1
|
Guo P, Wang TJ, Wang S, Peng X, Kim DH, Liu Y. Arabidopsis Histone Variant H2A.X Functions in the DNA Damage-Coupling Abscisic Acid Signaling Pathway. Int J Mol Sci 2024; 25:8940. [PMID: 39201623 PMCID: PMC11354415 DOI: 10.3390/ijms25168940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 09/02/2024] Open
Abstract
Environmental variations initiate chromatin modifications, leading to the exchange of histone subunits or the repositioning of nucleosomes. The phosphorylated histone variant H2A.X (γH2A.X) is recognized for the formation of foci that serve as established markers of DNA double-strand breaks (DSBs). Nevertheless, the precise roles of H2A.X in the cellular response to genotoxic stress and the impact of the plant hormone abscisic acid (ABA) remain incompletely understood. In this investigation, we implemented CRISPR/Cas9 technology to produce loss-of-function mutants of AtHTA3 and AtHTA5 in Arabidopsis. The phenotypes of the athta3 and athta5 single mutants were nearly identical to those of the wild-type Col-0. Nevertheless, the athta3 athta5 double mutants exhibited aberrant embryonic development, increased sensitivity to DNA damage, and higher sensitivity to ABA. The RT-qPCR analysis indicates that AtHTA3 and AtHTA5 negatively regulate the expression of AtABI3, a fundamental regulator in the ABA signaling pathway. Subsequent investigation demonstrated that AtABI3 participates in the genotoxic stress response by influencing the expression of DNA damage response genes, such as AtBRCA1, AtRAD51, and AtWEE1. Our research offers new insights into the role of H2A.X in the genotoxic and ABA responses of Arabidopsis.
Collapse
Affiliation(s)
- Peng Guo
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China; (P.G.); (T.-J.W.); (S.W.); (X.P.)
| | - Tian-Jing Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China; (P.G.); (T.-J.W.); (S.W.); (X.P.)
| | - Shuang Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China; (P.G.); (T.-J.W.); (S.W.); (X.P.)
| | - Xiaoyuan Peng
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China; (P.G.); (T.-J.W.); (S.W.); (X.P.)
| | - Dae Heon Kim
- Department of Biomedical Science, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Yutong Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China; (P.G.); (T.-J.W.); (S.W.); (X.P.)
| |
Collapse
|
2
|
Kudoyarova G. Special Issue "Phytohormones: Important Participators in Plant Growth and Development". Int J Mol Sci 2024; 25:1380. [PMID: 38338660 PMCID: PMC10855094 DOI: 10.3390/ijms25031380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 01/22/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
The articles published in the IJMS Special Issue "Phytohormones" are devoted to various aspects of hormonal control of plant growth and development promoting adaptation to normal and stress conditions [...].
Collapse
Affiliation(s)
- Guzel Kudoyarova
- Ufa Institute of Biology, Ufa Federal Research Centre of the Russian Academy of Sciences, Pr. Octyabrya, 69, 450054 Ufa, Russia
| |
Collapse
|
3
|
Zhou W, Li Z, Wu W, Zhao X, Wang E, Wang J, Song X, Zhao Y. Transcriptome Analysis Revealing the Interaction of Abscisic Acid and Cell Wall Modifications during the Flower Opening and Closing Process of Nymphaea lotus. Int J Mol Sci 2022; 23:14524. [PMID: 36498849 PMCID: PMC9740110 DOI: 10.3390/ijms232314524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/16/2022] [Accepted: 11/19/2022] [Indexed: 11/23/2022] Open
Abstract
As a tropical flower, Nymphaea lotus is a typical night-blooming waterlily used in water gardening. Its petals are rich in aromatic substances that can be used to extract essential oils and as flower tea. However, the short life of the flower seriously affects the development of its cut flowers. At present, neither the mechanism behind the night-opening waterlily flower's opening and closing nor the difference between day-opening and night-opening waterlily flowers' opening and closing mechanisms are clear. In this study, endogenous hormone contents of closed (CP) and open (OP) petals were measured, and transcriptome analysis of CP and OP petals was carried out to determine the signal transduction pathway and metabolic pathway that affect flower opening and closing. ABA and cell wall modification were selected as the most significant factors regulating flowering. We used qRT-PCR to identify the genes involved in the regulation of flower opening in waterlilies. Finally, by comparing the related pathways with those of the diurnal type, the obvious difference between them was found to be their hormonal regulation pathways. In conclusion, the endogenous ABA hormone may interact with the cell wall modification pathway to induce the flowering of N. lotus. Our data provide a new direction for the discovery of key factors regulating the flower opening and closing of N. lotus and provide basic theoretical guidance for future horticultural applications.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Ying Zhao
- Key Laboratory of Ministry of Education for Genetics and Germplasm Innovation of Tropical Special Trees and Ornamental Plants, Hainan Biological Key Laboratory for Germplasm Resources of Tropical Special Ornamental Plants, College of Forestry, Hainan University, Haikou 570228, China
| |
Collapse
|
4
|
Yang Y, Kong Q, Lim ARQ, Lu S, Zhao H, Guo L, Yuan L, Ma W. Transcriptional regulation of oil biosynthesis in seed plants: Current understanding, applications, and perspectives. PLANT COMMUNICATIONS 2022; 3:100328. [PMID: 35605194 PMCID: PMC9482985 DOI: 10.1016/j.xplc.2022.100328] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 02/28/2022] [Accepted: 04/14/2022] [Indexed: 05/11/2023]
Abstract
Plants produce and accumulate triacylglycerol (TAG) in their seeds as an energy reservoir to support the processes of seed germination and seedling development. Plant seed oils are vital not only for the human diet but also as renewable feedstocks for industrial use. TAG biosynthesis consists of two major steps: de novo fatty acid biosynthesis in the plastids and TAG assembly in the endoplasmic reticulum. The latest advances in unraveling transcriptional regulation have shed light on the molecular mechanisms of plant oil biosynthesis. We summarize recent progress in understanding the regulatory mechanisms of well-characterized and newly discovered transcription factors and other types of regulators that control plant fatty acid biosynthesis. The emerging picture shows that plant oil biosynthesis responds to developmental and environmental cues that stimulate a network of interacting transcriptional activators and repressors, which in turn fine-tune the spatiotemporal regulation of the pathway genes.
Collapse
Affiliation(s)
- Yuzhou Yang
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Que Kong
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Audrey R Q Lim
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Shaoping Lu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Hu Zhao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Liang Guo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China.
| | - Ling Yuan
- Department of Plant and Soil Sciences, Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY 40546, USA; Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.
| | - Wei Ma
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore.
| |
Collapse
|
5
|
Nibau C, van de Koot W, Spiliotis D, Williams K, Kramaric T, Beckmann M, Mur L, Hiwatashi Y, Doonan JH. Molecular and physiological responses to desiccation indicate the abscisic acid pathway is conserved in the peat moss, Sphagnum. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:4576-4591. [PMID: 35383351 PMCID: PMC9291362 DOI: 10.1093/jxb/erac133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 04/04/2022] [Indexed: 06/14/2023]
Abstract
Mosses of the genus Sphagnum are the main components of peatlands, a major carbon-storing ecosystem. Changes in precipitation patterns are predicted to affect water relations in this ecosystem, but the effect of desiccation on the physiological and molecular processes in Sphagnum is still largely unexplored. Here we show that different Sphagnum species have differential physiological and molecular responses to desiccation but, surprisingly, this is not directly correlated with their position in relation to the water table. In addition, the expression of drought responsive genes is increased upon water withdrawal in all species. This increase in gene expression is accompanied by an increase in abscisic acid (ABA), supporting a role for ABA during desiccation responses in Sphagnum. Not only do ABA levels increase upon desiccation, but Sphagnum plants pre-treated with ABA display increased tolerance to desiccation, suggesting that ABA levels play a functional role in the response. In addition, many of the ABA signalling components are present in Sphagnum and we demonstrate, by complementation in Physcomitrium patens, that Sphagnum ABI3 is functionally conserved. The data presented here, therefore, support a conserved role for ABA in desiccation responses in Sphagnum.
Collapse
Affiliation(s)
| | - Willem van de Koot
- National Plant Phenomics Centre, Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, UK
| | - Dominic Spiliotis
- National Plant Phenomics Centre, Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, UK
| | - Kevin Williams
- National Plant Phenomics Centre, Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, UK
| | - Tina Kramaric
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, UK
| | - Manfred Beckmann
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, UK
| | - Luis Mur
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, UK
| | - Yuji Hiwatashi
- School of Food Industrial Sciences, Miyagi University, Sendai, Japan
| | - John H Doonan
- National Plant Phenomics Centre, Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, UK
| |
Collapse
|
6
|
Hu J, Ren B, Chen Y, Liu P, Zhao B, Zhang J. Exogenous 6-Benzyladenine Improved the Ear Differentiation of Waterlogged Summer Maize by Regulating the Metabolism of Hormone and Sugar. FRONTIERS IN PLANT SCIENCE 2022; 13:848989. [PMID: 35463417 PMCID: PMC9021890 DOI: 10.3389/fpls.2022.848989] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
Waterlogging (W-B) is a major abiotic stress during the growth cycle of maize production in Huang-huai-hai plain of China, threatening food security. A wide range of studies suggests that the application of 6-benzyladenine (6-BA) can mitigate the W-B effects on crops. However, the mechanisms underlying this process remain unclear. In this study, the application of 6-BA that effectively increased the yield of summer maize was confirmed to be related to the hormone and sugar metabolism. At the florets differentiation stage, application of 6-BA increased the content of trans-zeatin (TZ, + 59.3%) and salicylic acid (SA, + 285.5%) of ears to induce the activity of invertase, thus establishing sink strength. During the phase of sexual organ formation, the TZ content of ear leaves, spike nodes, and ears was increased by 24.2, 64.2, and 46.1%, respectively, in W-B treatment, compared with that of W. Accordingly, the sugar metabolism of summer maize was also improved. Therefore, the structure of the spike node was improved, promoting the translocation of carbon assimilations toward the ears and the development of ears and filaments. Thus the number of fertilized florets, grain number, and yield were increased by the application of 6-BA.
Collapse
|
7
|
Seven M, Derman ÜC, Harvey AJ. Enzymatic characterization of ancestral/group-IV clade xyloglucan endotransglycosylase/hydrolase enzymes reveals broad substrate specificities. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:1660-1673. [PMID: 33825243 DOI: 10.1111/tpj.15262] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 03/24/2021] [Accepted: 03/26/2021] [Indexed: 05/14/2023]
Abstract
Xyloglucan endotransglycosylase/hydrolase (XTH) enzymes play important roles in cell wall remodelling. Although previous studies have shown a pathway of evolution for XTH genes from bacterial licheninases, through plant endoglucanases (EG16), the order of development within the phylogenetic clades of true XTHs is yet to be elucidated. In addition, recent studies have revealed interesting and potentially useful patterns of transglycosylation beyond the standard xyloglucan-xyloglucan donor/acceptor substrate activities. To study evolutionary relationships and to search for enzymes with useful broad substrate specificities, genes from the 'ancestral' XTH clade of two monocots, Brachypodium distachyon and Triticum aestivum, and two eudicots, Arabidopsis thaliana and Populus tremula, were investigated. Specific activities of the heterologously produced enzymes showed remarkably broad substrate specificities. All the enzymes studied had high activity with the cellulose analogue HEC (hydroxyethyl cellulose) as well as with mixed-link β-glucan as donor substrates, when compared with the standard xyloglucan. Even more surprising was the wide range of acceptor substrates that these enzymes were able to catalyse reactions with, opening a broad range of possible roles for these enzymes, both within plants and in industrial, pharmaceutical and medical fields. Genome screening and expression analyses unexpectedly revealed that genes from this clade were found only in angiosperm genomes and were predominantly or solely expressed in reproductive tissues. We therefore posit that this phylogenetic group is significantly different and should be renamed as the group-IV clade.
Collapse
Affiliation(s)
- Merve Seven
- Department of Genetics and Bioengineering, Yeditepe University, Istanbul, 34755, Turkey
| | - Ü Cem Derman
- Department of Genetics and Bioengineering, Yeditepe University, Istanbul, 34755, Turkey
| | - Andrew J Harvey
- Department of Genetics and Bioengineering, Yeditepe University, Istanbul, 34755, Turkey
| |
Collapse
|
8
|
Singh RK, Bhalerao RP, Eriksson ME. Growing in time: exploring the molecular mechanisms of tree growth. TREE PHYSIOLOGY 2021; 41:657-678. [PMID: 32470114 PMCID: PMC8033248 DOI: 10.1093/treephys/tpaa065] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 03/31/2020] [Accepted: 05/27/2020] [Indexed: 05/31/2023]
Abstract
Trees cover vast areas of the Earth's landmasses. They mitigate erosion, capture carbon dioxide, produce oxygen and support biodiversity, and also are a source of food, raw materials and energy for human populations. Understanding the growth cycles of trees is fundamental for many areas of research. Trees, like most other organisms, have evolved a circadian clock to synchronize their growth and development with the daily and seasonal cycles of the environment. These regular changes in light, daylength and temperature are perceived via a range of dedicated receptors and cause resetting of the circadian clock to local time. This allows anticipation of daily and seasonal fluctuations and enables trees to co-ordinate their metabolism and physiology to ensure vital processes occur at the optimal times. In this review, we explore the current state of knowledge concerning the regulation of growth and seasonal dormancy in trees, using information drawn from model systems such as Populus spp.
Collapse
Affiliation(s)
- Rajesh Kumar Singh
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå SE-901 87, Sweden
| | - Rishikesh P Bhalerao
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå SE-901 82, Sweden
| | - Maria E Eriksson
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå SE-901 87, Sweden
| |
Collapse
|
9
|
Komatsu K, Takezawa D, Sakata Y. Decoding ABA and osmostress signalling in plants from an evolutionary point of view. PLANT, CELL & ENVIRONMENT 2020; 43:2894-2911. [PMID: 33459424 DOI: 10.1111/pce.13869] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 07/29/2020] [Accepted: 08/13/2020] [Indexed: 05/21/2023]
Abstract
The plant hormone abscisic acid (ABA) is fundamental for land plant adaptation to water-limited conditions. Osmostress, such as drought, induces ABA accumulation in angiosperms, triggering physiological responses such as stomata closure. The core components of angiosperm ABA signalling are soluble ABA receptors, group A protein phosphatase type 2C and SNF1-related protein kinase2 (SnRK2). ABA also has various functions in non-angiosperms, however, suggesting that its role in adaptation to land may not have been angiosperm-specific. Indeed, among land plants, the core ABA signalling components are evolutionarily conserved, implying their presence in a common ancestor. Results of ongoing functional genomics studies of ABA signalling components in bryophytes and algae have expanded our understanding of the evolutionary role of ABA signalling, with genome sequencing uncovering the ABA core module even in algae. In this review, we describe recent discoveries involving the ABA core module in non-angiosperms, tracing the footprints of how ABA evolved as a phytohormone. We also cover the latest findings on Raf-like kinases as upstream regulators of the core ABA module component SnRK2. Finally, we discuss the origin of ABA signalling from an evolutionary perspective.
Collapse
Affiliation(s)
- Kenji Komatsu
- Department of Bioresource Development, Tokyo University of Agriculture, Kanagawa, Japan
| | - Daisuke Takezawa
- Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| | - Yoichi Sakata
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| |
Collapse
|
10
|
Du C, Li H, Liu C, Fan H. Understanding of the postgerminative development response to salinity and drought stresses in cucumber seeds by integrated proteomics and transcriptomics analysis. J Proteomics 2020; 232:104062. [PMID: 33276192 DOI: 10.1016/j.jprot.2020.104062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/04/2020] [Accepted: 11/25/2020] [Indexed: 10/22/2022]
Abstract
The postgerminative development is a complex, genetically programmed process, and also the most dangerous period before the developing seedlings reach the autotrophy state. To obtain a comprehensive understanding of postgerminative development mechanism, the study focuses on an integrative analysis on transcriptome, proteome, and microRNA in cucumber seeds under drought and salt stress. Drought and salt stress caused differential expression of 4197 mRNAs, 36 microRNAs and 768 proteins compared with the control, and 827 mRNAs, 364 proteins, and 12 microRNAs were shared by the two stresses. Numerous common differentially expressed genes and proteins participated the signal transduction of plant hormone, photosynthesis, and argine and proline metabolism. We noted the correlation among nitric oxide, polyamine, proline, and ethylene metabolism, thereby helping to elucidate the role of these substances, which are derived either directly or indirectly from arginine, in the regulation of abiotic stress and provide a basis for building better network-based molecular models in further research. Above findings contribute to new and useful information regarding the common molecular mechanisms during cucumber seedling development under drought and salt stress. SIGNIFICANCE: Water scarcity and high salt are two of the most destructive and wide stress factors which limit the growth and progression of plants by affecting a variety of vital physiological and biochemical processes. Our study focuses on an integrative analysis on transcriptome, proteome, and microRNA for confirming the essential regulators as well as pathways using cucumber postgerminative development under drought and salt stress. Arginine metabolism is a vital response to abiotic stress during cucumber seed germination.
Collapse
Affiliation(s)
- Changxia Du
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, School of Agriculture and Food Science, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Hao Li
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, School of Agriculture and Food Science, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Chen Liu
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, School of Agriculture and Food Science, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Huaifu Fan
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, School of Agriculture and Food Science, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China.
| |
Collapse
|
11
|
Luan W, Dai Y, Li XY, Wang Y, Tao X, Li CX, Mao P, Ma XR. Identification of tRFs and phasiRNAs in tomato (Solanum lycopersicum) and their responses to exogenous abscisic acid. BMC PLANT BIOLOGY 2020; 20:320. [PMID: 32635887 PMCID: PMC7339384 DOI: 10.1186/s12870-020-02528-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 06/26/2020] [Indexed: 05/16/2023]
Abstract
BACKGROUND The non-coding small RNA tRFs (tRNA-derived fragments) and phasiRNAs (plant-specific) exert important roles in plant growth, development and stress resistances. However, whether the tRFs and phasiRNAs respond to the plant important stress hormone abscisic acid (ABA) remain enigma. RESULTS Here, the RNA-sequencing was implemented to decipher the landscape of tRFs and phasiRNAs in tomato (Solanum lycopersicum) leaves and their responses when foliar spraying exogenous ABA after 24 h. In total, 733 tRFs and 137 phasiRNAs were detected. The tRFs were mainly derived from the tRNAAla transporting alanine, which tended to be cleaved at the 5'terminal guanine site and D loop uracil site to produce tRFAla with length of 20 nt. Most of phasiRNAs originated from NBS-LRR resistance genes. Expression analysis revealed that 156 tRFs and 68 phasiRNAs expressed differentially, respectively. Generally, exogenous ABA mainly inhibited the expression of tRFs and phasiRNAs. Furthermore, integrating analysis of target gene prediction and transcriptome data presented that ABA significantly downregulated the abundance of phsaiRNAs associated with biological and abiotic resistances. Correspondingly, their target genes such as AP2/ERF, WRKY and NBS-LRR, STK and RLK, were mainly up-regulated. CONCLUSIONS Combined with the previous analysis of ABA-response miRNAs, it was speculated that ABA can improve the plant resistances to various stresses by regulating the expression and interaction of small RNAs (such as miRNAs, tRFs, phasiRNAs) and their target genes. This study enriches the plant tRFs and phasiRNAs, providing a vital basis for further investigating ABA response-tRFs and phasiRNAs and their functions in biotic and abiotic stresses.
Collapse
Affiliation(s)
- Wei Luan
- Chengdu Institute of Biology, Chinese Academy of Sciences, No.9, Section 4, Renmin South Road, Chengdu, 610041, Sichuan, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ya Dai
- Chengdu Institute of Biology, Chinese Academy of Sciences, No.9, Section 4, Renmin South Road, Chengdu, 610041, Sichuan, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xin-Yu Li
- Chengdu Institute of Biology, Chinese Academy of Sciences, No.9, Section 4, Renmin South Road, Chengdu, 610041, Sichuan, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yan Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences, No.9, Section 4, Renmin South Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Xiang Tao
- Chengdu Institute of Biology, Chinese Academy of Sciences, No.9, Section 4, Renmin South Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Cai-Xia Li
- Chengdu Institute of Biology, Chinese Academy of Sciences, No.9, Section 4, Renmin South Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Ping Mao
- Chengdu Institute of Biology, Chinese Academy of Sciences, No.9, Section 4, Renmin South Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Xin-Rong Ma
- Chengdu Institute of Biology, Chinese Academy of Sciences, No.9, Section 4, Renmin South Road, Chengdu, 610041, Sichuan, People's Republic of China.
| |
Collapse
|
12
|
Matilla AJ. Auxin: Hormonal Signal Required for Seed Development and Dormancy. PLANTS (BASEL, SWITZERLAND) 2020; 9:E705. [PMID: 32492815 PMCID: PMC7356396 DOI: 10.3390/plants9060705] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/27/2020] [Accepted: 05/27/2020] [Indexed: 12/11/2022]
Abstract
The production of viable seeds is a key event in the life cycle of higher plants. Historically, abscisic acid (ABA) and gibberellin (GAs) were considered the main hormones that regulate seed formation. However, auxin has recently emerged as an essential player that modulates, in conjunction with ABA, different cellular processes involved in seed development as well as the induction, regulation and maintenance of primary dormancy (PD). This review examines and discusses the key role of auxin as a signaling molecule that coordinates seed life. The cellular machinery involved in the synthesis and transport of auxin, as well as their cellular and tissue compartmentalization, is crucial for the development of the endosperm and seed-coat. Thus, auxin is an essential compound involved in integuments development, and its transport from endosperm is regulated by AGAMOUS-LIKE62 (AGL62) whose transcript is specifically expressed in the endosperm. In addition, recent biochemical and genetic evidence supports the involvement of auxins in PD. In this process, the participation of the transcriptional regulator ABA INSENSITIVE3 (ABI3) is critical, revealing a cross-talk between auxin and ABA signaling. Future experimental aimed at advancing knowledge of the role of auxins in seed development and PD are also discussed.
Collapse
Affiliation(s)
- Angel J Matilla
- Departamento de Biología Funcional (Área Fisiología Vegetal), Facultad de Farmacia, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|
13
|
Kijak H, Ratajczak E. What Do We Know About the Genetic Basis of Seed Desiccation Tolerance and Longevity? Int J Mol Sci 2020; 21:E3612. [PMID: 32443842 PMCID: PMC7279459 DOI: 10.3390/ijms21103612] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/15/2020] [Accepted: 05/18/2020] [Indexed: 01/02/2023] Open
Abstract
Long-term seed storage is important for protecting both economic interests and biodiversity. The extraordinary properties of seeds allow us to store them in the right conditions for years. However, not all types of seeds are resilient, and some do not tolerate extreme desiccation or low temperature. Seeds can be divided into three categories: (1) orthodox seeds, which tolerate water losses of up to 7% of their water content and can be stored at low temperature; (2) recalcitrant seeds, which require a humidity of 27%; and (3) intermediate seeds, which lose their viability relatively quickly compared to orthodox seeds. In this article, we discuss the genetic bases for desiccation tolerance and longevity in seeds and the differences in gene expression profiles between the mentioned types of seeds.
Collapse
Affiliation(s)
- Hanna Kijak
- Institute of Dendrology, Polish Academy of Sciences, 62-035 Kórnik, Poland;
| | | |
Collapse
|
14
|
Barros‐Galvão T, Dave A, Gilday AD, Harvey D, Vaistij FE, Graham IA. ABA INSENSITIVE4 promotes rather than represses PHYA-dependent seed germination in Arabidopsis thaliana. THE NEW PHYTOLOGIST 2020; 226:953-956. [PMID: 31828800 PMCID: PMC7216901 DOI: 10.1111/nph.16363] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 11/27/2019] [Indexed: 05/04/2023]
Affiliation(s)
- Thiago Barros‐Galvão
- Department of BiologyCentre for Novel Agricultural ProductsUniversity of YorkYorkYO10 5DDUK
| | - Anuja Dave
- Department of BiologyCentre for Novel Agricultural ProductsUniversity of YorkYorkYO10 5DDUK
| | - Alison D. Gilday
- Department of BiologyCentre for Novel Agricultural ProductsUniversity of YorkYorkYO10 5DDUK
| | - David Harvey
- Department of BiologyCentre for Novel Agricultural ProductsUniversity of YorkYorkYO10 5DDUK
| | - Fabián E. Vaistij
- Department of BiologyCentre for Novel Agricultural ProductsUniversity of YorkYorkYO10 5DDUK
| | - Ian A. Graham
- Department of BiologyCentre for Novel Agricultural ProductsUniversity of YorkYorkYO10 5DDUK
| |
Collapse
|
15
|
Zhao MJ, Yin LJ, Ma J, Zheng JC, Wang YX, Lan JH, Fu JD, Chen M, Xu ZS, Ma YZ. The Roles of GmERF135 in Improving Salt Tolerance and Decreasing ABA Sensitivity in Soybean. FRONTIERS IN PLANT SCIENCE 2019; 10:940. [PMID: 31396249 PMCID: PMC6664033 DOI: 10.3389/fpls.2019.00940] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 07/04/2019] [Indexed: 05/24/2023]
Abstract
Abscisic acid (ABA) mediates various abiotic stress responses, and ethylene responsive factors (ERFs) play vital role in resisting stresses, but the interaction of these molecular mechanisms remains elusive. In this study, we identified an ABA-induced soybean ERF gene GmERF135 that was highly up-regulated by ethylene (ET), drought, salt, and low temperature treatments. Subcellular localization assay showed that the GmERF135 protein was targeted to the nucleus. Promoter cis-acting elements analysis suggested that numerous potential stress responsive cis-elements were distributed in the promoter region of GmERF135, including ABA-, light-, ET-, gibberellin (GA)-, and methyl jasmonate (MeJA)-responsive elements. Overexpression of GmERF135 in Arabidopsis enhanced tolerance to drought and salt conditions. In addition, GmERF135 promoted the growth of transgenic hairy roots under salt and exogenous ABA conditions. These results suggest that soybean GmERF135 may participate in both ABA and ET signaling pathways to regulate the responses to multiple stresses.
Collapse
Affiliation(s)
- Meng-Jie Zhao
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Li-Juan Yin
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Jian Ma
- Department of Agronomy, Jilin Agricultural University, Changchun, China
| | - Jia-Cheng Zheng
- College of Agriculture, Anhui University of Science and Technology, Fengyang County, China
| | - Yan-Xia Wang
- Hebei Academy of Agriculture and Forestry Sciences, Research Center of Wheat Engineering Technology of Hebei, Shijiazhuang, China
| | - Jin-Hao Lan
- College of Agronomy and Plant Protection, Qingdao Agricultural University, Qingdao, China
| | - Jin-Dong Fu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Ming Chen
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Zhao-Shi Xu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
- Department of Agronomy, Jilin Agricultural University, Changchun, China
- College of Agriculture, Anhui University of Science and Technology, Fengyang County, China
| | - You-Zhi Ma
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| |
Collapse
|
16
|
Identification of Arabis alpina genomic regions associated with climatic variables along an elevation gradient through whole genome scan. Genomics 2019; 112:729-735. [PMID: 31085222 DOI: 10.1016/j.ygeno.2019.05.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/24/2019] [Accepted: 05/08/2019] [Indexed: 01/23/2023]
Abstract
We performed a pooled whole-genome sequencing on samples of the alpine plant Arabis alpina, harvested in ten populations along an elevation gradient in the French Alps. A large dataset of genetic variations was produced as single nucleotide polymorphisms (SNPs). A combined genome scan approach enabled detecting genomic regions associated with a synthetic environmental variable characterizing the climate at each sampling location. Positive loci detected by two methods were retained and belong to 19 regions in the Arabis alpina genome. The most significant region harbors an ortholog of the AtNAC062 gene, encoding a membrane-bound transcription factor described as linking the cold response and pathogen resistance that may confer protection to plants under extended snow coverage at high elevations. Other genes involved in the stress response or in flowering regulation were also detected. Altogether, our results indicated that Arabis alpina represent a suitable model for studying genomic adaptation in alpine perennial plants.
Collapse
|
17
|
Xu P, Cai W. Function of Brassica napus BnABI3 in Arabidopsis gs1, an Allele of AtABI3, in Seed Development and Stress Response. FRONTIERS IN PLANT SCIENCE 2019; 10:67. [PMID: 30804960 PMCID: PMC6370748 DOI: 10.3389/fpls.2019.00067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 01/17/2019] [Indexed: 05/30/2023]
Abstract
Abscisic acid (ABA) has been implicated in plant adaptation to various environmental stresses in addition to the regulation of seed dormancy and leaf senescence. ABI3 is a B3 domain-containing family protein and functions in the ABA signaling pathway during seed development. To date, the ABI3 orthologous have not been studied in Brassica napus. The aim of this study is to investigate the function of BnABI3 in plant development and stress response. Here, we identified an Arabidopsis line (gs1) from a population of mutagenized seeds and showed that GS1 is a new allele of AtABI3. When the Arabidopsis gs1 mutant was transformed with the BnABI3 gene, the transformed plants produced seeds that turned yellow and acquired desiccation tolerance. Moreover, BnABI3 regulates seed coat development and mucilage secretion by directly targeting the AtMUM1 and AtGATL5 genes. In addition, we showed that BnABI3 expression rescued gs1 freezing-induced green seed coloration by targeting AtSGR1/2 in transgenic Arabidopsis. BnABI3 is also involved in lateral root development and conferred a novel interaction between ABA and auxin signaling in roots. The potential role of ABI3 protein in endoplasmic reticulum homoeostasis was also tested. Altogether, our results indicated that BnABI3 mediates both plant development and the stress response.
Collapse
|
18
|
Fang Q, Wang Q, Mao H, Xu J, Wang Y, Hu H, He S, Tu J, Cheng C, Tian G, Wang X, Liu X, Zhang C, Luo K. AtDIV2, an R-R-type MYB transcription factor of Arabidopsis, negatively regulates salt stress by modulating ABA signaling. PLANT CELL REPORTS 2018; 37:1499-1511. [PMID: 30014159 DOI: 10.1007/s00299-018-2321-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 07/10/2018] [Indexed: 05/15/2023]
Abstract
AtDIV2 integrates ABA signaling to negatively regulate salt stress in Arabidopsis. AmDIV (DIVARICATA) is a functional MYB transcription factor (TF) that regulates ventral identity during floral development in Antirrhinum. There are six members of DIV homologs in Arabidopsis; however, the functions of these proteins are largely unknown. Here, we characterized an R-R-type MYB TF AtDIV2, which is involved in salt stress responses and abscisic acid (ABA) signaling. Although universally expressed in tissues, the nuclear-localized AtDIV2 appeared not to be involved in seedling development processes. However, upon exposure to salt stress and exogenous ABA, the transcripts of AtDIV2 are markedly increased in wild-type (Wt) plants. The loss-of-function mutant div2 displayed much more tolerance to salt stress, and several salt-responsive genes were up-regulated. In addition, the div2 mutant showed higher sensitivity to ABA during seed germination. And the germination variance between the Wt and div2 mutant cannot be rectified by treatment with both ABA and sodium tungstate at the same time. ELISA results showed that the endogenous ABA content in the div2 mutant is clearly increased than that in Wt plants. Furthermore, the transcriptional expressions of several ABA-related genes, including ABA1 and ABI3, were elevated. Taken together, our results suggest that the R-R-type MYB TF AtDIV2 plays negative roles in salt stress and is required for ABA signaling in Arabidopsis.
Collapse
Affiliation(s)
- Qing Fang
- Key Laboratory of Biological Resources Protection and Utilization of Hubei Province, Hubei University for Nationalities, Enshi, 445000, China.
| | - Qiong Wang
- Key Laboratory of Biological Resources Protection and Utilization of Hubei Province, Hubei University for Nationalities, Enshi, 445000, China
| | - Hui Mao
- Key Laboratory of Biological Resources Protection and Utilization of Hubei Province, Hubei University for Nationalities, Enshi, 445000, China
| | - Jing Xu
- Key Laboratory of Biological Resources Protection and Utilization of Hubei Province, Hubei University for Nationalities, Enshi, 445000, China
| | - Ying Wang
- Key Laboratory of Biological Resources Protection and Utilization of Hubei Province, Hubei University for Nationalities, Enshi, 445000, China
| | - Hao Hu
- Key Laboratory of Biological Resources Protection and Utilization of Hubei Province, Hubei University for Nationalities, Enshi, 445000, China
| | - Shuai He
- Key Laboratory of Biological Resources Protection and Utilization of Hubei Province, Hubei University for Nationalities, Enshi, 445000, China
| | - Junchu Tu
- Key Laboratory of Biological Resources Protection and Utilization of Hubei Province, Hubei University for Nationalities, Enshi, 445000, China
| | - Chao Cheng
- Key Laboratory of Biological Resources Protection and Utilization of Hubei Province, Hubei University for Nationalities, Enshi, 445000, China
| | - Guozheng Tian
- Key Laboratory of Biological Resources Protection and Utilization of Hubei Province, Hubei University for Nationalities, Enshi, 445000, China
| | - Xianqiang Wang
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Institute of Resources Botany, School of Life Sciences, Ministry of Education Chongqing, Southwest University, Chongqing, 400715, China
| | - Xiaopeng Liu
- Key Laboratory of Biological Resources Protection and Utilization of Hubei Province, Hubei University for Nationalities, Enshi, 445000, China
| | - Chi Zhang
- Key Laboratory of Biological Resources Protection and Utilization of Hubei Province, Hubei University for Nationalities, Enshi, 445000, China
| | - Keming Luo
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China.
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Institute of Resources Botany, School of Life Sciences, Ministry of Education Chongqing, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
19
|
Zhang H, Gannon L, Jones PD, Rundle CA, Hassall KL, Gibbs DJ, Holdsworth MJ, Theodoulou FL. Genetic interactions between ABA signalling and the Arg/N-end rule pathway during Arabidopsis seedling establishment. Sci Rep 2018; 8:15192. [PMID: 30315202 PMCID: PMC6185960 DOI: 10.1038/s41598-018-33630-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 10/01/2018] [Indexed: 11/25/2022] Open
Abstract
The Arg/N-end rule pathway of ubiquitin-mediated proteolysis has multiple functions throughout plant development, notably in the transition from dormant seed to photoautotrophic seedling. PROTEOLYSIS6 (PRT6), an N-recognin E3 ligase of the Arg/N-end rule regulates the degradation of transcription factor substrates belonging to Group VII of the Ethylene Response Factor superfamily (ERFVIIs). It is not known whether ERFVIIs are associated with all known functions of the Arg/N-end rule, and the downstream pathways influenced by ERFVIIs are not fully defined. Here, we examined the relationship between PRT6 function, ERFVIIs and ABA signalling in Arabidopsis seedling establishment. Physiological analysis of seedlings revealed that N-end rule-regulated stabilisation of three of the five ERFVIIs, RAP2.12, RAP2.2 and RAP2.3, controls sugar sensitivity of seedling establishment and oil body breakdown following germination. ABA signalling components ABA INSENSITIVE (ABI)4 as well as ABI3 and ABI5 were found to enhance ABA sensitivity of germination and sugar sensitivity of establishment in a background containing stabilised ERFVIIs. However, N-end rule regulation of oil bodies was not dependent on canonical ABA signalling. We propose that the N-end rule serves to control multiple aspects of the seed to seedling transition by regulation of ERFVII activity, involving both ABA-dependent and independent signalling pathways.
Collapse
Affiliation(s)
- Hongtao Zhang
- Plant Sciences Department, Rothamsted Research, Harpenden, AL5 2JQ, UK
| | - Lucy Gannon
- Plant Sciences Department, Rothamsted Research, Harpenden, AL5 2JQ, UK
| | - Peter D Jones
- School of Biosciences, University of Nottingham, Loughborough, LE12 5RD, UK.,Department of Cardiovascular Sciences, University of Leicester, Leicester, LE3 7QP, UK
| | - Chelsea A Rundle
- Plant Sciences Department, Rothamsted Research, Harpenden, AL5 2JQ, UK
| | - Kirsty L Hassall
- Computational and Analytical Sciences Department, Rothamsted Research, Harpenden, AL5 2JQ, UK
| | - Daniel J Gibbs
- School of Biosciences, University of Birmingham, Edgbaston, B15 2TT, UK
| | | | | |
Collapse
|
20
|
Finatto T, Viana VE, Woyann LG, Busanello C, da Maia LC, de Oliveira AC. Can WRKY transcription factors help plants to overcome environmental challenges? Genet Mol Biol 2018; 41:533-544. [PMID: 30235398 PMCID: PMC6136380 DOI: 10.1590/1678-4685-gmb-2017-0232] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 01/22/2018] [Indexed: 12/13/2022] Open
Abstract
WRKY transcription factors (TFs) are responsible for the regulation of genes responsive to many plant growth and developmental cues, as well as to biotic and abiotic stresses. The modulation of gene expression by WRKY proteins primarily occurs by DNA binding at specific cis-regulatory elements, the W-box elements, which are short sequences located in the promoter region of certain genes. In addition, their action can occur through interaction with other TFs and the cellular transcription machinery. The current genome sequences available reveal a relatively large number of WRKY genes, reaching hundreds of copies. Recently, functional genomics studies in model plants have enabled the identification of function and mechanism of action of several WRKY TFs in plants. This review addresses the more recent studies in plants regarding the function of WRKY TFs in both model and crop plants for coping with environmental challenges, including a wide variety of abiotic and biotic stresses.
Collapse
Affiliation(s)
- Taciane Finatto
- Centro de Genômica e Fitomelhoramento, Departamento de Fitotecnia, Faculdade de Agronomia Eliseu Maciel, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Vívian Ebeling Viana
- Centro de Genômica e Fitomelhoramento, Departamento de Fitotecnia, Faculdade de Agronomia Eliseu Maciel, Universidade Federal de Pelotas, Pelotas, RS, Brazil
- Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnologico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Leomar Guilherme Woyann
- Centro de Genômica e Fitomelhoramento, Departamento de Fitotecnia, Faculdade de Agronomia Eliseu Maciel, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Carlos Busanello
- Centro de Genômica e Fitomelhoramento, Departamento de Fitotecnia, Faculdade de Agronomia Eliseu Maciel, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Luciano Carlos da Maia
- Centro de Genômica e Fitomelhoramento, Departamento de Fitotecnia, Faculdade de Agronomia Eliseu Maciel, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Antonio Costa de Oliveira
- Centro de Genômica e Fitomelhoramento, Departamento de Fitotecnia, Faculdade de Agronomia Eliseu Maciel, Universidade Federal de Pelotas, Pelotas, RS, Brazil
- Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnologico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| |
Collapse
|
21
|
Sakr S, Wang M, Dédaldéchamp F, Perez-Garcia MD, Ogé L, Hamama L, Atanassova R. The Sugar-Signaling Hub: Overview of Regulators and Interaction with the Hormonal and Metabolic Network. Int J Mol Sci 2018; 57:2367-2379. [PMID: 30149541 DOI: 10.1093/pcp/pcw157] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 08/07/2018] [Accepted: 09/05/2016] [Indexed: 05/25/2023] Open
Abstract
Plant growth and development has to be continuously adjusted to the available resources. Their optimization requires the integration of signals conveying the plant metabolic status, its hormonal balance, and its developmental stage. Many investigations have recently been conducted to provide insights into sugar signaling and its interplay with hormones and nitrogen in the fine-tuning of plant growth, development, and survival. The present review emphasizes the diversity of sugar signaling integrators, the main molecular and biochemical mechanisms related to the sugar-signaling dependent regulations, and to the regulatory hubs acting in the interplay of the sugar-hormone and sugar-nitrogen networks. It also contributes to compiling evidence likely to fill a few knowledge gaps, and raises new questions for the future.
Collapse
Affiliation(s)
- Soulaiman Sakr
- Institut de Recherche en Horticulture et Semences, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QUASAV, F-49045 Angers, France.
| | - Ming Wang
- Institut de Recherche en Horticulture et Semences, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QUASAV, F-49045 Angers, France.
| | - Fabienne Dédaldéchamp
- Equipe "Sucres & Echanges Végétaux-Environnement", Ecologie et Biologie des Interactions, Université de Poitiers, UMR CNRS 7267 EBI, Bâtiment B31, 3 rue Jacques Fort, TSA 51106, 86073 Poitiers CEDEX 9, France.
| | - Maria-Dolores Perez-Garcia
- Institut de Recherche en Horticulture et Semences, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QUASAV, F-49045 Angers, France.
| | - Laurent Ogé
- Institut de Recherche en Horticulture et Semences, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QUASAV, F-49045 Angers, France.
| | - Latifa Hamama
- Institut de Recherche en Horticulture et Semences, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QUASAV, F-49045 Angers, France.
| | - Rossitza Atanassova
- Equipe "Sucres & Echanges Végétaux-Environnement", Ecologie et Biologie des Interactions, Université de Poitiers, UMR CNRS 7267 EBI, Bâtiment B31, 3 rue Jacques Fort, TSA 51106, 86073 Poitiers CEDEX 9, France.
| |
Collapse
|
22
|
Sakr S, Wang M, Dédaldéchamp F, Perez-Garcia MD, Ogé L, Hamama L, Atanassova R. The Sugar-Signaling Hub: Overview of Regulators and Interaction with the Hormonal and Metabolic Network. Int J Mol Sci 2018; 19:ijms19092506. [PMID: 30149541 PMCID: PMC6165531 DOI: 10.3390/ijms19092506] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 08/07/2018] [Accepted: 08/13/2018] [Indexed: 12/31/2022] Open
Abstract
Plant growth and development has to be continuously adjusted to the available resources. Their optimization requires the integration of signals conveying the plant metabolic status, its hormonal balance, and its developmental stage. Many investigations have recently been conducted to provide insights into sugar signaling and its interplay with hormones and nitrogen in the fine-tuning of plant growth, development, and survival. The present review emphasizes the diversity of sugar signaling integrators, the main molecular and biochemical mechanisms related to the sugar-signaling dependent regulations, and to the regulatory hubs acting in the interplay of the sugar-hormone and sugar-nitrogen networks. It also contributes to compiling evidence likely to fill a few knowledge gaps, and raises new questions for the future.
Collapse
Affiliation(s)
- Soulaiman Sakr
- Institut de Recherche en Horticulture et Semences, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QUASAV, F-49045 Angers, France.
| | - Ming Wang
- Institut de Recherche en Horticulture et Semences, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QUASAV, F-49045 Angers, France.
| | - Fabienne Dédaldéchamp
- Equipe "Sucres & Echanges Végétaux-Environnement", Ecologie et Biologie des Interactions, Université de Poitiers, UMR CNRS 7267 EBI, Bâtiment B31, 3 rue Jacques Fort, TSA 51106, 86073 Poitiers CEDEX 9, France.
| | - Maria-Dolores Perez-Garcia
- Institut de Recherche en Horticulture et Semences, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QUASAV, F-49045 Angers, France.
| | - Laurent Ogé
- Institut de Recherche en Horticulture et Semences, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QUASAV, F-49045 Angers, France.
| | - Latifa Hamama
- Institut de Recherche en Horticulture et Semences, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QUASAV, F-49045 Angers, France.
| | - Rossitza Atanassova
- Equipe "Sucres & Echanges Végétaux-Environnement", Ecologie et Biologie des Interactions, Université de Poitiers, UMR CNRS 7267 EBI, Bâtiment B31, 3 rue Jacques Fort, TSA 51106, 86073 Poitiers CEDEX 9, France.
| |
Collapse
|
23
|
Xu J, Chen Y, Qian L, Mu R, Yuan X, Fang H, Huang X, Xu E, Zhang H, Huang J. A Novel RNA-Binding Protein Involves ABA Signaling by Post-transcriptionally Repressing ABI2. FRONTIERS IN PLANT SCIENCE 2017; 8:24. [PMID: 28174577 PMCID: PMC5258706 DOI: 10.3389/fpls.2017.00024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 01/05/2017] [Indexed: 05/24/2023]
Abstract
The Stress Associated RNA-binding protein 1 (SRP1) repressed by ABA, salt and cold encodes a C2C2-type zinc finger protein in Arabidopsis. The knock-out mutation in srp1 reduced the sensitivity of seed to ABA and salt stress during germination and post-germinative growth stages. In contrast, SRP1-overexpressing seedlings were more sensitive to ABA and salt compared to wild type plants. In the presence of ABA, the transcript levels of ABA signaling and germination-related genes including ABI3. ABI5. EM1 and EM6 were less induced in srp1 compared to WT. Interestingly, expression of ABI2 encoding a protein phosphatase 2C protein were significantly up-regulated in srp1 mutants. By in vitro analysis, SRP1 was identified as a novel RNA-binding protein directly binding to 3'UTR of ABI2 mRNA. Moreover, transient expression assay proved the function of SRP1 in reducing the activity of luciferase whose coding sequence was fused with the ABI2 3'UTR. Together, it is suggested that SRP1 is involved in the ABA signaling by post-transcriptionally repressing ABI2 expression in Arabidopsis.
Collapse
Affiliation(s)
- Jianwen Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural UniversityNanjing, China
- Institute of Industrial Crops, Jiangsu Academy of Agricultural ScienceNanjing, China
| | - Yihan Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural UniversityNanjing, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural UniversityNanjing, China
| | - Luofeng Qian
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural UniversityNanjing, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural UniversityNanjing, China
| | - Rong Mu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural UniversityNanjing, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural UniversityNanjing, China
| | - Xi Yuan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural UniversityNanjing, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural UniversityNanjing, China
| | - Huimin Fang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural UniversityNanjing, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural UniversityNanjing, China
| | - Xi Huang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural UniversityNanjing, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural UniversityNanjing, China
| | - Enshun Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural UniversityNanjing, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural UniversityNanjing, China
| | - Hongsheng Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural UniversityNanjing, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural UniversityNanjing, China
| | - Ji Huang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural UniversityNanjing, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural UniversityNanjing, China
| |
Collapse
|
24
|
Tan T, Sun Y, Peng X, Wu G, Bao F, He Y, Zhou H, Lin H. ABSCISIC ACID INSENSITIVE3 Is Involved in Cold Response and Freezing Tolerance Regulation in Physcomitrella patens. FRONTIERS IN PLANT SCIENCE 2017; 8:1599. [PMID: 28955377 PMCID: PMC5601040 DOI: 10.3389/fpls.2017.01599] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Accepted: 08/31/2017] [Indexed: 05/08/2023]
Abstract
Synopsis This work demonstrates that PpABI3 contributes to freezing tolerance regulation in Physcomitrella patens. Transcription factor ABSCISIC ACID INSENSITIVE3 (ABI3) is known to play a major role in regulating seed dormancy, germination, seedling development as well as stress responses. ABI3 is conserved among land plants; however, its roles in non-seed plants under stress conditions have not been well characterized. In this study, we report that ABI3 is involved in freezing tolerance regulation during cold acclimation at least in part through ABA signaling pathway in moss Physcomitrella patens (P. patens). Deletion of PpABI3 (Δabi3-1) compromises the induction of genes related to cold response and antioxidative protection, resulting in reduced accumulation of cryoprotectants and antioxidants. In addition, photosystem II (PSII) activity is repressed in Δabi3-1 during cold acclimation partially due to alternations of photosynthetic protein complexes compositions. The gametophyte of Δabi3-1 displays severe growth inhibition and developmental deficiency under low temperature condition, while two independent complementary lines display phenotypes similar to that of wild-type P. patens (WT). Furthermore, the freezing tolerance of Δabi3-1 was significantly affected by deletion of PpABI3. These data revealed that PpABI3 plays an important role in low temperature response and freezing tolerance in P. patens.
Collapse
Affiliation(s)
- Tinghong Tan
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan UniversityChengdu, China
| | - Yanni Sun
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan UniversityChengdu, China
| | - Xingji Peng
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan UniversityChengdu, China
| | - Guochun Wu
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan UniversityChengdu, China
| | - Fang Bao
- School of Life Sciences, Capital Normal UniversityBeijing, China
| | - Yikun He
- School of Life Sciences, Capital Normal UniversityBeijing, China
| | - Huapeng Zhou
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan UniversityChengdu, China
- *Correspondence: Huapeng Zhou
| | - Honghui Lin
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan UniversityChengdu, China
- Honghui Lin
| |
Collapse
|
25
|
Bedi S, Sengupta S, Ray A, Nag Chaudhuri R. ABI3 mediates dehydration stress recovery response in Arabidopsis thaliana by regulating expression of downstream genes. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 250:125-140. [PMID: 27457990 DOI: 10.1016/j.plantsci.2016.06.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 06/05/2016] [Accepted: 06/06/2016] [Indexed: 05/20/2023]
Abstract
ABI3, originally discovered as a seed-specific transcription factor is now implicated to act beyond seed physiology, especially during abiotic stress. In non-seed plants, ABI3 is known to act in desiccation stress signaling. Here we show that ABI3 plays a role in dehydration stress response in Arabidopsis. ABI3 gene was upregulated during dehydration stress and its expression was maintained during subsequent stress recovery phases. Comparative gene expression studies in response to dehydration stress and stress recovery were done with genes which had potential ABI3 binding sites in their upstream regulatory regions. Such studies showed that several genes including known seed-specific factors like CRUCIFERIN1, CRUCIFERIN3 and LEA-group of genes like LEA76, LEA6, DEHYDRIN LEA and LEA-LIKE got upregulated in an ABI3-dependent manner, especially during the stress recovery phase. ABI3 got recruited to regions upstream to the transcription start site of these genes during dehydration stress response through direct or indirect DNA binding. Interestingly, ABI3 also binds to its own promoter region during such stress signaling. Nucleosomes covering potential ABI3 binding sites in the upstream sequences of the above-mentioned genes alter positions, and show increased H3 K9 acetylation during stress-induced transcription. ABI3 thus mediates dehydration stress signaling in Arabidopsis through regulation of a group of genes that play a role primarily during stress recovery phase.
Collapse
Affiliation(s)
- Sonia Bedi
- Department of Biotechnology, St. Xavier's College, 30, Mother Teresa Sarani, Kolkata 700016, India
| | - Sourabh Sengupta
- Department of Biotechnology, St. Xavier's College, 30, Mother Teresa Sarani, Kolkata 700016, India
| | - Anagh Ray
- Department of Biotechnology, St. Xavier's College, 30, Mother Teresa Sarani, Kolkata 700016, India
| | - Ronita Nag Chaudhuri
- Department of Biotechnology, St. Xavier's College, 30, Mother Teresa Sarani, Kolkata 700016, India.
| |
Collapse
|
26
|
Choi JW, Lim J. Control of Asymmetric Cell Divisions during Root Ground Tissue Maturation. Mol Cells 2016; 39:524-9. [PMID: 27306644 PMCID: PMC4959016 DOI: 10.14348/molcells.2016.0105] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 05/24/2016] [Accepted: 05/25/2016] [Indexed: 12/13/2022] Open
Abstract
Controlling the production of diverse cell/tissue types is essential for the development of multicellular organisms such as animals and plants. The Arabidopsis thaliana root, which contains distinct cells/tissues along longitudinal and radial axes, has served as an elegant model to investigate how genetic programs and environmental signals interact to produce different cell/tissue types. In the root, a series of asymmetric cell divisions (ACDs) give rise to three ground tissue layers at maturity (endodermis, middle cortex, and cortex). Because the middle cortex is formed by a periclinal (parallel to the axis) ACD of the endodermis around 7 to 14 days post-germination, middle cortex formation is used as a parameter to assess maturation of the root ground tissue. Molecular, genetic, and physiological studies have revealed that the control of the timing and extent of middle cortex formation during root maturation relies on the interaction of plant hormones and transcription factors. In particular, abscisic acid and gibberellin act synergistically to regulate the timing and extent of middle cortex formation, unlike their typical antagonism. The SHORT-ROOT, SCARECROW, SCARECROW-LIKE 3, and DELLA transcription factors, all of which belong to the plant-specific GRAS family, play key roles in the regulation of middle cortex formation. Recently, two additional transcription factors, SEUSS and GA- AND ABA-RESPONSIVE ZINC FINGER, have also been characterized during ground tissue maturation. In this review, we provide a detailed account of the regulatory networks that control the timing and extent of middle cortex formation during post-embryonic root development.
Collapse
Affiliation(s)
- Ji Won Choi
- Department of Systems Biotechnology, Konkuk University, Seoul 05029,
Korea
| | - Jun Lim
- Department of Systems Biotechnology, Konkuk University, Seoul 05029,
Korea
| |
Collapse
|
27
|
Lee SA, Jang S, Yoon EK, Heo JO, Chang KS, Choi JW, Dhar S, Kim G, Choe JE, Heo JB, Kwon C, Ko JH, Hwang YS, Lim J. Interplay between ABA and GA Modulates the Timing of Asymmetric Cell Divisions in the Arabidopsis Root Ground Tissue. MOLECULAR PLANT 2016; 9:870-84. [PMID: 26970019 DOI: 10.1016/j.molp.2016.02.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 02/14/2016] [Accepted: 02/23/2016] [Indexed: 05/21/2023]
Abstract
In multicellular organisms, controlling the timing and extent of asymmetric cell divisions (ACDs) is crucial for correct patterning. During post-embryonic root development in Arabidopsis thaliana, ground tissue (GT) maturation involves an additional ACD of the endodermis, which generates two different tissues: the endodermis (inner) and the middle cortex (outer). It has been reported that the abscisic acid (ABA) and gibberellin (GA) pathways are involved in middle cortex (MC) formation. However, the molecular mechanisms underlying the interaction between ABA and GA during GT maturation remain largely unknown. Through transcriptome analyses, we identified a previously uncharacterized C2H2-type zinc finger gene, whose expression is regulated by GA and ABA, thus named GAZ (GA- AND ABA-RESPONSIVE ZINC FINGER). Seedlings ectopically overexpressing GAZ (GAZ-OX) were sensitive to ABA and GA during MC formation, whereas GAZ-SRDX and RNAi seedlings displayed opposite phenotypes. In addition, our results indicated that GAZ was involved in the transcriptional regulation of ABA and GA homeostasis. In agreement with previous studies that ABA and GA coordinate to control the timing of MC formation, we also confirmed the unique interplay between ABA and GA and identified factors and regulatory networks bridging the two hormone pathways during GT maturation of the Arabidopsis root.
Collapse
Affiliation(s)
- Shin Ae Lee
- Department of Systems Biotechnology, Konkuk University, Seoul 05029, Korea
| | - Sejeong Jang
- Department of Systems Biotechnology, Konkuk University, Seoul 05029, Korea
| | - Eun Kyung Yoon
- Department of Systems Biotechnology, Konkuk University, Seoul 05029, Korea
| | - Jung-Ok Heo
- Department of Systems Biotechnology, Konkuk University, Seoul 05029, Korea
| | - Kwang Suk Chang
- Department of Systems Biotechnology, Konkuk University, Seoul 05029, Korea
| | - Ji Won Choi
- Department of Systems Biotechnology, Konkuk University, Seoul 05029, Korea
| | - Souvik Dhar
- Department of Systems Biotechnology, Konkuk University, Seoul 05029, Korea
| | - Gyuree Kim
- Department of Systems Biotechnology, Konkuk University, Seoul 05029, Korea
| | - Jeong-Eun Choe
- Department of Systems Biotechnology, Konkuk University, Seoul 05029, Korea
| | - Jae Bok Heo
- Department of Molecular Biotechnology, Dong-A University, Busan 49201, Korea
| | - Chian Kwon
- Department of Molecular Biology, Dankook University, Yongin 16890, Korea
| | - Jae-Heung Ko
- Department of Plant and Environmental New Resources, Kyung Hee University, Yongin 17104, Korea
| | - Yong-Sic Hwang
- Department of Systems Biotechnology, Konkuk University, Seoul 05029, Korea
| | - Jun Lim
- Department of Systems Biotechnology, Konkuk University, Seoul 05029, Korea.
| |
Collapse
|
28
|
Magwa RA, Zhao H, Xing Y. Genome-wide association mapping revealed a diverse genetic basis of seed dormancy across subpopulations in rice (Oryza sativa L.). BMC Genet 2016; 17:28. [PMID: 26810156 PMCID: PMC4727300 DOI: 10.1186/s12863-016-0340-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 01/21/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Seed dormancy is an adaptive trait employed by flowering plants to avoid harsh environmental conditions for the continuity of their next generations. In cereal crops, moderate seed dormancy could help prevent pre-harvest sprouting and improve grain yield and quality. We performed a genome wide association study (GWAS) for dormancy, based on seed germination percentage (GP) in freshly harvested seeds (FHS) and after-ripened seeds (ARS) in 350 worldwide accessions that were characterized with strong population structure of indica, japonica and Aus subpopulations. RESULTS The germination tests revealed that Aus and indica rice had stronger seed dormancy than japonica rice in FHS. Association analysis revealed 16 loci significantly associated with GP in FHS and 38 in ARS. Three out of the 38 loci detected in ARS were also detected in FHS and 13 of the ARS loci were detected near previously mapped dormancy QTL. In FHS, three of the association loci were located within 100 kb around previously cloned GA/IAA inactivation genes such as GA2ox3, EUI1 and GH3-2 and one near dormancy gene, Sdr4. In ARS, an association signal was detected near ABA signaling gene ABI5. No association peaks were commonly detected among the sub-populations in FHS and only one association peak was detected in both indica and japonica populations in ARS. Sdr4 and GA2OX3 haplotype analysis showed that Aus and indica II (IndII) varieties had stronger dormancy alleles whereas indica I (IndI) and japonica had weak or non-dormancy alleles. CONCLUSION The association study and haplotype analysis together, indicate an involvement of independent genes and alleles contributing towards regulation and natural variation of seed dormancy among the rice sub-populations.
Collapse
Affiliation(s)
- Risper Auma Magwa
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant, Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China.
| | - Hu Zhao
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant, Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China.
| | - Yongzhong Xing
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant, Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China. .,Hubei Collaborative Innovation Center for Grain Industry, Hubei, China.
| |
Collapse
|
29
|
Wang W, Li H, Lin X, Yang S, Wang Z, Fang B. Transcriptome analysis identifies genes involved in adventitious branches formation of Gracilaria lichenoides in vitro. Sci Rep 2015; 5:17099. [PMID: 26657019 PMCID: PMC4675990 DOI: 10.1038/srep17099] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 10/26/2015] [Indexed: 11/23/2022] Open
Abstract
Tissue culture could solve the problems associated with Gracilaria cultivation, including the consistent supply of high-quality seed stock, strain improvement, and efficient mass culture of high-yielding commercial strains. However, STC lags behind that of higher plants because of the paucity of genomic information. Transcriptome analysis and the identification of potential unigenes involved in the formation and regeneration of callus or direct induction of ABs are essential. Herein, the CK, EWAB and NPA G. lichenoides transcriptomes were analyzed using the Illumina sequencing platform in first time. A total of 17,922,453,300 nucleotide clean bases were generated and assembled into 21,294 unigenes, providing a total gene space of 400,912,038 nucleotides with an average length of 1,883 and N 50 of 5,055 nucleotides and a G + C content of 52.02%. BLAST analysis resulted in the assignment of 13,724 (97.5%), 3,740 (26.6%), 9,934 (70.6%), 10,611 (75.4%), 9,490 (67.4%), and 7,773 (55.2%) unigenes were annotated to the NR, NT, Swiss-Prot, KEGG, COG, and GO databases, respectively, and the total of annotated unigenes was 14,070. A total of 17,099 transcripts were predicted to possess open reading frames, including 3,238 predicted and 13,861 blasted based on protein databases. In addition, 3,287 SSRs were detected in G.lichenoides, providing further support for genetic variation and marker-assisted selection in the future. Our results suggest that auxin polar transport, auxin signal transduction, crosstalk with other endogenous plant hormones and antioxidant systems, play important roles for ABs formation in G. lichenoides explants in vitro. The present findings will facilitate further studies on gene discovery and on the molecular mechanisms underlying the tissue culture of seaweed.
Collapse
Affiliation(s)
- Wenlei Wang
- College of Biochemistry and Engineering, Xiamen University, Xiamen 361005, China
| | - Huanqin Li
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361005, China
| | - Xiangzhi Lin
- Engineering Research Center of Marine Biological Resource Comprehensive Utilization, Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005, China
| | - Shanjun Yang
- Engineering Research Center of Marine Biological Resource Comprehensive Utilization, Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005, China
| | - Zhaokai Wang
- Engineering Research Center of Marine Biological Resource Comprehensive Utilization, Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005, China
| | - Baishan Fang
- College of Biochemistry and Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
30
|
Ding ZJ, Yan JY, Li GX, Wu ZC, Zhang SQ, Zheng SJ. WRKY41 controls Arabidopsis seed dormancy via direct regulation of ABI3 transcript levels not downstream of ABA. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 79:810-23. [PMID: 24946881 DOI: 10.1111/tpj.12597] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 06/03/2014] [Accepted: 06/05/2014] [Indexed: 05/17/2023]
Abstract
Although seed dormancy is an important agronomic trait, its molecular basis is poorly understood. ABSCISIC ACID INSENSITIVE 3 (ABI3) plays an essential role in the establishment of seed dormancy. Here, we show that the lack of a seed-expressed WRKY transcription factor, WRKY41, confers reduced primary seed dormancy and thermoinhibition, phenotypes resembling those for a lack of ABI3. Loss-of-function abi3-17 and wrky41 alleles also both confer reduced sensitivity to ABA during germination and early seedling growth. Absence of WRKY41 decreases ABI3 transcript abundance in maturing and imbibed seeds, whereas transgenically overexpressing WRKY41 increases ABI3 expression. Moreover, transgenic overexpression of ABI3 completely restores seed dormancy phenotypes on wrky41. ChIP-qPCR and EMSA reveal that WRKY41 binds directly to the ABI3 promoter through three adjacent W-boxes, and a transactivation assay indicates that these W-boxes are essential for ABI3 expression. Whilst RT-qPCR analysis shows that the regulation of ABI3 by WRKY41 is not through ABA and other factors known to promote ABI3 transcription during seed maturation and germination, we also show that high concentrations of ABA might promote negative feedback regulation of WRKY41 expression. Finally, analysis of the wrky41 aba2 double mutant confirms that WRKY41 and ABA collaboratively regulate ABI3 expression and seed dormancy. In summary, our results demonstrate that WRKY41 is an important regulator of ABI3 expression, and hence of seed dormancy.
Collapse
Affiliation(s)
- Zhong Jie Ding
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | | | | | | | | | | |
Collapse
|
31
|
Gao Y, Liu J, Zhang Z, Sun X, Zhang N, Fan J, Niu X, Xiao F, Liu Y. Functional characterization of two alternatively spliced transcripts of tomato ABSCISIC ACID INSENSITIVE3 (ABI3) gene. PLANT MOLECULAR BIOLOGY 2013; 82:131-45. [PMID: 23504452 DOI: 10.1007/s11103-013-0044-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Accepted: 03/10/2013] [Indexed: 05/22/2023]
Abstract
Alternative splicing can produce transcripts that encode proteins with altered functions. The transcripts of the ABSCISIC ACID INSENSITIVE3 (ABI3)/VIVIPAROUS1 (VP1) gene, which is an important component in abscisic acid (ABA) signaling, are subjected to alternative splicing in both monocotyledons and dicotyledons. We identified two alternatively spliced tomato (Solanum lycopersicum) SlABI3 transcripts, SlABI3-F and SlABI3-T, which encode the nucleus-localized full-length and truncated proteins, respectively. The tissue-specific accumulation of SlABI3-F and SlABI3-T was determined, particularly in seeds at different developmental stages and in response to phytohormonal and abiotic stress. Ectopic over-expression of SlABI3-F and SlABI3-T resulted in the induction of seed-specific genes SlSOM, SlEM1 and SlEM6 in vegetative tissues. However, over-expression of SlABI3-F, but not SlABI3-T, activated expression of the downstream gene SlABI5 and conferred hypersensitivity to exogenous ABA during seed germination and primary root growth. In addition, the SlABI3-F protein interacted with SlABI5 much stronger than SlABI3-T did in the yeast two-hybrid assay. These results suggest that SlABI3-F and SlABI3-T have similar and distinct functionality in the ABA signaling, dependent on which tissue/organ they accumulate in.
Collapse
Affiliation(s)
- Yongfeng Gao
- Ministry of Education Key Laboratory for Bio-resource and Eco-environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
Abscisic acid (ABA) is one of the "classical" plant hormones, i.e. discovered at least 50 years ago, that regulates many aspects of plant growth and development. This chapter reviews our current understanding of ABA synthesis, metabolism, transport, and signal transduction, emphasizing knowledge gained from studies of Arabidopsis. A combination of genetic, molecular and biochemical studies has identified nearly all of the enzymes involved in ABA metabolism, almost 200 loci regulating ABA response, and thousands of genes regulated by ABA in various contexts. Some of these regulators are implicated in cross-talk with other developmental, environmental or hormonal signals. Specific details of the ABA signaling mechanisms vary among tissues or developmental stages; these are discussed in the context of ABA effects on seed maturation, germination, seedling growth, vegetative stress responses, stomatal regulation, pathogen response, flowering, and senescence.
Collapse
Affiliation(s)
- Ruth Finkelstein
- Department of Molecular, Cellular and Developmental Biology, University of California at Santa Barbara, Santa Barbara, CA 93106 Address
- correspondence to e-mail:
| |
Collapse
|
33
|
Zeng Y, Zhao T, Kermode AR. A conifer ABI3-interacting protein plays important roles during key transitions of the plant life cycle. PLANT PHYSIOLOGY 2013; 161:179-95. [PMID: 23144188 PMCID: PMC3532250 DOI: 10.1104/pp.112.206946] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
ABI3 (for ABSCISIC ACID INSENSITIVE3), a transcription factor of the abscisic acid signal transduction pathway, plays a major role during seed development, dormancy inception, and dormancy maintenance. This protein appears to also function in meristematic and vegetative plant tissues and under certain stress conditions. We have isolated the ABI3 gene ortholog (CnABI3) from yellow cedar (Callitropsis nootkatensis) and found that it was functionally similar to other ABI3 genes of angiosperms. Here, we report that using a yeast (Saccharomyces cerevisiae) two-hybrid approach, we have identified another protein of yellow cedar (CnAIP2; for CnABI3 INTERACTING PROTEIN2) that physically interacts with CnABI3. Functional analyses revealed that CnAIP2 plays important roles during key transitions in the plant life cycle: (1) CnAIP2 impaired seed development and reduced seed dormancy; (2) CnAIP2 promoted root development, particularly the initiation of lateral roots, and the CnAIP2 gene promoter was exquisitely auxin sensitive; and (3) CnAIP2 promoted the transition from vegetative growth to reproductive initiation (i.e. flowering). The nature of the effects of CnAIP2 on these processes and other evidence place CnAIP2 in the category of a "global" regulator, whose actions are antagonistic to those of ABI3.
Collapse
|
34
|
Müller K, Bouyer D, Schnittger A, Kermode AR. Evolutionarily conserved histone methylation dynamics during seed life-cycle transitions. PLoS One 2012; 7:e51532. [PMID: 23240039 PMCID: PMC3519861 DOI: 10.1371/journal.pone.0051532] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Accepted: 11/05/2012] [Indexed: 11/22/2022] Open
Abstract
Plants have a remarkable ability to react to seasonal changes by synchronizing life-cycle transitions with environmental conditions. We addressed the question of how transcriptional re-programming occurs in response to an environmental cue that triggers the major life cycle transition from seed dormancy to germination and seedling growth. We elucidated an important mechanistic aspect of this process by following the chromatin dynamics of key regulatory genes with a focus on the two antagonistic marks, H3K4me3 and H3K27me3. Histone methylation patterns of major dormancy regulators changed during the transition to germination and seedling growth. We observed a switch from H3K4me3 and high transcription levels to silencing by the repressive H3K27me3 mark when dormancy was broken through exposure to moist chilling, underscoring that a functional PRC2 complex is necessary for this transition. Moreover, this reciprocal regulation by H3K4me3 and H3K27me3 is evolutionarily conserved from gymnosperms to angiosperms.
Collapse
Affiliation(s)
- Kerstin Müller
- Biological Sciences, Simon Fraser University, Burnaby, British Colombia, Canada
- * E-mail: (KM); (AK)
| | | | | | - Allison R. Kermode
- Biological Sciences, Simon Fraser University, Burnaby, British Colombia, Canada
- * E-mail: (KM); (AK)
| |
Collapse
|
35
|
Jose-Estanyol M, Puigdomènech P. Cellular localization of the embryo-specific hybrid PRP from Zea mays, and characterization of promoter regulatory elements of its gene. PLANT MOLECULAR BIOLOGY 2012; 80:325-335. [PMID: 22915319 DOI: 10.1007/s11103-012-9951-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Accepted: 07/30/2012] [Indexed: 06/01/2023]
Abstract
The expression, regulation and cellular localization of ZmHyPRP, a gene marker of embryo differentiation whose expression declines after ABA induction, was studied. ZmHyPRP is a proline-rich protein with a C-terminal domain having eight cysteines in a CM8 pattern. Transient expression in onion epidermal cells, transformed with a 2x35S::ZmHyPRP-GFP construction, indicated the protein is present in vesicles lining the membrane of the cell. The ZmHyPRP gene expression is under the control of classic promoter seed-specific regulatory elements such as Sph/RY and G-boxes, suggesting regulation by B3 and b-ZIP transcription factors. Promoter deletion analysis, by particle-bombardment transient transformation of maize immature embryos with serial deletions of the promoter fused to GUS, showed the presence of two negative regulatory elements, NE1 (-2070 to -1280) and NE2 (-232 to -178), in the ZmHyPRP promoter. By selective deletion or mutation of ZmHyPRP regulatory promoter elements we conclude that the promoter expression is attenuated by the NE2 element as well as by the G-box2 and the Sph1-2 box together with the G-box2.
Collapse
Affiliation(s)
- M Jose-Estanyol
- Centre de Recerca en Agrigenòmica (CRAG), CSIC-IRTA-UAB-UB, Edifici CRAG, Campus UAB, Bellaterra (Cerdanyola del Vallés), 081993 Barcelona, Spain,
| | | |
Collapse
|
36
|
Kang J, Park J, Choi H, Burla B, Kretzschmar T, Lee Y, Martinoia E. Plant ABC Transporters. THE ARABIDOPSIS BOOK 2011; 9:e0153. [PMID: 22303277 PMCID: PMC3268509 DOI: 10.1199/tab.0153] [Citation(s) in RCA: 282] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
ABC transporters constitute one of the largest protein families found in all living organisms. ABC transporters are driven by ATP hydrolysis and can act as exporters as well as importers. The plant genome encodes for more than 100 ABC transporters, largely exceeding that of other organisms. In Arabidopsis, only 22 out of 130 have been functionally analyzed. They are localized in most membranes of a plant cell such as the plasma membrane, the tonoplast, chloroplasts, mitochondria and peroxisomes and fulfill a multitude of functions. Originally identified as transporters involved in detoxification processes, they have later been shown to be required for organ growth, plant nutrition, plant development, response to abiotic stresses, pathogen resistance and the interaction of the plant with its environment. To fulfill these roles they exhibit different substrate specifies by e.g. depositing surface lipids, accumulating phytate in seeds, and transporting the phytohormones auxin and abscisic acid. The aim of this review is to give an insight into the functions of plant ABC transporters and to show their importance for plant development and survival.
Collapse
Affiliation(s)
- Joohyun Kang
- POSTECH-UZH Global Research Laboratory, Division of Molecular Life Sciences, Pohang University of Science and Technology, Pohang, 790-784, Korea
| | - Jiyoung Park
- POSTECH-UZH Global Research Laboratory, Division of Molecular Life Sciences, Pohang University of Science and Technology, Pohang, 790-784, Korea
| | - Hyunju Choi
- POSTECH-UZH Global Research Laboratory, Division of Molecular Life Sciences, Pohang University of Science and Technology, Pohang, 790-784, Korea
| | - Bo Burla
- Institute of Plant Biology, University Zurich, Zollikerstrasse 107, 8008 Zurich, Switzerland
| | - Tobias Kretzschmar
- Institute of Plant Biology, University Zurich, Zollikerstrasse 107, 8008 Zurich, Switzerland
| | - Youngsook Lee
- POSTECH-UZH Global Research Laboratory, Division of Molecular Life Sciences, Pohang University of Science and Technology, Pohang, 790-784, Korea
- Division of Integrative Biosciences and Biotechnology, World Class University Program, Pohang University of Science and Technology, Pohang, 790-784, Korea
| | - Enrico Martinoia
- POSTECH-UZH Global Research Laboratory, Division of Molecular Life Sciences, Pohang University of Science and Technology, Pohang, 790-784, Korea
- Institute of Plant Biology, University Zurich, Zollikerstrasse 107, 8008 Zurich, Switzerland
| |
Collapse
|
37
|
Fitzpatrick AH, Bhandari J, Crowell DN. Farnesol kinase is involved in farnesol metabolism, ABA signaling and flower development in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 66:1078-1088. [PMID: 21395888 DOI: 10.1111/j.1365-313x.2011.04572.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Farnesol, which is toxic to plant cells at high concentrations, is sequentially phosphorylated to farnesyl phosphate and farnesyl diphosphate. However, the genes responsible for the sequential phosphorylation of farnesol have not been identified and the physiological role of farnesol phosphorylation has not been fully elucidated. To address these questions, we confirmed the presence of farnesol kinase activity in Arabidopsis (Arabidopsis thaliana) membranes and identified the corresponding gene (At5g58560, FOLK). Heterologous expression in recombinant yeast cells established farnesol as the preferred substrate of the FOLK-encoded kinase. Moreover, loss-of-function mutations in the FOLK gene abolished farnesol kinase activity, caused an abscisic acid-hypersensitive phenotype and promoted the development of supernumerary carpels under water-stress conditions. In wild-type plants, exogenous abscisic acid repressed FOLK gene expression. These observations demonstrate a role for farnesol kinase in negative regulation of abscisic acid signaling, and provide molecular evidence for a link between farnesol metabolism, abiotic stress signaling and flower development.
Collapse
Affiliation(s)
- A Heather Fitzpatrick
- Department of Biological Sciences, Idaho State University, Pocatello, ID 83209-8007, USA
| | | | | |
Collapse
|
38
|
Li Y, Jin K, Zhu Z, Yang J. Stepwise origin and functional diversification of the AFL subfamily B3 genes during land plant evolution. J Bioinform Comput Biol 2011; 8 Suppl 1:33-45. [PMID: 21155018 DOI: 10.1142/s0219720010005129] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 08/25/2010] [Accepted: 09/10/2010] [Indexed: 11/18/2022]
Abstract
The AFL genes (ABI3/VP1, FUS3 and LEC2) belong to the plant-specific B3 superfamily, playing important roles in regulating seed development and maturation. It is unclear, however, whether these genes appeared at the same time as the origin of seed plants and if all these genes are necessary and sufficient for seed development for all seed plants. By conducting a genome-wide comparative analysis of the putative AFL genes in various plant species, we found that the ABI3 homologous genes existed in all land plant genomes, but the FUS3 homologous were present only in seed plant genomes and the LEC2-like sequences only in dicot genomes. Phylogenetic analysis indicated that the AFL genes had undergone successive rounds of gene duplication and subsequent diversification during land plant evolution, resulting in the stepwise origin of the ABI3, FUS3 and LEC2 genes. Comparison of gene structure of the AFL genes revealed a trend of decreasing in the number of conserved domains from ABI3 to FUS3 and LEC2.
Collapse
Affiliation(s)
- Yang Li
- Center for Evolutionary Biology, School of Life Science, Fudan University, Shanghai, PR China.
| | | | | | | |
Collapse
|
39
|
Sakata Y, Nakamura I, Taji T, Tanaka S, Quatrano RS. Regulation of the ABA-responsive Em promoter by ABI3 in the moss Physcomitrella patens: role of the ABA response element and the RY element. PLANT SIGNALING & BEHAVIOR 2010; 5:1061-6. [PMID: 20448474 PMCID: PMC3115069 DOI: 10.4161/psb.5.9.11774] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Accepted: 03/10/2010] [Indexed: 05/19/2023]
Abstract
The plant-specific transcription factor ABSCISIC ACID INSENSITIVE3 (ABI3) or the maize ortholog VIVIPAROUS1 (VP1) is known to regulate seed maturation and germination in concert with the phytohormone abscisic acid (ABA) but is also evolutionarily conserved among land plants including non-seed plants. An ABI3/VP1 ortholog (PpABI3A) from the moss Physcomitrella patens can activate ABA-responsive gene promoters in the moss and angiosperms; however, it failed to fully complement the phenotypes of the Arabidopsis abi3-6 mutant, suggesting that some aspects of ABI3/VP1 functions have diverged during the evolution of land plants. To gain insights into the evolution of ABI3/VP1 function, we performed a comparative analysis of the regulatory elements required for ABI3 activation in Physcomitrella using a wheat Em gene promoter, which is induced by ABA and ABI3/VP1 both in Physcomitrella and in angiosperms. Elimination of either the ACGT core motif in the ABA response element (ABRE) or the RY element, to which ABI3/VP1 binds directly, resulted in a drastic reduction of the ABA response in Physcomitrella. Arabidopsis ABI3 could effectively activate the Em promoter either in an ABRE- or RY-dependent manner, as observed in angiosperms. On the other hand, PpABI3A failed to activate an Em promoter lacking the RY element but not the ABRE. These results suggest that RY-mediated transcriptional regulation of ABI3/VP1 is evolutionarily conserved between the moss and angiosperms, whereas angiosperm ABI3/VP1 has evolved to activate ABA-inducible promoters via the ABRE sequence independently from the RY element.
Collapse
Affiliation(s)
- Yoichi Sakata
- Department of BioScience, Tokyo University of Agriculture, Tokyo Japan.
| | | | | | | | | |
Collapse
|
40
|
Graeber K, Linkies A, Müller K, Wunchova A, Rott A, Leubner-Metzger G. Cross-species approaches to seed dormancy and germination: conservation and biodiversity of ABA-regulated mechanisms and the Brassicaceae DOG1 genes. PLANT MOLECULAR BIOLOGY 2010; 73:67-87. [PMID: 20013031 DOI: 10.1007/s11103-009-9583-x] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Accepted: 11/22/2009] [Indexed: 05/20/2023]
Abstract
Seed dormancy is genetically determined with substantial environmental influence mediated, at least in part, by the plant hormone abscisic acid (ABA). The ABA-related transcription factor ABI3/VP1 (ABA INSENSITIVE3/VIVIPAROUS1) is widespread among green plants. Alternative splicing of its transcripts appears to be involved in regulating seed dormancy, but the role of ABI3/VP1 goes beyond seeds and dormancy. In contrast, DOG1 (DELAY OF GERMINATION 1), a major quantitative trait gene more specifically involved in seed dormancy, was so far only known from Arabidopsis thaliana (AtDOG1) and whether it also has roles during the germination of non-dormant seeds was not known. Seed germination of Lepidium sativum ('garden cress') is controlled by ABA and its antagonists gibberellins and ethylene and involves the production of apoplastic hydroxyl radicals. We found orthologs of AtDOG1 in the Brassicaceae relatives L. sativum (LesaDOG1) and Brassica rapa (BrDOG1) and compared their gene structure and the sequences of their transcripts expressed in seeds. Tissue-specific analysis of LesaDOG1 transcript levels in L. sativum seeds showed that they are degraded upon imbibition in the radicle and the micropylar endosperm. ABA inhibits germination in that it delays radicle protrusion and endosperm weakening and it increased LesaDOG1 transcript levels during early germination due to enhanced transcription and/or inhibited degradation. A reduced decrease in LesaDOG1 transcript levels upon ABA treatment is evident in the late germination phase in both tissues. This temporal and ABA-related transcript expression pattern suggests a role for LesaDOG1 in the control of germination timing of non-dormant L. sativum seeds. The possible involvement of the ABA-related transcription factors ABI3 and ABI5 in the regulation of DOG1 transcript expression is discussed. Other species of the monophyletic genus Lepidium showed coat or embryo dormancy and are therefore highly suited for comparative seed biology.
Collapse
Affiliation(s)
- Kai Graeber
- Botany/Plant Physiology, Institute for Biology II, Faculty of Biology, University of Freiburg, Schänzlestr. 1, 79104 Freiburg, Germany
| | | | | | | | | | | |
Collapse
|
41
|
|
42
|
Molecular Insights in the Susceptible Plant Response to Nematode Infection. CELL BIOLOGY OF PLANT NEMATODE PARASITISM 2008. [DOI: 10.1007/978-3-540-85215-5_3] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
43
|
Rozwadowski K, Yang W, Kagale S. Homologous recombination-mediated cloning and manipulation of genomic DNA regions using Gateway and recombineering systems. BMC Biotechnol 2008; 8:88. [PMID: 19014699 PMCID: PMC2601046 DOI: 10.1186/1472-6750-8-88] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2008] [Accepted: 11/17/2008] [Indexed: 12/11/2022] Open
Abstract
Background Employing genomic DNA clones to characterise gene attributes has several advantages over the use of cDNA clones, including the presence of native transcription and translation regulatory sequences as well as a representation of the complete repertoire of potential splice variants encoded by the gene. However, working with genomic DNA clones has traditionally been tedious due to their large size relative to cDNA clones and the presence, absence or position of particular restriction enzyme sites that may complicate conventional in vitro cloning procedures. Results To enable efficient cloning and manipulation of genomic DNA fragments for the purposes of gene expression and reporter-gene studies we have combined aspects of the Gateway system and a bacteriophage-based homologous recombination (i.e. recombineering) system. To apply the method for characterising plant genes we developed novel Gateway and plant transformation vectors that are of small size and incorporate selectable markers which enable efficient identification of recombinant clones. We demonstrate that the genomic coding region of a gene can be directly cloned into a Gateway Entry vector by recombineering enabling its subsequent transfer to Gateway Expression vectors. We also demonstrate how the coding and regulatory regions of a gene can be directly cloned into a plant transformation vector by recombineering. This construct was then rapidly converted into a novel Gateway Expression vector incorporating cognate 5' and 3' regulatory regions by using recombineering to replace the intervening coding region with the Gateway Destination cassette. Such expression vectors can be applied to characterise gene regulatory regions through development of reporter-gene fusions, using the Gateway Entry clones of GUS and GFP described here, or for ectopic expression of a coding region cloned into a Gateway Entry vector. We exemplify the utility of this approach with the Arabidopsis PAP85 gene and demonstrate that the expression profile of a PAP85::GUS transgene highly corresponds with native PAP85 expression. Conclusion We describe a novel combination of the favourable attributes of the Gateway and recombineering systems to enable efficient cloning and manipulation of genomic DNA clones for more effective characterisation of gene function. Although the system and plasmid vectors described here were developed for applications in plants, the general approach is broadly applicable to gene characterisation studies in many biological systems.
Collapse
Affiliation(s)
- Kevin Rozwadowski
- Saskatoon Research Centre, Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, Saskatchewan, Canada, S7N 0X2.
| | | | | |
Collapse
|
44
|
Impact of transcriptional, ABA-dependent, and ABA-independent pathways on wounding regulation of RNS1 expression. Mol Genet Genomics 2008; 280:249-61. [PMID: 18607631 DOI: 10.1007/s00438-008-0360-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2008] [Accepted: 06/13/2008] [Indexed: 11/27/2022]
Abstract
Injured plants induce a wide range of genes whose products are thought to help to repair the plant or to defend against opportunistic pathogens that might infect the wounded plant. In Arabidopsis thaliana L., oligogalacturonides (OGAs) and jasmonic acid (JA) are the main regulators of the signaling pathways that control the local and systemic wound response, respectively. RNS1, a secreted ribonuclease, is induced by wounding in Arabidopsis independent of these two signals, thus indicating that another wound-response signal exists. Here we show that abscisic acid (ABA), which induces wound-responsive genes in other systems, also induces RNS1. In the absence of ABA signaling, wounding induces only approximately 45% of the endogenous levels of RNS1 mRNA. However, significant levels of RNS1 still accumulate in the absence of ABA signaling. Our results suggest that wound-responsive increases in ABA production may amplify induction of RNS1 by a novel ABA-independent pathway. To elucidate this novel pathway, we show here that the wound induction of RNS1 is due in part to transcriptional regulation by wounding and ABA. We also show evidence of post-transcriptional regulation which may contribute to the high levels of RNS1 transcript accumulation in response to wounding.
Collapse
|
45
|
Prieto-Dapena P, Castaño R, Almoguera C, Jordano J. The ectopic overexpression of a seed-specific transcription factor, HaHSFA9, confers tolerance to severe dehydration in vegetative organs. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 54:1004-14. [PMID: 18315542 DOI: 10.1111/j.1365-313x.2008.03465.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Most plant seeds tolerate desiccation, but vegetative tissues are intolerant to drastic dehydration, except in the case of resurrection plants. Therefore, changes in the regulation of genes normally expressed in seeds are thought to be responsible for the evolutionary origin of desiccation tolerance in resurrection plants. Here, we show that constitutive overexpression of the seed-specific HSFA9 transcription factor from sunflower is sufficient to confer tolerance to severe dehydration, outside of the developing seed context, to vegetative tissues of transgenic tobacco. Whole 3-week-old seedlings could survive severe dehydration. This was quantified as a water loss to 1.96 +/- 0.05% of the initial water content, which corresponds to a water potential of approximately -40 MPa. Survival depended on the water potential, from 40% survival at approximately -20 MPa to 6.5% survival at approximately -40 MPa. Whole-seedling survival was limited by the dehydration sensitivity of the roots. Survival correlated with the ectopic expression of a genetic program involving seed-specific, small heat-shock proteins, but not late embryogenesis abundant proteins. The accumulation of sucrose or raffinose family oligosaccharides was not altered by HSFA9. The observed tolerance was achieved without a reduction of growth and development. Our results strongly support the previously suggested contribution of small heat-shock proteins to the desiccation tolerance of seeds. We provide a successful system for analyzing tolerance to severe dehydration in all vegetative organs of seedlings. We propose that HSFA9 is a potential genetic switch involved in the evolution of tolerance to vegetative desiccation.
Collapse
Affiliation(s)
- Pilar Prieto-Dapena
- Instituto de Recursos Naturales y Agrobiología de Sevilla, Consejo Superior de Investigaciones Científicas, Apartado 1052, 41080 Seville, Spain
| | | | | | | |
Collapse
|
46
|
Dekkers BJW, Schuurmans JAMJ, Smeekens SCM. Interaction between sugar and abscisic acid signalling during early seedling development in Arabidopsis. PLANT MOLECULAR BIOLOGY 2008; 67:151-67. [PMID: 18278579 PMCID: PMC2295253 DOI: 10.1007/s11103-008-9308-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2007] [Accepted: 02/02/2008] [Indexed: 05/17/2023]
Abstract
Sugars regulate important processes and affect the expression of many genes in plants. Characterization of Arabidopsis (Arabidopsis thaliana) mutants with altered sugar sensitivity revealed the function of abscisic acid (ABA) signalling in sugar responses. However, the exact interaction between sugar signalling and ABA is obscure. Therefore ABA deficient plants with constitutive ABI4 expression (aba2-1/35S::ABI4) were generated. Enhanced ABI4 expression did not rescue the glucose insensitive (gin) phenotype of aba2 seedlings indicating that other ABA regulated factors are essential as well. Interestingly, both glucose and ABA treatment of Arabidopsis seeds trigger a post-germination seedling developmental arrest. The glucose-arrested seedlings had a drought tolerant phenotype and showed glucose-induced expression of ABSCISIC ACID INSENSITIVE3 (ABI3), ABI5 and LATE EMBRYOGENESIS ABUNDANT (LEA) genes reminiscent of ABA signalling during early seedling development. ABI3 is a key regulator of the ABA-induced arrest and it is shown here that ABI3 functions in glucose signalling as well. Multiple abi3 alleles have a glucose insensitive (gin) phenotype comparable to that of other known gin mutants. Importantly, glucose-regulated gene expression is disturbed in the abi3 background. Moreover, abi3 was insensitive to sugars during germination and showed sugar insensitive (sis) and sucrose uncoupled (sun) phenotypes. Mutant analysis further identified the ABA response pathway genes ENHANCED RESPONSE TO ABA1 (ERA1) and ABI2 as intermediates in glucose signalling. Hence, three previously unidentified sugar signalling genes have been identified, showing that ABA and glucose signalling overlap to a larger extend than originally thought.
Collapse
Affiliation(s)
- Bas J W Dekkers
- Department of Molecular Plant Physiology, Utrecht University, Padualaan 8, Utrecht, The Netherlands.
| | | | | |
Collapse
|
47
|
Wasilewska A, Vlad F, Sirichandra C, Redko Y, Jammes F, Valon C, Frei dit Frey N, Leung J. An update on abscisic acid signaling in plants and more... MOLECULAR PLANT 2008; 1:198-217. [PMID: 19825533 DOI: 10.1093/mp/ssm022] [Citation(s) in RCA: 243] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The mode of abscisic acid (ABA) action, and its relations to drought adaptive responses in particular, has been a captivating area of plant hormone research for much over a decade. The hormone triggers stomatal closure to limit water loss through transpiration, as well as mobilizes a battery of genes that presumably serve to protect the cells from the ensuing oxidative damage in prolonged stress. The signaling network orchestrating these various responses is, however, highly complex. This review summarizes several significant advances made within the last few years. The biosynthetic pathway of the hormone is now almost completely elucidated, with the latest identification of the ABA4 gene encoding a neoxanthin synthase, which seems essential for de novo ABA biosynthesis during water stress. This leads to the interesting question on how ABA is then delivered to perception sites. In this respect, regulated transport has attracted renewed focus by the unexpected finding of a shoot-to-root translocation of ABA during drought response, and at the cellular level, by the identification of a beta-galactosidase that releases biologically active ABA from inactive ABA-glucose ester. Surprising candidate ABA receptors were also identified in the form of the Flowering Time Control Protein A (FCA) and the Chloroplastic Magnesium Protoporphyrin-IX Chelatase H subunit (CHLH) in chloroplast-nucleus communication, both of which have been shown to bind ABA in vitro. On the other hand, the protein(s) corresponding to the physiologically detectable cell-surface ABA receptor(s) is (are) still not known with certainty. Genetic and physiological studies based on the guard cell have reinforced the central importance of reversible phosphorylation in modulating rapid ABA responses. Sucrose Non-Fermenting Related Kinases (SnRK), Calcium-Dependent Protein Kinases (CDPK), Protein Phosphatases (PP) of the 2C and 2A classes figure as prominent regulators in this single-cell model. Identifying their direct in vivo targets of regulation, which may include H(+)-ATPases, ion channels, 14-3-3 proteins and transcription factors, will logically be the next major challenge. Emerging evidence also implicates ABA as a repressor of innate immune response, as hinted by the highly similar roster of genes elicited by certain pathogens and ABA. Undoubtedly, the most astonishing revelation is that ABA is not restricted to plants and mosses, but overwhelming evidence now indicates that it also exists in metazoans ranging from the most primitive to the most advance on the evolution scale (sponges to humans). In metazoans, ABA has healing properties, and plays protective roles against both environmental and pathogen related injuries. These cross-kingdom comparisons have shed light on the surprising ancient origin of ABA and its attendant mechanisms of signal transduction.
Collapse
Affiliation(s)
- Aleksandra Wasilewska
- Institut des Sciences du Végétal, Centre National de la Recherche Scientifique, UPR 2355, 1 Avenue de la Terrasse, Bât. 23, 91190 Gif-sur-Yvette, France
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Molecular Insights in the Susceptible Plant Response to Nematode Infection. PLANT CELL MONOGRAPHS 2008. [DOI: 10.1007/7089_2008_35] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
49
|
Marella HH, Quatrano RS. The B2 domain of VIVIPAROUS1 is bi-functional and regulates nuclear localization and transactivation. PLANTA 2007; 225:863-72. [PMID: 16977453 DOI: 10.1007/s00425-006-0398-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2006] [Accepted: 08/27/2006] [Indexed: 05/11/2023]
Abstract
The transcriptional regulator VIVIPA-ROUS1 (VP1) is composed of four functional domains that control different aspects of gene expression during seed development. The B2 domain is required for its role as a transcriptional activator, functioning at the site of transcription and/or for its transport into the nucleus. Previous work showed that the B2 domain was required for transactivation of the Em promoter. We demonstrate that VP1::GFP localizes to the nucleus of barley (Hordeum vulgare) aleurone cells, but when B2 is deleted, nuclear accumulation is lost. However, the B2 domain itself is not sufficient for nuclear localization of GFP::GUS. Using point mutagenesis on the putative NLS within B2, we show that the VP1::GFP still accumulates in the nucleus. Utilizing a comparative approach, through the alignment of B2 domains from various VP1/ABI3 proteins, oincluding the ABI3 orthologs from Physcomitrella patens, revealed the involvement of other conserved amino acids. Mutating VP1 at the conserved threonine on the N-terminal side of the putative NLS and at a conserved arginine-glutamine-arginine sequence on the C-terminal side prevented nuclear localization of VP1. A single amino acid change, from alanine to threonine, within this NLS found in the Arabidopsis abi3-7 mutant prevents transcription of AtEm1 and AtEm6 in vivo. We show that this same mutation in VP1 prevents transactivation of the Em-GUS reporter in barley aleurone but does not interfere with nuclear localization. Our data demonstrate that the B2 domain of VP1 is bifunctional in nature regulating both nuclear localization and transactivation.
Collapse
Affiliation(s)
- Heather H Marella
- Department of Biology, Washington University, 1 Brookings Drive, Campus Box 1137, St Louis, MO 63130, USA
| | | |
Collapse
|
50
|
Federico ML, Iñiguez-Luy FL, Skadsen RW, Kaeppler HF. Spatial and temporal divergence of expression in duplicated barley germin-like protein-encoding genes. Genetics 2006; 174:179-90. [PMID: 16751662 PMCID: PMC1569785 DOI: 10.1534/genetics.106.058156] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2006] [Accepted: 05/28/2006] [Indexed: 02/06/2023] Open
Abstract
Subfunctionalization is the process by which a pair of duplicated genes, or paralogs, experiences a reduction of individual expression patterns or function while still reproducing the complete expression pattern and function of the ancestral gene. Two germin-like protein (GLP)-encoding genes, GerB and GerF, are paralogs that belong to a small gene family in barley (Hordeum vulgare). Both genes share high nucleotide sequence similarity in coding and noncoding regions and encode identical apoplastic proteins. The use of RNA gel blots, coupled with single-stranded conformation polymorphism (SSCP) analysis of RT-PCR products, elucidated the developmental and tissue-specific expression patterns of each gene. Individual expression patterns provided evidence of both overlapping redundancy and early subfunctionalization. GerB is predominantly expressed in developing shoots, while GerF is predominantly expressed in seedling roots, developing spikes, and pericarp/testa. GerF promoter deletion studies located a region (-356/-97) responsible for high promoter activity and showed the ability of GerB and GerF upstream regions to drive gfp expression in coleoptiles, epicarps, and lemma/palea of developing spikes. The observed expression patterns are consistent with proposed roles in plant development and defense mechanisms for this gene family. These roles may explain why redundancy has been selectively maintained in this duplicate gene pair.
Collapse
Affiliation(s)
- Maria L Federico
- Department of Agronomy, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | | | |
Collapse
|