1
|
Zhang H, Ni T, Liu X, Ma B, Huang T, Zhao D, Li H, Chen K, Liu T. Ignored microbial-induced taste and odor in drinking water reservoirs: Novel insight into actinobacterial community structure, assembly, and odor-producing potential. WATER RESEARCH 2024; 264:122219. [PMID: 39121820 DOI: 10.1016/j.watres.2024.122219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/13/2024] [Accepted: 08/03/2024] [Indexed: 08/12/2024]
Abstract
The presence of actinobacteria in reservoirs can lead to taste and odor issues, posing potential risks to the safety of drinking water supply. However, the response of actinobacterial communities to environmental factors in drinking water reservoirs remains largely unexplored. To address this gap, this study investigated the community structure and metabolic characteristics of odor-producing actinobacteria in water reservoirs across northern and southern China. The findings revealed differences in the actinobacterial composition across the reservoirs, with Mycobacterium sp. and Candidatus Nanopelagicus being the most prevalent genera. Notably, water temperature, nutrient levels, and metal concentrations were associated with differences in actinobacterial communities, with stochastic processes playing a major role in shaping the community assembly. In addition, three strains of odor-producing actinobacteria were cultured in raw reservoir water, namely Streptomyces antibioticus LJH21, Streptomyces sp. ZEU13, and Streptomyces sp. PQK19, with peak ATP concentrations of 51 nmol/L, 66 nmol/L, and 70 nmol/L, respectively, indicating that odor-producing actinobacteria could remain metabolically active under poor nutrient pressure. Additionally, Streptomyces antibioticus LJH21 produced the highest concentration of geosmin at 24.4 ng/L. These findings enhance our understanding of regional variances and reproductive metabolic mechanisms of actinobacteria in drinking water reservoirs, providing a solid foundation for improving drinking water quality control, especially for taste and odor.
Collapse
Affiliation(s)
- Haihan Zhang
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Tongchao Ni
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xiang Liu
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Ben Ma
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Tinglin Huang
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Daijuan Zhao
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Haiyun Li
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Kaige Chen
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Tao Liu
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
2
|
Yang X, Zhou Y, Yang X, Zhang Y, Spencer RG, Brookes JD, Jeppesen E, Zhang H, Zhou Q. Optical measurements of dissolved organic matter as proxies for COD Mn and BOD 5 in plateau lakes. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 19:100326. [PMID: 38089436 PMCID: PMC10711167 DOI: 10.1016/j.ese.2023.100326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 05/21/2024]
Abstract
The presence of organic matter in lakes profoundly impacts drinking water supplies, yet treatment processes involving coagulants and disinfectants can yield carcinogenic disinfection by-products. Traditional assessments of organic matter, such as chemical oxygen demand (CODMn) and biochemical oxygen demand (BOD5), are often time-consuming. Alternatively, optical measurements of dissolved organic matter (DOM) offer a rapid and reliable means of obtaining organic matter composition data. Here we employed DOM optical measurements in conjunction with parallel factor analysis to scrutinize CODMn and BOD5 variability. Validation was performed using an independent dataset encompassing six lakes on the Yungui Plateau from 2014 to 2016 (n = 256). Leveraging multiple linear regressions (MLRs) applied to DOM absorbance at 254 nm (a254) and fluorescence components C1-C5, we successfully traced CODMn and BOD5 variations across the entire plateau (68 lakes, n = 271, R2 > 0.8, P < 0.0001). Notably, DOM optical indices yielded superior estimates (higher R2) of CODMn and BOD5 during the rainy season compared to the dry season and demonstrated increased accuracy (R2 > 0.9) in mesotrophic lakes compared to oligotrophic and eutrophic lakes. This study underscores the utility of MLR-based DOM indices for inferring CODMn and BOD5 variability in plateau lakes and highlights the potential of integrating in situ and remote sensing platforms for water pollution early warning.
Collapse
Affiliation(s)
- Xuan Yang
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Sciences, Yunnan University, Kunming, 650500, China
- Institute of International River and Eco-security, Yunnan University, Kunming, 650500, China
- Zhejiang College of Security Technology, Wenzhou, 325016, China
| | - Yongqiang Zhou
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Xiaoying Yang
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Sciences, Yunnan University, Kunming, 650500, China
- Institute of International River and Eco-security, Yunnan University, Kunming, 650500, China
| | - Yunlin Zhang
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Robert G.M. Spencer
- Department of Earth, Ocean and Atmospheric Science, Florida State University, Tallahassee, 32306, United States
| | - Justin D. Brookes
- Water Research Centre, School of Biological Science, The University of Adelaide, Adelaide, 5005, Australia
| | - Erik Jeppesen
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Sciences, Yunnan University, Kunming, 650500, China
- Department of Ecoscience, Aarhus University, Aarhus, 8000, Denmark
- Sino-Danish Centre for Education and Research, Chinese Academy of Sciences, Beijing, 100101, China
- Limnology Laboratory, Department of Biological Sciences and Centre for Ecosystem Research and Implementation, Middle East Technical University, Ankara, 06800, Turkey
- Institute of Marine Sciences, Middle East Technical University, Erdemli, Mersin, 33731, Turkey
| | - Hucai Zhang
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Sciences, Yunnan University, Kunming, 650500, China
| | - Qichao Zhou
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Sciences, Yunnan University, Kunming, 650500, China
- Yunnan Key Laboratory of Pollution Process and Management of Plateau Lake-Watershed, Yunnan Research Academy of Eco-environmental Sciences, Kunming, 650034, China
| |
Collapse
|
3
|
Batista-Andrade JA, Welty C, Iglesias Vega D, McClain A, Blaney L. Geospatial Variability of Fluorescent Dissolved Organic Matter in Urban Watersheds: Relationships with Land Cover and Wastewater Infrastructure. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:7529-7542. [PMID: 38644662 DOI: 10.1021/acs.est.3c07925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
We investigated the fluorescent dissolved organic matter (FDOM) composition in two watersheds with variable land cover and wastewater infrastructure, including sanitary sewers and septic systems. A four-component parallel factor analysis model was constructed from 295 excitation-emission matrices recorded for stream samples to examine relationships between FDOM and geospatial parameters. The contributions of humic acid- and fulvic acid-like fluorescence components (e.g., C1, C2, C3) were fairly consistent across a 12 month period for the 27 sampling sites. In contrast, the protein-like fluorescence component (C4) and a related ratiometric wastewater indicator (C4/C3) exhibited high variability in urban tributaries, suggesting that some sites were impacted by leaking sewer infrastructure. Principal component analysis indicated that urban areas clustered with impervious surfaces and sanitary sewer density, and cross-covariance analysis identified strong positive correlations between C4, impervious surfaces, and sanitary sewer density at short lag distances. The presence of wastewater was confirmed by detection of sucralose (up to 1,660 ng L-1) and caffeine (up to 1,740 ng L-1). Our findings not only highlight the potential for C4 to serve as an indicator of nearby, compromised sanitary sewer infrastructure, but also suggest that geospatial data can be used to predict areas vulnerable to wastewater contamination.
Collapse
Affiliation(s)
- Jahir A Batista-Andrade
- Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland Baltimore County, 1000 Hilltop Circle, Engineering 314, Baltimore, Maryland 21250, United States
| | - Claire Welty
- Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland Baltimore County, 1000 Hilltop Circle, Engineering 314, Baltimore, Maryland 21250, United States
- Center for Urban Environmental Research and Education, University of Maryland Baltimore County, Technology Research Center 102, Baltimore, Maryland 21250, United States
| | - Diego Iglesias Vega
- Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland Baltimore County, 1000 Hilltop Circle, Engineering 314, Baltimore, Maryland 21250, United States
| | - Anna McClain
- Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland Baltimore County, 1000 Hilltop Circle, Engineering 314, Baltimore, Maryland 21250, United States
| | - Lee Blaney
- Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland Baltimore County, 1000 Hilltop Circle, Engineering 314, Baltimore, Maryland 21250, United States
| |
Collapse
|
4
|
Ke Z, Tang J, Sun J, Bu Q, Yang L, Xu Y. Influence of watershed characteristics and human activities on the occurrence of organophosphate esters related to dissolved organic matter in estuarine surface water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169956. [PMID: 38211871 DOI: 10.1016/j.scitotenv.2024.169956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/04/2024] [Accepted: 01/04/2024] [Indexed: 01/13/2024]
Abstract
Organophosphate esters (OPEs) are widespread in aquatic environments and pose potential threats to ecosystem and human health. Here, we profiled OPEs in surface water samples of heavily urbanized estuaries in eastern China and investigated the influence of watershed characteristics and human activities on the spatial distribution of OPEs related to dissolved organic matter (DOM). The total OPE concentration ranged from 22.3 to 1201 ng/L, with a mean of 162.6 ± 179.8 ng/L. Chlorinated OPEs were the predominant contaminant group, accounting for 27.4-99.6 % of the total OPE concentration. Tris(2-chloroisopropyl) phosphate, tris(1,3-dichloro-2-propyl) phosphate, and tributyl phosphate were the dominant compounds, with mean concentrations of 111.2 ± 176.0 ng/L, 22.6 ± 21.5 ng/L, and 14.8 ± 14.9 ng/L, respectively. Variable OPE levels were observed in various functional areas, with significantly higher concentrations in industrial areas than in other areas. Potential source analysis revealed that sewage treatment plant effluents and industrial activities were the primary OPE sources. The total OPE concentrations were negatively correlated to the mean slope, plan curvature, and elevation, indicating that watershed characteristics play a role in the occurrence of OPEs. Individual OPEs (triisobutyl phosphate, tris(2-butoxyethyl) phosphate, tris(2-chloroethyl) phosphate, and tricresyl phosphate) and Σalkyl-OPEs were positively correlated to the night light index or population density, suggesting a significant contribution of human activity to OPE pollution. The co-occurrence of OPEs and DOM was also observed, and the fluorescence indices of DOM were found to be possible indicators for tracing OPEs. These findings can elucidate the potential OPE dynamics in response to DOM in urbanized estuarine water environments with intensive human activities.
Collapse
Affiliation(s)
- Ziyan Ke
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315800, China
| | - Jianfeng Tang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315800, China.
| | - Jing Sun
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu 610225, China
| | - Qingwei Bu
- School of Chemical & Environmental Engineering, China University of Mining & Technology-Beijing, Beijing 100083, China
| | - Lei Yang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yaoyang Xu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315800, China
| |
Collapse
|
5
|
Li S, Zhang Y, Liu M, Du Z, Li J, Gu L, Xu L, Liu F. Ascorbic acid reduction pretreatment enhancing metal regulation to improve methane production from anaerobic digestion of waste activated sludge. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169185. [PMID: 38092219 DOI: 10.1016/j.scitotenv.2023.169185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 12/05/2023] [Accepted: 12/05/2023] [Indexed: 12/18/2023]
Abstract
Conversion of waste activated sludge (WAS) to methane by anaerobic digestion (AD) is often limited by the slow rate of hydrolysis, and the presence of metal ions in sludge is regarded as a critical factor hindering sludge hydrolysis. This study developed a novel strategy to remove Fe from WAS by using ascorbic acid (VC) as a reducing agent under acidic conditions. The feasibility of reduction pretreatment in improving methane production of AD and its intrinsic mechanism were investigated. Results indicate that, under VC doses of 100 mmol/L and pH of 3.50, pretreatment removed 47.60 % of Fe, 59.88 % of Ca, and 51.86 % of Mg contained in the sludge. The removal of metal ions facilitated the disruption of sludge flocculation structure and extracellular polymeric substance (EPS) layers, leading to a 14.78 % increase in cell lysis and a decrease in fractal dimension values to 2.08. Batch AD experiments showed that VC pretreatment improved methane production, with an optimized net methane yield of 190.22 mL/g·VS, an increase of 134.75 % compared to raw WAS. The pretreatment affected the interfacial interaction energy of the sludge, leading to a transformation in the sludge surfaces from hydrophilic to hydrophobic, reducing the interaction between sludge molecules and increasing the number of binding sites available for enzymatic reactions. According to a study of microbial communities, it was found that VC pretreatment caused an increase in the presence of essential functional microbes responsible for hydrolysis, acidification, and methanation. This increase in acetoclastic and hydrogenotrophic methanogens resulted in a substantial enhancement in methane production. These results can be used to develop better pretreatment methods to enhance AD performance.
Collapse
Affiliation(s)
- Siqi Li
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing 400045, PR China
| | - Yu Zhang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing 400045, PR China
| | - Miao Liu
- Gastrointestinal Cancer Center, Chongqing University Cancer Hospital, 174 Shapingba Road, 400045, PR China
| | - Zexuan Du
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing 400045, PR China
| | - Jinze Li
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing 400045, PR China
| | - Li Gu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing 400045, PR China.
| | - Linji Xu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing 400045, PR China
| | - Feng Liu
- Key Laboratory of Agro-ecological Processes in Subtropical Regions, Changsha Research Station for Agricultural & Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan 410125, PR China
| |
Collapse
|
6
|
Huang X, Fu X, Zhao Z, Yin H. The telltale fluorescence fingerprints of sewer flows for interpreting the low influent concentration in wastewater treatment plant. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 349:119517. [PMID: 37952380 DOI: 10.1016/j.jenvman.2023.119517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/12/2023] [Accepted: 10/31/2023] [Indexed: 11/14/2023]
Abstract
Low degradability of wastewater treatment plant (WWTP) influents negatively affects its ability to effectively remove pollutants through wastewater treatment processes. Proactive assessment of urban sewer system performance is highly valued in the selection of targeted countermeasures for this occurrence. In this study, a fluorescence spectrum interpretation approach was developed to identify the causes of low biodegradability of WWTP influent by using parallel factor analysis (PARAFAC) and fluorescence regional integration (FRI) of excitation-emission matrix spectroscopy. Statistical analysis was also used to further interpret the PARAFAC- and FRI-derived data. The urban sewer catchment served by a WWTP in Wuhan City, China, was used as the test site to demonstrate the effectiveness of this approach. The results showed that electronics manufacturing industrial wastewater and groundwater input into the urban sewer would significantly decrease the biodegradability of the WWTP influents, and these sources were characterized by much lower fluorescence peak intensities, especially for protein-like substances, including tryptophan-like T and tyrosine-like B1 and B2. The potential conversion of high freshness T into low freshness B2 within the sewer may also contribute to this undesirable scenario. The ratio of peak T to peak B2 and the ratio of the FRI fraction of region I to that of region II can be used together to determine the predominance of industrial wastewater and groundwater. T/B2 < 1.3 indicates the entry of industrial wastewater or groundwater into urban sewers, and I/II > 0.5 further confirms the input of industrial wastewater. Accordingly, the low biodegradability of the WWTP influents in our study site is mostly due to the inflow of industrial wastewater rather than groundwater infiltration into the urban sewers. Therefore, actions should be focused on the surveillance of industrial wastewater rather than widespread sewer inspection and repairs. In this way, this methodology is cost-effective in aiding targeted countermeasures to improve the urban sewer system performance.
Collapse
Affiliation(s)
- Xiaomin Huang
- Changjiang Institute of Survey, Planning, Design and Research, Wuhan, China; Hubei Provincial Engineering Research Center for Comprehensive Water Environment Treatment in the Yangtze River Basin, Wuhan, China
| | - Xiaowei Fu
- Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Zhichao Zhao
- Changjiang Institute of Survey, Planning, Design and Research, Wuhan, China; Hubei Provincial Engineering Research Center for Comprehensive Water Environment Treatment in the Yangtze River Basin, Wuhan, China
| | - Hailong Yin
- Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| |
Collapse
|
7
|
Li Q, Bu Q, Bai Z, Wu X, Yu G, Cao H, Yang L, Tang J. The microbial oxidation of pharmaceuticals in an anaerobic aqueous environment: Effect of dissolved organic matter fractions from different sources. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 899:165682. [PMID: 37478923 DOI: 10.1016/j.scitotenv.2023.165682] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/26/2023] [Accepted: 07/18/2023] [Indexed: 07/23/2023]
Abstract
Previous studies have demonstrated the importance of dissolved organic matter (DOM) on the biodegradation of trace organic contaminants occurred in the hyporheic zone. However, the role of diverse DOM fractions with distinct physicochemical properties on the biodegradation of pharmaceuticals under reducing conditions is scarcely known. To address this knowledge gap, DOMs derived from road-deposited sediment, soil, and active sludge (namely allochthonous DOM) and algae (namely autochthonous DOM) were collected and isolated into different fractions. Thereafter, the effect of DOM fractions on the anaerobic microbial oxidation of two typical pharmaceuticals, i.e., ritonavir (RTV) and tetracycline (TC) was explored by using simulated anaerobic microcosms. Mechanistic insights into how DOM fractions from different sources influence pharmaceutical biodegradation processes were provided by optical and electrochemical analyses. Results showed that humic acid and fulvic acid fractions from allochthonous DOM could enhance the biodegradation of TC (12.2 % per mgC/L) and RTV (14.5 % per mgC/L), while no significant impact was observed for that of hydrophilic fractions. However, autochthonous DOM promoted the biodegradation of TC (4.17 % per mgC/L) and inhibited that of RTV. Mechanistic analysis showed that the higher of humification and aromatization level of DOM components, the stronger their promotive effect on the biodegradation of TC and RTV. Further, the promotive mechanism could be attributed to the response of quinone moieties in DOM as extracellular electron acceptors that yields more energy to support microbial metabolism. These results provide a more comprehensive understanding of diverse DOM fractions mediating microbial anaerobic oxidation of trace organic pollutants, and extend our insights into contamination control and remediation technologies.
Collapse
Affiliation(s)
- Qingshan Li
- School of Chemical & Environmental Engineering, China University of Mining & Technology-Beijing, Beijing 100083, PR China
| | - Qingwei Bu
- School of Chemical & Environmental Engineering, China University of Mining & Technology-Beijing, Beijing 100083, PR China.
| | - Zhuoshu Bai
- School of Chemical & Environmental Engineering, China University of Mining & Technology-Beijing, Beijing 100083, PR China
| | - Xiaoze Wu
- School of Chemical & Environmental Engineering, China University of Mining & Technology-Beijing, Beijing 100083, PR China
| | - Gang Yu
- Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University, Beijing 102206, PR China
| | - Hongmei Cao
- School of Chemical & Environmental Engineering, China University of Mining & Technology-Beijing, Beijing 100083, PR China
| | - Lei Yang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Jianfeng Tang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China
| |
Collapse
|
8
|
Wang J, Liu D, Yu H, Song Y. Insight into suppression of dibutyl phthalate on DOM removal during municipal sewage treatment using fluorescence spectroscopy with PARAFAC and moving-window 2D-COS. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 878:163210. [PMID: 37003316 DOI: 10.1016/j.scitotenv.2023.163210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 03/03/2023] [Accepted: 03/28/2023] [Indexed: 05/13/2023]
Abstract
Dibutyl phthalate (DBP) has been widely detected in municipal and industrial wastewater, which could indirectly inhibit pollutant removals, especially degradation of dissolved organic matter (DOM). Here, the inhibition of DBP on DOM removal from wastewater in pilot-scale A2O-MBR system was investigated by fluorescence spectroscopy with two-dimensional correlation (2D-COS) and structural equation modeling (SEM). Seven components were extracted from DOM using parallel factor analysis, i.e., tryptophan-like (C1 and C2), fulvic-like (C4), tyrosine-like (C5), microbial humic-like (C6) and heme-like (C7). The tryptophan-like had a blue-shift at DBP occurrence, defined as blue-shift tryptophan-like (C3). DBP with 8 mg L-1 exhibited a stronger inhibition on removals of DOM fractions, extraordinarily tyrosine-like and tryptophan-like in anoxic unit than DBP of 6 mg L-1 by moving-window 2D-COS. The indirect removals of C1 and C2 through the C3 removal were more strongly inhibited by 8 mg L-1 DBP than those by 6 mg L-1 DBP, while the former exhibited a weaker inhibition on the direct degradation of C1 and C2 than the latter via SEM. Based on metabolic pathways, abundances of key enzymes secreted by microorganism in anoxic unit, degrading tyrosine-like and tryptophan-like, were higher in wastewater with 6 mg L-1 DBP than those with 8 mg L-1 DBP. These could provide a potential approach for online monitoring of DBP concentrations in wastewater treatment plants, which could rectify operating parameters, and then enhance the treatment efficiencies.
Collapse
Affiliation(s)
- Jian Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Dongping Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Huibin Yu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Yonghui Song
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; College of Water Sciences, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
9
|
Richards LA, Guo S, Lapworth DJ, White D, Civil W, Wilson GJL, Lu C, Kumar A, Ghosh A, Khamis K, Krause S, Polya DA, Gooddy DC. Emerging organic contaminants in the River Ganga and key tributaries in the middle Gangetic Plain, India: Characterization, distribution & controls. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 327:121626. [PMID: 37054870 DOI: 10.1016/j.envpol.2023.121626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/11/2023] [Accepted: 04/10/2023] [Indexed: 06/19/2023]
Abstract
The presence and distribution of emerging organic contaminants (EOCs) in freshwater environments is a key issue in India and globally, particularly due to ecotoxicological and potential antimicrobial resistance concerns. Here we have investigated the composition and spatial distribution of EOCs in surface water along a ∼500 km segment of the iconic River Ganges (Ganga) and key tributaries in the middle Gangetic Plain of Northern India. Using a broad screening approach, in 11 surface water samples, we identified 51 EOCs, comprising of pharmaceuticals, agrochemicals, lifestyle and industrial chemicals. Whilst the majority of EOCs detected were a mixture of pharmaceuticals and agrochemicals, lifestyle chemicals (and particularly sucralose) occurred at the highest concentrations. Ten of the EOCs detected are priority compounds (e.g. sulfamethoxazole, diuron, atrazine, chlorpyrifos, perfluorooctane sulfonate (PFOS), perfluorobutane sulfonate, thiamethoxam, imidacloprid, clothianidin and diclofenac). In almost 50% of water samples, sulfamethoxazole concentrations exceeded predicted no-effect concentrations (PNECs) for ecological toxicity. A significant downstream reduction in EOCs was observed along the River Ganga between Varanasi (Uttar Pradesh) and Begusarai (Bihar), likely reflecting dilution effects associated with three major tributaries, all with considerably lower EOC concentrations than the main Ganga channel. Sorption and/or redox controls were observed for some compounds (e.g. clopidol), as well as a relatively high degree of mixing of EOCs within the river. We discuss the environmental relevance of the persistence of several parent compounds (notably atrazine, carbamazepine, metribuzin and fipronil) and associated transformation products. Associations between EOCs and other hydrochemical parameters including excitation emission matrix (EEM) fluorescence indicated positive, significant, and compound-specific correlations between EOCs and tryptophan-, fulvic- and humic-like fluorescence. This study expands the baseline characterization of EOCs in Indian surface water and contributes to an improved understanding of the potential sources and controls on EOC distribution in the River Ganga and other large river systems.
Collapse
Affiliation(s)
- Laura A Richards
- Department of Earth and Environmental Sciences and Williamson Research Centre for Molecular Environmental Science, The University of Manchester, Williamson Building, Oxford Road, Manchester, M13 9PL, UK.
| | - Shuaizhi Guo
- Department of Earth and Environmental Sciences and Williamson Research Centre for Molecular Environmental Science, The University of Manchester, Williamson Building, Oxford Road, Manchester, M13 9PL, UK
| | - Dan J Lapworth
- British Geological Survey, Maclean Building, Wallingford, Oxfordshire, OX10 8BB, UK
| | - Debbie White
- British Geological Survey, Maclean Building, Wallingford, Oxfordshire, OX10 8BB, UK
| | - Wayne Civil
- Environment Agency, National Laboratory Service, Starcross, Devon, EX6 8FD, UK
| | - George J L Wilson
- Department of Earth and Environmental Sciences and Williamson Research Centre for Molecular Environmental Science, The University of Manchester, Williamson Building, Oxford Road, Manchester, M13 9PL, UK
| | - Chuanhe Lu
- Department of Earth and Environmental Sciences and Williamson Research Centre for Molecular Environmental Science, The University of Manchester, Williamson Building, Oxford Road, Manchester, M13 9PL, UK
| | - Arun Kumar
- Mahavir Cancer Sansthan and Research Center, Phulwarisharif, Patna, 801505, Bihar, India
| | - Ashok Ghosh
- Mahavir Cancer Sansthan and Research Center, Phulwarisharif, Patna, 801505, Bihar, India
| | - Kieran Khamis
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Stefan Krause
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK; LEHNA - Laboratoire D'ecologie des Hydrosystemes Naturels et Anthropises, University of Lyon, Darwin C & Forel, 3-6 Rue Raphaël Dubois, 69622, Villeurbanne, France
| | - David A Polya
- Department of Earth and Environmental Sciences and Williamson Research Centre for Molecular Environmental Science, The University of Manchester, Williamson Building, Oxford Road, Manchester, M13 9PL, UK
| | - Daren C Gooddy
- British Geological Survey, Maclean Building, Wallingford, Oxfordshire, OX10 8BB, UK
| |
Collapse
|
10
|
Gong B, Chen W, Sit PHL, Liu XW, Qian C. One-step fluorometric determination of multiple-component dissolved organic matter in aquatic environments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 873:162200. [PMID: 36791859 DOI: 10.1016/j.scitotenv.2023.162200] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/18/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
Dissolved organic matter (DOM) is ubiquitous in aqueous environments and is composed of different components that play different but important roles in the migration and the fate of pollutants, emergence of the disinfect byproduct, thus requiring quantitative characterization. However, until now, simultaneous quantification of the main contents in DOM, i.e., saccharides, proteins, and humic substances, has been difficult, impeding us from understanding and predicting the environmental behaviors of typical pollutants. In this work, a fluorescence approach based on the excitation emission matrix (EEM), combined with a new algorithm, denoted matrix reconstruction coupled with prior linear decomposition (MR-PLD), was developed to quantify multiple DOM simultaneously. First, a set of simulated water samples consisting of glucose, tryptones, and humic acid (HA) were analyzed using MR-PLD to validate the feasibility of the method. The DOM components could be reliably determined with a higher accuracy than parallel factor analysis (PARAFAC) and Parallel Factor Framework-Linear Regression (PFFLR), also with a more convenient procedure than conventional PLD. Second, both actual simulated and experimental methods were performed to test the anti-interference performance of MR-PLD, indicating that the quantification of DOM would not be significantly impacted by other fluorophores. Finally, several actual water samples from natural waters and wastewater treatment plants were also analyzed to confirm the robustness of this method in actual aqueous environments. This study provides a new approach to characterize DOM with EEM, contributing to its convenient concentration monitoring and the further exploration of the environmental impacts.
Collapse
Affiliation(s)
- Bo Gong
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China; School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong Special Administrative Region 999077, China
| | - Wei Chen
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Patrick H-L Sit
- School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong Special Administrative Region 999077, China
| | - Xian-Wei Liu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Chen Qian
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
11
|
Ke Z, Tang J, Yang L, Sun J, Xu Y. Linking pharmaceutical residues to dissolved organic matter and aquatic bacterial communities in a highly urbanized bay. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 871:162027. [PMID: 36740058 DOI: 10.1016/j.scitotenv.2023.162027] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/29/2023] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
Pharmaceuticals are causing environmental concerns associated with their widespread distribution in aquatic ecosystems. The environmental fate and behavior of pharmaceutical residues are related to dissolved organic matter and bacterial communities, both of which are strongly influenced by human activities. However, the relationships among pharmaceutical pollution, dissolved organic matter pool, and bacterial community structure under the pressure of human activities are still unclear, especially in highly urbanized bay areas. In this study, we investigated the occurrence and distribution of 35 pharmaceuticals in a typical urbanized bay (Hangzhou Bay) in Eastern China, and analyzed their relationships with dissolved organic matter and aquatic bacterial community structure. The target pharmaceuticals were ubiquitously detected in surface water samples, with their concentrations ranging from undetectable to 263 ng/L. The detected pharmaceuticals were mostly sulfonamides, macrolides, antidepressants, and metabolites of stimulants. Significant positive correlations were observed between the concentrations of pharmaceuticals and the intensity of human activities. Strong correlations also emerged between the concentration of antidepressants and the speed of urban expansion, as well as between the concentration of cardiovascular drugs and the population density or nightlight index. Three fluorescent components (protein-like C1, terrestrial humic-like C2, protein tryptophan-like C3) were significantly positively correlated with the total concentration of pharmaceuticals. Pharmaceutical pollution reshaped aquatic bacterial communities, based on the close correlation observed between pharmaceutical concentration and bacterial community structure. The results elucidate the potential dynamics of dissolved organic matter pool and aquatic bacterial communities in response to pharmaceutical pollution in urbanized bay ecosystems.
Collapse
Affiliation(s)
- Ziyan Ke
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315800, China
| | - Jianfeng Tang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315800, China.
| | - Lei Yang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jing Sun
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu 610225, China
| | - Yaoyang Xu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315800, China
| |
Collapse
|
12
|
Fu L, Bin L, Luo Z, Huang Z, Li P, Huang S, Nyobe D, Fu F, Tang B. Spectral change of dissolved organic matter after extracted by solid-phase extraction and its feasibility in predicting the acute toxicity of polar organic pollutants in textile wastewater. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130344. [PMID: 36444059 DOI: 10.1016/j.jhazmat.2022.130344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/03/2022] [Accepted: 11/06/2022] [Indexed: 06/16/2023]
Abstract
Spectroscopic parameters can be used as proxies to effectively trace the occurrence of organic trace contaminants, but their suitability for predicting the toxicity of discharged industrial wastewater with similar spectra is still unknown. In this study, the organic contaminants in treated textile wastewater were subdivided and extracted by four commonly-used solid-phase extraction (SPE) cartridges, and the resulting spectral change and toxicity of textile effluent were analyzed and compared. After SPE, the spectra of the percolates from the four cartridges showed obvious differences with respect to the substances causing the spectral changes and being more readily adsorbed by the WAX cartridges. Non-target screening results showed source differences in organic micropollutants, which were one of the main contributors leading to their spectral properties and spectral variations after SPE in the effluents. Two fluorescence parameters (C1 and humic-like) identified by the excitation emission matrix-parallel factor analysis (EEM-PARAFAC) were closely correlated to the toxicity endpoints for Scenedesmus obliquus (inhibition ratios of cell growth and Chlorophyll-a synthesis), which can be applied to quantitatively predict the change of toxicity effect caused by polar organic pollutants. The results would provide novel insights into the spectral feature analysis and toxicity prediction of the residual DOM in industrial wastewater.
Collapse
Affiliation(s)
- Lingfang Fu
- School of Environmental Science and Engineering, Guangdong University of Technology; Guangzhou Key Laboratory Environmental Catalysis and Pollution Control; Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou 510006, P.R. China; National Key Laboratory of Water Environmental Simulation and Pollution Control, Guangdong Key Laboratory of Water and Air Pollution Control, South China Institute of Environmental Sciences, Ministry of Ecology and Environmental of the People's Republic of China, Guangzhou 510535, China
| | - Liying Bin
- School of Environmental Science and Engineering, Guangdong University of Technology; Guangzhou Key Laboratory Environmental Catalysis and Pollution Control; Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou 510006, P.R. China
| | - Zhaobo Luo
- School of Environmental Science and Engineering, Guangdong University of Technology; Guangzhou Key Laboratory Environmental Catalysis and Pollution Control; Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou 510006, P.R. China
| | - Zehong Huang
- School of Environmental Science and Engineering, Guangdong University of Technology; Guangzhou Key Laboratory Environmental Catalysis and Pollution Control; Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou 510006, P.R. China
| | - Ping Li
- School of Environmental Science and Engineering, Guangdong University of Technology; Guangzhou Key Laboratory Environmental Catalysis and Pollution Control; Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou 510006, P.R. China
| | - Shaosong Huang
- School of Environmental Science and Engineering, Guangdong University of Technology; Guangzhou Key Laboratory Environmental Catalysis and Pollution Control; Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou 510006, P.R. China
| | - Dieudonne Nyobe
- School of Environmental Science and Engineering, Guangdong University of Technology; Guangzhou Key Laboratory Environmental Catalysis and Pollution Control; Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou 510006, P.R. China
| | - Fenglian Fu
- School of Environmental Science and Engineering, Guangdong University of Technology; Guangzhou Key Laboratory Environmental Catalysis and Pollution Control; Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou 510006, P.R. China
| | - Bing Tang
- School of Environmental Science and Engineering, Guangdong University of Technology; Guangzhou Key Laboratory Environmental Catalysis and Pollution Control; Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou 510006, P.R. China.
| |
Collapse
|
13
|
Bai Y, Zhang S, Mu E, Zhao Y, Cheng L, Zhu Y, Yuan Y, Wang Y, Ding A. Characterizing the spatiotemporal distribution of dissolved organic matter (DOM) in the Yongding River Basin: Insights from flow regulation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 325:116476. [PMID: 36323113 DOI: 10.1016/j.jenvman.2022.116476] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 09/26/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
Artificial flow regulation is an important measure to alleviate water shortages and improve the ecological quality of river basins. Dissolved organic matter (DOM) plays a crucial role in the carbon cycle and regulates biogeochemical and ecological processes in aquatic systems. Among the numerous studies on the effects of anthropogenic activities on the quality and quantity of river DOM, few studies have focused on the influence of different artificially regulated flow on the composition, source, and fate of fluvial DOM. This study aims to elucidate the impact of different artificial regulation modes of river flows on the source, migration, and transformation of DOM. The optical properties of DOM were used to explore the temporal and spatial distribution characteristics of DOM in the Yongding River Basin, where artificial regulation of river flows by cross-basin and inner-basin water transfers were implemented. Excitation-emission matrix fluorescence spectroscopy coupled with parallel factor analysis revealed four fluorescent substances of DOM in the water: one microbial humic-like (C1), one terrestrial humic-like (C2), one non-point source pollution humic-like (C4), and one tryptophan-like (C3) substance. Due to cross-basin water transfer from the Yellow River, the flow is the highest (21.79 m3/s) during spring, which was the reason that the signal of C2 was stronger during spring (71.45 QSU) compared to summer (57.12 QSU) and autumn (51.78 QSU). Due to inner-basin water transfer from upstream reservoirs, C3 derived from autochthonous sources were higher during autumn (130.81 QSU) than during spring (77.17 QSU) and summer (93.16 QSU). With no water transfer, more C1 were present at higher temperatures during summer (141.51 QSU) than during spring (126.73 QSU) and autumn (128.8 QSU). Moreover, C4 originating from urban and/or agricultural non-point source runoff increased during summer (57.07 QSU) than during spring (33.29 QSU) and autumn (52.27 QSU) because of increased rainfall. The different modes of artificial regulation of river flows changed the hydrological characteristics of the basin, which in turn altered the temporal and spatial distribution characteristics of the quantity and quality of DOM. The finding of this study can help promote the development of appropriate management strategies for artificial regulation of river flows in the basin. Furthermore, this study provides a basis for investigating the effects of different artificial flow regulations on the carbon cycles and ecological risks of rivers in the basin.
Collapse
Affiliation(s)
- Yijuan Bai
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Shurong Zhang
- Institute of Land Surface System and Sustainable Development, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China; State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China.
| | - Enlin Mu
- Water Resources Management Center of Ministry of Water Resources, Beijing, 100038, China
| | - Yinjun Zhao
- Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Ministry of Education, Nanning Normal University, Nanning, 530001, China
| | - Lirong Cheng
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Yi Zhu
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Yumin Yuan
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Yingying Wang
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Aizhong Ding
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
14
|
Peer S, Vybornova A, Saracevic Z, Krampe J, Zessner M, Zoboli O. Enhanced statistical evaluation of fluorescence properties to identify dissolved organic matter dynamics during river high-flow events. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158016. [PMID: 35973545 DOI: 10.1016/j.scitotenv.2022.158016] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/18/2022] [Accepted: 08/09/2022] [Indexed: 06/15/2023]
Abstract
Fluorescence spectroscopy has become a widely used technique to characterize dissolved organic matter (DOM) and organic hazardous micro-pollutants in natural and human-influenced water bodies. Especially in rivers highly impacted by municipal and industrial wastewater treatment plants' effluents, the fluorescence signal at low-flow is mainly dominated by these discharges. At river high-flow, their influence decreases due to dilution effects, and at the same time, other compounds of DOM, stemming from diffuse inputs, can increase or even dominate. Therefore, whereas the analysis of DOM is little informative on the changing sources and pathways of emissions, fluorescence spectroscopy can enhance our understanding and our possibilities of monitoring such dynamics in river catchments. This paper analyzed samples from seven high-flow events in an Austrian river. Firstly, independent DOM components were discriminated using a parallel factor analysis (PARAFAC) to show the varying composition of DOM during different phases of high-flow events. Furthermore, partial least squares (PLS) and sparse PLS (sPLS) regression were applied to identify excitation and emission wavelengths, serving as proxy parameters for quantifying dissolved organic carbon (DOC) and chloride. The PLS models show the best prediction accuracy but use the entire excitation-emission matrix in exchange. In selecting predictors, the use of excitation and emission wavelengths adjusted via sPLS is superior to the extracted PARAFAC components. The sPLS model yields 16 wavelength combinations for DOC (RMSEsPLS = 0.41 mg L-1) and 18 wavelength combinations for chloride (RMSEsPLS = 2.21 mg L-1). In contrast to other established optical measurement methods, which require different calibrations for low- and high-flow conditions, these models based on sPLS succeed in quantifying those parameters across the entire range of flow conditions and events of various magnitudes with a relative precision of about 5 %. These results show how the application of multivariate statistical techniques enhances the exploitation of the information provided by fluorescence spectroscopy.
Collapse
Affiliation(s)
- Sandra Peer
- Institute for Water Quality and Resource Management, TU Wien, Karlsplatz 13/226, 1040 Vienna, Austria.
| | - Anastassia Vybornova
- Institute for Water Quality and Resource Management, TU Wien, Karlsplatz 13/226, 1040 Vienna, Austria
| | - Zdravka Saracevic
- Institute for Water Quality and Resource Management, TU Wien, Karlsplatz 13/226, 1040 Vienna, Austria
| | - Jörg Krampe
- Institute for Water Quality and Resource Management, TU Wien, Karlsplatz 13/226, 1040 Vienna, Austria
| | - Matthias Zessner
- Institute for Water Quality and Resource Management, TU Wien, Karlsplatz 13/226, 1040 Vienna, Austria
| | - Ottavia Zoboli
- Institute for Water Quality and Resource Management, TU Wien, Karlsplatz 13/226, 1040 Vienna, Austria
| |
Collapse
|
15
|
Manivannan B, Nallathambi G, Devasena T. Alternative methods of monitoring emerging contaminants in water: a review. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2022; 24:2009-2031. [PMID: 36128976 DOI: 10.1039/d2em00237j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Anthropogenic activities have steadily increased the release of emerging contaminants (ECs) in aquatic bodies, and these ECs may have adverse effects on humans even at their trace (μg L-1) levels. Their occurrence in wastewater systems is more common, and the current wastewater treatment facilities are inefficient in eliminating many of such persistent ECs. "Gold standard" techniques such as chromatography, mass spectrometry, and other high-resolution mass spectrometers are used for the quantification of ECs of various kinds, but they all have significant limitations. This paper reviews the alternative methods for EC detection, which include voltammetry, potentiometry, amperometry, electrochemical impedance spectroscopy (EIS) based electrochemical methods, colorimetry, surface-enhanced Raman spectroscopy (SERS), fluorescence probes, and fluorescence spectroscopy-based optical techniques. These alternative techniques have several advantages over conventional techniques, including low sample volume, excludes solid phase extraction procedure, high sensitivity, selectivity, portability, reproducibility, rapidity, low cost, and the ability to monitor ECs in real time. This review summarises each of the alternative methods for detecting ECs in water samples and their respective limits of detection (LODs). The sensitivity of each technique varied depending on the type of EC measured, type of electrochemical probe and electrode, substrates, type of nanoparticle (NP), the physicochemical parameters of water samples tested, and more. Nevertheless, this paper also focuses on some of the current challenges encountered by these alternative methods in monitoring ECs.
Collapse
Affiliation(s)
| | - Gobi Nallathambi
- Department of Textile Technology, Anna University, Chennai, Tamil Nadu, India.
| | | |
Collapse
|
16
|
Xu L, Su J, Li K, Hu R, Yan H, Liang E, Zhou Z, Shi J. Performance of hydrogel immobilized bioreactors combined with different iron ore wastes for denitrification and removal of copper and lead: Optimization and possible mechanism. WATER RESEARCH 2022; 225:119196. [PMID: 36206681 DOI: 10.1016/j.watres.2022.119196] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/21/2022] [Accepted: 10/01/2022] [Indexed: 06/16/2023]
Abstract
Reasonable and efficient removal of mixed pollutants (nitrate and heavy metals) in industrial wastewater under heavy metal pollution has attracted more attention in recent years. The target strain Aquabacterium sp. XL4 was immobilized with different iron ore wastes (IOW) using polyvinyl alcohol (PVA) to construct four immobilized bioreactors. The results showed that when the ratio of C/N was 1.5 and the hydraulic retention time (HRT) was 8.0h, the denitrification performance of the bioreactor was the best, and the maximum denitrification efficiency of the bioreactor with sponge iron (SI) as the iron source was 97.19% (2.42mg L-1 h-1). Furthermore, by adjusting the concentration of Cu2+ and Pb2+, the stress behavior of the bioreactor to heavy metals under the influence of each IOW was investigated. The bioreactor has stronger tolerance and removal efficiency to Pb2+ and Cu2+ in the presence of pellets ore (PO) and refined iron ore (RO), respectively. Moreover, the high-throughput data showed that Aquabacterium accounted for a high proportion in the immobilized bioreactor, and the prediction of functional genes based on the KEGG database showed that the addition of IOW was closely related to the acceleration of nitrate transformation and the inflow and outflow of iron in cells.
Collapse
Affiliation(s)
- Liang Xu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Kai Li
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Ruizhu Hu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Huan Yan
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Enlei Liang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Zhennan Zhou
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Jun Shi
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
17
|
Tanioka M, Ebihana T, Uraguchi M, Shoji H, Nakamura Y, Ueda R, Ogura S, Wakiya Y, Obata T, Ida T, Horigome J, Kamino S. Visualization of the photodegradation of a therapeutic drug by chemometric-assisted fluorescence spectroscopy. RSC Adv 2022; 12:20714-20720. [PMID: 35919137 PMCID: PMC9295133 DOI: 10.1039/d2ra03534k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 07/09/2022] [Indexed: 11/21/2022] Open
Abstract
The fluorescence spectral fingerprint, also known as the excitation-emission matrix (EEM), is used to assess and visualize therapeutic drug photodegradation in combination with chemometrics. Examination of EEM-parallel factor analysis (PARAFAC) data showed that an individual component was easily separated from a mixture of photogenerated products of a heterocyclic pharmacophore, in this case, phenothiazine drugs (PTZs). Detailed investigations of both structure-EEM relationships and kinetics revealed that the components extracted from EEM-PARAFAC could be quantitatively attributed to such photogenerated products as phenothiazine sulfoxide and carbazole derivatives. EEM in combination with principal component analysis (PCA) could be used as a mapping tool to visualize information of the photodegradation process of PTZs. We also assessed the photostability of various types of PTZs containing side chains by using validated EEM-PARAFAC methodology.
Collapse
Affiliation(s)
- Masaru Tanioka
- School of Pharmaceutical Sciences, Aichi Gakuin University 1-100 Kusumoto-cho, Chikusa-ku Nagoya 464-8650 Japan
| | - Tsugumi Ebihana
- School of Pharmaceutical Sciences, Aichi Gakuin University 1-100 Kusumoto-cho, Chikusa-ku Nagoya 464-8650 Japan
| | - Manae Uraguchi
- School of Pharmaceutical Sciences, Aichi Gakuin University 1-100 Kusumoto-cho, Chikusa-ku Nagoya 464-8650 Japan
| | - Haruka Shoji
- School of Pharmaceutical Sciences, Aichi Gakuin University 1-100 Kusumoto-cho, Chikusa-ku Nagoya 464-8650 Japan
| | - Yuka Nakamura
- School of Pharmaceutical Sciences, Aichi Gakuin University 1-100 Kusumoto-cho, Chikusa-ku Nagoya 464-8650 Japan
| | - Rina Ueda
- School of Pharmaceutical Sciences, Aichi Gakuin University 1-100 Kusumoto-cho, Chikusa-ku Nagoya 464-8650 Japan
| | - Shota Ogura
- School of Pharmaceutical Sciences, Aichi Gakuin University 1-100 Kusumoto-cho, Chikusa-ku Nagoya 464-8650 Japan
| | - Yoshifumi Wakiya
- School of Pharmaceutical Sciences, Aichi Gakuin University 1-100 Kusumoto-cho, Chikusa-ku Nagoya 464-8650 Japan
| | - Tohru Obata
- School of Pharmaceutical Sciences, Aichi Gakuin University 1-100 Kusumoto-cho, Chikusa-ku Nagoya 464-8650 Japan
| | - Takahiro Ida
- Sony Group Corporation 1-7-1 Konan Minato-ku Tokyo 108-0075 Japan
| | - Jun Horigome
- Hitachi High-Tech Science Co., Ltd Hitachinaka-shi Ibaraki 312-0052 Japan
| | - Shinichiro Kamino
- School of Pharmaceutical Sciences, Aichi Gakuin University 1-100 Kusumoto-cho, Chikusa-ku Nagoya 464-8650 Japan
| |
Collapse
|
18
|
Gong C, Jiao R, Yan W, Yu Q, Li Q, Zhang P, Li Y, Wang D. Enhanced chemodiversity, distinctive molecular signature and diurnal dynamics of dissolved organic matter in streams of two headwater catchments, Southeastern China. WATER RESEARCH 2022; 211:118052. [PMID: 35065339 DOI: 10.1016/j.watres.2022.118052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 01/05/2022] [Accepted: 01/08/2022] [Indexed: 06/14/2023]
Abstract
Dissolved organic matter (DOM) is a complicated assembly of organic molecules, including thousands of molecules with various structures and properties. However, how the stream DOM sources respond to carbon compositions and the transformation processes remains unclear. In this study, the chemical characteristics and spectral and mass spectrometry (FT-ICR MS) of DOM were analyzed. Six sampling points of headwater stream (HWSs) were sampled, and an effluent polluted stream (WSR) and a main stream of the Changjiang River (DT) were also sampled for comparison. In situ degradation experiments and FT-ICR MS analysis were also performed to observe the dynamic processes of DOM in HWS. The results showed that the anthropogenic markers of sewage (i.e. sulfur (S) compounds and marker from antibiotics and estrogen) in HWS were higher than those in DT. The molecular weight decreased while the degradation products (S-containing compounds and unsaturated compounds (HU)) increased after in situ degradation due to the influence of both the photodegradation and biodegradation process. In addition, the KMD plots showed that the DOM homologue intensities in range 400-600 Da changed significantly after demethylation by biodegradation. The components of highly refractory substances and the degradation degree of DOM in DT was higher than that in HWS. We extracted the refractory DOM pool in HWS, which was mainly small molecular with molecular weights < 600 Da. These molecular will be difficult to remove in traditional drinking water treatment processes and easily produced disinfection byproducts (DBPs). This study emphasized the necessity of identifying the sources and transformation processes of DOM in HWS and clarified the types and characteristics of DOM that should be considered in future drinking water treatment.
Collapse
Affiliation(s)
- Chen Gong
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ruyuan Jiao
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Yangtze River Delta Branch, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Yiwu city, Zhejiang Province, 322000, China
| | - Weijin Yan
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Qibiao Yu
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qingqian Li
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Peipei Zhang
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yanqiang Li
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Dongsheng Wang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Yangtze River Delta Branch, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Yiwu city, Zhejiang Province, 322000, China.
| |
Collapse
|
19
|
Hu JI, Ma W, Pan Y, Chen Z, Zhang Z, Wan C, Sun Y, Qiu C. Resolving the Tribo-catalytic reaction mechanism for biochar regulated Zinc Oxide and its application in protein transformation. J Colloid Interface Sci 2021; 607:1908-1918. [PMID: 34798707 DOI: 10.1016/j.jcis.2021.09.161] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/24/2021] [Accepted: 09/26/2021] [Indexed: 11/15/2022]
Abstract
The utilization of mechanical energy to control water pollutants under dark conditions is currently a point of study focus. Herein, biochar -zinc oxide (BC-ZnO) composites with various structures were synthesized by co-pyrolysis of cotton and ZnO at different temperature and used for tribo-catalytic reaction. The introduction of BC can improve charge transmission and separation efficiency. Ultraviolet photoelectron spectra (UPS) and density functional theory (DFT) calculation prove the addition of BC can reduce work function of ZnO, and enhance its electron-donating ability. Specially, suitable adsorption amount is the key factor to improve the tribo-catalytic performance. When the pyrolysis temperature is 600 °C, BC-ZnO has the best degradation efficiency, which can degrade 90% Rhodamine B (RhB) in 75 min, while ZnO can degrade only 38%. On this basis, using bovine serum albumin (BSA) as a model, the effect of tribo-catalytic reaction on controlling proteins in water was studied by fluorescence excitation-emission matrix spectroscopy (3D EEM) and infrared microscope, and the transformation of proteins was further analyzed. This study provides a new strategy to improve the tribo-catalytic performance of ZnO, and explores its application prospects of biological wastewater control.
Collapse
Affiliation(s)
- JIng Hu
- Department of Chemistry, Dalian University of Technology, Dalian 116024, PR China
| | - Wei Ma
- Department of Chemistry, Dalian University of Technology, Dalian 116024, PR China
| | - Yuzhen Pan
- Department of Chemistry, Dalian University of Technology, Dalian 116024, PR China
| | - Zhen Chen
- Department of Chemistry, Dalian University of Technology, Dalian 116024, PR China
| | - Zhe Zhang
- Department of Chemistry, Dalian University of Technology, Dalian 116024, PR China
| | - Chunxiang Wan
- Department of Chemistry, Dalian University of Technology, Dalian 116024, PR China
| | - Yanwen Sun
- Department of Chemistry, Dalian University of Technology, Dalian 116024, PR China
| | - Chenxi Qiu
- Department of Chemistry, Dalian University of Technology, Dalian 116024, PR China
| |
Collapse
|
20
|
Gros M, Catalán N, Mas-Pla J, Čelić M, Petrović M, Farré MJ. Groundwater antibiotic pollution and its relationship with dissolved organic matter: Identification and environmental implications. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 289:117927. [PMID: 34426209 DOI: 10.1016/j.envpol.2021.117927] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/20/2021] [Accepted: 08/05/2021] [Indexed: 06/13/2023]
Abstract
The occurrence of veterinary antibiotics and hydro-chemical parameters in eleven natural springs in a livestock production area is evaluated, jointly with the characterization of their DOM fingerprint by Orbitrap HRMS. Tetracycline and sulfonamide antibiotics were ubiquitous in all sites, and they were detected at low ng L-1 concentrations, except for doxycycline, that was present at μg L-1 in one location. DOM analysis revealed that most molecular formulas were CHO compounds (49 %-68 %), with a remarkable percentage containing nitrogen and sulphur (16 %-23 % and 11 %-24 %, respectively). Major DOM components were phenolic and highly unsaturated compounds (~90 %), typical for soil-derived organic matter, while approximately 11 % were unsaturated aliphatic, suggesting that springs may be susceptible to anthropogenic contamination sources. Comparing the DOM fingerprint among sites, the spring showing the most different profile was the one with surface water interaction and characterized by having lower CHO and higher CHOS formulas and aliphatic compounds. Correlations between antibiotics and DOM showed that tetracyclines positively correlate with unsaturated oxygen-rich substances, while sulfonamides relate with aliphatic and unsaturated oxygen-poor compounds. This indicates that the fate of different antibiotics will be controlled by the type of DOM present in groundwater.
Collapse
Affiliation(s)
- Meritxell Gros
- Catalan Institute for Water Research (ICRA) & University of Girona (UdG), Spain.
| | - Núria Catalán
- Laboratoire des Sciences du Climat et de l' Environnement, LSCE, CEA, CNRS, UVSQ, 91191, Gif-Sur-Yvette, France
| | - Josep Mas-Pla
- Catalan Institute for Water Research (ICRA) & University of Girona (UdG), Spain; Grup de Recerca en Geologia Aplicada i Ambiental (GAiA-Geocamb), Department of Environmental Sciences, University of Girona (UdG), Spain
| | - Mira Čelić
- Catalan Institute for Water Research (ICRA) & University of Girona (UdG), Spain
| | - Mira Petrović
- Catalan Institute for Water Research (ICRA) & University of Girona (UdG), Spain; Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Maria José Farré
- Catalan Institute for Water Research (ICRA) & University of Girona (UdG), Spain
| |
Collapse
|
21
|
Zhang Y, Liu Y, Zhou A, Zhang L. Identification of groundwater pollution from livestock farming using fluorescence spectroscopy coupled with multivariate statistical methods. WATER RESEARCH 2021; 206:117754. [PMID: 34678701 DOI: 10.1016/j.watres.2021.117754] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/01/2021] [Accepted: 10/06/2021] [Indexed: 06/13/2023]
Abstract
Extensive livestock farming has highly threatened groundwater quality, thereby necessitating a rapid and effective method to identify groundwater quality in such areas. Fluorescence spectroscopy has been recognized as an interpretable method for tracking anthropogenic influences on water quality, but its applicability in identifying the groundwater pollution from livestock farming remains unknown. In this study, the fluorescence characteristics of dissolved organic matter (DOM) in groundwater from a typical livestock farming area were investigated by using fluorescence excitation emission matrix (EEM)-parallel factor analysis (PARAFAC) coupled with multivariate statistical methods. The results showed that livestock farming significantly altered the content and composition of DOM in groundwater, and these effects were mainly observed in shallow groundwater in the study area. Hierarchical cluster analysis based on fluorescence parameters divided the groundwater samples into three clusters with significantly different pollution degrees: Cluster A, unpolluted; Cluster B, highly polluted; Cluster C, moderately polluted. In particular, the intensity of tryptophan-like fluorescence was high in the polluted groundwater but was almost undetectable in the unpolluted groundwater, suggesting that it is a potential indicator of groundwater quality. Principal component analysis based on the fluorescence parameters explained 91.5% of the variance with the first two principal components, and revealed that the degree of pollution dominated the fluorescence characteristics of groundwater in the study area. In addition, NO3- was abundant in Clusters B and C, while it was low in Cluster A, validating the analysis results of fluorescence spectroscopy. These findings indicated that DOM fluorescence was sensitive to livestock farming pollution and could be applied to identify, monitor, and assess groundwater pollution from livestock farming.
Collapse
Affiliation(s)
- Yuanzheng Zhang
- Institute of Geological Survey, China University of Geosciences, Wuhan 430074, China
| | - Yunde Liu
- State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, School of Environmental Studies, China University of Geosciences, Wuhan 430074, China; State Key Laboratory of Biogeology and Environmental Geology, China University of, Geosciences, Wuhan 430074, China.
| | - Aiguo Zhou
- Institute of Geological Survey, China University of Geosciences, Wuhan 430074, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, School of Environmental Studies, China University of Geosciences, Wuhan 430074, China; State Key Laboratory of Biogeology and Environmental Geology, China University of, Geosciences, Wuhan 430074, China
| | - Li Zhang
- State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| |
Collapse
|
22
|
Shen D, Huang S, Zhang Y, Zhou Y. The source apportionment of N and P pollution in the surface waters of lowland urban area based on EEM-PARAFAC and PCA-APCS-MLR. ENVIRONMENTAL RESEARCH 2021; 197:111022. [PMID: 33744272 DOI: 10.1016/j.envres.2021.111022] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/09/2021] [Accepted: 03/12/2021] [Indexed: 06/12/2023]
Abstract
Multiple sources contribute to nitrogen(N) and phosphorus (P) pollution in lowland urban rivers, and apportioning the sources of N and P pollution is essential for improving the ecological health of urban environments. Three urban polders in Jiaxing were selected to investigate the temporal variations of N and P pollutants in lowland urban river waters under dry and wet conditions. Moreover, the main potential sources of N and P pollution were identified through the correlations of pollutants and components of dissolved organic matter (DOM) derived from excitation-emission matrix (EEM) and parallel factor analysis (PARAFAC). The results indicate that the main pollution sources identified with PCA method were consistent with the potential sources revealed by DOM's EEM-PARAFAC components. Furthermore, absolute principal components score combined with multivariate linear regression (APCS-MLR) was conducted. The results illustrated that domestic wastewater contributes more than 70% of N pollution and river-bottom sediments contribute more than 50% of P pollution under dry conditions. On the contrary, discharged water from the stormwater outlets contributes more than 41% of P and 75% of N under wet conditions. Specifically, about 48% of them come from domestic wastewater, and about 38% come from urban surface runoff. This study highlights the effectiveness of DOM components derived from EEM-PARAFAC in identifying the sources of N and P pollution and the PCA-APCS-MLR in apportioning the contributions of each potential pollution source in lowland urban rivers.
Collapse
Affiliation(s)
- Dali Shen
- The Institute of Municipal Engineering, Zhejiang University, Hangzhou, Zhejiang, China
| | - Saihua Huang
- Zhejiang University of Water Resources and Electric Power, Hangzhou, Zhejiang, China
| | - Yiping Zhang
- The Institute of Municipal Engineering, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yongchao Zhou
- The Institute of Municipal Engineering, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
23
|
Sgroi M, Snyder SA, Roccaro P. Comparison of AOPs at pilot scale: Energy costs for micro-pollutants oxidation, disinfection by-products formation and pathogens inactivation. CHEMOSPHERE 2021; 273:128527. [PMID: 33268086 DOI: 10.1016/j.chemosphere.2020.128527] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/29/2020] [Accepted: 10/01/2020] [Indexed: 05/19/2023]
Abstract
This work evaluated different advanced oxidation processes (AOPs) operated at pilot-scale as tertiary treatment of municipal wastewater in terms of energy efficiency, disinfection by-products formation and pathogens inactivation. Investigated AOPs included UV/H2O2, UV/Cl2, O3, O3/UV, H2O2/O3/UV, Cl2/O3/UV. AOPs were operated using various ozone doses (1.5-9 mg L-1), and UV fluences (191-981 mJ cm-2). Electrical energy costs necessary for the oxidation of contaminants of emerging concern (CEC) (i.e., carbamazepine, fluoxetine, gemfibrozil, primidone, sulfamethoxazole, trimethoprim) were calculated using the electrical energy per order (EEO) parameter. Ozonation resulted by far the most energy efficient process, whereas UV/H2O2 and UV/Cl2 showed the highest energy costs. Energy costs for AOPs based on the combination of UV and ozone were in the order O3/UV ≈ Cl2/O3/UV > H2O2/O3/UV, and they were significantly lower than energy costs of UV/H2O2 and UV/Cl2 processes. Cl2/O3/UV increased bromate formation, O3/UV and O3 had same levels of bromate formation, whereas H2O2/O3/UV did not form bromate. In addition, UV photolysis resulted an effective treatment for NDMA mitigation even in combination with ozone and chlorine in AOP technologies. Ozonation (doses of 1.5-6 mg L-1) was the least effective process to inactivate somatic coliphages, total coliform, escherichia coli, and enterococci. UV irradiation was able to completely inactivate somatic coliphages, total coliform, escherichia coli at low fluence (191 mJ cm-2), whereas enterococci were UV resistant. AOPs that utilized UV irradiation were the most effective processes for wastewater disinfection resulting in a complete inactivation of selected indicator organisms by low ozone dose (1.5 mg L-1) and UV fluence (191-465 mJ cm-2).
Collapse
Affiliation(s)
- Massimiliano Sgroi
- Department of Civil Engineering and Architecture, University of Catania, Viale A. Doria 6, 95125, Catania, Italy.
| | - Shane A Snyder
- Department of Chemical and Environmental Engineering, University of Arizona, 1133 E. James E. Rogers Way, Tucson, AZ, 85721, USA; Nanyang Technological University, Nanyang Environment & Water Research Institute, 1 Cleantech Loop, CleanTech One, #06-08, 637141, Singapore.
| | - Paolo Roccaro
- Department of Civil Engineering and Architecture, University of Catania, Viale A. Doria 6, 95125, Catania, Italy.
| |
Collapse
|
24
|
Zhang Y, Shen G, Hu S, He Y, Li P, Zhang B. Deciphering of antibiotic resistance genes (ARGs) and potential abiotic indicators for the emergence of ARGs in an interconnected lake-river-reservoir system. JOURNAL OF HAZARDOUS MATERIALS 2021; 410:124552. [PMID: 33243636 DOI: 10.1016/j.jhazmat.2020.124552] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 10/19/2020] [Accepted: 11/10/2020] [Indexed: 06/11/2023]
Abstract
This study aimed to decipher the patterns of antibiotic resistance genes (ARGs) and linkages of key abiotic indicators with ARGs in an interconnected lake-river-reservoir system. The results showed that seasonal variations in the relative abundance of ARGs and mobile gene elements (MGEs) were significant (KW, p < 0.05). ARGs representative of fecal pollution and natural environment were primarily distributed in the river and reservoir, respectively. The lake, river, and reservoir shared 54.5% of ARGs subtypes, most of which are multidrug resistance genes encoding for efflux pumps. Network results showed that ARGs conferring resistance to aminoglycoside frequently co-occurred with class 1 integrons and Limnohabitans. The resistance risks were low and associated with non-corresponding ARGs, and the highest resistance risk was caused by enrofloxacin in the Dianshan Lake. Fluorescence indices derived from two methods exhibited consistent positive correlations with abundance of individual genes (i.e. aada1 and aadA2-03) as well as total aminoglycoside resistance genes (Pearson, p < 0.05). Moreover, ARGs indicators of human and animal fecal pollution showed linkages with humic-like and fulvic-like indices (Pearson, p < 0.05). The results provide novel insights into the roles of abiotic factors on indicating dynamics of ARGs in aquatic environment impacted by anthropogenic activities.
Collapse
Affiliation(s)
- Yongpeng Zhang
- Environmental Science and Engineering School, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Genxiang Shen
- Shanghai Academy of Environmental Sciences, 508 Qinzhou Road, Shanghai 200233, China.
| | - Shuangqing Hu
- Shanghai Academy of Environmental Sciences, 508 Qinzhou Road, Shanghai 200233, China
| | - Yiliang He
- Environmental Science and Engineering School, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Peng Li
- Environmental Science and Engineering School, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Bo Zhang
- Environmental Science and Engineering School, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai 200240, China.
| |
Collapse
|
25
|
Sgroi M, Anumol T, Vagliasindi FGA, Snyder SA, Roccaro P. Comparison of the new Cl 2/O 3/UV process with different ozone- and UV-based AOPs for wastewater treatment at pilot scale: Removal of pharmaceuticals and changes in fluorescing organic matter. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 765:142720. [PMID: 33572038 DOI: 10.1016/j.scitotenv.2020.142720] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/27/2020] [Accepted: 09/27/2020] [Indexed: 06/12/2023]
Abstract
This work critically compared the removal of fluorescing PARAFAC components and selected pharmaceuticals (carbamazepine, fluoxetine, gemfibrozil, primidone, sulfamethoxazole, trimethoprim) from a tertiary wastewater effluent by different UV- and ozone-based advanced oxidation processes (AOPs) operated at pilot-scale. Investigated AOPs included UV/H2O2, UV/Cl2, O3, O3/UV, H2O2/O3/UV, and the new Cl2/O3/UV. AOPs comparison was accomplished using various ozone doses (0-9 mg/L), UV fluences (191-981 mJ/cm2) and radical promoter concentrations of Cl2 = 0.04 mM and H2O2 = 0.29 mM. Chlorine-based AOPs produced radical species that reacted more selectively with pharmaceuticals than radical species and oxidants generated by other AOPs. Tryptophan-like substances and humic-like fluorescing compounds were the most degraded components by all AOPs, which were better removed than microbial products and fulvic-like fluorescing substances. Removal of UV absorbance at 254 (UV254) nm was always low. Overall, chlorine-based AOPs were more effective to reduce fluorescence intensities than similar H2O2-based AOPs. The Cl2/O3/UV process was the most effective AOP to degrade all target micro-pollutants except primidone. On the other hand, the oxidation performance of pharmaceuticals by other ozone-based AOPs followed the order H2O2/O3/UV > O3/UV > O3. UV/Cl2 process outcompeted UV/H2O2 only for the removal of trimethoprim and sulfamethoxazole. Correlations between the removal of pharmaceuticals and spectroscopic indexes (PARAFAC components and UV254) had unique regression parameters for each compound, surrogate parameter and oxidation process. Particularly, a diverse PARAFAC component for each investigated AOP resulted to be the most sensitive surrogate parameter able to monitor small changes of pharmaceuticals removal.
Collapse
Affiliation(s)
- Massimiliano Sgroi
- Department of Civil Engineering and Architecture, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Tarun Anumol
- Agilent Technologies Inc., 2850 Centerville Road, Wilmington, DE 19808, USA; Department of Chemical and Environmental Engineering, University of Arizona, 1133 E. James E. Rogers Way, Tucson, AZ, 85721, USA
| | - Federico G A Vagliasindi
- Department of Civil Engineering and Architecture, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Shane A Snyder
- Department of Chemical and Environmental Engineering, University of Arizona, 1133 E. James E. Rogers Way, Tucson, AZ, 85721, USA; Nanyang Technological University, Nanyang Environment & Water Research Institute, 1 Cleantech Loop, CleanTech One, #06-08, 637141, Singapore.
| | - Paolo Roccaro
- Department of Civil Engineering and Architecture, University of Catania, Viale A. Doria 6, 95125 Catania, Italy.
| |
Collapse
|
26
|
Shen J, Liu C, Lv Q, Gu J, Su M, Wang S, Chai Y, Cheng C, Wu J. Novel insights into impacts of the COVID-19 pandemic on aquatic environment of Beijing-Hangzhou Grand Canal in southern Jiangsu region. WATER RESEARCH 2021; 193:116873. [PMID: 33550167 PMCID: PMC7830270 DOI: 10.1016/j.watres.2021.116873] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/20/2021] [Accepted: 01/22/2021] [Indexed: 05/24/2023]
Abstract
In 2020, a sudden COVID-19 pandemic unprecedentedly weakened anthropogenic activities and as results minified the pollution discharge to aquatic environment. In this study, the impacts of the COVID-19 pandemic on aquatic environment of the southern Jiangsu (SJ) segment of Beijing-Hangzhou Grand Canal (SJ-BHGC) were explored. Fluorescent component similarity and high-performance size exclusion chromatography analyses indicated that the textile printing and dyeing wastewater might be one of the main pollution sources in SJ-BHGC. The water quality parameters and intensities of fluorescent components (WT-C1(20) and WT-C2(20)) decreased to low level due to the collective shutdown of all industries in SJ region during the Spring Festival holiday and the outbreak of the domestic COVID-19 pandemic in China (January 24th to late February, 2020). Then, they presented a gradual upward trend after the domestic epidemic was under control. In mid-March, the outbreak of the international COVID-19 pandemic hit the garment export trade of China and consequently inhibited the production activities of textile printing and dyeing industry (TPDI) in SJ region. After peaking on March 26th, the intensities of WT-C1(20) and WT-C2(20) decreased again with changed intensity ratio until April 12th. During the study period (135 days), correlation analysis revealed that WT-C1 and WT-C2 possessed homology and their fluorescence intensities were highly positively correlated with conductivity and CODMn. With fluorescence fingerprint (FF) technique, this study not only excavated the characteristics and pollution causes of water body in SJ-BHGC, but also provided novel insights into impacts of the COVID-19 pandemic on production activities of TPDI and aquatic environment of SJ-BHGC. The results of this study indicated that FF technique was an effective tool for precise supervision of water environment.
Collapse
Affiliation(s)
- Jian Shen
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center of Environmental Technology in Water Pollution Source Identification and Precise Supervision, School of Environment, Tsinghua University, Beijing 100084, China
| | - Chuanyang Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center of Environmental Technology in Water Pollution Source Identification and Precise Supervision, School of Environment, Tsinghua University, Beijing 100084, China
| | - Qing Lv
- Suzhou Environmental Monitoring Center, Suzhou 215004, China
| | - Junqiang Gu
- Suzhou Environmental Monitoring Center, Suzhou 215004, China
| | - Mingyu Su
- Suzhou Environmental Monitoring Center, Suzhou 215004, China
| | - Shifeng Wang
- Research and Development Center of Advanced Environmental Supervision Technology and Instrument, Research Institute for Environmental Innovation (Suzhou) Tsinghua, Suzhou 215163, China
| | - Yidi Chai
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center of Environmental Technology in Water Pollution Source Identification and Precise Supervision, School of Environment, Tsinghua University, Beijing 100084, China; Research and Development Center of Advanced Environmental Supervision Technology and Instrument, Research Institute for Environmental Innovation (Suzhou) Tsinghua, Suzhou 215163, China
| | - Cheng Cheng
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center of Environmental Technology in Water Pollution Source Identification and Precise Supervision, School of Environment, Tsinghua University, Beijing 100084, China; Research and Development Center of Advanced Environmental Supervision Technology and Instrument, Research Institute for Environmental Innovation (Suzhou) Tsinghua, Suzhou 215163, China
| | - Jing Wu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center of Environmental Technology in Water Pollution Source Identification and Precise Supervision, School of Environment, Tsinghua University, Beijing 100084, China; Research and Development Center of Advanced Environmental Supervision Technology and Instrument, Research Institute for Environmental Innovation (Suzhou) Tsinghua, Suzhou 215163, China.
| |
Collapse
|
27
|
Pontoni L, Roviello V, Race M, Savignano L, van Hullebusch ED, Esposito G, Pirozzi F, Fabbricino M. Supramolecular aggregation of colloidal natural organic matter masks priority pollutants released in water from peat soil. ENVIRONMENTAL RESEARCH 2021; 195:110761. [PMID: 33524333 DOI: 10.1016/j.envres.2021.110761] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 06/12/2023]
Abstract
Natural organic matter (NOM) from Sphagnum peat soil is extracted in water and subjected to several investigations to obtain structural and conformational information. Data show that the extracted NOM is self-organized in colloidal aggregates of variable sizes (from nano to micro scales, depending on the solvent composition, i.e., ultrapure water, solutions with denaturing agents, acetone, ethanol). Aggregates are formed by highly heterogeneous classes of organic compounds. According to the results of nuclear magnetic resonance and fluorescence measurements, the three-dimensional structure of aggregates, revealed by scanning electron microscope imaging, is supposed to be stabilized by the exposition of polar functional groups to the solvent, with consequent formation of hydrogen bonds, dipole-interactions and cation bridging. In contrast, the inner part of the aggregates displays hydrophobic features and is hypothesized to be further reinforced by the establishment of π-stacking interactions. The structure is assumed to be a supramolecular aggregation of small-medium oligomeric fragments (Max 750 Da) in which priority pollutants are entrapped by dispersive forces. The structures are shown to be nanosized spheroidal particles further aggregated to form higher dimension supra-structures. Carbohydrates play primary role, stabilizing the structure and giving marked hydrophilic properties to the aggregates.
Collapse
Affiliation(s)
- Ludovico Pontoni
- Department of Civil, Architectural and Environmental Engineering (DICEA), University of Naples Federico II, Via Claudio 21, 80125, Naples, Italy; BAT Center - Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Napoli "Federico II", Portici (NA), Italy.
| | - Valentina Roviello
- Department of Chemical, Materials and Industrial Production Engineering (DICMaPI), University of Naples Federico II, Piazzale V. Tecchio 80, 80125, Naples, Italy
| | - Marco Race
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Via Di Biasio 43, Cassino, 03043, Italy
| | - Luigi Savignano
- Department of Chemical Sciences, University of Naples Federico II, Complesso di Monte S. Angelo, Via Cinthia, I-80126, Naples (NA), Italy
| | - Eric D van Hullebusch
- Université de Paris, Institut de Physique Du Globe de Paris, CNRS, UMR 7154, F-75238, Paris, France
| | - Giovanni Esposito
- Department of Civil, Architectural and Environmental Engineering (DICEA), University of Naples Federico II, Via Claudio 21, 80125, Naples, Italy
| | - Francesco Pirozzi
- Department of Civil, Architectural and Environmental Engineering (DICEA), University of Naples Federico II, Via Claudio 21, 80125, Naples, Italy; BAT Center - Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Napoli "Federico II", Portici (NA), Italy
| | - Massimiliano Fabbricino
- Department of Civil, Architectural and Environmental Engineering (DICEA), University of Naples Federico II, Via Claudio 21, 80125, Naples, Italy; BAT Center - Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Napoli "Federico II", Portici (NA), Italy
| |
Collapse
|
28
|
Song ZM, Xu YL, Liang JK, Peng L, Zhang XY, Du Y, Lu Y, Li XZ, Wu QY, Guan YT. Surrogates for on-line monitoring of the attenuation of trace organic contaminants during advanced oxidation processes for water reuse. WATER RESEARCH 2021; 190:116733. [PMID: 33341034 DOI: 10.1016/j.watres.2020.116733] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/26/2020] [Accepted: 12/06/2020] [Indexed: 05/27/2023]
Abstract
The large number of trace organic contaminants (TrOCs) in wastewater has resulted in severe concerns to human health. Ozonation and UV/H2O2 are widely used to remove TrOCs in wastewater treatment process. Owing to the trace concentrations of TrOCs in wastewater, real-time monitoring of the abatement efficiency of TrOCs through ozonation and UV/H2O2 is quite challenging. Instead of a direct measurement of all the TrOCs, the research community has begun to use different surrogates to monitor the attenuation of TrOCs during AOPs. Various surrogates have been developed over the past few decades. In this review, the different types of surrogates are summarized, including ultraviolet spectroscopy and fluorescence spectroscopy. Strong linear correlations have been found for the removal of TrOCs using AOPs, and the abatement of UV absorption spectroscopy at 254 nm or total fluorescence (TF). Moreover, a two-phase linear correlation can better describe the ozone-resistant TrOCs compared with a single linear correlation. Two different kinds of predictive models exist that use surrogates as the input for ozonation: the regression model and kinetic model. The development of the models requires a further understanding of the impacts of water quality, seasonal variations, and storm events on the kinetic parameters. For the in situ monitoring system, the light-emitting diode (LED) is one of the most promising light sources, although the sensitivity and accuracy still need to be improved.
Collapse
Affiliation(s)
- Zhi-Min Song
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Ya-Lan Xu
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Jun-Kun Liang
- Shenzhen Environmental Science and New Energy Technology Engineering Laboratory, Tsinghua-Berkeley Shenzhen Institute, Shenzhen 518055, China
| | - Lu Peng
- Shenzhen Environmental Science and New Energy Technology Engineering Laboratory, Tsinghua-Berkeley Shenzhen Institute, Shenzhen 518055, China
| | - Xin-Yang Zhang
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Ye Du
- Shenzhen Environmental Science and New Energy Technology Engineering Laboratory, Tsinghua-Berkeley Shenzhen Institute, Shenzhen 518055, China
| | - Yao Lu
- Shenzhen Environmental Science and New Energy Technology Engineering Laboratory, Tsinghua-Berkeley Shenzhen Institute, Shenzhen 518055, China
| | - Xin-Zheng Li
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Qian-Yuan Wu
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
| | - Yun-Tao Guan
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| |
Collapse
|
29
|
Shi W, Zhuang WE, Hur J, Yang L. Monitoring dissolved organic matter in wastewater and drinking water treatments using spectroscopic analysis and ultra-high resolution mass spectrometry. WATER RESEARCH 2021; 188:116406. [PMID: 33010601 DOI: 10.1016/j.watres.2020.116406] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/10/2020] [Accepted: 09/06/2020] [Indexed: 05/27/2023]
Abstract
Dissolved organic matter (DOM) plays a critical role in determining the quality of wastewater and the safety of drinking water. This is the first review to compare two types of popular DOM monitoring techniques, including absorption spectroscopy and fluorescence excitation-emission matrices (EEMs) coupled with parallel factor analysis (PARAFAC) vs. Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS), for the applications in wastewater and drinking water treatments. The optical techniques provide a series of indices for tracking the quantity and quality of chromophoric and fluorescent DOM, while FT-ICR-MS is capable of identifying thousands of DOM compounds in wastewater and drinking water at the molecule level. Both types of monitoring techniques are increasingly used in studying DOM in wastewater and drinking water treatments. They provide valuable insights into the variability of DOM composition in wastewater and drinking water. The complexity and diversity of DOM highlight the challenges for effective water treatments. Different effects of various treatment processes on DOM are also assessed, which indicates that the information on DOM composition and its removal is key to optimize the treatment processes. Considering notable progress in advanced treatment processes and novel materials for removing DOM, it is important to continuously utilize these powerful monitoring tools for assessing the responses of different DOM constituents to a series of treatment processes, which can achieve an effective removal of DOM and the quality of treated water.
Collapse
Affiliation(s)
- Weixin Shi
- Fujian Provincial Engineering Research Center for High-value Utilization Technology of Plant Resources, College of Environment and Resources, Fuzhou University, Fuzhou, Fujian, China
| | - Wan-E Zhuang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Jin Hur
- Department of Environment and Energy, Sejong University, Seoul 05006, South Korea
| | - Liyang Yang
- Fujian Provincial Engineering Research Center for High-value Utilization Technology of Plant Resources, College of Environment and Resources, Fuzhou University, Fuzhou, Fujian, China.
| |
Collapse
|
30
|
Yu H, Qu F, Wu Z, He J, Rong H, Liang H. Front-face fluorescence excitation-emission matrix (FF-EEM) for direct analysis of flocculated suspension without sample preparation in coagulation-ultrafiltration for wastewater reclamation. WATER RESEARCH 2020; 187:116452. [PMID: 33002775 DOI: 10.1016/j.watres.2020.116452] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 09/12/2020] [Accepted: 09/22/2020] [Indexed: 06/11/2023]
Abstract
Fluorescence spectroscopy has been suggested as a promising online monitoring technique in water and wastewater treatment processes due to its high sensitivity and selectivity. However, a pre-filtration is still indispensable in fluorescence measurement for removing ubiquitous particles and flocs in real samples to eliminate the strong light scattering that could attenuate fluorescence detection significantly. This study proposed a front-face fluorescence spectroscopy, which could characterize the liquid sample with suspended solids directly without pre-filtration. Front-face excitation-emission matrix (FF-EEM) coupled with parallel factor (PARAFAC) analysis was used for analyzing fluorescence components and to probe coagulation of secondary effluent and fouling in the subsequent ultrafiltration (UF), and conventional right-angle fluorescence EEM (RA-EEM) was also compared. The results showed that FF-EEM was less susceptible to turbidity (induced by standard particles) in the secondary effluent compared to RA-EEM. FF-EEM could successfully measure dissolved fluorophores in coagulated suspension without pre-filtration, while conventional RA-EEM was undermined significantly due to the existing flocs. FF-EEM coupled with PARAFAC could accurately probe dissolved organic matter and fouling in coagulation- UF wastewater reclamation processes. Therefore, it was demonstrated that this front-face fluorescence without any sample preparation step might be highly promising in real-time online fluorescence monitoring in multi water and wastewater treatment processes.
Collapse
Affiliation(s)
- Huarong Yu
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Guangzhou University, Guangzhou, 510006, China; School of Civil Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Fangshu Qu
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Guangzhou University, Guangzhou, 510006, China; School of Civil Engineering, Guangzhou University, Guangzhou, 510006, China.
| | - Zijian Wu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Junguo He
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Guangzhou University, Guangzhou, 510006, China; School of Civil Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Hongwei Rong
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Guangzhou University, Guangzhou, 510006, China; School of Civil Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Heng Liang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| |
Collapse
|
31
|
Wang K, Larkin T, Singhal N, Zhao Y. Leachability of endocrine disrupting chemicals (EDCs) in municipal sewage sludge: Effects of EDCs interaction with dissolved organic matter. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 742:140366. [PMID: 32623156 DOI: 10.1016/j.scitotenv.2020.140366] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 06/17/2020] [Accepted: 06/17/2020] [Indexed: 06/11/2023]
Abstract
In this study, experiments were performed to assess the significance of dissolved organic matter (DOM) on the leachability of four common EDCs, i.e., bisphenol A (BPA), 17α-ethinylestradiol (EE2), progesterone (PGT) and testosterone (TST), in municipal sewage sludge (MSS) under landfill conditions. The DOM was derived from two sources: MSS (MDOM), and natural soil represented by organic matter obtained from the Suwannee River (NDOM). Fluorescence excitation-emission matrix quenching combined with parallel factor analysis was adopted to characterize the interaction properties between the EDCs and DOM. The accumulative leachability of the target EDCs ranged from 0.09% (PGT) to 3.8% (TST). In particular, the leaching of BPA, EE2 and TST followed S-shaped curves, while PGT exhibited continuous leaching potential in untreated MSS. With the introduction of DOM, (i) the leachability of BPA and EE2 increased to 13.4% and 61.6%, respectively, whereas those of PGT and TST declined by 61.3% and 45.8%, respectively, and (ii) BPA, EE2 and PGT no longer reached leaching equilibrium but the S-shaped leaching property of TST persisted. The differential effects of MDOM and NDOM at identical concentrations on the EDCs leachability increased with curing time. BPA, EE2 and PGT quenched the MDOM fluorophores attributed to aromatic protein-like components. The fluorescence quenching of NDOM by BPA, EE2 and PGT was centered on soluble microbial by-product-like and humic-like substances. Compared with PGT, EE2 and BPA had greater capability for binding with DOM components largely via hydrophobic interactions, whereas PGT preferentially interacted with the DOM hydrophilic functionalities through specific interactions. TST had no binding capability but displayed potentials competing for sorption sites with DOM moieties. Our findings suggested that the management of MSS increased the risk of environmental contamination by EDCs for a long duration and that DOM was a useful indicator to predict the migration and transport properties of EDCs.
Collapse
Affiliation(s)
- Kun Wang
- Key Laboratory for Environmental Factors Control of Agro-product Quality Safety, Ministry of Agricultural and Rural Affairs, Tianjin 300191, PR China; Jinan Environmental Research Academy, Jinan 250102, PR China; Department of Civil and Environmental Engineering, University of Auckland, Private Bag, 92019, New Zealand.
| | - Tam Larkin
- Department of Civil and Environmental Engineering, University of Auckland, Private Bag, 92019, New Zealand
| | - Naresh Singhal
- Department of Civil and Environmental Engineering, University of Auckland, Private Bag, 92019, New Zealand
| | - Yujie Zhao
- Key Laboratory for Environmental Factors Control of Agro-product Quality Safety, Ministry of Agricultural and Rural Affairs, Tianjin 300191, PR China
| |
Collapse
|
32
|
Wang S, Matt M, Murphy BL, Perkins M, Matthews DA, Moran SD, Zeng T. Organic Micropollutants in New York Lakes: A Statewide Citizen Science Occurrence Study. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:13759-13770. [PMID: 33064942 DOI: 10.1021/acs.est.0c04775] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The widespread occurrence of organic micropollutants (OMPs) is a challenge for aquatic ecosystem management, and closing the gaps in risk assessment of OMPs requires a data-driven approach. One promising tool for increasing the spatiotemporal coverage of OMP data sets is through the active involvement of citizen volunteers to expand the scale of OMP monitoring. Working collaboratively with volunteers from the Citizens Statewide Lake Assessment Program (CSLAP), we conducted the first statewide study on OMP occurrence in surface waters of New York lakes. Samples collected by CSLAP volunteers were analyzed for OMPs by a suspect screening method based on mixed-mode solid-phase extraction and liquid chromatography-high resolution mass spectrometry. Sixty-five OMPs were confirmed and quantified in samples from 111 lakes across New York. Hierarchical clustering of OMP occurrence data revealed the relevance of 11 most frequently detected OMPs for classifying the contamination status of lakes. Partial least squares regression and multiple linear regression analyses prioritized three water quality parameters linked to agricultural and developed land uses (i.e., total dissolved nitrogen, specific conductance, and a wastewater-derived fluorescent organic matter component) as the best combination of predictors that partly explained the interlake variability in OMP occurrence. Lastly, the exposure-activity ratio approach identified the potential for biological effects associated with detected OMPs that warrant further biomonitoring studies. Overall, this work demonstrated the feasibility of incorporating citizen science approaches into the regional impact assessment of OMPs.
Collapse
Affiliation(s)
- Shiru Wang
- Department of Civil and Environmental Engineering, Syracuse University, 151 Link Hall, Syracuse, New York 13244, United States
| | - Monica Matt
- Upstate Freshwater Institute, 224 Midler Park Drive, Syracuse, New York 13206, United States
| | - Bethany L Murphy
- Department of Civil and Environmental Engineering, Syracuse University, 151 Link Hall, Syracuse, New York 13244, United States
| | - MaryGail Perkins
- Upstate Freshwater Institute, 224 Midler Park Drive, Syracuse, New York 13206, United States
| | - David A Matthews
- Upstate Freshwater Institute, 224 Midler Park Drive, Syracuse, New York 13206, United States
| | - Sharon D Moran
- Department of Environmental Studies, SUNY College of Environmental Science and Forestry, 1 Forestry Drive, Syracuse, New York 13210, United States
| | - Teng Zeng
- Department of Civil and Environmental Engineering, Syracuse University, 151 Link Hall, Syracuse, New York 13244, United States
| |
Collapse
|
33
|
Ruffino B, Korshin GV, Zanetti M. Use of spectroscopic indicators for the monitoring of bromate generation in ozonated wastewater containing variable concentrations of bromide. WATER RESEARCH 2020; 182:116009. [PMID: 32562961 DOI: 10.1016/j.watres.2020.116009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/27/2020] [Accepted: 06/01/2020] [Indexed: 06/11/2023]
Abstract
Time-resolved monitoring of bromate and other by-products formed into effluents treated with ozone or advanced oxidation processes in wastewater treatment plants (WWTPs) is time-consuming and expensive. This study examined whether concentrations of bromate formed in wastewater after ozonation in the presence of widely varying bromide levels (from ca. 0.7-21.2 mg/L) can be quantified based on measurements of changes in optical properties (differential UV absorbance (ΔUVA), spectral slopes, total or regional fluorescence) of the ozonated samples. Batch ozonation was carried out using a secondary effluent produced at a major wastewater treatment plant located in the Metropolitan Seattle Area. The tests involved raw and bromide-spiked samples treated with ozone doses from 0.1 to 1 mg O3/mg DOC. Measurements of the absorbance at 254 nm (UVA254), fluorescence and bromate concentrations were performed on the treated samples. In the ozonated wastewater the concentration of bromate increased approximately linearly, from <10 ppb to ca. 200 ppb, without showing the lag phase characteristic for lower ozone doses (<0.4 mg O3/mg DOC) that was observed in previous studies carried out with concentrations of bromide in the range of 0.05-0.5 mg/L. The highest bromide concentrations used in this study (>10 mg/L) tended to inhibit the generation of bromate. Relative reduction of UVA254 and total fluorescence (TF) were found to be good predictors of bromate generation. Specifically, exponential curves could adequately fit the non-linear relationships found to exist between the concentrations of bromate and the relative reductions of the UV254 and TF, for any initial bromide concentrations used in this study. Little formation of bromate was found to occur for reduction ranges for UVA254 and TF of 30-40% and 70-80% respectively. Conversely, rapid increases in bromate generation were observed when the decrease of UVA254 or TF exceeded these threshold values.
Collapse
Affiliation(s)
- Barbara Ruffino
- Department of Environment, Land and Infrastructure Engineering, Politecnico di Torino, Torino, Italy.
| | - Gregory V Korshin
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA, USA
| | - Mariachiara Zanetti
- Department of Environment, Land and Infrastructure Engineering, Politecnico di Torino, Torino, Italy
| |
Collapse
|
34
|
Chen X, Huang G, Li Y, An C, Feng R, Wu Y, Shen J. Functional PVDF ultrafiltration membrane for Tetrabromobisphenol-A (TBBPA) removal with high water recovery. WATER RESEARCH 2020; 181:115952. [PMID: 32497754 DOI: 10.1016/j.watres.2020.115952] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/04/2020] [Accepted: 05/14/2020] [Indexed: 06/11/2023]
Abstract
Tetrabromobisphenol-A (TBBPA) is one of the most important brominated flame retardants (BFRs), accounting for 60% of the total commercial BFR market. Increasing amounts of TBBPA and byproducts are released to the aquatic environment due to their extensive utilization in various sectors. However, research on the treatment of TBBPA contaminated wastewater using membrane filtration is still lacked. Herein, a PVDF10-PAA-ZrO2 membrane was successfully developed and applied for the treatment of high-concentration TBBPA wastewater with super-high water recovery. The membrane was obtained through surface functionalization with nano-ZrO2 from commercial PVDF ultrafiltration (UF) membrane. Compared to the commercial PVDF membrane, the developed membrane exhibited 4 times of permeate flux which was up to 200 L/m2 min with comparable TBBPA rejection rate. Furthermore, the mechanisms of membrane development and TBBPA rejection were explored through synchrotron-based ATR-FTIR and X-ray analyses. It was revealed that ZrO2 NPs were immobilized into membrane surface through binding with PAA layer, where the O of the carboxyl group combined with the Zr4+ on the ZrO2 NP surface to form C-O-Zr bond through monodentate and bridging-bidentate modes. The sieving function of membrane could be the main mechanism of TBBPA removal. This research demonstrated a practical route and solid insight toward the development of highly efficient membrane for TBBPA removal. The proposed PVDF10-PAA-ZrO2 membrane can also be promising for other industrial separation and purification applications.
Collapse
Affiliation(s)
- Xiujuan Chen
- Faculty of Engineering and Applied Science, University of Regina, Regina, Saskatchewan, S4S 0A2, Canada; Institute for Energy, Environment and Sustainable Communities, University of Regina, Regina, Saskatchewan, S4S 0A2, Canada
| | - Gordon Huang
- Faculty of Engineering and Applied Science, University of Regina, Regina, Saskatchewan, S4S 0A2, Canada; International Society for Environmental Information Sciences, 9803A Jingshidasha-BNU, 19 Xinwaidajie, Beijing 100875, China.
| | - Yongping Li
- School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Chunjiang An
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, Quebec, H3G 1M8, Canada
| | - Renfei Feng
- Canadian Light Source, Saskatoon, S7N 2V3, Canada
| | - Yinghui Wu
- Faculty of Engineering and Applied Science, University of Regina, Regina, Saskatchewan, S4S 0A2, Canada; Institute for Energy, Environment and Sustainable Communities, University of Regina, Regina, Saskatchewan, S4S 0A2, Canada
| | - Jian Shen
- Faculty of Engineering and Applied Science, University of Regina, Regina, Saskatchewan, S4S 0A2, Canada; Institute for Energy, Environment and Sustainable Communities, University of Regina, Regina, Saskatchewan, S4S 0A2, Canada
| |
Collapse
|
35
|
Fu L, Bin L, Cui J, Nyobe D, Li P, Huang S, Fu F, Tang B. Tracing the occurrence of organophosphate ester along the river flow path and textile wastewater treatment processes by using dissolved organic matters as an indicator. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 722:137895. [PMID: 32208263 DOI: 10.1016/j.scitotenv.2020.137895] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/07/2020] [Accepted: 03/11/2020] [Indexed: 06/10/2023]
Abstract
Organophosphate esters (OPEs) are frequently detected in wastewater and receiving river, but their occurrence is hard to be quickly and effectively responded. In this study, the relevant OPEs and dissolved organic matters (DOMs) data were obtained from two textile wastewater treatment plants (WWTPs) with different processes and a 15 km stretch of river receiving the treated textile wastewater. UV-Vis absorption and fluorescence spectroscopy combined with peak-picking and fluorescence regional integration (FRI) methods were used to characterize DOM components in these samples. The results showed that OPEs concentrations were not always consistent with that of DOM, but were related to their physico-chemical properties and sources. Correlation and regression analysis indicated that the FRI pattern could be considered for tracing the occurrence of organophosphate diesters derived from multiple pollutants in river water, and reflected the emerging of moderate or high removal organophosphate triesters in WWTPs. Difference in the sources and DOM compositions was the main contributor to the correlation difference of OPEs and DOM in the two types of processes. The treatment technique also played important roles in the co-occurrence of OPEs and DOM in different WWTPs. This study would be beneficial to develop in-situ monitoring for the dynamic change of emerging contaminants along with a river flow path and from WWTPs, respectively.
Collapse
Affiliation(s)
- Lingfang Fu
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China; Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangzhou 510006, PR China; Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou 510006, PR China
| | - Liying Bin
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China; Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangzhou 510006, PR China; Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou 510006, PR China
| | - Jiao Cui
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China; Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangzhou 510006, PR China; Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou 510006, PR China
| | - Dieudonne Nyobe
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China; Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangzhou 510006, PR China; Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou 510006, PR China
| | - Ping Li
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China; Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangzhou 510006, PR China; Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou 510006, PR China
| | - Shaosong Huang
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China; Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangzhou 510006, PR China; Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou 510006, PR China
| | - Fenglian Fu
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China; Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangzhou 510006, PR China; Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou 510006, PR China
| | - Bing Tang
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China; Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangzhou 510006, PR China; Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou 510006, PR China.
| |
Collapse
|
36
|
Shao C, Yang Y, Liu Z, Wang Q, Ji Z, Wang S, Demeestere K, Guo Y, Hulle SV. Characterization of landfill leachate by spectral-based surrogate measurements during a combination of different biological processes and activated carbon adsorption. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2020; 81:2606-2616. [PMID: 32857747 DOI: 10.2166/wst.2020.317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Surrogate measurements based on excitation-emission matrix fluorescence spectra (EEMs) and ultraviolet-visible absorption spectra (UV-vis) were used to monitor the evolution of dissolved organic matter (DOM) in landfill leachate during a combination of biological and physical-chemical treatment consisting of partial nitritation-anammox (PN-Anammox) or nitrification-denitrification (N-DN) combined with granular active carbon adsorption (GAC). PN-Anammox resulted in higher nitrogen removal (81%), whereas N-DN required addition of an external carbon source to increase nitrogen removal from 24% to 56%. Four DOM components (C1 to C4) were identified by excitation-emission matrix-parallel factor analysis (EEM-PARAFAC). N-DN showed a greater ability to remove humic-like components (C1 and C3), while the protein-like component (C4) was better removed by PN-Anammox. Both biological treatment processes showed limited removal of the medium molecular humic-like component (C2). In addition, the synergistic effect of biological treatments and adsorption was studied. The combination of PN-Anammox and GAC adsorption could remove C4 completely and also showed a good removal efficiency for C1 and C2. The Thomas model of adsorption revealed that GAC had the maximum adsorption capacity for PN-Anammox treated leachate. This study demonstrated better removal of nitrogen and fluorescence DOM by a combination of PN-Anammox and GAC adsorption, and provides practical and technical support for improved landfill leachate treatment.
Collapse
Affiliation(s)
- Chenjia Shao
- College of Environment, Zhejiang University of Technology, No. 18, Chaowang Road, 310014 Hangzhou, Zhejiang, China E-mail: ; LIWET, Department of Green Chemistry and Technology, Ghent University, Campus Kortrijk, Graaf Karel De Goedelaan 5, B-8500 Kortrijk, Belgium
| | - Yongyuan Yang
- LIWET, Department of Green Chemistry and Technology, Ghent University, Campus Kortrijk, Graaf Karel De Goedelaan 5, B-8500 Kortrijk, Belgium
| | - Ze Liu
- LIWET, Department of Green Chemistry and Technology, Ghent University, Campus Kortrijk, Graaf Karel De Goedelaan 5, B-8500 Kortrijk, Belgium
| | - Qiaoling Wang
- College of Environment, Zhejiang University of Technology, No. 18, Chaowang Road, 310014 Hangzhou, Zhejiang, China E-mail:
| | - Zengwen Ji
- College of Environment, Zhejiang University of Technology, No. 18, Chaowang Road, 310014 Hangzhou, Zhejiang, China E-mail:
| | - Shijie Wang
- College of Environment, Zhejiang University of Technology, No. 18, Chaowang Road, 310014 Hangzhou, Zhejiang, China E-mail:
| | - Kristof Demeestere
- EnVOC, Department of Green Chemistry and Technology, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | - Yaping Guo
- College of Environment, Zhejiang University of Technology, No. 18, Chaowang Road, 310014 Hangzhou, Zhejiang, China E-mail:
| | - Stijn Van Hulle
- LIWET, Department of Green Chemistry and Technology, Ghent University, Campus Kortrijk, Graaf Karel De Goedelaan 5, B-8500 Kortrijk, Belgium
| |
Collapse
|
37
|
Mendoza LM, Mladenov N, Kinoshita AM, Pinongcos F, Verbyla ME, Gersberg R. Fluorescence-based monitoring of anthropogenic pollutant inputs to an urban stream in Southern California, USA. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 718:137206. [PMID: 32325614 DOI: 10.1016/j.scitotenv.2020.137206] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 02/07/2020] [Accepted: 02/07/2020] [Indexed: 06/11/2023]
Abstract
Fluorescence spectroscopy has been increasingly used to detect sewage and other anthropogenic contaminants in surface waters. Despite progress in successfully detecting bacterial and sewage inputs to rivers over diverse spatial scales, the use of fluorescence-based in-situ sensors to track contaminant inputs during storm events and to discern bacterial contamination from background natural organic matter (NOM) fluorescence have received less attention. A portable, submersible fluorometer equipped with tryptophan (TRP)-like and humic-like fluorescence sensors was used to track inputs of untreated wastewater added to natural creek water in a laboratory sewage spill simulation. Significant, positive correlations were observed between TRP fluorescence, the TRP:humic ratio, percent wastewater, and Escherichia coli concentrations, indicating that both the TRP sensor and the TRP:humic ratio tracked wastewater inputs against the background creek water DOM fluorescence. The portable fluorometer was subsequently deployed in an urban creek during a storm in 2018. The peak in TRP fluorescence was found to increase with the rising limb of the hydrograph and followed similar temporal dynamics to that of caffeine and fecal indicator bacteria, which are chemical and biological markers of potential fecal pollution. Results from this study demonstrate that tracking of TRP fluorescence intensity and TRP:humic ratios, with turbidity correction of sensor outputs, may be an appropriate warning tool for rapid monitoring of sewage or other bacterial inputs to aquatic environments.
Collapse
Affiliation(s)
- Lorelay M Mendoza
- Department of Civil, Construction, and Environmental Engineering, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, United States of America; Department of Civil and Environmental Engineering, Stanford University, 450 Serra Mall, Stanford, CA 94305, United States of America
| | - Natalie Mladenov
- Department of Civil, Construction, and Environmental Engineering, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, United States of America.
| | - Alicia M Kinoshita
- Department of Civil, Construction, and Environmental Engineering, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, United States of America
| | - Federick Pinongcos
- Department of Civil, Construction, and Environmental Engineering, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, United States of America
| | - Matthew E Verbyla
- Department of Civil, Construction, and Environmental Engineering, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, United States of America
| | - Richard Gersberg
- College of Public Health, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, United States of America
| |
Collapse
|
38
|
Villarín MC, Merel S. Paradigm shifts and current challenges in wastewater management. JOURNAL OF HAZARDOUS MATERIALS 2020; 390:122139. [PMID: 32007860 DOI: 10.1016/j.jhazmat.2020.122139] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 01/10/2020] [Accepted: 01/18/2020] [Indexed: 06/10/2023]
Abstract
Wastewater is a significant environmental and public health concern which management is a constant challenge since antiquity. Wastewater research has increased exponentially over the last decades. This paper provides a global overview of the exponentially increasing wastewater research in order to identify current challenges and paradigm shifts. Besides households, hospitals and typical industries, other sources of wastewater appear due to emerging activities like hydraulic fracturing. While the composition of wastewater needs constant reassessment to identify contaminants of interest, the comprehensive chemical and toxicological analysis remains one of the main challenges in wastewater research. Moreover, recent changes in the public perception of wastewater has led to several paradigm shifts: i) water reuse considering wastewater as a water resource rather than a hazardous waste, ii) wastewater-based epidemiology considering wastewater as a source of information regarding the overall health of a population through the analysis of specific biomarkers, iii) circular economy through the implementation of treatment processes aiming at harvesting valuable components such as precious metals or producing valuable goods such as biofuel. However, wastewater research should also address social challenges such as the public acceptance of water reuse or the access to basic sanitation that is not available for nearly a third of the world population.
Collapse
Affiliation(s)
- María C Villarín
- Department of Human Geography, University of Seville, c/ Doña María de Padilla s/n, 41004, Sevilla, Spain.
| | - Sylvain Merel
- Institute of Marine Research (IMR), PO Box 1870 Nordnes, N-5817, Bergen, Norway; INRAE, UR RiverLy, 5 rue de la Doua, F-69625 Villeurbanne, France.
| |
Collapse
|
39
|
Roccaro P, Finocchiaro R, Mamo J, Farré MJ. Monitoring NDMA precursors throughout membrane-based advanced wastewater treatment processes by organic matter fluorescence. WATER RESEARCH 2020; 175:115682. [PMID: 32193028 DOI: 10.1016/j.watres.2020.115682] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/27/2020] [Accepted: 03/01/2020] [Indexed: 06/10/2023]
Abstract
This study investigates the potential of fluorescence excitation/emission matrices (EEM) measurement as a tool to predict N-Nitrosodimethylamine (NDMA) formation in water reuse applications. In particular, samples from a pilot-scale membrane biological reactor (MBR) followed by nanofiltration (NF) advanced water treatment plant, are used for the study. Concentrations of both, specific NDMA precursors and NDMA formation potential (FP) are correlated with different EEM peaks. The specific precursors investigated are: erythromycin, azithromycin, clarithromycin, venlafaxine, o-desmethylvenlafaxine, ranitidine and citalopram, while the NDMA FP is conventionally measured by the NDMA formation potential test. EEM peaks investigated are obtained by fluorescence regional integration as well as by the peak picking method generating I1, I2, I3, I4, and I5 peaks. Results showed that protein-like materials are correlated with the bulk NDMA FP and specific NDMA precursors. Additionally, selected fluorescence peaks such as I1, I2 and I4 are strongly correlated with NDMA precursors throughout the MBR-NF pilot plant. The removal of NDMA precursors and EEM peaks also correlated well (R2 > 0.8). This data shows that fluorescence EEM can be a promising tool to monitor the concentration of NDMA precursors and their removal in water reuse application.
Collapse
Affiliation(s)
- Paolo Roccaro
- Department of Civil Engineering and Architecture, University of Catania, Viale A. Doria 6, Catania, Italy.
| | - Renata Finocchiaro
- Department of Civil Engineering and Architecture, University of Catania, Viale A. Doria 6, Catania, Italy.
| | - Julian Mamo
- Chemical and Environmental Engineering Laboratory (LEQUIA), Institut de Medi Ambient, Campus Montilivi s/n, University of Girona, E-17071, Girona, Catalonia, Spain
| | - Maria José Farré
- ICRA, Catalan Institute for Water Research, Scientific and Technological Park of the University of Girona, H2O Building, Emili Grahit 101, 17003, Girona, Spain; UdG, Universitat de Girona, 17003, Girona, Spain.
| |
Collapse
|
40
|
Guillossou R, Le Roux J, Brosillon S, Mailler R, Vulliet E, Morlay C, Nauleau F, Rocher V, Gaspéri J. Benefits of ozonation before activated carbon adsorption for the removal of organic micropollutants from wastewater effluents. CHEMOSPHERE 2020; 245:125530. [PMID: 31881388 DOI: 10.1016/j.chemosphere.2019.125530] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 11/28/2019] [Accepted: 11/30/2019] [Indexed: 06/10/2023]
Abstract
Advanced processes for the removal of organic micropollutants (OMPs) from wastewater effluents include adsorption onto activated carbon, ozonation, or a combination of both processes. The removal of 28 OMPs present in a real wastewater effluent was studied by ozonation coupled to activated carbon adsorption and compared to a sole adsorption. The influence of the specific ozone dose (0.09-1.29 gO3/gDOC) and the influence of the powdered activated carbon (PAC) dose (2, 5 and 10 mg/L) were first studied separately. OMPs removal increased with both the specific ozone dose (up to 80% for a dose higher than 0.60 gO3/gDOC) and the PAC dose. Ozonation performances decreased in presence of suspended solids, which were converted to dissolved organic carbon. A correction of the specific ozone dose according to the suspended solids levels, in addition to nitrite, should be considered. The influence of ozonation (0.09, 0.22, 0.94 and 1.29 gO3/gDOC) on OMPs adsorption was then assessed. OMPs adsorption didn't change at low specific ozone doses but increased at higher specific ozone doses due to a decrease in DOM adsorption and competition with OMPs. At low ozone doses followed by adsorption (0.22 gO3/gDOC and 10 mg/L PAC), the two processes appeared complementary as OMPs with a low reactivity toward ozone were well absorbed onto PAC while most OMPs refractory to adsorption were well eliminated by ozone. Improved removals were obtained for all compounds with these selected doses, reaching more than 80% removal for most OMPs while limiting the formation of bromate ion.
Collapse
Affiliation(s)
- Ronan Guillossou
- Ecole des Ponts ParisTech, Université Paris-Est Créteil, AgroParisTech, Laboratoire Eau Environnement et Systèmes Urbains, UMR-MA 102, Créteil, France
| | - Julien Le Roux
- Ecole des Ponts ParisTech, Université Paris-Est Créteil, AgroParisTech, Laboratoire Eau Environnement et Systèmes Urbains, UMR-MA 102, Créteil, France.
| | - Stéphan Brosillon
- Institut Européen des Membranes, IEM - UMR 5635, ENSCM, CNRS, CC047, Université de Montpellier, Montpellier, France
| | - Romain Mailler
- Service Public de L'assainissement Francilien (SIAAP), Direction Innovation, Colombes, France
| | - Emmanuelle Vulliet
- Université de Lyon, CNRS, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR 5280, Villeurbanne, France
| | - Catherine Morlay
- Université de Lyon, CNRS, Université Claude Bernard Lyon 1, INSA-Lyon, MATEIS, UMR 5510, Villeurbanne, France
| | - Fabrice Nauleau
- Saur, Direction de La Recherche et Du Développement, Maurepas, France
| | - Vincent Rocher
- Service Public de L'assainissement Francilien (SIAAP), Direction Innovation, Colombes, France
| | - Johnny Gaspéri
- Ecole des Ponts ParisTech, Université Paris-Est Créteil, AgroParisTech, Laboratoire Eau Environnement et Systèmes Urbains, UMR-MA 102, Créteil, France; Water and Environment Laboratory (LEE), Geotechnical engineering, Environment, Natural hazards and Earth Sciences Department (GERS), French Institute of Science and Technology for Transport, Development and Networks (IFSTTAR), IRSTV, 44340 Bouguenais, France.
| |
Collapse
|
41
|
Sgroi M, Gagliano E, Vagliasindi FGA, Roccaro P. Inner filter effect, suspended solids and nitrite/nitrate interferences in fluorescence measurements of wastewater organic matter. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 711:134663. [PMID: 32000320 DOI: 10.1016/j.scitotenv.2019.134663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 09/24/2019] [Accepted: 09/24/2019] [Indexed: 06/10/2023]
Abstract
In this study, it was assessed the effectiveness to correct for inner filter effect (IFE) the fluorescence spectra of several wastewaters (i.e., primary, secondary and tertiary wastewater effluents) and wastewater-impacted surface waters using a common method based on UV absorbance measurements. In samples of secondary/tertiary wastewater effluents and surface waters, IFE was severe at excitation wavelengths <240 nm, and it was low (4-11%) at excitation wavelengths >340 nm. On the contrary, IFE has always been significant in primary wastewater effluents. After IFE correction, linear relationship was observed between fluorescence and absorbance in dilution series across the full excitation-emission matrix (EEM), although some distortions were still present. Particularly, experimental data showed the presence of static/dynamic quenching of fluorescence due to nitrite/nitrate, which cannot be corrected by IFE correction methods. Indeed, after addition of different nitrate/nitrite concentrations in wastewater (3-40 mg/L as N), the estimated static/dynamic quenching error (QE) after IFE correction was often >20% for tyrosine and tryptophan-like fluorescence measured at excitation <240 nm. However, the QE was low (<5-10%) for fluorescence measured at excitation >240 nm. Overall, the QE increased with the increase of nitrite/nitrate concentration in wastewater. Total suspended solids (TSS) (i.e., particulate organic matter) in water produced intense fluorescence peaks in the tyrosine-like and tryptophan-like region of EEM, and TSS increased the absorbance values at all the excitation wavelengths of the UV-visible absorption spectra in unfiltered samples compared to 0.7 μm filtered samples. On the contrary, tertiary effluents employing full scale sand filtration (TSS < 2-4 mg/l) had similar UV absorbance and fluorescence spectra to 0.7 μm filtered samples. Finally, it was observed that uncorrected fluorescence intensities in the humic-like region of EEM were similar in both filtered and unfiltered samples, and it was independent of TSS concentration, dilution factor and water quality.
Collapse
Affiliation(s)
- Massimiliano Sgroi
- Department of Civil Engineering and Architecture, University of Catania, Viale A. Doria 6, 95125, Catania, Italy
| | - Erica Gagliano
- Department of Civil Engineering and Architecture, University of Catania, Viale A. Doria 6, 95125, Catania, Italy
| | - Federico G A Vagliasindi
- Department of Civil Engineering and Architecture, University of Catania, Viale A. Doria 6, 95125, Catania, Italy
| | - Paolo Roccaro
- Department of Civil Engineering and Architecture, University of Catania, Viale A. Doria 6, 95125, Catania, Italy.
| |
Collapse
|
42
|
Tang J, Wang W, Yang L, Qiu Q, Lin M, Cao C, Li X. Seasonal variation and ecological risk assessment of dissolved organic matter in a peri-urban critical zone observatory watershed. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 707:136093. [PMID: 31863979 DOI: 10.1016/j.scitotenv.2019.136093] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 11/07/2019] [Accepted: 12/10/2019] [Indexed: 06/10/2023]
Abstract
Peri-urban ecosystems are among the most intensive areas in terms of competition between different ecosystem components. Dissolved organic matter (DOM) plays a significant role in aquatic carbon cycling. The chemical composition of DOM and associated potential ecological risks in peri-urban aquatic ecosystems are poorly understood. Herein, we used fluorescence excitation-emission matrix and parallel factor analysis (EEM-PARAFAC) to characterize DOM in a peri-urban critical zone observatory watershed in Eastern China. According to the theory of natural disaster risk formation, we calculated the ecological risk of DOM in the peri-urban watershed. Seasonal variation in DOM concentrations was observed, whereas fluorescent DOM concentrations were site-specific across four sub-watersheds. The analysis of DOM absorption properties revealed the presence of DOM components with high aromatic content and large molecular weight in the watershed. Four fluorescent components (two humic-like and two protein-like substances) were identified using the PARAFAC model. Spatial distribution analysis showed that DOM quality was mainly influenced by human activities, and the proportion of protein-like substance (C3) was strongly correlated with anthropogenic parameters. The distribution of optical indices indicated diverse sources of DOM in the watershed. Ecological risk related to DOM was greater in the dry season than the wet season. There was a slight risk in most areas, with an extreme risk in areas experiencing the most intensive human disturbance, which were also extremely or heavily vulnerable. The results emphasize the strong influence of human disturbance on the ecological risk of DOM in peri-urban aquatic ecosystems. Our study provides useful information for ecological risk assessment of DOM that is difficult to obtain using traditional chemical analysis.
Collapse
Affiliation(s)
- Jianfeng Tang
- Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Ningbo Urban Environment Observation and Research Station, Chinese Academy of Sciences, Ningbo 315800, China.
| | - Wendong Wang
- Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Yang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Qianlinglin Qiu
- Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Meixia Lin
- Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Changli Cao
- Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Xinhu Li
- College of Architecture and Urban Planning, Tongji University, Shanghai 200082, China
| |
Collapse
|
43
|
Ulliman SL, Korak JA, Linden KG, Rosario-Ortiz FL. Methodology for selection of optical parameters as wastewater effluent organic matter surrogates. WATER RESEARCH 2020; 170:115321. [PMID: 31877555 DOI: 10.1016/j.watres.2019.115321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/29/2019] [Accepted: 11/17/2019] [Indexed: 06/10/2023]
Abstract
Absorbance- and fluorescence-based optical parameters are commonly used as surrogates in engineered systems, but there is no systematic approach for selecting robust parameters. This study develops a methodology that is applied to a case study of differentiating wastewater effluent organic matter from naturally-derived organic matter. The methodology defines criteria to identify optical parameters that could detect statistically significant compositional differences in organic matter, independent of organic matter concentration, and measure fluorescence-based parameters with low susceptibility to inner filter effects. The criteria were applied to 26 parameters that were measured for 11 pairs of source water and conventionally-treated wastewater samples collected from sites with varied spatial and temporal conditions. Only two parameters, apparent fluorescence quantum yield measured at excitation 370 nm and fluorescence peak ratio A:T, met the criteria across all sites. These results demonstrate and encourage an objective and robust process for selecting optical surrogates for organic matter characterization.
Collapse
Affiliation(s)
- Sydney L Ulliman
- Department of Civil, Environmental and Architectural Engineering, Environmental Engineering Program, University of Colorado Boulder, Colorado, 80309, United States
| | - Julie A Korak
- Department of Civil, Environmental and Architectural Engineering, Environmental Engineering Program, University of Colorado Boulder, Colorado, 80309, United States.
| | - Karl G Linden
- Department of Civil, Environmental and Architectural Engineering, Environmental Engineering Program, University of Colorado Boulder, Colorado, 80309, United States
| | - Fernando L Rosario-Ortiz
- Department of Civil, Environmental and Architectural Engineering, Environmental Engineering Program, University of Colorado Boulder, Colorado, 80309, United States.
| |
Collapse
|
44
|
Sgroi M, Gagliano E, Vagliasindi FGA, Roccaro P. Absorbance and EEM fluorescence of wastewater: Effects of filters, storage conditions, and chlorination. CHEMOSPHERE 2020; 243:125292. [PMID: 31756656 DOI: 10.1016/j.chemosphere.2019.125292] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 10/30/2019] [Accepted: 11/01/2019] [Indexed: 06/10/2023]
Abstract
Aim of this study was to delineate sample handling procedures for accurate fluorescence and UV absorbance measurements of wastewater organic matter. Investigations were performed using different wastewater qualities, including primary, secondary and tertiary wastewater effluents, and a wastewater-impacted surface water. Filtration by 0.7 μm glass microfiber filter, 0.45 μm polyvinylidene fluoride (PVDF) membrane, 0.45 μm cellulose nitrate membrane, and 0.45 μm polyethersulfone (PES) syringe filter released manufacture impurities in water that affected fluorescence measurements. However, pre-washing of filter by Milli-Q water was able to eliminate these interferences. Different storage conditions were tested, including storage of filtered and unfiltered samples under different temperatures (25 °C, 4 °C, -20 °C). According to the obtained results, the best practice of wastewater samples preservation was sample filtration at 0.7/0.45 μm immediately after collection followed by storage at 4 °C. However, the time of storage that assured changes of these spectroscopic measurements that do not exceed the 10% of the original value was dependent on water quality and selected wavelengths (i.e., selected fluorescing organic matter component). As a general rule, it is advisable to perform fluorescence and UV absorbance measurements as soon as possible after collection avoiding storage times of filtered water longer than 2 days. Finally, addition of chlorine doses typical for wastewater disinfection mainly affected tryptophan-like components, where changes that exceed the 10% of the fluorescence intensity measured in the unchlorinated sample were observed even at very low doses (≥1 mg/L). On the contrary, tyrosine-like and humic-like components showed changes <10% at chlorine doses of 0.5-5 mg/L.
Collapse
Affiliation(s)
- Massimiliano Sgroi
- Department of Civil Engineering and Architecture, University of Catania, Viale A. Doria 6, 95125, Catania, Italy.
| | - Erica Gagliano
- Department of Civil Engineering and Architecture, University of Catania, Viale A. Doria 6, 95125, Catania, Italy.
| | - Federico G A Vagliasindi
- Department of Civil Engineering and Architecture, University of Catania, Viale A. Doria 6, 95125, Catania, Italy.
| | - Paolo Roccaro
- Department of Civil Engineering and Architecture, University of Catania, Viale A. Doria 6, 95125, Catania, Italy.
| |
Collapse
|
45
|
Sgroi M, Gagliano E, Vagliasindi FG, Roccaro P. Data on the inner filter effect, suspended solids and nitrate interferences in fluorescence measurements of wastewater organic matter. Data Brief 2020; 28:104869. [PMID: 31853469 PMCID: PMC6911990 DOI: 10.1016/j.dib.2019.104869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/05/2019] [Accepted: 11/15/2019] [Indexed: 12/05/2022] Open
Abstract
Data presented in this article show the extent of the inner filter effect (IFE) in fluorescence measurements of wastewater and wastewater-impacted surface water samples. Particularly, data show the effectiveness of a commonly used method for IFE correction based on UV absorbance measurement to reinstate the linearity of the relationship between fluorescence intensities and absorbance values. Data report also the effect of nitrates in fluorescence measurements of wastewater samples. Finally, data presented in this work show the effect of total suspended solids (TSS) in the UV absorbance and fluorescence measurements of different waters. Particularly, data describe the TSS effect in fluorescence intensities acquired at different pairs of excitation-emission wavelengths, and in waters with different TSS concentration. Data of this article are related to the publication "M. Sgroi, E. Gagliano, F.G.A. Vagliasindi, P. Roccaro, Inner filter effect, suspended solids and nitrite/nitrate interferences in fluorescence measurements of wastewater organic matter, Sci. Total Environ., In press" [1]. Raw data are available in a public repository (https://doi.org/10.17632/4zss49jycj.1).
Collapse
Affiliation(s)
| | | | | | - Paolo Roccaro
- Department of Civil Engineering and Architecture, University of Catania, Viale A. Doria 6, 95125, Catania, Italy
| |
Collapse
|
46
|
Yang YZ, Peleato NM, Legge RL, Andrews RC. Towards real-time detection of wastewater in surface waters using fluorescence spectroscopy. J Environ Sci (China) 2019; 86:195-202. [PMID: 31787184 DOI: 10.1016/j.jes.2019.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 06/03/2019] [Accepted: 06/03/2019] [Indexed: 06/10/2023]
Abstract
The presence of municipal wastewater at the intake of a major drinking water treatment facility located on Lake Ontario was examined using fluorescence data collected during a period of continuous monitoring. In addition, controlled mixing of lake water and wastewater sampled from a local treatment facility were conducted using a bench-scale fluorescence system to quantify observed changes in natural organic matter. Multivariate linear regression was applied to components derived from parallel factors analysis. The resulting mean absolute error for predicted wastewater level was 0.22% (V/V, wastewater/lake water), indicating that wastewater detection at below 1.0% (V/V) was possible. Analyses of sucralose, a wastewater indicator, were conducted for treated wastewater as well as surface water collected at two intake locations on Lake Ontario. Results suggested minimal wastewater contribution at the drinking water intake. A wastewater detection model using a moving baseline was developed and applied to continuous fluorescence data collected at one of the drinking water intakes, which agreed well with sucralose results. Furthermore, the simulated addition of 1.0% (V/V) of wastewater/wastewater was detectable in 89% of samples analyzed, demonstrating the utility of fluorescence-based wastewater monitoring.
Collapse
Affiliation(s)
- Ye Z Yang
- Department of Civil and Mineral Engineering, University of Toronto, 35 St. George St., Toronto, Ontario M5S 1A4, Canada.
| | - Nicolás M Peleato
- School of Engineering, University of British Columbia Okanagan, 1137 Alumni Ave, Kelowna, British Columbia V1V 1V7, Canada
| | - Raymond L Legge
- Department of Chemical Engineering, University of Waterloo, 200 University Ave. W, Waterloo, Ontario N2L 3G1, Canada
| | - Robert C Andrews
- Department of Civil and Mineral Engineering, University of Toronto, 35 St. George St., Toronto, Ontario M5S 1A4, Canada
| |
Collapse
|
47
|
Zhang Y, Zhang B, He Y, Lev O, Yu G, Shen G, Hu S. DOM as an indicator of occurrence and risks of antibiotics in a city-river-reservoir system with multiple pollution sources. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 686:276-289. [PMID: 31181515 DOI: 10.1016/j.scitotenv.2019.05.439] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 05/28/2019] [Accepted: 05/29/2019] [Indexed: 06/09/2023]
Abstract
Multiple sources contribute to the presence of antibiotic residues in water environments, and the environmental risks caused by antibiotics were paid more and more attention. This work aims to establish a relationship between optical properties of dissolved organic matter (DOM) and sources and risks of antibiotics. Occurrence of antibiotics and DOM in a city-river-reservoir freshwater system containing distinct antibiotic sources was investigated during three seasons using LC-MS and fluorescence excitation-emission matrix coupled with parallel factor analysis (EEM-PARAFAC), respectively. The results showed that antibiotics and DOM in the water had trends of increasing levels from the upstream to the midstream in the system. Five classes of antibiotics had statistically significant correlations with the humic-like component (C3) in the water (Pearson, p < 0.05). Especially, norfloxacin (NFX), which was dominant in the aquaculture source, significantly increased the fluorescence of C3 according to the fluorescence titration (R2 = 0.86, p < 0.01). Furthermore, fluorescence signature in the aquaculture pond posed broad humic acid-like peaks with relatively higher abundances compared to other areas. These results suggested that C3 could be recognized as an indicator of NFX from aquaculture sources. Meanwhile, C3 can largely account for ecological risks of tetracyclines according to the results of redundancy analysis. This work highlights the roles of EEM-PARAFAC on tracing the source of antibiotics and the correlations between environmental risks of antibiotics and DOM in the aquatic environment.
Collapse
Affiliation(s)
- Yongpeng Zhang
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Bo Zhang
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| | - Yiliang He
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Ovadia Lev
- Institute of Chemistry, Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Guanghui Yu
- Institute of Surface-Earth System Science, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| | - Genxiang Shen
- Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Shuangqing Hu
- Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| |
Collapse
|
48
|
Vione D, Scozzaro A. Photochemistry of Surface Fresh Waters in the Framework of Climate Change. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:7945-7963. [PMID: 31241909 DOI: 10.1021/acs.est.9b00968] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Photochemical processes taking place in surface fresh waters play an important role in the transformation of biorecalcitrant pollutants and some natural compounds and in the inactivation of microorganisms. Such processes are divided into direct photolysis, where a molecule is transformed following sunlight absorption, and indirect photochemistry, where naturally occurring photosensitizers absorb sunlight and produce a range of transient species that can transform dissolved molecules (or inactivate microorganisms). Photochemistry is usually favored in thoroughly illuminated shallow waters, while the dissolved organic carbon (DOC) acts as a switch between different photochemical pathways (direct photolysis, and indirect photochemistry triggered by different transient species). Various phenomena connected with climate change (water browning, changing precipitations) may affect water DOC and water depth, with implications for the kinetics of photoreactions and the associated transformation pathways. The latter are important because they often produce peculiar intermediates, with particular health and environmental impacts. Further climate-induced effects with photochemical implications are shorter ice-cover seasons and enhanced duration of summer stratification in lakes, as well as changes in the flow velocity of rivers that affect the photodegradation time scale. This contribution aims at showing how the different climate-related phenomena can affect photoreactions and which approaches can be followed to quantitatively describe these variations.
Collapse
Affiliation(s)
- Davide Vione
- Department of Chemistry , University of Torino , Via P. Giuria 5 , 10125 Torino , Italy
| | - Andrea Scozzaro
- Department of Chemistry , University of Torino , Via P. Giuria 5 , 10125 Torino , Italy
| |
Collapse
|
49
|
Spataro F, Ademollo N, Pescatore T, Rauseo J, Patrolecco L. Antibiotic residues and endocrine disrupting compounds in municipal wastewater treatment plants in Rome, Italy. Microchem J 2019. [DOI: 10.1016/j.microc.2019.05.053] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
50
|
Sgroi M, Anumol T, Roccaro P, Vagliasindi FGA, Snyder SA. Modeling emerging contaminants breakthrough in packed bed adsorption columns by UV absorbance and fluorescing components of dissolved organic matter. WATER RESEARCH 2018; 145:667-677. [PMID: 30205338 DOI: 10.1016/j.watres.2018.09.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 09/01/2018] [Accepted: 09/05/2018] [Indexed: 05/27/2023]
Abstract
This study investigated, using rapid small-scale column testing, the breakthrough of dissolved organic matter (DOM) and eleven emerging organic contaminants (EOCs) during granular activated carbon (GAC) filtration of different water qualities, including wastewater, surface water and synthetic water (riverine organic matter dissolved in deionized water). Fluorescing organic matter was better adsorbed than UV absorbance at 254 nm (UV254) and dissolved organic carbon (DOC) in all tested water. Furthermore, highest adsorption of DOM (in terms of DOC, UV254 and fluorescence) was observed during wastewater filtration. UV absorbing DOM had fast and similar breakthrough in surface water and synthetic water, whereas fluorescence breakthrough was very rapid only in synthetic water. PARAFAC modeling showed that different fluorescing components were differently adsorbed during GAC process. Particularly, fluorescing components with maxima intensity at higher excitation wavelengths, which are corresponding to humic-like fluorescence substances, were better removed than other components in all waters. As opposed to DOM, EOCs were better adsorbed during synthetic water filtration, whereas the fastest EOCs breakthrough was observed during filtration of wastewater, which was the water that determined the highest carbon fouling. Exception was represented by long-chained perfluoroalkylated substances (i.e., PFOA, PFDA and PFOS). Indeed, adsorption of these compounds resulted independent of water quality. In this study was also investigated the applicability of UV254 and fluorescing PARAFAC components to act as surrogates in predicting EOCs removal by GAC in different water matrices. Empirical linear correlation for the investigated EOCs were determined with UV254 and fluorescing components in all water qualities. However, fluorescence measurements resulted more sensitive than UV254 to predict EOC breakthrough during GAC adsorption. When the data from all water qualities was combined, good correlations between the microbial humic-like PARAFAC component and EOC removals were still observed and they resulted independent of water quality if considering only real water matrices (wastewater and surface water). On the contrary, correlations between EOC removals and UV254 removals were independent of water quality when combining data of surface waters and synthetic water, but a different correlation model was needed to predict EOCs breakthrough in wastewater.
Collapse
Affiliation(s)
- Massimiliano Sgroi
- Department of Civil Engineering and Architecture, University of Catania, Viale A. Doria 6, 95125, Catania, Italy
| | - Tarun Anumol
- Department of Chemical and Environmental Engineering, University of Arizona, 1133 E. James E. Rogers Way, Tucson, AZ, 85721, USA; Agilent Technologies Inc., 2850 Centerville Road, Wilmington, DE, 19808, USA
| | - Paolo Roccaro
- Department of Civil Engineering and Architecture, University of Catania, Viale A. Doria 6, 95125, Catania, Italy
| | - Federico G A Vagliasindi
- Department of Civil Engineering and Architecture, University of Catania, Viale A. Doria 6, 95125, Catania, Italy
| | - Shane A Snyder
- Department of Chemical and Environmental Engineering, University of Arizona, 1133 E. James E. Rogers Way, Tucson, AZ, 85721, USA; Nanyang Technological University; Nanyang Environment & Water Research Institute, 1 Cleantech Loop, CleanTech One, #06-08, 637141, Singapore.
| |
Collapse
|