1
|
Anyachor CP, Orish CN, Ezejiofor AN, Cirovic A, Cirovic A, Dooka BD, Ezealisiji KM, Noundou XS, Orisakwe OE. Silica Nanoparticles from Melon Seed Husk Abrogated Binary Metal(loid) Mediated Cerebellar Dysfunction by Attenuation of Oxido-inflammatory Response and Upregulation of Neurotrophic Factors in Male Albino Rats. CEREBELLUM (LONDON, ENGLAND) 2024; 23:2426-2445. [PMID: 39331240 DOI: 10.1007/s12311-024-01747-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/22/2024] [Indexed: 09/28/2024]
Abstract
Silica nanoparticles (SiNPs) have been touted for their role in the management of non-communicable diseases. Their neuroprotective benefits against heavy metal-induced neurotoxicity remain largely unexplored. This is a comparative evaluation of the oxido-inflammatory and neurotrophic effects of Ni, Al, and Ni/Al mixture on the cerebellum of male albino rats with or without treatment with SiNPs generated from melon seed husk. The study complied with the ARRIVE guidelines for reporting in vivo experiments. A total of 91, 7-9 week-old weight-matched male Sprague rats (to avoid sex bias) were randomly divided into 13 different dosing groups where Group 1 served as the control. Other groups received 0.2 mg/kg Ni, 1 mg/kg Al, and 0.2 mg/kg Ni + 1 mg/kg Al mixture with or without different doses of SiNP for 90 days. Rotarod performance was carried out. Oxidative stress markers, Ni, Al, Ca, Fe, Mg, neurotrophic factors, amyloid beta (Aβ-42), cyclooxygenase-2 (COX-2), and acetylcholinesterase (AChE) were determined in the cerebellum. SiNPs from melon seed husk caused a significant decrease in Aβ-42 level and activities of AChE and COX-2 and a significant increase in brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) mediated by Ni, Al, and Ni/Al mixture exposure in rats. Neurotoxicity of the Ni/Al mixture is via heightened neuronal lipoperoxidative damage, decreased Mg, and increased Fe, and co-administration of SiNPs from melon seed husk with the Ni/Al mixture attenuated some of these biochemical changes in the cerebellum.
Collapse
Affiliation(s)
- Chidinma P Anyachor
- African Centre of Excellence for Public Health and Toxicological Research (ACE‑PUTOR), University of Port Harcourt, PMB, Port Harcourt, Choba, 5323, Nigeria
| | - Chinna N Orish
- Department of Anatomy, Faculty of Basic Medical Sciences, College of Health Sciences, University of Port Harcourt, PMB, Choba, Port Harcourt, 5323, Nigeria.
| | - Anthonet N Ezejiofor
- African Centre of Excellence for Public Health and Toxicological Research (ACE‑PUTOR), University of Port Harcourt, PMB, Port Harcourt, Choba, 5323, Nigeria
| | - Ana Cirovic
- Faculty of Medicine, Institute of Anatomy, University of Belgrade, Belgrade, Serbia
| | - Aleksandar Cirovic
- Faculty of Medicine, Institute of Anatomy, University of Belgrade, Belgrade, Serbia
| | - Baridoo Donatus Dooka
- African Centre of Excellence for Public Health and Toxicological Research (ACE‑PUTOR), University of Port Harcourt, PMB, Port Harcourt, Choba, 5323, Nigeria
| | - Kenneth M Ezealisiji
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Port Harcourt, PMB, Choba, Port Harcourt, 5323, Nigeria
| | - Xavier Siwe Noundou
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, MEDUNSA, Box 218, 0204, Pretoria, South Africa
| | - Orish E Orisakwe
- African Centre of Excellence for Public Health and Toxicological Research (ACE‑PUTOR), University of Port Harcourt, PMB, Port Harcourt, Choba, 5323, Nigeria.
- Advanced Research Centre, European University of Lefke, Lefke, Mersin, TR-10, Northern Cyprus, Turkey.
| |
Collapse
|
2
|
Ajibo DN, Orish CN, Ruggieri F, Bocca B, Battistini B, Frazzoli C, Orish FC, Orisakwe OE. An Update Overview on Mechanistic Data and Biomarker Levels in Cobalt and Chromium-Induced Neurodegenerative Diseases. Biol Trace Elem Res 2024; 202:3538-3564. [PMID: 38017235 DOI: 10.1007/s12011-023-03965-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 11/12/2023] [Indexed: 11/30/2023]
Abstract
There is increasing evidence that the imbalance of metals as cobalt (Co) and chromium (Cr) may increase the risk of development and progression of neurodegenerative diseases (NDDs). The human exposure to Co and Cr is derived mostly from industry, orthopedic implants, and polluted environments. Neurological effects of Co and Cr include memory deficit, olfactory dysfunction, spatial disorientation, motor neuron disease, and brain cancer. Mechanisms of Co and Cr neurotoxicity included DNA damage and genomic instability, epigenetic changes, mitochondrial disturbance, lipid peroxidation, oxidative stress, inflammation, and apoptosis. This paper seeks to overview the Co and Cr sources, the mechanisms by which these metals induce NDDs, and their levels in fluids of the general population and patients affected by NDDs. To this end, evidence of Co and Cr unbalance in the human body, mechanistic data, and neurological symptoms were collected using in vivo mammalian studies and human samples.
Collapse
Affiliation(s)
- Doris Nnena Ajibo
- Department of Experimental Pharmacology & Toxicology, Faculty of Pharmacy, University of Port Harcourt, PMB, 5323, Port Harcourt, Rivers State, Nigeria
| | - Chinna Nneka Orish
- Department of Anatomy, College of Health Sciences University of Port Harcourt, PMB, 5323, Port Harcourt, Rivers State, Nigeria
| | - Flavia Ruggieri
- Department of Environment and Health, Istituto Superiore Di Sanità, Rome, Italy
| | - Beatrice Bocca
- Department of Environment and Health, Istituto Superiore Di Sanità, Rome, Italy
| | - Beatrice Battistini
- Department of Environment and Health, Istituto Superiore Di Sanità, Rome, Italy
| | - Chiara Frazzoli
- Department for Cardiovascular, Endocrine-Metabolic Diseases, and Aging, Istituto Superiore Di Sanità, Rome Viale Regina Elena, 29900161, Rome, Italy
| | | | - Orish E Orisakwe
- Department of Experimental Pharmacology & Toxicology, Faculty of Pharmacy, University of Port Harcourt, PMB, 5323, Port Harcourt, Rivers State, Nigeria.
- African Centre of Excellence for Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, PMB, 5323, Port Harcourt, Rivers State, Nigeria.
| |
Collapse
|
3
|
Min JH, Sarlus H, Harris RA. Glycyl-l-histidyl-l-lysine prevents copper- and zinc-induced protein aggregation and central nervous system cell death in vitro. Metallomics 2024; 16:mfae019. [PMID: 38599632 PMCID: PMC11135135 DOI: 10.1093/mtomcs/mfae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 04/09/2024] [Indexed: 04/12/2024]
Abstract
Common features of neurodegenerative diseases are oxidative and inflammatory imbalances as well as the misfolding of proteins. An excess of free metal ions can be pathological and contribute to cell death, but only copper and zinc strongly promote protein aggregation. Herein we demonstrate that the endogenous copper-binding tripeptide glycyl-l-histidyl-l-lysine (GHK) has the ability to bind to and reduce copper redox activity and to prevent copper- and zinc-induced cell death in vitro. In addition, GHK prevents copper- and zinc-induced bovine serum albumin aggregation and reverses aggregation through resolubilizing the protein. We further demonstrate the enhanced toxicity of copper during inflammation and the ability of GHK to attenuate this toxicity. Finally, we investigated the effects of copper on enhancing paraquat toxicity and report a protective effect of GHK. We therefore conclude that GHK has potential as a cytoprotective compound with regard to copper and zinc toxicity, with positive effects on protein solubility and aggregation that warrant further investigation in the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Jin-Hong Min
- Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital, S-171 76 Stockholm, Sweden
| | - Heela Sarlus
- Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital, S-171 76 Stockholm, Sweden
| | - Robert A Harris
- Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital, S-171 76 Stockholm, Sweden
| |
Collapse
|
4
|
Ding J, Sun B, Gao Y, Zheng J, Liu C, Huang J, Jia N, Pei X, Jiang X, Hu S, Xia B, Meng Y, Dai Z, Qi X, Wang J. Evidence for chromium crosses blood brain barrier from the hypothalamus in chromium mice model. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 273:116179. [PMID: 38460200 DOI: 10.1016/j.ecoenv.2024.116179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/27/2024] [Accepted: 03/03/2024] [Indexed: 03/11/2024]
Abstract
It has been shown that exposure to hexavalent Chromium, Cr (Ⅵ), via nasal cavity can have neurotoxicological effects and induces behavioral impairment due to the fact that blood brain barrier (BBB) does not cover olfactory bulb. But whether Cr (Ⅵ) can cross the BBB and have a toxicological effects in central nervous system (CNS) remains unclear. Therefore, we investigated the effects of Cr (Ⅵ) on mice treated with different concentrations and exposure time (14 days and 28 days) of Cr (Ⅵ) via intraperitoneal injection. Results revealed that Cr accumulated in hypothalamus (HY) in a timely dependent manner. Much more severer neuropathologies was observed in the group of mice exposed to Cr (Ⅵ) for 28 days than that for 14 days. Gliosis, neuronal morphological abnormalities, synaptic degeneration, BBB disruption and neuronal number loss were observed in HY. In terms of mechanism, the Nrf2 related antioxidant stress signaling dysfunction and activated NF-κB related inflammatory pathway were observed in HY of Cr (Ⅵ) intoxication mice. And these neuropathologies and signaling defects appeared in a timely dependent manner. Taking together, we proved that Cr (Ⅵ) can enter HY due to weaker BBB in HY and HY is the most vulnerable CNS region to Cr (Ⅵ) exposure. The concentration of Cr in HY increased along with time. The accumulated Cr in HY can cause BBB disruption, neuronal morphological abnormalities, synaptic degeneration and gliosis through Nrf2 and NF-κB signaling pathway. This finding improves our understanding of the neurological dysfunctions observed in individuals who have occupational exposure to Cr (Ⅵ), and provided potential therapeutic targets to treat neurotoxicological pathologies induced by Cr (Ⅵ).
Collapse
Affiliation(s)
- Jiuyang Ding
- Key Laboratory of Human Brain bank for Functions and Diseases of Department of Education of Guizhou Province, Guizhou Medical University, Guiyang 550025, China; Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang 550004, China; School of Forensic Medicine, Guizhou Medical University, Guiyang 550004, China
| | - Baofei Sun
- Key Laboratory of Human Brain bank for Functions and Diseases of Department of Education of Guizhou Province, Guizhou Medical University, Guiyang 550025, China
| | - Yingdong Gao
- Department of Reproductive Medicine, Taian Maternity and Child Health Hospital, Taian 271000, China
| | - Juan Zheng
- Department of Reproductive Medicine, Taian Maternity and Child Health Hospital, Taian 271000, China
| | - Changyou Liu
- Department of Pediatrics, Taian Maternity and Child Health Hospital, Taian 271000, China
| | - Jian Huang
- School of Forensic Medicine, Kunming Medical University, Kunming 650500, China
| | - Nannan Jia
- Neonatal Screening Center, Taian Maternity and Child Health Hospital, Taian, China
| | - Xianglin Pei
- School of Materials and Architectural Engineering, Guizhou Normal University, Guiyang 550025, China
| | - Xueyu Jiang
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Shanshan Hu
- Good Clinical Practice Center, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, China
| | - Bing Xia
- School of Forensic Medicine, Guizhou Medical University, Guiyang 550004, China
| | - Yunle Meng
- Institute of Forensic Science, Ministry of Public Security, Beijing 100038, China
| | - Zhuihui Dai
- State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China.
| | - Xiaolan Qi
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang 550004, China.
| | - Jiawen Wang
- School of Forensic Medicine, Guizhou Medical University, Guiyang 550004, China.
| |
Collapse
|
5
|
Baj J, Bargieł J, Cabaj J, Skierkowski B, Hunek G, Portincasa P, Flieger J, Smoleń A. Trace Elements Levels in Major Depressive Disorder-Evaluation of Potential Threats and Possible Therapeutic Approaches. Int J Mol Sci 2023; 24:15071. [PMID: 37894749 PMCID: PMC10606638 DOI: 10.3390/ijms242015071] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/08/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
The multifactorial etiology of major depressive disorder (MDD) includes biological, environmental, genetic, and psychological aspects. Recently, there has been an increasing interest in metallomic studies in psychiatry, aiming to evaluate the role of chosen trace elements in the MDD etiology as well as the progression of symptoms. This narrative review aims to summarize the available literature on the relationship between the concentration of chosen elements in the serum of patients with MDD and the onset and progression of this psychiatric condition. The authors reviewed PubMed, Web of Science, and Scopus databases searching for elements that had been investigated so far and further evaluated them in this paper. Ultimately, 15 elements were evaluated, namely, zinc, magnesium, selenium, iron, copper, aluminium, cadmium, lead, mercury, arsenic, calcium, manganese, chromium, nickel, and phosphorus. The association between metallomic studies and psychiatry has been developing dynamically recently. According to the results of current research, metallomics might act as a potential screening tool for patients with MDD while at the same time providing an assessment of the severity of symptoms. Either deficiencies or excessive amounts of chosen elements might be associated with the progression of depressive symptoms or even the onset of the disease among people predisposed to MDD.
Collapse
Affiliation(s)
- Jacek Baj
- Department of Anatomy, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland
| | - Julia Bargieł
- Student Research Group of Department of Epidemiology and Clinical Research Methodology, Medical University of Lublin, Radziwiłłowska 11, 20-080 Lublin, Poland; (J.B.); (J.C.); (B.S.)
| | - Justyna Cabaj
- Student Research Group of Department of Epidemiology and Clinical Research Methodology, Medical University of Lublin, Radziwiłłowska 11, 20-080 Lublin, Poland; (J.B.); (J.C.); (B.S.)
| | - Bartosz Skierkowski
- Student Research Group of Department of Epidemiology and Clinical Research Methodology, Medical University of Lublin, Radziwiłłowska 11, 20-080 Lublin, Poland; (J.B.); (J.C.); (B.S.)
| | - Gabriela Hunek
- Student Research Group of Department of Forensic Medicine, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland;
| | - Piero Portincasa
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, 70124 Bari, Italy;
| | - Jolanta Flieger
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4A, 20-093 Lublin, Poland;
| | - Agata Smoleń
- Department of Epidemiology and Clinical Research Methodology, Medical University of Lublin, 20-080 Lublin, Poland;
| |
Collapse
|
6
|
Hobin K, Costas-Rodríguez M, Van Wonterghem E, Vandenbroucke RE, Vanhaecke F. High-Precision Isotopic Analysis of Cu and Fe via Multi-Collector Inductively Coupled Plasma-Mass Spectrometry Reveals Lipopolysaccharide-Induced Inflammatory Effects in Blood Plasma and Brain Tissues. Front Chem 2022; 10:896279. [PMID: 35783204 PMCID: PMC9241339 DOI: 10.3389/fchem.2022.896279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
The concentration and the isotopic composition of the redox-active essential elements Cu and Fe were investigated in blood plasma and specific brain regions (hippocampus, cortex, brain stem and cerebellum) of mice to assess potential alterations associated with sepsis-associated encephalopathy induced by lipopolysaccharide (LPS) administration. Samples were collected from young (16-22 weeks) and aged (44-65 weeks) mice after intraperitoneal injection of the LPS, an endotoxin inducing neuroinflammation, and from age- and sex-matched controls, injected with phosphate-buffered saline solution. Sector-field single-collector inductively coupled plasma-mass spectrometry was relied upon for elemental analysis and multi-collector inductively coupled plasma-mass spectrometry for isotopic analysis. Significant variations were observed for the Cu concentration and for the Cu and Fe isotope ratios in the blood plasma. Concentrations and isotope ratios of Cu and Fe also varied across the brain tissues. An age- and an inflammatory-related effect was found affecting the isotopic compositions of blood plasma Cu and cerebellum Fe, whereas a regional Cu isotopic redistribution was found within the brain tissues. These findings demonstrate that isotopic analysis of essential mineral elements picks up metabolic changes not revealed by element quantification, making the two approaches complementary.
Collapse
Affiliation(s)
- Kasper Hobin
- Atomic and Mass Spectrometry - A&MS Research Unit, Department of Chemistry, Ghent University, Ghent, Belgium
| | - Marta Costas-Rodríguez
- Atomic and Mass Spectrometry - A&MS Research Unit, Department of Chemistry, Ghent University, Ghent, Belgium
| | - Elien Van Wonterghem
- Barriers in Inflammation Lab, VIB Center for Inflammation Research, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Roosmarijn E Vandenbroucke
- Barriers in Inflammation Lab, VIB Center for Inflammation Research, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Frank Vanhaecke
- Atomic and Mass Spectrometry - A&MS Research Unit, Department of Chemistry, Ghent University, Ghent, Belgium
| |
Collapse
|
7
|
Prado-Rico JM, Lee EY, Wang EW, Yanosky JD, Kong L, Chen H, Navas-Acien A, Du G, Lewis MM, Mailman RB, Huang X. Higher R2* in the Red Nucleus Is Associated With Lead Exposure in an Asymptomatic Welder Cohort. Toxicol Sci 2022; 187:345-354. [PMID: 35357496 PMCID: PMC9154244 DOI: 10.1093/toxsci/kfac035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Lead is a nonessential metal and may be a coexposure in welding fumes. Preclinical data indicate lead may affect iron regulation. The current study investigated blood lead concentrations and their association with brain iron accumulation in workers with chronic welding fume exposure, with a focus on iron-rich subcortical regions of the cerebellum and basal ganglia. Occupational exposure, whole blood metal, and brain MRI data were obtained from 29 controls and 42 welders. R2* (1/T2*) and R1 (T1 relaxation rate) values were used to estimate brain iron and manganese content, respectively. Blood metals and brain R2* (in the red nucleus [RN], dentate nucleus, caudate, putamen, globus pallidus, and substantia nigra) were compared between groups. Associations between brain R2* values and exposure metrics were tested within each group, and analyses were adjusted for potential confounders. Welders had significantly higher levels of whole blood lead, manganese, iron, and copper. Welders also had higher R2* RN (p = .002), but not R1. A 2nd-order polynomial modeled the association between R2* RN and a long-term welding exposure metric. In welders, but not controls, R2* RN was associated positively with whole blood lead (r = 0.54, p = .003), and negatively with whole blood manganese (r = -0.43, p = .02). Higher blood Pb and lower blood Mn independently accounted for variance in high RN R2*. Together, these data suggest that higher RN R2* values may mark lead exposure in welders. Because lead is a known neurotoxicant, additional studies are warranted to confirm this finding, and ascertain its scientific and public/occupational health implications.
Collapse
Affiliation(s)
- Janina Manzieri Prado-Rico
- Department of Neurology, The Pennsylvania State University College of Medicine and Milton S. Hershey Medical Center, Hershey, Pennsylvania 17033-0850, USA
| | - Eun-Young Lee
- Department of Neurology, The Pennsylvania State University College of Medicine and Milton S. Hershey Medical Center, Hershey, Pennsylvania 17033-0850, USA
| | - Ernest W Wang
- Department of Neurology, The Pennsylvania State University College of Medicine and Milton S. Hershey Medical Center, Hershey, Pennsylvania 17033-0850, USA
| | - Jeff D Yanosky
- Department of Public Health Sciences, The Pennsylvania State University College of Medicine and Milton S. Hershey Medical Center, Hershey, Pennsylvania 17033-0850, USA
| | - Lan Kong
- Department of Public Health Sciences, The Pennsylvania State University College of Medicine and Milton S. Hershey Medical Center, Hershey, Pennsylvania 17033-0850, USA
| | - Hairong Chen
- Department of Neurology, The Pennsylvania State University College of Medicine and Milton S. Hershey Medical Center, Hershey, Pennsylvania 17033-0850, USA
| | - Ana Navas-Acien
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York City, New York, USA
| | - Guangwei Du
- Department of Neurology, The Pennsylvania State University College of Medicine and Milton S. Hershey Medical Center, Hershey, Pennsylvania 17033-0850, USA
| | - Mechelle M Lewis
- Department of Neurology, The Pennsylvania State University College of Medicine and Milton S. Hershey Medical Center, Hershey, Pennsylvania 17033-0850, USA
- Department of Pharmacology, The Pennsylvania State University College of Medicine and Milton S. Hershey Medical Center, Hershey, Pennsylvania 17033-0850, USA
| | - Richard B Mailman
- Department of Neurology, The Pennsylvania State University College of Medicine and Milton S. Hershey Medical Center, Hershey, Pennsylvania 17033-0850, USA
- Department of Pharmacology, The Pennsylvania State University College of Medicine and Milton S. Hershey Medical Center, Hershey, Pennsylvania 17033-0850, USA
| | - Xuemei Huang
- Department of Neurology, The Pennsylvania State University College of Medicine and Milton S. Hershey Medical Center, Hershey, Pennsylvania 17033-0850, USA
- Department of Pharmacology, The Pennsylvania State University College of Medicine and Milton S. Hershey Medical Center, Hershey, Pennsylvania 17033-0850, USA
- Department of Radiology, The Pennsylvania State University College of Medicine and Milton S. Hershey Medical Center, Hershey, Pennsylvania 17033-0850, USA
| |
Collapse
|
8
|
Wise JP, Young JL, Cai J, Cai L. Current understanding of hexavalent chromium [Cr(VI)] neurotoxicity and new perspectives. ENVIRONMENT INTERNATIONAL 2022; 158:106877. [PMID: 34547640 PMCID: PMC8694118 DOI: 10.1016/j.envint.2021.106877] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 05/21/2023]
Abstract
Hexavalent chromium [Cr(VI)] is a global environmental pollutant that increases risk for several types of cancers and is increasingly being recognized as a neurotoxicant. Traditionally, the brain has been viewed as a largely post-mitotic organ due to its specialized composition of neurons, and consequently, clastogenic effects were not considered in neurotoxicology. Today, we understand the brain is composed of at least eight distinct cell types - most of which continue mitotic activity throughout lifespan. We have learned these dividing cells play essential roles in brain and body health. This review focuses on Cr(VI), a potent clastogen and known human carcinogen, as a potentially neurotoxic agent targeting mitotic cells of the brain. Despite its well-established role as a human carcinogen, Cr(VI) neurotoxicity studies have failed to find a significant link to brain cancers. In the few studies that did find a link, Cr(VI) was identified as a risk for gliomas. Instead, in the human brain, Cr(VI) appears to have more subtle deleterious effects that can impair childhood learning and attention development, olfactory function, social memory, and may contribute to motor neuron diseases. Studies of Cr(VI) neurotoxicity with animal and cell culture models have demonstrated elevated markers of oxidative damage and redox stress, with widespread neurodegeneration. One study showed mice exposed to Cr(VI)-laden tannery effluent exhibited longer periods of aggressive behavior toward an "intruder" mouse and took longer to recognize mice previously encountered, recapitulating the social memory deficits observed in humans. Here we conducted a critical review of the available literature on Cr(VI) neurotoxicity and synthesize the collective observations to thoroughly evaluate Cr(VI) neurotoxicity - much remains to be understood and recognized.
Collapse
Affiliation(s)
- John P Wise
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40292, USA; Pediatric Research Institute, The Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY 40292, USA.
| | - Jamie L Young
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40292, USA; Pediatric Research Institute, The Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Jun Cai
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40292, USA; Pediatric Research Institute, The Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Lu Cai
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40292, USA; Pediatric Research Institute, The Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY 40292, USA
| |
Collapse
|
9
|
Ramos P, Pinto E, Santos A, Almeida A. Reference values for trace element levels in the human brain: A systematic review of the literature. J Trace Elem Med Biol 2021; 66:126745. [PMID: 33813265 DOI: 10.1016/j.jtemb.2021.126745] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 06/14/2020] [Accepted: 03/15/2021] [Indexed: 11/25/2022]
Abstract
Some trace elements (TE) are eminently toxic for humans (e.g., Al, Pb, Hg, Cd) and its presence in the central nervous system has been linked to the etiology of neurodegenerative diseases (ND). More recently, the focus has shifted to the potential role of the imbalances on essential TE levels (e.g., Fe, Cu, Zn, Se) within the brain tissue, and they have also been identified as potentially responsible for the cognitive decline associated with normal ageing and the development of some ND, although their definite role remains unclear. Accurately, well-defined reference values for TE levels in human body fluids and tissues are indispensable to identify possible disturbances in individual cases. Moreover, since the brain is a highly heterogeneous organ, with anatomically and physiologically very different areas, a detailed mapping of TE distribution across the brain tissue of normal individuals, with an in-depth analysis of TE levels in the different brain regions, is a mandatory prior work so that the results obtained from patients suffering from ND and other brain diseases can be interpreted. This review aims to compile and summarize the available data regarding TE levels in the different human brain regions of "normal" (non-diseased) individuals in order to contribute to the establishment of robust reference values. Fifty-four studies, published since 1960, were considered. The results showed a great variability between different studies. The potential sources of this variability are discussed. The need for increased harmonization of experimental strategies is highlighted in order to improve the comparability of the data obtained.
Collapse
Affiliation(s)
- Patrícia Ramos
- LAQV / REQUIMTE, Department of Chemical Sciences, Laboratory of Applied Chemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - Edgar Pinto
- LAQV / REQUIMTE, Department of Chemical Sciences, Laboratory of Applied Chemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal; Department of Environmental Health, School of Health, P.Porto, CISA/Research Center in Environment and Health, 4200-072, Porto, Portugal
| | - Agostinho Santos
- National Institute of Legal Medicine and Forensic Sciences, North Branch, Jardim Carrilho Videira, 4050-167, Porto, Portugal; Faculty of Medicine, University of Porto, Al. Prof. Hernâni Monteiro, 4200-319, Porto, Portugal
| | - Agostinho Almeida
- LAQV / REQUIMTE, Department of Chemical Sciences, Laboratory of Applied Chemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal.
| |
Collapse
|
10
|
Cilliers K. Trace element alterations in Alzheimer's disease: A review. Clin Anat 2021; 34:766-773. [PMID: 33580904 DOI: 10.1002/ca.23727] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 02/02/2021] [Accepted: 02/05/2021] [Indexed: 12/27/2022]
Abstract
Dyshomeostasis of trace elements have been implicated in the progression of Alzheimer's disease (AD), which is characterized by amyloid-β (Aβ) plaques. Trace elements are particularly associated with the Aβ plaques. Metal-protein attenuating compounds have been developed to inhibit metals from binding to Aβ proteins, which result in Aβ termination, in the hope of improving cognitive functioning. However, there are still some contradicting reports. This review aims to first establish which trace elements are increased or decreased in the brains of Alzheimer's patients, and secondly, to review the effectiveness of clinical trials with metal-protein attenuating compounds for AD. Studies have consistently reported unchanged or increased iron, contradicting reports for zinc, decreased copper, unchanged or decreased manganese, inconsistent results for calcium, and magnesium seems to be unaffected. However, varied results have been reported for all trace elements. Clinical trials using metal-protein attenuating compounds to treat AD have also reported varied results. Copper chelators have repeatedly been used in clinical trials, even though few studies report increased brain copper levels in AD patients. Homeostasis of copper levels is important since copper has a vital role in several enzymes, such as cytochrome c, Cu/Zn superoxide dismutase and ceruloplasmin. Dyshomeostasis of copper levels can lead to increased oxidative stress and neuronal loss. Future studies should assess a variety of trace element levels in moderately and severely affected AD patients since there are contradicting reports. This review thus provides some insight into trace element alterations in the brains of individuals with AD.
Collapse
Affiliation(s)
- Karen Cilliers
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, Western Cape, South Africa
| |
Collapse
|
11
|
Cilliers K, Muller CJF. Multi-element Analysis of Brain Regions from South African Cadavers. Biol Trace Elem Res 2021; 199:425-441. [PMID: 32361883 DOI: 10.1007/s12011-020-02158-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 04/15/2020] [Indexed: 12/12/2022]
Abstract
Trace elements are vital for a variety of functions in the brain. However, an imbalance can result in oxidative stress. It is important to ascertain the normal levels in different brain regions, as such information is still lacking. Therefore, this study aimed to provide baseline trace element concentrations from a South African population, as well as determine trace element differences between sex and brain regions. Samples from the caudate nucleus, putamen, globus pallidus and hippocampus were analysed using inductively coupled plasma mass spectrometry. Aluminium, antimony, arsenic, barium, boron, cadmium, calcium, chromium, cobalt, copper, iron, lead, magnesium, manganese, mercury, molybdenum, nickel, phosphorus, potassium, selenium, silicon, sodium, strontium, vanadium and zinc were assessed. A multiple median regression model was used to determine differences between sex and regions. Twenty-nine male and 13 female cadavers from a Western Cape, South African population were included (mean age 35 years, range 19 to 45). Trace element levels were comparable to those of other populations, although magnesium was considerably lower. While there were no sex differences, significant anatomical regional differences existed; the caudate nucleus and hippocampus were the most similar, and the globus pallidus and hippocampus the most different. In conclusion, this is the first article to report the trace element concentrations of brain regions from a South African population. Low magnesium levels in the brain may be linked to a dietary deficiency, and migraines, depression and epilepsy have been linked to low magnesium levels. Future research should be directed to increase the dietary intake of magnesium.
Collapse
Affiliation(s)
- Karen Cilliers
- Division of Clinical Anatomy, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, Western Cape, South Africa.
| | - Christo J F Muller
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council, Tygerberg, Western Cape, South Africa
- Division of Medical Physiology, Faculty of Medicine and Health ScieAnces, Stellenbosch University, Tygerberg, Western Cape, South Africa
| |
Collapse
|
12
|
Dales JP, Desplat-Jégo S. Metal Imbalance in Neurodegenerative Diseases with a Specific Concern to the Brain of Multiple Sclerosis Patients. Int J Mol Sci 2020; 21:E9105. [PMID: 33266021 PMCID: PMC7730295 DOI: 10.3390/ijms21239105] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/29/2020] [Accepted: 11/19/2020] [Indexed: 12/16/2022] Open
Abstract
There is increasing evidence that deregulation of metals contributes to a vast range of neurodegenerative diseases including multiple sclerosis (MS). MS is a chronic inflammatory disease of the central nervous system (CNS) manifesting disability and neurological symptoms. The precise origin of MS is unknown, but the disease is characterized by focal inflammatory lesions in the CNS associated with an autoimmune reaction against myelin. The treatment of this disease has mainly been based on the prescription of immunosuppressive and immune-modulating agents. However, the rate of progressive disability and early mortality is still worrisome. Metals may represent new diagnostic and predictive markers of severity and disability as well as innovative candidate drug targets for future therapies. In this review, we describe the recent advances in our understanding on the role of metals in brain disorders of neurodegenerative diseases and MS patients.
Collapse
Affiliation(s)
- Jean-Philippe Dales
- Institute of Neurophysiopathology, CNRS, INP, Aix-Marseille University, 13005 Marseille, France;
- Assistance Publique-Hôpitaux de Marseille, Hôpital Nord, Pavillon Etoile, Pôle de Biologie, Service d’anatomie-pathologie, CEDEX 20, 13915 Marseille, France
| | - Sophie Desplat-Jégo
- Institute of Neurophysiopathology, CNRS, INP, Aix-Marseille University, 13005 Marseille, France;
- Assistance Publique-Hôpitaux de Marseille, Hôpital de la Conception, Pôle de Biologie, Service d’Immunologie, 13005 Marseille, France
| |
Collapse
|
13
|
DeBenedictis CA, Raab A, Ducie E, Howley S, Feldmann J, Grabrucker AM. Concentrations of Essential Trace Metals in the Brain of Animal Species-A Comparative Study. Brain Sci 2020; 10:E460. [PMID: 32709155 PMCID: PMC7407190 DOI: 10.3390/brainsci10070460] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/13/2020] [Accepted: 07/14/2020] [Indexed: 12/29/2022] Open
Abstract
The essential trace metals iron, zinc, and copper have a significant physiological role in healthy brain development and function. Especially zinc is important for neurogenesis, synaptogenesis, synaptic transmission and plasticity, and neurite outgrowth. Given the key role of trace metals in many cellular processes, it is important to maintain adequate levels in the brain. However, the physiological concentration of trace metals, and in particular zinc, in the human and animal brain is not well described so far. For example, little is known about the trace metal content of the brain of animals outside the class of mammals. Here, we report the concentration of iron, zinc, and copper in fresh brain tissue of different model-species of the phyla Chordata (vertebrates (mammals, fish)), Annelida, Arthropoda (insects), and Mollusca (snails), using inductively coupled plasma mass-spectrometry (ICP-MS). Our results show that the trace metals are present in the nervous system of all species and that significant differences can be detected between species of different phyla. We further show that a region-specific distribution of metals within the nervous system already exists in earthworms, hinting at a tightly controlled metal distribution. In line with this, the trace metal content of the brain of different species does not simply correlate with brain size. We conclude that although the functional consequences of the controlled metal homeostasis within the brain of many species remains elusive, trace metal biology may not only play an important role in the nervous system of mammals but across the whole animal kingdom.
Collapse
Affiliation(s)
- Chiara Alessia DeBenedictis
- Cellular Neurobiology and Neuro-Nanotechnology Lab, Department of Biological Sciences, University of Limerick, V94PH61 Limerick, Ireland; (C.A.D.); (E.D.); (S.H.)
- Bernal Institute, University of Limerick, V94T9PX Limerick, Ireland
| | - Andrea Raab
- Trace Element Speciation Laboratory (TESLA), Department of Chemistry, University of Aberdeen, Aberdeen AB24 3UE, UK; (A.R.); (J.F.)
- Institute of Chemistry, University of Graz, A-8010 Graz, Austria
- Institute of Chemistry, Environmental Analytical Chemistry, University of Graz, 8010 Graz, Austria
| | - Ellen Ducie
- Cellular Neurobiology and Neuro-Nanotechnology Lab, Department of Biological Sciences, University of Limerick, V94PH61 Limerick, Ireland; (C.A.D.); (E.D.); (S.H.)
| | - Shauna Howley
- Cellular Neurobiology and Neuro-Nanotechnology Lab, Department of Biological Sciences, University of Limerick, V94PH61 Limerick, Ireland; (C.A.D.); (E.D.); (S.H.)
| | - Joerg Feldmann
- Trace Element Speciation Laboratory (TESLA), Department of Chemistry, University of Aberdeen, Aberdeen AB24 3UE, UK; (A.R.); (J.F.)
- Institute of Chemistry, University of Graz, A-8010 Graz, Austria
- Institute of Chemistry, Environmental Analytical Chemistry, University of Graz, 8010 Graz, Austria
| | - Andreas Martin Grabrucker
- Cellular Neurobiology and Neuro-Nanotechnology Lab, Department of Biological Sciences, University of Limerick, V94PH61 Limerick, Ireland; (C.A.D.); (E.D.); (S.H.)
- Bernal Institute, University of Limerick, V94T9PX Limerick, Ireland
- Health Research Institute (HRI), University of Limerick, V94T9PX Limerick, Ireland
| |
Collapse
|
14
|
Regional iron distribution and soluble ferroprotein profiles in the healthy human brain. Prog Neurobiol 2019; 186:101744. [PMID: 31870805 DOI: 10.1016/j.pneurobio.2019.101744] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 12/11/2019] [Accepted: 12/18/2019] [Indexed: 12/25/2022]
Abstract
Iron is essential for brain development and health where its redox properties are used for a number of neurological processes. However, iron is also a major driver of oxidative stress if not properly controlled. Brain iron distribution is highly compartmentalised and regulated by a number of proteins and small biomolecules. Here, we examine heterogeneity in regional iron levels in 10 anatomical structures from seven post-mortem human brains with no apparent neuropathology. Putamen contained the highest levels, and most case-to-case variability, of iron compared with the other regions examined. Partitioning of iron between cytosolic and membrane-bound iron was generally consistent in each region, with a slightly higher proportion (55 %) in the 'insoluble' phase. We expand on this using the Allen Human Brain Atlas to examine patterns between iron levels and transcriptomic expression of iron regulatory proteins and using quantitative size exclusion chromatography-inductively coupled plasma-mass spectrometry to assess regional differences in the molecular masses to which cytosolic iron predominantly binds. Approximately 60 % was associated with ferritin, equating to approximately 25 % of total tissue iron essentially in storage. This study is the first of its kind in human brain tissue, providing a valuable resource and new insight for iron biologists and neuroscientists, alike.
Collapse
|
15
|
Iron Pathophysiology in Alzheimer’s Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1173:67-104. [DOI: 10.1007/978-981-13-9589-5_5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
16
|
Grochowski C, Blicharska E, Krukow P, Jonak K, Maciejewski M, Szczepanek D, Jonak K, Flieger J, Maciejewski R. Analysis of Trace Elements in Human Brain: Its Aim, Methods, and Concentration Levels. Front Chem 2019; 7:115. [PMID: 30891444 PMCID: PMC6411644 DOI: 10.3389/fchem.2019.00115] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 02/14/2019] [Indexed: 12/20/2022] Open
Abstract
Trace elements play a crucial role in many biochemical processes, mainly as components of vitamins and enzymes. Although small amounts of metal ions have protective properties, excess metal levels result in oxidative injury, which is why metal ion homeostasis is crucial for the proper functioning of the brain. The changes of their level in the brain have been proven to be a risk factor for Alzheimer's, Parkinson's, and Huntington's diseases, as well as amyotrophic lateral sclerosis. Therefore, it is currently an important application of various analytical methods. This review covers the most important of them: inductively coupled ground mass spectrometry (ICP-MS), flame-induced atomic absorption spectrometry (FAAS), electrothermal atomic absorption spectrometry (GFAAS), optical emission spectrometry with excitation in inductively coupled plasma (ICP-OES), X-ray fluorescence spectrometry (XRF), and neutron activation analysis (NAA). Additionally, we present a summary of concentration values found by different research groups.
Collapse
Affiliation(s)
- Cezary Grochowski
- Department of Anatomy, Medical University of Lublin, Lublin, Poland
- Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, Lublin, Poland
| | - Eliza Blicharska
- Department of Analytical Chemistry, Medical University of Lublin, Lublin, Poland
| | - Paweł Krukow
- Department of Clinical Neuropsychiatry, Medical University of Lublin, Lublin, Poland
| | - Kamil Jonak
- Department of Psychiatry, Psychotherapy and Early Intervention, Medical University of Lublin, Lublin, Poland
- Department of Biomedical Engineering, Lublin University of Technology, Lublin, Poland
| | - Marcin Maciejewski
- Institute of Electronics and Information Technology, Lublin University of Technology, Lublin, Poland
| | - Dariusz Szczepanek
- Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, Lublin, Poland
| | - Katarzyna Jonak
- Department of Foreign Languages, Medical University of Lublin, Lublin, Poland
| | - Jolanta Flieger
- Department of Analytical Chemistry, Medical University of Lublin, Lublin, Poland
| | | |
Collapse
|
17
|
Bourassa D, Gleber SC, Vogt S, Shin CH, Fahrni CJ. MicroXRF tomographic visualization of zinc and iron in the zebrafish embryo at the onset of the hatching period. Metallomics 2017; 8:1122-1130. [PMID: 27531414 DOI: 10.1039/c6mt00073h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Transition metals such as zinc, copper, and iron play key roles in cellular proliferation, cell differentiation, growth, and development. Over the past decade, advances in synchrotron X-ray fluorescence instrumentation presented new opportunities for the three-dimensional mapping of trace metal distributions within intact specimens. Taking advantage of microXRF tomography, we visualized the 3D distribution of zinc and iron in a zebrafish embryo at the onset of the hatching period. The reconstructed volumetric data revealed distinct differences in the elemental distributions, with zinc predominantly localized to the yolk and yolk extension, and iron to various regions of the brain as well as the myotome extending along the dorsal side of the embryo. The data set complements an earlier tomographic study of an embryo at the pharyngula stage (24 hpf), thus offering new insights into the trace metal distribution at key stages of embryonic development.
Collapse
Affiliation(s)
- Daisy Bourassa
- School of Chemistry and Biochemistry and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, GA 30332, USA.
| | - Sophie-Charlotte Gleber
- Advanced Photon Source, X-ray Science Division, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439, USA
| | - Stefan Vogt
- Advanced Photon Source, X-ray Science Division, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439, USA
| | - Chong Hyun Shin
- School of Biological Sciences and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Drive, Atlanta, GA 30332, USA
| | - Christoph J Fahrni
- School of Chemistry and Biochemistry and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, GA 30332, USA.
| |
Collapse
|
18
|
Wang Z, Henn BC, Wang C, Wei Y, Su L, Sun R, Chen H, Wagner PJ, Lu Q, Lin X, Wright R, Bellinger D, Kile M, Mazumdar M, Tellez-Rojo MM, Schnaas L, Christiani DC. Genome-wide gene by lead exposure interaction analysis identifies UNC5D as a candidate gene for neurodevelopment. Environ Health 2017; 16:81. [PMID: 28754176 PMCID: PMC5534076 DOI: 10.1186/s12940-017-0288-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 07/17/2017] [Indexed: 05/04/2023]
Abstract
BACKGROUND Neurodevelopment is a complex process involving both genetic and environmental factors. Prenatal exposure to lead (Pb) has been associated with lower performance on neurodevelopmental tests. Adverse neurodevelopmental outcomes are more frequent and/or more severe when toxic exposures interact with genetic susceptibility. METHODS To explore possible loci associated with increased susceptibility to prenatal Pb exposure, we performed a genome-wide gene-environment interaction study (GWIS) in young children from Mexico (n = 390) and Bangladesh (n = 497). Prenatal Pb exposure was estimated by cord blood Pb concentration. Neurodevelopment was assessed using the Bayley Scales of Infant Development. RESULTS We identified a locus on chromosome 8, containing UNC5D, and demonstrated evidence of its genome-wide significance with mental composite scores (rs9642758, p meta = 4.35 × 10-6). Within this locus, the joint effects of two independent single nucleotide polymorphisms (SNPs, rs9642758 and rs10503970) had a p-value of 4.38 × 10-9 for mental composite scores. Correlating GWIS results with in vitro transcriptomic profiles identified one common gene, SLC1A5, which is involved in synaptic function, neuronal development, and excitotoxicity. Further analysis revealed interconnected interactions that formed a large network of 52 genes enriched with oxidative stress genes and neurodevelopmental genes. CONCLUSIONS Our findings suggest that certain genetic polymorphisms within/near genes relevant to neurodevelopment might modify the toxic effects of Pb exposure via oxidative stress.
Collapse
Affiliation(s)
- Zhaoxi Wang
- Harvard TH Chan School of Public Health, Boston, MA USA
| | - Birgit Claus Henn
- Department of Environmental Health, Boston University, School of Public Health, Boston, USA
| | | | - Yongyue Wei
- Department of Epidemiology, Department of Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Li Su
- Harvard TH Chan School of Public Health, Boston, MA USA
| | - Ryan Sun
- Harvard TH Chan School of Public Health, Boston, MA USA
| | - Han Chen
- Harvard TH Chan School of Public Health, Boston, MA USA
| | | | - Quan Lu
- Harvard TH Chan School of Public Health, Boston, MA USA
| | - Xihong Lin
- Harvard TH Chan School of Public Health, Boston, MA USA
| | | | - David Bellinger
- Harvard TH Chan School of Public Health, Boston, MA USA
- Children’s Hospital Boston, Boston, USA
| | | | - Maitreyi Mazumdar
- Harvard TH Chan School of Public Health, Boston, MA USA
- Children’s Hospital Boston, Boston, USA
| | | | | | | |
Collapse
|
19
|
Sartore RC, Cardoso SC, Lages YVM, Paraguassu JM, Stelling MP, Madeiro da Costa RF, Guimaraes MZ, Pérez CA, Rehen SK. Trace elements during primordial plexiform network formation in human cerebral organoids. PeerJ 2017; 5:e2927. [PMID: 28194309 PMCID: PMC5301978 DOI: 10.7717/peerj.2927] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 12/20/2016] [Indexed: 12/03/2022] Open
Abstract
Systematic studies of micronutrients during brain formation are hindered by restrictions to animal models and adult post-mortem tissues. Recently, advances in stem cell biology have enabled recapitulation of the early stages of human telencephalon development in vitro. In the present work, we analyzed cerebral organoids derived from human pluripotent stem cells by synchrotron radiation X-ray fluorescence in order to measure biologically valuable micronutrients incorporated and distributed into the exogenously developing brain. Our findings indicate that elemental inclusion in organoids is consistent with human brain tissue and involves P, S, K, Ca, Fe and Zn. Occurrence of different concentration gradients also suggests active regulation of elemental transmembrane transport. Finally, the analysis of pairs of elements shows interesting elemental interaction patterns that change from 30 to 45 days of development, suggesting short- or long-term associations, such as storage in similar compartments or relevance for time-dependent biological processes. These findings shed light on which trace elements are important during human brain development and will support studies aimed to unravel the consequences of disrupted metal homeostasis for neurodevelopmental diseases, including those manifested in adulthood.
Collapse
Affiliation(s)
- Rafaela C Sartore
- D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil; Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Brazil
| | - Simone C Cardoso
- Physics Institute, Federal University of Rio de Janeiro , Brazil
| | - Yury V M Lages
- D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil; Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Brazil
| | - Julia M Paraguassu
- D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil; Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Brazil
| | - Mariana P Stelling
- Federal Institute of Education, Science and Technology of Rio de Janeiro , Brazil
| | | | - Marilia Z Guimaraes
- D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil; Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Brazil
| | - Carlos A Pérez
- Brazilian Synchrotron Light Laboratory , São Paulo , Brazil
| | - Stevens K Rehen
- D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil; Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Brazil
| |
Collapse
|
20
|
|
21
|
Wallin C, Luo J, Jarvet J, Wärmländer SKTS, Gräslund A. The Amyloid-β Peptide in Amyloid Formation Processes: Interactions with Blood Proteins and Naturally Occurring Metal Ions. Isr J Chem 2016. [DOI: 10.1002/ijch.201600105] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Cecilia Wallin
- Department of Biochemistry and Biophysics; Arrhenius Laboratories; Stockholm University; 10691 Stockholm Sweden
| | - Jinghui Luo
- Department of Biochemistry and Biophysics; Arrhenius Laboratories; Stockholm University; 10691 Stockholm Sweden
- Chemical Research Laboratory; University of Oxford; 12 Mansfield Road Oxford Ox 1 3TA UK
| | - Jüri Jarvet
- Department of Biochemistry and Biophysics; Arrhenius Laboratories; Stockholm University; 10691 Stockholm Sweden
- The National Institute of Chemical Physics and Biophysics; Tallinn Estonia
| | | | - Astrid Gräslund
- Department of Biochemistry and Biophysics; Arrhenius Laboratories; Stockholm University; 10691 Stockholm Sweden
| |
Collapse
|
22
|
Ramos P, Santos A, Pinto E, Pinto NR, Mendes R, Magalhães T, Almeida A. Alkali metals levels in the human brain tissue: Anatomical region differences and age-related changes. J Trace Elem Med Biol 2016; 38:174-182. [PMID: 27150910 DOI: 10.1016/j.jtemb.2016.03.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 03/31/2016] [Indexed: 12/19/2022]
Abstract
The link between trace elements imbalances (both "toxic" and "essential") in the human brain and neurodegenerative disease has been subject of extensive research. More recently, some studies have highlighted the potential role of the homeostasis deregulation of alkali metals in specific brain regions as key factor in the pathogenesis of neurodegenerative diseases such as multiple sclerosis and Alzheimer's disease. Using flame atomic emission spectrometry and inductively coupled plasma-mass spectrometry after microwave-assisted acid digestion of the samples, alkali metals (Na, K, Li, Rb and Cs) were determined in 14 different areas of the human brain (frontal cortex, superior and middle temporal gyri, caudate nucleus, putamen, globus pallidus, cingulated gyrus, hippocampus, inferior parietal lobule, visual cortex of the occipital lobe, midbrain, pons, medulla and cerebellum) of adult individuals (n=42; 71±12, range: 50-101 years old) with no known history and evidence of neurodegenerative, neurological or psychiatric disorder. Potassium was found as the most abundant alkali metal, followed by Na, Rb, Cs and Li. Lithium, K and Cs distribution showed to be quite heterogeneous. On the contrary, Rb and Na appeared quite homogeneously distributed within the human brain tissue. The lowest levels of Na, K, Rb and Li were found in the brainstem (midbrain, medulla and pons) and cerebellum, while the lowest levels of Cs were found in the frontal cortex. The highest levels of K (mean±sd; range 15.5±2.5; 8.9-21.8mg/g) Rb (17.2±6.1; 3.9-32.4μg/g and Cs (83.4±48.6; 17.3-220.5ng/g) were found in putamen. The highest levels of Na and Li were found in the frontal cortex (11.6±2.4; 6.6-17.1mg/g) and caudate nucleus (7.6±4.6 2.2-21.3ng/g), respectively. Although K, Cs and Li levels appear to remain largely unchanged with age, some age-related changes were observed for Na and Rb levels in particular brain regions (namely in the hippocampus).
Collapse
Affiliation(s)
- Patrícia Ramos
- LAQV/REQUIMTE, Department of Chemical Sciences, Laboratory of Applied Chemistry, Faculty of Pharmacy, Porto University, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Agostinho Santos
- National Institute of Legal Medicine and Forensic Sciences - North Branch, Jardim Carrilho Videira, 4050-167 Porto, Portugal; CENCIFOR - Forensic Science Center, Largo da Sé Nova, s/n, 3000-213 Coimbra, Portugal; Faculty of Medicine, Porto University, Al. Prof. Hernâni Monteiro, 4200-319 Porto, Portugal; School of Health Sciences, Minho University, Campus of Gualtar, 4710-057 Braga, Portugal
| | - Edgar Pinto
- LAQV/REQUIMTE, Department of Chemical Sciences, Laboratory of Applied Chemistry, Faculty of Pharmacy, Porto University, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal; CISA, Research Centre on Environment and Health, School of Allied Health Sciences, Polytechnic Institute of Porto, Rua Valente Perfeito 322, 4400-330 Vila Nova de Gaia, Portugal
| | - Nair Rosas Pinto
- CENCIFOR - Forensic Science Center, Largo da Sé Nova, s/n, 3000-213 Coimbra, Portugal
| | - Ricardo Mendes
- CENCIFOR - Forensic Science Center, Largo da Sé Nova, s/n, 3000-213 Coimbra, Portugal
| | - Teresa Magalhães
- CENCIFOR - Forensic Science Center, Largo da Sé Nova, s/n, 3000-213 Coimbra, Portugal; Faculty of Medicine, Porto University, Al. Prof. Hernâni Monteiro, 4200-319 Porto, Portugal; Institute of Research and Advanced Training in Health Sciences and Technologies (IINFACTS), Department of Sciences, University Institute of Health Sciences (IUCS), CESPU, R. Central da Gandra 1317, 4585-116 Gandra, Portugal
| | - Agostinho Almeida
- LAQV/REQUIMTE, Department of Chemical Sciences, Laboratory of Applied Chemistry, Faculty of Pharmacy, Porto University, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal.
| |
Collapse
|
23
|
Robert P, Violas X, Grand S, Lehericy S, Idée JM, Ballet S, Corot C. Linear Gadolinium-Based Contrast Agents Are Associated With Brain Gadolinium Retention in Healthy Rats. Invest Radiol 2016; 51:73-82. [PMID: 26606549 PMCID: PMC4747982 DOI: 10.1097/rli.0000000000000241] [Citation(s) in RCA: 176] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 11/11/2015] [Indexed: 11/26/2022]
Abstract
OBJECTIVES The aim of this study was to evaluate Gd retention in the deep cerebellar nuclei (DCN) of linear gadolinium-based contrast agents (GBCAs) compared with a macrocyclic contrast agent. MATERIALS AND METHODS The brain tissue retention of Gd of 3 linear GBCAs (gadobenate dimeglumine, gadopentetate dimeglumine, and gadodiamide) and a macrocyclic GBCA (gadoterate meglumine) was compared in healthy rats (n = 8 per group) that received 20 intravenous injections of 0.6 mmol Gd/kg (4 injections per week for 5 weeks). An additional control group with saline was included. T1-weighted magnetic resonance imaging was performed before injection and once a week during the 5 weeks of injections and for another 4 additional weeks after contrast period. Total gadolinium concentration was measured with inductively coupled plasma mass spectrometry. Blinded qualitative and quantitative evaluations of the T1 signal intensity in DCN were performed, as well as a statistical analysis on quantitative data. RESULTS At completion of the injection period, all the linear contrast agents (gadobenate dimeglumine, gadopentetate dimeglumine, and gadodiamide) induced a significant increase in signal intensity in DCN, unlike the macrocyclic GBCA (gadoterate meglumine) or saline. The T1 hypersignal enhancement kinetic was fast for gadodiamide. Total Gd concentrations for the 3 linear GBCAs groups at week 10 were significantly higher in the cerebellum (1.21 ± 0.48, 1.67 ± 0.17, and 3.75 ± 0.18 nmol/g for gadobenate dimeglumine, gadopentetate dimeglumine, and gadodiamide, respectively) than with the gadoterate meglumine (0.27 ± 0.16 nmol/g, P < 0.05) and saline (0.09 ± 0.12 nmol/g, P < 0.05). No significant difference was observed between the macrocyclic agent and saline. CONCLUSIONS Repeated administrations of the linear GBCAs gadodiamide, gadobenate dimeglumine, and gadopentetate dimeglumine to healthy rats were associated with progressive and significant T1 signal hyperintensity in the DCN, along with Gd deposition in the cerebellum. This is in contrast with the macrocyclic GBCA gadoterate meglumine for which no effect was observed.
Collapse
Affiliation(s)
- Philippe Robert
- From the *Guerbet Research and Innovation Department, Aulnay-sous-Bois; †INSERM, U836; ‡Université Grenoble Alpes, Grenoble Institute of Neurosciences, Grenoble; §Institut du Cerveau et de la Moelle Epinière, Centre de Neuroimagerie de Recherche; ∥Sorbonne Universités, Université Pierre et Marie Curie-Paris 6, INSERM UMR-S1127, CNRS 7225; and ¶Service de Neuroradiologie, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Xavier Violas
- From the *Guerbet Research and Innovation Department, Aulnay-sous-Bois; †INSERM, U836; ‡Université Grenoble Alpes, Grenoble Institute of Neurosciences, Grenoble; §Institut du Cerveau et de la Moelle Epinière, Centre de Neuroimagerie de Recherche; ∥Sorbonne Universités, Université Pierre et Marie Curie-Paris 6, INSERM UMR-S1127, CNRS 7225; and ¶Service de Neuroradiologie, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Sylvie Grand
- From the *Guerbet Research and Innovation Department, Aulnay-sous-Bois; †INSERM, U836; ‡Université Grenoble Alpes, Grenoble Institute of Neurosciences, Grenoble; §Institut du Cerveau et de la Moelle Epinière, Centre de Neuroimagerie de Recherche; ∥Sorbonne Universités, Université Pierre et Marie Curie-Paris 6, INSERM UMR-S1127, CNRS 7225; and ¶Service de Neuroradiologie, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Stéphane Lehericy
- From the *Guerbet Research and Innovation Department, Aulnay-sous-Bois; †INSERM, U836; ‡Université Grenoble Alpes, Grenoble Institute of Neurosciences, Grenoble; §Institut du Cerveau et de la Moelle Epinière, Centre de Neuroimagerie de Recherche; ∥Sorbonne Universités, Université Pierre et Marie Curie-Paris 6, INSERM UMR-S1127, CNRS 7225; and ¶Service de Neuroradiologie, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Jean-Marc Idée
- From the *Guerbet Research and Innovation Department, Aulnay-sous-Bois; †INSERM, U836; ‡Université Grenoble Alpes, Grenoble Institute of Neurosciences, Grenoble; §Institut du Cerveau et de la Moelle Epinière, Centre de Neuroimagerie de Recherche; ∥Sorbonne Universités, Université Pierre et Marie Curie-Paris 6, INSERM UMR-S1127, CNRS 7225; and ¶Service de Neuroradiologie, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Sébastien Ballet
- From the *Guerbet Research and Innovation Department, Aulnay-sous-Bois; †INSERM, U836; ‡Université Grenoble Alpes, Grenoble Institute of Neurosciences, Grenoble; §Institut du Cerveau et de la Moelle Epinière, Centre de Neuroimagerie de Recherche; ∥Sorbonne Universités, Université Pierre et Marie Curie-Paris 6, INSERM UMR-S1127, CNRS 7225; and ¶Service de Neuroradiologie, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Claire Corot
- From the *Guerbet Research and Innovation Department, Aulnay-sous-Bois; †INSERM, U836; ‡Université Grenoble Alpes, Grenoble Institute of Neurosciences, Grenoble; §Institut du Cerveau et de la Moelle Epinière, Centre de Neuroimagerie de Recherche; ∥Sorbonne Universités, Université Pierre et Marie Curie-Paris 6, INSERM UMR-S1127, CNRS 7225; and ¶Service de Neuroradiologie, Hôpital de la Pitié-Salpêtrière, Paris, France
| |
Collapse
|
24
|
Roberts BR, Hare DJ, McLean CA, Conquest A, Lind M, Li QX, Bush AI, Masters CL, Morganti-Kossmann MC, Frugier T. Traumatic brain injury induces elevation of Co in the human brain. Metallomics 2015; 7:66-70. [DOI: 10.1039/c4mt00258j] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Following acute brain injury (<3 hours post-event), cobalt levels in the brain are significantly elevated. This elevation may have important implications for positron emission tomography neuroimaging for assessing brain injury severity.
Collapse
Affiliation(s)
- Blaine R. Roberts
- The Florey Institute of Neuroscience and Mental Health
- The University of Melbourne
- Parkville, Australia
| | - Dominic J. Hare
- The Florey Institute of Neuroscience and Mental Health
- The University of Melbourne
- Parkville, Australia
- Elemental Bio-imaging Facility
- University of Technology Sydney
| | - Catriona A. McLean
- Department of Anatomical Pathology
- The Alfred Hospital
- Melbourne, Australia
| | - Alison Conquest
- National Trauma Institute
- The Alfred Hospital
- Melbourne, Australia
| | - Monica Lind
- The Florey Institute of Neuroscience and Mental Health
- The University of Melbourne
- Parkville, Australia
| | - Qiao-Xin Li
- The Florey Institute of Neuroscience and Mental Health
- The University of Melbourne
- Parkville, Australia
| | - Ashley I. Bush
- The Florey Institute of Neuroscience and Mental Health
- The University of Melbourne
- Parkville, Australia
| | - Colin L. Masters
- The Florey Institute of Neuroscience and Mental Health
- The University of Melbourne
- Parkville, Australia
| | | | - Tony Frugier
- Department of Anatomical Pathology
- The Alfred Hospital
- Melbourne, Australia
- National Trauma Institute
- The Alfred Hospital
| |
Collapse
|
25
|
Ramos P, Santos A, Pinto NR, Mendes R, Magalhães T, Almeida A. Anatomical region differences and age-related changes in copper, zinc, and manganese levels in the human brain. Biol Trace Elem Res 2014; 161:190-201. [PMID: 25119708 DOI: 10.1007/s12011-014-0093-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 07/25/2014] [Indexed: 12/14/2022]
Abstract
Using inductively coupled plasma-mass spectrometry after samples microwave-assisted acid digestion, zinc (Zn), copper (Cu), and manganese (Mn) levels were measured in 14 different areas of the human brain of adult individuals (n = 42; 71 ± 12, range 50-101 years old) without a known history of neurodegenerative, neurological, or psychiatric disorder. The main goals of the work were to establish the "normal" (reference) values for those elements in the human brain and to evaluate the age-related changes, a prior and indispensable step in order to enlighten the role of trace element (TE) in human brain physiology and their involvement in aging and neurodegenerative processes. Considering the mean values for the 14 regions, Zn (mean ± sd; range 53 ± 5; 43-61 μg/g) was found at higher levels, followed by Cu (22 ± 5; 10-37 μg/g) and Mn (1.3 ± 0.3; 0.5-2.7 μg/g). The TE distribution across the brain tissue showed to be quite heterogeneous: the highest levels of Zn were found in the hippocampus (70 ± 10; 49-95 μg/g) and superior temporal gyrus (68 ± 10; 44-88 μg/g) and the lowest in the pons (33 ± 8; 19-51 μg/g); the highest levels of Cu and Mn were found in the putamen (36 ± 13; 21-76 μg/g and 2.5 ± 0.8; 0.7-4.5 μg/g, respectively) and the lowest in the medulla (11 ± 6; 2-30 μg/g and 0.8 ± 0.3; 0.2-1.8 μg/g, respectively). A tendency for an age-related increase in Zn and Mn levels was observed in most brain regions while Cu levels showed to be negatively correlated with age.
Collapse
Affiliation(s)
- Patrícia Ramos
- REQUIMTE, Department of Chemical Sciences, Laboratory of Applied Chemistry, Faculty of Pharmacy, Porto University, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | | | | | | | | | | |
Collapse
|
26
|
Correia H, Ramos P, Santos A, Pinto NR, Mendes R, Magalhães T, Almeida A. A post-mortem study of the anatomical region differences and age-related changes on Ca and Mg levels in the human brain. Microchem J 2014. [DOI: 10.1016/j.microc.2013.11.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
27
|
Steuerwald AJ, Blaisdell FS, Geraghty CM, Parsons PJ. Regional distribution and accumulation of lead in caprine brain tissues following a long-term oral dosing regimen. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2014; 77:663-678. [PMID: 24786674 DOI: 10.1080/15287394.2014.880328] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
It is well known that the brain is a key target organ for lead (Pb)-induced toxicity, with exposure potentially resulting in numerous adverse neurological effects. However, information on the distribution and accumulation of Pb within different brain regions is scarce. In this study, Pb uptake and accumulation were characterized in brain and related tissues obtained from a convenience sample of goats dosed with Pb. Tissues were harvested postmortem from 10 animals (9 dosed and 1 undosed) that are used to produce blood Pb pools for the New York State Department of Health's Proficiency Testing program. Whole brains were subdivided into 14 distinct anatomical regions to explore interregional differences. Related tissues included the olfactory epithelium and spinal cord. Where sufficient tissue mass permitted, further subdivision into smaller sections was carried out to examine intraregional Pb variability. Determination of Pb content in these tissues was accomplished using inductively coupled plasma mass spectrometry (ICP-MS), with accuracy assessed using reference materials certified for Pb. Lead content (dry weight) varied from <10 ng/g, that is, below the method detection limit, to as much as 4.45 × 10(4) ng/g Pb. Olfactory epithelium Pb content was several orders of magnitude greater than found in other regions analyzed. Enrichment of Pb was also observed in the olfactory bulb and choroid plexus. Data for each region analyzed were pooled from all goats to identify regions with the greatest propensity for Pb accumulation. Data related to Pb content were also assessed individually within each goat and significant differences in Pb content between regions were determined.
Collapse
Affiliation(s)
- Amy J Steuerwald
- a Laboratory of Inorganic and Nuclear Chemistry, Wadsworth Center , New York State Department of Health , Albany , New York , USA
| | | | | | | |
Collapse
|
28
|
Ramos P, Santos A, Pinto NR, Mendes R, Magalhães T, Almeida A. Iron levels in the human brain: a post-mortem study of anatomical region differences and age-related changes. J Trace Elem Med Biol 2014; 28:13-7. [PMID: 24075790 DOI: 10.1016/j.jtemb.2013.08.001] [Citation(s) in RCA: 147] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 07/19/2013] [Accepted: 08/01/2013] [Indexed: 12/14/2022]
Abstract
The link between brain iron homeostasis and neurodegenerative disease has been the subject of extensive research. There is increasing evidence of iron accumulation during ageing, and altered iron levels in some specific brain regions in neurodegenerative disease patients have been reported. Using graphite furnace atomic absorption spectrometry after microwave-assisted acid digestion of the samples, iron levels were determined in 14 different areas of the human brain [frontal cortex, superior and middle temporal, caudate nucleus, putamen, globus pallidus, cingulated gyrus, hippocampus, inferior parietal lobule, visual cortex of the occipital lobe, midbrain, pons (locus coeruleus), medulla and cerebellum (dentate nucleus)] of n=42 adult individuals (71±12 years old, range: 53-101 years old) with no known history or evidence of neurodegenerative, neurological or psychiatric disorders. It was found that the iron distribution in the adult human brain is quite heterogeneous. The highest levels were found in the putamen (mean±SD, range: 855±295μg/g, 304-1628μg/g) and globus pallidus (739±390μg/g, 225-1870μg/g), and the lowest levels were observed in the pons (98±43μg/g, 11-253μg/g) and medulla (56±25μg/g, 13-115μg/g). Globally, iron levels proved to be age-related. The positive correlation between iron levels and age was most significant in the basal ganglia (caudate nucleus, putamen and globus pallidus). Compared with the age-matched control group, altered iron levels were observed in specific brain areas of one Parkinson's disease patient (the basal ganglia) and two Alzheimer's disease patients (the hippocampus).
Collapse
Affiliation(s)
- Patrícia Ramos
- REQUIMTE, Department of Chemical Sciences, Laboratory of Applied Chemistry, Faculty of Pharmacy, Porto University, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Agostinho Santos
- National Institute of Legal Medicine and Forensic Sciences, North Branch, Jardim Carrilho Videira, 4050-167 Porto, Portugal; CENCIFOR - Forensic Science Center, Largo da Sé Nova, s/n, 3000-213 Coimbra, Portugal; Faculty of Medicine, Porto University, Al. Prof. Hernâni Monteiro, 4200-319 Porto, Portugal; School of Health Sciences, Minho University, Campus Gualtar, 4710-057 Braga, Portugal
| | - Nair Rosas Pinto
- National Institute of Legal Medicine and Forensic Sciences, North Branch, Jardim Carrilho Videira, 4050-167 Porto, Portugal
| | - Ricardo Mendes
- National Institute of Legal Medicine and Forensic Sciences, North Branch, Jardim Carrilho Videira, 4050-167 Porto, Portugal
| | - Teresa Magalhães
- National Institute of Legal Medicine and Forensic Sciences, North Branch, Jardim Carrilho Videira, 4050-167 Porto, Portugal; CENCIFOR - Forensic Science Center, Largo da Sé Nova, s/n, 3000-213 Coimbra, Portugal; Faculty of Medicine, Porto University, Al. Prof. Hernâni Monteiro, 4200-319 Porto, Portugal; Biomedical Sciences Institute Abel Salazar, Porto University, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Agostinho Almeida
- REQUIMTE, Department of Chemical Sciences, Laboratory of Applied Chemistry, Faculty of Pharmacy, Porto University, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal.
| |
Collapse
|
29
|
Yamada Y, Prosser RA. Copper chelation and exogenous copper affect circadian clock phase resetting in the suprachiasmatic nucleus in vitro. Neuroscience 2013; 256:252-61. [PMID: 24161278 DOI: 10.1016/j.neuroscience.2013.10.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 10/14/2013] [Accepted: 10/14/2013] [Indexed: 10/26/2022]
Abstract
Light stimulates specialized retinal ganglion cells to release glutamate (Glu) onto circadian clock neurons of the suprachiasmatic nucleus (SCN). Glu resets the phase of the SCN circadian clock by activating N-methyl-d-aspartate receptors (NMDAR) causing either delays or advances in the clock phase, depending on early- or late-night stimulation, respectively. In addition, these Glu-induced phase shifts require tropomyosin receptor kinase B (TrkB) receptor activity. Previous studies show that copper (Cu) released at hippocampal synapses can inhibit NMDAR activity, and application of exogenous Cu likewise inhibits NMDAR activity. We investigated the effects of Cu in acute SCN brain slices prepared from C57BL/6Nhsd adult, male mice using treatments that decrease or increase available Cu levels in vitro and recorded neuronal activity on the following day. When bath-applied for 10 min at zeitgeber time (ZT) 16 (where ZT0=lights-on in the donor animal colony), the Cu-specific chelators tetrathiomolybdate (TTM) and bathocuproine disulfonate each induce ∼2.5-3-h phase delays in circadian neuronal activity rhythms, similarly to Glu-induced phase delays. Co-application of 10 μM CuCl2, but not 10 μM CoCl₂ blocks TTM-induced phase delays. Furthermore, TTM causes phase advances when applied at ZT23. At both application times, TTM-induced phase shifts are blocked by NMDA or TrkB receptor antagonists. Surprisingly, bath-application of 10 μM Cu alone also induces phase shifts in analogous experiments at ZT16 and ZT23. Inhibiting NMDAR does not block Cu-induced phase shifts. TrkB inhibition blocks Cu-induced phase delays but not phase advances. Thus, increasing and decreasing Cu availability appear to shift the SCN clock phase through different mechanisms, at least at the receptor level. We propose that Cu plays a role in the SCN circadian clock by modulating Glu signaling.
Collapse
Affiliation(s)
- Y Yamada
- University of Tennessee, Knoxville, Department of Biochemistry, Cellular and Molecular Biology, Knoxville, TN 37996, USA
| | - R A Prosser
- University of Tennessee, Knoxville, Department of Biochemistry, Cellular and Molecular Biology, Knoxville, TN 37996, USA.
| |
Collapse
|
30
|
Davies KM, Hare DJ, Cottam V, Chen N, Hilgers L, Halliday G, Mercer JFB, Double KL. Localization of copper and copper transporters in the human brain. Metallomics 2013; 5:43-51. [PMID: 23076575 DOI: 10.1039/c2mt20151h] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Disturbances in brain copper result in rare and severe neurological disorders and may play a role in the pathogenesis and progression of multiple neurodegenerative diseases. Our current understanding of mammalian brain copper transport is based on model systems outside the central nervous system and no data are available regarding copper transport systems in the human brain. To address this deficit, we quantified regional copper concentrations and examined the distribution and cellular localization of the copper transport proteins Copper transporter 1, Atox1, ATP7A, and ATP7B in multiple regions of the human brain using inductively coupled plasma-mass spectrometry, Western blot and immunohistochemistry. We identified significant relationships between copper transporter levels and brain copper concentrations, supporting a role for these proteins in copper transport in the human brain. Interestingly, the substantia nigra contained twice as much copper than that in other brain regions, suggesting an important role for copper in this brain region. Furthermore, ATP7A levels were significantly greater in the cerebellum, compared with other brain regions, supporting an important role for ATP7A in cerebellar neuronal health. This study provides novel data regarding copper regulation in the human brain, critical to understand the mechanisms by which brain copper levels can be altered, leading to neurological disease.
Collapse
Affiliation(s)
- Katherine M Davies
- Neuroscience Research Australia and The University of New South Wales, Randwick, NSW 2031, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Tohno Y, Tohno S, Azuma C, Minami T, Ke L, Ongkana N, Sinthubua A, Mahakkanukrauh P. Mineral composition of and the relationships between them of human basal ganglia in very old age. Biol Trace Elem Res 2013; 151:18-29. [PMID: 23111949 DOI: 10.1007/s12011-012-9535-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 10/18/2012] [Indexed: 12/29/2022]
Abstract
Trace elements and the relationships among them were investigated by direct chemical analysis in three basal ganglia regions in very old age individuals and age- and gender-related differences were assessed. After ordinary dissections at Nara Medical University were finished, the caudate nucleus, putamen, and globus pallidus belonging to the basal ganglia were removed from the identical cerebra of the subjects who consisted of 22 men and 23 women, ranging in age from 70 to 101 years (average age = 83.3 ± 7.5 years). After incineration with nitric acid and perchloric acid, the element contents were determined by inductively coupled plasma-atomic emission spectrometry. It was found that the Ca, P, and Mg contents increased significantly in the putamen with aging and the Mg content increased significantly in the globus pallidus with aging, but no elements increased significantly in the caudate nucleus with aging. Regarding the relationships among elements in the basal ganglia, extremely significant direct correlations were found among the Ca, P, and Mg contents in the putamen. These results suggested that slight calcification occurred in the putamen in very old age. With regard to seven elements of Ca, P, S, Mg, Zn, Fe, and Na, it was examined whether there were significant correlations among the caudate nucleus, putamen, and globus pallidus. It was found that there were extremely significant direct correlations among all of the three basal ganglia in the P content. Likewise, with regard to the Fe content, there were extremely or very significant direct correlations among all of the three basal ganglia. Regarding the gender difference in elements, it was found that the Ca content of the caudate nucleus was significantly higher in women than in men.
Collapse
Affiliation(s)
- Yoshiyuki Tohno
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Faller P, Hureau C. A bioinorganic view of Alzheimer's disease: when misplaced metal ions (re)direct the electrons to the wrong target. Chemistry 2012. [PMID: 23180511 DOI: 10.1002/chem.201202697] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Metal ions Cu, Zn and Fe, seem to play a pivotal role in Alzheimer's disease and other neurodegenerative diseases. In order to understand this in a broader sense, one has to considerer the peculiarities of metal metabolism in the brain compared to most other tissues, as well as the importance of the redox active metal ions, Fe and Cu, in oxygen metabolism and the connected oxidative stress.
Collapse
Affiliation(s)
- Peter Faller
- CNRS, LCC (Laboratoire de Chimie de Coordination), 205 route de Narbonne, BP 44099, 31077 Toulouse Cedex 4, France.
| | | |
Collapse
|
33
|
Shohag H, Ullah A, Qusar S, Rahman M, Hasnat A. Alterations of serum zinc, copper, manganese, iron, calcium, and magnesium concentrations and the complexity of interelement relations in patients with obsessive-compulsive disorder. Biol Trace Elem Res 2012; 148:275-80. [PMID: 22383079 DOI: 10.1007/s12011-012-9371-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Accepted: 02/20/2012] [Indexed: 12/11/2022]
Abstract
The purpose of the present study was to evaluate the status of serum trace elements: zinc, copper, manganese, iron, calcium, and magnesium concentrations in obsessive-compulsive disorder patients. Forty-eight obsessive-compulsive disorder patients and 48 healthy volunteers were included in this study. Patients were recruited from Bangabandhu Sheikh Mujib Medical University by random sampling. Serum trace element concentrations were determined using flame atomic absorption spectroscopy (for zinc, copper, iron, calcium, and magnesium) as well as graphite furnace atomic absorption spectroscopy (for manganese). Data were analyzed using independent t test, Pearson's correlation analysis, regression analysis, and ANOVA. Statistical analysis of these data showed a definite pattern of variation among certain elements in patients with obsessive-compulsive disorder compared to controls. In patients' serum, zinc, iron, and magnesium concentrations decreased significantly (p<0.05) compared to the controls. Serum manganese and calcium concentrations were significantly higher (p<0.05) in patients compared to the controls. These data showed a definite imbalance in the interelement relations in obsessive-compulsive disorder patients compared to controls and therefore suggest a disturbance in the element homeostasis.
Collapse
Affiliation(s)
- Hasanuzzaman Shohag
- Department of Clinical Pharmacy and Pharmacology, University of Dhaka, Dhaka 1000, Bangladesh
| | | | | | | | | |
Collapse
|
34
|
Hooper S, Cameron T. Neurotoxicity screening test for deep brain stimulation leads. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2012; 18:1309-20. [DOI: 10.1163/156856207782177873] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Sandy Hooper
- a Advanced Neuromodulation Systems Inc., 6901 Preston Road, Plano, TX 75024, USA
| | - Tracy Cameron
- b Advanced Neuromodulation Systems Inc., 6901 Preston Road, Plano, TX 75024, USA
| |
Collapse
|
35
|
Structural characterization of Cu2+, Ni2+ and Zn2+ binding sites of model peptides associated with neurodegenerative diseases. Coord Chem Rev 2012. [DOI: 10.1016/j.ccr.2011.07.004] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
36
|
Tohno S, Ishizaki T, Shida Y, Tohno Y, Minami T, Mahakkanukrauh P. Element distribution in visual system, the optic chiasma, lateral geniculate body, and superior colliculus. Biol Trace Elem Res 2011; 142:335-49. [PMID: 20697833 DOI: 10.1007/s12011-010-8794-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2010] [Accepted: 07/28/2010] [Indexed: 01/10/2023]
Abstract
To elucidate compositional changes of the visual system with aging, the authors investigated age-related changes of elements in the optic chiasma, lateral geniculate body, and superior colliculus, relationships among their elements, relationships among their brain regions from a viewpoint of elements, and gender differences in their elements by direct chemical analysis. After ordinary dissection at Nara Medical University was finished, the optic chiasmas, lateral geniculate bodies, and superior colliculi were resected from identical cerebra of the subjects. The subjects consisted of 14 men and 10 women, ranging in age from 75 to 96 years (average age = 85.6 ± 5.9 years). After ashing with nitric acid and perchloric acid, element contents were determined by inductively coupled plasma-atomic emission spectrometry. As the result, the average content of P was significantly higher in the optic chiasma and superior colliculus compared with the lateral geniculate body. Regarding age-related changes of elements, no significant changes with aging were found in seven elements of the optic chiasma, lateral geniculate body, and superior colliculus in the subjects more than 75 years of age. The findings that with regard to the relationships among elements, there were extremely significant direct correlations between Ca and Zn contents and significant inverse correlations between Mg and Na contents were obtained in common in all of the optic chiasma, lateral geniculate body, and superior colliculus. It was examined whether there were significant correlations among the optic chiasma, lateral geniculate body, and superior colliculus in the seven elements and the following results were obtained: There were significant direct correlations between the optic chiasma and lateral geniculate body in both the P and Mg contents; there was a significant direct correlation between the optic chiasma and superior colliculus in the Fe content; and a significant direct correlation was found between the lateral geniculate body and superior colliculus in the Mg content. Regarding the gender differences in elements, it was found that both the Ca and Zn contents of the lateral geniculate body were significantly higher in women than in men.
Collapse
Affiliation(s)
- Setsuko Tohno
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | | | | | | | | | | |
Collapse
|
37
|
Abstract
The brain is rich in metals and has a high metabolic rate, making it acutely vulnerable to the toxic effects of endogenously produced free radicals. The abundant metals, iron and copper, transfer single electrons as they cycle between their reduced (Fe(2+) , Cu(1+) ) and oxidized (Fe(3+) , Cu(2+) ) states making them powerful catalysts of reactive oxygen species (ROS) production. Even redox inert zinc, if present in excess, can trigger ROS production indirectly by altering mitochondrial function. While metal chelators seem to improve the clinical outcome of several neurodegenerative diseases, their mechanisms of action remain obscure and the effects of long-term use are largely unknown. Most chelators are not specific to a single metal and could alter the distribution of multiple metals in the brain, leading to unexpected consequences over the long-term. We show here how X-ray fluorescence will be a valuable tool to examine the effect of chelators on the distribution and amount of metals in the brain.
Collapse
Affiliation(s)
| | - Helen Nichol
- Department of Anatomy and Cell Biology, University of Saskatchewan, Saskatoon, Canada
| |
Collapse
|
38
|
Mannan SJ, Azad MAK, Ullah A, Al Maruf A, Rayha I, Ahsan MS, Hasnat A. Investigation of serum trace element, malondialdehyde and immune status in drug abuser patients undergoing detoxification. Biol Trace Elem Res 2011; 140:272-83. [PMID: 20390377 DOI: 10.1007/s12011-010-8696-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2010] [Accepted: 03/31/2010] [Indexed: 12/20/2022]
Abstract
Drug abuser patients (n=104), age ranging from 19 to 42 years, were randomly recruited to investigate the serum levels of trace elements (Cu, Zn, Fe, and Mg), malondialdehyde (MDA), and immunoglobulin (IgG, IgA, and IgM) before and after clinical intervention. Control group also included 104 healthy individuals. Blood samples were analyzed for determining trace elements, MDA, and immunoglobulin using atomic absorption spectroscopy, Ultraviolet-Visible (UV-VIS) spectroscopy, and turbidimetry method, respectively. For serum level of Zn and Fe, the differences between the groups (before intervention, after intervention, and control) were not significant (p>0.05). However, significant differences were found in serum copper levels between control group, drug abuser patients, and before and after intervention (p<0.05). The concentration of Mg was found to be significantly higher (p=0.007) in drug abuser patients than the controls, and after intervention, the level was restored to control value. A displacement of elemental homeostasis was observed in drug abuser patients compared to control, and it was improved after intervention. An increase in serum concentration of MDA was found in drug abuser patients compared to control subjects (p>0.05) but was not statistically significant. After intervention, the concentration was restored to control value (p>0.05). The serum concentrations of IgA and IgM were found to be significantly higher (p<0.05) in drug abuser patients before intervention than the controls, and the level tended to be restored to control level after clinical intervention. Serum IgG level was found to be lower in drug abuser patients compared to controls and further declined significantly (p<0.05) after intervention. These findings may suggest a possible imbalance in the levels of micronutrients, antioxidants, and immunoglobulin in drug abuser patients, which tend to be restored to control values after detoxification.
Collapse
Affiliation(s)
- Sultana Juhara Mannan
- Department of Clinical Pharmacy and Pharmacology, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | | | | | | | | | | | | |
Collapse
|
39
|
Tohno Y, Tohno S, Ongkana N, Suwannahoy P, Azuma C, Minami T, Sinthubua A, Mahakkanukrauh P. Relationships among the hippocampus, dentate gyrus, mammillary body, fornix, and anterior commissure from a viewpoint of elements. Biol Trace Elem Res 2011; 140:35-52. [PMID: 20387004 DOI: 10.1007/s12011-010-8680-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2009] [Accepted: 03/11/2010] [Indexed: 10/19/2022]
Abstract
To elucidate the relationships among the brain regions belonging to the limbic system, the authors investigated the relationships among the hippocampus, dentate gyrus, mammillary body, and fornix, using the anterior commissure as a control, from a viewpoint of elements. After ordinary dissections at Nara Medical University were finished, the hippocampi, dentate gyri, mammillary bodies, fornices, and anterior commissures were resected from identical cerebra of the subjects. The subjects consisted of 23 men and 23 women, ranging in age from 70 to 101 years (average age = 83.5 ± 7.5 years). After ashing with nitric acid and perchloric acid, element contents were determined by inductively coupled plasma-atomic emission spectrometry. With regard to seven elements of Ca, P, S, Mg, Zn, Fe, and Na, it was examined whether there were significant correlations among the hippocampus, dentate gyrus, mammillary body, fornix, and anterior commissure. It was found that there were extremely or very significant direct correlations among all of the five brain regions of the hippocampus, dentate gyrus, mammillary body, fornix, and anterior commissure in the P content. Likewise, with regard to the Fe content, there were significant direct correlations among the four brain regions belonging to the limbic system, except for the anterior commissure. In both the Ca and Zn contents, there were extremely or very significant direct correlations among the hippocampus, dentate gyrus, and mammillary body of the gray matter.
Collapse
Affiliation(s)
- Yoshiyuki Tohno
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Lelie HL, Liba A, Bourassa MW, Chattopadhyay M, Chan PK, Gralla EB, Miller LM, Borchelt DR, Valentine JS, Whitelegge JP. Copper and zinc metallation status of copper-zinc superoxide dismutase from amyotrophic lateral sclerosis transgenic mice. J Biol Chem 2010; 286:2795-806. [PMID: 21068388 DOI: 10.1074/jbc.m110.186999] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Mutations in the metalloenzyme copper-zinc superoxide dismutase (SOD1) cause one form of familial amyotrophic lateral sclerosis (ALS), and metals are suspected to play a pivotal role in ALS pathology. To learn more about metals in ALS, we determined the metallation states of human wild-type or mutant (G37R, G93A, and H46R/H48Q) SOD1 proteins from SOD1-ALS transgenic mice spinal cords. SOD1 was gently extracted from spinal cord and separated into insoluble (aggregated) and soluble (supernatant) fractions, and then metallation states were determined by HPLC inductively coupled plasma MS. Insoluble SOD1-rich fractions were not enriched in copper and zinc. However, the soluble mutant and WT SOD1s were highly metallated except for the metal-binding-region mutant H46R/H48Q, which did not bind any copper. Due to the stability conferred by high metallation of G37R and G93A, it is unlikely that these soluble SOD1s are prone to aggregation in vivo, supporting the hypothesis that immature nascent SOD1 is the substrate for aggregation. We also investigated the effect of SOD1 overexpression and disease on metal homeostasis in spinal cord cross-sections of SOD1-ALS mice using synchrotron-based x-ray fluorescence microscopy. In each mouse genotype, except for the H46R/H48Q mouse, we found a redistribution of copper between gray and white matters correlated to areas of high SOD1. Interestingly, a disease-specific increase of zinc was observed in the white matter for all mutant SOD1 mice. Together these data provide a picture of copper and zinc in the cell as well as highlight the importance of these metals in understanding SOD1-ALS pathology.
Collapse
Affiliation(s)
- Herman L Lelie
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Bohic S, Ghersi-Egea JF, Gibon J, Paoletti P, Arnaud J, Hunot S, Boom A, Bouron A. [Biological roles of trace elements in the brain with special focus on Zn and Fe]. Rev Neurol (Paris) 2010; 167:269-79. [PMID: 21056442 DOI: 10.1016/j.neurol.2010.07.035] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Revised: 06/14/2010] [Accepted: 07/20/2010] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Many metals like iron (Fe), copper (Cu) or zinc (Zn) fulfil various essential biological functions and are thus vital for all living organisms. For instance, they play important roles in nervous tissue, participating in a wide range of processes such as neurotransmitter synthesis, myelination or synaptic transmission. STATE OF THE ART As in other tissues, brain cells tightly control the concentration of metals but any excess or deficit can lead to deleterious responses and alter cognitive functions. Of note, certain metals such as Zn, Fe or Cu accumulate in specific brain structures over lifespan and several neurodegenerative diseases are associated with a dysregulation of the homeostatic mechanisms controlling the concentration of these cations. CONCLUSION AND PERSPECTIVES This review will address some of the cellular and molecular processes controlling the entry and distribution of selected metals (mainly Zn and Fe) in the brain, as well as their roles in synaptic transmission, in the pathogenesis of some neurologic diseases such as Parkinson's disease and Alzheimer's disease, and their impact on cognitive functions.
Collapse
Affiliation(s)
- S Bohic
- Inserm U836, équipe 6 Rayonnement synchrotron et recherches médicales, Grenoble institut des neurosciences, 38054 Grenoble, France
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Metal ion physiopathology in neurodegenerative disorders. Neuromolecular Med 2009; 11:223-38. [PMID: 19946766 DOI: 10.1007/s12017-009-8102-1] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2009] [Accepted: 10/14/2009] [Indexed: 12/14/2022]
Abstract
Metal dyshomeostasis in the brain (BMD) has often been proposed as a possible cause for several neurodegenerative disorders (NDs). Nevertheless, the precise nature of the biochemical mechanisms of metal involvement in NDs is still largely unknown. Mounting evidence suggests that normal aging itself is characterized by, among other features, a significant degree of metal ion dysmetabolism in the brain. This is probably the result of a progressive deterioration of the metal regulatory systems and, at least in some cases, of life-long metal exposure and brain accumulation. Although alterations of metal metabolism do occur to some extent in normal aging, they appear to be highly enhanced under various neuropathological conditions, causing increased oxidative stress and favoring abnormal metal-protein interactions. Intriguingly, despite the fact that most common NDs have a distinct etiological basis, they share striking similarities as they are all characterized by a documented brain metal impairment. This review will primarily focus on the alterations of metal homeostasis that are observed in normal aging and in Alzheimer's disease. We also present a brief survey on BMD in other NDs (Amyotrophic Lateral Sclerosis, Parkinson's, and Prion Protein disease) in order to highlight what represents the most reliable evidence supporting a crucial involvement of metals in neurodegeneration. The opportunities for metal-targeted pharmacological strategies in the major NDs are briefly outlined as well.
Collapse
|
43
|
Basavaraj K, Darshan M, Shanmugavelu P, Rashmi R, Mhatre AY, Dhanabal S, Rao K. Study on the levels of trace elements in mild and severe psoriasis. Clin Chim Acta 2009; 405:66-70. [DOI: 10.1016/j.cca.2009.04.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2008] [Revised: 04/04/2009] [Accepted: 04/06/2009] [Indexed: 10/20/2022]
|
44
|
Popescu BFG, Robinson CA, Rajput A, Rajput AH, Harder SL, Nichol H. Iron, Copper, and Zinc Distribution of the Cerebellum. THE CEREBELLUM 2009; 8:74-9. [DOI: 10.1007/s12311-008-0091-3] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2008] [Accepted: 12/17/2008] [Indexed: 01/15/2023]
|
45
|
Assessment of serum macro and trace element homeostasis and the complexity of inter-element relations in bipolar mood disorders. Clin Chim Acta 2008; 394:47-53. [PMID: 18457668 DOI: 10.1016/j.cca.2008.04.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2008] [Revised: 03/26/2008] [Accepted: 04/01/2008] [Indexed: 11/23/2022]
Abstract
BACKGROUND Bipolar disorders are complex neuropsychiatric in nature and are clinically classified as Type I, Type II, and Type V. The etiological factors include environmental-genetic inter-relations. Trace metals play a significant role in neurological disorders. There is very limited information on the role of macro and trace elements in bipolar disorders. METHODS Trace elements namely Na, K, S, Ca, Mg, P, Cu, Fe, Zn, Mn and Al were analyzed in serum samples of 3 bipolar types: bipolar I, bipolar II and bipolar V with a control group using inductively coupled plasma-atomic emission spectrometry (ICP-AES). The patients were assessed as per the standard diagnostic criteria and classified into the bipolar type I, II hypomanic, II depressives and V. RESULTS In bipolar I (mania), Na, K, P, Cu, Al and Mn were increased significantly (p<0.001). In bipolar II hypomania, Na, S, Al and Mn were increased significantly (p<0.02), while in bipolar II depression, Na, K, Cu and Al were increased (p<0.001). In bipolar V, Na, Mg, P, Cu, and Al were increased significantly (p<0.002), though S (p<0.00001), Fe (p<0.002) and Zn (p<0.004) were decreased in all 3 bipolar groups. CONCLUSIONS There is a disturbance in the charge distribution and element-element interdependency in bipolar serum when compared to controls. These results suggest that there is a definite imbalance in macro and trace element homeostasis as evidenced by element inter-relationships in serum samples of bipolar groups when compared to controls.
Collapse
|
46
|
Quintana C, Wu TD, Delatour B, Dhenain M, Guerquin-Kern JL, Croisy A. Morphological and chemical studies of pathological human and mice brain at the subcellular level: Correlation between light, electron, and nanosims microscopies. Microsc Res Tech 2007; 70:281-95. [PMID: 17465396 DOI: 10.1002/jemt.20403] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Neurodegenerative diseases induce morphological and chemical alterations in well-characterized regions of the brain. Understanding their pathological processes requires the use of methods that assess both morphological and chemical alterations in the tissues. In the past, microprobe approaches such as scanning electron microscopy combined with an X-ray spectrometer, Proton induced X-ray emission, secondary ion mass spectrometry (SIMS), and laser microprobe mass analysis have been used for the study of pathological human brain with limited success. At the present, new SIMS instruments have been developed, such as the NanoSIMS-50 ion microprobe, that allow the simultaneous identification of five elements with high sensitivity, at subcellular spatial resolution (about 50-100 nm with the Cs(+) source and about 150-200 nm with O(-) source). Working in scanning mode, 2D distribution of five elements (elemental maps) can be obtained, thus providing their exact colocalization. The analysis can be performed on semithin or ultrathin embedded sections. The possibility of using transmission electron microscopy and SIMS on the same ultrathin sections allows the correlation between structural and analytical observations at subcellular and ultrastructural level to be established. Our observations on pathological brain areas allow us to establish that the NanoSIMS-50 ion microprobe is a highly useful instrument for the imaging of the morphological and chemical alterations that take place in these brain areas. In the human brain our results put forward the subcellular distribution of iron-ferritin-hemosiderin in the hippocampus of Alzheimer disease patients. In the thalamus of transgenic mice, our results have shown the presence of Ca-Fe mineralized amyloid deposits.
Collapse
|
47
|
Krewski D, Yokel RA, Nieboer E, Borchelt D, Cohen J, Harry J, Kacew S, Lindsay J, Mahfouz AM, Rondeau V. Human health risk assessment for aluminium, aluminium oxide, and aluminium hydroxide. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2007; 10 Suppl 1:1-269. [PMID: 18085482 PMCID: PMC2782734 DOI: 10.1080/10937400701597766] [Citation(s) in RCA: 521] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Affiliation(s)
- Daniel Krewski
- Department of Epidemiology and Community Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
|
49
|
Hegde ML, Shanmugavelu P, Vengamma B, Rao TSS, Menon RB, Rao RV, Rao KSJ. Serum trace element levels and the complexity of inter-element relations in patients with Parkinson's disease. J Trace Elem Med Biol 2004; 18:163-71. [PMID: 15646263 DOI: 10.1016/j.jtemb.2004.09.003] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Trace elements have been postulated to play a role in Parkinson's disease (PD). In order to elucidate whether changes in the serum levels of trace elements reflect the progression of PD, we assessed serum levels of 12 elements (Na, K, Fe, Al, Cu, Zn, Ca, Mg, Mn, Si, P and S) in early PD, severe PD and normal subjects, using inductively coupled plasma atomic emission spectrometry. The concentrations in micromol/ml, the relative mole percentage distribution and inter-element relations were computed. Statistical analysis of these data showed a definite pattern of variation among certain elements in early and severe PD compared to controls. In both early and severe PD serum, Al and S concentrations were significantly decreased (p<0.05) compared to the controls. Fe (p<0.01) and Zn (p<0.05) concentrations were significantly lower in severe PD, while K, Mg, Cu (p < 0.01) and P (p < 0.05) concentrations were higher in early and severe PD compared to the controls. The data revealed an imbalance in the inter-element relations in both early and severe PD serum compared to controls, as shown by the direct and inverse correlations. These results suggest a disturbance in the element homeostasis during the progression of PD.
Collapse
Affiliation(s)
- Muralidhar L Hegde
- Department of Biochemistry and Nutrition, Central Food Technological Research Institute, Mysore 570020, India
| | | | | | | | | | | | | |
Collapse
|
50
|
Cremin JD, Smith DR. In vitro vs in vivo Pb effects on brain protein kinase C activity. ENVIRONMENTAL RESEARCH 2002; 90:191-199. [PMID: 12477464 DOI: 10.1016/s0013-9351(02)00007-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Alteration of normal protein kinase C (PKC) function by environmental Pb exposure during neurodevelopment is hypothesized to be an important mechanism of toxicity underlying neurologic impairment. Previous studies have reported widely varying effects of Pb on PKC, possibly in part because of differences in in vitro and in vivo models used in those studies. Therefore, we tested the hypothesis that, with comparable tissue Pb levels, the effects of in vitro Pb exposure on brain PKC are the same as the effects caused by in vivo Pb exposure of intact animals. For chronic in vivo Pb exposure, female Long-Evans rats were exposed to Pb or vehicle from postnatal days 1 to 34-36 (n=10/treatment). For in vitro Pb exposure, homogenate of the frontal cortex region was exposed directly to Pb in an amount comparable to that accumulated in brain during chronic in vivo Pb exposure. Brain Pb levels were measured using ultraclean techniques and inductively coupled plasma mass spectrometry. PKC activity was subsequently determined in cytosolic and membrane subcellular fractions in the frontal cortex, hippocampus, and remaining brain regions. Results indicate that brain Pb levels following in vivo Pb exposure were increased approximately 20-fold above those of nonexposed animals (vehicle group [Pb] approximately 130ng Pb/g dry wt.). However, in vivo Pb exposure did not measurably alter brain PKC activity in the regions tested. In contrast, in vitro Pb exposure significantly increased PKC activity by approximately 20% in the frontal cortex homogenate membrane subcellular fraction. These results indicate that Pb added in vitro caused more dramatic effects than those produced by a comparable amount of Pb in the tissue from in vivo exposure. While the mechanisms underlying these outcomes are not clear, they suggest that in vitro models might not accurately reflect effects of chronic low-level in vivo Pb exposure.
Collapse
Affiliation(s)
- John D Cremin
- Department of Environmental Toxicology, University of California, Santa Cruz, CA 95064, USA
| | | |
Collapse
|