1
|
Thangavelu RM, da Silva WL, Zuverza-Mena N, Dimkpa CO, White JC. Nano-sized metal oxide fertilizers for sustainable agriculture: balancing benefits, risks, and risk management strategies. NANOSCALE 2024; 16:19998-20026. [PMID: 39417765 DOI: 10.1039/d4nr01354a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
This critical review comprehensively analyses nano-sized metal oxide fertilizers (NMOFs) and their transformative potential in sustainable agriculture. It examines the characteristics and benefits of different NMOFs, such as zinc, copper, iron, magnesium, manganese, nickel, calcium, titanium, cerium, and silicon oxide nanoparticles. NMOFs offer unique advantages such as increased reactivity, controlled-release mechanisms, and targeted nutrient delivery to address micronutrient deficiencies, enhance crop resilience, and improve nutrient efficiency. The review underscores the essential role of micronutrients in plant metabolism, crop growth, and ecosystem health, highlighting their importance alongside macronutrients. NMOFs present significant benefits over traditional fertilizers, including enhanced plant uptake, reduced nutrient losses, and decreased environmental impact. However, the review also critically examines potential risks associated with NMOFs, such as nanoparticle toxicity and environmental persistence. A comparative analysis of different metal types used in nanofertilizers is provided, detailing their primary advantages and potential drawbacks. The review emphasizes the need for cautious management of NMOFs to ensure their safe and effective use in agriculture. It calls for comprehensive research to understand the long-term effects of NMOFs on plant health, soil ecosystems, and human health. By integrating insights from material science, plant biology, and environmental science, this review offers a holistic perspective on the potential of NMOFs to address global food security challenges amid resource constraints and climate change. The study concludes by outlining future research directions and advocating for interdisciplinary collaboration to advance sustainable agricultural practices and optimize the benefits of NMOFs.
Collapse
Affiliation(s)
| | | | | | | | - Jason C White
- Connecticut Agricultural Experiment Station, New Haven, CT 06511, USA.
| |
Collapse
|
2
|
Sun H, Zhang H, Li L, Wen J, Li X, Mao H, Wang J. Environmental efficacy of polyethylene microplastics: Enhancing the solidification of CuO nanoparticles and reducing the physiological toxicity to peanuts. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174206. [PMID: 38914321 DOI: 10.1016/j.scitotenv.2024.174206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 06/26/2024]
Abstract
Microplastics and metal-based nanoparticles (NPs) are environmental pollutants that have attracted significant attention. However, there have been relatively few studies on the combined pollution of these substances in the soil-plant system. To investigate the environmental impact and interaction mechanisms of these two pollutants, a pot experiment was conducted to examine the effects of soil exposure on peanut growth. The experiment results revealed that polyethylene (PE) had a minimal effect on peanut growth, while CuO NPs significantly inhibited peanut growth. Peanut biomass decreased by over 50 % in all Cu treatments. The presence of PE significantly impacted the dissolution and absorption of CuO NPs. When 0.5 % PE was present, the dissolution and transformation of CuO NPs were limited, resulting in a total Cu concentration of 458 mg/kg. Conversely, when 5 % PE was present, the dissolution and transformation of CuO NPs were promoted, leading to a DTPA-Cu concentration of 141 mg/kg, the highest level observed. The distribution of trace elements in peanut stems also responded to the differences in Cu concentration. Both pollutants significantly disrupted soil bacteria, with CuO NPs having a more pronounced effect than PE. Throughout the entire growth cycle of peanuts, no chemical adsorption occurred between PE and CuO NPs, and CuO NPs had no significant impact on the aging rate of PE. In summary, this study provides insights into the environmental impact and transport mechanisms of composite pollution involving microplastics and metal-based nanoparticles in the soil-peanut system.
Collapse
Affiliation(s)
- Hongda Sun
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an, Shandong 271018, China; College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Haoyue Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lu Li
- No. 5 Exploration Institute of Geology and Mineral Resources, Tai'an, Shandong 271018, China
| | - Jinyu Wen
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xianxu Li
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Hui Mao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jun Wang
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an, Shandong 271018, China.
| |
Collapse
|
3
|
Dai Z, Huang Z, Hu D, Naz M, Afzal MR, Raza MA, Benavides-Mendoza A, Tariq M, Qi S, Du D. Role of nanofertilization in plant nutrition under abiotic stress conditions. CHEMOSPHERE 2024; 366:143496. [PMID: 39374674 DOI: 10.1016/j.chemosphere.2024.143496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/18/2024] [Accepted: 10/05/2024] [Indexed: 10/09/2024]
Abstract
Plants require nutrients for growth, which they obtain from the soil via the root system. Fertilizers offer the essential nutrients (nitrogen, phosphorus, and potassium, as well as critical secondary elements) required by plants. Soil productivity falls with each crop until nutrients are provided. A wide range of so-called fertilizer products, such as organic fertilizers, argon mineral fertilizers, and mineral fertilizers, can assist farmers in adjusting fertilization methods based on the environment and agricultural conditions (inhibitors, restricted materials, growth mediums, plant bio-stimulants, etc.). Agricultural land is reduced by erosion, pollution, careless irrigation, and fertilization. On the other hand, more agricultural production is needed to meet the demands of expanding industries and the nutritional needs of a growing population. Nano fertilizers have recently started to be manufactured to obtain the highest yield and its quality per unit area. Previous researchers found that nano fertilizers could improve plant nutrient uptake efficiency, lower soil toxicity, mitigate the potential negative effects of excessive chemical fertilizer use, and reduce the frequency of fertilization. To maximize crop yields and optimize nutrient use while reducing the overuse of chemical fertilizers, nano fertilizersNFs are crucial in agriculture. The key component of these fertilizers is that they contain one or more macro- and micronutrients that can be applied regularly in minute doses while not damaging the environment. However, they have a minimal effect on plant growth and agricultural yields when employed in high numbers, like synthetic fertilizers. This article explains the features, relevance and classification of nano-fertilizers, their use in plant development, their advantages and disadvantages, and the results achieved in this field.
Collapse
Affiliation(s)
- Zhicong Dai
- School of Emergency Management, Jiangsu University, Zhenjiang, 212013, Jiangsu Province, PR China; Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu Province, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou, 215009, Jiangsu Province, PR China.
| | - Zhiyun Huang
- Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu Province, PR China.
| | - Die Hu
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu Prov-ince, PR China.
| | - Misbah Naz
- School of Emergency Management, Jiangsu University, Zhenjiang, 212013, Jiangsu Province, PR China; Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu Province, PR China.
| | - Muhammad Rahil Afzal
- School of Emergency Management, Jiangsu University, Zhenjiang, 212013, Jiangsu Province, PR China; Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu Province, PR China.
| | - Muhammad Ammar Raza
- School of Food Science and Biotechnology, Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Zhejiang Gongshang University, Hangzhou, 310018, PR China.
| | | | - Muhammad Tariq
- Department of Pharmacology, Lahore Pharmacy Collage, Lahore, 54000, Pakistan.
| | - Shanshan Qi
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu Prov-ince, PR China.
| | - Daolin Du
- Jingjiang College, Jiangsu University, Zhenjiang, 212013, PR China.
| |
Collapse
|
4
|
Maruthupandy M, Jeon JH, Noh J, Yang SI, Cho WS. Mitigated toxicity of polystyrene nanoplastics in combination exposure with copper ions by transformation into copper (I) oxide: Inhibits the oxidative potential of nanoplastics. CHEMOSPHERE 2024; 364:143288. [PMID: 39243901 DOI: 10.1016/j.chemosphere.2024.143288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/26/2024] [Accepted: 09/05/2024] [Indexed: 09/09/2024]
Abstract
The combined impact of trace metals and polystyrene (PS) microplastics is extremely concerning for human health because PS microplastics can serve as a vehicle for other contaminants. Herein, we investigated the combined effect of copper ions (Cu2+) on the toxicity of PS nanoplastics in vivo and in vitro. The pristine PS (PPS) and ultraviolet irradiated oxidized PS (OPS) nanoplastics with 50 nm-size were conjugated with Cu2+ (13-27 mg/g) for 4 days to get four types of samples: PPS, OPS, PPS/Cu, and OPS/Cu. The comparative toxic potentials of test samples were evaluated using a mouse pharyngeal aspiration model and relevant human cell lines (A549 and differentiated THP-1 cells). The results showed an antagonistic effect in vivo and in vitro by the presence of Cu ions: PPS > PPS/Cu; OPS > OPS/Cu. Furthermore, the OPS produced significantly increased toxic potentials compared to the corresponding PPS: OPS > PPS; OPS/Cu > PPS/Cu. The antagonistic effect of Cu2+ on the toxicity of PS was due to the transformation of Cu2+ and balanced the surface charge of the nanoplastics, which inhibited the oxidative potential of corresponding nanoplastics. These antagonistic effects may provide a better understanding of the combined effects of metals on the intrinsic toxic potential of microplastics under natural conditions.
Collapse
Affiliation(s)
- Muthuchamy Maruthupandy
- Lab of Toxicology, Department of Health Sciences, The Graduate School of Dong-A University, 37, Nakdong-daero 550 beon-gil, Saha-gu, Busan, 49315, Republic of Korea.
| | - Jun Hui Jeon
- Department of Applied Chemistry, Kyung Hee University, Yongin-si, 17104, Republic of Korea
| | - Jiyeon Noh
- Department of Applied Chemistry, Kyung Hee University, Yongin-si, 17104, Republic of Korea
| | - Sung Ik Yang
- Department of Applied Chemistry, Kyung Hee University, Yongin-si, 17104, Republic of Korea.
| | - Wan-Seob Cho
- Lab of Toxicology, Department of Health Sciences, The Graduate School of Dong-A University, 37, Nakdong-daero 550 beon-gil, Saha-gu, Busan, 49315, Republic of Korea.
| |
Collapse
|
5
|
Wei L, Liu J, Jiang G. Nanoparticle-specific transformations dictate nanoparticle effects associated with plants and implications for nanotechnology use in agriculture. Nat Commun 2024; 15:7389. [PMID: 39191767 DOI: 10.1038/s41467-024-51741-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 08/15/2024] [Indexed: 08/29/2024] Open
Abstract
Nanotechnology shows potential to promote sustainable and productive agriculture and address the growing population and food demand worldwide. However, the applications of nanotechnology are hindered by the lack of knowledge on nanoparticle (NP) transformations and the interactions between NPs and macromolecules within crops. In this Review, we discuss the beneficial and toxicity-relieving transformation products of NPs that provide agricultural benefits and the toxic and physiology-disturbing transformations that induce phytotoxicities. Based on knowledge related to the management of NP transformations and their long-term effects, we propose feasible design suggestions to attain nano-enabled efficient and sustainable agricultural applications.
Collapse
Affiliation(s)
- Linfeng Wei
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing, 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiyan Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing, 100085, China.
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China.
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310000, China.
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing, 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310000, China
| |
Collapse
|
6
|
Ouyang S, Bi Z, Zhou Q. Nanocolloids in the soil environment: Transformation, transport and ecological effects. ENVIRONMENTAL RESEARCH 2024; 262:119852. [PMID: 39197486 DOI: 10.1016/j.envres.2024.119852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/17/2024] [Accepted: 08/25/2024] [Indexed: 09/01/2024]
Abstract
Nanocolloids (Ncs) are ubiquitous in natural systems and play a critical role in the biogeochemical cycling of trace metals and the mobility of organic pollutants. However, the environmental behavior and ecological effects of Ncs in the soil remain largely unknown. The accumulation of Ncs may have detrimental or beneficial effects on different compartments of the soil environment. This review discusses the major transformation processes (e.g., agglomeration/aggregation, absorption, deposition, dissolution, and redox reactions), transport, bioavailability of Ncs, and their roles in element cycles in soil systems. Notably, Ncs can act as effective carriers for other pollutants and contribute to environmental pollution by spreading pathogens, nutrients, heavy metals, and organic contaminants to adjacent water bodies or groundwater. Finally, the key knowledge gaps are highlighted to better predict their potential risks, and important new directions include exploring the geochemical process and mechanism of Ncs's formation; elucidating the transformation, transport, and ultimate fate of Ncs, and their long-term effect on contaminants, organisms, and elemental cycling; and identifying the impact on the growth and quality of important crops, evaluating its dominant effect on agro-ecosystems in the soil environment.
Collapse
Affiliation(s)
- Shaohu Ouyang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Carbon Neutrality Interdisciplinary Science Center, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Zhicheng Bi
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Carbon Neutrality Interdisciplinary Science Center, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Qixing Zhou
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Carbon Neutrality Interdisciplinary Science Center, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| |
Collapse
|
7
|
Gao J, Zhu Y, Zeng L, Liu X, Yang Y, Zhou Y. Recent advances on environmental behavior of Cu-based nanomaterials in soil-plant system: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 361:121289. [PMID: 38820797 DOI: 10.1016/j.jenvman.2024.121289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/23/2024] [Accepted: 05/28/2024] [Indexed: 06/02/2024]
Abstract
In recent years, copper-based nanomaterials (Cu-based NMs) have shown great potential in promoting agriculture development due to their special physicochemical characteristics. With the mass production and overuse of Cu-based NMs, there are potential effects on the soil-plant environment. Soil organisms, especially soil microorganisms, play a significant part in terrestrial or soil ecosystems; plants, as indirect organisms with soil-related Cu-based NMs, may affect human health through plant agricultural products. Understanding the accumulation and transformation of Cu-based NMs in soil-plant systems, as well as their ecotoxicological effects and potential mechanisms, is a prerequisite for the scientific assessment of environmental risks and safe application. Therefore, based on the current literature, this review: (i) introduces the accumulation and transformation behaviors of Cu-based NMs in soil and plant systems; (ii) focuses on the ecotoxicological effects of Cu-based NMs on a variety of organisms (microorganisms, invertebrates, and plants); (iii) reveals their corresponding toxicity mechanisms. It appears from studies hitherto made that both Cu-based NMs and released Cu2+ may be the main reasons for toxicity. When Cu-based NMs enter the soil-plant environment, their intrinsic physicochemical properties, along with various environmental factors, could also affect their transport, transformation, and biotoxicity. Therefore, we should push for intensifying the multi-approach research that focuses on the behaviors of Cu-based NMs in terrestrial exposure environments, and mitigates their toxicity to ensure the promotion of Cu-based NMs.
Collapse
Affiliation(s)
- Jieyu Gao
- College of Resources and Environment, Yangtze University, Wuhan, 430100, China
| | - Yi Zhu
- College of Resources and Environment, Yangtze University, Wuhan, 430100, China.
| | - Lingfeng Zeng
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, China
| | - Xin Liu
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, China.
| | - Yuan Yang
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, China
| | - Yaoyu Zhou
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, China
| |
Collapse
|
8
|
Su C, Chen A, Liang W, Xie W, Xu X, Zhan X, Zhang W, Peng C. Copper-based nanomaterials: Opportunities for sustainable agriculture. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171948. [PMID: 38527545 DOI: 10.1016/j.scitotenv.2024.171948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 03/08/2024] [Accepted: 03/22/2024] [Indexed: 03/27/2024]
Abstract
The exponential growth of the global population has resulted in a significant surge in the demand for food worldwide. Additionally, the impact of climate change has exacerbated crop losses caused by pests and pathogens. The transportation and utilization of traditional agrochemicals in the soil are highly inefficient, resulting in significant environmental losses and causing severe pollution of both the soil and aquatic ecosystems. Nanotechnology is an emerging field with significant potential for market applications. Among metal-based nanomaterials, copper-based nanomaterials have demonstrated remarkable potential in agriculture, which are anticipated to offer a promising alternative approach for enhancing crop yields and managing diseases, among other benefits. This review firstly performed co-occurrence and clustering analyses of previous studies on copper-based nanomaterials used in agriculture. Then a comprehensive review of the applications of copper-based nanomaterials in agricultural production was summarized. These applications primarily involved in nano-fertilizers, nano-regulators, nano-stimulants, and nano-pesticides for enhancing crop yields, improving crop resistance, promoting crop seed germination, and controlling crop diseases. Besides, the paper concluded the potential impact of copper-based nanomaterials on the soil micro-environment, including soil physicochemical properties, enzyme activities, and microbial communities. Additionally, the potential mechanisms were proposed underlying the interactions between copper-based nanomaterials, pathogenic microorganisms, and crops. Furthermore, the review summarized the factors affecting the application of copper-based nanomaterials, and highlighted the advantages and limitations of employing copper-based nanomaterials in agriculture. Finally, insights into the future research directions of nano-agriculture were put forward. The purpose of this review is to encourage more researches and applications of copper-based nanomaterials in agriculture, offering a novel and sustainable strategy for agricultural development.
Collapse
Affiliation(s)
- Chengpeng Su
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Anqi Chen
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Weiyu Liang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Wenwen Xie
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xiang Xu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xiuping Zhan
- Shanghai Agricultural Technology Extension and Service Center, Shanghai 201103, China
| | - Wei Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Cheng Peng
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
9
|
Li Y, Xu G, Yu Y. Freeze-thaw aged polyethylene and polypropylene microplastics alter enzyme activity and microbial community composition in soil. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134249. [PMID: 38603909 DOI: 10.1016/j.jhazmat.2024.134249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/26/2024] [Accepted: 04/08/2024] [Indexed: 04/13/2024]
Abstract
In cold regions, microplastics (MPs) in the soil undergo freeze-thaw (FT) aging process. Little is known about how FT aged MPs influence soil physico-chemical properties and microbial communities. Here, two environmentally relevant concentrations (50 and 500 mg/kg) of 50 and 500 µm polyethylene (PE) and polypropylene (PP) MPs treated soils were subjected to 45-day FT cycles (FTCs). Results showed that MPs experienced surface morphology, hydrophobicity and crystallinity alterations after FTCs. After 45-day FTCs, the soil urease (SUE) activity in control (MPs-free group that underwent FTCs) was 33.49 U/g. SUE activity in 50 µm PE group was reduced by 19.66 %, while increased by 21.16 % and 37.73 % in 500 µm PE and PP groups compared to control. The highest Shannon index was found in 50 µm PP-MPs group at 50 mg/kg, 2.26 % higher than control (7.09). Compared to control (average weighted degree=8.024), all aged MPs increased the complexity of network (0.19-1.43 %). Bacterial biomarkers of aged PP-MPs were associated with pollutant degradation. Aged PP-MPs affected genetic information, cellular processes, and disrupted the biosynthesis of metabolites. This study provides new insights into the potential hazards of MPs after FTCs on soil ecosystem in cold regions.
Collapse
Affiliation(s)
- Yanjun Li
- Key Laboratory of Wetland Ecology and Environment, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guanghui Xu
- Key Laboratory of Wetland Ecology and Environment, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Yong Yu
- Key Laboratory of Wetland Ecology and Environment, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
| |
Collapse
|
10
|
Cahill MS, Arsenault T, Bui TH, Zuverza-Mena N, Bharadwaj A, Prapayotin-Riveros K, White JC, Dimkpa CO. Copper Stimulation of Tetrahydrocannabinol and Cannabidiol Production in Hemp ( Cannabis sativa L.) Is Copper-Type, Dose, and Cultivar Dependent. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:6921-6930. [PMID: 38516700 DOI: 10.1021/acs.jafc.3c07819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Copper (Cu) is an element widely used as a pesticide for the control of plant diseases. Cu is also known to influence a range of plant secondary metabolisms. However, it is not known whether Cu influences the levels of the major metabolites in hemp (Cannabis sativa L.), tetrahydrocannabinol (THC) and cannabidiol (CBD). This study investigated the impact of Cu on the levels of these cannabinoids in two hemp cultivars, Wife and Merlot, under field conditions, as a function of harvest time (August-September), Cu type (nano, bulk, or ionic), and dose (50, 100, and 500 ppm). In Wife, Cu caused significant temporal increases in THC and CBD production during plant growth, reaching increases of 33% and 31% for THC and 51% and 16.5% for CBD by harvests 3 and 4, respectively. CuO nanoparticles at 50 and 100 ppm significantly increased THC and CBD levels, compared to the control, respectively, by 18% and 27% for THC and 19.9% and 33.6% for CBD. These nanospecific increases coincided with significantly more Cu in the inflorescences (buds) than in the control and bulk CuO treatments. Contrarily, no temporal induction of the cannabinoids by Cu was noticed in Merlot, suggesting a cultivar-specific response to Cu. However, overall, in Merlot, Cu ions, but not particulate Cu, induced THC and CBD levels by 27% and 36%, respectively, compared to the control. Collectively, our findings provide information with contrasting implications in the production of these cannabinoids, where, dependent on the cultivar, metabolite levels may rise above the 0.3% regulatory threshold for THC but to a more profitable level for CBD. Further investigations with a wider range of hemp cultivars, CuO nanoparticle (NP) doses, and harvest times would clarify the significance and broader implications of the findings.
Collapse
Affiliation(s)
- Meghan S Cahill
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station (CAES), New Haven, Connecticut 06511, United States
| | - Terri Arsenault
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station (CAES), New Haven, Connecticut 06511, United States
| | - Trung Huu Bui
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station (CAES), New Haven, Connecticut 06511, United States
| | - Nubia Zuverza-Mena
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station (CAES), New Haven, Connecticut 06511, United States
| | - Anuja Bharadwaj
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station (CAES), New Haven, Connecticut 06511, United States
| | - Kitty Prapayotin-Riveros
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station (CAES), New Haven, Connecticut 06511, United States
| | - Jason C White
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station (CAES), New Haven, Connecticut 06511, United States
| | - Christian O Dimkpa
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station (CAES), New Haven, Connecticut 06511, United States
| |
Collapse
|
11
|
Wu P, Wang Z, Adusei-Fosu K, Wang Y, Wang H, Li X. Integrative chemical, physiological, and metabolomics analyses reveal nanospecific phytotoxicity of metal nanoparticles. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 354:120338. [PMID: 38401494 DOI: 10.1016/j.jenvman.2024.120338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/18/2024] [Accepted: 02/08/2024] [Indexed: 02/26/2024]
Abstract
The increasing application of metal nanoparticles (NPs) via agrochemicals and sewage sludge results in non-negligible phytotoxicological risks. Herein, the potential phytotoxicity of ZnO and CuO NPs on wheat was determined using integrative chemical, physiological, and metabolomics analyses, in comparison to Zn2+ and Cu2+. It was found that ZnO or CuO NPs had a stronger inhibitory effect on wheat growth than Zn2+ or Cu2+. After exposure to ZnO or CuO NPs, wheat seedlings accumulated significantly higher levels of Zn or Cu than the corresponding Zn2+ or Cu2+ treatments, indicating the active uptake of NPs via wheat root. TEM analysis further confirmed the intake of NPs. Moreover, ZnO or CuO NPs exposure altered micronutrients (Fe, Mn, Cu, and Zn) accumulation in the tissues and decreased the activities of antioxidant enzymes. The metabolomics analysis identified 312, 357, 145, and 188 significantly changed metabolites (SCMs) in wheat root exposed to ZnO NPs, CuO NPs, Zn2+, and Cu2+, respectively. Most SCMs were nano-specific to ZnO (80%) and CuO NPs (58%), suggesting greater metabolic reprogramming by NPs than metal ions. Overall, nanospecific toxicity dominated the phytotoxicity of ZnO and CuO NPs, and our results provide a molecular perspective on the phytotoxicity of metal oxide NPs.
Collapse
Affiliation(s)
- Ping Wu
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050021, China.
| | - Zeyu Wang
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050021, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kwasi Adusei-Fosu
- Resilient Agriculture, AgResearch Ltd., Grasslands Research Centre, Palmerston North, New Zealand
| | - Yujun Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, Jiangsu, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hailong Wang
- School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong, 528000, China; Guangdong Provincial Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China
| | - Xiaofang Li
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050021, China.
| |
Collapse
|
12
|
Soni S, Jha AB, Dubey RS, Sharma P. Mitigating cadmium accumulation and toxicity in plants: The promising role of nanoparticles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168826. [PMID: 38042185 DOI: 10.1016/j.scitotenv.2023.168826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 10/23/2023] [Accepted: 11/22/2023] [Indexed: 12/04/2023]
Abstract
Cadmium (Cd) is a highly toxic heavy metal that adversely affects humans, animals, and plants, even at low concentrations. It is widely distributed and has both natural and anthropogenic sources. Plants readily absorb and distribute Cd in different parts. It may subsequently enter the food chain posing a risk to human health as it is known to be carcinogenic. Cd has a long half-life, resulting in its persistence in plants and animals. Cd toxicity disrupts crucial physiological and biochemical processes in plants, including reactive oxygen species (ROS) homeostasis, enzyme activities, photosynthesis, and nutrient uptake, leading to stunted growth and reduced biomass. Although plants have developed defense mechanisms to mitigate these damages, they are often inadequate to combat high Cd concentrations, resulting in yield losses. Nanoparticles (NPs), typically smaller than 100 nm, possess unique properties such as a large surface area and small size, making them highly reactive compared to their larger counterparts. NPs from diverse sources have shown potential for various agricultural applications, including their use as fertilizers, pesticides, and stress alleviators. Recently, NPs have emerged as a promising strategy to mitigate heavy metal stress, including Cd toxicity. They offer advantages, such as efficient absorption by crop plants, the reduction of Cd uptake, and the enhancement of mineral nutrition, antioxidant defenses, photosynthetic parameters, anatomical structure, and agronomic traits in Cd-stressed plants. The complex interaction of NPs with calcium ions (Ca2+), intracellular ROS, nitric oxide (NO), and phytohormones likely plays a significant role in alleviating Cd stress. This review aims to explore the positive impacts of diverse NPs in reducing Cd accumulation and toxicity while investigating their underlying mechanisms of action. Additionally, it discusses research gaps, recent advancements, and future prospects of utilizing NPs to alleviate Cd-induced stress, ultimately promoting improved plant growth and yield.
Collapse
Affiliation(s)
- Sunil Soni
- School of Environment and Sustainable Development, Central University of Gujarat, Sector-30, Gandhinagar 382030, Gujarat, India
| | - Ambuj Bhushan Jha
- School of Life Sciences, Central University of Gujarat, Sector-30, Gandhinagar 382030, Gujarat, India
| | - Rama Shanker Dubey
- Central University of Gujarat, Sector-29, Gandhinagar 382030, Gujarat, India
| | - Pallavi Sharma
- School of Environment and Sustainable Development, Central University of Gujarat, Sector-30, Gandhinagar 382030, Gujarat, India.
| |
Collapse
|
13
|
Javed R, Khan B, Sharafat U, Bilal M, Galagedara L, Abbey L, Cheema M. Dynamic interplay of metal and metal oxide nanoparticles with plants: Influencing factors, action mechanisms, and assessment of stimulatory and inhibitory effects. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 271:115992. [PMID: 38262092 DOI: 10.1016/j.ecoenv.2024.115992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 01/10/2024] [Accepted: 01/13/2024] [Indexed: 01/25/2024]
Abstract
Nanoparticles (NPs) of metals and metal oxides have received increasing attention regarding their characteristic behavior in plant systems. The fate and transport of metal NPs and metal oxide NPs in plants is of emerging concern for researchers because they ultimately become part of the food chain. The widespread use of metal-based NPs (MBNPs) in plants has revealed their beneficial and harmful effects. This review addresses the main factors affecting the uptake, translocation, absorption, bioavailability, toxicity, and accumulation of MBNPs in different plant species. It appraises the mechanism of nanoparticle-plant interaction in detail and provides understanding of the estimation strategies for the associated pros and cons with this interplay. Critical parameters of NPs include, but are not limited to, particle size and shape, surface chemistry, surface charge, concentration, solubility, and exposure route. On exposure to MBNPs, the molecular, physiological, and biochemical reactions of plants have been assessed. We have filled knowledge gaps and answered research questions regarding the positive and negative effects of metal and metal oxide NPs on seed germination, callus induction, growth and yield of plant, nutritional content, antioxidants, and enzymes. Besides, the phytotoxicity, cytotoxicity, genotoxicity, and detoxification studies of MBNPs in plants have been outlined. Furthermore, the recent developments and future perspectives of the two-way traffic of interplay of MBNPs and plants have been provided in this comprehensive review.
Collapse
Affiliation(s)
- Rabia Javed
- School of Science and the Environment, Memorial University of Newfoundland, NL, Canada.
| | - Bakhtawar Khan
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 54320, Pakistan
| | - Uzma Sharafat
- School of Science and the Environment, Memorial University of Newfoundland, NL, Canada.
| | - Muhammad Bilal
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 54320, Pakistan
| | - Lakshman Galagedara
- School of Science and the Environment, Memorial University of Newfoundland, NL, Canada.
| | - Lord Abbey
- Department of Plant, Food and Environmental Sciences, Faculty of Agriculture, Dalhousie University, NS, Canada.
| | - Mumtaz Cheema
- School of Science and the Environment, Memorial University of Newfoundland, NL, Canada.
| |
Collapse
|
14
|
Rehman A, Khan S, Sun F, Peng Z, Feng K, Wang N, Jia Y, Pan Z, He S, Wang L, Qayyum A, Du X, Li H. Exploring the nano-wonders: unveiling the role of Nanoparticles in enhancing salinity and drought tolerance in plants. FRONTIERS IN PLANT SCIENCE 2024; 14:1324176. [PMID: 38304455 PMCID: PMC10831664 DOI: 10.3389/fpls.2023.1324176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/26/2023] [Indexed: 02/03/2024]
Abstract
Plants experience diverse abiotic stresses, encompassing low or high temperature, drought, water logging and salinity. The challenge of maintaining worldwide crop cultivation and food sustenance becomes particularly serious due to drought and salinity stress. Sustainable agriculture has significant promise with the use of nano-biotechnology. Nanoparticles (NPs) have evolved into remarkable assets to improve agricultural productivity under the robust climate alteration and increasing drought and salinity stress severity. Drought and salinity stress adversely impact plant development, and physiological and metabolic pathways, leading to disturbances in cell membranes, antioxidant activities, photosynthetic system, and nutrient uptake. NPs protect the membrane and photosynthetic apparatus, enhance photosynthetic efficiency, optimize hormone and phenolic levels, boost nutrient intake and antioxidant activities, and regulate gene expression, thereby strengthening plant's resilience to drought and salinity stress. In this paper, we explored the classification of NPs and their biological effects, nanoparticle absorption, plant toxicity, the relationship between NPs and genetic engineering, their molecular pathways, impact of NPs in salinity and drought stress tolerance because the effects of NPs vary with size, shape, structure, and concentration. We emphasized several areas of research that need to be addressed in future investigations. This comprehensive review will be a valuable resource for upcoming researchers who wish to embrace nanotechnology as an environmentally friendly approach for enhancing drought and salinity tolerance.
Collapse
Affiliation(s)
- Abdul Rehman
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Sana Khan
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad, Pakistan
| | - Fenlei Sun
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Zhen Peng
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Keyun Feng
- Institute of Crop Sciences, Gansu Academy of Agricultural Sciences, Lanzhou, China
| | - Ning Wang
- Institute of Crop Sciences, Gansu Academy of Agricultural Sciences, Lanzhou, China
| | - Yinhua Jia
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Zhaoe Pan
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Shoupu He
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- National Supercomputer Center in Zhengzhou, Zhengzhou University, Zhengzhou, China
| | - Lidong Wang
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Abdul Qayyum
- Department of Plant Breeding and Genetics, Bahauddin Zakariya University, Multan, Pakistan
| | - Xiongming Du
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Hongge Li
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| |
Collapse
|
15
|
Suazo-Hernández J, Urdiales C, Poblete-Grant P, Pesenti H, Cáceres-Jensen L, Sarkar B, Bolan N, de la Luz Mora M. Effect of particle size of nanoscale zero-valent copper on inorganic phosphorus adsorption-desorption in a volcanic ash soil. CHEMOSPHERE 2023; 340:139836. [PMID: 37595691 DOI: 10.1016/j.chemosphere.2023.139836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 07/27/2023] [Accepted: 08/14/2023] [Indexed: 08/20/2023]
Abstract
Zero-valent copper engineered nanoparticles (Cu-ENPs) released through unintentional or intentional actions into the agricultural soils can alter the availability of inorganic phosphorus (IP) to plants. In this study, we used adsorption-desorption experiments to evaluate the effect of particle size of 1% Cu-ENPs (25 nm and 40-60 nm) on IP availability in Santa Barbara (SB) volcanic ash soil. X-Ray Diffraction results showed that Cu-ENPs were formed by a mixture of Cu metallic and Cu oxides (Cu2O or/and CuO) species, while specific surface area values showed that Cu-ENPs/25 nm could form larger aggregate particles compared to Cu-ENPs/40-60 nm. The kinetic IP adsorption of SB soil without and with 1% Cu-ENPs (25 nm and 40-60 nm) followed the mechanism described by the pseudo-second-order (k2 = 0.45-1.13 x 10-3 kg mmol-1 min-1; r2 ≥ 0.999, and RSS ≤ 0.091) and Elovich (α = 14621.10-3136.20 mmol kg-1 min-1; r2 ≥ 0.984, and RSS ≤ 69) models. Thus, the rate-limiting step for IP adsorption in the studied systems was chemisorption on a heterogeneous surface. Adsorption equilibrium isotherms without Cu-ENPs were fitted well to the Freundlich model, while with 1% Cu-ENPs (25 nm and 40-60 nm), isotherms were described best by the Freundlich and/or Langmuir model. The IP relative adsorption capacity (KF) was higher with 1% Cu-ENPs/40-60 nm (KF = 110.41) than for 1% Cu-ENPs/25 nm (KF = 74.40) and for SB soil (KF = 48.17). This study showed that plausible IP retention mechanisms in the presence of 1% Cu-ENPs in SB soil were: i) ligand exchange, ii) electrostatic attraction, and iii) co-precipitate formation. The desorption study demonstrated that 1% Cu-ENPs/40-60 nm increased the affinity of IP in SB soil with a greater effect than 1% Cu-ENPs/25 nm. Thus, both the studied size ranges of Cu-ENPs could favor an accumulation of IP in volcanic ash soils.
Collapse
Affiliation(s)
- Jonathan Suazo-Hernández
- Center of Plant, Soil Interaction and Natural Resources Biotechnology, Scientific and Biotechnological Bioresource Nucleus (BIOREN-UFRO), Universidad de La Frontera, Avenida Francisco Salazar 01145, Temuco, Chile; Department of Chemical Sciences and Natural Resources, Universidad de La Frontera, Avenida Francisco Salazar 01145, P.O. Box 54-D, Temuco, Chile.
| | - Cristian Urdiales
- Universidad de Chile, Departamento de Ingeniería y Suelos, 8820808, Santiago, Chile; Sede Vallenar, Universidad de Atacama, Costanera #105, Vallenar, 1612178, Chile
| | - Patricia Poblete-Grant
- Center of Plant, Soil Interaction and Natural Resources Biotechnology, Scientific and Biotechnological Bioresource Nucleus (BIOREN-UFRO), Universidad de La Frontera, Avenida Francisco Salazar 01145, Temuco, Chile
| | - Hector Pesenti
- Núcleo de Investigación en Bioprocesos y Materiales Avanzados, Facultad de Ingeniería, Universidad Católica de Temuco, Temuco, 4780000, Chile; Afro-American University of Central Africa (AAUCA), Faculty of Engineering, Djibloho, Equatorial Guinea
| | - Lizethly Cáceres-Jensen
- Physical & Analytical Chemistry Laboratory (PachemLab), Nucleus of Computational Thinking and Education for Sustainable Development (NuCES), Center for Research in Education (CIE-UMCE), Department of Chemistry, Metropolitan University of Educational Sciences, Santiago, 776019, Chile
| | - Binoy Sarkar
- Future Industries Institute, University of South Australia, Mawson Lakes, SA, 5095, Australia
| | - Nanthi Bolan
- School of Agriculture and Environment, The University of Western Australia, Perth, WA, 6009, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, 6009, Australia
| | - María de la Luz Mora
- Center of Plant, Soil Interaction and Natural Resources Biotechnology, Scientific and Biotechnological Bioresource Nucleus (BIOREN-UFRO), Universidad de La Frontera, Avenida Francisco Salazar 01145, Temuco, Chile; Department of Chemical Sciences and Natural Resources, Universidad de La Frontera, Avenida Francisco Salazar 01145, P.O. Box 54-D, Temuco, Chile.
| |
Collapse
|
16
|
Liu X, Zhou Y, Yang J, Yang Y, Rahman MM. Bioavailability and translocation of platinum nanoparticles and platinum ions in rice (Oryza sativa L.): Nanoparticles biosynthesis and size-dependent transformation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 897:165137. [PMID: 37379926 DOI: 10.1016/j.scitotenv.2023.165137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 06/23/2023] [Accepted: 06/24/2023] [Indexed: 06/30/2023]
Abstract
Metal nanoparticles accumulation and bioavailability in plants raised much attention, specifically transformation and transportation of nanoparticles and their corresponding ions in plants are still unknown. In this work, rice seedlings were exposed to platinum nanoparticles (PtNPs) (with three sizes of 25, 50, and 70 nm) and Pt ions (with doses of 1, 2, and 5 mg/L) to investigate the influences of particle size and Pt form on bioavailability and translocation mechanism of metal nanoparticles. Results based on single particle ICP-MS (SP-ICP-MS) demonstrated the biosynthesis of PtNPs in Pt ions treated rice seedlings. The particle size ranges at 75-79.3 nm were detected in Pt ions exposed rice roots, and further migrated up to rice shoots at 21.7-44.3 nm. After exposed to PtNP-25, the particles could transfer to shoots with the original size distribution detected in roots, even with the PtNPs dose change. PtNP-50 and PtNP-70 translocated to shoots with the particle size increase. For the rice exposure with three dose levels, PtNP-70 had the highest number-based bioconcentration factors (NBCFs) in all Pt species, while Pt ions had the highest bioconcentration factors (BCFs), a range of 1.43-2.04. All PtNPs and Pt ions could be accumulated in rice plants and further transferred to shoots, and particle biosynthesis was proved through SP-ICP-MS. The finding could help us better understand the influence of particle size and form on the transformations of PtNPs in environment.
Collapse
Affiliation(s)
- Xin Liu
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Yaoyu Zhou
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China.
| | - Jian Yang
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Yuan Yang
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China.
| | - Md Mostafizur Rahman
- Laboratory of Environmental Health and Ecotoxicology, Department of Environmental Sciences, Jahangirnagar University, Dhaka 1342, Bangladesh
| |
Collapse
|
17
|
Duc Phung L, Dhewi Afriani S, Aditya Padma Pertiwi P, Ito H, Kumar A, Watanabe T. Effects of CuO nanoparticles in composted sewage sludge on rice-soil systems and their potential human health risks. CHEMOSPHERE 2023; 338:139555. [PMID: 37487974 DOI: 10.1016/j.chemosphere.2023.139555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 07/10/2023] [Accepted: 07/16/2023] [Indexed: 07/26/2023]
Abstract
The release of metal-based nanoparticles (MNPs) into sewage systems is worrisome due to their potential impact on crop-soil systems that are amended with sewage sludge. This study aimed to investigate the effects of copper oxide nanoparticles (CuO NPs) in composted sewage sludge (CSS) on rice-soil systems and to assess the health risks associated with consuming CuO NP-contaminated rice produced by CSS amendment. CSS was treated with three doses of CuO NPs, resulting in Cu levels below the sludge limits (1500 mg Cu kg-1) for reuse as a soil amendment. Results showed that CuO NPs in CSS at environmentally acceptable levels had no negative effect on rice growth and yield. In fact, they enhanced biomass production, tillering capacity, and soil fertility by increasing N and K levels in the soil. In addition, CuO NPs in CSS (450-1450 mg Cu kg-1) promoted the accumulation of macro- and micro-minerals in rice grains, thereby improving the nutritional value of rice. However, Cu contamination in CSS led to elevated levels of toxic metals, especially As, in rice grains, posing potential health risks to both adults and children. In the presence of higher CuO NPs contamination in CSS, the hazard quotient of As exceeded one, indicating an increased risks of toxic metal exposure via rice consumption. This study raises concerns about potential long-term threats to human health posed by MNPs contamination in CSS and highlights the need to reevaluate the permissible limits of hazardous elements in sludge to ensure its safe reuse in agriculture.
Collapse
Affiliation(s)
- Luc Duc Phung
- Faculty of Agriculture, Yamagata University, 1-23 Wakaba-machi, Tsuruoka, Yamagata, 997-8555, Japan; Center for Foreign Languages and International Education, Vietnam National University of Agriculture, Trau Quy, Gia Lam, Ha Noi, 12406, Viet Nam.
| | - Shinta Dhewi Afriani
- Graduate School of Agricultural Science, Yamagata University, 1-23 Wakaba-machi, Tsuruoka, Yamagata, 997-8555, Japan
| | - Putri Aditya Padma Pertiwi
- Graduate School of Agricultural Science, Yamagata University, 1-23 Wakaba-machi, Tsuruoka, Yamagata, 997-8555, Japan
| | - Hiroaki Ito
- Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan
| | - Arun Kumar
- Department of Civil Engineering, Indian Institute of Technology, New Delhi, 110016, India
| | - Toru Watanabe
- Faculty of Agriculture, Yamagata University, 1-23 Wakaba-machi, Tsuruoka, Yamagata, 997-8555, Japan
| |
Collapse
|
18
|
Wu H, Tong J, Jia F, Jiang X, Zhang H, Wang J, Luo Y, Pang J, Shi J. Nano hydroxyapatite pre-treatment effectively reduces Cd accumulation in rice (Oryza sativa L.) and its impact on paddy microbial communities. CHEMOSPHERE 2023; 338:139567. [PMID: 37480961 DOI: 10.1016/j.chemosphere.2023.139567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/13/2023] [Accepted: 07/17/2023] [Indexed: 07/24/2023]
Abstract
Cadmium (Cd) contamination in paddy soil has become a worldwide concern and severely endangered human health. Nano hydroxyapatite (n-HAP) is a practical material to manage paddy Cd pollution, but its dosage should not be excessive. Based on previous studies, we validated the effect of n-HAP pre-treatment on rice Cd uptake in pot and field experiments. The results indicated that n-HAP pre-treatment effectively restricted Cd translocation in the soil-rice system. In pot experiment, when soil n-HAP concentration was 5000 mg/kg, the Cd content in the grains of n-HAP pre-treated rice was 0.171 mg/kg, decreased by 29.3% compared with normal rice (0.242 mg/kg). In field experiment, when soil n-HAP concentration was 20,000 mg/kg, the Cd content in the grains of n-HAP pre-treated rice was 0.156 mg/kg, decreased by 35.3% compared with normal rice (0.241 mg/kg). The primary mechanism was that n-HAP pre-treatment altered the formation and composition of iron plaque and therefore enhanced the Cd binding ability of iron plaque. The available N and P content and urease activity in paddy field were increased. We further investigated the impact of n-HAP on the diversity and structure of paddy microbial communities. The Chao1 and Shannon diversity indices showed no significant difference. The relative abundance of Actinobacteria and Proteobacteria was significantly decreased by n-HAP, indicating that Cd pollution might be alleviated. Desulfobacterota, Gemmatimonadota, and Geobacteraceae were significantly enriched by n-HAP. The declining relative abundance of Basidiomycota and the increasing relative abundance of other fungal taxa also suggested that n-HAP could alleviate Cd toxicity in soil.
Collapse
Affiliation(s)
- Hanxin Wu
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; MOE Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China
| | - Jianhao Tong
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; MOE Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China
| | - Fei Jia
- Zhejiang Jiuhe Geological and Ecological Environment Planning and Design Company, Huzhou, 313002, China
| | - Xiaohan Jiang
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; MOE Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China
| | - Haonan Zhang
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; MOE Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China
| | - Jing Wang
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; MOE Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China
| | - Yating Luo
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; MOE Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China
| | - Jingli Pang
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; MOE Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China
| | - Jiyan Shi
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; MOE Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
19
|
Dang F, Yuan Y, Huang Y, Wang Y, Xing B. Trophic transfer of nanomaterials and their effects on high-trophic-level predators. NANOIMPACT 2023; 32:100489. [PMID: 37993019 DOI: 10.1016/j.impact.2023.100489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/07/2023] [Accepted: 11/15/2023] [Indexed: 11/24/2023]
Abstract
Nanotechnology offers great opportunities for numerous sectors in society. One important challenge in sustainable nanotechnology is the potential of trophic transfer of nanomaterials (NMs), which may lead to unintentional impacts on environmental and human health. Here, we highlight the key advances that have been made in recent 15 years with respect to trophic transfer of heterogeneous NMs, including metal-based NMs, carbon-based NMs and nanoplastics, across various aquatic and terrestrial food chains. Particle number-based trophic transfer factors (TTFs), rather than the variable mass-based TTFs, capture the particle-specific transfer, for which NMs exhibit dynamic and complex biotransformation (e.g., dissolution, sulfidation, reduction, and corona formation). Trophic transfer of NMs has toxicological significance to predators at molecular (e.g., increased oxidative stress and modified metabolites), physiological (e.g., feeding inhibition) and population (e.g., reproduction inhibition) levels. However, linking NM exposure and toxicity remains a challenge, partly due to the dynamic biotransformation along the food chain. Although NMs have been used to increase crop yield in agriculture, they can exert detrimental impacts on crop yield and modify crop quality, depending on NMs type, exposure dose, and crop species, with unknown consequences to human health via crop consumption. Given this information, we describe the challenges and opportunities in understanding the significance of NMs trophic transfer to develop more sustainable, effective and safer nanotechnology.
Collapse
Affiliation(s)
- Fei Dang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuan Yuan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yingnan Huang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yujun Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, USA.
| |
Collapse
|
20
|
Qian C, Wu J, Wang H, Yang D, Cui J. Metabolomic profiles reveals the dose-dependent effects of rice grain yield and nutritional quality upon exposure zero-valent iron nanoparticles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 879:163089. [PMID: 37001268 DOI: 10.1016/j.scitotenv.2023.163089] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/20/2023] [Accepted: 03/23/2023] [Indexed: 05/17/2023]
Abstract
Zero-valent iron nanoparticles (nZVI) were widely used material in environmental remediation, which has attracted increasing concern for their safety. Previous studies have shown that the addition of nZVI could inhibit rice seedling growth. However, the effect of nZVI on the soil-rice system during the entire life cycle was not reported. Furthermore, the effect of nZVI on the quality of rice grain has also not been studied. Therefore, we investigated the effects of rice grain yield and nutritional quality upon exposure nZVI. The results showed that the soil pH value, redox potential and Fe (II) content in the nZVI-treated group were decreased in a dose-dependent manner. Interestingly, 2500 mg/kg nZVI significantly decreased the relative abundance of several functional microbial communities (10.52-73.53 %) associated with carbon and nitrogen cycles in response to plants compared to the control. Meanwhile, the nZVI treatment clearly reduced grain yield (8.71-18.21 %). Furthermore, the content of protein (51.72-57.79 %) and several essential nutrients (Zn, Cu, Mn and Mo) in the nZVI-treated grains was also decreased in a dose-dependent manner. The results of grain metabolomics indicated that nZVI could interfere with the relative expression of lysine and glutathione by regulating the metabolic pathways of antioxidant and protein synthesis in rice.
Collapse
Affiliation(s)
- Cancan Qian
- College of Agriculture/Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Resources Utilization, Shihezi University, Shihezi, Xinjiang 832003, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Jian Wu
- College of Agriculture/Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Resources Utilization, Shihezi University, Shihezi, Xinjiang 832003, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Haodong Wang
- College of Agriculture/Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Resources Utilization, Shihezi University, Shihezi, Xinjiang 832003, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Desong Yang
- College of Agriculture/Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Resources Utilization, Shihezi University, Shihezi, Xinjiang 832003, China.
| | - Jianghu Cui
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
| |
Collapse
|
21
|
Zhang J, Wang Q, Wang Y, Xu Y, Du W, Guo H. Joint effects of CuO nanoparticles and perfluorooctanoic acid on cabbage (Brassica pekinensis L.). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:66745-66752. [PMID: 37099098 DOI: 10.1007/s11356-023-26862-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 04/03/2023] [Indexed: 05/25/2023]
Abstract
Coexisting nanoparticles (NPs) may change plant accumulation and toxicity of perfluorooctanoic acid (PFOA) in soil, but research is very scarce. In this study, cabbage (Brassica pekinensis L.) was exposed to single or combined treatments of PFOA (2 mg/kg and 4 mg/kg) and copper oxide NPs (nCuO, 200 mg/kg and 400 mg/kg) for 40 days. At harvest, biomass, photosynthesis index, and nutrient composition of cabbage, as well as plant accumulation of PFOA and Cu, were measured. Results showed that nCuO and PFOA were adverse to cabbage growth by decreasing chlorophyll contents, inhibiting photosynthesis and transpiration, and interfering with the utilization of nutrient components. Besides, they also affected each other's plant utilization and transmission. Especially, nCuO at a high dose (400 mg/kg) significantly increased the transport of coexisting PFOA (4 mg/kg) content (by 124.9% and 118.2%) to cabbage shoots. The interaction mechanism between nCuO and PFOA is unknown, and more research is needed to evaluate their composite phytotoxicity.
Collapse
Affiliation(s)
- Jie Zhang
- School of Environment, Nanjing Normal University, Nanjing, 210023, China
| | - Qiutang Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Yujing Wang
- Chemistry Department, Mount Holyoke College, South Hadley, MA, 01075, USA
| | - Yang Xu
- School of Environment, Nanjing Normal University, Nanjing, 210023, China
| | - Wenchao Du
- School of Environment, Nanjing Normal University, Nanjing, 210023, China.
| | - Hongyan Guo
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
22
|
Wang X, Xie H, Wang P, Yin H. Nanoparticles in Plants: Uptake, Transport and Physiological Activity in Leaf and Root. MATERIALS (BASEL, SWITZERLAND) 2023; 16:3097. [PMID: 37109933 PMCID: PMC10146108 DOI: 10.3390/ma16083097] [Citation(s) in RCA: 42] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/04/2023] [Accepted: 04/12/2023] [Indexed: 06/19/2023]
Abstract
Due to their unique characteristics, nanoparticles are increasingly used in agricultural production through foliage spraying and soil application. The use of nanoparticles can improve the efficiency of agricultural chemicals and reduce the pollution caused by the use of agricultural chemicals. However, introducing nanoparticles into agricultural production may pose risks to the environment, food and even human health. Therefore, it is crucial to pay attention to the absorption migration, and transformation in crops, and to the interaction with higher plants and plant toxicity of nanoparticles in agriculture. Research shows that nanoparticles can be absorbed by plants and have an impact on plant physiological activities, but the absorption and transport mechanism of nanoparticles is still unclear. This paper summarizes the research progress of the absorption and transportation of nanoparticles in plants, especially the effect of size, surface charge and chemical composition of nanoparticle on the absorption and transportation in leaf and root through different ways. This paper also reviews the impact of nanoparticles on plant physiological activity. The content of the paper is helpful to guide the rational application of nanoparticles in agricultural production and ensure the sustainability of nanoparticles in agricultural production.
Collapse
Affiliation(s)
- Xueran Wang
- College of Transportation Engineering, Dalian Maritime University, Dalian 116026, China; (X.W.); (P.W.)
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Dalian Technology Innovation Center for Green Agriculture, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Hongguo Xie
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Dalian Technology Innovation Center for Green Agriculture, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Pei Wang
- College of Transportation Engineering, Dalian Maritime University, Dalian 116026, China; (X.W.); (P.W.)
| | - Heng Yin
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Dalian Technology Innovation Center for Green Agriculture, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
23
|
Gao M, Chang J, Wang Z, Zhang H, Wang T. Advances in transport and toxicity of nanoparticles in plants. J Nanobiotechnology 2023; 21:75. [PMID: 36864504 PMCID: PMC9983278 DOI: 10.1186/s12951-023-01830-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 02/25/2023] [Indexed: 03/04/2023] Open
Abstract
In recent years, the rapid development of nanotechnology has made significant impacts on the industry. With the wide application of nanotechnology, nanoparticles (NPs) are inevitably released into the environment, and their fate, behavior and toxicity are indeterminate. Studies have indicated that NPs can be absorbed, transported and accumulated by terrestrial plants. The presence of NPs in certain edible plants may decrease harvests and threaten human health. Understanding the transport and toxicity of NPs in plants is the basis for risk assessment. In this review, we summarize the transportation of four types of NPs in terrestrial plants, and the phytotoxicity induced by NPs, including their impacts on plant growth and cell structure, and the underlying mechanisms such as inducing oxidative stress response, and causing genotoxic damage. We expect to provide reference for future research on the effects of NPs on plants.
Collapse
Affiliation(s)
- Mingyang Gao
- grid.410585.d0000 0001 0495 1805Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Sciences, Shandong Normal University, Jinan, 250014 People’s Republic of China
| | - Jia Chang
- grid.410585.d0000 0001 0495 1805Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Sciences, Shandong Normal University, Jinan, 250014 People’s Republic of China
| | - Zhongtang Wang
- grid.410585.d0000 0001 0495 1805Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Sciences, Shandong Normal University, Jinan, 250014 People’s Republic of China
| | - Hongyan Zhang
- Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Sciences, Shandong Normal University, Jinan, 250014, People's Republic of China.
| | - Tian Wang
- Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Sciences, Shandong Normal University, Jinan, 250014, People's Republic of China.
| |
Collapse
|
24
|
Chen S, Kang Z, Peralta-Videa JR, Zhao L. Environmental implication of MoS 2 nanosheets: Effects on maize plant growth and soil microorganisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 860:160362. [PMID: 36427736 DOI: 10.1016/j.scitotenv.2022.160362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/05/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
Molybdenum disulfide (MoS2) nanosheets have been used extensively in a variety of fields including medical and industrial. However, little is known about their toxicity effects, especially to edible plants. In this greenhouse study, maize (Zea mays) seedlings were exposed for 4 weeks, through the soil route, to 10 and 100 mg/kg of 2H MoS2 nanosheets. Plant growth, physiological parameters (chlorophyll, antioxidants, and MDA), along with Mo and nutrient element contents were determined in plant tissues. Results showed that at both doses, the nanosheets decreased plant growth. Inductively coupled plasma-mass spectrometry data also showed that both 2H MoS2 concentrations allowed Mo absorption and translocation by maize plants. Additionally, at 100 mg/kg the nanosheets significantly reduced Ca, Mg, Mn, and Zn in leaves, and Na in roots. Gene sequencing data of 16S rRNA showed, that MoS2 nanosheets changed the soil microbial community structure, compared with the untreated control. In addition, nitrogen-fixing microorganisms such as Burkholderiales, Rhizobiales and Xanthobacteraceae were enriched. Overall, the data suggest that, even at low dose (10 mg/kg), the 2H MoS2 nanosheets perturbed both the nutrient uptake by maize plants and the soil microbial communities.
Collapse
Affiliation(s)
- Si Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Zhao Kang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Jose R Peralta-Videa
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX 79968, United States
| | - Lijuan Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
25
|
Suazo-Hernández J, Arancibia-Miranda N, Mlih R, Cáceres-Jensen L, Bolan N, Mora MDLL. Impact on Some Soil Physical and Chemical Properties Caused by Metal and Metallic Oxide Engineered Nanoparticles: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:572. [PMID: 36770533 PMCID: PMC9919586 DOI: 10.3390/nano13030572] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/17/2023] [Accepted: 01/21/2023] [Indexed: 06/18/2023]
Abstract
In recent years, the release of metal and metallic oxide engineered nanoparticles (ENPs) into the environment has generated an increase in their accumulation in agricultural soils, which is a serious risk to the ecosystem and soil health. Here, we show the impact of ENPs on the physical and chemical properties of soils. A literature search was performed in the Scopus database using the keywords ENPs, plus soil physical properties or soil chemical properties, and elements availability. In general, we found that the presence of metal and metallic oxide ENPs in soils can increase hydraulic conductivity and soil porosity and reduce the distance between soil particles, as well as causing a variation in pH, cation exchange capacity (CEC), electrical conductivity (EC), redox potential (Eh), and soil organic matter (SOM) content. Furthermore, ENPs or the metal cations released from them in soils can interact with nutrients like phosphorus (P) forming complexes or precipitates, decreasing their bioavailability in the soil solution. The results depend on the soil properties and the doses, exposure duration, concentrations, and type of ENPs. Therefore, we suggest that particular attention should be paid to every kind of metal and metallic oxide ENPs deposited into the soil.
Collapse
Affiliation(s)
- Jonathan Suazo-Hernández
- Center of Plant, Soil Interaction and Natural Resources Biotechnology, Scientific and Biotechnological Bioresource Nucleus (BIOREN-UFRO), Universidad de La Frontera, Avenida Francisco Salazar 01145, Temuco 4780000, Chile
- Department of Chemical Sciences and Natural Resources, Universidad de La Frontera, Avenida Francisco Salazar 01145, Temuco 4811230, Chile
| | - Nicolás Arancibia-Miranda
- Faculty of Chemistry and Biology, University of Santiago of Chile (USACH), Santiago 8320000, Chile
- Center for the Development of Nanoscience and Nanotechnology, CEDENNA, Santiago 9170124, Chile
| | - Rawan Mlih
- Institute of Bio- and Geosciences, Agrosphere (IBG-3), Forschungszentrum Juelich (FZJ), 52425 Juelich, Germany
| | - Lizethly Cáceres-Jensen
- Physical & Analytical Chemistry Laboratory (PachemLab), Nucleus of Computational Thinking and Education for Sustainable Development (NuCES), Center for Research in Education (CIE-UMCE), Department of Chemistry, Metropolitan University of Educational Sciences, Santiago 776019, Chile
| | - Nanthi Bolan
- School of Agriculture and Environment, The University of Western Australia, Perth, WA 6009, Australia
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia
| | - María de la Luz Mora
- Center of Plant, Soil Interaction and Natural Resources Biotechnology, Scientific and Biotechnological Bioresource Nucleus (BIOREN-UFRO), Universidad de La Frontera, Avenida Francisco Salazar 01145, Temuco 4780000, Chile
- Department of Chemical Sciences and Natural Resources, Universidad de La Frontera, Avenida Francisco Salazar 01145, Temuco 4811230, Chile
| |
Collapse
|
26
|
Kim SH, Bae S, Hwang YS. Comparative bioaccumulation, translocation, and phytotoxicity of metal oxide nanoparticles and metal ions in soil-crop system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:158938. [PMID: 36152853 DOI: 10.1016/j.scitotenv.2022.158938] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/18/2022] [Accepted: 09/18/2022] [Indexed: 06/16/2023]
Abstract
Exposure of the soil environment to metal nanoparticles (MNPs) has been extensive because of their indiscriminate use and the disposal of MNP products in various applications. In MNP-amended soil, various crops can absorb the nanoparticles, and accumulation of the MNPs in farm products has potential risks for bioconcentration in humans and livestock. Here, we evaluated the comparative bioaccumulation, translocation, and phytotoxicity of MNPs (ZnO and CuO NPs) and metal ions (Zn(NO3)2 and Cu(NO3)2) in four different crops, namely lettuce, radish, bok choy, and tomato. We carried out pot experiments to evaluate the phytotoxicity in the crops from the presence of MNPs and metal ions. Phytotoxicity from different treatments differed depending on the plant species, and metal types. In addition, exposure to Zn and Cu showed positive dose-dependent effects on their bioaccumulation in each crop. However, there were no significant differences in metal bioaccumulation depending on whether the crops were exposed to MNPs or metal ions. By calculating the bioconcentration factor (BCF) and translocation factor (TF), we were able to estimate the biological uptake and translocation abilities of MNPs and metal ions for each crop. It was found that lettuce and radish had greater BCFs than bok choy and tomato, while bok choy and tomato had higher TFs. Also, the uptake and translocation of Zn were better than those of Cu. However, the values for BCF and TF for each crop showed no significant differences between MNP and metal ion exposure. A micro X-ray fluorescence (μ-XRF) spectrometer analysis demonstrated that only Zn elements appeared in the primary veins and edges of all leaves and the storage root of radish. Our study aims to estimate bioaccumulation, translocation, and the implied potential risks from MNPs accumulated in different plant species.
Collapse
Affiliation(s)
- Sung Hoon Kim
- Environmental Exposure & Toxicology Research Center, Korea Institute of Toxicology, Jinju, South Korea
| | - Sujin Bae
- Environmental Exposure & Toxicology Research Center, Korea Institute of Toxicology, Jinju, South Korea
| | - Yu Sik Hwang
- Environmental Exposure & Toxicology Research Center, Korea Institute of Toxicology, Jinju, South Korea.
| |
Collapse
|
27
|
Raza Khan A, Fan X, Salam A, Azhar W, Ulhassan Z, Qi J, Liaquat F, Yang S, Gan Y. Melatonin-mediated resistance to copper oxide nanoparticles-induced toxicity by regulating the photosynthetic apparatus, cellular damages and antioxidant defense system in maize seedlings. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120639. [PMID: 36372367 DOI: 10.1016/j.envpol.2022.120639] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/30/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
The pollution of nanoparticles (NPs) has linked with severe negative effects on crop productivity. Thus, effective strategies are needed to mitigate the phytotoxicity of NPs. The aim of present study was to evaluate the efficacy of exogenously applied melatonin (MT) in mitigating the toxic effects of copper oxide nanoparticles (CuO NPs) from maize seedlings. Therefore, we comprehensively investigated the inhibitory effects of MT against CuO NPs-induced toxicity on morpho-physiological, biochemical and ultrastructural levels in maize. Our results show that CuO NPs (300 mg L-1) exposure displayed significantly reduction in all plant growth traits and induced toxicity in maize. Furthermore, 50 μM MT provided maximum plant tolerance against CuO NPs-induced phytotoxicity. It was noticed that MT improved plant growth, biomass, photochemical efficiency (Fv/Fm), chlorophyll contents (Chl a and Chl b), SPAD values and gas exchange attributes (stomatal conductance, net photosynthetic rate, intercellular CO2 concentration and transpiration rate) under CuO NPs stress. In addition, MT enhanced the antioxidant defense system and conferred protection to ultrastructural (mainly chloroplast, thylakoids membrane and plastoglobuli) damages and stomatal closure in maize plants subjected to CuO NPs stress. Together, it can be stated that the exogenous supply of MT improves the resilience of maize plants against the CuO NPs-induced phytotoxicity. Our current findings can be useful for the enhancement of plant growth and yield attributes in CuO NPs-contaminated soils. The reported information can provide insight into the MT pathways that can be used to improve crop stress tolerance in a challenging environment.
Collapse
Affiliation(s)
- Ali Raza Khan
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Xingming Fan
- Institute of Food Crops, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan, China
| | - Abdul Salam
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Wardah Azhar
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Zaid Ulhassan
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Jiaxuan Qi
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Fiza Liaquat
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shuaiqi Yang
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Yinbo Gan
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China.
| |
Collapse
|
28
|
dos Santos OAL, Pizzorno Backx B, Abumousa RA, Bououdina M. Environmental Implications Associated with the Development of Nanotechnology: From Synthesis to Disposal. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4319. [PMID: 36500947 PMCID: PMC9740896 DOI: 10.3390/nano12234319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/23/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Nanotechnology remains under continuous development. The unique, fascinating, and tunable properties of nanomaterials make them interesting for diverse applications in different fields such as medicine, agriculture, and remediation. However, knowledge about the risks associated with nanomaterials is still poorly known and presents variable results. Furthermore, the interaction of nanomaterials with biological systems and the environment still needs to be clarified. Moreover, some issues such as toxicity, bioaccumulation, and physicochemical transformations are found to be dependent on several factors such as size, capping agent, and shape, making the comparisons even more complex. This review presents a comprehensive discussion about the consequences of the use and development of nanomaterials regarding their potential risks to the environment as well as human and animal health. For this purpose, we reviewed the entire production chain from manufacturing, product development, applications, and even product disposal to raise the important implications at each stage. In addition, we present the recent developments in terms of risk management and the recycling of nanomaterials. Furthermore, the advances and limitations in the legislation and characterization of nanomaterials are also discussed.
Collapse
Affiliation(s)
| | - Bianca Pizzorno Backx
- Campus Duque de Caxias, Universidade Federal do Rio de Janeiro, Duque de Caxias 25240-005, Brazil
| | - Rasha A. Abumousa
- Department of Mathematics and Science, Faculty of Humanities and Sciences, Prince Sultan University, Riyadh 11586, Saudi Arabia
| | - Mohamed Bououdina
- Department of Mathematics and Science, Faculty of Humanities and Sciences, Prince Sultan University, Riyadh 11586, Saudi Arabia
| |
Collapse
|
29
|
Bland GD, Zhang P, Valsami-Jones E, Lowry GV. Application of Isotopically Labeled Engineered Nanomaterials for Detection and Quantification in Soils via Single-Particle Inductively Coupled Plasma Time-of-Flight Mass Spectrometry. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:15584-15593. [PMID: 36255450 DOI: 10.1021/acs.est.2c03737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Finding and quantifying engineered nanomaterials (ENMs) in soil are challenging because of the abundance of natural nanomaterials (NNMs) with the same elemental composition, for example, TiO2. Isotopically enriched ENMs may be distinguished from NNMs with the same elemental composition using single-particle inductively coupled plasma time-of-flight mass spectrometry (spICP-TOF-MS) to measure multiple isotopes simultaneously within each ENM and NNM in soil, but the minimum isotope enrichment needed for detection of ENMs in soil is not known. Here, we determined the isotope enrichment needed for 47Ti-enriched TiO2 ENMs to be detectable in soil and assessed the effects of weathering on those requirements for less soluble TiO2 and more soluble CuO ENMs. The isotope-enriched ENMs were dosed into two different soils and were extracted and measured by spICP-TOF-MS after 1, 7, and 30 days. Isotope-enriched ENMs were recovered and detected for all three time points. The 47Ti-enriched TiO2 ENMs were detectable in Lufa 2.2 soil at a nominal dosed concentration of 10 mg-TiO2 kg-1 which is an environmentally relevant concentration in biosolid-amended soils. For distinguishing an ∼70 nm diameter TiO2 ENM from TiO2 NNMs in Lufa 2.2 soil, an ∼10 wt % 47Ti isotope-enrichment was required, and this enrichment requirement increases as the particle size decreases. This study is the first to evaluate the tracking ability of isotope-enriched ENMs at an individual particle level in soil and provides guidance on the isotope enrichment requirements for quantification of ENMs made from Earth-abundant elements in soils.
Collapse
Affiliation(s)
- Garret D Bland
- Department of Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania15213, United States
| | - Peng Zhang
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, BirminghamB15 2TT, U.K
| | - Eugenia Valsami-Jones
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, BirminghamB15 2TT, U.K
| | - Gregory V Lowry
- Department of Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania15213, United States
| |
Collapse
|
30
|
Phung LD, Kumar A, Watanabe T. CuO nanoparticles in irrigation wastewater have no detrimental effect on rice growth but may pose human health risks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 847:157602. [PMID: 35896133 DOI: 10.1016/j.scitotenv.2022.157602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/15/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
The possibility of metal-based nanoparticles (NPs) being released into agricultural soils via sewage systems has raised widespread concern about their negative effects on crop plants, soils, and potential risks to human health via the food chain. The objectives of this study were to (i) determine the effect of CuO NPs in irrigation water on plant growth and Cu accumulation in a rice-soil system using continuous sub-irrigation with treated wastewater (CSI), and (ii) assess the Cu exposure and potential health risk associated with rice consumption. CuO NPs were examined in treated municipal wastewater (TWW) at environmentally acceptable concentrations (0, 0.02, 0.2, and 2.0 mg Cu L-1), allowing for effluent discharge and/or crop irrigation reuse. Low CuO NP concentrations in TWW had no adverse effect on plant growth, yield, or grain quality. Cu accumulation significantly increased in various parts of rice plants and paddy soils at 2.0 mg Cu L-1. CuO NPs had no discernible effect on rice plants when compared to CuSO4 at 0.2 mg Cu L-1. The estimated daily intake of Cu derived from inadvertent consumption of Cu-contaminated rice (by CuO NPs in TWW) for young children aged 0-6 years exceeded the oral reference dose for toxicity. Overall, we found no acute toxicity of CuO NPs in TWW to rice plants, but significant Cu accumulation in grains. This implies that there is a high risk of human health problems associated with rice that was intensively irrigated with TWW containing CuO NPs.
Collapse
Affiliation(s)
- Luc Duc Phung
- Faculty of Agriculture, Yamagata University, 1-23 Wakaba-machi, Tsuruoka, Yamagata 997-8555, Japan; Center for Foreign Languages and International Education, Vietnam National University of Agriculture, Trau Quy, Gia Lam, Ha Noi 12406, Viet Nam.
| | - Arun Kumar
- Department of Civil Engineering, Indian Institute of Technology, New Delhi 110016, India
| | - Toru Watanabe
- Faculty of Agriculture, Yamagata University, 1-23 Wakaba-machi, Tsuruoka, Yamagata 997-8555, Japan
| |
Collapse
|
31
|
Jiang M, Wang B, Ye R, Yu N, Xie Z, Hua Y, Zhou R, Tian B, Dai S. Evidence and Impacts of Nanoplastic Accumulation on Crop Grains. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202336. [PMID: 36251925 PMCID: PMC9685458 DOI: 10.1002/advs.202202336] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/22/2022] [Indexed: 05/19/2023]
Abstract
Nanoplastics are emerging pollutants of global concern. Agricultural soil is becoming a primary sink for nanoplastics generated from plastic debris. The uptake and accumulation of nanoplastics by crops contaminate the food chain and pose unexpected risks to human health. However, whether nanoplastics can enter grains and their impact on the grains of crop grown in contaminated soil is still unknown. Here, the translocation of polystyrene nanoplastics (PS-NPs) in crops, including peanut (Arachis hypogaea L.) and rice (Oryza sativa L.) is investigated. It is demonstrated PS-NPs translocation from the root and accumulation in the grains at the maturation stage. The treatment with PS-NPs (250 mg kg-1 ) increases the empty-shell numbers of rice grain by 35.45%, thereby decreasing the seed-setting rate of rice by 3.02%, and also decreases the average seed weight of peanuts by 3.45%. Moreover, PS-NPs exerted adverse effects on nutritional quality, such as decreasing the content of mineral elements, amino acids, and unsaturated fatty acids. To the knowledge, this is the first report of the presence of nanoplastics in the grains of crop plants grown in soil containing nanoplastics, and the results highlight the impact of nanoplastics on the yield and nutritional quality of crop grains.
Collapse
Affiliation(s)
- Meng Jiang
- MOE Key Laboratory of Biosystems Homeostasis & ProtectionCollege of Life SciencesZhejiang UniversityHangzhou310012P. R. China
- Hainan InstituteZhejiang UniversityYazhou Bay Sci‐Tech CitySanya572025P. R. China
- National Key Laboratory of Rice BiologyInstitute of Crop SciencesZhejiang UniversityHangzhou310012P. R. China
| | - Binqiang Wang
- MOE Key Laboratory of Biosystems Homeostasis & ProtectionCollege of Life SciencesZhejiang UniversityHangzhou310012P. R. China
| | - Rui Ye
- MOE Key Laboratory of Biosystems Homeostasis & ProtectionCollege of Life SciencesZhejiang UniversityHangzhou310012P. R. China
- School of PhysicsInstitute of Quantitative BiologyZhejiang UniversityHangzhou310012P. R. China
| | - Ning Yu
- MOE Key Laboratory of Biosystems Homeostasis & ProtectionCollege of Life SciencesZhejiang UniversityHangzhou310012P. R. China
| | - Zhenming Xie
- MOE Key Laboratory of Biosystems Homeostasis & ProtectionCollege of Life SciencesZhejiang UniversityHangzhou310012P. R. China
| | - Yuejin Hua
- MOE Key Laboratory of Biosystems Homeostasis & ProtectionCollege of Life SciencesZhejiang UniversityHangzhou310012P. R. China
| | - Ruhong Zhou
- MOE Key Laboratory of Biosystems Homeostasis & ProtectionCollege of Life SciencesZhejiang UniversityHangzhou310012P. R. China
- School of PhysicsInstitute of Quantitative BiologyZhejiang UniversityHangzhou310012P. R. China
- Cancer CenterZhejiang UniversityHangzhou310012P. R. China
| | - Bing Tian
- MOE Key Laboratory of Biosystems Homeostasis & ProtectionCollege of Life SciencesZhejiang UniversityHangzhou310012P. R. China
- Cancer CenterZhejiang UniversityHangzhou310012P. R. China
| | - Shang Dai
- MOE Key Laboratory of Biosystems Homeostasis & ProtectionCollege of Life SciencesZhejiang UniversityHangzhou310012P. R. China
| |
Collapse
|
32
|
Li J, Yue L, Zhao Q, Cao X, Tang W, Chen F, Wang C, Wang Z. Prediction models on biomass and yield of rice affected by metal (oxide) nanoparticles using nano-specific descriptors. NANOIMPACT 2022; 28:100429. [PMID: 36130713 DOI: 10.1016/j.impact.2022.100429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/12/2022] [Accepted: 09/14/2022] [Indexed: 06/15/2023]
Abstract
The use of in silico tools to investigate the interactions between metal (oxide) nanoparticles (NPs) and plant biological responses is preferred because it allows us to understand molecular mechanisms and improve prediction efficiency by saving time, labor, and cost. In this study, four models (C5.0 decision tree, discriminant function analysis, random forest, and stepwise multiple linear regression analysis) were applied to predict the effect of NPs on rice biomass and yield. Nano-specific descriptors (size-dependent molecular descriptors and image-based descriptors) were introduced to estimate the behavior of NPs in plants to appropriately represent the wide space of NPs. The results showed that size-dependent molecular descriptors (e.g., E-state and connectivity indices) and image-based descriptors (e.g., extension, area, and minimum ferret diameter) were associated with the behavior of NPs in rice. The performance of the constructed models was within acceptable ranges (correlation coefficient ranged from 0.752 to 0.847 for biomass and from 0.803 to 0.905 for yield, while the accuracy ranged from 64% to 77% for biomass and 81% to 89% for yield). The developed model can be used to quickly and efficiently evaluate the impact of NPs under a wide range of experimental conditions and sufficient training data.
Collapse
Affiliation(s)
- Jing Li
- Institute of Environmental Processotes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Le Yue
- Institute of Environmental Processotes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Qing Zhao
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangzhou 510650, China
| | - Xuesong Cao
- Institute of Environmental Processotes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Weihao Tang
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangzhou 510650, China
| | - Feiran Chen
- Institute of Environmental Processotes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Chuanxi Wang
- Institute of Environmental Processotes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Zhenyu Wang
- Institute of Environmental Processotes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
33
|
Zhang Q, Yuan P, Liang W, Qiao Z, Shao X, Zhang W, Peng C. Exogenous iron alters uptake and translocation of CuO nanoparticles in soil-rice system: A life cycle study. ENVIRONMENT INTERNATIONAL 2022; 168:107479. [PMID: 36007301 DOI: 10.1016/j.envint.2022.107479] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/12/2022] [Accepted: 08/13/2022] [Indexed: 06/15/2023]
Abstract
The abundant iron in farmland soil may affect the environmental fate of metal-based nanoparticles (MNPs). In this study, the effect of FeSO4 and nano-zero-valent iron (nZVI) as exogenous iron on the uptake and translocation of CuO nanoparticles (NPs) in soil-rice system was performed in a life cycle study. The results show that exogenous iron basically elevated the soil pH and electrical conductivity but lowered the redox potential. Moreover, the Cu bioavailability in soil was significantly increased by 86-269% with exogenous iron at the tillering stage, while was reduced by 15-45% with medium and high concentrations of Fe(II) at the maturation stage. Meanwhile, the addition of exogenous iron resolved the unfilling of grains caused by CuO NPs. Notably, except for highest Fe(II) treatment, both Fe(II) and nZVI reduced Cu accumulation from 31% to 84% in roots and leaves due to more iron plaque. Especially, medium Fe(II) level markedly decreased the Cu content in the brown rice. μ-XRF analysis suggests that high intensity of Cu was primarily located in the rice hull and embryo under Fe(II) treatment. The reduction of CuO NPs to Cu2O caused by Fe(II) can explain the positive effect of exogenous iron on controlling the environmental risk of MNPs.
Collapse
Affiliation(s)
- Qi Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Peng Yuan
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Weiyu Liang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zhihua Qiao
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xuechun Shao
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Wei Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Cheng Peng
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
34
|
Experimental and Computational Studies on the Interaction of a Dansyl-Based Fluorescent Schiff Base Ligand with Cu 2+ Ions and CuO NPs. Int J Mol Sci 2022; 23:ijms231911565. [PMID: 36232868 PMCID: PMC9569476 DOI: 10.3390/ijms231911565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 09/21/2022] [Accepted: 09/23/2022] [Indexed: 11/07/2022] Open
Abstract
We studied the interaction of Cu2+ ions and CuO nanoparticles with the fluorescent Schiff base ligand H3L, which derives from the condensation of 4-formyl-3-hydroxybenzoic acid with N-(2-aminobenzyl)-5-(dimethylamino)naphthalene-1-sulfonamide (DsA). A detailed assignment of the most significant bands of the electronic and infrared spectra of H3L and DsA was performed using DFT methods, based on both crystal structures. The affinity of H3L to react with Cu2+ ions in solution (KB = 9.01 103 L mol−1) is similar to that found for the Cu2+ ions present on the surface of CuO NPs (KB = 9.84 103 L mol−1). Fluorescence spectroscopic measurements suggest five binding sites for H3L on the surface of the CuO NPs used. The µ-XRF analysis indicates that a polycrystalline sample of CuO-H3L NPs contains 15:1 Cu:S molar ratio (CuO:H3L). ATR-FTIR spectroscopy, supported by DFT calculations, showed that the HL2− (as a phenolate and sulfonamide anion) is coordinated to superficial Cu2+ ions of the CuO NPs through their azomethine, sulphonamide, and phenolic groups. A solution of H3L (126 ppb) shows sensitive responses to CuO NPs, with a limit of detection (LOD) of 330 ppb. The working range for detection of CuO NPs with [H3L] = 126 ppb was 1.1–9.5 ppm. Common metal ions in water, such as Na+, K+, Mg2+, Ca2+, Fe3+, and Al3+ species, do not interfere significantly with the detection of CuO NPs.
Collapse
|
35
|
Huang G, Zuverza-Mena N, White JC, Hu H, Xing B, Dhankher OP. Simultaneous exposure of wheat (Triticum aestivum L.) to CuO and S nanoparticles alleviates toxicity by reducing Cu accumulation and modulating antioxidant response. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 839:156285. [PMID: 35636547 DOI: 10.1016/j.scitotenv.2022.156285] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 05/04/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
Widespread use of metal-based nanoparticles (NPs) may result in the increased accumulation of metals in agricultural soil, which could affect crop productivity and contaminate the food-chain. The effect of sulfur nanoparticles (S NPs, 200 mg/L) co-exposure on the toxicity of CuO nanoparticles (CuO NPs, 25 and 50 mg/L) to wheat seedlings was investigated in a hydroponic system. CuO NPs exposure significantly inhibited the growth of wheat seedlings, causing 43.6% and 54.1% decreases in the fresh biomass of plants and 82.8% and 83.1% decrease in the total chlorophyll contents at 25 and 50 mg/L (CuONP25 and CuONP50), respectively, as compared to controls. CuO NPs exposure at both concentrations increased the malondialdehyde (MDA) content in shoot and root tissues by 66.4-67.9% and 47.7-48.8%, respectively. Further, CuO NPs exposure elevated the activities POD, SOD, and CAT by 2.19-2.27, 5.82-6.09, and 1.44-1.95 times in roots, and by 45.2-67.8%, 86.7-154.5%, and 22.5-56.1% in shoot, respectively, in comparison to control. The addition of S NPs alone increased wheat biomass by 11.0% and total chlorophyll contents by 4.4%, compared to controls. Further, simultaneous exposure to S NPs (200 mg/L) and CuO NPs (25 or 50 mg/L) alleviated the CuO NPs toxicity; wheat biomass was 47.8% and 37.7% higher in CuONP25 + SNP and CuONP50 + SNP treatments, respectively, as compared to CuO NPs alone treated plants. Co-exposed plants showed reduced levels of total reactive oxygen species (ROS), O2·- and H2O2. Additionally, S NPs exposure reduced Cu uptake and accumulation in both root and shoot tissue by 32.2-54.4% and 38.3-57.5%, respectively. In summary, S NPs alleviated CuO NPs toxicity to wheat seedlings, most likely by reducing Cu bioavailability and accumulation of Cu in plant tissues, and also altered S nutrition and the modulation of antioxidant response in plants. These results showed that S NPs application has the potential to alleviate CuO NP toxicity and increase wheat productivity affected by metals toxicity.
Collapse
Affiliation(s)
- Guoyong Huang
- Stockbridge School of Agriculture, University of Massachusetts Amherst, MA 01003, USA; Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
| | | | - Jason C White
- Connecticut Agricultural Experiment Station, New Haven, CT, USA
| | - Hongqing Hu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts Amherst, MA 01003, USA.
| | - Om Parkash Dhankher
- Stockbridge School of Agriculture, University of Massachusetts Amherst, MA 01003, USA.
| |
Collapse
|
36
|
Li X, He F, Wang Z, Xing B. Roadmap of environmental health research on emerging contaminants: Inspiration from the studies on engineered nanomaterials. ECO-ENVIRONMENT & HEALTH (ONLINE) 2022; 1:181-197. [PMID: 38075596 PMCID: PMC10702922 DOI: 10.1016/j.eehl.2022.10.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 10/04/2022] [Accepted: 10/11/2022] [Indexed: 01/25/2024]
Abstract
Research on the environmental health of emerging contaminants is critical to understand their risks before causing severe harm. However, the low environmental concentrations, complex behaviors, and toxicology of emerging contaminants present enormous challenges for researchers. Here, we reviewed the research on the environmental health of engineered nanomaterials (ENMs), one of the typical emerging contaminants, to enlighten pathways for future research on emerging contaminants at their initial exploratory stage. To date, some developed pretreatment methods and detection technologies have been established for the determination of ENMs in natural environments. The mechanisms underlying the transfer and transformation of ENMs have been systematically explored in laboratory studies. The mechanisms of ENMs-induced toxicity have also been preliminarily clarified at genetic, cellular, individual, and short food chain levels, providing not only a theoretical basis for revealing the risk change and environmental health effects of ENMs in natural environments but also a methodological guidance for studying environmental health of other emerging contaminants. Nonetheless, due to the interaction of multiple environmental factors and the high diversity of organisms in natural environments, health effects observed in laboratory studies likely differ from those in natural environments. We propose a holistic approach and mesocosmic model ecosystems to systematically carry out environmental health research on emerging contaminants, obtaining data that determine the objectivity and accuracy of risk assessment.
Collapse
Affiliation(s)
- Xiaona Li
- Institute of Environmental Processes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi 214122, China
| | - Feng He
- Institute of Environmental Processes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi 214122, China
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi 214122, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, United States
| |
Collapse
|
37
|
Xu N, Kang J, Ye Y, Zhang Q, Ke M, Wang Y, Zhang Z, Lu T, Peijnenburg WJGM, Bao G, Qian H. Machine learning predicts ecological risks of nanoparticles to soil microbial communities. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 307:119528. [PMID: 35623569 DOI: 10.1016/j.envpol.2022.119528] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 04/20/2022] [Accepted: 05/21/2022] [Indexed: 06/15/2023]
Abstract
With the rapid development of nanotechnology in agriculture, there is increasing urgency to assess the impacts of nanoparticles (NPs) on the soil environment. This study merged raw high-throughput sequencing (HTS) data sets generated from 365 soil samples to reveal the potential ecological effects of NPs on soil microbial community by means of metadata analysis and machine learning methods. Metadata analysis showed that treatment with nanoparticles did not have a significant impact on the alpha diversity of the microbial community, but significantly altered the beta diversity. Unfortunately, the abundance of several beneficial bacteria, such as Dyella, Methylophilus, Streptomyces, which promote the growth of plants, and improve pathogenic resistance, was reduced under the addition of synthetic nanoparticles. Furthermore, metadata demonstrated that nanoparticles treatment weakened the biosynthesis ability of cofactors, carriers, and vitamins, and enhanced the degradation ability of aromatic compounds, amino acids, etc. This is unfavorable for the performance of soil functions. Besides the soil heterogeneity, machine learning uncovered that a) the exposure time of nanoparticles was the most important factor to reshape the soil microbial community, and b) long-term exposure decreased the diversity of microbial community and the abundance of beneficial bacteria. This study is the first to use a machine learning model and metadata analysis to investigate the relationship between the properties of nanoparticles and the hazards to the soil microbial community from a macro perspective. This guides the rational use of nanoparticles for which the impacts on soil microbiota are minimized.
Collapse
Affiliation(s)
- Nuohan Xu
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, PR China
| | - Jian Kang
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, PR China
| | - Yangqing Ye
- College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, PR China
| | - Qi Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, PR China
| | - Mingjing Ke
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, PR China
| | - Yufei Wang
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, PR China
| | - Zhenyan Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, PR China
| | - Tao Lu
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, PR China
| | - W J G M Peijnenburg
- Institute of Environmental Sciences (CML), Leiden University, RA, Leiden, 2300, the Netherlands; National Institute of Public Health and the Environment (RIVM), Center for Safety of Substances and Products, P.O. Box 1, Bilthoven, the Netherlands
| | - Guanjun Bao
- College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, PR China
| | - Haifeng Qian
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, PR China.
| |
Collapse
|
38
|
Dai H, Han T, Cui J, Li X, Abbasi HN, Wang X, Guo Z, Chen Y. Stability, aggregation, and sedimentation behaviors of typical nano metal oxide particles in aqueous environment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 316:115217. [PMID: 35561494 DOI: 10.1016/j.jenvman.2022.115217] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 04/22/2022] [Accepted: 05/01/2022] [Indexed: 06/15/2023]
Abstract
The wide use of nano metal oxide particles (NMOPs) brings about their inevitable release into the water environment, affecting the environment and human health. Therefore, the stability, aggregation, and sedimentation process of four typical NMOPs (ZnO NPs, CeO2 NPs, TiO2 NPs, and CuO NPs) were investigated in artificial water and real municipal sewage to reveal their complicated behavior. Results showed that NMOPs aggregated at the pH of zero-charge point, and their hydrodynamic diameters and aggregation rates could reach the maximum values. The hydrodynamic diameters and aggregation rates of ZnO NPs, CeO2 NPs, TiO2 NPs, and CuO NPs at the zero-charge point were 617, 1760, 870, 1502 nm, and 31.7, 1158.1, 48.3, 115.7 nm/min, respectively. In addition, the dissolution of NMOPs led to the sedimentation rates under acidic conditions being much lower than those under neutral and alkaline conditions. The aggregation and sedimentation performance of NMOPs were affected by not only pH but also ionic strength (IS) and species. The aggregation rates of NMOPs increased with the increase of IS (0-10 mM), and the maximum aggregation rate of CeO2 NPs was 470.1 nm/min (pH = 7 and CaCl2 = 10 mM). According to Coulomb's law, divalent cations (Mg2+, Ca2+) were more competitively adsorbed on the surface of NMOPs than monovalent cations (K+, Na+), which increased the zeta potential and aggregation rate of NMOPs. Furthermore, the NMOPs were easier to aggregate in municipal sewage because of the homogeneous aggregation between nanoparticles and heterogeneous aggregation with natural colloids. The total interaction energy between NMOPs was calculated by the classical Derjaguin-Landau-Verwey-Overbeek (DLVO) theoretical formula, which was consistent with the experimental results.
Collapse
Affiliation(s)
- Hongliang Dai
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, China; School of Environmental and Engineering, Huazhong University of Science and Technology, Wuhan, China.
| | - Ting Han
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, China.
| | - Junting Cui
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, China.
| | - Xiang Li
- School Energy & Environment, Southeast University, 2 Sipailou Road, Nanjing, China.
| | - Haq Nawaz Abbasi
- Department of Environmental Science, Federal Urdu University of Arts, Science and Technology, Karachi, Pakistan.
| | - Xingang Wang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, China.
| | - Zechong Guo
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, China; School of Environmental and Engineering, Huazhong University of Science and Technology, Wuhan, China.
| | - Yong Chen
- School of Environmental and Engineering, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
39
|
Guo M, Tong H, Cai D, Zhang W, Yuan P, Shen Y, Peng C. Effect of wetting-drying cycles on the Cu bioavailability in the paddy soil amended with CuO nanoparticles. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129119. [PMID: 35596994 DOI: 10.1016/j.jhazmat.2022.129119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 04/20/2022] [Accepted: 05/07/2022] [Indexed: 06/15/2023]
Abstract
The extensive application of metal-based nanoparticles can pose environmental risks, but how the alternation of wet and dry caused by natural precipitation and artificial irrigation affects the environmental fate of nanoparticles is still unclear. Here, we investigated the underlying mechanisms of wetting-drying cycles (WDCs) on the Cu bioavailability in paddy soil treated with CuO nanoparticles (100 and 500 mg/kg) during 140 days by comparing with drought and flooding conditions. The results show that soil moisture content greatly affected the soil pH and redox potential. The bioavailable Cu contents in the WDCs exposed to CuO nanoparticles were positively correlated to moisture content and WDCs number. The fit result of the pseudo-second-order equation indicates that WDCs greatly prevented the aging process of Cu in soil. Furthermore, WDCs transformed oxidizable Cu to water-soluble, acid extractable and reducible Cu. WDCs markedly promoted the degradation of dissolved organic matter and the transformation of acid-soluble sulfate to water-soluble inorganic sulfate, meanwhile, significantly enhanced the contents of crystalline iron oxides by 22-57% and 82-326% with respect to drought and flooding, but reduced the level of ferrous iron by 37-67% compared to the flooding. µ-XRF analysis shows that the fate of CuO nanoparticles might be mainly determined by Fe under WDCs condition but by S in flooded soil. This study can provide a comprehensive assessment on the impact of natural precipitation and artificial irrigation on the environmental risks of MNPs.
Collapse
Affiliation(s)
- Minxue Guo
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Hong Tong
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Dongqing Cai
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Wei Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Peng Yuan
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yihao Shen
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Cheng Peng
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
40
|
Yang Q, Liu Y, Qiu Y, Wang Z, Li H. Dissolution kinetics and solubility of copper oxide nanoparticles as affected by soil properties and aging time. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:40674-40685. [PMID: 35088280 DOI: 10.1007/s11356-022-18813-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 01/19/2022] [Indexed: 06/14/2023]
Abstract
Nano copper oxide (CuO NP) was added to eight soils to study the effect of aging time of copper on the concentration of diethylenetriaminepentaacetic acid (DTPA)-extracted copper (DTPA-Cu), with bulk copper oxide (CuO BP) and copper nitrate [Cu(NO3)2] used for comparison. Moreover, the effect of soil properties on the dissolution of CuO NP was studied. A dissolution model was used to quantitatively describe the dissolution kinetics of CuO NPs in different soils. The results showed that the concentration of DTPA-Cu decreased with increasing aging time in soils spiked with Cu(NO3)2, while the concentration increased to varying degrees in soils spiked with CuO NPs or CuO BPs. In acidic soils, the equilibrium concentrations of DTPA-Cu were 93.3-98.7 mg·kg-1 for CuO NP treatments, 65.5-94.3 mg·kg-1 for CuO BP treatments, and 81.4-90.0 mg·kg-1 for Cu(NO3)2 treatments, which were greater than those in alkaline soils (43.4-56.9 mg·kg-1, 6.26-8.61 mg·kg-1, and 73.9-80.0 mg·kg-1, respectively). In acidic soils, DTPA-Cu equilibrium concentration ranked the different forms of copper treatments as CuO NPs > Cu(NO3)2 > CuO BPs, while in alkaline soils, the order was Cu(NO3)2 > CuO NPs > CuO BPs. The dissolution rate constants and solubility of CuO NPs were 0.33-6.42 and 37.1-100.1 mg·kg-1, respectively. Pearson correlation analysis indicated that the dissolution parameters of CuO NPs were negatively correlated with soil pH and positively correlated with the contents of organic matter, clay, iron oxides, and aluminum oxides. Further, the dissolution rate constant and solubility of CuO NPs could be well predicted by soil pH and the content of free or amorphous aluminum. Our study identified the main factors controlling the dissolution of CuO NPs in farmland soils and highlighted the higher availability of CuO NPs in acidic soils.
Collapse
Affiliation(s)
- Qian Yang
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| | - Yinghao Liu
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| | - Yanhua Qiu
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| | - Zhilin Wang
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| | - Helian Li
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China.
| |
Collapse
|
41
|
Duan Y, Li Q, Zhang L, Huang Z, Zhao Z, Zhao H, Du J, Zhou J. Toxic Metals in a Paddy Field System: A Review. TOXICS 2022; 10:toxics10050249. [PMID: 35622662 PMCID: PMC9148070 DOI: 10.3390/toxics10050249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 04/30/2022] [Accepted: 05/13/2022] [Indexed: 02/06/2023]
Abstract
The threat of toxic metals to food security and human health has become a high-priority issue in recent decades. As the world’s main food crop source, the safe cultivation of rice has been the focus of much research, particularly the restoration of toxic metals in paddy fields. Therefore, in this paper, we focus on the effects of toxic metals on rice, as well as the removal or repair methods of toxic metals in paddy fields. We also provide a detailed discussion of the sources and monitoring methods of toxic metals pollution, the current toxic metal removal, and remediation methods in paddy fields. Finally, several important research issues related to toxic metals in paddy field systems are proposed for future work. The review has an important guiding role for the future of heavy metal remediation in paddy fields, safe production of rice, green ecological fish culture, and human food security and health.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jian Zhou
- Correspondence: ; Tel./Fax: +86-028-87955015
| |
Collapse
|
42
|
Cao W, Gong J, Zeng G, Qin M, Qin L, Zhang Y, Fang S, Li J, Tang S, Chen Z. Impacts of typical engineering nanomaterials on the response of rhizobacteria communities and rice (Oryza sativa L.) growths in waterlogged antimony-contaminated soils. JOURNAL OF HAZARDOUS MATERIALS 2022; 430:128385. [PMID: 35152103 DOI: 10.1016/j.jhazmat.2022.128385] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
The combined eco-risks of Sb (widely presented in soils, especially nearing mining areas) and the engineering nanomaterials (ENMs) (applied in agriculture and soil remediation) still remain uncovered. The current study investigated the impacts of single and combined exposure of CuO, CeO2 nanoparticles (NPs) and multi-walled carbon nanotube (MWCNTs) with Sb on rice growths and rhizosphere bacterial communities. The results showed that co-exposure of CuO NPs (0.075 wt%) with Sb (III) posed the most adverse impacts on root biomass and branches (up to 66.59% and 70.00% compared to other treatments, respectively). Treatments containing MWCNTs showed insignificant dose-dependent effects, while CeO2 NPs combined with Sb (III) showed significant synergistic stimulating effects on the fresh weights of root and shoot, by 68.30% and 73.48% (p < 0.05) compared to single Sb exposure, respectively. The rice planting increased the percentage of non-specifically sorbed Sb in soils by 1.50-14.49 than the no-planting stage. Analysis on microbial communities revealed that co-exposure of CuO NPs with Sb (III) induced the greatest adverse impacts on rhizobacteria abundances and community structures at both phylum and genus levels. Therein, significant decrease of Bacteroidetes, Acidobacteria and increase of Firmicutes abundance at the phylum level were observed. This study provided information about the risks of different ENMs released to Sb-contaminated soils under flooded condition on both crops and bacterial communities.
Collapse
Affiliation(s)
- Weicheng Cao
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Jilai Gong
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China; State Environmental Protection Key Laboratory of Monitoring for Heavy Metal Pollutants, Changsha 410082, PR China.
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Meng Qin
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Lei Qin
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Yiqiu Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Siyuan Fang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Juan Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Siqun Tang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Zengping Chen
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| |
Collapse
|
43
|
Liu Y, Wang Y, Wu T, Xu J, Lin D. Synergistic Effect of Soil Organic Matter and Nanoscale Zero-Valent Iron on Biodechlorination. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:4915-4925. [PMID: 35389637 DOI: 10.1021/acs.est.1c05986] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Nanoscale zero-valent iron (nZVI) provides a promising solution for organochlorine (OC)-contaminated soil remediation. However, the interactions among nZVI, soil organic matter (SOM), and indigenous dechlorinating bacteria are intricate, which may result in unascertained effects on the reductive degradation of OCs and merits specific investigation. Herein, we isolated an indigenous dehalogenation bacterium (Burkholderia ambifaria strain L3) from a paddy soil and further investigated the biodechlorination of pentachlorophenol (PCP) with individual and a combination of SOM and nZVI. In comparison with individual-strain L3 treatment, the cotreatment with nZVI or SOM increased the removal efficiency of PCP from 34.4 to 44.3-54.2% after 15 day cultivation. More importantly, a synergistic effect of SOM and nZVI was observed on the PCP removal by strain L3, and the PCP removal efficiency reached up to 75.3-84.5%. Other than the biodegradation through ortho- and meta-substitution under the individual application of SOM or nZVI, PCP was further biodegraded to 2,4,6-trichlorophenol (TCP) through para-substitution by the isolated bacteria with the cotreatment of SOM and nZVI. The main roles of the nZVI-SOM cotreatment in the biodegradation included the SOM-facilitated microbial proliferation, the nZVI-promoted microbial transformation of SOM, and the induced higher electron transport capacity of redox Fe-PCP biocycling. These findings provide a novel insight into the action of nZVI in environmental remediations.
Collapse
Affiliation(s)
- Yangzhi Liu
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
- The Institute of Environment, Resources, Soil and Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yanlong Wang
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Ting Wu
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Jiang Xu
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Daohui Lin
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
- Zhejiang Ecological Civilization Academy, Anji 313300, China
| |
Collapse
|
44
|
Gaucin-Delgado JM, Ortiz-Campos A, Hernandez-Montiel LG, Fortis-Hernandez M, Reyes-Pérez JJ, Gonzáles-Fuentes JA, Preciado-Rangel P. CuO-NPs Improve Biosynthesis of Bioactive Compounds in Lettuce. PLANTS (BASEL, SWITZERLAND) 2022; 11:912. [PMID: 35406891 PMCID: PMC9002383 DOI: 10.3390/plants11070912] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/21/2022] [Accepted: 03/24/2022] [Indexed: 12/25/2022]
Abstract
The application of metallic nanoparticles improves the yield and content of bioactive compounds in plants. The aim of the present study was to determine the effects of the foliar application of copper nanoparticles (CuO-NPs) in the yield and content of bioactive compounds in lettuce. Different concentrations of CuO-NPs (0, 0.5, 1, 2, 4, and 6 mg mL-1) were applied in lettuce. The yield, nutraceutical quality, and enzymatic activity were determined. Foliar spraying of CuO-NPs induced an increase in the biosynthesis of bioactive compounds. In addition to an increase in the activity of the enzymes superoxide dismutase (SOD) and catalase (CAT) in lettuce plants, there were no negative effects on yield. Therefore, with the application of CuO-NPs, better quality lettuces are produced for the human diet due to the higher production of bioactive compounds.
Collapse
Affiliation(s)
- Jazmín M. Gaucin-Delgado
- Tecnológico Nacional de Mexico, Instituto Tecnológico de Torreón, Carretera Torreón-San Pedro km 7.5, Torreón 27170, Mexico; (J.M.G.-D.); (A.O.-C.); (M.F.-H.)
| | - Adriel Ortiz-Campos
- Tecnológico Nacional de Mexico, Instituto Tecnológico de Torreón, Carretera Torreón-San Pedro km 7.5, Torreón 27170, Mexico; (J.M.G.-D.); (A.O.-C.); (M.F.-H.)
| | - Luis G. Hernandez-Montiel
- Centro de Investigaciones Biológicas del Noroeste, Av. Politécnico Nacional 195, Col. Playa Palo Santa Rita, La Paz 23090, Mexico
| | - Manuel Fortis-Hernandez
- Tecnológico Nacional de Mexico, Instituto Tecnológico de Torreón, Carretera Torreón-San Pedro km 7.5, Torreón 27170, Mexico; (J.M.G.-D.); (A.O.-C.); (M.F.-H.)
| | - Juan J. Reyes-Pérez
- Facultad de Ciencias Pecuarias, Universidad Técnica Estatal de Quevedo, Av. Quito km 1.5 vía a Santo Domingo, Quevedo 120501, Ecuador;
| | - José A. Gonzáles-Fuentes
- Horticulture Department, Universidad Autónoma Agraria Antonio Narro, Calzada Antonio Narro 1923, Buenavista, Saltillo 25315, Mexico;
| | - Pablo Preciado-Rangel
- Tecnológico Nacional de Mexico, Instituto Tecnológico de Torreón, Carretera Torreón-San Pedro km 7.5, Torreón 27170, Mexico; (J.M.G.-D.); (A.O.-C.); (M.F.-H.)
| |
Collapse
|
45
|
Murali M, Gowtham HG, Singh SB, Shilpa N, Aiyaz M, Alomary MN, Alshamrani M, Salawi A, Almoshari Y, Ansari MA, Amruthesh KN. Fate, bioaccumulation and toxicity of engineered nanomaterials in plants: Current challenges and future prospects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 811:152249. [PMID: 34896497 DOI: 10.1016/j.scitotenv.2021.152249] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/29/2021] [Accepted: 12/04/2021] [Indexed: 05/27/2023]
Abstract
The main focus of this review is to discuss the current advancement in nano-metallic caused phytotoxicity on living organisms and current challenges in crops. Nanostructured materials provide new tools in agriculture to boost sustainable food production, but the main concern is that large-scale production and release of nanomaterials (NMs) into the ecosystem is a rising threat to the surrounding environment that is an urgent challenge to be addressed. The usage of NMs directly influences the transport pathways within plants, which directly relates to their stimulatory/ inhibitory effects. Because of the unregulated nanoparticles (NMs) exposure to soil, they are adsorbed at the root surface, followed by uptake and inter/intracellular mobility within the plant tissue, while the aerial exposure is taken up by foliage, mostly through cuticles, hydathodes, stigma, stomata, and trichomes, but the actual mode of NMs absorption into plants is still unclear. NMs-plant interactions may have stimulatory or inhibitory effects throughout their life cycle depending on their composition, size, concentration, and plant species. Although many publications on NMs interactions with plants have been reported, the knowledge on their uptake, translocation, and bioaccumulation is still a question to be addressed by the scientific community. One of the critical aspects that must be discovered and understood is detecting NMs in soil and the uptake mechanism in plants. Therefore, the nanopollution in plants has yet to be completely understood regarding its impact on plant health, making it yet another artificial environmental influence of unknown long-term consequences. The present review summarizes the uptake, translocation, and bioaccumulation of NMs in plants, focusing on their inhibitory effects and mechanisms involved within plants.
Collapse
Affiliation(s)
- M Murali
- Applied Plant Pathology Laboratory, Department of Studies in Botany, University of Mysore, Manasagangotri, Mysuru 570 006, Karnataka, India
| | - H G Gowtham
- Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Mysuru 570 006, Karnataka, India
| | - S Brijesh Singh
- Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Mysuru 570 006, Karnataka, India
| | - N Shilpa
- Department of Studies in Microbiology, University of Mysore, Manasagangotri, Mysuru 570 006, Karnataka, India
| | - Mohammed Aiyaz
- Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Mysuru 570 006, Karnataka, India
| | - Mohammad N Alomary
- National Centre for Biotechnology, King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442, Saudi Arabia
| | - Meshal Alshamrani
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Ahmad Salawi
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Yosif Almoshari
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Mohammad Azam Ansari
- Department of Epidemic Disease Research, Institutes for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia.
| | - K N Amruthesh
- Applied Plant Pathology Laboratory, Department of Studies in Botany, University of Mysore, Manasagangotri, Mysuru 570 006, Karnataka, India.
| |
Collapse
|
46
|
Deng C, Wang Y, Navarro G, Sun Y, Cota-Ruiz K, Hernandez-Viezcas JA, Niu G, Li C, White JC, Gardea-Torresdey J. Copper oxide (CuO) nanoparticles affect yield, nutritional quality, and auxin associated gene expression in weedy and cultivated rice (Oryza sativa L.) grains. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 810:152260. [PMID: 34896498 DOI: 10.1016/j.scitotenv.2021.152260] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/30/2021] [Accepted: 12/04/2021] [Indexed: 06/14/2023]
Abstract
Weedy rice grows competitively with cultivated rice and significantly diminishes rice grain production worldwide. The different effects of Cu-based nanomaterials on the production of weedy and cultivated rice, especially the grain qualities are not known. Grains were collected from weedy and cultivated rice grown for four months in field soil amended with nanoscale CuO (nCuO), bulk CuO (bCuO), and copper sulfate (CuSO4) at 0, 75, 150, 300, and 600 mg Cu/kg soil. Cu translocation, essential element accumulation, yield, sugar, starch, protein content, and the expression of auxin associated genes in grains were determined. The grains of weedy and cultivated rice were differentially impacted by CuO-based compounds. At ≥300 mg/kg, nCuO and bCuO treated rice had no grain production. Treatment at 75 mg/kg significantly decreased grain yield as compared to control with the order: bCuO (by 88.7%) > CuSO4 (by 47.2%) ~ nCuO (by 38.3% only in cultivated rice); at the same dose, the Cu grain content was: nCuO ~ CuSO4 > bCuO > control. In weedy grains, K, Mg, Zn, and Ca contents were decreased by 75 and 150 mg/kg nCuO by up to 47.4%, 34.3%, 37.6%, and 60.0%, but no such decreases were noted in cultivated rice, and Fe content was increased by up to 88.6%, and 53.2%. In rice spikes, nCuO increased Mg, Ca, Fe, and Zn levels by up to 118.1%, 202.6%, 133.8%, and 103.9%, respectively. Nanoscale CuO at 75 and 150 mg/kg upregulated the transcription of an auxin associated gene by 5.22- and 1.38-fold, respectively, in grains of weedy and cultivated rice. The biodistribution of Cu-based compounds in harvested grain was determined by two-photon microscopy. These findings demonstrate a cultivar-specific and concentration-dependent response of rice to nCuO. A potential use of nCuO at 75 and 150 mg/kg in cultivar-dependent delivery system was suggested based on enhanced grain nutritional quality, although the yield was compromised. This knowledge, at the physiological and molecular level, provides valuable information for the future use of Cu-based nanomaterials in sustainable agriculture.
Collapse
Affiliation(s)
- Chaoyi Deng
- Environmental Science and Engineering Ph.D. Program, The University of Texas at El Paso, 500 West University Ave., El Paso, TX 79968, USA; University of California Center for Environmental Implications of Nanotechnology (UC CEIN), The University of Texas at El Paso, 500 West University Ave., El Paso, TX 79968, USA
| | - Yi Wang
- The Connecticut Agricultural Experiment Station, 123 Huntington St., New Haven, CT 06504, USA; Department of Chemistry and Biochemistry, The University of Texas at El Paso, 500 West University Ave., El Paso, TX 79968, USA
| | - Gilberto Navarro
- Department of Physics, The University of Texas at El Paso, 500 West University Ave., El Paso, TX 79968, USA
| | - Youping Sun
- Department of Plants, Soil, and Climate, Utah State University, 4820 Old Main Hill, Logan, UT 84322, USA
| | - Keni Cota-Ruiz
- MSU-DOE - Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
| | - Jose Angel Hernandez-Viezcas
- University of California Center for Environmental Implications of Nanotechnology (UC CEIN), The University of Texas at El Paso, 500 West University Ave., El Paso, TX 79968, USA; Department of Chemistry and Biochemistry, The University of Texas at El Paso, 500 West University Ave., El Paso, TX 79968, USA
| | - Genhua Niu
- Texas A&M Agrilife Research and Extension Centre at Dallas, 17360 Coit Road, TX 75252, USA
| | - Chunqiang Li
- Department of Physics, The University of Texas at El Paso, 500 West University Ave., El Paso, TX 79968, USA
| | - Jason C White
- The Connecticut Agricultural Experiment Station, 123 Huntington St., New Haven, CT 06504, USA
| | - Jorge Gardea-Torresdey
- Environmental Science and Engineering Ph.D. Program, The University of Texas at El Paso, 500 West University Ave., El Paso, TX 79968, USA; University of California Center for Environmental Implications of Nanotechnology (UC CEIN), The University of Texas at El Paso, 500 West University Ave., El Paso, TX 79968, USA; Department of Chemistry and Biochemistry, The University of Texas at El Paso, 500 West University Ave., El Paso, TX 79968, USA.
| |
Collapse
|
47
|
Qu H, Ma C, Xing W, Xue L, Liu H, White JC, Chen G, Xing B. Effects of copper oxide nanoparticles on Salix growth, soil enzyme activity and microbial community composition in a wetland mesocosm. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127676. [PMID: 34772558 DOI: 10.1016/j.jhazmat.2021.127676] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/10/2021] [Accepted: 10/29/2021] [Indexed: 06/13/2023]
Abstract
A model wetland with Salix was established to investigate the effects of CuO nanoparticles (NPs; the equivalent amount of Cu at 0, 100 and 500 mg/kg) on plant, soil enzyme activity and microbial community. Ionic Cu (100, 500 mg/kg) and bulk-sized CuO particles (BPs, 500 mg/kg) were included as controls. The results suggested the CuO NPs at 500 mg/kg and ionic Cu treatments inhibited the plant growth, while CuO NPs at 100 mg/kg and CuO BPs at 500 mg/kg played a facilitating role. CuO NPs significantly decreased the activities of peroxidase and polyphenol oxidase, while ionic Cu treatments increased peroxidase activity, BPs and ionic Cu (500 mg/kg) increased the polyphenol oxidase activity. Bacterial community richness and diversity were reduced in all Cu treatments; however, CuO NPs and BPs at 500 mg/kg significantly increased the richness and diversity of fungal community.Soil microbial community was significantly altered by Cu types and dose. In comparison with ionic Cu and CuO BPs, CuO NPs uniquely enriched the microbial community and the fungal families.Overall, it demonstrate that both particle size and dose regulate the impact of CuO on wetland ecology, which deepens our understanding on the ecological risks of CuO NPs in freshwater forested wetland.
Collapse
Affiliation(s)
- Haojie Qu
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang 311400, China
| | - Chuanxin Ma
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Wenli Xing
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang 311400, China
| | - Liang Xue
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang 311400, China
| | - Hong Liu
- College of Environment and Resources, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jason C White
- The Connecticut Agricultural Experiment Station, New Haven, Connecticut 06504, United States
| | - Guangcai Chen
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang 311400, China.
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, Massachusetts 01003, United States
| |
Collapse
|
48
|
Kusiak M, Oleszczuk P, Jośko I. Cross-examination of engineered nanomaterials in crop production: Application and related implications. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127374. [PMID: 34879568 DOI: 10.1016/j.jhazmat.2021.127374] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 09/21/2021] [Accepted: 09/26/2021] [Indexed: 06/13/2023]
Abstract
The review presents the current knowledge on the development and implementation of nanotechnology in crop production, giving particular attention to potential opportunities and challenges of the use of nano-sensors, nano-pesticides, and nano-fertilizers. Due to the size-dependent properties, e.g. high reactivity, targeted and controlled delivery of active ingredients, engineered nanomaterials (ENMs) are expected to be more efficient agrochemicals than conventional agents. Growing production and usage of ENMs result in the spread of ENMs in the environment. Because plants constitute an important component of the agri-ecosystem, they are subjected to the ENMs activity. A number of studies have confirmed the uptake and translocation of ENMs by plants as well as their positive/negative effects on plants. Here, these endpoints are briefly summarized to show the diversity of plant responses to ENMs. The review includes a detailed molecular analysis of ENMs-plant interactions. The transcriptomics, proteomics and metabolomics tools have been very recently employed to explore ENMs-induced effects in planta. The omics approach allows a comprehensive understanding of the specific machinery of ENMs occurring at the molecular level. The summary of data will be valuable in defining future studies on the ENMs-plant system, which is crucial for developing a suitable strategy for the ENMs usage.
Collapse
Affiliation(s)
- Magdalena Kusiak
- Institute of Plant Genetics, Breeding and Biotechnology, Faculty of Agrobioengineering, University of Life Sciences, Lublin, Poland
| | - Patryk Oleszczuk
- Department of Radiochemistry and Environmental Chemistry, Faculty of Chemistry, Maria Curie-Skłodowska University, Lublin, Poland
| | - Izabela Jośko
- Institute of Plant Genetics, Breeding and Biotechnology, Faculty of Agrobioengineering, University of Life Sciences, Lublin, Poland.
| |
Collapse
|
49
|
Huang D, Dang F, Huang Y, Chen N, Zhou D. Uptake, translocation, and transformation of silver nanoparticles in plants. ENVIRONMENTAL SCIENCE: NANO 2022; 9:12-39. [PMID: 0 DOI: 10.1039/d1en00870f] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
This article reviews the plant uptake of silver nanoparticles (AgNPs) that occurred in soil systems and the in planta fate of Ag.
Collapse
Affiliation(s)
- Danyu Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu Province, P.R. China
| | - Fei Dang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, Jiangsu Province, P.R. China
| | - Yingnan Huang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, Jiangsu Province, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Ning Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu Province, P.R. China
| | - Dongmei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu Province, P.R. China
| |
Collapse
|
50
|
Tiwari E, Khandelwal N, Singh N, Biswas S, Darbha GK. Effect of clay colloid - CuO nanoparticles interaction on retention of nanoparticles in different types of soils: role of clay fraction and environmental parameters. ENVIRONMENTAL RESEARCH 2022; 203:111885. [PMID: 34390712 DOI: 10.1016/j.envres.2021.111885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 07/18/2021] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
The extensive application of metal oxide nanoparticles (NPs) in various sectors has raised concern about their subsequent release and potentially harmful impacts on the soil system. The present study has addressed the interaction of CuO NPs with bentonite clay colloids (CC) under varying environmental parameters as a model to represent the soil pore water scenario. Based on CuO - CC interaction in model and natural soil solution extracts (SSE), the role of clay fraction and their stability on CuO retention in various types of soils have been evaluated. Results suggested that increasing ionic strength (IS) in the system caused aggregation of CuO NPs, and in the presence of CC, critical coagulation concentration decreased drastically from 27.8 and 17.3 mM to 10.7 and 0.33 mM for NaCl and CaCl2 respectively, due to heteroaggregation in the system. Interestingly, in the SSE, the dominating role of ionic valency, dissolved organic carbon (DOC), and CC was observed in colloidal stabilization over IS. No significant impact of temperature was observed on the stability of CuO NPs both in model and SSE. Further, stability studies in the SSE were correlated with NPs retention behavior in soils. Observations suggest that retention of CuO NPs in soils is a function of binding of the colloidal fraction to the soil, which in turn depends on the colloidal stability. The highest retention was observed in black and laterite soils, whereas lower binding of clay fraction in red soil caused the least retention. A decrease in Kd values after a certain application concentration provided maximum sustainable application concentration of CuO NPs, which may vary with soil properties. Results suggest that the binding of clay and organic matter with a sandy matrix of soil plays a prime role in deciding the overall fate of CuO NPs in the soils.
Collapse
Affiliation(s)
- Ekta Tiwari
- Environmental Nanoscience Laboratory, Department of Earth Sciences, Indian Institute of Science Education and Research Kolkata, Kolkata, Mohanpur, West Bengal, 741246, India
| | - Nitin Khandelwal
- Environmental Nanoscience Laboratory, Department of Earth Sciences, Indian Institute of Science Education and Research Kolkata, Kolkata, Mohanpur, West Bengal, 741246, India
| | - Nisha Singh
- Environmental Nanoscience Laboratory, Department of Earth Sciences, Indian Institute of Science Education and Research Kolkata, Kolkata, Mohanpur, West Bengal, 741246, India
| | - Sannay Biswas
- Environmental Nanoscience Laboratory, Department of Earth Sciences, Indian Institute of Science Education and Research Kolkata, Kolkata, Mohanpur, West Bengal, 741246, India
| | - Gopala Krishna Darbha
- Environmental Nanoscience Laboratory, Department of Earth Sciences, Indian Institute of Science Education and Research Kolkata, Kolkata, Mohanpur, West Bengal, 741246, India; Centre for Climate and Environmental Studies, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, 741246, India.
| |
Collapse
|