwide Research, Development and Medical, Drug Safety Research and Development, Groton, CT, USA
| | - James Harvey
- GSK R&D, Gunnels Wood Road, Stevenage, Herts, SG1 2NY, UK.
| | | | - Graham Smith
- AstraZeneca, Data Science and AI, Clinical Pharmacology & Safety Sciences, R&D, Cambridge, CB4 0WG, UK
| | | | | |
Collapse
|
3
|
Heflich RH, Bishop ME, Mittelstaedt RA, Yan J, Guerrero SK, Sims AM, Mitchell K, Moore N, Li X, Mei N, Elespuru RK, King ST, Keire DA, Kruhlak NL, Dorsam RT, Raw AS, Davis Bruno KL, McGovern TJ, Atrakchi AH. Optimizing the detection of N-nitrosamine mutagenicity in the Ames test. Regul Toxicol Pharmacol 2024; 153:105709. [PMID: 39343352 DOI: 10.1016/j.yrtph.2024.105709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/23/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024]
Abstract
Accurately determining the mutagenicity of small-molecule N-nitrosamine drug impurities and nitrosamine drug substance-related impurities (NDSRIs) is critical to identifying mutagenic and cancer hazards. In the current study we have evaluated several approaches for enhancing assay sensitivity for evaluating the mutagenicity of N-nitrosamines in the bacterial reverse mutagenicity (Ames) test. Preincubation assays were conducted using five activation conditions: no exogenous metabolic activation and metabolic activation mixes employing both 10% and 30% liver S9 from hamsters and rats pretreated with inducers of enzymatic activity. In addition, preincubations were conducted for both 60 min and 30 min. These test variables were evaluated by testing 12 small-molecule N-nitrosamines and 17 NDSRIs for mutagenicity in Salmonella typhimurium tester strains TA98, TA100, TA1535, and TA1537, and Escherichia coli strain WP2 uvrA (pKM101). Eighteen of the 29 N-nitrosamine test substances tested positive under one or more of the testing conditions and all 18 positives could be detected by using tester strains TA1535 and WP2 uvrA (pKM101), preincubations of 30 min, and S9 mixes containing 30% hamster liver S9. In general, the conditions under which NDSRIs were mutagenic were similar to those found for small-molecule N-nitrosamines.
Collapse
Affiliation(s)
- Robert H Heflich
- U.S. Food and Drug Administration, National Center for Toxicological Research, USA.
| | - Michelle E Bishop
- U.S. Food and Drug Administration, National Center for Toxicological Research, USA
| | | | - Jian Yan
- U.S. Food and Drug Administration, National Center for Toxicological Research, USA
| | - Sharon K Guerrero
- U.S. Food and Drug Administration, National Center for Toxicological Research, USA
| | - Audrey M Sims
- U.S. Food and Drug Administration, National Center for Toxicological Research, USA
| | - Kamela Mitchell
- U.S. Food and Drug Administration, National Center for Toxicological Research, USA
| | - Nyosha Moore
- U.S. Food and Drug Administration, National Center for Toxicological Research, USA
| | - Xilin Li
- U.S. Food and Drug Administration, National Center for Toxicological Research, USA
| | - Nan Mei
- U.S. Food and Drug Administration, National Center for Toxicological Research, USA
| | | | - Sruthi T King
- U.S. Food and Drug Administration, Center for Drug Evaluation and Research, Office of Generic Drugs, USA
| | - David A Keire
- U.S. Food and Drug Administration, Center for Drug Evaluation and Research, Office of Pharmaceutical Quality, USA
| | - Naomi L Kruhlak
- U.S. Food and Drug Administration, Center for Drug Evaluation and Research, Office of Translational Sciences, USA
| | - Robert T Dorsam
- U.S. Food and Drug Administration, Center for Drug Evaluation and Research, Office of Generic Drugs, USA
| | - Andre S Raw
- U.S. Food and Drug Administration, Center for Drug Evaluation and Research, Office of Pharmaceutical Quality, USA
| | - Karen L Davis Bruno
- U.S. Food and Drug Administration, Center for Drug Evaluation and Research, Office of New Drugs, USA
| | - Timothy J McGovern
- U.S. Food and Drug Administration, Center for Drug Evaluation and Research, Office of New Drugs, USA
| | - Aisar H Atrakchi
- U.S. Food and Drug Administration, Center for Drug Evaluation and Research, Office of New Drugs, USA
| |
Collapse
|
4
|
Manchuri KM, Shaik MA, Gopireddy VSR, Naziya Sultana, Gogineni S. Analytical Methodologies to Detect N-Nitrosamine Impurities in Active Pharmaceutical Ingredients, Drug Products and Other Matrices. Chem Res Toxicol 2024; 37:1456-1483. [PMID: 39158368 DOI: 10.1021/acs.chemrestox.4c00234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
Since 2018, N-nitrosamine impurities have become a widespread concern in the global regulatory landscape of pharmaceutical products. This concern arises due to their potential for contamination, toxicity, carcinogenicity, and mutagenicity and their presence in many active pharmaceutical ingredients, drug products, and other matrices. N-Nitrosamine impurities in humans can lead to severe chemical toxicity effects. These include carcinogenic effects, metabolic disruptions, reproductive harm, liver diseases, obesity, DNA damage, cell death, chromosomal alterations, birth defects, and pregnancy loss. They are particularly known to cause cancer (tumors) in various organs and tissues such as the liver, lungs, nasal cavity, esophagus, pancreas, stomach, urinary bladder, colon, kidneys, and central nervous system. Additionally, N-nitrosamine impurities may contribute to the development of Alzheimer's and Parkinson's diseases and type-2 diabetes. Therefore, it is very important to control or avoid them by enhancing effective analytical methodologies using cutting-edge analytical techniques such as LC-MS, GC-MS, CE-MS, SFC, etc. Moreover, these analytical methods need to be sensitive and selective with suitable precision and accuracy, so that the actual amounts of N-nitrosamine impurities can be detected and quantified appropriately in drugs. Regulatory agencies such as the US FDA, EMA, ICH, WHO, etc. need to focus more on the hazards of N-nitrosamine impurities by providing guidance and regular updates to drug manufacturers and applicants. Similarly, drug manufacturers should be more vigilant to avoid nitrosating agents and secondary amines during the manufacturing processes. Numerous review articles have been published recently by various researchers, focusing on N-nitrosamine impurities found in previously notified products, including sartans, metformin, and ranitidine. These impurities have also been detected in a wide range of other products. Consequently, this review aims to concentrate on products recently reported to contain N-nitrosamine impurities. These products include rifampicin, champix, famotidine, nizatidine, atorvastatin, bumetanide, itraconazole, diovan, enalapril, propranolol, lisinopril, duloxetine, rivaroxaban, pioglitazones, glifizones, cilostazol, and sunitinib.
Collapse
Affiliation(s)
- Krishna Moorthy Manchuri
- Department of Chemistry, Jawaharlal Nehru Technological University Anantapur, Ananthapuramu, Andhra Pradesh 515002, India
| | - Mahammad Ali Shaik
- Department of Chemistry, Jawaharlal Nehru Technological University Anantapur, Ananthapuramu, Andhra Pradesh 515002, India
| | - Venkata Subba Reddy Gopireddy
- Department of Chemistry, Jawaharlal Nehru Technological University Anantapur, Ananthapuramu, Andhra Pradesh 515002, India
| | - Naziya Sultana
- Analytical Research and Development, IPDO, Dr. Reddy's Laboratories Limited, Hyderabad 500090, India
| | - Sreenivasarao Gogineni
- Department of Chemistry, Acharya Nagarjuna University, Nagarjuna Nagar, Guntur, Andhra Pradesh 522510, India
| |
Collapse
|
5
|
Hospital XF, Fernández M, Morales P, Alba C, Haza AI, Hierro E. Volatile N-nitrosamines in Spanish commercial meat products and in fermented sausages prepared with different ingoing amounts of nitrate and nitrite. Heliyon 2024; 10:e37487. [PMID: 39296201 PMCID: PMC11409079 DOI: 10.1016/j.heliyon.2024.e37487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 09/04/2024] [Accepted: 09/04/2024] [Indexed: 09/21/2024] Open
Abstract
Spanish commercial dry fermented sausages and dry hams, manufactured with and without nitrate and/or nitrite have been screened for volatile N-nitrosamine (VNA) content. VNAs have been also quantified in experimental fermented sausages prepared with known ingoing amounts of curing salts. Solid phase microextraction followed by tandem quadrupole gas chromatography/mass spectrometry (GC-QQQ-MS) analysis allowed the identification and quantification of 8 VNAs, 5 of which were detected in the samples. The highest concentration of VNAs found in the commercial products was 5.4 μg/kg. The most frequently detected VNAs were N-nitrosodiphenylamine and N-nitrosopyrrolidine. Principal component analysis and cluster analysis did not show correlation between the content of VNAs and the use of nitrate/nitrite in the formula. In the experimental sausages N-nitrosodiphenylamine and N-nitrosopyrrolidine were only detected (0.55 μg/kg total concentration) when 150 mg/kg of both nitrate and nitrite were added to the formula without any antioxidant. The levels of VNAs detected in this study are similar to those reported in the literature in different fermented meat products and dry hams.
Collapse
Affiliation(s)
- Xavier F Hospital
- Food Technology Department, Veterinary Faculty, Complutense University of Madrid, 28040, Madrid, Spain
| | - Manuela Fernández
- Food Technology Department, Veterinary Faculty, Complutense University of Madrid, 28040, Madrid, Spain
| | - Paloma Morales
- Nutrition and Food Science Departmental Section, Veterinary Faculty, Complutense University of Madrid, 28040, Madrid, Spain
| | - Claudio Alba
- Nutrition and Food Science Departmental Section, Veterinary Faculty, Complutense University of Madrid, 28040, Madrid, Spain
| | - Ana I Haza
- Nutrition and Food Science Departmental Section, Veterinary Faculty, Complutense University of Madrid, 28040, Madrid, Spain
| | - Eva Hierro
- Food Technology Department, Veterinary Faculty, Complutense University of Madrid, 28040, Madrid, Spain
| |
Collapse
|
6
|
Pu C, Cavarra BR, Zeng T. Combining High-Resolution Mass Spectrometry and Chemiluminescence Analysis to Characterize the Composition and Fate of Total N-Nitrosamines in Wastewater Treatment Plants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 39254226 PMCID: PMC11428135 DOI: 10.1021/acs.est.4c06555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Monitoring the prevalence and persistence of N-nitrosamines and their precursors in wastewater treatment plants (WWTPs) and effluent-receiving aquatic compartments is a priority for utilities practicing wastewater recycling or exploiting wastewater-impacted source waters. In this work, we developed an analytical framework that combines liquid chromatography-high-resolution mass spectrometry (LC-HRMS) with acidic triiodide-chemiluminescence analysis to characterize the composition and fate of total N-nitrosamines (TONO) and their precursors along the treatment trains of eight WWTPs in New York. Through the parallel application of LC-HRMS and chemiluminescence methods, the TONO scores for 41 N-nitrosamines containing structurally diverse substituents on their amine nitrogen were derived based on their solid-phase extraction recoveries and conversion efficiencies to nitric oxide. Correcting the compositional analysis of TONO using the TONO scores of target N-nitrosamines refined the assessment of the reduction or accumulation of TONO and their precursors across treatment steps in WWTPs. Nontargeted analysis prioritized seven additional N-nitrosamines for confirmation by reference standards, including three previously uncharacterized species: N-nitroso-tert-butylphenylamine, N-nitroso-2-pyrrolidinmethanol, and N-nitrosodesloratadine, although they only served as minor components of TONO. Overall, our study establishes an adaptable methodological framework for advancing the quantitative and qualitative analysis of specific and unknown components of TONO across water treatment and reuse scenarios.
Collapse
Affiliation(s)
- Changcheng Pu
- Department of Civil and Environmental Engineering, Syracuse University, 151 Link Hall, Syracuse, New York 13244, United States
| | - Benjamin R Cavarra
- Department of Civil and Environmental Engineering, Syracuse University, 151 Link Hall, Syracuse, New York 13244, United States
| | - Teng Zeng
- Department of Civil and Environmental Engineering, Syracuse University, 151 Link Hall, Syracuse, New York 13244, United States
| |
Collapse
|
7
|
Jolly RA, Cornwell PD, Noteboom J, Sayyed FB, Thapa B, Buckley LA. Estimation of acceptable daily intake values based on modeling and in vivo mutagenicity of NDSRIs of fluoxetine, duloxetine and atomoxetine. Regul Toxicol Pharmacol 2024; 152:105672. [PMID: 38968965 DOI: 10.1016/j.yrtph.2024.105672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/19/2024] [Accepted: 06/28/2024] [Indexed: 07/07/2024]
Abstract
Nitrosamine drug substance related impurities or NDSRIs can be formed if an active pharmaceutical ingredient (API) has an intrinsic secondary amine that can undergo nitrosation. This is a concern as 1) nitrosamines are potentially highly potent carcinogens, 2) secondary amines in API are common, and 3) NDSRIs that might form from such secondary amines will be of unknown carcinogenic potency. Approaches for evaluating NDSRIs include read across, quantum mechanical modeling of reactivity, in vitro mutation data, and transgenic in vivo mutation data. These approaches were used here to assess NDSRIs that could potentially form from the drugs fluoxetine, duloxetine and atomoxetine. Based on a read across informed by modeling of physicochemical properties and mechanistic activation from quantum mechanical modeling, NDSRIs of fluoxetine, duloxetine, and atomoxetine were 10-100-fold less potent compared with highly potent nitrosamines such as NDMA or NDEA. While the NDSRIs were all confirmed to be mutagenic in vitro (Ames assay) and in vivo (TGR) studies, the latter data indicated that the potency of the mutation response was ≥4400 ng/day for all compounds-an order of magnitude higher than published regulatory limits for these NDSRIs. The approaches described herein can be used qualitatively to better categorize NDSRIs with respect to potency and inform whether they are in the ICH M7 (R2) designated Cohort of Concern.
Collapse
Affiliation(s)
- Robert A Jolly
- Eli Lilly and Company, Inc. Indianapolis, IN, 46285, USA.
| | | | | | | | - Bishnu Thapa
- Eli Lilly and Company, Inc. Indianapolis, IN, 46285, USA
| | | |
Collapse
|
8
|
Lautner-Csorba O, Gorur R, Major T, Wu J, Sheet P, Hill J, Yu M, Xi C, Bartlett RH, Schwendeman SP, Lautner G, Meyerhoff ME. Antithrombotic and Antimicrobial Potential of S-Nitroso-1-Adamantanethiol-Impregnated Extracorporeal Circuit. ASAIO J 2024:00002480-990000000-00526. [PMID: 39037705 DOI: 10.1097/mat.0000000000002276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024] Open
Abstract
This study presents the utilization of a novel, highly lipophilic nitric oxide (NO) donor molecule, S-nitroso-1-adamantanethiol (SNAT), for developing an NO-emitting polymer surface aimed at preventing thrombus formation and bacterial infection in extracorporeal circuits (ECCs). S-nitroso-1-adamantanethiol, a tertiary nitrosothiol-bearing adamantane species, was synthesized, characterized, and used to impregnate polyvinyl chloride (PVC) tubing for subsequent in vivo evaluation. The impregnation process with SNAT preserved the original mechanical strength of the PVC. In vitro assessments revealed sustained NO release from the SNAT-impregnated PVC tubing (iSNAT), surpassing or matching endothelial NO release levels for up to 42 days. The initial NO release remained stable even after 1 year of storage at -20°C. The compatibility of iSNAT with various sterilization techniques (OPA Plus, hydrogen peroxide, EtO) was tested. Acute in vivo experiments in a rabbit model demonstrated significantly reduced thrombus formation in iSNAT ECCs compared with controls, indicating the feasibility of iSNAT to mitigate coagulation system activation and potentially eliminate the need for systemic anticoagulation. Moreover, iSNAT showed substantial inhibition of microbial biofilm formation, highlighting its dual functionality. These findings underscore the promising utility of iSNAT for long-term ECC applications, offering a multifaceted approach to enhancing biocompatibility and minimizing complications.
Collapse
Affiliation(s)
| | - Roopa Gorur
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan
| | - Terry Major
- From the Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | - Jianfeng Wu
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan
| | - Partha Sheet
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, Michigan
| | - Joseph Hill
- From the Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | - Minzhi Yu
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, Michigan
| | - Chuanwu Xi
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan
| | - Robert H Bartlett
- From the Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | - Steven P Schwendeman
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, Michigan
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
| | - Gergely Lautner
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, Michigan
| | - Mark E Meyerhoff
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
9
|
Göller AH, Johanssen S, Zalewski A, Ziegler V. Quantum chemical calculations of nitrosamine activation and deactivation pathways for carcinogenicity risk assessment. Front Pharmacol 2024; 15:1415266. [PMID: 39086387 PMCID: PMC11288830 DOI: 10.3389/fphar.2024.1415266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 06/21/2024] [Indexed: 08/02/2024] Open
Abstract
N-nitrosamines and nitrosamine drug substance related impurities (NDSRIs) became a critical topic for the development and safety of small molecule medicines following the withdrawal of various pharmaceutical products from the market. To assess the mutagenic and carcinogenic potential of different N-nitrosamines lacking robust carcinogenicity data, several approaches are in use including the published carcinogenic potency categorization approach (CPCA), the Enhanced Ames Test (EAT), in vivo mutagenicity studies as well as read-across to analogue molecules with robust carcinogenicity data. We employ quantum chemical calculations as a pivotal tool providing insights into the likelihood of reactive ion formation and subsequent DNA alkylation for a selection of molecules including e.g., carcinogenic N-nitrosopiperazine (NPZ), N-nitrosopiperidine (NPIP), together with N-nitrosodimethylamine (NDMA) as well as non-carcinogenic N-nitrosomethyl-tert-butylamine (NTBA) and bis (butan-2-yl) (nitros)amine (BBNA). In addition, a series of nitroso-methylaminopyridines is compared side-by-side. We draw comparisons between calculated reaction profiles for structures representing motifs common to NDSRIs and those of confirmed carcinogenic and non-carcinogenic molecules with in vivo data from cancer bioassays. Furthermore, our approach enables insights into reactivity and relative stability of intermediate species that can be formed upon activation of several nitrosamines. Most notably, we reveal consistent differences between the free energy profiles of carcinogenic and non-carcinogenic molecules. For the former, the intermediate diazonium ions mostly react, kinetically controlled, to the more stable DNA adducts and less to the water adducts via transition-states of similar heights. Non-carcinogenic molecules yield stable carbocations as intermediates that, thermodynamically controlled, more likely form the statistically preferred water adducts. In conclusion, our data confirm that quantum chemical calculations can contribute to a weight of evidence approach for the risk assessment of nitrosamines.
Collapse
Affiliation(s)
- Andreas H. Göller
- Computational Molecular Design, Bayer AG, Pharmaceuticals, Wuppertal, Germany
| | - Sandra Johanssen
- Industrial Chemicals and Marketed Products, Bayer AG, Pharmaceuticals, Berlin, Germany
| | - Adam Zalewski
- Genetic and Computational Toxicology, Bayer AG, Pharmaceuticals, Berlin, Germany
| | - Verena Ziegler
- Genetic and Computational Toxicology, Bayer AG, Pharmaceuticals, Berlin, Germany
| |
Collapse
|
10
|
Cheung J, Dobo K, Zhang S, Nudelman R, Schmidt F, Wenzel J, Czich A, Schuler M. Evaluation of the nitrosamine impurities of ACE inhibitors using computational, in vitro, and in vivo methods demonstrate no genotoxic potential. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2024; 65:203-221. [PMID: 39180320 DOI: 10.1002/em.22618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/01/2024] [Accepted: 08/01/2024] [Indexed: 08/26/2024]
Abstract
Evaluation and mitigation of the potential carcinogenic risks associated with nitrosamines in marketed pharmaceutical products are areas of interest for pharmaceutical companies and health authorities alike. Significant progress has been made to establish acceptable intake (AI) levels for N-nitrosamine drug substance-related impurities (NDSRIs) using SAR, however some compounds require experimental data to support derivation of a recommended AI. Many angiotensin-converting enzyme inhibitors, identified by the suffix "pril," have secondary amines that can potentially react to form nitrosamines. Here we consider a structural assessment and metabolism data, coupled with comprehensive in vitro and in vivo (mouse) genotoxicity testing to evaluate this particular class of nitrosamines. N-nitroso ramipril and N-nitroso quinapril, both of which are predicted to have inhibited nitrosamine bioactivation due to steric hinderance and branching at the α-position were non-genotoxic in the in vivo liver comet assay and non-mutagenic in the in vivo Big Blue® mutation and duplex sequencing assays. Predicted metabolism along with in vitro metabolism data and quantum chemical calculations related to DNA interactions offer a molecular basis for the negative results observed in both in vitro and in vivo testing. These nitrosamines are concluded to be non-mutagenic and non-carcinogenic; therefore, they should be controlled according to ICH Q3B guidance. Furthermore, these results for N-nitroso ramipril and N-nitroso quinapril should be considered when evaluating the appropriate AI and control strategy for other structurally similar "pril" NDSRIs.
Collapse
Affiliation(s)
- Jennifer Cheung
- Pfizer Research, Development, and Medical, Groton, Connecticut, USA
| | - Krista Dobo
- Pfizer Research, Development, and Medical, Groton, Connecticut, USA
| | - Shaofei Zhang
- Pfizer Research, Development, and Medical, Groton, Connecticut, USA
| | | | | | - Jan Wenzel
- Sanofi, R&D Preclinical Safety, Frankfurt, Germany
| | | | - Maik Schuler
- Pfizer Research, Development, and Medical, Groton, Connecticut, USA
| |
Collapse
|
11
|
De S, Thapa B, Sayyed FB, Frank SA, Cornwell PD, Jolly RA. Quantum Mechanical Assessment of Nitrosamine Potency. Chem Res Toxicol 2024; 37:1011-1022. [PMID: 38804898 DOI: 10.1021/acs.chemrestox.4c00087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Nitrosamines are in the cohort of concern (CoC) as determined by regulatory guidance. CoC compounds are considered highly potent carcinogens that need to be limited below the threshold of toxicological concern, 1.5 μg/day. Nitrosamines like NDMA and NDEA require strict control, while novel nitrosamine drug substance-related impurities (NDSRIs) may or may not be characterized as potent carcinogens. A risk assessment based on the structural features of NDSRIs is important in order to predict potency because they lack substance-specific carcinogenicity. Herein, we present a quantum mechanical (QM)-based analysis on structurally diverse sets of nitrosamines to better understand how structure influences the reactivity that could result in carcinogenicity. We describe the potency trend through activation energies corresponding to α-hydroxylation, aldehyde formation, diazonium intermediate formation, reaction with DNA base, and hydrolysis reactions, and other probable metabolic pathways associated with the carcinogenicity of nitrosamines. We evaluated activation energies for selected cases such as N-nitroso pyrrolidines, N-nitroso piperidines, N-nitroso piperazines, N-nitroso morpholines, N-nitroso thiomorpholine, N-methyl nitroso aromatic, fluorine-substituted nitrosamines, and substituted aliphatic nitrosamines. We compare these results to the recent framework of the carcinogenic potency characterization approach (CPCA) proposed by health authorities which is meant to give guidance on acceptable intakes (AI) for NDSRIs lacking substance-specific carcinogenicity data. We show examples where QM modeling and CPCA are aligned and examples where CPCA both underestimates and overestimates the AI. In cases where CPCA predicts high potency for NDSRIs, QM modeling can help better estimate an AI. Our results suggest that a combined mechanistic understanding of α-hydroxylation, aldehyde formation, hydrolysis, and reaction with DNA bases could help identify the structural features that underpin the potency of nitrosamines. We anticipate this work will be a valuable addition to the CPCA and provide a more analytical way to estimate AI for novel NDSRIs.
Collapse
Affiliation(s)
- Sriman De
- Synthetic Molecule Design and Development, Eli Lilly Services India Pvt Ltd, Devarabeesanahalli , Bengaluru 560103, India
| | - Bishnu Thapa
- Discovery Chemistry Research and Technology, LRL, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - Fareed Bhasha Sayyed
- Synthetic Molecule Design and Development, Eli Lilly Services India Pvt Ltd, Devarabeesanahalli , Bengaluru 560103, India
| | - Scott A Frank
- Synthetic Molecule Design and Development, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - Paul D Cornwell
- Toxicology, LRL, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - Robert A Jolly
- Toxicology, LRL, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| |
Collapse
|
12
|
Yan X, Huang H, Chen W, Li H, Chen Y, Liang Y, Zeng H. Industrial effluents and N-nitrosamines in karst aquatic systems: a study on distribution and ecological implications. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:255. [PMID: 38884657 DOI: 10.1007/s10653-024-02034-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/13/2024] [Indexed: 06/18/2024]
Abstract
The discharge of electroplating wastewater, containing high concentrations of N-nitrosamines, poses significant risks to human health and aquatic ecosystems. Karst aquatic environment is easily impacted by N-nitrosamines due to the fragile surface ecosystem. However, it's still unclear in understanding N-nitrosamine transformation in karst water systems. To explore the response and transport of nine N-nitrosamines in electroplating effluent within both karst surface water and groundwater, different river and groundwater samples were collected from both the upper and lower reaches of the effluent discharge areas in a typical karst industrial catchment in Southwest China. Results showed that the total average concentrations of N-nitrosamines (∑NAs) in electroplating effluent (1800 ng/L) was significantly higher than that in the receiving river water (130 ng/L) and groundwater (70 ng/L). The dynamic nature of karst aquifers resulted in comparable average concentrations of ∑NAs in groundwater (70 ng/L) and river water (79 ng/L) at this catchment. Based on the principal component analysis and multiple linear regression analysis, the electroplating effluent contributed 89% and 53% of N-nitrosamines to the river water and groundwater, respectively. The results based on the species sensitivity distribution model revealed N-nitrosodibutylamine as a particularly toxic compound to aquatic organisms. Furthermore, the average N-nitrosamine carcinogenic risk was significantly higher in lower groundwater reaches compared to upper reaches. This study represents a pioneering effort in considering specific N-nitrosamine properties in evaluating their toxicity and constructing species sensitivity curves. It underscores the significance of electroplating effluent as a primary N-nitrosamine source in aquatic environments, emphasizing their swift dissemination and significant accumulation in karst groundwater.
Collapse
Affiliation(s)
- Xiaoyu Yan
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China
| | - Huanfang Huang
- State Environmental Protection Key Laboratory of Water Environmental Simulation and Pollution ControlSouth China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510535, China
| | - Wenwen Chen
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China
| | - Haixiang Li
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China
| | - Yingjie Chen
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China
| | - Yanpeng Liang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China
| | - Honghu Zeng
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China.
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China.
| |
Collapse
|
13
|
Papadasu N, Kotanka R, Pannala R. A Novel Validated GC-MS/MS Method for the Estimation of N-Nitroso Dimethyl Amine and N-Nitroso Diethyl Amine in Zidovudine. J Chromatogr Sci 2024; 62:399-405. [PMID: 38520317 DOI: 10.1093/chromsci/bmae008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/23/2023] [Indexed: 03/25/2024]
Abstract
A novel method has been developed for the estimation of N-Nitroso dimethyl amine impurities (NDMA) and N-Nitroso diethyl amine (NDEA) in Zidovudine by using Gas chromatograph Triple Quadrupole Mass with Liquid autosampler (GC-MS/MS) and the method is validated as per International Conference on Harmonization recommendations. Sample analysis was executed for Zidovudine by developed method. Both NDMA and NDEA were detected in below quantitation limit for the Zidovudine batches. Efficient chromatographic separation was achieved on a DB-WAX 30 m length × 0.25 mm internal diameter, 0.5-μm film thickness, Triple quad-8040 GC-MS/MS. Quantification was carried out at Triple quad electron ionization source was at a column flow of 1.5 mL/min at a column oven temperature 50°C. The precision was in the range of 0.9-2.5% for NDMA and 0.8-2.3% for NDEA, and regression analysis shows as r value (correlation coefficient) of is >0.99. This method is capable to detect the NDMA and NDEA impurities in Zidovudine at a level of 0.006 ppm for limit of detection and 0.018 ppm for limit of quantitation with respect to test concentration of 66.66 mg/mL.
Collapse
Affiliation(s)
- Narayanareddy Papadasu
- Chemeca Drugs Private Limited, Visakhapatnam 531019, India
- Department of Chemistry, REVA University, Bengaluru 560064, India
| | | | | |
Collapse
|
14
|
Ye Q, Geng X, Jiang H, Qin C, Wu H, Wang S, Wen H. Genotoxicity assessments of N-nitrosoethylisopropylamine (NEIPA) and N-nitrosodiisopropylamine (NDIPA) in the C57BL/6J mouse. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2024; 896:503763. [PMID: 38821676 DOI: 10.1016/j.mrgentox.2024.503763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/26/2024] [Accepted: 04/27/2024] [Indexed: 06/02/2024]
Abstract
N-Nitrosamines, known as drug impurities and suspected carcinogens, have drawn significant public concern. In response to drug regulatory needs, the European Medicines Agency (EMA) has previously proposed a carcinogenic potency categorization approach based on the N-nitrosamine α-hydroxylation hypothesis, i.e., that N-nitrosamine mutagenicity increases with the number of α-hydrogen atoms. However, this structure-activity relationship has not been fully tested in vivo. NEIPA (N-nitrosoethylisopropylamine) and NDIPA (N-nitrosodiisopropylamine) are small N-Nitrosamines with similar structures, differing in that the former compound has an additional α-hydrogen atom. In this study, NEIPA and NEIPA doses, 25-100 mg/kg, were administered orally to C57BL/6 J mice for seven consecutive days, and their mutation and DNA damage effects were compared. Compared with NDIPA, the mutagenicity and DNA damage potencies of NEIPA (which contains one more α-hydrogen) were much greater. These differences may be related to their distinct metabolic pathways and target organs. This case study confirms the role of α-hydroxyl modification in the mutagenicity of nitrosamines, with oxidation at the α-hydrogen being a crucial step in the formation of mutagens from N-Nitrosamines, and can inform mutagenicity risk assessment and the formulation of regulatory standards for N-nitrosamine impurities.
Collapse
Affiliation(s)
- Qian Ye
- China Pharmaceutical University, Nanjing 211198, PR China
| | - Xingchao Geng
- National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, Key Laboratory of Beijing for Nonclinical Safety Evaluation Research of Drugs, Beijing 100176, PR China
| | - Hua Jiang
- National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, Key Laboratory of Beijing for Nonclinical Safety Evaluation Research of Drugs, Beijing 100176, PR China
| | - Chao Qin
- National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, Key Laboratory of Beijing for Nonclinical Safety Evaluation Research of Drugs, Beijing 100176, PR China
| | - Hui Wu
- China Pharmaceutical University, Nanjing 211198, PR China; National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, Key Laboratory of Beijing for Nonclinical Safety Evaluation Research of Drugs, Beijing 100176, PR China
| | - Sanlong Wang
- National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, Key Laboratory of Beijing for Nonclinical Safety Evaluation Research of Drugs, Beijing 100176, PR China
| | - Hairuo Wen
- National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, Key Laboratory of Beijing for Nonclinical Safety Evaluation Research of Drugs, Beijing 100176, PR China.
| |
Collapse
|
15
|
Deveci G, Tek NA. N-Nitrosamines: a potential hazard in processed meat products. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:2551-2560. [PMID: 37984839 DOI: 10.1002/jsfa.13102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/16/2023] [Accepted: 11/20/2023] [Indexed: 11/22/2023]
Abstract
Nitrite, nitrate, and their salts are added to processed meat products to improve color, flavor, and shelf life and to lower the microbial burden. N-Nitrosamine compounds are formed when nitrosing agents (such as secondary nitrosamines) in meat products interact with nitrites and nitrates that have been added to the meat. With the consumption of such meat products, nitrosation reactions occur in the human body and N-nitrosamine formation occurs in the gastrointestinal tract. Despite the benefits nitrites and nitrates have on food, their tendency to create nitrosamines and an increase in the body's nitrous amine load presents health risks. The inclusion of nitrosamine compounds in possible and probable carcinogen classes according to the International Agency for Research on Cancer requires a re-examination of the literature review on processed meat products. This article evaluates the connections between various cancer types and nitrosamines found in processed meat products. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Gülsüm Deveci
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Gazi University, Ankara, Turkey
| | - Nilüfer Acar Tek
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Gazi University, Ankara, Turkey
| |
Collapse
|
16
|
Thomas DN, Wills JW, Tracey H, Baldwin SJ, Burman M, Williams AN, Harte DSG, Buckley RA, Lynch AM. Ames test study designs for nitrosamine mutagenicity testing: qualitative and quantitative analysis of key assay parameters. Mutagenesis 2024; 39:78-95. [PMID: 38112628 DOI: 10.1093/mutage/gead033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 12/15/2023] [Indexed: 12/21/2023] Open
Abstract
The robust control of genotoxic N-nitrosamine (NA) impurities is an important safety consideration for the pharmaceutical industry, especially considering recent drug product withdrawals. NAs belong to the 'cohort of concern' list of genotoxic impurities (ICH M7) because of the mutagenic and carcinogenic potency of this chemical class. In addition, regulatory concerns exist regarding the capacity of the Ames test to predict the carcinogenic potential of NAs because of historically discordant results. The reasons postulated to explain these discordant data generally point to aspects of Ames test study design. These include vehicle solvent choice, liver S9 species, bacterial strain, compound concentration, and use of pre-incubation versus plate incorporation methods. Many of these concerns have their roots in historical data generated prior to the harmonization of Ames test guidelines. Therefore, we investigated various Ames test assay parameters and used qualitative analysis and quantitative benchmark dose modelling to identify which combinations provided the most sensitive conditions in terms of mutagenic potency. Two alkyl-nitrosamines, N-nitrosodimethylamine (NDMA) and N-nitrosodiethylamine (NDEA) were studied. NDMA and NDEA mutagenicity was readily detected in the Ames test and key assay parameters were identified that contributed to assay sensitivity rankings. The pre-incubation method (30-min incubation), appropriate vehicle (water or methanol), and hamster-induced liver S9, alongside Salmonella typhimurium strains TA100 and TA1535 and Escherichia coli strain WP2uvrA(pKM101) provide the most sensitive combination of assay parameters in terms of NDMA and NDEA mutagenic potency in the Ames test. Using these parameters and further quantitative benchmark dose modelling, we show that N-nitrosomethylethylamine (NMEA) is positive in Ames test and therefore should no longer be considered a historically discordant NA. The results presented herein define a sensitive Ames test design that can be deployed for the assessment of NAs to support robust impurity qualifications.
Collapse
Affiliation(s)
- Dean N Thomas
- GSK Research & Development, Genetic Toxicology and Photosafety, Stevenage SG1 2NY, United Kingdom
| | - John W Wills
- GSK Research & Development, Genetic Toxicology and Photosafety, Stevenage SG1 2NY, United Kingdom
| | - Helen Tracey
- GSK Research & Development, Genetic Toxicology and Photosafety, Stevenage SG1 2NY, United Kingdom
| | - Sandy J Baldwin
- GSK Research & Development, Genetic Toxicology and Photosafety, Stevenage SG1 2NY, United Kingdom
| | - Mark Burman
- GSK Research & Development, Genetic Toxicology and Photosafety, Stevenage SG1 2NY, United Kingdom
| | - Abbie N Williams
- GSK Research & Development, Genetic Toxicology and Photosafety, Stevenage SG1 2NY, United Kingdom
| | - Danielle S G Harte
- GSK Research & Development, Genetic Toxicology and Photosafety, Stevenage SG1 2NY, United Kingdom
| | - Ruby A Buckley
- GSK Research & Development, Genetic Toxicology and Photosafety, Stevenage SG1 2NY, United Kingdom
| | - Anthony M Lynch
- GSK Research & Development, Genetic Toxicology and Photosafety, Stevenage SG1 2NY, United Kingdom
- School of Medicine, Swansea University, Singleton Park, Swansea SA2 8PP, United Kingdom
| |
Collapse
|
17
|
Snodin DJ, Trejo-Martin A, Ponting DJ, Smith GF, Czich A, Cross K, Custer L, Elloway J, Greene N, Kalgutkar AS, Stalford SA, Tennant RE, Vock E, Zalewski A, Ziegler V, Dobo KL. Mechanisms of Nitrosamine Mutagenicity and Their Relationship to Rodent Carcinogenic Potency. Chem Res Toxicol 2024; 37:181-198. [PMID: 38316048 DOI: 10.1021/acs.chemrestox.3c00327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
A thorough literature review was undertaken to understand how the pathways of N-nitrosamine transformation relate to mutagenic potential and carcinogenic potency in rodents. Empirical and computational evidence indicates that a common radical intermediate is created by CYP-mediated hydrogen abstraction at the α-carbon; it is responsible for both activation, leading to the formation of DNA-reactive diazonium species, and deactivation by denitrosation. There are competing sites of CYP metabolism (e.g., β-carbon), and other reactive species can form following initial bioactivation, although these alternative pathways tend to decrease rather than enhance carcinogenic potency. The activation pathway, oxidative dealkylation, is a common reaction in drug metabolism and evidence indicates that the carbonyl byproduct, e.g., formaldehyde, does not contribute to the toxic properties of N-nitrosamines. Nitric oxide (NO), a side product of denitrosation, can similarly be discounted as an enhancer of N-nitrosamine toxicity based on carcinogenicity data for substances that act as NO-donors. However, not all N-nitrosamines are potent rodent carcinogens. In a significant number of cases, there is a potency overlap with non-N-nitrosamine carcinogens that are not in the Cohort of Concern (CoC; high-potency rodent carcinogens comprising aflatoxin-like-, N-nitroso-, and alkyl-azoxy compounds), while other N-nitrosamines are devoid of carcinogenic potential. In this context, mutagenicity is a useful surrogate for carcinogenicity, as proposed in the ICH M7 (R2) (2023) guidance. Thus, in the safety assessment and control of N-nitrosamines in medicines, it is important to understand those complementary attributes of mechanisms of mutagenicity and structure-activity relationships that translate to elevated potency versus those which are associated with a reduction in, or absence of, carcinogenic potency.
Collapse
Affiliation(s)
| | - Alejandra Trejo-Martin
- Gilead Sciences Inc. Nonclinical Safety and Pathobiology (NSP), Foster City, California 94404, United States
| | | | - Graham F Smith
- AstraZeneca, Imaging and Data Analytics, Clinical Pharmacology and Safety Sciences, Research and Development, CB2 0AA Cambridge, U.K
| | - Andreas Czich
- Sanofi, Research and Development, Preclinical Safety, 65926 Frankfurt, Germany
| | - Kevin Cross
- Instem, Conshohocken, Pennsylvania 19428, United States
| | - Laura Custer
- Bristol-Myers Squibb, Nonclinical Safety, New Brunswick, New Jersey 08903, United States
| | - Joanne Elloway
- AstraZeneca, Safety Sciences, Clinical Pharmacology and Safety Sciences Research and Development, CB2 0AA Cambridge, U.K
| | - Nigel Greene
- AstraZeneca, Imaging and Data Analytics, Clinical Pharmacology and Safety Sciences, Research and Development, Waltham, Massachusetts 02451, United States
| | - Amit S Kalgutkar
- Medicine Design, Pfizer Worldwide Research, Development, and Medical, Cambridge, Massachusetts 02139, United States
| | | | | | - Esther Vock
- Boehringer-Ingelheim Pharma GmbH & Co., KG, 88397 Biberach an der Riss, Germany
| | - Adam Zalewski
- Bayer AG, Pharmaceuticals, Genetic and Computational Toxicology, 13342 Berlin, Germany
| | - Verena Ziegler
- Bayer AG, Pharmaceuticals, Genetic and Computational Toxicology, 13342 Berlin, Germany
| | - Krista L Dobo
- Drug Safety Research and Development, Global Portfolio and Regulatory Strategy, Pfizer Worldwide Research, Development, and Medical, Groton, Connecticut 06340, United States
| |
Collapse
|
18
|
Basoccu F, Cuccu F, Porcheddu A. Mechanochemistry for Healthcare: Revealing the Nitroso Derivatives Genesis in the Solid State. CHEMSUSCHEM 2024; 17:e202301034. [PMID: 37818785 DOI: 10.1002/cssc.202301034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/27/2023] [Accepted: 10/10/2023] [Indexed: 10/13/2023]
Abstract
Nitroso derivatives with unique characteristics have been extensively studied in various fields, including biology and clinical research. Although there has been substantial investigation of "nitrosable" components in many drugs and commonly consumed nutrients, there is still a need for a higher awareness about their formation and characterization. This study demonstrates how these derivatives can be produced through a mechanochemical procedure under solid-state conditions. The results include synthesizing previously unknown compounds with potential biological and pharmaceutical applications, such as a nitrosamine derived from a Diclofenac-like structure.
Collapse
Affiliation(s)
- Francesco Basoccu
- Department of Chemical and Geological Sciences, University of Cagliari, Str. interna Policlinico Universitario, 09042, Monserrato CA, Italy
| | - Federico Cuccu
- Department of Chemical and Geological Sciences, University of Cagliari, Str. interna Policlinico Universitario, 09042, Monserrato CA, Italy
| | - Andrea Porcheddu
- Department of Chemical and Geological Sciences, University of Cagliari, Str. interna Policlinico Universitario, 09042, Monserrato CA, Italy
| |
Collapse
|
19
|
Jireš J, Douša M, Gibala P, Doubský J, Pěček D, Mervart D, Kluk A, Veseli A, Kalášek S, Řezanka P. Comprehensive UHPLC-MS screening methods for the analysis of triazolopyrazine precursor and its genotoxic nitroso-derivative in sitagliptin pharmaceutical formulation. J Pharm Biomed Anal 2024; 238:115861. [PMID: 37976984 DOI: 10.1016/j.jpba.2023.115861] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/27/2023] [Accepted: 11/07/2023] [Indexed: 11/19/2023]
Abstract
A case study on Sitagliptin drug products and Sitagliptin/Metformin drug products concerning contamination with N-nitrosamines was performed using two newly developed analytical methods for determination of N-nitroso-triazolopyrazine (NTTP; 7-nitroso-3-(trifluoromethyl)-5,6,7,8-tetrahydro-[1,2,4]triazolo[4,3-a]pyrazine) and its precursor triazolopyrazine (3-(trifluoromethyl)-5,6,7,8-tetrahydro-[1,2,4]triazolo[4,3-a]pyrazine). The method for determination of triazolopyrazine was previously unpublished, the method for determination of NTTP was published only for analysis of active pharmaceutical ingredient Sitagliptin and not the drug forms. Solving the N-nitrosamine contamination is requested by regulatory authorities all over the world and thus is vital for all pharmaceutical companies. The solution always requires a sensitive analytical method. Both newly developed methods use liquid chromatography coupled with mass spectrometry (single quadrupole analyzer in case of triazolopyrazine and triple quadrupole analyzer in case of NTTP). Separation of triazolopyrazine was achieved on a column Acquity CSH C18 using a mobile phase consisting of aqueous ammonium formate buffered at pH 4.2 and acetonitrile. Detection was performed using positive electrospray and selected ion monitoring at m/z 193. Separation of NTTP was achieved on a column Acquity HSS T3 using a mobile phase consisting of 0.1 % formic acid in water and methanol. Detection was performed using positive electrospray and multiple reaction monitoring at transitions m/z 222.15→42.05 (collision energy 17 eV) and m/z 222.15→192.15 (collision energy 11 eV). Two issues specific to NTTP and triazolopyrazine previously not described in scientific literature were successfully troubleshooted. Spontaneous degradation of Sitagliptin to triazolopyrazine and methyl (R)-3-amino-4-(2,4,5-trifluorophenyl)butanoate was solved by using N,N-dimethylformamide as sample solvent during development of the method for quantitation of triazolopyrazine. A bad peak shape of NTTP due to the presence of rotamers of NTTP was successfully troubleshooted by increasing column temperature. Both methods were used during an optimization study of manufacturing of Sitagliptin and Sitagliptin/Metformin drug products. The goal of the study was to decrease NTTP content in the final drug product under the strict legislative limit set by Federal Drug Agency. The efficacy of several solutions was proven, but could not be fully disclosed due to Intellectual Property Protection policy of Zentiva. Instead, a brief review of recently published strategies to cope with N-nitrosamine contamination is presented.
Collapse
Affiliation(s)
- Jakub Jireš
- Department of Analytical chemistry, Faculty of Chemical Engineering, UCT Prague, Technická 5, Prague 6 166 28, Czech Republic; Zentiva, k.s. Praha, U Kabelovny 130, Prague 10 102 37, Czech Republic
| | - Michal Douša
- Zentiva, k.s. Praha, U Kabelovny 130, Prague 10 102 37, Czech Republic.
| | - Petr Gibala
- Zentiva, k.s. Praha, U Kabelovny 130, Prague 10 102 37, Czech Republic
| | - Jan Doubský
- Zentiva, k.s. Praha, U Kabelovny 130, Prague 10 102 37, Czech Republic
| | - Daniel Pěček
- Zentiva, k.s. Praha, U Kabelovny 130, Prague 10 102 37, Czech Republic
| | - David Mervart
- Zentiva, k.s. Praha, U Kabelovny 130, Prague 10 102 37, Czech Republic
| | - Anna Kluk
- Zentiva, k.s. Praha, U Kabelovny 130, Prague 10 102 37, Czech Republic
| | - Ardita Veseli
- Zentiva, k.s. Praha, U Kabelovny 130, Prague 10 102 37, Czech Republic; Department of Biopharmaceutics and Pharmacokinetics, Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, Ljubljana 1000, Slovenia
| | - Stanislav Kalášek
- Zentiva, k.s. Praha, U Kabelovny 130, Prague 10 102 37, Czech Republic
| | - Pavel Řezanka
- Department of Analytical chemistry, Faculty of Chemical Engineering, UCT Prague, Technická 5, Prague 6 166 28, Czech Republic
| |
Collapse
|
20
|
Shekhar NR, Nagappan K, Singh MT, Dhanabal SP. Nitrosamine Impurities in Herbal Formulations: A Review of Risks and Mitigation Strategies. Drug Res (Stuttg) 2023; 73:431-440. [PMID: 37487523 DOI: 10.1055/a-2081-4232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
Nitrosamines are a class of chemical compounds that have been found to be impurities in a variety of pharmaceutical products. These impurities have raised concerns due to their potential carcinogenic effects. Recent studies have identified nitrosamines as impurities in a number of pharmaceutical products including angiotensin II receptor blockers (ARBs) and proton pump inhibitors (PPIs). The presence of nitrosamines in these products has led to recalls and market withdrawals. In addition to pharmaceuticals, nitrosamines have also been found in some herbal medicines particularly those containing traditional Chinese medicinal ingredients. The presence of nitrosamines in herbal formulations poses a significant risk to public health and highlights the need for quality control and regulations in the herbal drug industry. The present review article aims to discuss nitrosamine impurities (NMI) prominent causes, risks and scientific strategies for preventing NMI in herbal formulations. The primary objective of this study is to examine the origins of nitrosamine contamination in herbal formulations, the risks associated with these contaminants, and the methods for reducing them. The significance of thorough testing and examination before releasing herbal products to the public is also emphasized. In conclusion, the presence of nitrosamines is not limited to pharmaceutical products and poses a significant threat to the safety of herbal drugs as well. Adequate testing and extensive research are crucial for producing and distributing herbal medicines to the general population.
Collapse
Affiliation(s)
- Nunavath Raja Shekhar
- Department of Pharmaceutical Analysis, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, The Nilgiris, Tamil Nadu, India
| | - Krishnaveni Nagappan
- Department of Pharmaceutical Analysis, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, The Nilgiris, Tamil Nadu, India
| | - Madhu Tanya Singh
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, The Nilgiris, Tamil Nadu, India
| | - S P Dhanabal
- Department of Pharmacognosy, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, The Nilgiris, Tamil Nadu, India
| |
Collapse
|
21
|
Cayley AN, Foster RS, Brigo A, Muster W, Musso A, Kenyon MO, Parris P, White AT, Cohen-Ohana M, Nudelman R, Glowienke S. Assessing the utility of common arguments used in expert review of in silico predictions as part of ICH M7 assessments. Regul Toxicol Pharmacol 2023; 144:105490. [PMID: 37659712 DOI: 10.1016/j.yrtph.2023.105490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/24/2023] [Accepted: 08/30/2023] [Indexed: 09/04/2023]
Abstract
Expert review of two predictions, made by complementary (quantitative) structure-activity relationship models, to an overall conclusion is a key component of using in silico tools to assess the mutagenic potential of impurities as part of the ICH M7 guideline. In lieu of a specified protocol, numerous publications have presented best practise guides, often indicating the occurrence of common prediction scenarios and the evidence required to resolve them. A semi-automated expert review tool has been implemented in Lhasa Limited's Nexus platform following collation of these common arguments and assignment to the associated prediction scenarios made by Derek Nexus and Sarah Nexus. Using datasets primarily donated by pharmaceutical companies, an automated analysis of the frequency these prediction scenarios occur, and the likelihood of the associated arguments assigning the correct resolution, could then be conducted. This article highlights that a relatively small number of common arguments may be used to accurately resolve many prediction scenarios to a single conclusion. The use of a standardised method of argumentation and assessment of evidence for a given impurity is proposed to improve the efficiency and consistency of expert review as part of an ICH M7 submission.
Collapse
Affiliation(s)
- Alex N Cayley
- Lhasa Limited, Granary Wharf House, 2 Canal Wharf, Leeds, LS11 5PS, UK
| | - Robert S Foster
- Lhasa Limited, Granary Wharf House, 2 Canal Wharf, Leeds, LS11 5PS, UK.
| | - Alessandro Brigo
- Roche Pharmaceutical Research & Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Wolfgang Muster
- Roche Pharmaceutical Research & Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Alyssa Musso
- Pfizer Global Research and Development, Drug Safety Research and Development, Eastern Point Road, MS 8274/1317, Groton, CT, 06340, USA
| | - Michelle O Kenyon
- Pfizer Global Research and Development, Drug Safety Research and Development, Eastern Point Road, MS 8274/1317, Groton, CT, 06340, USA
| | - Patricia Parris
- Pfizer Worldwide Research and Development, Drug Safety Research and Development, Ramsgate Road, Sandwich, Kent, CT13 9NJ, UK
| | - Angela T White
- GlaxoSmithKline Pre-Clinical Development, Park Road, Ware, Hertfordshire, SG12 0DP, UK
| | - Mirit Cohen-Ohana
- Teva Pharmaceutical Industries Ltd, Dvora HaNevi'a Street 124, Tel Aviv-Yafo, 6944020, Israel
| | - Raphael Nudelman
- Teva Pharmaceutical Industries Ltd, Dvora HaNevi'a Street 124, Tel Aviv-Yafo, 6944020, Israel
| | - Susanne Glowienke
- Novartis AG, NIBR, Pre-clinical Safety, Fabrikstrasse 16, CH-405, Basel, Switzerland
| |
Collapse
|
22
|
Seo JE, Yu JZ, Xu H, Li X, Atrakchi AH, McGovern TJ, Bruno KLD, Mei N, Heflich RH, Guo X. Genotoxicity assessment of eight nitrosamines using 2D and 3D HepaRG cell models. Arch Toxicol 2023; 97:2785-2798. [PMID: 37486449 DOI: 10.1007/s00204-023-03560-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 07/13/2023] [Indexed: 07/25/2023]
Abstract
N-nitrosamine impurities have been increasingly detected in human drugs. This is a safety concern as many nitrosamines are mutagenic in bacteria and carcinogenic in rodent models. Typically, the mutagenic and carcinogenic activity of nitrosamines requires metabolic activation by cytochromes P450 enzymes (CYPs), which in many in vitro models are supplied exogenously using rodent liver homogenates. There are only limited data on the genotoxicity of nitrosamines in human cell systems. In this study, we used metabolically competent human HepaRG cells, whose metabolic capability is comparable to that of primary human hepatocytes, to evaluate the genotoxicity of eight nitrosamines [N-cyclopentyl-4-nitrosopiperazine (CPNP), N-nitrosodibutylamine (NDBA), N-nitrosodiethylamine (NDEA), N-nitrosodimethylamine (NDMA), N-nitrosodiisopropylamine (NDIPA), N-nitrosoethylisopropylamine (NEIPA), N-nitroso-N-methyl-4-aminobutyric acid (NMBA), and N-nitrosomethylphenylamine (NMPA)]. Under the conditions we used to culture HepaRG cells, three-dimensional (3D) spheroids possessed higher levels of CYP activity compared to 2D monolayer cells; thus the genotoxicity of the eight nitrosamines was investigated using 3D HepaRG spheroids in addition to more conventional 2D cultures. Genotoxicity was assessed as DNA damage using the high-throughput CometChip assay and as aneugenicity/clastogenicity in the flow-cytometry-based micronucleus (MN) assay. Following a 24-h treatment, all the nitrosamines induced DNA damage in 3D spheroids, while only three nitrosamines, NDBA, NDEA, and NDMA, produced positive responses in 2D HepaRG cells. In addition, these three nitrosamines also caused significant increases in MN frequency in both 2D and 3D HepaRG models, while NMBA and NMPA were positive only in the 3D HepaRG MN assay. Overall, our results indicate that HepaRG spheroids may provide a sensitive, human-based cell system for evaluating the genotoxicity of nitrosamines.
Collapse
Affiliation(s)
- Ji-Eun Seo
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Joshua Z Yu
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA
- Wiess School of Natural Sciences, Rice University, Houston, TX, 77005, USA
| | - Hannah Xu
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Xilin Li
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Aisar H Atrakchi
- Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Timothy J McGovern
- Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Karen L Davis Bruno
- Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Nan Mei
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Robert H Heflich
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Xiaoqing Guo
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA.
| |
Collapse
|
23
|
Felter SP, Ponting DJ, Mudd AM, Thomas R, Oliveira AAF. Maximizing use of existing carcinogenicity data to support acceptable intake levels for mutagenic impurities in pharmaceuticals: Learnings from N-nitrosamine case studies. Regul Toxicol Pharmacol 2023; 143:105459. [PMID: 37474097 DOI: 10.1016/j.yrtph.2023.105459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/27/2023] [Accepted: 07/17/2023] [Indexed: 07/22/2023]
Abstract
The unexpected finding of N-nitrosamine (NA) impurities in many pharmaceutical products raised significant challenges for industry and regulators. In addition to well-studied small molecular weight NAs, many of which are potent rodent carcinogens, novel NAs associated with active pharmaceutical ingredients have been found, many of which have limited or no safety data. A tiered approach to establishing Acceptable Intake (AI) limits for NA impurities has been established using chemical-specific data, read-across, or a class-specific TTC limit. There are ∼140 NAs with some rodent carcinogenicity data, but much of it is older and does not meet current guidelines for what constitutes a 'robust' bioassay. Nevertheless, these data are an important source of information to ensure the best science is used for assessing NA impurities and assuring consumer safety while minimizing impact that can lead to drug shortages. We present several strategies to maximize the use of imperfect data including using a lower confidence limit on a rodent TD50, and leveraging data from multiple NAs. Information on the chemical structure known to impact potency can also support development of an AI or potentially conclude that a particular NA does not fall in the cohort of concern for potent carcinogenicity.
Collapse
Affiliation(s)
- S P Felter
- Procter & Gamble, Central Product Safety, 8700 Mason-Montgomery Rd, Mason, OH, USA.
| | - D J Ponting
- Lhasa Limited, Granary Wharf House, 2 Canal Wharf, Leeds, LS11 5PS, UK
| | - A M Mudd
- Procter & Gamble, Central Product Safety, 8700 Mason-Montgomery Rd, Mason, OH, USA
| | - R Thomas
- Lhasa Limited, Granary Wharf House, 2 Canal Wharf, Leeds, LS11 5PS, UK
| | - A A F Oliveira
- Lhasa Limited, Granary Wharf House, 2 Canal Wharf, Leeds, LS11 5PS, UK
| |
Collapse
|
24
|
Tennant RE, Ponting DJ, Thresher A. A deep dive into historical Ames study data for N-nitrosamine compounds. Regul Toxicol Pharmacol 2023; 143:105460. [PMID: 37495012 DOI: 10.1016/j.yrtph.2023.105460] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/09/2023] [Accepted: 07/19/2023] [Indexed: 07/28/2023]
Abstract
Mutagenicity data is a core component of the safety assessment data required by regulatory agencies for acceptance of new drug compounds, with the OECD-471 bacterial reverse mutation (Ames) assay most widely used as a primary screen to assess drug impurities for potential mutagenic risk. N-Nitrosamines are highly potent mutagenic carcinogens in rodent bioassays and their recent detection as impurities in pharmaceutical products has sparked increased interest in their safety assessment. Previous literature reports indicated that the Ames test might not be sensitive enough to detect the mutagenic potential of N-nitrosamines in order to accurately predict a risk of carcinogenicity. To explore this hypothesis, public Ames and rodent carcinogenicity data pertaining to the N-nitrosamine class of compounds was collated for analysis. Here we present how variations to the OECD 471-compliant Ames test, including strain, metabolic activation, solvent type and pre-incubation/plate incorporation methods, may impact the predictive performance for carcinogenicity. An understanding of optimal conditions for testing of N-nitrosamines may improve both the accuracy and confidence in the ability of the Ames test to identify potential carcinogens.
Collapse
Affiliation(s)
- Rachael E Tennant
- Lhasa Limited, Granary Wharf House, 2 Canal Wharf, Leeds, West Yorkshire, LS11 5PS, UK.
| | - David J Ponting
- Lhasa Limited, Granary Wharf House, 2 Canal Wharf, Leeds, West Yorkshire, LS11 5PS, UK
| | - Andrew Thresher
- Lhasa Limited, Granary Wharf House, 2 Canal Wharf, Leeds, West Yorkshire, LS11 5PS, UK
| |
Collapse
|
25
|
Morović S, Vezjak Fluksi A, Babić S, Košutić K. Impact of Polymer Chain Rearrangements in the PA Structure of RO Membranes on Water Permeability and N-Nitrosamine Rejection. Molecules 2023; 28:6124. [PMID: 37630376 PMCID: PMC10459843 DOI: 10.3390/molecules28166124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/01/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
The use of solvents is overall recognized as an efficient method to improve the water permeability of polyamide thin film composite membranes (PA-TFC). The objective of this work was to test the performance of the membranes after exposing them to n-propanol (n-PrOH) to improve the permeability of the membranes while maintaining the rejection factor for small uncharged organic molecules, namely N-nitrosamines (NTRs). After the membranes were exposed to n-PrOH, the water permeability of the UTC73AC membrane increased by 98%, with minimal change in rejection. N-nitrosodiethylamine (NDEA) rejection decreased (3.4%), while N-nitrosodi-n-propylamine (NDPA) and N-nitrosodi-n-butylamine (NDBA) rejection increased by 0.9% and 2.8%, respectively. In contrast, for the BW30LE membrane, water permeability decreased (by 38.7%), while rejection factors increased by 14.5% for NDEA, 6.2% for NDPA, and 15.0% for NDBA. In addition, the morphology of the membrane surface before and after exposure to n-PrOH was analyzed. This result and the pore size distribution (PSD) curves obtained indicate that the rearrangement of polymer chains affects the network or aggregate pores in the PA layer, implying that a change in pore size or a change in pore size distribution could improve the permeability of water molecules, while the rejection factor for NTRs is not significantly affected.
Collapse
Affiliation(s)
- Silvia Morović
- Department of Physical Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 20, 10000 Zagreb, Croatia; (S.M.); (A.V.F.)
| | - Alegra Vezjak Fluksi
- Department of Physical Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 20, 10000 Zagreb, Croatia; (S.M.); (A.V.F.)
| | - Sandra Babić
- Department of Analytical Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 20, 10000 Zagreb, Croatia
| | - Krešimir Košutić
- Department of Physical Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 20, 10000 Zagreb, Croatia; (S.M.); (A.V.F.)
| |
Collapse
|
26
|
Chakravarti S. Computational Prediction of Metabolic α-Carbon Hydroxylation Potential of N-Nitrosamines: Overcoming Data Limitations for Carcinogenicity Assessment. Chem Res Toxicol 2023. [PMID: 37267457 DOI: 10.1021/acs.chemrestox.3c00083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Recent withdrawal of several drugs from the market due to elevated levels of N-nitrosamine impurities underscores the need for computational approaches to assess the carcinogenicity risk of nitrosamines. However, current approaches are limited because robust animal carcinogenicity data are only available for a few simple nitrosamines, which do not represent the structural diversity of the many possible nitrosamine drug substance related impurities (NDSRIs). In this paper, we present a novel method that uses data on CYP-mediated metabolic hydroxylation of CH2 groups in non-nitrosamine xenobiotics to identify structural features that may also help in predicting the likelihood of metabolic α-carbon hydroxylation in N-nitrosamines. Our approach offers a new avenue for tapping into potentially large experimental data sets on xenobiotic metabolism to improve risk assessment of nitrosamines. As α-carbon hydroxylation is the crucial rate-limiting step in nitrosamine metabolic activation, identifying and quantifying the influence of various structural features on this step can provide valuable insights into their carcinogenic potential. This is especially important considering the scarce information available on factors that affect NDSRI metabolic activation. We have identified hundreds of structural features and calculated their impact on hydroxylation, a significant advancement compared to the limited findings from the small nitrosamine carcinogenicity data set. While relying solely on α-carbon hydroxylation prediction is insufficient for forecasting carcinogenic potency, the identified features can help in the selection of relevant structural analogues in read across studies and assist experts who, after considering other factors such as the reactivity of the resulting electrophilic diazonium species, can establish the acceptable intake (AI) limits for nitrosamine impurities.
Collapse
Affiliation(s)
- Suman Chakravarti
- MultiCASE Inc., 23811 Chagrin Blvd, Suite 305, Beachwood, Ohio 44122, United States
| |
Collapse
|
27
|
Bercu JP, Masuda-Herrera M, Trejo-Martin A, Sura P, Jolly R, Kenyon M, Thomas R, Ponting DJ, Snodin D, Tuschl G, Simon S, De Vlieger K, Hutchinson R, Czich A, Glowienke S, Reddy MV, Johanssen S, Vock E, Claude N, Weaver RJ. Acceptable Intakes (AIs) for 11 Small molecule N-nitrosamines (NAs). Regul Toxicol Pharmacol 2023:105415. [PMID: 37257751 DOI: 10.1016/j.yrtph.2023.105415] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/21/2023] [Accepted: 05/07/2023] [Indexed: 06/02/2023]
Abstract
Low levels of N-nitrosamines (NAs) were detected in pharmaceuticals and, as a result, health authorities (HAs) have published acceptable intakes (AIs) in pharmaceuticals to limit potential carcinogenic risk. The rationales behind the AIs have not been provided to understand the process for selecting a TD50 or read-across analog. In this manuscript we evaluated the toxicity data for eleven common NAs in a comprehensive and transparent process consistent with ICH M7. This evaluation included substances which had datasets that were robust, limited but sufficient, and substances with insufficient experimental animal carcinogenicity data. In the case of robust or limited but sufficient carcinogenicity information, AIs were calculated based on published or derived TD50s from the most sensitive organ site. In the case of insufficient carcinogenicity information, available carcinogenicity data and structure activity relationships (SARs) were applied to categorical-based AIs of 1500 ng/day, 150 ng/day or 18 ng/day; however additional data (such as biological or additional computational modelling) could inform an alternative AI. This approach advances the methodology used to derive AIs for NAs.
Collapse
Affiliation(s)
- Joel P Bercu
- Gilead Sciences, Inc., Nonclinical Safety and Pathobiology (NSP), Foster City, CA, USA.
| | - Melisa Masuda-Herrera
- Gilead Sciences, Inc., Nonclinical Safety and Pathobiology (NSP), Foster City, CA, USA
| | | | - Priyanka Sura
- Gilead Sciences, Inc., Nonclinical Safety and Pathobiology (NSP), Foster City, CA, USA
| | | | - Michelle Kenyon
- Pfizer Worldwide Research, Development and Medical, Drug Safety Research and Development, Eastern Point Road, Groton, CT, USA
| | - Rob Thomas
- Lhasa Limited, Granary Wharf House, 2 Canal Wharf, Leeds, UK
| | - David J Ponting
- Lhasa Limited, Granary Wharf House, 2 Canal Wharf, Leeds, UK
| | | | - Gregor Tuschl
- Merck KGaA, Global Chemical and Preclinical Safety, Darmstadt, Germany
| | - Stephanie Simon
- Merck KGaA, Global Chemical and Preclinical Safety, Darmstadt, Germany
| | | | | | | | | | | | - Sandra Johanssen
- Bayer AG, Pharmaceuticals, Research & Development, Berlin, Germany
| | - Esther Vock
- Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str., Biberach an der Riss, Germany
| | - Nancy Claude
- Servier Paris-Saclay R&D Institute, Gif-sur-Yvette, France
| | | |
Collapse
|
28
|
Fragalà F, Puglisi I, Padoan E, Montoneri E, Stevanato P, Gomez JM, Herrero N, La Bella E, Salvagno E, Baglieri A. Effect of municipal biowaste derived biostimulant on nitrogen fate in the plant-soil system during lettuce cultivation. Sci Rep 2023; 13:7944. [PMID: 37193716 PMCID: PMC10188431 DOI: 10.1038/s41598-023-35090-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/12/2023] [Indexed: 05/18/2023] Open
Abstract
A main concern of agriculture is to improve plant nutrient efficiency to enhance crop yield and quality, and at the same time to decrease the environmental impact caused by the lixiviation of excess N fertilizer application. The aim of this study was to evaluate the potential use of biopolymers (BPs), obtained by alkaline hydrolysis of the solid anaerobic digestate of municipal biowastes, in order to face up these main concerns of agriculture. The experimental trials involved the application of BPs (at 50 and 150 kg/ha) alone or mixed with different amounts (100%, 60% and 0%) of mineral fertilizer (MF). Three different controls were routinely included in the experimental trials (MF 100%, 60% and 0%). The effect of BPs on lettuce was evaluated by monitoring growth parameters (fresh and dry weights of shoot and root, nitrogen use efficiency), and the N-flux in plant-soil system, taking into account the nitrate leached due to over irrigation events. The activities of enzymes involved in the nitrogen uptake (nitrate reductase, glutamate synthase and glutamine synthase), and the nitrogen form accumulated in the plant tissues (total N, protein and NO3-) were evaluated. The results show that the application to the soil of 150 kg/ha BPs allows to increase lettuce growth and nitrogen use efficiency, trough stimulation of N-metabolism and accumulation of proteins, and hence to reduce the use of MF by 40%, thus decreasing the nitrate leaching. These findings suggest that the use of BPs as biostimulant greatly contributes to reduce the consumption of mineral fertilizers, and to mitigate the environmental impact caused by nutrients leaching, according to European common agricultural policy, that encourages R&D of new bioproducts for sustainable eco-friendly agriculture.
Collapse
Affiliation(s)
- Ferdinando Fragalà
- Dipartimento di Agricoltura, Alimentazione e Ambiente, Università di Catania, 95123, Catania, Italy
| | - Ivana Puglisi
- Dipartimento di Agricoltura, Alimentazione e Ambiente, Università di Catania, 95123, Catania, Italy.
| | - Elio Padoan
- Dipartimento di Scienze Agrarie, Forestali e Alimentari, Università di Torino, 10095, Grugliasco, TO, Italy
| | - Enzo Montoneri
- Dipartimento di Agricoltura, Alimentazione e Ambiente, Università di Catania, 95123, Catania, Italy
| | - Piergiorgio Stevanato
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padua, Padua, Italy
| | - Josè Maria Gomez
- Biomasa Peninsular S.A., Constancia, 38 Bajo, 28002, Madrid, Spain
| | - Natalia Herrero
- Biomasa Peninsular S.A., Constancia, 38 Bajo, 28002, Madrid, Spain
| | - Emanuele La Bella
- Dipartimento di Agricoltura, Alimentazione e Ambiente, Università di Catania, 95123, Catania, Italy
| | - Erika Salvagno
- Dipartimento di Agricoltura, Alimentazione e Ambiente, Università di Catania, 95123, Catania, Italy
| | - Andrea Baglieri
- Dipartimento di Agricoltura, Alimentazione e Ambiente, Università di Catania, 95123, Catania, Italy
| |
Collapse
|
29
|
Pu C, Zeng T. Comparative Evaluation of Chemical and Photolytic Denitrosation Methods for Chemiluminescence Detection of Total N-Nitrosamines in Wastewater Samples. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:7526-7536. [PMID: 37140470 DOI: 10.1021/acs.est.2c09769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
N-Nitrosamines form as byproducts during oxidative water treatment and occur as impurities in consumer and industrial products. To date, two methods based on chemiluminescence (CL) detection of nitric oxide liberated from N-nitrosamines via denitrosation with acidic triiodide (HI3) treatment or ultraviolet (UV) photolysis have been developed to enable the quantification of total N-nitrosamines (TONO) in environmental water samples. In this work, we configured an integrated experimental setup to compare the performance of HI3-CL and UV-CL methods with a focus on their applicability for TONO measurements in wastewater samples. With the use of a large-volume purge vessel for chemical denitrosation, the HI3-CL method achieved signal stability and detection limits comparable to those achieved by the UV-CL method which utilized a microphotochemical reactor for photolytic denitrosation. Sixty-six structurally diverse N-nitroso compounds (NOCs) yielded a range of conversion efficiencies relative to N-nitrosodimethylamine (NDMA) regardless of the conditions applied for denitrosation. On average, TONO measured in preconcentrated raw and chloraminated wastewater samples by the HI3-CL method were 2.1 ± 1.1 times those measured by the UV-CL method, pointing to potential matrix interferences as further confirmed by spike recovery tests. Overall, our comparative assessment of the HI3-CL and UV-CL methods serves as a basis for addressing methodological gaps in TONO analysis.
Collapse
Affiliation(s)
- Changcheng Pu
- Department of Civil and Environmental Engineering, Syracuse University, 151 Link Hall, Syracuse, New York 13244, United States
| | - Teng Zeng
- Department of Civil and Environmental Engineering, Syracuse University, 151 Link Hall, Syracuse, New York 13244, United States
| |
Collapse
|
30
|
Snodin DJ. Mutagenic impurities in pharmaceuticals: A critical assessment of the cohort of concern with a focus on N-nitrosamines. Regul Toxicol Pharmacol 2023; 141:105403. [PMID: 37116739 DOI: 10.1016/j.yrtph.2023.105403] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/20/2023] [Accepted: 04/25/2023] [Indexed: 04/30/2023]
Abstract
The TTC (Threshold of Toxicological Concern; set at 1.5 μg/day for pharmaceuticals) defines an acceptable patient intake for any unstudied chemical posing a negligible risk of carcinogenicity or other toxic effects. A group of high potency mutagenic carcinogens, defined solely by the presence of particular structural alerts, are referred to as the "cohort of concern" (CoC); aflatoxin-like-, N-nitroso-, and alkyl-azoxy compounds are considered to pose a significant carcinogenic risk at intakes below the TTC. Kroes et al.2004, derived values for the TTC and CoC in the context of food components, employing a non-transparent dataset never placed in the public domain. Using a reconstructed all-carcinogen dataset from relevant publications, it is now clear that there are exceptions for all three CoC structural classes. N-Nitrosamines represent 62% of the N-nitroso class in the reconstructed dataset. Employing a contemporary dataset, 20% are negative in rodent carcinogenicity bioassays with less than 50% of N-nitrosamines estimated to fall into the highest risk category. It is recommended that CoC nitrosamines are identified by compound-specific data rather than structural alerts. Thus, it should be possible to distinguish CoC from non-CoC N-nitrosamines in the context of mutagenic impurities described in ICH M7 (R1).
Collapse
Affiliation(s)
- David J Snodin
- Xiphora Biopharma Consulting, 9 Richmond Apartments, Redland Court Road, Bristol, BS6 7BG, UK.
| |
Collapse
|
31
|
Hao N, Sun P, Zhao W, Li X. Application of a developed triple-classification machine learning model for carcinogenic prediction of hazardous organic chemicals to the US, EU, and WHO based on Chinese database. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 255:114806. [PMID: 36948010 DOI: 10.1016/j.ecoenv.2023.114806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 03/04/2023] [Accepted: 03/16/2023] [Indexed: 06/18/2023]
Abstract
Cancer, the second largest human disease, has become a major public health problem. The prediction of chemicals' carcinogenicity before their synthesis is crucial. In this paper, seven machine learning algorithms (i.e., Random Forest (RF), Logistic Regression (LR), Support Vector Machines (SVM), Complement Naive Bayes (CNB), K-Nearest Neighbor (KNN), XGBoost, and Multilayer Perceptron (MLP)) were used to construct the carcinogenicity triple classification prediction (TCP) model (i.e., 1A, 1B, Category 2). A total of 1444 descriptors of 118 hazardous organic chemicals were calculated by Discovery Studio 2020, Sybyl X-2.0 and PaDEL-Descriptor software. The constructed carcinogenicity TCP model was evaluated through five model evaluation indicators (i.e., Accuracy, Precision, Recall, F1 Score and AUC). The model evaluation results show that Accuracy, Precision, Recall, F1 Score and AUC evaluation indicators meet requirements (greater than 0.6). The accuracy of RF, LR, XGBoost, and MLP models for predicting carcinogenicity of Category 2 is 91.67%, 79.17%, 100%, and 100%, respectively. In addition, the constructed machine learning model in this study has potential for error correction. Taking XGBoost model as an example, the predicted carcinogenicity level of 1,2,3-Trichloropropane (96-18-4) is Category 2, but the actual carcinogenicity level is 1B. But the difference between Category 2 and 1B is only 0.004, indicating that the XGBoost is one optimum model of the seven constructed machine learning models. Besides, results showed that functional groups like chlorine and benzene ring might influence the prediction of carcinogenic classification. Therefore, considering functional group characteristics of chemicals before constructing the carcinogenicity prediction model of organic chemicals is recommended. The predicted carcinogenicity of the organic chemicals using the optimum machine leaning model (i.e., XGBoost) was also evaluated and verified by the toxicokinetics. The RF and XGBoost TCP models constructed in this paper can be used for carcinogenicity detection before synthesizing new organic substances. It also provides technical support for the subsequent management of organic chemicals.
Collapse
Affiliation(s)
- Ning Hao
- College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Peixuan Sun
- College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Wenjin Zhao
- College of New Energy and Environment, Jilin University, Changchun 130012, China.
| | - Xixi Li
- State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, A1B 3×5, Canada.
| |
Collapse
|
32
|
van Haarst A, Smith S, Garvin C, Benrimoh N, Paglialunga S. Rifampin Drug-Drug-Interaction Studies: Reflections on the Nitrosamine Impurities Issue. Clin Pharmacol Ther 2023; 113:816-821. [PMID: 35593029 DOI: 10.1002/cpt.2652] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/17/2022] [Indexed: 11/06/2022]
Abstract
Clinical development of new drugs may require dedicated drug-drug interaction (DDI) studies, such as to evaluate the effect of cytochrome P450 3A induction on the pharmacokinetics of investigational drugs. However, as a result of N-nitrosamine impurity findings in marketed rifampin formulations, the application of rifampin in DDI studies has been halted. This mini-review considers the root cause and impact of the nitrosamine impurity as well as alternative options for the continued conduct of DDIs.
Collapse
|
33
|
Ponting DJ, Foster RS. Drawing a Line: Where Might the Cohort of Concern End? Org Process Res Dev 2023. [DOI: 10.1021/acs.oprd.3c00008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Affiliation(s)
- David J. Ponting
- Lhasa Limited, Granary Wharf House, 2 Canal Wharf, Leeds LS11 5PS, United Kingdom
| | - Robert S. Foster
- Lhasa Limited, Granary Wharf House, 2 Canal Wharf, Leeds LS11 5PS, United Kingdom
| |
Collapse
|
34
|
Schrenk D, Bignami M, Bodin L, Chipman JK, del Mazo J, Hogstrand C, (Ron) Hoogenboom L, Leblanc J, Nebbia CS, Nielsen E, Ntzani E, Petersen A, Sand S, Schwerdtle T, Vleminckx C, Wallace H, Romualdo B, Cristina F, Stephen H, Marco I, Mosbach‐Schulz O, Riolo F, Christodoulidou A, Grasl‐Kraupp B. Risk assessment of N-nitrosamines in food. EFSA J 2023; 21:e07884. [PMID: 36999063 PMCID: PMC10043641 DOI: 10.2903/j.efsa.2023.7884] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023] Open
Abstract
EFSA was asked for a scientific opinion on the risks to public health related to the presence of N-nitrosamines (N-NAs) in food. The risk assessment was confined to those 10 carcinogenic N-NAs occurring in food (TCNAs), i.e. NDMA, NMEA, NDEA, NDPA, NDBA, NMA, NSAR, NMOR, NPIP and NPYR. N-NAs are genotoxic and induce liver tumours in rodents. The in vivo data available to derive potency factors are limited, and therefore, equal potency of TCNAs was assumed. The lower confidence limit of the benchmark dose at 10% (BMDL10) was 10 μg/kg body weight (bw) per day, derived from the incidence of rat liver tumours (benign and malignant) induced by NDEA and used in a margin of exposure (MOE) approach. Analytical results on the occurrence of N-NAs were extracted from the EFSA occurrence database (n = 2,817) and the literature (n = 4,003). Occurrence data were available for five food categories across TCNAs. Dietary exposure was assessed for two scenarios, excluding (scenario 1) and including (scenario 2) cooked unprocessed meat and fish. TCNAs exposure ranged from 0 to 208.9 ng/kg bw per day across surveys, age groups and scenarios. 'Meat and meat products' is the main food category contributing to TCNA exposure. MOEs ranged from 3,337 to 48 at the P95 exposure excluding some infant surveys with P95 exposure equal to zero. Two major uncertainties were (i) the high number of left censored data and (ii) the lack of data on important food categories. The CONTAM Panel concluded that the MOE for TCNAs at the P95 exposure is highly likely (98-100% certain) to be less than 10,000 for all age groups, which raises a health concern.
Collapse
|
35
|
Kostal J, Voutchkova-Kostal A. Quantum-Mechanical Approach to Predicting the Carcinogenic Potency of N-Nitroso Impurities in Pharmaceuticals. Chem Res Toxicol 2023; 36:291-304. [PMID: 36745540 DOI: 10.1021/acs.chemrestox.2c00380] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
N-Nitroso contaminants in medicinal products are of concern due to their high carcinogenic potency; however, not all these compounds are created equal, and some are relatively benign chemicals. Understanding the structure-activity relationships (SARs) that drive hazards in one molecule versus another is key to both protecting human health and alleviating costly and sometimes inaccurate animal testing. Here, we report on an extension of the CADRE (computer-aided discovery and REdesign) platform, which is used broadly by the pharmaceutical and personal care industries to assess environmental and human health endpoints, to predict the carcinogenic potency of N-nitroso compounds. The model distinguishes compounds in three potency categories with 77% accuracy in external testing, which surpasses the reproducibility of rodent cancer bioassays and constraints imposed by limited (high-quality) data. The robustness of predictions for more complex pharmaceuticals is maximized by capturing key SARs using quantum mechanics, that is, by hinging the model on the underlying chemistry versus chemicals in the training set. To this end, the present approach can be leveraged in a quantitative hazard assessment and to offer qualitative guidance using electronic structure comparisons between well-studied analogues and unknown contaminants.
Collapse
Affiliation(s)
- Jakub Kostal
- Designing Out Toxicity (DOT) Consulting LLC, 2121 Eisenhower Avenue, Alexandria, Virginia22314, United States.,The George Washington University, 800 22nd Street NW, Washington, D.C.20052, United States
| | - Adelina Voutchkova-Kostal
- Designing Out Toxicity (DOT) Consulting LLC, 2121 Eisenhower Avenue, Alexandria, Virginia22314, United States.,The George Washington University, 800 22nd Street NW, Washington, D.C.20052, United States
| |
Collapse
|
36
|
Tuesuwan B, Vongsutilers V. Current Threat of Nitrosamines in Pharmaceuticals and Scientific Strategies for Risk Mitigation. J Pharm Sci 2023; 112:1192-1209. [PMID: 36739905 DOI: 10.1016/j.xphs.2023.01.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/18/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023]
Abstract
The current global situation of nitrosamine contamination has expanded from angiotensin-II receptor blockers (ARBs) to wide range of medicines as the risk of contamination via the drug substances, formulation, manufacturing process, and packaging is possible for many drug products. The understanding of chemistry, toxicology, and root causes of nitrosamines are mandatory to effectively evaluate and mitigate the risks associated with the contaminated mutagen. Lessons learnt and scientific findings from previously identified root causes are good examples on how to perform effective risk assessments and establish control strategies. Addressing the risk of nitrosamine contamination in pharmaceuticals requires significant knowledge and considerable resources to collect the necessary information for risk evaluation. Examples of the resources required include a reliable laboratory facility, reference material, highly specific and sensitive instrumentation able handle trace levels of contamination, data management, and the most limited resource - time. Therefore, the supporting tools to assist with risk assessment e.g., shared databases for drug and excipients in concern, screening models for the determination of nitrosamine formation potential, and an in silico model to help with toxicity estimation, have proven to be beneficial to tackle the risk and concern of nitrosamine contamination in pharmaceuticals.
Collapse
Affiliation(s)
- Bodin Tuesuwan
- Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Vorasit Vongsutilers
- Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
37
|
Wichitnithad W, Nantaphol S, Noppakhunsomboon K, Rojsitthisak P. An update on the current status and prospects of nitrosation pathways and possible root causes of nitrosamine formation in various pharmaceuticals. Saudi Pharm J 2023; 31:295-311. [PMID: 36942272 PMCID: PMC10023554 DOI: 10.1016/j.jsps.2022.12.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 12/18/2022] [Indexed: 12/25/2022] Open
Abstract
Over the last two years, global regulatory authorities have raised safety concerns on nitrosamine contamination in several drug classes, including angiotensin II receptor antagonists, histamine-2 receptor antagonists, antimicrobial agents, and antidiabetic drugs. To avoid carcinogenic and mutagenic effects in patients relying on these medications, authorities have established specific guidelines in risk assessment scenarios and proposed control limits for nitrosamine impurities in pharmaceuticals. In this review, nitrosation pathways and possible root causes of nitrosamine formation in pharmaceuticals are discussed. The control limits of nitrosamine impurities in pharmaceuticals proposed by national regulatory authorities are presented. Additionally, a practical and science-based strategy for implementing the well-established control limits is notably reviewed in terms of an alternative approach for drug product N-nitrosamines without published AI information from animal carcinogenicity testing. Finally, a novel risk evaluation strategy for predicting and investigating the possible nitrosation of amine precursors and amine pharmaceuticals as powerful prevention of nitrosamine contamination is addressed.
Collapse
Key Words
- AI, acceptable intake
- APIs, active pharmaceutical ingredients
- ARBs, angiotensin II receptor blockers
- AZBC, 4′-(azidomethyl)-[1.1′-biphenyl]-2-carbonitile
- AZBT, 5-(4′-(azidomethyl)-[1,1′-biphenyl]-2-yl)-1H-tetrazole
- AZTT, 5-(4′-((5-(azidomethyl)-2-butyl-4-chloro-1H-imidazol-1-yl) methyl)-[1,1′-biphenyl]-2-yl)-1H-tetrazole
- CDER, center for drug evaluation and research
- CPNP, 1-cyclopentyl-4-nitrosopiperazine
- Control limits
- DBA, N,N-dibutylamine
- DEA, N,N-diethylamine
- DIPEA, N,N-diisopropylethylamine
- DMA, dimethylamine
- DMF, N,N-dimethyl formamide
- DPA, N,N-dipropylamine
- EMA, European Medicines Agency
- EPA, Environmental Protection Agency
- FDA, Food and Drug Administration
- HSA, Health Sciences Authority
- IARC, International Agency for Research on Cancer
- ICH, International Council for Harmonisation
- LD50, median lethal dose
- MBA, N-methylamino-N-butyric acid
- MDD, maximum daily dose
- MNP, 1-methyl-4-nitrosopiperazine
- NAP, nitrosation assay procedure
- NDBA, N-nitrosodibutylamine
- NDEA, N-nitrosodiethylamine
- NDIPA, N-nitrosodiisopropylamine
- NDMA, N-nitrosodimethylamine
- NDSRIs, Nitrosamine drug substance-related impurities
- NEIPA, N-nitroso ethylisopropylamine
- NMBA, N-nitroso-N-methyl-4-aminobutyric acid
- NMP, N-methyl pyrrolidinone
- NOCs, N-nitroso compounds
- Nitrosamines
- Nitrosation
- PPRs, proportionate reporting ratios
- Ranitidine
- SARs, structure–activity relationships
- Sartans
- TD50, median toxic dose
- TEA, triethylamine
- TMA, trimethylamine
- TTC, threshold of toxicological concern
- USFDA, United States Food Drug and Administration
- USP, United States Pharmacopoeia
- WHO, World Health Organization
Collapse
Affiliation(s)
- Wisut Wichitnithad
- Department of Analytical Development, Pharma Nueva Co., Ltd, Bangkok 10900, Thailand
- Department of Clinical Development, Pharma Nueva Co., Ltd, Bangkok 10900, Thailand
| | - Siriwan Nantaphol
- Department of Clinical Development, Pharma Nueva Co., Ltd, Bangkok 10900, Thailand
| | | | - Pornchai Rojsitthisak
- Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok 10330, Thailand
- Corresponding author at: Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, 254 Phayathai Road, Patumwan, Bangkok 10330 Thailand.
| |
Collapse
|
38
|
Paglialunga S, van Haarst A. The Impact of N-nitrosamine Impurities on Clinical Drug Development. J Pharm Sci 2023; 112:1183-1191. [PMID: 36706834 DOI: 10.1016/j.xphs.2023.01.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/13/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023]
Abstract
Over the past few years, an increasing number of commercially available drugs have been reported to contain N-nitrosamine impurities above acceptable intake limits. Consequent interruption or discontinuation of the manufacturing and distribution of several marketed drugs has culminated into shortages of marketed drugs, including the antidiabetic drug metformin and the potentially life-saving drug rifampin for the treatment of tuberculosis. Alarmingly, the clinical development of new investigational products has been complicated as well by the presence of N-nitrosamine impurities in batches of marketed drug. In particular, rifampin is a key clinical index drug employed in drug-drug interaction (DDI) studies, and as a result of nitrosamine impurities regulatory bodies no longer accept the administration of rifampin in DDI studies involving healthy subjects. Drug developers are now forced to look at alternative approaches for commonly employed perpetrators, which will be discussed in this review.
Collapse
|
39
|
Horne S, Vera MD, Nagavelli LR, Sayeed VA, Heckman L, Johnson D, Berger D, Yip YY, Krahn CL, Sizukusa LO, Rocha NFM, Bream RN, Ludwig J, Keire DA, Condran G. Regulatory Experiences with Root Causes and Risk Factors for Nitrosamine Impurities in Pharmaceuticals. J Pharm Sci 2023; 112:1166-1182. [PMID: 36599405 DOI: 10.1016/j.xphs.2022.12.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/19/2022] [Accepted: 12/23/2022] [Indexed: 01/02/2023]
Abstract
N-Nitrosamines (also referred to as nitrosamines) are a class of substances, many of which are highly potent mutagenic agents which have been classified as probable human carcinogens. Nitrosamine impurities have been a concern within the pharmaceutical industry and by regulatory authorities worldwide since June 2018, when regulators were informed of the presence of N-nitrosodimethylamine (NDMA) in the angiotensin-II receptor blocker (ARB) medicine, valsartan. Since that time, regulatory authorities have collaborated to share information and knowledge on issues related to nitrosamines with a goal of promoting convergence on technical issues and reducing and mitigating patient exposure to harmful nitrosamine impurities in human drug products. This paper shares current scientific information from a quality perspective on risk factors and potential root causes for nitrosamine impurities, as well as recommendations for risk mitigation and control strategies.
Collapse
Affiliation(s)
| | - Matthew D Vera
- US Food and Drug Administration (US FDA), Silver Spring, MD, 20993, USA
| | - Laxma R Nagavelli
- US Food and Drug Administration (US FDA), Silver Spring, MD, 20993, USA
| | - Vilayat A Sayeed
- US Food and Drug Administration (US FDA), Silver Spring, MD, 20993, USA
| | - Laurel Heckman
- US Food and Drug Administration (US FDA), Silver Spring, MD, 20993, USA
| | - Deborah Johnson
- US Food and Drug Administration (US FDA), Silver Spring, MD, 20993, USA
| | - Dan Berger
- US Food and Drug Administration (US FDA), Silver Spring, MD, 20993, USA
| | | | | | | | | | - Robert N Bream
- European Medicines Agency (EMA, EU), Amsterdam, the Netherlands
| | - Joachim Ludwig
- Bundesinstitut für Arzneimittel und Medizinprodukte (BfArM), Bonn, Germany
| | - David A Keire
- US Food and Drug Administration (US FDA), St Louis, MO, 63110, USA
| | | |
Collapse
|
40
|
Borths CJ, Burr T, Figuccia A, Ford JG, Guan B, Jones MT, Klingeleers D, Lochner S, Rodriguez AA, Wetter C. Nitrosamine Risk Assessments in Oligonucleotides. Org Process Res Dev 2022. [DOI: 10.1021/acs.oprd.2c00330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
| | - Tracey Burr
- Ionis Pharmaceuticals Inc., Carlsbad, California 92010, United States
| | - Aude Figuccia
- Novartis AG, Lichtstrasse 35, CH-4056 Basel, Switzerland
| | - J. Gair Ford
- AstraZeneca, Macclesfield SK10 2NA, United Kingdom
| | - Bing Guan
- Biogen, Cambridge, Massachusetts 02142, United States
| | - Michael T. Jones
- Pfizer, 875 Chesterfield Parkway West, Chesterfield, Missouri 63017, United States
| | | | | | | | - Christian Wetter
- F. Hoffmann-La Roche AG, Grenzacherstrasse 124, CH-4070 Basel, Switzerland
| |
Collapse
|
41
|
Ponting DJ, Dobo KL, Kenyon MO, Kalgutkar AS. Strategies for Assessing Acceptable Intakes for Novel N-Nitrosamines Derived from Active Pharmaceutical Ingredients. J Med Chem 2022; 65:15584-15607. [PMID: 36441966 DOI: 10.1021/acs.jmedchem.2c01498] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The detection of N-nitrosamines, derived from solvents and reagents and, on occasion, the active pharmaceutical ingredient (API) at higher than acceptable levels in drug products, has led regulators to request a detailed review for their presence in all medicinal products. In the absence of rodent carcinogenicity data for novel N-nitrosamines derived from amine-containing APIs, a conservative class limit of 18 ng/day (based on the most carcinogenic N-nitrosamines) or the derivation of acceptable intakes (AIs) using structurally related surrogates with robust rodent carcinogenicity data is recommended. The guidance has implications for the pharmaceutical industry given the vast number of marketed amine-containing drugs. In this perspective, the rate-limiting step in N-nitrosamine carcinogenicity, involving cytochrome P450-mediated α-carbon hydroxylation to yield DNA-reactive diazonium or carbonium ion intermediates, is discussed with reference to the selection of read-across analogs to derive AIs. Risk-mitigation strategies for managing putative N-nitrosamines in the preclinical discovery setting are also presented.
Collapse
Affiliation(s)
- David J Ponting
- Lhasa Limited, Granary Wharf House, 2 Canal Wharf, Leeds LS11 5PS, United Kingdom
| | - Krista L Dobo
- Drug Safety Research and Development, Global Portfolio and Regulatory Strategy, Pfizer Worldwide Research, Development, and Medical, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Michelle O Kenyon
- Drug Safety Research and Development, Global Portfolio and Regulatory Strategy, Pfizer Worldwide Research, Development, and Medical, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Amit S Kalgutkar
- Medicine Design, Pfizer Worldwide Research, Development, and Medical, 1 Portland Street, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
42
|
Maiuolo J, Oppedisano F, Carresi C, Gliozzi M, Musolino V, Macrì R, Scarano F, Coppoletta A, Cardamone A, Bosco F, Mollace R, Muscoli C, Palma E, Mollace V. The Generation of Nitric Oxide from Aldehyde Dehydrogenase-2: The Role of Dietary Nitrates and Their Implication in Cardiovascular Disease Management. Int J Mol Sci 2022; 23:ijms232415454. [PMID: 36555095 PMCID: PMC9779284 DOI: 10.3390/ijms232415454] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/29/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022] Open
Abstract
Reduced bioavailability of the nitric oxide (NO) signaling molecule has been associated with the onset of cardiovascular disease. One of the better-known and effective therapies for cardiovascular disorders is the use of organic nitrates, such as glyceryl trinitrate (GTN), which increases the concentration of NO. Unfortunately, chronic use of this therapy can induce a phenomenon known as "nitrate tolerance", which is defined as the loss of hemodynamic effects and a reduction in therapeutic effects. As such, a higher dosage of GTN is required in order to achieve the same vasodilatory and antiplatelet effects. Mitochondrial aldehyde dehydrogenase 2 (ALDH2) is a cardioprotective enzyme that catalyzes the bio-activation of GTN to NO. Nitrate tolerance is accompanied by an increase in oxidative stress, endothelial dysfunction, and sympathetic activation, as well as a loss of the catalytic activity of ALDH2 itself. On the basis of current knowledge, nitrate intake in the diet would guarantee a concentration of NO such as to avoid (or at least reduce) treatment with GTN and the consequent onset of nitrate tolerance in the course of cardiovascular diseases, so as not to make necessary the increase in GTN concentrations and the possible inhibition/alteration of ALDH2, which aggravates the problem of a positive feedback mechanism. Therefore, the purpose of this review is to summarize data relating to the introduction into the diet of some natural products that could assist pharmacological therapy in order to provide the NO necessary to reduce the intake of GTN and the phenomenon of nitrate tolerance and to ensure the correct catalytic activity of ALDH2.
Collapse
Affiliation(s)
- Jessica Maiuolo
- Pharmaceutical Biology Laboratory, in Institute of Research for Food Safety & Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
- Correspondence: (J.M.); (F.O.)
| | - Francesca Oppedisano
- Institute of Research for Food Safety & Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
- Correspondence: (J.M.); (F.O.)
| | - Cristina Carresi
- Institute of Research for Food Safety & Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
| | - Micaela Gliozzi
- Institute of Research for Food Safety & Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
| | - Vincenzo Musolino
- Pharmaceutical Biology Laboratory, in Institute of Research for Food Safety & Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
| | - Roberta Macrì
- Institute of Research for Food Safety & Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
| | - Federica Scarano
- Institute of Research for Food Safety & Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
| | - Annarita Coppoletta
- Institute of Research for Food Safety & Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
| | - Antonio Cardamone
- Institute of Research for Food Safety & Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
| | - Francesca Bosco
- Institute of Research for Food Safety & Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
| | - Rocco Mollace
- Institute of Research for Food Safety & Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
| | - Carolina Muscoli
- Institute of Research for Food Safety & Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
| | - Ernesto Palma
- Institute of Research for Food Safety & Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
| | - Vincenzo Mollace
- Institute of Research for Food Safety & Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
- Renato Dulbecco Institute, Lamezia Terme, 88046 Catanzaro, Italy
| |
Collapse
|
43
|
Thomas R, Tennant RE, Oliveira AAF, Ponting DJ. What Makes a Potent Nitrosamine? Statistical Validation of Expert-Derived Structure-Activity Relationships. Chem Res Toxicol 2022; 35:1997-2013. [PMID: 36302501 PMCID: PMC9682520 DOI: 10.1021/acs.chemrestox.2c00199] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Indexed: 01/09/2023]
Abstract
The discovery of carcinogenic nitrosamine impurities above the safe limits in pharmaceuticals has led to an urgent need to develop methods for extending structure-activity relationship (SAR) analyses from relatively limited datasets, while the level of confidence required in that SAR indicates that there is significant value in investigating the effect of individual substructural features in a statistically robust manner. This is a challenging exercise to perform on a small dataset, since in practice, compounds contain a mixture of different features, which may confound both expert SAR and statistical quantitative structure-activity relationship (QSAR) methods. Isolating the effects of a single structural feature is made difficult due to the confounding effects of other functionality as well as issues relating to determining statistical significance in cases of concurrent statistical tests of a large number of potential variables with a small dataset; a naïve QSAR model does not predict any features to be significant after correction for multiple testing. We propose a variation on Bayesian multiple linear regression to estimate the effects of each feature simultaneously yet independently, taking into account the combinations of features present in the dataset and reducing the impact of multiple testing, showing that some features have a statistically significant impact. This method can be used to provide statistically robust validation of expert SAR approaches to the differences in potency between different structural groupings of nitrosamines. Structural features that lead to the highest and lowest carcinogenic potency can be isolated using this method, and novel nitrosamine compounds can be assigned into potency categories with high accuracy.
Collapse
Affiliation(s)
- Robert Thomas
- Lhasa Limited, Granary Wharf House, 2 Canal Wharf, LeedsLS11 5PS, United Kingdom
| | - Rachael E. Tennant
- Lhasa Limited, Granary Wharf House, 2 Canal Wharf, LeedsLS11 5PS, United Kingdom
| | | | - David J. Ponting
- Lhasa Limited, Granary Wharf House, 2 Canal Wharf, LeedsLS11 5PS, United Kingdom
| |
Collapse
|
44
|
Wenzel J, Schmidt F, Blumrich M, Amberg A, Czich A. Predicting DNA-Reactivity of N-Nitrosamines: A Quantum Chemical Approach. Chem Res Toxicol 2022; 35:2068-2084. [PMID: 36302168 DOI: 10.1021/acs.chemrestox.2c00217] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
N-Nitrosamines (NAs) are a class of reactive organic chemicals that humans may be exposed to from environmental sources, food but also impurities in pharmaceutical preparations. Some NAs were identified as DNA-reactive mutagens and many of those have been classified as probable human carcinogens. Beyond high-potency mutagenic carcinogens that need to be strictly controlled, NAs of low potency need to be considered for risk assessment as well. NA impurities and nitrosylated products of active pharmaceutical ingredients (APIs) often arise from production processes or degradation. Most NAs require metabolic activation to ultimately become carcinogens, and their activation can be appropriately described by first-principles computational chemistry approaches. To this end, we treat NA-induced DNA alkylation as a series of subsequent association and dissociation reaction steps that can be calculated stringently by density functional theory (DFT), including α-hydroxylation, proton transfer, hydroxyl elimination, direct SN2/SNAr DNA alkylation, competing hydrolysis and SN1 reactions. Both toxification and detoxification reactions are considered. The activation reactions are modeled by DFT at a high level of theory with an appropriate solvent model to compute Gibbs free energies of the reactions (thermodynamical effects) and activation barriers (kinetic effects). We study congeneric series of aliphatic and cyclic NAs to identify trends. Overall, this work reveals detailed insight into mechanisms of activation for NAs, suggesting that individual steric and electronic factors have directing and rate-determining influence on the formation of carbenium ions as the ultimate pro-mutagens and thus carcinogens. Therefore, an individual risk assessment of NAs is suggested, as exemplified for the complex API-like 4-(N-nitroso-N-methyl)aminoantipyrine which is considered as low-potency NA by in silico prediction.
Collapse
Affiliation(s)
- Jan Wenzel
- Sanofi, R&D, Preclinical Safety, Industriepark Höchst, Industriepark Höchst, 65926Frankfurt am Main, Germany
| | - Friedemann Schmidt
- Sanofi, R&D, Preclinical Safety, Industriepark Höchst, Industriepark Höchst, 65926Frankfurt am Main, Germany
| | - Matthias Blumrich
- Sanofi, R&D, Preclinical Safety, Industriepark Höchst, Industriepark Höchst, 65926Frankfurt am Main, Germany
| | - Alexander Amberg
- Sanofi, R&D, Preclinical Safety, Industriepark Höchst, Industriepark Höchst, 65926Frankfurt am Main, Germany
| | - Andreas Czich
- Sanofi, R&D, Preclinical Safety, Industriepark Höchst, Industriepark Höchst, 65926Frankfurt am Main, Germany
| |
Collapse
|
45
|
Lee SH, Kim J, Kim J, Park J, Park S, Kim KB, Lee BM, Kwon S. Current trends in read-across applications for chemical risk assessments and chemical registrations in the Republic of Korea. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2022; 25:393-404. [PMID: 36250612 DOI: 10.1080/10937404.2022.2133033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Read-across, an alternative approach for hazard assessment, has been widely adopted when in vivo data are unavailable for chemicals of interest. Read-across is enabled via in silico tools such as quantitative structure activity relationship (QSAR) modeling. In this study, the current status of structure activity relationship (SAR)-based read-across applications in the Republic of Korea (ROK) was examined considering both chemical risk assessments and chemical registrations from different sectors, including regulatory agencies, industry, and academia. From the regulatory perspective, the Ministry of Environment (MOE) established the Act on Registration and Evaluation of Chemicals (AREC) in 2019 to enable registrants to submit alternative data such as information from read-across instead of in vivo data to support hazard assessment and determine chemical-specific risks. Further, the Ministry of Food and Drug Safety (MFDS) began to consider read-across approaches for establishing acceptable intake (AI) limits of impurities occurring during pharmaceutical manufacturing processes under the ICH M7 guideline. Although read-across has its advantages, this approach also has limitations including (1) lack of standardized criteria for regulatory acceptance, (2) inconsistencies in the robustness of scientific evidence, and (3) deficiencies in the objective reliability of read-across data. The application and acceptance rate of read-across may vary among regulatory agencies. Therefore, sufficient data need to be prepared to verify the hypothesis that structural similarities might lead to similarities in properties of substances (between source and target chemicals) prior to adopting a read-across approach. In some cases, additional tests may be required during the registration process to clarify long-term effects on human health or the environment for certain substances that are data deficient. To improve the quality of read-across data for regulatory acceptance, cooperative efforts from regulatory agencies, academia, and industry are needed to minimize limitations of read-across applications.
Collapse
Affiliation(s)
- Sang Hee Lee
- Chemicals Registration & Evaluation Team, Risk Assessment Research Division, National Institute of Environmental Research, Ministry of Environment, Inchon, Republic of Korea
| | - Jongwoon Kim
- Chemical Safety Research Center, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Jinyong Kim
- Environment, Safety and Health DepartmentChemical Products and Biocides Safety Center, Korea Environmental Industry and Technology Institute (KEITI), Inchon, Republic of Korea
| | - Jaehyun Park
- Pharmaceutical Standardization Division, Drug Evaluation Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Osong Health Technology Administration Complex, Cheongju, Chungcheongbuk-do, Republic of Korea
| | | | - Kyu-Bong Kim
- College of Pharmacy, Dankook University, Chungnam 31116, Republic of Korea
| | - Byung-Mu Lee
- Division of Toxicology, College of Pharmacy, Sungkyunkwan University, Seobu-ro 2066, Suwon, Republic of Korea
| | - Seok Kwon
- Global Product Stewardship, Research & Development, Singapore Innovation Center, Procter & Gamble (P&G) International Operationsr, Singapore
| |
Collapse
|
46
|
Development and Validation of an HPLC-FLD Method for the Determination of NDMA and NDEA Nitrosamines in Lisinopril Using Pre-Column Denitrosation and Derivatization Procedure. SEPARATIONS 2022. [DOI: 10.3390/separations9110347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In order to meet the analytical requirements of the European Medicines Agency (EMA), a new HPLC-FLD method was successfully developed using dansyl chloride for the derivatization and determination of the genotoxic impurities N-Nitrosodimethylamine (NDMA) and N-Nitrosodiethylamine (NDEA) in Lisinopril API and its final product. Samples’ pretreatment includes liquid–liquid microextraction, denitrosation, and derivatization steps. To optimize the process, the parameters contributing to high sensitivity and yielding reliable results were thoroughly studied and optimized using one-factor-at-a-time and experimental design approaches. The analytes were pre-column derivatized with Dansyl-Cl and analyzed by HPLC-fluorescence (λem/λem = 340/530) using a C18 column and a mixture of phosphate buffer (pH = 2.8; 20 mM)/acetonitrile 55:45 v/v as the mobile phase. The six-level concentration calibration was shown to be linear, with R equal to 0.9995 for both analytes. The limit of detection (LOD) was satisfactory and equal to 4.7 and 0.04 ng/mL for NDMA and NDEA, respectively. Precision was less than 13.4% in all cases, and the average recoveries were equal to 109.2 and 98.1% for NDMA and NDEA, respectively. The proposed procedure is relatively easy, rapid, and suitable for the determination of the two nitrosamines in routine analysis tests.
Collapse
|
47
|
Santos CEMD, Dorta DJ, de Oliveira DP. Setting limits for N-nitrosamines in drugs: A defined approach based on read-across and structure-activity relationship for N-nitrosopiperazine impurities. Regul Toxicol Pharmacol 2022; 136:105288. [DOI: 10.1016/j.yrtph.2022.105288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 10/14/2022] [Accepted: 11/06/2022] [Indexed: 11/15/2022]
|
48
|
Schlingemann J, Burns MJ, Ponting DJ, Avila CM, Romero NE, Jaywant MA, Smith GF, Ashworth IW, Simon S, Saal C, Wilk A. The Landscape of Potential Small and Drug Substance Related Nitrosamines in Pharmaceuticals. J Pharm Sci 2022; 112:1287-1304. [PMID: 36402198 DOI: 10.1016/j.xphs.2022.11.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/11/2022] [Accepted: 11/11/2022] [Indexed: 11/18/2022]
Abstract
This article reports the outcome of an in silico analysis of more than 12,000 small molecule drugs and drug impurities, identifying the nitrosatable structures, assessing their potential to form nitrosamines under relevant conditions and the challenges to determine compound-specific AIs based on data available or read-across approaches for these nitrosamines and their acceptance by health authorities. Our data indicate that the presence of nitrosamines in pharmaceuticals is likely more prevalent than originally expected. In total, 40.4 % of the analyzed APIs and 29.6 % of the API impurities are potential nitrosamine precursors. Most structures identified through our workflow could form complex API-related nitrosamines, so-called nitrosamine drug substance related impurities (NDSRIs), although we also found structures that could release the well-known small and potent nitrosamines NDMA, NDEA, and others. Due to common structural motifs including secondary or tertiary amine moieties, whole essential drug classes such as beta blockers and ACE inhibitors are at risk. To avoid the risk of drug shortages or even the complete loss of therapeutic options, it will be essential that the well-established ICH M7 principles remain applicable for nitrosamines and that that the industry and regulatory authorities keep an open communication not only about the science but also to make sure there is a good balance between risk and benefit to patients.
Collapse
|
49
|
Genotoxicity evaluation of a valsartan-related complex N-nitroso-impurity. Regul Toxicol Pharmacol 2022; 134:105245. [PMID: 35988810 DOI: 10.1016/j.yrtph.2022.105245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 07/25/2022] [Accepted: 08/02/2022] [Indexed: 11/20/2022]
Abstract
Recently, the formation of genotoxic and carcinogenic N-nitrosamines impurities during drug manufacturing of tetrazole-containing angiotensin-II blockers has been described. However, drug-related (complex) nitrosamines may also be generated under certain conditions, i.e., through nitrosation of vulnerable amines in drug substances in the presence of nitrite. An investigation of valsartan drug substance showed that a complex API-related N-nitrosamine chemically designated as (S)-2-(((2'-(1H-tetrazol-5-yl)-[1,1'-biphenyl]-4-yl)methyl)(nitroso)amino)-3-methylbutanoic acid (named 181-14) may be generated. 181-14 was shown to be devoid of a mutagenic potential in the Non-GLP Ames test. According to ICH M7 (R1) (2018), impurities that are not mutagenic in the Ames test would be considered Class 5 impurities and limited according to ICH Q3A (R2) and B (R2) (2006) guidelines. However, certain regulatory authorities raised the concern that the Ames test may not be sufficiently sensitive to detect a mutagenic potential of nitrosamines and requested a confirmatory in vivo study using a transgenic animal genotoxicity model. Our data show that 181-14 was not mutagenic in the transgenic gene mutation assay in MutaTMMice. The data support the conclusion that the Ames test is an adequate and sensitive test system to assess a mutagenic potential of nitrosamines.
Collapse
|
50
|
Research progress of N-nitrosamine detection methods: a review. Bioanalysis 2022; 14:1123-1135. [PMID: 36125029 DOI: 10.4155/bio-2022-0091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
N-Nitrosamines (nitrosamines) are attracting increased attention because of their high toxicity and wide distribution. They have been strictly restricted by regulations in many fields. Researchers around the world have conducted substantial work on nitrosamine detection. This paper reviews the progress of research on nitrosamine detection methods with emphasis on biological-matrix samples. After introducing the category, toxicity, regulatory limit and source of nitrosamines, the paper discusses the most commonly used sample-preparation techniques and instrumental-detection techniques for nitrosamine detection, including some typical application cases.
Collapse
|