1
|
Melgarejo JD, Vatcheva KP, Mejia-Arango S, Charisis S, Patil D, Mena LJ, Garcia A, Alliey-Rodriguez N, Satizabal CL, Chavez CA, Gaona C, Silva E, Mavarez RP, Lee JH, Terwilliger JD, Blangero J, Seshadri S, Maestre GE. Association of longitudinal changes in 24-h blood pressure level and variability with cognitive decline. J Hypertens 2024; 42:1985-1993. [PMID: 39146553 PMCID: PMC11449671 DOI: 10.1097/hjh.0000000000003824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/12/2024] [Accepted: 06/29/2024] [Indexed: 08/17/2024]
Abstract
OBJECTIVE A high office blood pressure (BP) is associated with cognitive decline. However, evidence of 24-h ambulatory BP monitoring is limited, and no studies have investigated whether longitudinal changes in 24-h BP are associated with cognitive decline. We aimed to test whether higher longitudinal changes in 24-h ambulatory BP measurements are associated with cognitive decline. METHODS We included 437 dementia-free participants from the Maracaibo Aging Study with prospective data on 24-h ambulatory BP monitoring and cognitive function, which was assessed using the selective reminding test (SRT) and the Mini-Mental State Examination (MMSE). Using multivariate linear mixed regression models, we analyzed the association between longitudinal changes in measures of 24-h ambulatory BP levels and variability with cognitive decline. RESULTS Over a median follow-up of 4 years (interquartile range, 2-5 years), longitudinal changes in 24-h BP level were not associated with cognitive function ( P ≥ 0.09). Higher longitudinal changes in 24-h and daytime BP variability were related to a decline in SRT-delayed recall score; the adjusted scores lowered from -0.10 points [95% confidence interval (CI), -0.16 to -0.04) to -0.07 points (95% CI, -0.13 to -0.02). We observed that a higher nighttime BP variability during follow-up was associated with a decline in the MMSE score (adjusted score lowered from -0.08 to -0.06 points). CONCLUSION Higher 24-h BP variability, but not BP level, was associated with cognitive decline. Prior to or in the early stages of cognitive decline, 24-h ambulatory BP monitoring might guide strategies to reduce the risk of major dementia-related disorders including Alzheimer's disease.
Collapse
Affiliation(s)
- Jesus D. Melgarejo
- Institute of Neuroscience, Neuro and Behavioral Health Integrated Unit, School of Medicine, University of Texas Rio Grande Valley, Harlingen
- South Texas Alzheimer's Disease Research Center, San Antonio/Harlingen, Texas
- Laboratory of Neuroscience, University of Zulia, Maracaibo, Zulia, Venezuela
| | - Kristina P. Vatcheva
- Institute of Neuroscience, Neuro and Behavioral Health Integrated Unit, School of Medicine, University of Texas Rio Grande Valley, Harlingen
- School of Mathematical and Statistical Science, University of Texas Rio Grande Valley, Brownsville, Texas
| | - Silvia Mejia-Arango
- Institute of Neuroscience, Neuro and Behavioral Health Integrated Unit, School of Medicine, University of Texas Rio Grande Valley, Harlingen
- South Texas Alzheimer's Disease Research Center, San Antonio/Harlingen, Texas
| | - Sokratis Charisis
- Neuroimage Analytics Laboratory and the Biggs Institute Neuroimaging Core, Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases
- Department of Neurology, University of Texas Health Science Center at San Antonio
| | - Dhrumil Patil
- Beth Israel Deaconess Medical Centre, Harvard Medical School, Boston, Massachusetts, USA
| | - Luis J. Mena
- Polytechnic University of Sinaloa, Mazatlán, Sinaloa, Mexico
| | - Antonio Garcia
- Department of Human Genetics
- South Texas Diabetes and Obesity Institute, School of Medicine, University of Texas Rio Grande Valley, Brownsville
| | - Ney Alliey-Rodriguez
- Institute of Neuroscience, Neuro and Behavioral Health Integrated Unit, School of Medicine, University of Texas Rio Grande Valley, Harlingen
- South Texas Alzheimer's Disease Research Center, San Antonio/Harlingen, Texas
- Laboratory of Neuroscience, University of Zulia, Maracaibo, Zulia, Venezuela
| | - Claudia L. Satizabal
- South Texas Alzheimer's Disease Research Center, San Antonio/Harlingen, Texas
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, UT Health San Antonio, San Antonio, Texas
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts
| | - Carlos A. Chavez
- Laboratory of Neuroscience, University of Zulia, Maracaibo, Zulia, Venezuela
| | - Ciro Gaona
- Laboratory of Neuroscience, University of Zulia, Maracaibo, Zulia, Venezuela
| | - Egle Silva
- Laboratory of Ambulatory Recordings, Cardiovascular Institute, University of Zulia, Maracaibo, Zulia, Venezuela
| | - Rosa P. Mavarez
- Institute of Neuroscience, Neuro and Behavioral Health Integrated Unit, School of Medicine, University of Texas Rio Grande Valley, Harlingen
- South Texas Alzheimer's Disease Research Center, San Antonio/Harlingen, Texas
- Laboratory of Neuroscience, University of Zulia, Maracaibo, Zulia, Venezuela
| | - Joseph H. Lee
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain
- Sergievsky Center & Department of Epidemiology and Neurology
- Departments of Psychiatry and Genetics & Development, Columbia University, New York, New York, USA
| | - Joseph D. Terwilliger
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain
- Sergievsky Center & Department of Epidemiology and Neurology
- Departments of Psychiatry and Genetics & Development, Columbia University, New York, New York, USA
- Division of Public Health Genomics, National Institute for Health and Welfare, Helsinki, Finland
| | - John Blangero
- Department of Human Genetics
- South Texas Diabetes and Obesity Institute, School of Medicine, University of Texas Rio Grande Valley, Brownsville
| | - Sudha Seshadri
- South Texas Alzheimer's Disease Research Center, San Antonio/Harlingen, Texas
- Neuroimage Analytics Laboratory and the Biggs Institute Neuroimaging Core, Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases
- Department of Neurology, University of Texas Health Science Center at San Antonio
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, UT Health San Antonio, San Antonio, Texas
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts
| | - Gladys E. Maestre
- Institute of Neuroscience, Neuro and Behavioral Health Integrated Unit, School of Medicine, University of Texas Rio Grande Valley, Harlingen
- South Texas Alzheimer's Disease Research Center, San Antonio/Harlingen, Texas
- Laboratory of Neuroscience, University of Zulia, Maracaibo, Zulia, Venezuela
- Department of Human Genetics
| |
Collapse
|
2
|
Chen J, Peng G, Sun B. Alzheimer's disease and sleep disorders: A bidirectional relationship. Neuroscience 2024; 557:12-23. [PMID: 39137870 DOI: 10.1016/j.neuroscience.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/30/2024] [Accepted: 08/07/2024] [Indexed: 08/15/2024]
Abstract
Alzheimer's disease (AD) is the most prevalent dementia, pathologically featuring abnormal accumulation of amyloid-β (Aβ) and hyperphosphorylated tau, while sleep, divided into rapid eye movement sleep (REM) and nonrapid eye movement sleep (NREM), plays a key role in consolidating social and spatial memory. Emerging evidence has revealed that sleep disorders such as circadian disturbances and disruption of neuronal rhythm activity are considered as both candidate risks and consequence of AD, suggesting a bidirectional relationship between sleep and AD. This review will firstly grasp basic knowledge of AD pathogenesis, then highlight macrostructural and microstructural alteration of sleep along with AD progression, explain the interaction between accumulation of Aβ and hyperphosphorylated tau, which are two critical neuropathological processes of AD, as well as neuroinflammation and sleep, and finally introduce several methods of sleep enhancement as strategies to reduce AD-associated neuropathology. Although theories about the bidirectional relationship and relevant therapeutic methods in mice have been well developed in recent years, the knowledge in human is still limited. More studies on how to effectively ameliorate AD pathology in patients by sleep enhancement and what specific roles of sleep play in AD are needed.
Collapse
Affiliation(s)
- Junhua Chen
- Chu Kochen Honors College of Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | - Guoping Peng
- Department of Neurology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China.
| | - Binggui Sun
- Department of Anesthesiology of the Children's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Zhejiang University, Hangzhou, Zhejiang Province 310058, China; NHC and CAMS Key Laboratory of Medical Neurobiology, School of Brain Science and Brain Medicine, Zhejiang University Hangzhou, Zhejiang Province 310058, China.
| |
Collapse
|
3
|
Zhao Q, Yokomizo S, Perle SJ, Lee YF, Zhou H, Miller MR, Li H, Gerashchenko D, Gomperts SN, Bacskai BJ, Kastanenka KV. Optogenetic targeting of cortical astrocytes selectively improves NREM sleep in an Alzheimer's disease mouse model. Sci Rep 2024; 14:23044. [PMID: 39362954 PMCID: PMC11450172 DOI: 10.1038/s41598-024-73082-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 09/13/2024] [Indexed: 10/05/2024] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative condition marked by memory impairments and distinct histopathological features such as amyloid-beta (Aβ) accumulations. Alzheimer's patients experience sleep disturbances at early stages of the disease. APPswe/PS1dE9 (APP) mice exhibit sleep disruptions, including reductions in non-rapid eye movement (NREM) sleep, that contribute to their disease progression. In addition, astrocytic calcium transients associated with a sleep-dependent brain rhythm, slow oscillations prevalent during NREM sleep, are disrupted in APP mice. However, at present it is unclear whether restoration of circuit function by targeting astrocytic activity could improve sleep in APP mice. To that end, APP mice expressing channelrhodopsin-2 (ChR2) targeted to astrocytes underwent optogenetic stimulation at the slow oscillation frequency. Optogenetic stimulation of astrocytes significantly increased NREM sleep duration but not duration of rapid eye movement (REM) sleep. Optogenetic treatment increased delta power and reduced sleep fragmentation in APP mice. Thus, optogenetic activation of astrocytes increased sleep quantity and improved sleep quality in an AD mouse model. Astrocytic activity provides a novel therapeutic avenue to pursue for enhancing sleep and slowing AD progression.
Collapse
Affiliation(s)
- Qiuchen Zhao
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Shinya Yokomizo
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Stephen J Perle
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Yee Fun Lee
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Heng Zhou
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Morgan R Miller
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Hanyan Li
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Dmitry Gerashchenko
- Department of Psychiatry, Harvard Medical School and Veterans Affairs Boston Healthcare System, West Roxbury, MA, 02132, USA
| | - Stephen N Gomperts
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Brian J Bacskai
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Ksenia V Kastanenka
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA.
| |
Collapse
|
4
|
Gao L, Zheng X, Baker SN, Li P, Scheer FAJL, Nogueira RC, Hu K. Associations of Rest-Activity Rhythm Disturbances With Stroke Risk and Poststroke Adverse Outcomes. J Am Heart Assoc 2024; 13:e032086. [PMID: 39234806 DOI: 10.1161/jaha.123.032086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 04/24/2024] [Indexed: 09/06/2024]
Abstract
BACKGROUND Many disease processes are influenced by circadian clocks and display ~24-hour rhythms. Whether disruptions to these rhythms increase stroke risk is unclear. We evaluated the association between 24-hour rest-activity rhythms, stroke risk, and major poststroke adverse outcomes. METHODS AND RESULTS We examined ~100 000 participants from the UK Biobank (aged 44-79 years; ~57% women) assessed with actigraphy (6-7 days) and 5-year median follow-up. We derived (1) most active 10-hour activity counts across the 24-hour cycle and the timing of its midpoint timing; (2) the least active 5-hour count and its midpoint; (3) relative amplitude; (4) interdaily stability; and (5) intradaily variability, for stability and fragmentation of the rhythm. Cox proportional hazard models were constructed for time to (1) incident stroke (n=1652) and (2) poststroke adverse outcomes (dementia, depression, disability, or death). Suppressed relative amplitude (lowest quartile [quartile 1] versus the top quartile [quartile 4]) was associated with stroke risk (hazard ratio [HR], 1.61 [95% CI, 1.35-1.92]; P<0.001) after adjusting for demographics. Later most active 10-hour activity count midpoint timing (14:00-15:26; HR, 1.26 [95% CI, 1.07-1.49]; P=0.007) also had higher stroke risk than earlier (12:17-13:10) participants. A fragmented rhythm (intradaily variability) was also associated with higher stroke risk (quartile 4 versus quartile 1; HR, 1.26 [95% CI, 1.06-1.49]; P=0.008). Suppressed relative amplitude was associated with risk for poststroke adverse outcomes (quartile 1 versus quartile 4; HR, 2.02 [95% CI, 1.46-2.48]; P<0.001). All associations were independent of age, sex, race, obesity, sleep disorders, cardiovascular diseases or risks, and other comorbidity burdens. CONCLUSIONS Suppressed 24-hour rest-activity rhythm may be a risk factor for stroke and an early indicator of major poststroke adverse outcomes.
Collapse
Affiliation(s)
- Lei Gao
- Department of Anesthesia, Critical Care and Pain Medicine Massachusetts General Hospital, Harvard Medical School Boston MA
- Medical Biodynamics Program, Division of Sleep and Circadian Disorders Brigham and Womens Hospital Boston MA
- Division of Sleep Medicine Harvard Medical School Boston MA
- Broad Institute of MIT and Harvard Cambridge MA
| | - Xi Zheng
- Medical Biodynamics Program, Division of Sleep and Circadian Disorders Brigham and Womens Hospital Boston MA
| | - Sarah N Baker
- Department of Anesthesia, Critical Care and Pain Medicine Massachusetts General Hospital, Harvard Medical School Boston MA
| | - Peng Li
- Medical Biodynamics Program, Division of Sleep and Circadian Disorders Brigham and Womens Hospital Boston MA
- Division of Sleep Medicine Harvard Medical School Boston MA
- Broad Institute of MIT and Harvard Cambridge MA
| | - Frank A J L Scheer
- Division of Sleep Medicine Harvard Medical School Boston MA
- Broad Institute of MIT and Harvard Cambridge MA
- Medical Chronobiology Program, Division of Sleep and Circadian Disorders Brigham and Women's Hospital Boston MA
| | - Ricardo C Nogueira
- Medical Chronobiology Program, Division of Sleep and Circadian Disorders Brigham and Women's Hospital Boston MA
- Neurology Department, School of Medicine, Hospital das Clinicas University of São Paulo São Paulo Brazil
| | - Kun Hu
- Medical Biodynamics Program, Division of Sleep and Circadian Disorders Brigham and Womens Hospital Boston MA
- Division of Sleep Medicine Harvard Medical School Boston MA
- Broad Institute of MIT and Harvard Cambridge MA
| |
Collapse
|
5
|
Smagula SF, Zhang G, Krafty RT, Ramos A, Sotres-Alvarez D, Rodakowski J, Gallo LC, Lamar M, Gujral S, Fischer D, Tarraf W, Mossavar-Rahmani Y, Redline S, Stone KL, Gonzalez HM, Patel SR. Sleep-wake behaviors associated with cognitive performance in middle-aged participants of the Hispanic Community Health Study/Study of Latinos. Sleep Health 2024; 10:500-507. [PMID: 38693044 PMCID: PMC11309910 DOI: 10.1016/j.sleh.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/26/2024] [Accepted: 02/20/2024] [Indexed: 05/03/2024]
Abstract
OBJECTIVES Many sleep-wake behaviors have been associated with cognition. We examined a panel of sleep-wake/activity characteristics to determine which are most robustly related to having low cognitive performance in midlife. Secondarily, we evaluate the predictive utility of sleep-wake measures to screen for low cognitive performance. METHODS The outcome was low cognitive performance defined as being >1 standard deviation below average age/sex/education internally normalized composite cognitive performance levels assessed in the Hispanic Community Health Study/Study of Latinos. Analyses included 1006 individuals who had sufficient sleep-wake measurements about 2years later (mean age=54.9, standard deviation= 5.1; 68.82% female). We evaluated associations of 31 sleep-wake variables with low cognitive performance using separate logistic regressions. RESULTS In individual models, the strongest sleep-wake correlates of low cognitive performance were measures of weaker and unstable 24-hour rhythms; greater 24-hour fragmentation; longer time-in-bed; and lower rhythm amplitude. One standard deviation worse on these sleep-wake factors was associated with ∼20%-30% greater odds of having low cognitive performance. In an internally cross-validated prediction model, the independent correlates of low cognitive performance were: lower Sleep Regularity Index scores; lower pseudo-F statistics (modellability of 24-hour rhythms); lower activity rhythm amplitude; and greater time in bed. Area under the curve was low/moderate (64%) indicating poor predictive utility. CONCLUSION The strongest sleep-wake behavioral correlates of low cognitive performance were measures of longer time-in-bed and irregular/weak rhythms. These sleep-wake assessments were not useful to identify previous low cognitive performance. Given their potential modifiability, experimental trials could test if targeting midlife time-in-bed and/or irregular rhythms influences cognition.
Collapse
Affiliation(s)
- Stephen F Smagula
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Department of Epidemiology, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
| | - Gehui Zhang
- Department of Biostatistics, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Robert T Krafty
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Alberto Ramos
- Department of Neurology, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Daniela Sotres-Alvarez
- Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Juleen Rodakowski
- Department of Occupational Therapy, School of Health and Rehabilitation Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Linda C Gallo
- Department of Psychology, University of California San Diego, San Diego, California, USA
| | - Melissa Lamar
- Institute of Minority Health Research, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA; Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, Illinois, USA
| | - Swathi Gujral
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Dorothee Fischer
- Department of Sleep and Human Factors Research, Institute for Aerospace Medicine, German Aerospace Center, Cologne, Germany
| | - Wassim Tarraf
- Institute of Gerontology, Wayne State University, Detroit, Michigan, USA
| | - Yasmin Mossavar-Rahmani
- Department of Epidemiology & Population Health, Albert Einstein College of Medicine, New York, New York, USA
| | - Susan Redline
- Division of Sleep Medicine, Harvard Medical School, Harvard University, Boston, Massachusetts, USA
| | - Katie L Stone
- California Pacific Medical Center Research Institute, San Francisco, California, USA; Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, California, USA
| | - Hector M Gonzalez
- Department of Neurosciences and the Shiley-Marcos Alzheimer's Disease Research Center, UC San Diego, San Diego, California, USA
| | - Sanjay R Patel
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
6
|
Milton S, Cavaillès C, Ancoli-Israel S, Stone KL, Yaffe K, Leng Y. Five-year changes in 24-hour sleep-wake activity and dementia risk in oldest old women. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.07.23.24310882. [PMID: 39211875 PMCID: PMC11361246 DOI: 10.1101/2024.07.23.24310882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
INTRODUCTION Sleep disruptions are associated with cognitive aging in older adults. However, it is unclear whether longitudinal changes in 24-hour multidimensional sleep-wake activity are linked to cognitive impairment in the oldest old. METHODS We studied 733 cognitively unimpaired women (mean age=82.5±2.9 years) who completed two actigraphy assessments over five years. We performed hierarchical clustering on principal components in nine sleep, napping, and circadian rest-activity rhythm parameters to identify multidimensional sleep-wake change profiles and multinomial logistic regression to evaluate the associations between sleep-wake changes and risk of cognitive impairment at follow-up. RESULTS We identified three sleep-wake change profiles: Stable Sleep (43.8%), Declining Nighttime Sleep (34.9%), and Increasing Sleepiness (21.3%). After adjustment for demographics and comorbidities, women with Increasing Sleepiness had approximately doubled (odds ratio=2.21, p=0.018) risk of dementia compared to those with Stable Sleep. DISCUSSION Increasing sleepiness may be an independent marker or risk factor for dementia in oldest old women.
Collapse
|
7
|
Janssen Daalen JM, van den Bergh R, Prins EM, Moghadam MSC, van den Heuvel R, Veen J, Mathur S, Meijerink H, Mirelman A, Darweesh SKL, Evers LJW, Bloem BR. Digital biomarkers for non-motor symptoms in Parkinson's disease: the state of the art. NPJ Digit Med 2024; 7:186. [PMID: 38992186 PMCID: PMC11239921 DOI: 10.1038/s41746-024-01144-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 05/22/2024] [Indexed: 07/13/2024] Open
Abstract
Digital biomarkers that remotely monitor symptoms have the potential to revolutionize outcome assessments in future disease-modifying trials in Parkinson's disease (PD), by allowing objective and recurrent measurement of symptoms and signs collected in the participant's own living environment. This biomarker field is developing rapidly for assessing the motor features of PD, but the non-motor domain lags behind. Here, we systematically review and assess digital biomarkers under development for measuring non-motor symptoms of PD. We also consider relevant developments outside the PD field. We focus on technological readiness level and evaluate whether the identified digital non-motor biomarkers have potential for measuring disease progression, covering the spectrum from prodromal to advanced disease stages. Furthermore, we provide perspectives for future deployment of these biomarkers in trials. We found that various wearables show high promise for measuring autonomic function, constipation and sleep characteristics, including REM sleep behavior disorder. Biomarkers for neuropsychiatric symptoms are less well-developed, but show increasing accuracy in non-PD populations. Most biomarkers have not been validated for specific use in PD, and their sensitivity to capture disease progression remains untested for prodromal PD where the need for digital progression biomarkers is greatest. External validation in real-world environments and large longitudinal cohorts remains necessary for integrating non-motor biomarkers into research, and ultimately also into daily clinical practice.
Collapse
Affiliation(s)
- Jules M Janssen Daalen
- Radboud university medical center, Donders Institute for Brain, Cognition and Behaviour, Department of Neurology, Center of Expertise for Parkinson & Movement Disorders, Nijmegen, The Netherlands.
| | - Robin van den Bergh
- Radboud university medical center, Donders Institute for Brain, Cognition and Behaviour, Department of Neurology, Center of Expertise for Parkinson & Movement Disorders, Nijmegen, The Netherlands
| | - Eva M Prins
- Radboud university medical center, Donders Institute for Brain, Cognition and Behaviour, Department of Neurology, Center of Expertise for Parkinson & Movement Disorders, Nijmegen, The Netherlands
| | - Mahshid Sadat Chenarani Moghadam
- Radboud university medical center, Donders Institute for Brain, Cognition and Behaviour, Department of Neurology, Center of Expertise for Parkinson & Movement Disorders, Nijmegen, The Netherlands
| | - Rudie van den Heuvel
- HAN University of Applied Sciences, School of Engineering and Automotive, Health Concept Lab, Arnhem, The Netherlands
| | - Jeroen Veen
- HAN University of Applied Sciences, School of Engineering and Automotive, Health Concept Lab, Arnhem, The Netherlands
| | | | - Hannie Meijerink
- ParkinsonNL, Parkinson Patient Association, Bunnik, The Netherlands
| | - Anat Mirelman
- Tel Aviv University, Sagol School of Neuroscience, Department of Neurology, Faculty of Medicine, Laboratory for Early Markers of Neurodegeneration (LEMON), Center for the Study of Movement, Cognition, and Mobility (CMCM), Tel Aviv, Israel
| | - Sirwan K L Darweesh
- Radboud university medical center, Donders Institute for Brain, Cognition and Behaviour, Department of Neurology, Center of Expertise for Parkinson & Movement Disorders, Nijmegen, The Netherlands
| | - Luc J W Evers
- Radboud university medical center, Donders Institute for Brain, Cognition and Behaviour, Department of Neurology, Center of Expertise for Parkinson & Movement Disorders, Nijmegen, The Netherlands
- Radboud University, Institute for Computing and Information Sciences, Nijmegen, The Netherlands
| | - Bastiaan R Bloem
- Radboud university medical center, Donders Institute for Brain, Cognition and Behaviour, Department of Neurology, Center of Expertise for Parkinson & Movement Disorders, Nijmegen, The Netherlands.
| |
Collapse
|
8
|
Mohr AE, Ortega-Santos CP, Whisner CM, Klein-Seetharaman J, Jasbi P. Navigating Challenges and Opportunities in Multi-Omics Integration for Personalized Healthcare. Biomedicines 2024; 12:1496. [PMID: 39062068 PMCID: PMC11274472 DOI: 10.3390/biomedicines12071496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/25/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024] Open
Abstract
The field of multi-omics has witnessed unprecedented growth, converging multiple scientific disciplines and technological advances. This surge is evidenced by a more than doubling in multi-omics scientific publications within just two years (2022-2023) since its first referenced mention in 2002, as indexed by the National Library of Medicine. This emerging field has demonstrated its capability to provide comprehensive insights into complex biological systems, representing a transformative force in health diagnostics and therapeutic strategies. However, several challenges are evident when merging varied omics data sets and methodologies, interpreting vast data dimensions, streamlining longitudinal sampling and analysis, and addressing the ethical implications of managing sensitive health information. This review evaluates these challenges while spotlighting pivotal milestones: the development of targeted sampling methods, the use of artificial intelligence in formulating health indices, the integration of sophisticated n-of-1 statistical models such as digital twins, and the incorporation of blockchain technology for heightened data security. For multi-omics to truly revolutionize healthcare, it demands rigorous validation, tangible real-world applications, and smooth integration into existing healthcare infrastructures. It is imperative to address ethical dilemmas, paving the way for the realization of a future steered by omics-informed personalized medicine.
Collapse
Affiliation(s)
- Alex E. Mohr
- Systems Precision Engineering and Advanced Research (SPEAR), Theriome Inc., Phoenix, AZ 85004, USA; (A.E.M.); (C.P.O.-S.); (C.M.W.); (J.K.-S.)
- College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA
- Biodesign Institute Center for Health Through Microbiomes, Arizona State University, Tempe, AZ 85281, USA
| | - Carmen P. Ortega-Santos
- Systems Precision Engineering and Advanced Research (SPEAR), Theriome Inc., Phoenix, AZ 85004, USA; (A.E.M.); (C.P.O.-S.); (C.M.W.); (J.K.-S.)
- Department of Exercise and Nutrition Sciences, Milken Institute School of Public Health, George Washington University, Washington, DC 20052, USA
| | - Corrie M. Whisner
- Systems Precision Engineering and Advanced Research (SPEAR), Theriome Inc., Phoenix, AZ 85004, USA; (A.E.M.); (C.P.O.-S.); (C.M.W.); (J.K.-S.)
- College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA
- Biodesign Institute Center for Health Through Microbiomes, Arizona State University, Tempe, AZ 85281, USA
| | - Judith Klein-Seetharaman
- Systems Precision Engineering and Advanced Research (SPEAR), Theriome Inc., Phoenix, AZ 85004, USA; (A.E.M.); (C.P.O.-S.); (C.M.W.); (J.K.-S.)
- College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85281, USA
| | - Paniz Jasbi
- Systems Precision Engineering and Advanced Research (SPEAR), Theriome Inc., Phoenix, AZ 85004, USA; (A.E.M.); (C.P.O.-S.); (C.M.W.); (J.K.-S.)
| |
Collapse
|
9
|
Gasmi M, Silvia Hardiany N, van der Merwe M, Martins IJ, Sharma A, Williams-Hooker R. The influence of time-restricted eating/feeding on Alzheimer's biomarkers and gut microbiota. Nutr Neurosci 2024:1-15. [PMID: 38953237 DOI: 10.1080/1028415x.2024.2359868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
OBJECTIVES Alzheimer's disease (AD) is a progressive neurodegenerative disorder affecting approximately 55 million individuals globally. Diagnosis typically occurs in advanced stages, and there are limited options for reversing symptoms. Preventive strategies are, therefore, crucial. Time Restricted Eating (TRE) or Time Restricted Feeding (TRF) is one such strategy. Here we review recent research on AD and TRE/TRF in addition to AD biomarkers and gut microbiota. METHODS A comprehensive review of recent studies was conducted to assess the impact of TRE/TRF on AD-related outcomes. This includes the analysis of how TRE/TRF influences circadian rhythms, beta-amyloid 42 (Aß42), pro-inflammatory cytokines levels, and gut microbiota composition. RESULTS TRE/TRF impacts circadian rhythms and can influence cognitive performance as observed in AD. It lowers beta-amyloid 42 deposition in the brain, a key AD biomarker, and reduces pro-ininflammatory cytokines. The gut microbiome has emerged as a modifiable factor in AD treatment. TRE/TRF changes the structure and composition of the gut microbiota, leading to increased diversity and a decrease in harmful bacteria. DISCUSSION These findings underscore the potential of TRE/TRF as a preventive strategy for AD. By reducing Aß42 plaques, modulating pro-inflammatory cytokines, and altering gut microbiota composition, TRE/TRF may slow the progression of AD. Further research is needed to confirm these effects and to understand the mechanisms involved. This review highlights TRE/TRF as a promising non-pharmacological intervention in the fight against AD.
Collapse
Affiliation(s)
- Maha Gasmi
- Higher Institute of Sport and Physical Education of Ksar said, Tunis, Tunisia
| | - Novi Silvia Hardiany
- Department of Biochemistry & Molecular Biology, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia
- Molecular Biology and Proteomic Core Facilities, Indonesia Medical Education and Research Institute, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia
| | - Marie van der Merwe
- Center for Nutraceuticals and Dietary Supplement Research, College of Health Sciences, University of Memphis, Memphis, TN, USA
| | - Ian J Martins
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia
| | - Aastha Sharma
- Department of Basic and Applied Science. School of Engineering and Science, University - GD Goenka University Gurugram, India
| | | |
Collapse
|
10
|
Gaire BP, Koronyo Y, Fuchs DT, Shi H, Rentsendorj A, Danziger R, Vit JP, Mirzaei N, Doustar J, Sheyn J, Hampel H, Vergallo A, Davis MR, Jallow O, Baldacci F, Verdooner SR, Barron E, Mirzaei M, Gupta VK, Graham SL, Tayebi M, Carare RO, Sadun AA, Miller CA, Dumitrascu OM, Lahiri S, Gao L, Black KL, Koronyo-Hamaoui M. Alzheimer's disease pathophysiology in the Retina. Prog Retin Eye Res 2024; 101:101273. [PMID: 38759947 PMCID: PMC11285518 DOI: 10.1016/j.preteyeres.2024.101273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 04/23/2024] [Accepted: 05/10/2024] [Indexed: 05/19/2024]
Abstract
The retina is an emerging CNS target for potential noninvasive diagnosis and tracking of Alzheimer's disease (AD). Studies have identified the pathological hallmarks of AD, including amyloid β-protein (Aβ) deposits and abnormal tau protein isoforms, in the retinas of AD patients and animal models. Moreover, structural and functional vascular abnormalities such as reduced blood flow, vascular Aβ deposition, and blood-retinal barrier damage, along with inflammation and neurodegeneration, have been described in retinas of patients with mild cognitive impairment and AD dementia. Histological, biochemical, and clinical studies have demonstrated that the nature and severity of AD pathologies in the retina and brain correspond. Proteomics analysis revealed a similar pattern of dysregulated proteins and biological pathways in the retina and brain of AD patients, with enhanced inflammatory and neurodegenerative processes, impaired oxidative-phosphorylation, and mitochondrial dysfunction. Notably, investigational imaging technologies can now detect AD-specific amyloid deposits, as well as vasculopathy and neurodegeneration in the retina of living AD patients, suggesting alterations at different disease stages and links to brain pathology. Current and exploratory ophthalmic imaging modalities, such as optical coherence tomography (OCT), OCT-angiography, confocal scanning laser ophthalmoscopy, and hyperspectral imaging, may offer promise in the clinical assessment of AD. However, further research is needed to deepen our understanding of AD's impact on the retina and its progression. To advance this field, future studies require replication in larger and diverse cohorts with confirmed AD biomarkers and standardized retinal imaging techniques. This will validate potential retinal biomarkers for AD, aiding in early screening and monitoring.
Collapse
Affiliation(s)
- Bhakta Prasad Gaire
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Yosef Koronyo
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Dieu-Trang Fuchs
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Haoshen Shi
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Altan Rentsendorj
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Ron Danziger
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jean-Philippe Vit
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Nazanin Mirzaei
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jonah Doustar
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Julia Sheyn
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Harald Hampel
- Sorbonne University, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France
| | - Andrea Vergallo
- Sorbonne University, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France
| | - Miyah R Davis
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Ousman Jallow
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Filippo Baldacci
- Sorbonne University, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France; Department of Clinical and Experimental Medicine, Neurology Unit, University of Pisa, Pisa, Italy
| | | | - Ernesto Barron
- Department of Ophthalmology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA; Doheny Eye Institute, Los Angeles, CA, USA
| | - Mehdi Mirzaei
- Department of Clinical Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, Sydney, NSW, Australia
| | - Vivek K Gupta
- Department of Clinical Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, Sydney, NSW, Australia
| | - Stuart L Graham
- Department of Clinical Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, Sydney, NSW, Australia; Department of Clinical Medicine, Macquarie University, Sydney, NSW, Australia
| | - Mourad Tayebi
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
| | - Roxana O Carare
- Department of Clinical Neuroanatomy, University of Southampton, Southampton, UK
| | - Alfredo A Sadun
- Department of Ophthalmology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA; Doheny Eye Institute, Los Angeles, CA, USA
| | - Carol A Miller
- Department of Pathology Program in Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | | | - Shouri Lahiri
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Liang Gao
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, USA
| | - Keith L Black
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Maya Koronyo-Hamaoui
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Department of Biomedical Sciences, Division of Applied Cell Biology and Physiology, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
11
|
Yang SX, Cheng S, Sun Y, Tang X, Huang Z. Circadian Disruption in Civilian Airline Pilots. Aerosp Med Hum Perform 2024; 95:381-389. [PMID: 38915172 DOI: 10.3357/amhp.6316.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
INTRODUCTION: Most airline pilots reported having suffered from sleep disorders and fatigue due to circadian disruption, a potential risk to flight safety. This study attempted to uncover the actual scenario of circadian disruption and working load status among airline pilots.METHODS: In study 1, 21 pilots were invited to participate in a 14-d sleep monitoring and a dual 2-back test to monitor their sleep patterns and cognitive function level. To provide an in-depth view, data from scheduled flights, including 567 airline pilots, was analyzed in Study 2. The present study used cluster analysis to reflect the distribution of the flight scheduling characteristics, including working time and actual working hours. A simulation model was then developed to predict the pilots' 1-mo sleep-wake pattern.RESULTS: The results indicated that sleep problems were prevalent in this population, especially the night before an earlier morning shift. Regarding the cognitive test, they scored the lowest on earlier morning shifts compared with daytime and evening shifts. It was found that over 70% of the flight schedules can lead to circadian disruption, and 47.44% of the pilots worked under high-load status.DISCUSSION: Airline pilots inevitably work irregular hours and the current policies for coping with circadian disruption seem inefficient. This study thus calls for urgency in improving scheduling and fatigue management systems from the circadian rhythm perspective.Yang SX, Cheng S, Sun Y, Tang X, Huang Z. Circadian disruption in civilian airline pilots. Aerosp Med Hum Perform. 2024; 95(7):381-389.
Collapse
|
12
|
Brikou D, Dimopoulou MA, Drouka A, Ntanasi E, Mamalaki E, Gu Y, Scarmeas N, Yannakoulia M. Eating Frequency, Timing, and Duration in Relation to Cognitive Performance and Alzheimer Disease Biomarkers in Adults. J Nutr 2024; 154:2167-2175. [PMID: 38797480 DOI: 10.1016/j.tjnut.2024.05.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/18/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024] Open
Abstract
BACKGROUND The potential association between temporal dimensions of eating and cognition/cognitive declines has been poorly investigated so far. OBJECTIVES The aim of this study was to examine relationships among eating frequency, timing and time window, and cognitive performance and novel Alzheimer disease (AD) biomarkers in cognitively healthy and mildly cognitively impaired middle-aged and older adults. METHODS Cross-sectional data were derived from the Aiginition Longitudinal Biomarker Investigation of Neurodegeneration (ALBION) cohort study, including people aged 40 y or older who have a positive family history of cognitive disorder or cognition-related concerns. Cognitive performance was assessed by a battery of neuropsychological tests. Amyloid β (Αβ42), a biomarker of AD-related pathology, was measured in cerebrospinal fluid. Eating frequency, timing, and the eating time window between the first and the last meal were estimated using time-related information recorded in four 24-h recalls. RESULTS Study participants had, on average, 5.3 ± 1.2 eating episodes per day, consumed at 8:20 ± 1.3 and 21:14 ± 1.3 h their first and their last eating episode, respectively, while their eating time window was 12.9 ± 1.6 h. Eating frequency, but not eating time window, was positively associated with global cognition, executive and language performance even after controlling for age, sex, education, BMI, and Mediterranean diet. Increasing eating frequency by 1 eating episode per day was associated with 0.169 higher global z-score. Furthermore, compared with ≤4, having 5-6 or >6 eating episodes per day was associated with better global and memory z-scores. Time of last eating episode was also positively associated with language performance. No associations were detected among eating frequency, timing and window, and AD pathology. CONCLUSIONS An eating pattern characterized by less frequent eating and/or by earlier times is present in individuals with worse cognitive performance. Our results shed light on the relevance of temporal eating patterns as potential early markers of behavioral or metabolic changes related to AD pathology.
Collapse
Affiliation(s)
- Dora Brikou
- Department of Nutrition and Dietetics, Harokopio University, Athens, Greece
| | | | - Archontoula Drouka
- Department of Nutrition and Dietetics, Harokopio University, Athens, Greece
| | - Eva Ntanasi
- 1st Department of Neurology, Aiginition Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Eirini Mamalaki
- Department of Nutrition and Dietetics, Harokopio University, Athens, Greece; 1st Department of Neurology, Aiginition Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Yian Gu
- The Gertrude H. Sergievsky Center, Taub Institute for Research in Alzheimer's Disease and the Aging Brain, Department of Neurology, Department of Epidemiology, Columbia University, NY, United States
| | - Nikolaos Scarmeas
- 1st Department of Neurology, Aiginition Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece; The Gertrude H. Sergievsky Center, Taub Institute for Research in Alzheimer's Disease and the Aging Brain, Department of Neurology, Department of Epidemiology, Columbia University, NY, United States
| | - Mary Yannakoulia
- Department of Nutrition and Dietetics, Harokopio University, Athens, Greece.
| |
Collapse
|
13
|
Liu Y, Feng H, Du J, Yang L, Xue H, Zhang J, Liang YY, Liu Y. Associations between accelerometer-measured circadian rest-activity rhythm, brain structural and genetic mechanisms, and dementia. Psychiatry Clin Neurosci 2024; 78:393-404. [PMID: 38676558 PMCID: PMC11498105 DOI: 10.1111/pcn.13671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/12/2024] [Accepted: 03/20/2024] [Indexed: 04/29/2024]
Abstract
AIM Knowledge of how circadian rhythm influences brain health remains limited. We aimed to investigate the associations of accelerometer-measured circadian rest-activity rhythm (CRAR) with incident dementia, cognitive dysfunction, and structural brain abnormalities in the general population and underlying biological mechanisms. METHODS Fifty-seven thousand five hundred and two participants aged over 60 years with accelerometer data were included to investigate the association of CRAR with incidental dementia. Non-parametric CRAR parameters were utilized, including activity level during active periods of the day (M10), activity level during rest periods of the day (L5), and the relative difference between the M10 and L5 (relative amplitude, RA). Associations of CRAR with cognitive dysfunction and brain structure were studied in a subset of participants. Neuroimaging-transcriptomics analysis was utilized to identify the underlying molecular mechanisms. RESULTS Over 6.86 (4.94-8.78) years of follow-up, 494 participants developed dementia. The risk of incident dementia was associated with decreasing M10 (hazard ratio [HR] 1.45; 95% conference interval [CI], 1.28-1.64) and RA (HR 1.37; 95% CI, 1.28-1.64), increasing L5 (HR 1.14, 95% CI 1.07-1.21) and advanced L5 onset time (HR 1.12; 95% CI, 1.02-1.23). The detrimental associations were exacerbated by APOE ε4 status and age (>65 years). Decreased RA was associated with lower processing speed (Beta -0.04; SE 0.011), predominantly mediated by abnormalities in subcortical regions and white matter microstructure. The genes underlying CRAR-related brain regional structure variation were enriched for synaptic function. CONCLUSIONS Our study underscores the potential of intervention targeting at maintaining a healthy CRAR pattern to prevent dementia risk.
Collapse
Affiliation(s)
- Yue Liu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's HospitalSouthern Medical UniversityGuangzhouChina
- Center for Sleep and Circadian MedicineThe Affiliated Brain Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Hongliang Feng
- Center for Sleep and Circadian MedicineThe Affiliated Brain Hospital of Guangzhou Medical UniversityGuangzhouChina
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of ChinaGuangzhou Medical UniversityGuangzhouChina
| | - Jing Du
- Center for Sleep and Circadian MedicineThe Affiliated Brain Hospital of Guangzhou Medical UniversityGuangzhouChina
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of ChinaGuangzhou Medical UniversityGuangzhouChina
| | - Lulu Yang
- Guangdong Cardiovascular Institute, Guangdong Provincial People's HospitalSouthern Medical UniversityGuangzhouChina
| | - Huachen Xue
- Center for Sleep and Circadian MedicineThe Affiliated Brain Hospital of Guangzhou Medical UniversityGuangzhouChina
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of ChinaGuangzhou Medical UniversityGuangzhouChina
| | - Jihui Zhang
- Center for Sleep and Circadian MedicineThe Affiliated Brain Hospital of Guangzhou Medical UniversityGuangzhouChina
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of ChinaGuangzhou Medical UniversityGuangzhouChina
| | - Yannis Yan Liang
- Center for Sleep and Circadian MedicineThe Affiliated Brain Hospital of Guangzhou Medical UniversityGuangzhouChina
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of ChinaGuangzhou Medical UniversityGuangzhouChina
- Institute of Psycho‐neuroscienceThe Affiliated Brain Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Yaping Liu
- Center for Sleep and Circadian MedicineThe Affiliated Brain Hospital of Guangzhou Medical UniversityGuangzhouChina
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of ChinaGuangzhou Medical UniversityGuangzhouChina
- Department of Psychiatry, Faculty of MedicineThe Chinese University of Hong KongHong KongChina
| |
Collapse
|
14
|
Li P, Gao L, Lucey BP, Ju YES, Musiek ES, Hu K. Longer sleep duration in Alzheimer's disease progression: a compensatory response? Sleep 2024; 47:zsae093. [PMID: 38602244 PMCID: PMC11168758 DOI: 10.1093/sleep/zsae093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Indexed: 04/12/2024] Open
Affiliation(s)
- Peng Li
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Lei Gao
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Brendan P Lucey
- Department of Neurology, Washington University School of Medicine, St Louis, MO, USA
- Center on Biological Rhythms and Sleep (COBRAS), Washington University School of Medicine, St Louis, MO, USA
| | - Yo-El S Ju
- Department of Neurology, Washington University School of Medicine, St Louis, MO, USA
- Center on Biological Rhythms and Sleep (COBRAS), Washington University School of Medicine, St Louis, MO, USA
- Department of Anesthesiology, Washington University, St Louis, MO, USA
| | - Erik S Musiek
- Department of Neurology, Washington University School of Medicine, St Louis, MO, USA
- Center on Biological Rhythms and Sleep (COBRAS), Washington University School of Medicine, St Louis, MO, USA
- Department of Anesthesiology, Washington University, St Louis, MO, USA
| | - Kun Hu
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
15
|
Danilevicz IM, van Hees VT, van der Heide FCT, Jacob L, Landré B, Benadjaoud MA, Sabia S. Measures of fragmentation of rest activity patterns: mathematical properties and interpretability based on accelerometer real life data. BMC Med Res Methodol 2024; 24:132. [PMID: 38849718 PMCID: PMC11157888 DOI: 10.1186/s12874-024-02255-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 05/24/2024] [Indexed: 06/09/2024] Open
Abstract
Accelerometers, devices that measure body movements, have become valuable tools for studying the fragmentation of rest-activity patterns, a core circadian rhythm dimension, using metrics such as inter-daily stability (IS), intradaily variability (IV), transition probability (TP), and self-similarity parameter (named α ). However, their use remains mainly empirical. Therefore, we investigated the mathematical properties and interpretability of rest-activity fragmentation metrics by providing mathematical proofs for the ranges of IS and IV, proposing maximum likelihood and Bayesian estimators for TP, introducing the activity balance index (ABI) metric, a transformation of α , and describing distributions of these metrics in real-life setting. Analysis of accelerometer data from 2,859 individuals (age=60-83 years, 21.1% women) from the Whitehall II cohort (UK) shows modest correlations between the metrics, except for ABI and α . Sociodemographic (age, sex, education, employment status) and clinical (body mass index (BMI), and number of morbidities) factors were associated with these metrics, with differences observed according to metrics. For example, a difference of 5 units in BMI was associated with all metrics (differences ranging between -0.261 (95% CI -0.302, -0.220) to 0.228 (0.18, 0.268) for standardised TP rest to activity during the awake period and TP activity to rest during the awake period, respectively). These results reinforce the value of these rest-activity fragmentation metrics in epidemiological and clinical studies to examine their role for health. This paper expands on a set of methods that have previously demonstrated empirical value, improves the theoretical foundation for these methods, and evaluates their empirical use in a large dataset.
Collapse
Affiliation(s)
- Ian Meneghel Danilevicz
- Université Paris Cité, INSERM, U1153, CRESS, Epidemiology of Ageing and Neurodegenerative Diseases, 10 Av de Verdun, 75010, Paris, France
| | | | - Frank C T van der Heide
- Université Paris Cité, INSERM, U1153, CRESS, Epidemiology of Ageing and Neurodegenerative Diseases, 10 Av de Verdun, 75010, Paris, France
| | - Louis Jacob
- Université Paris Cité, INSERM, U1153, CRESS, Epidemiology of Ageing and Neurodegenerative Diseases, 10 Av de Verdun, 75010, Paris, France
| | - Benjamin Landré
- Université Paris Cité, INSERM, U1153, CRESS, Epidemiology of Ageing and Neurodegenerative Diseases, 10 Av de Verdun, 75010, Paris, France
| | - Mohamed Amine Benadjaoud
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), 31 Av Division Leclerc, 92260, Fontenay-Aux-Roses, France
| | - Séverine Sabia
- Université Paris Cité, INSERM, U1153, CRESS, Epidemiology of Ageing and Neurodegenerative Diseases, 10 Av de Verdun, 75010, Paris, France.
- Department of Epidemiology and Public Health, University College London, London, UK.
| |
Collapse
|
16
|
Sheehan PW, Fass S, Sapkota D, Kang S, Hollis HC, Lawrence JH, Anafi RC, Dougherty JD, Fryer JD, Musiek ES. A glial circadian gene expression atlas reveals cell type and disease-specific reprogramming in response to amyloid pathology or aging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.28.596297. [PMID: 38853870 PMCID: PMC11160685 DOI: 10.1101/2024.05.28.596297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
While circadian rhythm disruption may promote neurodegenerative disease, how aging and neurodegenerative pathology impact circadian gene expression patterns in different brain cell types is unknown. Here, we used translating ribosome affinity purification methods to define the circadian translatomes of astrocytes, microglia, and bulk cerebral cortex, in healthy mouse brain and in the settings of amyloid-beta plaque pathology or aging. Our data reveal that glial circadian translatomes are highly cell type-specific and exhibit profound, context-dependent reprogramming of rhythmic transcripts in response to amyloid pathology or aging. Transcripts involved in glial activation, immunometabolism, and proteostasis, as well as nearly half of all Alzheimer Disease (AD)-associated risk genes, displayed circadian oscillations, many of which were altered by pathology. Amyloid-related differential gene expression was also dependent on time of day. Thus, circadian rhythms in gene expression are cell- and context dependent and provide important insights into glial gene regulation in health, AD, and aging.
Collapse
Affiliation(s)
- Patrick W. Sheehan
- Department of Neurology, Washington University School of Medicine, Saint Louis MO, USA
| | - Stuart Fass
- Department of Genetics, Washington University School of Medicine, Saint Louis MO, USA
- Department of Psychiatry, Washington University School of Medicine, Saint Louis MO, USA
| | - Darshan Sapkota
- Department of Genetics, Washington University School of Medicine, Saint Louis MO, USA
- Department of Psychiatry, Washington University School of Medicine, Saint Louis MO, USA
- Department of Biological Sciences and Department of Neuroscience, University of Texas at Dallas, Richardson, TX, USA
| | - Sylvia Kang
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Henry C. Hollis
- School of Biomedical Engineering and Health Systems, Drexel University, Philadelphia, PA, USA
| | - Jennifer H. Lawrence
- Department of Neurology, Washington University School of Medicine, Saint Louis MO, USA
| | - Ron C. Anafi
- Department of Medicine, Chronobiology, and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Joseph D. Dougherty
- Department of Genetics, Washington University School of Medicine, Saint Louis MO, USA
- Department of Psychiatry, Washington University School of Medicine, Saint Louis MO, USA
- Intellectual and Developmental Disabilities Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Jon D. Fryer
- Department of Neuroscience, Mayo Clinic, Scottsdale, AZ, USA
| | - Erik S. Musiek
- Department of Neurology, Washington University School of Medicine, Saint Louis MO, USA
- Center on Biological Rhythms and Sleep, Washington University School of Medicine, St. Louis, MO, USA
- Lead contact
| |
Collapse
|
17
|
Haghayegh S, Gao C, Sugg E, Zheng X, Yang HW, Saxena R, Rutter MK, Weedon M, Ibanez A, Bennett DA, Li P, Gao L, Hu K. Association of Rest-Activity Rhythm and Risk of Developing Dementia or Mild Cognitive Impairment in the Middle-Aged and Older Population: Prospective Cohort Study. JMIR Public Health Surveill 2024; 10:e55211. [PMID: 38713911 PMCID: PMC11109857 DOI: 10.2196/55211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/21/2024] [Accepted: 03/16/2024] [Indexed: 05/09/2024] Open
Abstract
BACKGROUND The relationship between 24-hour rest-activity rhythms (RARs) and risk for dementia or mild cognitive impairment (MCI) remains an area of growing interest. Previous studies were often limited by small sample sizes, short follow-ups, and older participants. More studies are required to fully explore the link between disrupted RARs and dementia or MCI in middle-aged and older adults. OBJECTIVE We leveraged the UK Biobank data to examine how RAR disturbances correlate with the risk of developing dementia and MCI in middle-aged and older adults. METHODS We analyzed the data of 91,517 UK Biobank participants aged between 43 and 79 years. Wrist actigraphy recordings were used to derive nonparametric RAR metrics, including the activity level of the most active 10-hour period (M10) and its midpoint, the activity level of the least active 5-hour period (L5) and its midpoint, relative amplitude (RA) of the 24-hour cycle [RA=(M10-L5)/(M10+L5)], interdaily stability, and intradaily variability, as well as the amplitude and acrophase of 24-hour rhythms (cosinor analysis). We used Cox proportional hazards models to examine the associations between baseline RAR and subsequent incidence of dementia or MCI, adjusting for demographic characteristics, comorbidities, lifestyle factors, shiftwork status, and genetic risk for Alzheimer's disease. RESULTS During the follow-up of up to 7.5 years, 555 participants developed MCI or dementia. The dementia or MCI risk increased for those with lower M10 activity (hazard ratio [HR] 1.28, 95% CI 1.14-1.44, per 1-SD decrease), higher L5 activity (HR 1.15, 95% CI 1.10-1.21, per 1-SD increase), lower RA (HR 1.23, 95% CI 1.16-1.29, per 1-SD decrease), lower amplitude (HR 1.32, 95% CI 1.17-1.49, per 1-SD decrease), and higher intradaily variability (HR 1.14, 95% CI 1.05-1.24, per 1-SD increase) as well as advanced L5 midpoint (HR 0.92, 95% CI 0.85-0.99, per 1-SD advance). These associations were similar in people aged <70 and >70 years, and in non-shift workers, and they were independent of genetic and cardiovascular risk factors. No significant associations were observed for M10 midpoint, interdaily stability, or acrophase. CONCLUSIONS Based on findings from a large sample of middle-to-older adults with objective RAR assessment and almost 8-years of follow-up, we suggest that suppressed and fragmented daily activity rhythms precede the onset of dementia or MCI and may serve as risk biomarkers for preclinical dementia in middle-aged and older adults.
Collapse
Affiliation(s)
- Shahab Haghayegh
- Massachusetts General Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Broad Institute, Cambridge, MA, United States
- Brigham and Women's Hospital, Boston, MA, United States
| | - Chenlu Gao
- Massachusetts General Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Broad Institute, Cambridge, MA, United States
- Brigham and Women's Hospital, Boston, MA, United States
| | - Elizabeth Sugg
- Massachusetts General Hospital, Boston, MA, United States
| | - Xi Zheng
- Brigham and Women's Hospital, Boston, MA, United States
| | - Hui-Wen Yang
- Brigham and Women's Hospital, Boston, MA, United States
| | - Richa Saxena
- Massachusetts General Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Broad Institute, Cambridge, MA, United States
| | - Martin K Rutter
- Faculty of Medicine, Biology and Health, University of Manchester, Manchester, United Kingdom
- Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, NIHR Manchester Biomedical Research Centre, Manchester, United Kingdom
| | | | | | | | - Peng Li
- Massachusetts General Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Broad Institute, Cambridge, MA, United States
- Brigham and Women's Hospital, Boston, MA, United States
| | - Lei Gao
- Massachusetts General Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Kun Hu
- Massachusetts General Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Broad Institute, Cambridge, MA, United States
- Brigham and Women's Hospital, Boston, MA, United States
| |
Collapse
|
18
|
Guu T, Brem A, Albertyn CP, Kandangwa P, Aarsland D, ffytche D. Wrist-worn actigraphy in agitated late-stage dementia patients: A feasibility study on digital inclusion. Alzheimers Dement 2024; 20:3211-3218. [PMID: 38497216 PMCID: PMC11095432 DOI: 10.1002/alz.13772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 02/06/2024] [Indexed: 03/19/2024]
Abstract
BACKGROUND Wrist-worn actigraphy can be an objective tool to assess sleep and other behavioral and psychological symptoms in dementia (BPSD). We investigated the feasibility of using wearable actigraphy in agitated late-stage dementia patients. METHODS Agitated, late-stage Alzheimer's dementia care home residents in Greater London area (n = 29; 14 females, mean age ± SD: 80.8 ± 8.2; 93.1% White) were recruited to wear an actigraphy watch for 4 weeks. Wearing time was extracted to evaluate compliance, and factors influencing compliance were explored. RESULTS A high watch-acceptance (96.6%) and compliance rate (88.0%) was noted. Non-compliance was not associated with age or BPSD symptomatology. However, participants with "better" cognitive function (R = 0.42, p = 0.022) and during nightshift (F1.240, 33.475 = 8.075, p = 0.005) were less compliant. Female participants were also marginally less compliant (F1, 26 = 3.790, p = 0.062). DISCUSSIONS Wrist-worn actigraphy appears acceptable and feasible in late-stage agitated dementia patients. Accommodating the needs of both the patients and their carers may further improve compliance.
Collapse
Affiliation(s)
- Ta‐Wei Guu
- Department of Old Age PsychiatryInstitute of PsychiatryPsychology and Neuroscience, King's College LondonLondonUK
- Division of PsychiatryDepartments of Internal MedicineChina Medical University Beigang HospitalYunlinTaiwan
- Sleep Medicine Center and Mind‐Body Interface Laboratory (MBI‐Lab)China Medical University HospitalTaichungTaiwan
| | - Anna‐Katharine Brem
- Department of Old Age PsychiatryInstitute of PsychiatryPsychology and Neuroscience, King's College LondonLondonUK
- University Hospital of Old Age Psychiatry, University of BernBernSwitzerland
| | - Christopher P. Albertyn
- Department of Old Age PsychiatryInstitute of PsychiatryPsychology and Neuroscience, King's College LondonLondonUK
| | - Pooja Kandangwa
- Department of Old Age PsychiatryInstitute of PsychiatryPsychology and Neuroscience, King's College LondonLondonUK
| | - Dag Aarsland
- Department of Old Age PsychiatryInstitute of PsychiatryPsychology and Neuroscience, King's College LondonLondonUK
- Centre for Age‐Related MedicineStavanger University HospitalStavangerNorway
- National Institute for Health Research (NIHR) Maudsley Biomedical Research Centre (BRC) at South London and Maudsley NHS Foundation TrustLondonUK
| | - Dominic ffytche
- Department of Old Age PsychiatryInstitute of PsychiatryPsychology and Neuroscience, King's College LondonLondonUK
- National Institute for Health Research (NIHR) Maudsley Biomedical Research Centre (BRC) at South London and Maudsley NHS Foundation TrustLondonUK
| |
Collapse
|
19
|
Sugg E, Gleeson E, Baker SN, Li P, Gao C, Mueller A, Deng H, Shen S, Franco-Garcia E, Saxena R, Musiek ES, Akeju O, Xie Z, Hu K, Gao L. Sleep and circadian biomarkers of postoperative delirium (SLEEP-POD): protocol for a prospective and observational cohort study. BMJ Open 2024; 14:e080796. [PMID: 38643014 PMCID: PMC11033637 DOI: 10.1136/bmjopen-2023-080796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 03/06/2024] [Indexed: 04/22/2024] Open
Abstract
INTRODUCTION Surgical patients over 70 experience postoperative delirium (POD) complications in up to 50% of procedures. Sleep/circadian disruption has emerged as a potential risk factor for POD in epidemiological studies. This protocol presents a single-site, prospective observational study designed to examine the relationship between sleep/circadian regulation and POD and how this association could be moderated or mediated by Alzheimer's disease (AD) pathology and genetic risk for AD. METHODS AND ANALYSIS Study staff members will screen for eligible patients (age ≥70) seeking joint replacement or spinal surgery at Massachusetts General Hospital (MGH). At the inclusion visit, patients will be asked a series of questionnaires related to sleep and cognition, conduct a four-lead ECG recording and be fitted for an actigraphy watch to wear for 7 days before surgery. Blood samples will be collected preoperatively and postoperatively and will be used to gather information about AD variant genes (APOE-ε4) and AD-related pathology (total and phosphorylated tau). Confusion Assessment Method-Scale and Montreal Cognitive Assessment will be completed twice daily for 3 days after surgery. Seven-day actigraphy assessments and Patient-Reported Outcomes Measurement Information System questionnaires will be performed 1, 3 and 12 months after surgery. Relevant patient clinical data will be monitored and recorded throughout the study. ETHICS AND DISSEMINATION This study is approved by the IRB at MGH, Boston, and it is registered with the US National Institutes of Health on ClinicalTrials.gov (NCT06052397). Plans for dissemination include conference presentations at a variety of scientific institutions. Results from this study are intended to be published in peer-reviewed journals. Relevant updates will be made available on ClinicalTrials.gov. TRIAL REGISTRATION NUMBER NCT06052397.
Collapse
Affiliation(s)
- Elizabeth Sugg
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Medical Biodynamics Center, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Elizabeth Gleeson
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Sarah N Baker
- Hackensack Meridian School of Medicine, Nutley, New Jersey, USA
| | - Peng Li
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Medical Biodynamics Center, Massachusetts General Hospital, Boston, Massachusetts, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Department of Medicine, Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Chenlu Gao
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Medical Biodynamics Center, Massachusetts General Hospital, Boston, Massachusetts, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Department of Medicine, Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Ariel Mueller
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Hao Deng
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Shiqian Shen
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Esteban Franco-Garcia
- Department of Internal Medicine, Division of Palliative Care and Geriatric Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Richa Saxena
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Erik S Musiek
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri, USA
- Center on Biological Rhythms and Sleep (COBRAS), Washington University School of Medicine, St Louis, Missouri, USA
- Department of Anesthesiology, Washington University School of Medicine, St Louis, Missouri, USA
| | - Oluwaseun Akeju
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Zhongcong Xie
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Kun Hu
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Medical Biodynamics Center, Massachusetts General Hospital, Boston, Massachusetts, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Department of Medicine, Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Lei Gao
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Medical Biodynamics Center, Massachusetts General Hospital, Boston, Massachusetts, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Department of Medicine, Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, Massachusetts, USA
| |
Collapse
|
20
|
Van Egroo M, van Someren EJW, Grinberg LT, Bennett DA, Jacobs HIL. Associations of 24-Hour Rest-Activity Rhythm Fragmentation, Cognitive Decline, and Postmortem Locus Coeruleus Hypopigmentation in Alzheimer's Disease. Ann Neurol 2024; 95:653-664. [PMID: 38407546 DOI: 10.1002/ana.26880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 01/23/2024] [Accepted: 01/27/2024] [Indexed: 02/27/2024]
Abstract
OBJECTIVE While studies suggested that locus coeruleus (LC) neurodegeneration contributes to sleep-wake dysregulation in Alzheimer's disease (AD), the association between LC integrity and circadian rest-activity patterns remains unknown. Here, we investigated the relationships between 24-hour rest-activity rhythms, cognitive trajectories, and autopsy-derived LC integrity in older adults with and without cortical AD neuropathology. METHODS This retrospective study leveraged multi-modal data from participants of the longitudinal clinical-pathological Rush Memory and Aging Project. Indices of 24-hour rest-activity rhythm fragmentation (intradaily variability) and stability (interdaily stability) were extracted from annual actigraphic recordings, and cognitive trajectories were computed from annual cognitive evaluations. At autopsy, LC neurodegeneration was determined by the presence of hypopigmentation, and cortical AD neuropathology was assessed. Contributions of comorbid pathologies (Lewy bodies, cerebrovascular pathology) were evaluated. RESULTS Among the 388 cases included in the study sample (age at death = 92.1 ± 5.9 years; 273 women), 98 (25.3%) displayed LC hypopigmentation, and 251 (64.7%) exhibited cortical AD neuropathology. Logistic regression models showed that higher rest-activity rhythm fragmentation, measured up to ~7.1 years before death, was associated with increased risk to display LC neurodegeneration at autopsy (odds ratio [OR] = 1.46, 95% confidence interval [CI95%]: 1.16-1.84, pBONF = 0.004), particularly in individuals with cortical AD neuropathology (OR = 1.56, CI95%: 1.15-2.15, pBONF = 0.03) and independently of comorbid pathologies. In addition, longitudinal increases in rest-activity rhythm fragmentation partially mediated the association between LC neurodegeneration and cognitive decline (estimate = -0.011, CI95%: -0.023--0.002, pBONF = 0.03). INTERPRETATION These findings highlight the LC as a neurobiological correlate of sleep-wake dysregulation in AD, and further underscore the clinical relevance of monitoring rest-activity patterns for improved detection of at-risk individuals. ANN NEUROL 2024;95:653-664.
Collapse
Affiliation(s)
- Maxime Van Egroo
- Faculty of Health, Medicine and Life Sciences, School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, Maastricht, The Netherlands
| | - Eus J W van Someren
- Department of Sleep and Cognition, Netherlands Institute for Neuroscience, Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Department of Psychiatry, Amsterdam UMC, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Lea T Grinberg
- Department of Pathology, LIM-22, University of São Paulo Medical School, São Paulo, Brazil
- Memory and Aging Center, Department of Neurology, and Pathology, University of California, San Francisco, California, USA
- Global Brain Health Institute, University of California, San Francisco, California, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, Illinois, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois, USA
| | - Heidi I L Jacobs
- Faculty of Health, Medicine and Life Sciences, School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, Maastricht, The Netherlands
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
21
|
Winer JR, Lok R, Weed L, He Z, Poston KL, Mormino EC, Zeitzer JM. Impaired 24-h activity patterns are associated with an increased risk of Alzheimer's disease, Parkinson's disease, and cognitive decline. Alzheimers Res Ther 2024; 16:35. [PMID: 38355598 PMCID: PMC10865579 DOI: 10.1186/s13195-024-01411-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 02/05/2024] [Indexed: 02/16/2024]
Abstract
BACKGROUND Sleep-wake regulating circuits are affected during prodromal stages in the pathological progression of both Alzheimer's disease (AD) and Parkinson's disease (PD), and this disturbance can be measured passively using wearable devices. Our objective was to determine whether accelerometer-based measures of 24-h activity are associated with subsequent development of AD, PD, and cognitive decline. METHODS This study obtained UK Biobank data from 82,829 individuals with wrist-worn accelerometer data aged 40 to 79 years with a mean (± SD) follow-up of 6.8 (± 0.9) years. Outcomes were accelerometer-derived measures of 24-h activity (derived by cosinor, nonparametric, and functional principal component methods), incident AD and PD diagnosis (obtained through hospitalization or primary care records), and prospective longitudinal cognitive testing. RESULTS One hundred eighty-seven individuals progressed to AD and 265 to PD. Interdaily stability (a measure of regularity, hazard ratio [HR] per SD increase 1.25, 95% confidence interval [CI] 1.05-1.48), diurnal amplitude (HR 0.79, CI 0.65-0.96), mesor (mean activity; HR 0.77, CI 0.59-0.998), and activity during most active 10 h (HR 0.75, CI 0.61-0.94), were associated with risk of AD. Diurnal amplitude (HR 0.28, CI 0.23-0.34), mesor (HR 0.13, CI 0.10-0.16), activity during least active 5 h (HR 0.24, CI 0.08-0.69), and activity during most active 10 h (HR 0.20, CI 0.16-0.25) were associated with risk of PD. Several measures were additionally predictive of longitudinal cognitive test performance. CONCLUSIONS In this community-based longitudinal study, accelerometer-derived metrics were associated with elevated risk of AD, PD, and accelerated cognitive decline. These findings suggest 24-h rhythm integrity, as measured by affordable, non-invasive wearable devices, may serve as a scalable early marker of neurodegenerative disease.
Collapse
Affiliation(s)
- Joseph R Winer
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, 453 Quarry Road, Palo Alto, CA, 94304, USA.
| | - Renske Lok
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Lara Weed
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Zihuai He
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, 453 Quarry Road, Palo Alto, CA, 94304, USA
| | - Kathleen L Poston
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, 453 Quarry Road, Palo Alto, CA, 94304, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Elizabeth C Mormino
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, 453 Quarry Road, Palo Alto, CA, 94304, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Jamie M Zeitzer
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
- Sierra-Pacific Mental Illness Research, Education, and Clinical Center (MIRECC), Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| |
Collapse
|
22
|
Blanco-Duque C, Chan D, Kahn MC, Murdock MH, Tsai LH. Audiovisual gamma stimulation for the treatment of neurodegeneration. J Intern Med 2024; 295:146-170. [PMID: 38115692 PMCID: PMC10842797 DOI: 10.1111/joim.13755] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Alzheimer's disease (AD) is the most common type of neurodegenerative disease and a health challenge with major social and economic consequences. In this review, we discuss the therapeutic potential of gamma stimulation in treating AD and delve into the possible mechanisms responsible for its positive effects. Recent studies reveal that it is feasible and safe to induce 40 Hz brain activity in AD patients through a range of 40 Hz multisensory and noninvasive electrical or magnetic stimulation methods. Although research into the clinical potential of these interventions is still in its nascent stages, these studies suggest that 40 Hz stimulation can yield beneficial effects on brain function, disease pathology, and cognitive function in individuals with AD. Specifically, we discuss studies involving 40 Hz light, auditory, and vibrotactile stimulation, as well as noninvasive techniques such as transcranial alternating current stimulation and transcranial magnetic stimulation. The precise mechanisms underpinning the beneficial effects of gamma stimulation in AD are not yet fully elucidated, but preclinical studies have provided relevant insights. We discuss preclinical evidence related to both neuronal and nonneuronal mechanisms that may be involved, touching upon the relevance of interneurons, neuropeptides, and specific synaptic mechanisms in translating gamma stimulation into widespread neuronal activity within the brain. We also explore the roles of microglia, astrocytes, and the vasculature in mediating the beneficial effects of gamma stimulation on brain function. Lastly, we examine upcoming clinical trials and contemplate the potential future applications of gamma stimulation in the management of neurodegenerative disorders.
Collapse
Affiliation(s)
- Cristina Blanco-Duque
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Diane Chan
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Martin C Kahn
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Mitchell H Murdock
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Li-Huei Tsai
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
23
|
Yiallourou SR, Cribb L, Cavuoto MG, Rowsthorn E, Nicolazzo J, Gibson M, Baril AA, Pase MP. Association of the Sleep Regularity Index With Incident Dementia and Brain Volume. Neurology 2024; 102:e208029. [PMID: 38165323 DOI: 10.1212/wnl.0000000000208029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Irregular sleep may increase the risk of cardiometabolic conditions, but its association with incident dementia is unclear. The aim of this study was to assess the association between sleep regularity, that is, the day-to-day consistency in sleep-wake patterns and the risk of incident dementia and related brain MRI endophenotypes. METHODS We used Cox proportional hazard models to investigate the relationships between sleep regularity and incident dementia in 88,094 UK Biobank participants. The sleep regularity index (SRI) was calculated as the probability of being in the same state (asleep/awake) at any 2 time points 24 hours apart, averaged over 7 days of accelerometry. RESULTS The mean age of the sample was 62 years (SD = 8), 56% were women, and the median SRI was 60 (SD = 10). There were 480 cases of incident dementia over a median 7.2 years of follow-up. Following adjustments for demographic, clinical, and genetic confounders (APOE ε4), there was a nonlinear association between the SRI and dementia hazard (p [global test of spline term] < 0.001) with hazard ratios (HRs) following a U-shape pattern. HRs, relative to the median SRI, were 1.53 (95% CI 1.24-1.89) for participants with SRI at the 5th percentile (SRI = 41) and 1.16 (95% CI 0.89-1.50) for those with SRI at the 95th percentile (SRI = 71). In a subset with brain MRI (n = 15,263), gray matter and hippocampal volume tended to be lowest at the extremes of the SRI. DISCUSSION Sleep regularity displayed a U-shaped association with risk of incident dementia. Irregular sleep may represent a novel dementia risk factor.
Collapse
Affiliation(s)
- Stephanie R Yiallourou
- From the Turner Institute for Brain and Mental Health (S.R.Y., L.C., M.G.C., E.R., J.N., M.G., M.P.P.), School of Psychological Science, Monash University; National Ageing Research Institute (M.G.C.), Melbourne, Australia; Douglas Mental Health University Institute (A.-A.B.), McGill University, Montreal, Quebec, Canada; and Harvard T.H. Chan School of Public Health (M.P.P.), Harvard University, Boston, MA
| | - Lachlan Cribb
- From the Turner Institute for Brain and Mental Health (S.R.Y., L.C., M.G.C., E.R., J.N., M.G., M.P.P.), School of Psychological Science, Monash University; National Ageing Research Institute (M.G.C.), Melbourne, Australia; Douglas Mental Health University Institute (A.-A.B.), McGill University, Montreal, Quebec, Canada; and Harvard T.H. Chan School of Public Health (M.P.P.), Harvard University, Boston, MA
| | - Marina G Cavuoto
- From the Turner Institute for Brain and Mental Health (S.R.Y., L.C., M.G.C., E.R., J.N., M.G., M.P.P.), School of Psychological Science, Monash University; National Ageing Research Institute (M.G.C.), Melbourne, Australia; Douglas Mental Health University Institute (A.-A.B.), McGill University, Montreal, Quebec, Canada; and Harvard T.H. Chan School of Public Health (M.P.P.), Harvard University, Boston, MA
| | - Ella Rowsthorn
- From the Turner Institute for Brain and Mental Health (S.R.Y., L.C., M.G.C., E.R., J.N., M.G., M.P.P.), School of Psychological Science, Monash University; National Ageing Research Institute (M.G.C.), Melbourne, Australia; Douglas Mental Health University Institute (A.-A.B.), McGill University, Montreal, Quebec, Canada; and Harvard T.H. Chan School of Public Health (M.P.P.), Harvard University, Boston, MA
| | - Jessica Nicolazzo
- From the Turner Institute for Brain and Mental Health (S.R.Y., L.C., M.G.C., E.R., J.N., M.G., M.P.P.), School of Psychological Science, Monash University; National Ageing Research Institute (M.G.C.), Melbourne, Australia; Douglas Mental Health University Institute (A.-A.B.), McGill University, Montreal, Quebec, Canada; and Harvard T.H. Chan School of Public Health (M.P.P.), Harvard University, Boston, MA
| | - Madeline Gibson
- From the Turner Institute for Brain and Mental Health (S.R.Y., L.C., M.G.C., E.R., J.N., M.G., M.P.P.), School of Psychological Science, Monash University; National Ageing Research Institute (M.G.C.), Melbourne, Australia; Douglas Mental Health University Institute (A.-A.B.), McGill University, Montreal, Quebec, Canada; and Harvard T.H. Chan School of Public Health (M.P.P.), Harvard University, Boston, MA
| | - Andrée-Ann Baril
- From the Turner Institute for Brain and Mental Health (S.R.Y., L.C., M.G.C., E.R., J.N., M.G., M.P.P.), School of Psychological Science, Monash University; National Ageing Research Institute (M.G.C.), Melbourne, Australia; Douglas Mental Health University Institute (A.-A.B.), McGill University, Montreal, Quebec, Canada; and Harvard T.H. Chan School of Public Health (M.P.P.), Harvard University, Boston, MA
| | - Matthew P Pase
- From the Turner Institute for Brain and Mental Health (S.R.Y., L.C., M.G.C., E.R., J.N., M.G., M.P.P.), School of Psychological Science, Monash University; National Ageing Research Institute (M.G.C.), Melbourne, Australia; Douglas Mental Health University Institute (A.-A.B.), McGill University, Montreal, Quebec, Canada; and Harvard T.H. Chan School of Public Health (M.P.P.), Harvard University, Boston, MA
| |
Collapse
|
24
|
Zhang T, Kim BM, Lee TH. Death-associated protein kinase 1 as a therapeutic target for Alzheimer's disease. Transl Neurodegener 2024; 13:4. [PMID: 38195518 PMCID: PMC10775678 DOI: 10.1186/s40035-023-00395-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 12/18/2023] [Indexed: 01/11/2024] Open
Abstract
Alzheimer's disease (AD) is the most prevalent form of dementia in the elderly and represents a major clinical challenge in the ageing society. Neuropathological hallmarks of AD include neurofibrillary tangles composed of hyperphosphorylated tau, senile plaques derived from the deposition of amyloid-β (Aβ) peptides, brain atrophy induced by neuronal loss, and synaptic dysfunctions. Death-associated protein kinase 1 (DAPK1) is ubiquitously expressed in the central nervous system. Dysregulation of DAPK1 has been shown to contribute to various neurological diseases including AD, ischemic stroke and Parkinson's disease (PD). We have established an upstream effect of DAPK1 on Aβ and tau pathologies and neuronal apoptosis through kinase-mediated protein phosphorylation, supporting a causal role of DAPK1 in the pathophysiology of AD. In this review, we summarize current knowledge about how DAPK1 is involved in various AD pathological changes including tau hyperphosphorylation, Aβ deposition, neuronal cell death and synaptic degeneration. The underlying molecular mechanisms of DAPK1 dysregulation in AD are discussed. We also review the recent progress regarding the development of novel DAPK1 modulators and their potential applications in AD intervention. These findings substantiate DAPK1 as a novel therapeutic target for the development of multifunctional disease-modifying treatments for AD and other neurological disorders.
Collapse
Affiliation(s)
- Tao Zhang
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, Institute of Basic Medicine, School of Basic Medical Sciences, Fujian Medical University, 1 Xuefu North Road, Fuzhou, 350122, Fujian, China
| | - Byeong Mo Kim
- Research Center for New Drug Development, AgingTarget Inc., 10F Ace Cheonggye Tower, 53, Seonggogae-Ro, Uiwang-Si, 16006, Gyeonggi-Do, Korea.
| | - Tae Ho Lee
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, Institute of Basic Medicine, School of Basic Medical Sciences, Fujian Medical University, 1 Xuefu North Road, Fuzhou, 350122, Fujian, China.
| |
Collapse
|
25
|
Britz J, Ojo E, Haque N, Dhukhwa A, Hascup ER, Hascup KN, Tischkau SA. Sex-Dependent Effects of Chronic Circadian Disruption in AβPP/PS1 Mice. J Alzheimers Dis 2024; 97:855-870. [PMID: 38143343 PMCID: PMC10860643 DOI: 10.3233/jad-230089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2023]
Abstract
BACKGROUND Chronic disruption of the circadian timing system, often reflected as a loss of restful sleep, also includes myriad other pathophysiological effects. OBJECTIVE The current study examined how chronic circadian disruption (CD) could contribute to pathology and rate of progression in the AβPP/PS1 mouse model of Alzheimer's disease (AD). METHODS A chronic CD was imposed until animals reached 6 or 12 months of age in AβPP/PS1 and C57BL/6J control mice. Home cage activity was monitored for a period of 3-4 weeks prior to the endpoint along with a single timepoint measure of glucose sensitivity. To assess long term effects of CD on the AD phenotype, animals were re-entrained to a no disruption (ND) schedule just prior to the endpoint, after which a Morris water maze (MWM) was used to assess spatial learning and memory. RESULTS Dampening of nighttime activity levels occurred in disrupted animals, and female animals demonstrated a greater adaptability to CD. Diminished arginine vasopressin (AVP) and vasoactive intestinal peptide (VIP) levels in the suprachiasmatic nucleus (SCN) of 12-month male AβPP/PS1 exposed to the CD paradigm were observed, potentially accounting for the diminished re-entrainment response. Similarly, CD worsened performance in the MWM in 12-month male AβPP/PS1 animals, whereas no effect was seen in females. CONCLUSIONS Collectively, these findings show that exposure to chronic CD impairs circadian behavioral patterns and cognitive phenotypes of AβPP/PS1 mouse model in a sex-dependent manner.
Collapse
Affiliation(s)
- Jesse Britz
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Emmanuel Ojo
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Nazmul Haque
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Asmita Dhukhwa
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Erin R. Hascup
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, USA
- Department of Neurology, Dale and Deborah Smith Center for Alzheimer’s Research and Treatment, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Kevin N. Hascup
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, USA
- Department of Neurology, Dale and Deborah Smith Center for Alzheimer’s Research and Treatment, Southern Illinois University School of Medicine, Springfield, IL, USA
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Shelley A. Tischkau
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, USA
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL, USA
| |
Collapse
|
26
|
Baril A, Picard C, Labonté A, Sanchez E, Duclos C, Mohammediyan B, Ashton NJ, Zetterberg H, Blennow K, Breitner JCS, Villeneuve S, Poirier J. Day-to-day sleep variability with Alzheimer's biomarkers in at-risk elderly. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2024; 16:e12521. [PMID: 38371359 PMCID: PMC10870017 DOI: 10.1002/dad2.12521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 12/04/2023] [Accepted: 12/08/2023] [Indexed: 02/20/2024]
Abstract
INTRODUCTION Measuring day-to-day sleep variability might reveal unstable sleep-wake cycles reflecting neurodegenerative processes. We evaluated the association between Alzheimer's disease (AD) fluid biomarkers with day-to-day sleep variability. METHODS In the PREVENT-AD cohort, 203 dementia-free participants (age: 68.3 ± 5.4; 78 males) with a parental history of sporadic AD were tested with actigraphy and fluid biomarkers. Day-to-day variability (standard deviations over a week) was assessed for sleep midpoint, duration, efficiency, and nighttime activity count. RESULTS Lower cerebrospinal fluid (CSF) ApoE, higher CSF p-tau181/amyloid-β (Aβ)42, and higher plasma p-tau231/Aβ42 were associated with higher variability of sleep midpoint, sleep duration, and/or activity count. The associations between fluid biomarkers with greater sleep duration variability were especially observed in those that carried the APOE4 allele, mild cognitive impairment converters, or those with gray matter atrophy. DISCUSSION Day-to-day sleep variability were associated with biomarkers of AD in at-risk individuals, suggesting that unstable sleep promotes neurodegeneration or, conversely, that AD neuropathology disrupts sleep-wake cycles.
Collapse
Affiliation(s)
- Andrée‐Ann Baril
- Douglas Mental Health University InstituteMcGill UniversityMontrealQuébecCanada
| | - Cynthia Picard
- Douglas Mental Health University InstituteMcGill UniversityMontrealQuébecCanada
| | - Anne Labonté
- Douglas Mental Health University InstituteMcGill UniversityMontrealQuébecCanada
| | - Erlan Sanchez
- Sunnybrook Research InstituteUniversity of TorontoTorontoOntarioCanada
| | - Catherine Duclos
- Hôpital du Sacré‐Coeur de MontréalCIUSSS‐NIMMontréalQuébecCanada
- Department of Anesthesiology and Pain MedicineUniversité de MontréalMontréalQuébecCanada
| | - Béry Mohammediyan
- Douglas Mental Health University InstituteMcGill UniversityMontrealQuébecCanada
| | - Nicholas J. Ashton
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience & Physiologythe Sahlgrenska Academy at the University of GothenburgMölndalSweden
- King's College LondonInstitute of PsychiatryPsychology and Neuroscience Maurice Wohl Institute Clinical Neuroscience InstituteLondonUK
- NIHR Biomedical Research Centre for Mental Health and Biomedical Research Unit for Dementia at South London and Maudsley NHS FoundationLondonUK
- Centre for Age‐Related MedicineStavanger University HospitalStavangerNorway
| | - Henrik Zetterberg
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience & Physiologythe Sahlgrenska Academy at the University of GothenburgMölndalSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
- Department of Neurodegenerative DiseaseUCL Institute of NeurologyQueen SquareLondonUK
- UK Dementia Research Institute at UCLLondonUK
- Hong Kong Center for Neurodegenerative DiseasesClear Water BayHong KongChina
| | - Kaj Blennow
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience & Physiologythe Sahlgrenska Academy at the University of GothenburgMölndalSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
| | - John C. S. Breitner
- Douglas Mental Health University InstituteMcGill UniversityMontrealQuébecCanada
| | - Sylvia Villeneuve
- Douglas Mental Health University InstituteMcGill UniversityMontrealQuébecCanada
| | - Judes Poirier
- Douglas Mental Health University InstituteMcGill UniversityMontrealQuébecCanada
| | | |
Collapse
|
27
|
Johnson CE, Duncan MJ, Murphy MP. Sex and Sleep Disruption as Contributing Factors in Alzheimer's Disease. J Alzheimers Dis 2024; 97:31-74. [PMID: 38007653 PMCID: PMC10842753 DOI: 10.3233/jad-230527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2023]
Abstract
Alzheimer's disease (AD) affects more women than men, with women throughout the menopausal transition potentially being the most under researched and at-risk group. Sleep disruptions, which are an established risk factor for AD, increase in prevalence with normal aging and are exacerbated in women during menopause. Sex differences showing more disrupted sleep patterns and increased AD pathology in women and female animal models have been established in literature, with much emphasis placed on loss of circulating gonadal hormones with age. Interestingly, increases in gonadotropins such as follicle stimulating hormone are emerging to be a major contributor to AD pathogenesis and may also play a role in sleep disruption, perhaps in combination with other lesser studied hormones. Several sleep influencing regions of the brain appear to be affected early in AD progression and some may exhibit sexual dimorphisms that may contribute to increased sleep disruptions in women with age. Additionally, some of the most common sleep disorders, as well as multiple health conditions that impair sleep quality, are more prevalent and more severe in women. These conditions are often comorbid with AD and have bi-directional relationships that contribute synergistically to cognitive decline and neuropathology. The association during aging of increased sleep disruption and sleep disorders, dramatic hormonal changes during and after menopause, and increased AD pathology may be interacting and contributing factors that lead to the increased number of women living with AD.
Collapse
Affiliation(s)
- Carrie E. Johnson
- University of Kentucky, College of Medicine, Department of Molecular and Cellular Biochemistry, Lexington, KY, USA
| | - Marilyn J. Duncan
- University of Kentucky, College of Medicine, Department of Neuroscience, Lexington, KY, USA
| | - M. Paul Murphy
- University of Kentucky, College of Medicine, Department of Molecular and Cellular Biochemistry, Lexington, KY, USA
- University of Kentucky, Sanders-Brown Center on Aging, Lexington, KY, USA
| |
Collapse
|
28
|
Kim SJ, Lee JH, Jang JW, Jung HS, Suh IB. Abnormalities of Rest-Activity and Light Exposure Rhythms Associated with Cognitive Function in Patients with Mild Cognitive Impairment (MCI). J Circadian Rhythms 2023; 21:4. [PMID: 38162255 PMCID: PMC10756154 DOI: 10.5334/jcr.227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 10/05/2023] [Indexed: 01/03/2024] Open
Abstract
We aimed to examine the difference in rest-activity rhythm (RAR) and light exposure rhythm (LER) between patients with mild cognitive impairment (MCI) and normal controls (NC), and to verify their relationships with cognitive functions. The neuropsychological battery was administered to participants above 50 years old. The MCI diagnosis was made according to Petersen's criteria. Ten patients with MCI (77.90 ± 6.95 years) and eight NC (74.75 ± 5.06 years) were studied. Actigraphy (Actiwatch 2; Philips Respironics) was recorded at home for 5 days. RAR and LER variables, including interdaily stability (IS), intradaily variability (IV) and relative amplitude, were calculated using nonparametric analyses. The associations between cognitive performance and RAR and LER variables were explored using generalized linear models. There were no significant differences in RAR or LER variables between MCI and NC. There was a significant main effect of RAR-IS on the Stroop Color and Word Test (SCWT), indicating a positive relationship between RAR stability and SCWT performance. There was a significant group by RAR-IS interaction on Trail Making Test-A, indicating a negative relationship in MCI compared to NC. There was a significant group by LER-IV interaction on the Boston Naming Test, indicating a positive relationship in MCI compared to NC. There was no disruption in RAR and LER in patients with MCI. Our study showed that circadian rhythm abnormality was associated with a decline in executive function. However, circadian rhythm abnormality was not associated with declines in processing speed and language function in patients with MCI, implying an altered pathophysiology compared to NC.
Collapse
Affiliation(s)
- Seong Jae Kim
- Department of Psychiatry, Chosun University College of Medicine, Gwangju, South Korea
- Department of Psychiatry, Chosun University Hospital, Gwangju, South Korea
| | - Jung Hie Lee
- Department of Psychiatry, Kangwon National University School of Medicine, Chuncheon, South Korea
- Department of Psychiatry, Gwanggyo Good Sleep Clinic, Suwon, South Korea
| | - Jae-Won Jang
- Department of Neurology, Kangwon National University School of Medicine, Chuncheon, South Korea
| | - Hee Seo Jung
- Department of Psychiatry, Kangwon National University Hospital, Chuncheon, South Korea
| | - In Bum Suh
- Department of Laboratory Medicine, Kangwon National University School of Medicine, Chuncheon, South Korea
| |
Collapse
|
29
|
Cai R, Gao L, Gao C, Yu L, Zheng X, Bennett DA, Buchman AS, Hu K, Li P. Circadian disturbances and frailty risk in older adults. Nat Commun 2023; 14:7219. [PMID: 37973796 PMCID: PMC10654720 DOI: 10.1038/s41467-023-42727-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 10/19/2023] [Indexed: 11/19/2023] Open
Abstract
Frailty is characterized by diminished resilience to stressor events. It is associated with adverse future health outcomes and impedes healthy aging. The circadian system orchestrates ~24-h rhythms in bodily functions in synchrony with the day-night cycle, and disturbed circadian regulation plays an important role in many age-related health consequences. We investigated prospective associations of circadian disturbances with incident frailty in over 1000 older adults who had been followed annually for up to 16 years. We found that decreased rhythm strength, reduced stability, or increased variation were associated with a higher risk of incident frailty and faster progress of frailty over time. Perturbed circadian rest-activity rhythms may be an early sign or risk factor for frailty in older adults.
Collapse
Affiliation(s)
- Ruixue Cai
- Medical Biodynamics Program, Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA, 02115, USA.
- School of Public Health, Southeast University, Nanjing, Jiangsu, 210000, China.
| | - Lei Gao
- Medical Biodynamics Program, Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, 02115, USA
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Chenlu Gao
- Medical Biodynamics Program, Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, 02115, USA
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Lei Yu
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Xi Zheng
- Medical Biodynamics Program, Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Aron S Buchman
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Kun Hu
- Medical Biodynamics Program, Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, 02115, USA
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Peng Li
- Medical Biodynamics Program, Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA, 02115, USA.
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, 02115, USA.
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA.
| |
Collapse
|
30
|
Bliwise DL, Wang TC, Svetnik V, Zammit G, Tao P, Lines C, Herring WJ. Phase advance of bedtimes in Alzheimer's disease. Sleep 2023; 46:zsad191. [PMID: 37540589 DOI: 10.1093/sleep/zsad191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2023] Open
Affiliation(s)
- Donald L Bliwise
- Sleep Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Ting-Chuan Wang
- Merck Research Laboratories, Merck & Co., Inc., Rahway, NJ, USA
| | | | - Gary Zammit
- Clinilabs Drug Development Corporation, New York, NY, USA
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Peining Tao
- Merck Research Laboratories, Merck & Co., Inc., Rahway, NJ, USA
| | | | | |
Collapse
|
31
|
Danilevicz IM, van Hees VT, van der Heide F, Jacob L, Landré B, Benadjaoud MA, Sabia S. Measures of fragmentation of rest activity patterns: mathematical properties and interpretability based on accelerometer real life data. RESEARCH SQUARE 2023:rs.3.rs-3543711. [PMID: 37986973 PMCID: PMC10659546 DOI: 10.21203/rs.3.rs-3543711/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Accelerometers, devices that measure body movements, have become valuable tools for studying the fragmentation of rest-activity patterns, a core circadian rhythm dimension, using metrics such as inter-daily stability (IS), intradaily variability (IV), transition probability (TP), and self-similarity parameter (named α ). However, their use remains mainly empirical. Therefore, we investigated the mathematical properties and interpretability of rest-activity fragmentation metrics by providing mathematical proofs for the ranges of IS and IV, proposing maximum likelihood and Bayesian estimators for TP, introducing the activity balance index metric, an adaptation of α , and describing distributions of these metrics in real-life setting. Analysis of accelerometer data from 2,859 individuals (age=60-83 years, 21.1% women) from the Whitehall II cohort (UK) shows modest correlations between the metrics, except for ABI and α . Sociodemographic (age, sex, education, employment status) and clinical (body mass index (BMI), and number of morbidities) factors were associated with these metrics, with differences observed according to metrics. For example, a difference of 5 units in BMI was associated with all metrics (differences ranging between -0.261 (95% CI -0.302, -0.220) to 0.228 (0.18, 0.268) for standardised TP rest to activity during the awake period and TP activity to rest during the awake period, respectively). These results reinforce the value of these rest-activity fragmentation metrics in epidemiological and clinical studies to examine their role for health. This paper expands on a set of methods that have previously demonstrated empirical value, improves the theoretical foundation for these methods, and evaluates their empirical worth in a large dataset.
Collapse
Affiliation(s)
- Ian Meneghel Danilevicz
- Université Paris Cité, INSERM, U1153, CRESS, Epidemiology of Ageing and Neurodegenerative Diseases, 10 Av de Verdun, 75010, Paris, France
| | | | - Frank van der Heide
- Université Paris Cité, INSERM, U1153, CRESS, Epidemiology of Ageing and Neurodegenerative Diseases, 10 Av de Verdun, 75010, Paris, France
| | - Louis Jacob
- Université Paris Cité, INSERM, U1153, CRESS, Epidemiology of Ageing and Neurodegenerative Diseases, 10 Av de Verdun, 75010, Paris, France
| | - Benjamin Landré
- Université Paris Cité, INSERM, U1153, CRESS, Epidemiology of Ageing and Neurodegenerative Diseases, 10 Av de Verdun, 75010, Paris, France
| | - Mohamed Amine Benadjaoud
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), 31 Av Division Leclerc, 92260, Fontenay-Aux-Roses, France
| | - Séverine Sabia
- Université Paris Cité, INSERM, U1153, CRESS, Epidemiology of Ageing and Neurodegenerative Diseases, 10 Av de Verdun, 75010, Paris, France
- Department of Epidemiology and Public Health, University College London, London, United Kingdom
| |
Collapse
|
32
|
Keihani A, Mayeli A, Ferrarelli F. Circadian Rhythm Changes in Healthy Aging and Mild Cognitive Impairment. Adv Biol (Weinh) 2023; 7:e2200237. [PMID: 36403250 PMCID: PMC10199146 DOI: 10.1002/adbi.202200237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/01/2022] [Indexed: 11/21/2022]
Abstract
Disruptions in circadian rhythms can occur in healthy aging; however, these changes are more severe and pervasive in individuals with age-related and neurodegenerative diseases, such as dementia. Circadian rhythm alterations are also present in preclinical stages of dementia, for example, in patients with mild cognitive impairments (MCI); thus, providing a unique window of opportunity for early intervention in neurodegenerative disorders. Nonetheless, there is a lack of studies examining the association between relevant changes in circadian rhythms and their relationship with cognitive dysfunctions in MCI individuals. In this review, circadian system alterations occurring in MCI patients are examined compared to healthy aging individuals while also considering their association with MCI neurocognitive alterations. The main findings are that abnormal circadian changes in rest-activity, core body temperature, melatonin, and cortisol rhythms appear in the MCI stage and that these circadian rhythm disruptions are associated with some of the neurocognitive deficits observed in MCI patients. In addition, preliminary evidence indicates that interventions aimed at restoring regular circadian rhythms may prevent or halt the progress of neurodegenerative diseases and mitigate their related cognitive impairments. Future longitudinal studies with repeated follow-up assessments are needed to establish the translational potential of these findings in clinical practice.
Collapse
Affiliation(s)
- Ahmadreza Keihani
- Department of Psychiatry, University of Pittsburgh, 3501 Forbes Ave, Pittsburgh, PA, 15213, USA
| | - Ahmad Mayeli
- Department of Psychiatry, University of Pittsburgh, 3501 Forbes Ave, Pittsburgh, PA, 15213, USA
| | - Fabio Ferrarelli
- Department of Psychiatry, University of Pittsburgh, 3501 Forbes Ave, Pittsburgh, PA, 15213, USA
| |
Collapse
|
33
|
Yilmaz A, Li P, Kalsbeek A, Buijs RM, Hu K. Differential Fractal and Circadian Patterns in Motor Activity in Spontaneously Hypertensive Rats at the Stage of Prehypertension. Adv Biol (Weinh) 2023; 7:e2200324. [PMID: 37017509 DOI: 10.1002/adbi.202200324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/03/2023] [Indexed: 04/06/2023]
Abstract
One possible pathological mechanism underlying hypertension and its related health consequences is dysfunction of the circadian system-a network of coupled circadian clocks that generates and orchestrates rhythms of ≈24 h in behavior and physiology. To better understand the role of circadian function during the development of hypertension, circadian regulation of motor activity is investigated in spontaneously hypertensive rats (SHRs) before the onset of hypertension and in their age-matched controls-Wistar Kyoto rats (WKYs). Two complementary properties in locomotor activity fluctuations are examined to assessthe multiscale regulatory function of the circadian control network: 1) rhythmicity at ≈24 h and 2) fractal patterns-similar temporal correlation at different time scales (≈0.5-8 h). Compared to WKYs, SHRs have more stable and less fragmented circadian activity rhythms but the changes in the rhythms (e.g., period and amplitude) from constant dark to light conditions are reduced or opposite. SHRs also have altered fractal activity patterns, displaying activity fluctuations with excessive regularity at small timescales that are linked to rigid physiological states. These different rhythmicity/fractal patterns and their different responses to light in SHRs indicate that an altered circadian function may be involved in the development of hypertension.
Collapse
Affiliation(s)
- Ajda Yilmaz
- Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, 1105BA, The Netherlands
| | - Peng Li
- Medical Biodynamics Program, Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Division of Sleep Medicine, Department of Medicine, Harvard Medical School, 221 Longwood Avenue, Boston, MA, 02115, USA
| | - Andries Kalsbeek
- Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, 1105BA, The Netherlands
- Department of Endocrinology and Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, 1105AZ, The Netherlands
- Laboratory of Endocrinology, Amsterdam Gastroenterology, Endocrinology Metabolism (AGEM), Amsterdam UMC, Amsterdam, 1105AZ, Netherlands
| | - Ruud M Buijs
- Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, 1105BA, The Netherlands
- Department of Cell Biology and Physiology, Instituto Investigaciones Biomedicas, Universidad Nacional Autonoma de Mexico, Mexico City, 04510, Mexico
| | - Kun Hu
- Medical Biodynamics Program, Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Division of Sleep Medicine, Department of Medicine, Harvard Medical School, 221 Longwood Avenue, Boston, MA, 02115, USA
| |
Collapse
|
34
|
Antonsdottir IM, Low DV, Chen D, Rabinowitz JA, Yue Y, Urbanek J, Wu MN, Zeitzer JM, Rosenberg PB, Friedman LF, Sheikh JI, Yesavage JA, Zipunnikov V, Spira AP. 24 h Rest/Activity Rhythms in Older Adults with Memory Impairment: Associations with Cognitive Performance and Depressive Symptomatology. Adv Biol (Weinh) 2023; 7:e2300138. [PMID: 37423973 DOI: 10.1002/adbi.202300138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/16/2023] [Indexed: 07/11/2023]
Abstract
Little is known about links of circadian rhythm alterations with neuropsychiatric symptoms and cognition in memory impaired older adults. Associations of actigraphic rest/activity rhythms (RAR) with depressive symptoms and cognition are examined using function-on-scalar regression (FOSR). Forty-four older adults with memory impairment (mean: 76.84 ± 8.15 years; 40.9% female) completed 6.37 ± 0.93 days of actigraphy, the Beck depression inventory-II (BDI-II), mini-mental state examination (MMSE) and consortium to establish a registry for Alzheimer's disease (CERAD) delayed word recall. FOSR models with BDI-II, MMSE, or CERAD as individual predictors adjusted for demographics (Models A1-A3) and all three predictors and demographics (Model B). In Model B, higher BDI-II scores are associated with greater activity from 12:00-11:50 a.m., 2:10-5:50 p.m., 8:40-9:40 p.m., 11:20-12:00 a.m., higher CERAD scores with greater activity from 9:20-10:00 p.m., and higher MMSE scores with greater activity from 5:50-10:50 a.m. and 12:40-5:00 p.m. Greater depressive symptomatology is associated with greater activity in midafternoon, evening, and overnight into midday; better delayed recall with greater late evening activity; and higher global cognitive performance with greater morning and afternoon activity (Model B). Time-of-day specific RAR alterations may affect mood and cognitive performance in this population.
Collapse
Affiliation(s)
- Inga M Antonsdottir
- Johns Hopkins School of Nursing, 525 N. Wolfe Street, Baltimore, MD, 21205, USA
- Richman Family Precision Medicine Center of Excellence in Alzheimer's Disease, Department of Psychiatry and Behavioral Sciences, Johns Hopkins Bayview, Johns Hopkins Medicine, Baltimore, MD, 21224, USA
| | - Dominique V Low
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Diefei Chen
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
- Johns Hopkins University Center on Aging and Health, Baltimore, MD, 21205, USA
| | - Jill A Rabinowitz
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, 624 N. Broadway, Hampton House, Baltimore, MD, 21205, USA
| | - Yiwei Yue
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, 624 N. Broadway, Hampton House, Baltimore, MD, 21205, USA
| | - Jacek Urbanek
- Regeneron Pharmaceuticals Inc., Johns Hopkins University, 777 Old Saw Mill River Rd, Tarrytown, NY, 10591, USA
| | - Mark N Wu
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Jamie M Zeitzer
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, 94305, USA
- Mental Illness Research Education and Clinical Center, VA Palo Alto Health Care System, Palo Alto, CA, 94305, USA
| | - Paul B Rosenberg
- Richman Family Precision Medicine Center of Excellence in Alzheimer's Disease, Department of Psychiatry and Behavioral Sciences, Johns Hopkins Bayview, Johns Hopkins Medicine, Baltimore, MD, 21224, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, 5300 Alpha Commons Drive, Baltimore, MD, 21224, USA
| | - Leah F Friedman
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, 94305, USA
- Mental Illness Research Education and Clinical Center, VA Palo Alto Health Care System, Palo Alto, CA, 94305, USA
| | - Javaid I Sheikh
- AI Center for Precision Health, Weill Cornell Medicine-Qatar, Doha, 24144, Qatar
| | - Jerome A Yesavage
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, 94305, USA
- Mental Illness Research Education and Clinical Center, VA Palo Alto Health Care System, Palo Alto, CA, 94305, USA
| | - Vadim Zipunnikov
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - Adam P Spira
- Johns Hopkins University Center on Aging and Health, Baltimore, MD, 21205, USA
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, 624 N. Broadway, Hampton House, Baltimore, MD, 21205, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, 5300 Alpha Commons Drive, Baltimore, MD, 21224, USA
| |
Collapse
|
35
|
Fang W, Le S, Han W, Peng-Jiao X, Shuai Y, Rui-Ling Z, Lin L, Ya-Hui X. Association between napping and cognitive impairment: A systematic review and meta-analysis. Sleep Med 2023; 111:146-159. [PMID: 37776585 DOI: 10.1016/j.sleep.2023.09.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/12/2023] [Accepted: 09/23/2023] [Indexed: 10/02/2023]
Abstract
STUDY OBJECTIVES Increasing evidence suggests that napping is associated with cognitive impairment and dementia, but the conclusions are inconsistent. Moreover, the extent of the risk is uncertain. We therefore conducted a systematic review and meta-analysis to quantify the connection between napping and cognitive impairment. METHODS We performed a systematic search of PubMed, EMBASE, Web of Science, and Cochrane Library for studies that were published up to June 2023, and assessed associations between napping and cognitive impairment. Odds ratios (ORs) and 95% confidence intervals (CIs) were calculated as the effect sizes for all studies. Heterogeneity and potential publication biases were assessed. RESULTS A total of 4535 papers were retrieved, with 20 reports assessing the relationships between napping and cognitive impairment. Pooled analysis indicated that napping was associated with dementia (OR = 1.14; 95% CI: 1.07-1.21). Importantly, we found that those napping longer than 30, 45, and 60 min/day were 35%, 41%, and 40%, respectively, more likely to have an increased risk of cognitive impairment (30 min: OR = 1.35; 95% CI: 1.24-1.48; 45 min: OR = 1.41; 95% CI: 1.27-1.58; 60 min: OR = 1.40; 95% CI: 1.26-1.56). North America and Europe showed that associations existed between napping and cognitive impairment (North America: OR = 1.15; 95% CI: 1.04-1.27; Europe: OR = 1.13; 95% CI: 1.08-1.18). CONCLUSIONS This meta-analysis indicated associations between long napping durations and cognitive impairment or dementia, suggesting that longer napping might be a potential risk factor of adverse cognitive outcomes.
Collapse
Affiliation(s)
- Wu Fang
- Department of Sleep Medicine, Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Shi Le
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Chinese Academy of Medical Sciences Research Unit (No. 2018RU006), Peking University, Beijing, China
| | - Wang Han
- Department of Sleep Medicine, Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Xu Peng-Jiao
- Department of Sleep Medicine, Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Yu Shuai
- Department of Sleep Medicine, Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Zhang Rui-Ling
- Department of Sleep Medicine, Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Lu Lin
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Chinese Academy of Medical Sciences Research Unit (No. 2018RU006), Peking University, Beijing, China; Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Beijing, China.
| | - Xu Ya-Hui
- Department of Sleep Medicine, Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China.
| |
Collapse
|
36
|
Kim SJ, Lee JH, Jang JW, Lee SH, Suh IB, Jhoo JH. Effect of Personalized Blue-Enriched White Light Intervention on Rest-Activity and Light Exposure Rhythms in Mild and Moderate Alzheimer's Disease. Psychiatry Investig 2023; 20:1007-1017. [PMID: 37997328 PMCID: PMC10678145 DOI: 10.30773/pi.2023.0079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/25/2023] [Accepted: 06/06/2023] [Indexed: 11/25/2023] Open
Abstract
OBJECTIVE We aimed to examine the effectiveness of personalized light intervention using a blue-enriched light-emitting-diodes device on rest-activity rhythm (RAR) and light exposure rhythm (LER) in patients with mild and moderate Alzheimer's disease (AD). METHODS AD patients with poor sleep quality and/or insomnia symptoms were assigned into either an experimental group (EG) or control group (CG) in a single-blind design. Personalized light intervention was given at 9-10 h after individual dim light melatonin onset, lasting for 1 h every day for two weeks in the EG (77.36±5.79 years, n=14) and CG (78.10±7.98 years, n=10). Each patient of CG wore blue-attenuating sunglasses during the intervention. Actigraphy recording at home for 5 days was done at baseline (T0), immediate postintervention (T1), and at four weeks after intervention (T2). The variables of RAR and LER were derived using nonparametric analysis. RESULTS We found a significant time effect on the intradaily variability (IV) of RAR at T2 with respect to T0 (p=0.039), indicating reduced IV of RAR at four weeks after personalized light intervention regardless of blue-enriched light intervention. There was a time effect on the IV of LER at T1 with respect to T0 (p=0.052), indicating a reduced tendency in the IV of LER immediately after intervention. CONCLUSION Our personalized light intervention, regardless of blue-enriched light source, could be useful in alleviating fragmentation of RAR and LER in AD patients.
Collapse
Affiliation(s)
- Seong Jae Kim
- Department of Psychiatry, Chosun University Hospital, Chosun University College of Medicine, Gwangju, Republic of Korea
| | - Jung Hie Lee
- Department of Psychiatry, Kangwon National University School of Medicine, Chuncheon, Republic of Korea
- Department of Psychiatry, Gwanggyo Good Sleep Clinic, Suwon, Republic of Korea
| | - Jae-Won Jang
- Department of Neurology, Kangwon National University School of Medicine, Chuncheon, Republic of Korea
| | - Sun Hee Lee
- Department of Psychiatry, Silverheals Hospital, Namyangju, Republic of Korea
| | - In Bum Suh
- Department of Laboratory Medicine, Kangwon National University School of Medicine, Chuncheon, Republic of Korea
| | - Jin Hyeong Jhoo
- Department of Psychiatry, Kangwon National University School of Medicine, Chuncheon, Republic of Korea
| |
Collapse
|
37
|
Blackwell TL, Figueiro MG, Tranah GJ, Zeitzer JM, Yaffe K, Ancoli-Israel S, Kado DM, Ensrud KE, Lane NE, Leng Y, Stone KL. Associations of 24-Hour Light Exposure and Activity Patterns and Risk of Cognitive Impairment and Decline in Older Men: The MrOS Sleep Study. J Gerontol A Biol Sci Med Sci 2023; 78:1834-1843. [PMID: 36156079 PMCID: PMC10562886 DOI: 10.1093/gerona/glac187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Older men with the worse alignment of activity and light may have lower levels of cognition and increased rates of cognitive decline. METHODS This cohort consisted of 1 036 older men (81.1 ± 4.6 years) from the MrOS Sleep Study (2009-2012). Light and activity levels were gathered by wrist actigraphy. Phasor analysis was used to quantify the alignment of light-dark and rest-activity patterns (magnitude) and their temporal relationship (angle). Global cognitive function (Modified Mini-Mental State examination [3MS]) and executive function (Trails B test) were measured, then repeated 4.2 ± 0.8 years later. Linear regression models examined the associations of phasor magnitude and angle with cognition and cognitive decline. Models were adjusted for age, clinic, race, education, and season. RESULTS Smaller phasor magnitude (worse aligned light and activity patterns) was associated with lower initial level and increased decline in executive function. Compared to those with higher phasor magnitude, those with lower magnitude took an average of 11.1 seconds longer to complete the Trails B test (quartile 1 vs quartile 4, p = .02). After follow-up, Trails B completion time increased an average of 5.5 seconds per standard deviation decrease in phasor magnitude (95% confidence interval [CI] 0.7-10.4, p = .03). There were no associations with phasor angle, and none with magnitude and global cognition (3MS). CONCLUSION Among older men, worse alignment of light and activity patterns was associated with worse initial performance and increased decline in executive function, but not related to global cognition. Interventions that improve the alignment of light and activity may slow cognitive decline in older adults.
Collapse
Affiliation(s)
- Terri L Blackwell
- Research Institute, California Pacific Medical Center, San Francisco, California,USA
| | - Mariana G Figueiro
- Department of Population Health Science and Policy, Light and Health Research Center, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Gregory J Tranah
- Research Institute, California Pacific Medical Center, San Francisco, California,USA
| | - Jamie M Zeitzer
- Department of Psychiatry and Behavioral Sciences, Center for Sleep and Circadian Sciences, Stanford University, Palo Alto, California, USA
- Mental Illness Research, Education, and Clinical Center, VA Palo Alto Health Care System, Palo Alto, California, USA
| | - Kristine Yaffe
- Departments of Psychiatry, Neurology, and Epidemiology, University of California, San Francisco, California,USA
- the San Francisco VA Medical Center
| | - Sonia Ancoli-Israel
- Department of Psychiatry, University of California, San Diego, La Jolla, California, USA
| | - Deborah M Kado
- Department of Medicine, Stanford University, Stanford, California and VA Palo Alto, Palo Alto, California, USA
- Geriatric Research Education and Clinical Center (GRECC), VA Palo Alto, Palo Alto, California, USA
| | - Kristine E Ensrud
- Center for Chronic Disease Outcomes Research, Veterans Affairs Medical Center, Minneapolis, Minnesota, USA
- Division of Epidemiology and Community Health, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Nancy E Lane
- Department of Medicine, Center for Musculoskeletal Health, University of California at Davis School of Medicine, Sacramento, California, USA
- Department of Epidemiology, University of California at San Francisco, San Francisco, California,USA
| | - Yue Leng
- Department of Psychiatry, University of California, San Francisco, California,USA
| | - Katie L Stone
- Research Institute, California Pacific Medical Center, San Francisco, California,USA
- Department of Epidemiology and Biostatistics, University of California, San Francisco, California,USA
| | | |
Collapse
|
38
|
Lu Z, Leung JCS, Feng H, Zhang J, Wing YK, Kwok TCY. Circadian rest-activity rhythms and cognitive decline and impairment in older Chinese adults: A multicohort study with prospective follow-up. Arch Gerontol Geriatr 2023; 116:105215. [PMID: 39491073 DOI: 10.1016/j.archger.2023.105215] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 09/13/2023] [Accepted: 09/25/2023] [Indexed: 11/05/2024]
Abstract
BACKGROUND The associations between rest-activity rhythms and cognitive health are inconclusive. The potential changes in rest-activity rhythms in older people with mild cognitive impairment (MCI) remains unclear. This study aimed to examine the association between rest-activity rhythms and cognitive health across different outcome measures in older Chinese people. METHODS A total of 710 community-dwelling participants (average age 81.1 ± 5.2 years) from two cohort studies. Wrist-worn accelerometer data was used to estimate the circadian rest-activity rhythms at baseline. Cognitive function was assessed and clinical diagnosis was made at baseline and follow-up. The two-way Analysis of Co-variance was used to compare the differences in rest-activity rhythms across participants with cognitively normal, MCI and Alzheimer's disease (AD). Logistic regression models were used to investigate the association between rest-activity rhythms and incidence of cognitive decline and impairment in a 4-year prospective follow-up of cognitively normal individuals. RESULTS There was a progressive trend of lower relative amplitude and higher activity level during the least active 5 h across participants with cognitively normal, MCI and Alzheimer's disease (AD). Among the cognitively normal participants, lower relative amplitude at baseline was associated with a greater risk of cognitive decline (per 1 SD decrease, odds ratio 1.66 [95 %CI 1.13-2.45]) and increased incidence of MCI or AD (per 1 SD decrease, 1.68 [1.12-2.50]). CONCLUSIONS Lower relative amplitude could potentially serve as a robust biomarker of cognitive decline and impairment. Further studies could evaluate the potential benefits of interventions associated with rest-activity relative amplitude to prevent or delay the progression of AD.
Collapse
Affiliation(s)
- Zhihui Lu
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Jason C S Leung
- Jockey Club Center for Osteoporosis Care and Control, The Chinese University of Hong Kong, Hong Kong, China
| | - Hongliang Feng
- Center for Sleep and Circadian Medicine, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jihui Zhang
- Center for Sleep and Circadian Medicine, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yun Kwok Wing
- Department of Psychiatry, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Timothy C Y Kwok
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China; Jockey Club Center for Osteoporosis Care and Control, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
39
|
Ogholbake AA, Cheng Q. PENN: Phase Estimation Neural Network on Gene Expression Data. THE 4TH JOINT INTERNATIONAL CONFERENCE ON DEEP LEARNING, BIG DATA AND BLOCKCHAIN (DBB 2023). JOINT INTERNATIONAL CONFERENCE ON DEEP LEARNING, BIG DATA AND BLOCKCHAIN (4TH : 2023 : MARRAKECH, MOROCCO ; ONLINE) 2023; 768:59-67. [PMID: 37780416 PMCID: PMC10540272 DOI: 10.1007/978-3-031-42317-8_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
With the continuous expansion of available transcriptomic data like gene expression, deep learning techniques are becoming more and more valuable in analyzing and interpreting them. The National Center for Biotechnology Information Gene Expression Omnibus (GEO) encompasses approximately 5 million gene expression datasets from animal and human subjects. Unfortunately, the majority of them do not have a recorded timestamps, hindering the exploration of the behavior and patterns of circadian genes. Therefore, predicting the phases of these unordered gene expression measurements can help understand the behavior of the circadian genes, thus providing valuable insights into the physiology, behaviors, and diseases of humans and animals. In this paper, we propose a novel approach to predict the phases of the un-timed samples based on a deep neural network architecture. It incorporates the potential periodic oscillation information of the cyclic genes into the objective function to regulate the phase estimation. To validate our method, we use mouse heart, mouse liver and temporal cortex of human brain dataset. Through our experiments, we demonstrate the effectiveness of our proposed method in predicting phases and uncovering rhythmic pattern in circadian genes.
Collapse
Affiliation(s)
| | - Qiang Cheng
- University of Kentucky, Lexington KY 40526, USA
| |
Collapse
|
40
|
Stahl ST, Skidmore E, Kringle E, Shih M, Baum C, Hammel J, Krafty R, Covassin N, Li J, Smagula SF. Rest-Activity Rhythm Characteristics Associated With Depression Symptoms in Stroke Survivors. Arch Phys Med Rehabil 2023; 104:1203-1208. [PMID: 36736806 PMCID: PMC10802795 DOI: 10.1016/j.apmr.2023.01.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 02/04/2023]
Abstract
OBJECTIVE To examine which 24-hour rest-activity rhythm (RAR) characteristics are associated with depression symptoms in stroke survivors. DESIGN Cross-sectional observational study examining associations of RAR characteristics with the presence of depression symptoms adjusting for age, sex, race, and medical comorbidity. SETTING Community setting. PARTICIPANTS Stroke survivors: (1) recruited locally (N women=35, N men=28) and (2) a nationally representative probability sample (the National Health and Nutrition Examination Survey [NHANES]; N women=156, N men=124). INTERVENTIONS None. MEASUREMENTS Objective RAR characteristics derived from accelerometer recordings including activity onset/offset times and non-parametric measures of RAR strength (relative amplitude), stability (interdaily stability), and fragmentation (intradaily variability). The presence of depression symptoms was categorized using Patient Health Questionnaire scores. RESULTS In both samples, the only RAR characteristic associated with depression symptoms was intradaily variability (fragmentation): local sample, odds ratio=1.96 [95% confidence interval=1.05-3.63]; NHANES sample, odds ratio=1.34, [95% confidence interval=1.01-1.78]). In the NHANES sample, which included both mild and moderate/severe depression, the association between 24-hour sleep-wake fragmentation and depression symptoms was driven by moderate-to-severe cases. CONCLUSIONS Stroke survivors with higher levels of RAR fragmentation were more likely to have depression symptoms in both samples. These findings have implications, given prior studies in general samples linking RAR fragmentation with future depression and dementia risk. Research is needed to establish the potential consequences, mechanisms, and modifiability of RAR fragmentation in stroke survivors.
Collapse
Affiliation(s)
- Sarah T Stahl
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Elizabeth Skidmore
- Department of Occupational Therapy, School of Health and Rehabilitation, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Emily Kringle
- Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Minmei Shih
- Department of Occupational Therapy, School of Health and Rehabilitation, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Carolyn Baum
- Program in Occupational Therapy, School of Medicine, Washington University, St. Louis, MO
| | - Joy Hammel
- Department of Occupational Therapy, College of Allied Health Sciences, University of Illinois at Chicago, Chicago, IL
| | - Robert Krafty
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA
| | - Naima Covassin
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN
| | - Jingen Li
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN; Department of Cardiovascular Medicine, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Stephen F Smagula
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Epidemiology, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania.
| |
Collapse
|
41
|
Hastings MH, Brancaccio M, Gonzalez-Aponte MF, Herzog ED. Circadian Rhythms and Astrocytes: The Good, the Bad, and the Ugly. Annu Rev Neurosci 2023; 46:123-143. [PMID: 36854316 PMCID: PMC10381027 DOI: 10.1146/annurev-neuro-100322-112249] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
This review explores the interface between circadian timekeeping and the regulation of brain function by astrocytes. Although astrocytes regulate neuronal activity across many time domains, their cell-autonomous circadian clocks exert a particular role in controlling longer-term oscillations of brain function: the maintenance of sleep states and the circadian ordering of sleep and wakefulness. This is most evident in the central circadian pacemaker, the suprachiasmatic nucleus, where the molecular clock of astrocytes suffices to drive daily cycles of neuronal activity and behavior. In Alzheimer's disease, sleep impairments accompany cognitive decline. In mouse models of the disease, circadian disturbances accelerate astroglial activation and other brain pathologies, suggesting that daily functions in astrocytes protect neuronal homeostasis. In brain cancer, treatment in the morning has been associated with prolonged survival, and gliomas have daily rhythms in gene expression and drug sensitivity. Thus, circadian time is fast becoming critical to elucidating reciprocal astrocytic-neuronal interactions in health and disease.
Collapse
Affiliation(s)
- Michael H Hastings
- Division of Neurobiology, Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom;
| | - Marco Brancaccio
- UK Dementia Research Institute and Department of Brain Sciences, Imperial College London, London, United Kingdom
| | - Maria F Gonzalez-Aponte
- Department of Biology, Division of Biology and Biomedical Sciences, Washington University in St. Louis, St. Louis, Missouri, USA;
| | - Erik D Herzog
- Department of Biology, Division of Biology and Biomedical Sciences, Washington University in St. Louis, St. Louis, Missouri, USA;
| |
Collapse
|
42
|
Kim HJ, Kim REY, Kim S, Lee SK, Lee HW, Shin C. Earlier chronotype in midlife as a predictor of accelerated brain aging: a population-based longitudinal cohort study. Sleep 2023; 46:zsad108. [PMID: 37061816 DOI: 10.1093/sleep/zsad108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 02/28/2023] [Indexed: 04/17/2023] Open
Abstract
STUDY OBJECTIVES Evidence suggests that sleep-wake cycle disruption could be an early manifestation of neurodegeneration and might even be a risk factor for developing diseases in healthy adults. We investigated the impact of circadian phase change on structural and functional brain deterioration in a late-adulthood population. METHODS We analyzed the data of 1874 participants (mean age 58.6 ± 6.3 years, 50.3% female) from the Korean Genome and Epidemiology Study, who were identified as cognitively unimpaired. The mid-sleep time on free days corrected for sleep debt on workdays (MSFsc) at baseline was adopted as an indicator of the chronotype and used to categorize the participants into three groups. The relationships between the chronotype and longitudinal changes in the gray matter volume (GMV) and cognitive function were investigated (mean interval: 4.2 ± 0.5 years). RESULTS The mean MSFsc of the participants was 2:45 am. The earlier MSFsc was linearly associated with smaller right entorhinal GMV (β [SE] = 0.02 [0.01]; p = .001) and lower visual memory function test scores at baseline. Longitudinally, the earlier MSFsc at baseline was only significantly associated with more rapid atrophy in the temporal lobe (β [SE] = 0.18 [0.07]; p = .018) and not with other brain lobes or subregions. Moreover, the earlier MSFsc was associated with more deteriorated verbal learning and visual memory function test scores. CONCLUSIONS An earlier chronotype in midlife, measured using a questionnaire, can be a valuable indicator for individuals who should be closely monitored for the development of neurodegenerative disorders.
Collapse
Affiliation(s)
- Hyeon Jin Kim
- Department of Neurology, Korea University Ansan Hospital, Ansan, Gyeonggi, Republic of Korea
- Departments of Neurology and Medical Science, Ewha Womans University School of Medicine and Ewha Medical Research Institute, Seoul, Republic of Korea
| | - Regina E Y Kim
- Institute of Human Genomic Study, College of Medicine, Korea University, Ansan Hospital, Ansan, Gyeonggi, Republic of Korea
- Department of Psychiatry, University of Iowa, Iowa City, Iowa, USA
| | - Soriul Kim
- Institute of Human Genomic Study, College of Medicine, Korea University, Ansan Hospital, Ansan, Gyeonggi, Republic of Korea
- Division of Sleep Medicine, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Seung Ku Lee
- Institute of Human Genomic Study, College of Medicine, Korea University, Ansan Hospital, Ansan, Gyeonggi, Republic of Korea
| | - Hyang Woon Lee
- Departments of Neurology and Medical Science, Ewha Womans University School of Medicine and Ewha Medical Research Institute, Seoul, Republic of Korea
- Computational Medicine, Graduate Programs in System Health Science & Engineering and Artificial Intelligence Convergence, Ewha Womans University, Seoul, Republic of Korea
| | - Chol Shin
- Institute of Human Genomic Study, College of Medicine, Korea University, Ansan Hospital, Ansan, Gyeonggi, Republic of Korea
- Biomedical Research Center, Korea University Ansan Hospital, Ansan, Gyeonggi, Republic of Korea
- College of Medicine, Korea University, Seoul, Republic of Korea
| |
Collapse
|
43
|
Gao L, Li P, Gaykova N, Zheng X, Gao C, Lane JM, Saxena R, Scheer FAJL, Rutter MK, Akeju O, Hu K. Circadian Rest-Activity Rhythms, Delirium Risk, and Progression to Dementia. Ann Neurol 2023; 93:1145-1157. [PMID: 36808743 PMCID: PMC10247440 DOI: 10.1002/ana.26617] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/13/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023]
Abstract
OBJECTIVE Delirium is a complex neurocognitive syndrome suspected to be bidirectionally linked to dementia. Circadian rhythm disturbances likely contribute to dementia pathogenesis, but whether these disturbances are related to delirium risk and progression to all-cause dementia is unknown. METHODS We analyzed continuous actigraphy data from 53,417 middle-aged or older UK Biobank participants during a median 5 years of follow-up. Four measures were used to characterize the 24-hour daily rest-activity rhythms (RARs): normalized amplitude, acrophase representing the peak activity time, interdaily stability, and intradaily variability (IV) for fragmentation of the rhythm. Cox proportional hazards models examined whether RARs predicted incident delirium (n = 551) and progression to dementia (n = 61). RESULTS Suppressed 24-hour amplitude, lowest (Q1) versus highest (Q4) quartile (hazard ratio [HR]Q1 vs Q4 = 1.94, 95% confidence interval [CI] = 1.53-2.46, p < 0.001), and more fragmented (higher IV: HRQ4 vs Q1 = 1.49, 95% CI = 1.18-1.88, p < 0.001) rhythms predicted higher delirium risk, after adjusting for age, sex, education, cognitive performance, sleep duration/disturbances, and comorbidities. In those free from dementia, each hour of delayed acrophase was associated with delirium risk (HR = 1.13, 95% CI = 1.04-1.23, p = 0.003). Suppressed 24-hour amplitude was associated with increased risk of progression from delirium to new onset dementia (HR = 1.31, 95% CI = 1.03-1.67, p = 0.03 for each 1-standard deviation decrease). INTERPRETATION Twenty-four-hour daily RAR suppression, fragmentation, and potentially delayed acrophase were associated with delirium risk. Subsequent progression to dementia was more likely in delirium cases with suppressed rhythms. The presence of RAR disturbances before delirium and prior to progression to dementia suggests that these disturbances may predict higher risk and be involved in early disease pathogenesis. ANN NEUROL 2023;93:1145-1157.
Collapse
Affiliation(s)
- Lei Gao
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Medical Biodynamics Program, Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
| | - Peng Li
- Medical Biodynamics Program, Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
| | - Nicole Gaykova
- Medical Biodynamics Program, Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA, USA
| | - Xi Zheng
- Medical Biodynamics Program, Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA, USA
| | - Chenlu Gao
- Medical Biodynamics Program, Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
| | - Jacqueline M Lane
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Richa Saxena
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Frank A J L Scheer
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
- Medical Chronobiology Program, Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA, USA
| | - Martin K Rutter
- Division of Diabetes, Endocrinology, and Gastroenterology, University of Manchester, Manchester, UK
- Diabetes Endocrinology and Metabolism Centre, Manchester University National Health Service Foundation Trust, Manchester, UK
| | - Oluwaseun Akeju
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Kun Hu
- Medical Biodynamics Program, Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
| |
Collapse
|
44
|
La Morgia C, Mitolo M, Romagnoli M, Stanzani Maserati M, Evangelisti S, De Matteis M, Capellari S, Bianchini C, Testa C, Vandewalle G, Santoro A, Carbonelli M, D'Agati P, Filardi M, Avanzini P, Barboni P, Zenesini C, Baccari F, Liguori R, Tonon C, Lodi R, Carelli V. Multimodal investigation of melanopsin retinal ganglion cells in Alzheimer's disease. Ann Clin Transl Neurol 2023; 10:918-932. [PMID: 37088544 PMCID: PMC10270274 DOI: 10.1002/acn3.51773] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/20/2023] [Accepted: 03/23/2023] [Indexed: 04/25/2023] Open
Abstract
OBJECTIVE In Alzheimer's disease (AD), the presence of circadian dysfunction is well-known and may occur early in the disease course. The melanopsin retinal ganglion cell (mRGC) system may play a relevant role in contributing to circadian dysfunction. In this study, we aimed at evaluating, through a multimodal approach, the mRGC system in AD at an early stage of disease. METHODS We included 29 mild-moderate AD (70.9 ± 11 years) and 26 (70.5 ± 8 years) control subjects. We performed an extensive neurophtalmological evaluation including optical coherence tomography with ganglion cell layer segmentation, actigraphic evaluation of the rest-activity rhythm, chromatic pupillometry analyzed with a new data-fitting approach, and brain functional MRI combined with light stimuli assessing the mRGC system. RESULTS We demonstrated a significant thinning of the infero-temporal sector of the ganglion cell layer in AD compared to controls. Moreover, we documented by actigraphy the presence of a circadian-impaired AD subgroup. Overall, circadian measurements worsened by age. Chromatic pupillometry evaluation highlighted the presence of a pupil-light response reduction in the rod condition pointing to mRGC dendropathy. Finally, brain fMRI showed a reduced occipital cortex activation with blue light particularly for the sustained responses. INTERPRETATION Overall, the results of this multimodal innovative approach clearly document a dysfunctional mRGC system at early stages of disease as a relevant contributing factor for circadian impairment in AD providing also support to the use of light therapy in AD.
Collapse
Affiliation(s)
- Chiara La Morgia
- IRCCS Istituto delle Scienze Neurologiche di BolognaUOC Clinica NeurologicaBolognaItaly
- Dipartimento di Scienze Biomediche e NeuromotorieUniversità di BolognaBolognaItaly
- IRCCS Istituto delle Scienze Neurologiche di BolognaProgramma di NeurogeneticaBolognaItaly
| | - Micaela Mitolo
- IRCCS Istituto delle Scienze Neurologiche di BolognaProgramma Neuroimmagini Funzionali e MolecolariBolognaItaly
- Dipartimento di Medicina e ChirurgiaUniversità di ParmaParmaItaly
| | - Martina Romagnoli
- IRCCS Istituto delle Scienze Neurologiche di BolognaProgramma di NeurogeneticaBolognaItaly
| | | | - Stefania Evangelisti
- Dipartimento di Scienze Biomediche e NeuromotorieUniversità di BolognaBolognaItaly
| | - Maddalena De Matteis
- IRCCS Istituto delle Scienze Neurologiche di BolognaUOC Clinica NeurologicaBolognaItaly
| | - Sabina Capellari
- IRCCS Istituto delle Scienze Neurologiche di BolognaUOC Clinica NeurologicaBolognaItaly
- Dipartimento di Scienze Biomediche e NeuromotorieUniversità di BolognaBolognaItaly
| | - Claudio Bianchini
- Dipartimento di Scienze Biomediche e NeuromotorieUniversità di BolognaBolognaItaly
| | - Claudia Testa
- IRCCS Istituto delle Scienze Neurologiche di BolognaProgramma Neuroimmagini Funzionali e MolecolariBolognaItaly
- Dipartimento di Fisica ed AstronomiaUniversità di BolognaBolognaItaly
| | - Gilles Vandewalle
- Sleep and Chronobiology Lab, GIGA‐Cyclotron Research Centre‐In Vivo ImagingUniversity of LiègeLiègeBelgium
| | - Aurelia Santoro
- Dipartimento di Medicina Specialistica Diagnostica e SperimentaleUniversità di BolognaBolognaItaly
- Alma Mater Research Institute on Global Challenges and Climate Change (Alma Climate)Università di BolognaBolognaItaly
| | - Michele Carbonelli
- Dipartimento di Scienze Biomediche e NeuromotorieUniversità di BolognaBolognaItaly
| | - Pietro D'Agati
- IRCCS Istituto delle Scienze Neurologiche di BolognaUOC Clinica NeurologicaBolognaItaly
| | - Marco Filardi
- Dipartimento di Medicina di Base, Neuroscienze e degli Organi di SensoUniversità di Bari Aldo MoroBariItaly
- Centro per le Malattie Neurodegenerative e l'Invecchiamento CerebraleUniversità di Bari Aldo Moro‐ A.O. Pia Fondazione Cardinale G. PanicoTricaseItaly
| | | | | | - Corrado Zenesini
- IRCCS Istituto delle Scienze Neurologiche di BolognaUnità di Epidemiologia e StatisticaBolognaItaly
| | - Flavia Baccari
- IRCCS Istituto delle Scienze Neurologiche di BolognaUnità di Epidemiologia e StatisticaBolognaItaly
| | - Rocco Liguori
- IRCCS Istituto delle Scienze Neurologiche di BolognaUOC Clinica NeurologicaBolognaItaly
- Dipartimento di Scienze Biomediche e NeuromotorieUniversità di BolognaBolognaItaly
| | - Caterina Tonon
- Dipartimento di Scienze Biomediche e NeuromotorieUniversità di BolognaBolognaItaly
- IRCCS Istituto delle Scienze Neurologiche di BolognaProgramma Neuroimmagini Funzionali e MolecolariBolognaItaly
| | - Raffaele Lodi
- Dipartimento di Scienze Biomediche e NeuromotorieUniversità di BolognaBolognaItaly
- IRCCS Istituto delle Scienze Neurologiche di BolognaProgramma Neuroimmagini Funzionali e MolecolariBolognaItaly
| | - Valerio Carelli
- Dipartimento di Scienze Biomediche e NeuromotorieUniversità di BolognaBolognaItaly
- IRCCS Istituto delle Scienze Neurologiche di BolognaProgramma di NeurogeneticaBolognaItaly
| |
Collapse
|
45
|
Gao L, Zheng X, Baker SN, Li P, Scheer FAJL, Nogueira RC, Hu K. Associations of rest-activity rhythm disturbances with stroke risk and post-stroke adverse outcomes. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.05.14.23289966. [PMID: 37292791 PMCID: PMC10246053 DOI: 10.1101/2023.05.14.23289966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Background Almost all biological and disease processes are influenced by circadian clocks and display ∼24-hour rhythms. Disruption of these rhythms may be an important novel risk factor for stroke. We evaluated the association between 24-h rest-activity rhythm measures, stroke risk, and major post-stroke adverse outcomes. Methods In this cohort study, we examined ∼100,000 participants in the UK Biobank (44-79 years old; ∼57% females) who underwent an actigraphy (6-7 days) and 5-year median follow-up. We derived: (1) most active 10 hours activity counts ( M10 ) across the 24-h cycle and the timing of its midpoint ( M10 midpoint ); (2) the least active 5 hours counts ( L5 ) and its midpoint timing ( L5 midpoint ); (3) relative amplitude ( RA ) - (M10-L5)/(M10+L5); (4) interdaily stability (IS): stability and (5) intradaily variability (IV), fragmentation of the rhythm. Cox proportional hazard models were constructed for time to (i) incident stroke (n=1,652); and (ii) post-stroke adverse outcomes (dementia, depression, disability, or death). Results Suppressed RA (lower M10 and higher L5) was associated with stroke risk after adjusting for demographics; the risk was highest in the lowest quartile [Q1] for RA (HR=1.62; 95% CI:1.36-1.93, p <0.001) compared to the top quartile [Q4]. Participants with later M10 midpoint timing (14:00-15:26, HR=1.26, CI:1.07-1.49, p =0.007) also had a higher risk for stroke than earlier (12:17-13:10) participants. A fragmented rhythm (IV) was also associated with a higher risk for stroke (Q4 vs. Q1; HR=1.27; CI:1.06-1.50, p =0.008), but differences in the stability of rhythms (IS) were not. Suppressed RA was associated with an increased risk of unfavorable post-stroke outcomes (Q1 vs. Q4; 1.78 [1.29-2.47]; p <0.001). All the associations were independent of age, sex, race, obesity, sleep disorders, cardiovascular diseases or risks, and other morbidity burdens. Conclusion Suppressed 24-h rest-activity rhythm may be a risk factor for stroke and an early indicator of major post-stroke adverse outcomes.
Collapse
|
46
|
Gao L, Gaba A, Li P, Saxena R, Scheer FAJL, Akeju O, Rutter MK, Hu K. Heart rate response and recovery during exercise predict future delirium risk-A prospective cohort study in middle- to older-aged adults. JOURNAL OF SPORT AND HEALTH SCIENCE 2023; 12:312-323. [PMID: 34915199 DOI: 10.1016/j.jshs.2021.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 11/10/2021] [Accepted: 11/17/2021] [Indexed: 05/17/2023]
Abstract
BACKGROUND Delirium is a neurocognitive disorder characterized by an abrupt decline in attention, awareness, and cognition after surgical/illness-induced stressors on the brain. There is now an increasing focus on how cardiovascular health interacts with neurocognitive disorders given their overlapping risk factors and links to subsequent dementia and mortality. One common indicator for cardiovascular health is the heart rate response/recovery (HRR) to exercise, but how this relates to future delirium is unknown. METHODS Electrocardiogram data were examined in 38,740 middle- to older-aged UK Biobank participants (mean age = 58.1 years, range: 40-72 years; 47.3% males) who completed a standardized submaximal exercise stress test (15-s baseline, 6-min exercise, and 1-min recovery) and required hospitalization during follow-up. An HRR index was derived as the product of the heart rate (HR) responses during exercise (peak/resting HRs) and recovery (peak/recovery HRs) and categorized into low/average/high groups as the bottom quartile/middle 2 quartiles/top quartile, respectively. Associations between 3 HRR groups and new-onset delirium were investigated using Cox proportional hazards models and a 2-year landmark analysis to minimize reverse causation. Sociodemographic factors, lifestyle factors/physical activity, cardiovascular risk, comorbidities, cognition, and maximal workload achieved were included as covariates. RESULTS During a median follow-up period of 11 years, 348 participants (9/1000) newly developed delirium. Compared with the high HRR group (16/1000), the risk for delirium was almost doubled in those with low HRR (hazard ratio = 1.90, 95% confidence interval (95%CI): 1.30-2.79, p = 0.001) and average HRR (hazard ratio = 1.54, 95%CI: 1.07-2.22, p = 0.020)). Low HRR was equivalent to being 6 years older, a current smoker, or ≥3 additional cardiovascular disease risks. Results were robust in sensitivity analysis, but the risk appeared larger in those with better cognition and when only postoperative delirium was considered (n = 147; hazard ratio = 2.66, 95%CI: 1.46-4.85, p = 0.001). CONCLUSION HRR during submaximal exercise is associated with future risk for delirium. Given that HRR is potentially modifiable, it may prove useful for neurological risk stratification alongside traditional cardiovascular risk factors.
Collapse
Affiliation(s)
- Lei Gao
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Medical Biodynamics Program, Brigham and Women's Hospital, Boston, MA 02115, USA; Division of Sleep Medicine, Harvard Medical School, Boston, MA 02115, USA.
| | - Arlen Gaba
- Medical Biodynamics Program, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Peng Li
- Medical Biodynamics Program, Brigham and Women's Hospital, Boston, MA 02115, USA; Division of Sleep Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Richa Saxena
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Division of Diabetes, Endocrinology and Gastroenterology, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PL, UK
| | - Frank A J L Scheer
- Division of Sleep Medicine, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Oluwaseun Akeju
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Martin K Rutter
- Division of Diabetes, Endocrinology and Gastroenterology, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PL, UK; Diabetes, Endocrinology and Metabolism Centre, Manchester University National Health Service Foundation Trust, Manchester M13 9WL, UK
| | - Kun Hu
- Medical Biodynamics Program, Brigham and Women's Hospital, Boston, MA 02115, USA; Division of Sleep Medicine, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| |
Collapse
|
47
|
Cai R, Gao L, Gao C, Yu L, Zheng X, Bennett D, Buchman A, Hu K, Li P. Circadian disturbances and frailty risk in older adults: a prospective cohort study. RESEARCH SQUARE 2023:rs.3.rs-2648399. [PMID: 37034594 PMCID: PMC10081385 DOI: 10.21203/rs.3.rs-2648399/v1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Abstract
Frailty is characterized by diminished resilience to stressor events. It associates with adverse future health outcomes and impedes healthy aging. The circadian system orchestrates a ~24-h rhythm in bodily functions in synchrony with the day-night cycle, and disturbed circadian regulation plays an important role in many age-related health consequences. We investigated prospective associations of circadian disturbances with incident frailty in over 1,000 older adults who had been followed annually for up to 16 years. We found that decreased rhythm strength, reduced stability, or increased variation, were associated with a higher risk of incident frailty, and faster worsening of the overall frailty symptoms over time. Perturbed circadian rest-activity rhythms may be an early sign or risk factor for frailty in older adults.
Collapse
Affiliation(s)
| | - Lei Gao
- Brigham and Women's Hospital
| | | | - Lei Yu
- Rush University Medical Center
| | | | | | | | - Kun Hu
- Brigham and Women's Hospital
| | - Peng Li
- Brigham and Women's Hospital/ Harvard Medical School
| |
Collapse
|
48
|
Sleep-Related Changes Prior to Cognitive Dysfunction. Curr Neurol Neurosci Rep 2023; 23:177-183. [PMID: 36881255 DOI: 10.1007/s11910-023-01258-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/31/2023] [Indexed: 03/08/2023]
Abstract
PURPOSE OF REVIEW The aim of this review is to summarize the current evidence on the relationship between sleep and cognition and present available data reporting the impact that sleep alterations may have on cognitive functions. RECENT FINDINGS Research findings support the idea that sleep is involved in cognitive processes and that altered sleep homeostasis or circadian rhythms may lead to clinical and biochemical changes associated with cognitive impairment. Evidence is particularly solid for the association between specific sleep architecture and circadian alterations and Alzheimer's disease. Sleep changes, as early manifestations or possible risk factors for neurodegeneration and cognitive decline, may be appropriate targets for interventions aiming to reduce the likelihood of dementia.
Collapse
|
49
|
Lozano-Tovar S, Rodríguez-Agudelo Y, Dávila-Ortiz de Montellano DJ, Pérez-Aldana BE, Ortega-Vázquez A, Monroy-Jaramillo N. Relationship between APOE, PER2, PER3 and OX2R Genetic Variants and Neuropsychiatric Symptoms in Patients with Alzheimer's Disease. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:4412. [PMID: 36901420 PMCID: PMC10001852 DOI: 10.3390/ijerph20054412] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/20/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
Alzheimer's disease (AD) is characterized by the presence of neuropsychiatric or behavioral and psychological symptoms of dementia (BPSD). BPSD have been associated with the APOE_ε4 allele, which is also the major genetic AD risk factor. Although the involvement of some circadian genes and orexin receptors in sleep and behavioral disorders has been studied in some psychiatric pathologies, including AD, there are no studies considering gene-gene interactions. The associations of one variant in PER2, two in PER3, two in OX2R and two in APOE were evaluated in 31 AD patients and 31 cognitively healthy subjects. Genotyping was performed using real-time PCR and capillary electrophoresis from blood samples. The allelic-genotypic frequencies of variants were calculated for the sample study. We explored associations between allelic variants with BPSD in AD patients based on the NPI, PHQ-9 and sleeping disorders questionnaires. Our results showed that the APOE_ε4 allele is an AD risk variant (p = 0.03). The remaining genetic variants did not reveal significant differences between patients and controls. The PER3_rs228697 variant showed a nine-fold increased risk for circadian rhythm sleep-wake disorders in Mexican AD patients, and our gene-gene interaction analysis identified a novel interaction between PERIOD and APOE gene variants. These findings need to be further confirmed in larger samples.
Collapse
Affiliation(s)
- Susana Lozano-Tovar
- Facultad de Psicología, Universidad Nacional Autónoma de México (UNAM), Circuito Ciudad Universitaria Avenida, C.U., Mexico City 04510, Mexico
| | - Yaneth Rodríguez-Agudelo
- Laboratorio de Neuropsicología Clínica, Instituto Nacional de Neurología y Neurocirugía, “Manuel Velasco Suárez”, Mexico City 14269, Mexico
| | | | - Blanca Estela Pérez-Aldana
- Doctorado en Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Mexico City 04960, Mexico
| | - Alberto Ortega-Vázquez
- Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana, Unidad Xochimilco, Mexico City 04960, Mexico
| | - Nancy Monroy-Jaramillo
- Departamento de Genética, Instituto Nacional de Neurología y Neurocirugía, “Manuel Velasco Suárez”, Mexico City 14269, Mexico
| |
Collapse
|
50
|
Fenton L, Isenberg AL, Aslanyan V, Albrecht D, Contreras JA, Stradford J, Monreal T, Pa J. Variability in objective sleep is associated with Alzheimer's pathology and cognition. Brain Commun 2023; 5:fcad031. [PMID: 36895954 PMCID: PMC9989141 DOI: 10.1093/braincomms/fcad031] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 09/28/2022] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
Both sleep duration and sleep efficiency have been associated with risk of Alzheimer's disease, suggesting that interventions to promote optimal sleep may be a way to reduce Alzheimer's disease risk. However, studies often focus on average sleep measures, usually from self-report questionnaires, ignoring the role of intra-individual variability in sleep across nights quantified from objective sleep measures. The current cross-sectional study sought to investigate the role of intra-individual variability in accelerometer-based objective sleep duration and sleep efficiency in relation to in vivo Alzheimer's disease pathology (β-amyloid and tau) using positron emission tomography imaging and cognition (working memory, inhibitory control, verbal memory, visual memory and global cognition). To examine these relationships, we evaluated 52 older adults (age = 66.4 ± 6.89, 67% female, 27% apolipoprotein E4 carriers) with objective early mild cognitive impairment. Modifying effects of apolipoprotein E4 status were also explored. Less intra-individual variability in sleep duration was associated with lower β-amyloid burden, higher global cognition and better inhibitory control, with a trend for lower tau burden. Less intra-individual variability in sleep efficiency was associated with lower β-amyloid burden, higher global cognition and better inhibitory control, but not with tau burden. Longer sleep duration was associated with better visual memory and inhibitory control. Apolipoprotein E4 status significantly modified the association between intra-individual variability in sleep efficiency and β-amyloid burden, such that less sleep efficiency variability was associated with lower β-amyloid burden in apolipoprotein E4 carriers only. There was a significant interaction between sleep duration and apolipoprotein E4 status, suggesting that longer sleep duration is more strongly associated with lower β-amyloid burden in apolipoprotein E4 carriers relative to non-carriers. These results provide evidence that lower intra-individual variability in both sleep duration and sleep efficiency and longer mean sleep duration are associated with lower levels of β-amyloid pathology and better cognition. The relationships between sleep duration and intra-individual variability in sleep efficiency with β-amyloid burden differ by apolipoprotein E4 status, indicating that longer sleep duration and more consistent sleep efficiency may be protective against β-amyloid burden in apolipoprotein E4 carriers. Longitudinal and causal studies are needed to better understand these relationships. Future work should investigate factors contributing to intra-individual variability in sleep duration and sleep efficiency in order to inform intervention studies.
Collapse
Affiliation(s)
- Laura Fenton
- Alzheimer Disease Research Center, Department of Neurology, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA 90033, USA
- Department of Psychology, University of Southern California, Los Angeles, CA 90089, USA
| | - A Lisette Isenberg
- Alzheimer’s Disease Cooperative Study (ADCS), Department of Neurosciences, University of California, San Diego, CA 92037, USA
| | - Vahan Aslanyan
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90032, USA
| | - Daniel Albrecht
- Alzheimer’s Disease Cooperative Study (ADCS), Department of Neurosciences, University of California, San Diego, CA 92037, USA
| | - Joey A Contreras
- Alzheimer’s Disease Cooperative Study (ADCS), Department of Neurosciences, University of California, San Diego, CA 92037, USA
| | - Joy Stradford
- Alzheimer’s Disease Cooperative Study (ADCS), Department of Neurosciences, University of California, San Diego, CA 92037, USA
| | - Teresa Monreal
- Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Judy Pa
- Alzheimer Disease Research Center, Department of Neurology, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA 90033, USA
- Department of Psychology, University of Southern California, Los Angeles, CA 90089, USA
- Alzheimer’s Disease Cooperative Study (ADCS), Department of Neurosciences, University of California, San Diego, CA 92037, USA
- Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|