1
|
Feng Z, Xie Z, Xu L. Current antiviral therapies and promising drug candidates against respiratory syncytial virus infection. Virol Sin 2025:S1995-820X(25)00003-3. [PMID: 39884359 DOI: 10.1016/j.virs.2025.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 01/25/2025] [Indexed: 02/01/2025] Open
Abstract
Respiratory syncytial virus (RSV) is one of the most common viruses leading to lower respiratory tract infections (LRTIs) in children and elderly individuals worldwide. Although significant progress in the prevention and treatment of RSV infection was made in 2023, with two anti-RSV vaccines and one monoclonal antibody approved by the FDA, there is still a lack of postinfection therapeutic drugs in clinical practice, especially for the pediatric population. In recent years, with an increasing understanding of the pathogenic mechanisms of RSV, drugs and drug candidates, have shown great potential for clinical application. In this review, we categorize and discuss promising anti-RSV drug candidates that have been in preclinical or clinical development over the last five years.
Collapse
Affiliation(s)
- Ziheng Feng
- Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China; Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, Beijing 100045, China
| | - Zhengde Xie
- Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China; Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, Beijing 100045, China
| | - Lili Xu
- Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China; Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, Beijing 100045, China.
| |
Collapse
|
2
|
Lin Y, Weynand B, Zhang X, Laporte M, Jochmans D, Neyts J. The Combination of GS-441524 (Remdesivir) and Ribavirin Results in a Potent Antiviral Effect Against Human Parainfluenza Virus 3 Infection in Human Airway Epithelial Cell Cultures and in a Mouse Infection Model. Viruses 2025; 17:172. [PMID: 40006927 PMCID: PMC11860817 DOI: 10.3390/v17020172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 01/20/2025] [Accepted: 01/24/2025] [Indexed: 02/27/2025] Open
Abstract
Human parainfluenza virus type 3 (HPIV-3) can cause severe respiratory diseases, particularly in young children, the elderly and immunocompromised. There are no approved antiviral drugs against this virus. We report that the combination of ribavirin with either remdesivir or its parent nucleoside GS-441524 results in a pronounced antiviral effect against HPIV-3 in LLC-MK2 cells and in human airway epithelial cells grown at the air-liquid interface. In AG129 mice intranasally inoculated with HPIV-3, the combined treatment with ribavirin and GS-441524 decreased infectious viral lung titers by >2.5 log10 to undetectable levels in 4 out of 11 mice and by 1.6 log10 in the remaining 7 mice as compared with the vehicle. The lungs of all mice that received the combined treatment appeared histologically normal or virtually normal, whereas 8 of 11 vehicle-treated mice presented with bronchopneumonia. By contrast, ribavirin alone did not result in a reduction in infectious viral lung titers; GS-441524 alone reduced infectious viral lung titers by 1.2 log10. Moreover, several mice in the single-treatment groups exhibited severe lung pathology. These findings may warrant exploring this combination in patients with severe HPIV-3 infections and possibly also against infections with other viruses that are susceptible in vitro to these two drugs.
Collapse
Affiliation(s)
- Yuxia Lin
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Virology, Antiviral Drug & Vaccine Research Group, B-3000 Leuven, Belgium; (Y.L.); (X.Z.); (M.L.)
| | - Birgit Weynand
- KU Leuven Department of Imaging and Pathology, Division of Translational Cell and Tissue Research, B-3000 Leuven, Belgium;
| | - Xin Zhang
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Virology, Antiviral Drug & Vaccine Research Group, B-3000 Leuven, Belgium; (Y.L.); (X.Z.); (M.L.)
| | - Manon Laporte
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Virology, Antiviral Drug & Vaccine Research Group, B-3000 Leuven, Belgium; (Y.L.); (X.Z.); (M.L.)
| | - Dirk Jochmans
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Virology, Antiviral Drug & Vaccine Research Group, B-3000 Leuven, Belgium; (Y.L.); (X.Z.); (M.L.)
| | - Johan Neyts
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Virology, Antiviral Drug & Vaccine Research Group, B-3000 Leuven, Belgium; (Y.L.); (X.Z.); (M.L.)
- VirusBank Platform, KU Leuven, B-3000 Leuven, Belgium
| |
Collapse
|
3
|
Rodriguez L, Zamora JLR, Han D, Moshiri J, Peinovich N, Martinez C, Ho PY, Li J, Aeschbacher T, Martin R, Pekosz A, Bilello JP, Perry JK, Hedskog C. Remdesivir and Obeldesivir Retain Potent Antiviral Activity Against SARS-CoV-2 Omicron Variants. Viruses 2025; 17:168. [PMID: 40006923 PMCID: PMC11860839 DOI: 10.3390/v17020168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/22/2025] [Accepted: 01/23/2025] [Indexed: 02/27/2025] Open
Abstract
As new SARS-CoV-2 variants continue to emerge, it is important to evaluate the potency of antiviral drugs to support their continued use. Remdesivir (RDV; VEKLURY®) an approved antiviral treatment for COVID-19, and obeldesivir (ODV) are inhibitors of the SARS-CoV-2 RNA-dependent RNA polymerase Nsp12. Here we show these two compounds retain antiviral activity against the Omicron variants BA.2.86, BF.7, BQ.1, CH.1.1, EG.1.2, EG.5.1, EG.5.1.4, FL.22, HK.3, HV.1, JN.1, JN.1.7, JN.1.18, KP.2, KP.3, LB.1, XBB.1.5, XBB.1.5.72, XBB.1.16, XBB.2.3.2, XBC.1.6, and XBF when compared with reference strains. Genomic analysis identified 29 Nsp12 polymorphisms in these and previous Omicron variants. Phenotypic analysis of these polymorphisms confirmed no impact on the antiviral activity of RDV or ODV and suggests Omicron variants containing these Nsp12 polymorphisms remain susceptible to both compounds. These data support the continued use of RDV in the context of circulating SARS-CoV-2 variants and the development of ODV as an antiviral therapeutic.
Collapse
Affiliation(s)
| | | | - Dong Han
- Gilead Sciences, Inc., Foster City, CA 94404, USA
| | | | | | | | - Pui Yan Ho
- Gilead Sciences, Inc., Foster City, CA 94404, USA
| | - Jiani Li
- Gilead Sciences, Inc., Foster City, CA 94404, USA
| | | | - Ross Martin
- Gilead Sciences, Inc., Foster City, CA 94404, USA
| | - Andrew Pekosz
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | | | | | | |
Collapse
|
4
|
Liu ZQ. How many organic small molecules might be used to treat COVID-19? From natural products to synthetic agents. Eur J Med Chem 2024; 278:116788. [PMID: 39236494 DOI: 10.1016/j.ejmech.2024.116788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/05/2024] [Accepted: 08/19/2024] [Indexed: 09/07/2024]
Abstract
A large scale of pandemic coronavirus disease (COVID-19) in the past five years motivates a great deal of endeavors donating to the exploration on therapeutic drugs against COVID-19 as well as other diseases caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Herein is an overview on the organic small molecules that are potentially employed to treat COVID-19 and other SARS-CoV-2-related diseases. These organic small molecules are accessed from both natural resources and synthetic strategies. Notably, typical natural products presented herein consist of polyphenols, lignans, alkaloids, terpenoids, and peptides, which exert an advantage for the further discovery of novel anti-COVID-19 drugs from plant herbs. On the other hand, synthetic prodrugs are composed of a series of inhibitors towards RNA-dependent RNA polymerase (RdRp), main protease (Mpro), 3-chymotrypsin-like cysteine protease (3CLpro), spike protein, papain-like protease (PLpro) of the SARS-CoV-2 as well as the angiotensin-converting enzyme 2 (ACE2) in the host cells. Synthetic strategies are worth taken into consideration because they are beneficial for designing novel anti-COVID-19 drugs in the coming investigations. Although examples collected herein are just a drop in the bucket, developments of organic small molecules against coronavirus infections are believed to pave a promising way for the discovery of multi-targeted therapeutic drugs against not only COVID-19 but also other virus-mediated diseases.
Collapse
Affiliation(s)
- Zai-Qun Liu
- Department of Organic Chemistry, College of Chemistry, Jilin University, No.2519 Jiefang Road, Changchun, 130021, People's Republic of China.
| |
Collapse
|
5
|
Zhang G, Zhao B, Liu J. The Development of Animal Models for Respiratory Syncytial Virus (RSV) Infection and Enhanced RSV Disease. Viruses 2024; 16:1701. [PMID: 39599816 PMCID: PMC11598872 DOI: 10.3390/v16111701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/26/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
The development of immunoprophylactic products against respiratory syncytial virus (RSV) has resulted in notable advancements, leading to an increased demand for preclinical experiments and placing greater demands on animal models. Nevertheless, the field of RSV research continues to face the challenge of a lack of ideal animal models. Despite the demonstration of efficacy in animal studies, numerous RSV vaccine candidates have been unsuccessful in clinical trials, primarily due to the lack of suitable animal models. The most commonly utilized animal models for RSV research are cotton rats, mice, lambs, and non-human primates. These animals have been extensively employed in mechanistic studies and in the development and evaluation of vaccines and therapeutics. However, each model only exemplifies some, but not all, aspects of human RSV disease. The aim of this study was to provide a comprehensive summary of the disease symptoms, viral replication, pathological damage, and enhanced RSV disease (ERD) conditions across different RSV animal models. Furthermore, the advantages and disadvantages of each model are discussed, with the intention of providing a valuable reference for related RSV research.
Collapse
Affiliation(s)
| | - Binbin Zhao
- NHC Key Laboratory of Human Disease Comparative Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing 100021, China;
| | - Jiangning Liu
- NHC Key Laboratory of Human Disease Comparative Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing 100021, China;
| |
Collapse
|
6
|
Faghihi I, Yan VC. Clinical pharmacodynamics of obeldesivir versus remdesivir. Antimicrob Agents Chemother 2024; 68:e0096924. [PMID: 39133123 PMCID: PMC11373207 DOI: 10.1128/aac.00969-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024] Open
Affiliation(s)
- Isa Faghihi
- University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Victoria C. Yan
- University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
7
|
Faghihi I, Yan VC. Remdesivir treatment does not reduce viral titers in patients with COVID-19. Antimicrob Agents Chemother 2024; 68:e0085624. [PMID: 39023261 PMCID: PMC11304678 DOI: 10.1128/aac.00856-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024] Open
Abstract
The relationship (or lack thereof) between the clinical activity of remdesivir and its ability to reduce viral titers in patients with COVID-19 has not been fully delineated. There is a misconception that remdesivir was FDA-approved for COVID-19 due to its ability to reduce viral titers. Here, we analyze all clinical studies of remedesivir in COVID-19 that quantifed SARS-CoV-2 titers. As of 28 June 2024, we show there is no significant decrease in SARS-CoV-2 viral titers in patients treted with remdesivir compared to placebo controls.
Collapse
Affiliation(s)
- Isa Faghihi
- University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Victoria C. Yan
- University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
8
|
Gordon CJ, Walker SM, Tchesnokov EP, Kocincova D, Pitts J, Siegel DS, Perry JK, Feng JY, Bilello JP, Götte M. Mechanism and spectrum of inhibition of a 4'-cyano modified nucleotide analog against diverse RNA polymerases of prototypic respiratory RNA viruses. J Biol Chem 2024; 300:107514. [PMID: 38945449 PMCID: PMC11345399 DOI: 10.1016/j.jbc.2024.107514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/20/2024] [Accepted: 06/22/2024] [Indexed: 07/02/2024] Open
Abstract
The development of safe and effective broad-spectrum antivirals that target the replication machinery of respiratory viruses is of high priority in pandemic preparedness programs. Here, we studied the mechanism of action of a newly discovered nucleotide analog against diverse RNA-dependent RNA polymerases (RdRps) of prototypic respiratory viruses. GS-646939 is the active 5'-triphosphate metabolite of a 4'-cyano modified C-adenosine analog phosphoramidate prodrug GS-7682. Enzyme kinetics show that the RdRps of human rhinovirus type 16 (HRV-16) and enterovirus 71 incorporate GS-646939 with unprecedented selectivity; GS-646939 is incorporated 20-50-fold more efficiently than its natural ATP counterpart. The RdRp complex of respiratory syncytial virus and human metapneumovirus incorporate GS-646939 and ATP with similar efficiency. In contrast, influenza B RdRp shows a clear preference for ATP and human mitochondrial RNA polymerase does not show significant incorporation of GS-646939. Once incorporated into the nascent RNA strand, GS-646939 acts as a chain terminator although higher NTP concentrations can partially overcome inhibition for some polymerases. Modeling and biochemical data suggest that the 4'-modification inhibits RdRp translocation. Comparative studies with GS-443902, the active triphosphate form of the 1'-cyano modified prodrugs remdesivir and obeldesivir, reveal not only different mechanisms of inhibition, but also differences in the spectrum of inhibition of viral polymerases. In conclusion, 1'-cyano and 4'-cyano modifications of nucleotide analogs provide complementary strategies to target the polymerase of several families of respiratory RNA viruses.
Collapse
Affiliation(s)
- Calvin J Gordon
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Simon M Walker
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Egor P Tchesnokov
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Dana Kocincova
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Jared Pitts
- Gilead Sciences, Inc, Foster City, California, USA
| | | | | | - Joy Y Feng
- Gilead Sciences, Inc, Foster City, California, USA
| | | | - Matthias Götte
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
9
|
Felicetti T, Sarnari C, Gaito R, Tabarrini O, Manfroni G. Recent Progress toward the Discovery of Small Molecules as Novel Anti-Respiratory Syncytial Virus Agents. J Med Chem 2024; 67:11543-11579. [PMID: 38970494 DOI: 10.1021/acs.jmedchem.4c00630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2024]
Abstract
Respiratory syncytial virus (RSV) stands as the foremost cause of infant hospitalization globally, ranking second only to malaria in terms of infant mortality. Although three vaccines have recently been approved for the prophylaxis of adults aged 60 and above, and pregnant women, there is currently no effective antiviral drug for treating RSV infections. The only preventive measure for infants at high risk of severe RSV disease is passive immunization through monoclonal antibodies. This Perspective offers an overview of the latest advancements in RSV drug discovery of small molecule antivirals, with particular focus on the promising findings from agents targeting the fusion and polymerase proteins. A comprehensive reflection on the current state of RSV research is also given, drawing inspiration from the lessons gleaned from HCV and HIV, while also considering the impact of the recent approval of the three vaccines.
Collapse
Affiliation(s)
- Tommaso Felicetti
- Department of Pharmaceutical Sciences, University of Perugia, Via Del Liceo, 1-06123, Perugia, Italy
| | - Chiara Sarnari
- Department of Pharmaceutical Sciences, University of Perugia, Via Del Liceo, 1-06123, Perugia, Italy
| | - Roberta Gaito
- Department of Pharmaceutical Sciences, University of Perugia, Via Del Liceo, 1-06123, Perugia, Italy
| | - Oriana Tabarrini
- Department of Pharmaceutical Sciences, University of Perugia, Via Del Liceo, 1-06123, Perugia, Italy
| | - Giuseppe Manfroni
- Department of Pharmaceutical Sciences, University of Perugia, Via Del Liceo, 1-06123, Perugia, Italy
| |
Collapse
|
10
|
Siegel DS, Hui HC, Pitts J, Vermillion MS, Ishida K, Rautiola D, Keeney M, Irshad H, Zhang L, Chun K, Chin G, Goyal B, Doerffler E, Yang H, Clarke MO, Palmiotti C, Vijjapurapu A, Riola NC, Stray K, Murakami E, Ma B, Wang T, Zhao X, Xu Y, Lee G, Marchand B, Seung M, Nayak A, Tomkinson A, Kadrichu N, Ellis S, Barauskas O, Feng JY, Perry JK, Perron M, Bilello JP, Kuehl PJ, Subramanian R, Cihlar T, Mackman RL. Discovery of GS-7682, a Novel 4'-Cyano-Modified C-Nucleoside Prodrug with Broad Activity against Pneumo- and Picornaviruses and Efficacy in RSV-Infected African Green Monkeys. J Med Chem 2024. [PMID: 39018526 DOI: 10.1021/acs.jmedchem.4c00899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/19/2024]
Abstract
Acute respiratory viral infections, such as pneumovirus and respiratory picornavirus infections, exacerbate disease in COPD and asthma patients. A research program targeting respiratory syncytial virus (RSV) led to the discovery of GS-7682 (1), a novel phosphoramidate prodrug of a 4'-CN-4-aza-7,9-dideazaadenosine C-nucleoside GS-646089 (2) with broad antiviral activity against RSV (EC50 = 3-46 nM), human metapneumovirus (EC50 = 210 nM), human rhinovirus (EC50 = 54-61 nM), and enterovirus (EC50 = 83-90 nM). Prodrug optimization for cellular potency and lung cell metabolism identified 5'-methyl [(S)-hydroxy(phenoxy)phosphoryl]-l-alaninate in combination with 2',3'-diisobutyrate promoieties as being optimal for high levels of intracellular triphosphate formation in vitro and in vivo. 1 demonstrated significant reductions of viral loads in the lower respiratory tract of RSV-infected African green monkeys when administered once daily via intratracheal nebulized aerosol. Together, these findings support additional evaluation of 1 and its analogues as potential therapeutics for pneumo- and picornaviruses.
Collapse
Affiliation(s)
- Dustin S Siegel
- Gilead Sciences, Inc., Foster City, California 94404, United States
| | - Hon C Hui
- Gilead Sciences, Inc., Foster City, California 94404, United States
| | - Jared Pitts
- Gilead Sciences, Inc., Foster City, California 94404, United States
| | - Meghan S Vermillion
- Gilead Sciences, Inc., Foster City, California 94404, United States
- Lovelace Biomedical, Albuquerque, New Mexico 87108, United States
| | - Kazuya Ishida
- Gilead Sciences, Inc., Foster City, California 94404, United States
| | - Davin Rautiola
- Gilead Sciences, Inc., Foster City, California 94404, United States
| | - Michael Keeney
- Gilead Sciences, Inc., Foster City, California 94404, United States
| | - Hammad Irshad
- Lovelace Biomedical, Albuquerque, New Mexico 87108, United States
| | - Lijun Zhang
- Gilead Sciences, Inc., Foster City, California 94404, United States
| | - Kwon Chun
- Gilead Sciences, Inc., Foster City, California 94404, United States
| | - Gregory Chin
- Gilead Sciences, Inc., Foster City, California 94404, United States
| | - Bindu Goyal
- Gilead Sciences, Inc., Foster City, California 94404, United States
| | - Edward Doerffler
- Gilead Sciences, Inc., Foster City, California 94404, United States
| | - Hai Yang
- Gilead Sciences, Inc., Foster City, California 94404, United States
| | - Michael O Clarke
- Gilead Sciences, Inc., Foster City, California 94404, United States
| | - Chris Palmiotti
- Gilead Sciences, Inc., Foster City, California 94404, United States
| | - Arya Vijjapurapu
- Gilead Sciences, Inc., Foster City, California 94404, United States
| | - Nicholas C Riola
- Gilead Sciences, Inc., Foster City, California 94404, United States
| | - Kirsten Stray
- Gilead Sciences, Inc., Foster City, California 94404, United States
| | - Eisuke Murakami
- Gilead Sciences, Inc., Foster City, California 94404, United States
| | - Bin Ma
- Gilead Sciences, Inc., Foster City, California 94404, United States
| | - Ting Wang
- Gilead Sciences, Inc., Foster City, California 94404, United States
| | - Xiaofeng Zhao
- Gilead Sciences, Inc., Foster City, California 94404, United States
| | - Yili Xu
- Gilead Sciences, Inc., Foster City, California 94404, United States
| | - Gary Lee
- Gilead Sciences, Inc., Foster City, California 94404, United States
| | - Bruno Marchand
- Gilead Sciences, Inc., Foster City, California 94404, United States
| | - Minji Seung
- Gilead Sciences, Inc., Foster City, California 94404, United States
| | - Arabinda Nayak
- Gilead Sciences, Inc., Foster City, California 94404, United States
| | - Adrian Tomkinson
- Gilead Sciences, Inc., Foster City, California 94404, United States
| | - Nani Kadrichu
- Inspired - Pulmonary Solutions, San Carlos, California 94070, United States
| | - Scott Ellis
- Gilead Sciences, Inc., Foster City, California 94404, United States
| | - Ona Barauskas
- Gilead Sciences, Inc., Foster City, California 94404, United States
| | - Joy Y Feng
- Gilead Sciences, Inc., Foster City, California 94404, United States
| | - Jason K Perry
- Gilead Sciences, Inc., Foster City, California 94404, United States
| | - Michel Perron
- Gilead Sciences, Inc., Foster City, California 94404, United States
| | - John P Bilello
- Gilead Sciences, Inc., Foster City, California 94404, United States
| | - Philip J Kuehl
- Lovelace Biomedical, Albuquerque, New Mexico 87108, United States
| | - Raju Subramanian
- Gilead Sciences, Inc., Foster City, California 94404, United States
| | - Tomas Cihlar
- Gilead Sciences, Inc., Foster City, California 94404, United States
| | | |
Collapse
|
11
|
Li J, de Melo Jorge DM, Wang W, Sun S, Frum T, Hang YA, Liu Y, Zhou X, Xiao J, Wang X, Spence JR, Wobus CE, Zhu HJ. Differential Bioactivation Profiles of Different GS-441524 Prodrugs in Cell and Mouse Models: ProTide Prodrugs with High Cell Permeability and Susceptibility to Cathepsin A Are More Efficient in Delivering Antiviral Active Metabolites to the Lung. J Med Chem 2024; 67:7470-7486. [PMID: 38690769 PMCID: PMC11246197 DOI: 10.1021/acs.jmedchem.4c00234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
We assessed factors that determine the tissue-specific bioactivation of ProTide prodrugs by comparing the disposition and activation of remdesivir (RDV), its methylpropyl and isopropyl ester analogues (MeRDV and IsoRDV, respectively), the oral prodrug GS-621763, and the parent nucleotide GS-441524 (Nuc). RDV and MeRDV yielded more active metabolite remdesivir-triphosphate (RDV-TP) than IsoRDV, GS-621763, and Nuc in human lung cell models due to superior cell permeability and higher susceptivity to cathepsin A. Intravenous administration to mice showed that RDV and MeRDV delivered significantly more RDV-TP to the lung than other compounds. Nevertheless, all four ester prodrugs exhibited very low oral bioavailability (<2%), with Nuc being the predominant metabolite in blood. In conclusion, ProTides prodrugs, such as RDV and MeRDV, are more efficient in delivering active metabolites to the lung than Nuc, driven by high cell permeability and susceptivity to cathepsin A. Optimizing ProTides' ester structures is an effective strategy for enhancing prodrug activation in the lung.
Collapse
Affiliation(s)
- Jiapeng Li
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, Michigan 48109, USA
| | - Daniel Macedo de Melo Jorge
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | - Weiwen Wang
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, Michigan 48109, USA
| | - Shuxin Sun
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, Michigan 48109, USA
- Department of Pharmaceutical Sciences, University of Michigan College of Pharmacy, Ann Arbor, Michigan 48109, USA
| | - Tristan Frum
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | - Yu-An Hang
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, Michigan 48109, USA
| | - Yueting Liu
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, Michigan 48109, USA
| | - Xingwu Zhou
- Department of Pharmaceutical Sciences, University of Michigan College of Pharmacy, Ann Arbor, Michigan 48109, USA
| | - Jingcheng Xiao
- Department of Pharmaceutical Sciences, University of Michigan College of Pharmacy, Ann Arbor, Michigan 48109, USA
| | - Xinwen Wang
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University College of Pharmacy, Rootstown, Ohio 44272, USA
| | - Jason R. Spence
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
- Department of Biomedical Engineering, University of Michigan College of Engineering, Ann Arbor, Michigan 48109, USA
| | - Christiane E. Wobus
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | - Hao-Jie Zhu
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
12
|
Hurwitz SJ, De R, LeCher JC, Downs-Bowen JA, Goh SL, Zandi K, McBrayer T, Amblard F, Patel D, Kohler JJ, Bhasin M, Dobosh BS, Sukhatme V, Tirouvanziam RM, Schinazi RF. Why Certain Repurposed Drugs Are Unlikely to Be Effective Antivirals to Treat SARS-CoV-2 Infections. Viruses 2024; 16:651. [PMID: 38675992 PMCID: PMC11053489 DOI: 10.3390/v16040651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/10/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Most repurposed drugs have proved ineffective for treating COVID-19. We evaluated median effective and toxic concentrations (EC50, CC50) of 49 drugs, mostly from previous clinical trials, in Vero cells. Ratios of reported unbound peak plasma concentrations, (Cmax)/EC50, were used to predict the potential in vivo efficacy. The 20 drugs with the highest ratios were retested in human Calu-3 and Caco-2 cells, and their CC50 was determined in an expanded panel of cell lines. Many of the 20 drugs with the highest ratios were inactive in human Calu-3 and Caco-2 cells. Antivirals effective in controlled clinical trials had unbound Cmax/EC50 ≥ 6.8 in Calu-3 or Caco-2 cells. EC50 of nucleoside analogs were cell dependent. This approach and earlier availability of more relevant cultures could have reduced the number of unwarranted clinical trials.
Collapse
Affiliation(s)
- Selwyn J. Hurwitz
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine and Children’s Healthcare of Atlanta, 1760 Haygood Drive, Atlanta, GA 30322, USA; (S.J.H.); (R.D.); (J.C.L.); (J.A.D.-B.); (S.L.G.); (K.Z.); (T.M.); (F.A.); (D.P.); (J.J.K.)
| | - Ramyani De
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine and Children’s Healthcare of Atlanta, 1760 Haygood Drive, Atlanta, GA 30322, USA; (S.J.H.); (R.D.); (J.C.L.); (J.A.D.-B.); (S.L.G.); (K.Z.); (T.M.); (F.A.); (D.P.); (J.J.K.)
| | - Julia C. LeCher
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine and Children’s Healthcare of Atlanta, 1760 Haygood Drive, Atlanta, GA 30322, USA; (S.J.H.); (R.D.); (J.C.L.); (J.A.D.-B.); (S.L.G.); (K.Z.); (T.M.); (F.A.); (D.P.); (J.J.K.)
| | - Jessica A. Downs-Bowen
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine and Children’s Healthcare of Atlanta, 1760 Haygood Drive, Atlanta, GA 30322, USA; (S.J.H.); (R.D.); (J.C.L.); (J.A.D.-B.); (S.L.G.); (K.Z.); (T.M.); (F.A.); (D.P.); (J.J.K.)
| | - Shu Ling Goh
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine and Children’s Healthcare of Atlanta, 1760 Haygood Drive, Atlanta, GA 30322, USA; (S.J.H.); (R.D.); (J.C.L.); (J.A.D.-B.); (S.L.G.); (K.Z.); (T.M.); (F.A.); (D.P.); (J.J.K.)
| | - Keivan Zandi
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine and Children’s Healthcare of Atlanta, 1760 Haygood Drive, Atlanta, GA 30322, USA; (S.J.H.); (R.D.); (J.C.L.); (J.A.D.-B.); (S.L.G.); (K.Z.); (T.M.); (F.A.); (D.P.); (J.J.K.)
| | - Tamara McBrayer
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine and Children’s Healthcare of Atlanta, 1760 Haygood Drive, Atlanta, GA 30322, USA; (S.J.H.); (R.D.); (J.C.L.); (J.A.D.-B.); (S.L.G.); (K.Z.); (T.M.); (F.A.); (D.P.); (J.J.K.)
| | - Franck Amblard
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine and Children’s Healthcare of Atlanta, 1760 Haygood Drive, Atlanta, GA 30322, USA; (S.J.H.); (R.D.); (J.C.L.); (J.A.D.-B.); (S.L.G.); (K.Z.); (T.M.); (F.A.); (D.P.); (J.J.K.)
| | - Dharmeshkumar Patel
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine and Children’s Healthcare of Atlanta, 1760 Haygood Drive, Atlanta, GA 30322, USA; (S.J.H.); (R.D.); (J.C.L.); (J.A.D.-B.); (S.L.G.); (K.Z.); (T.M.); (F.A.); (D.P.); (J.J.K.)
| | - James J. Kohler
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine and Children’s Healthcare of Atlanta, 1760 Haygood Drive, Atlanta, GA 30322, USA; (S.J.H.); (R.D.); (J.C.L.); (J.A.D.-B.); (S.L.G.); (K.Z.); (T.M.); (F.A.); (D.P.); (J.J.K.)
| | - Manoj Bhasin
- Center for Cystic Fibrosis & Airways Disease Research, Division of Pulmonary, Allergy & Immunology, Cystic Fibrosis and Sleep, Emory University and Children’s Healthcare of Atlanta, 2015 Uppergate Drive, Atlanta, GA 30322, USA; (M.B.); (B.S.D.); (R.M.T.)
| | - Brian S. Dobosh
- Center for Cystic Fibrosis & Airways Disease Research, Division of Pulmonary, Allergy & Immunology, Cystic Fibrosis and Sleep, Emory University and Children’s Healthcare of Atlanta, 2015 Uppergate Drive, Atlanta, GA 30322, USA; (M.B.); (B.S.D.); (R.M.T.)
| | - Vikas Sukhatme
- Morningside Center for Innovative and Affordable Medicine, Departments of Medicine and Hematology and Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA;
| | - Rabindra M. Tirouvanziam
- Center for Cystic Fibrosis & Airways Disease Research, Division of Pulmonary, Allergy & Immunology, Cystic Fibrosis and Sleep, Emory University and Children’s Healthcare of Atlanta, 2015 Uppergate Drive, Atlanta, GA 30322, USA; (M.B.); (B.S.D.); (R.M.T.)
| | - Raymond F. Schinazi
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine and Children’s Healthcare of Atlanta, 1760 Haygood Drive, Atlanta, GA 30322, USA; (S.J.H.); (R.D.); (J.C.L.); (J.A.D.-B.); (S.L.G.); (K.Z.); (T.M.); (F.A.); (D.P.); (J.J.K.)
| |
Collapse
|
13
|
Iketani S, Ho DD. SARS-CoV-2 resistance to monoclonal antibodies and small-molecule drugs. Cell Chem Biol 2024; 31:632-657. [PMID: 38640902 PMCID: PMC11084874 DOI: 10.1016/j.chembiol.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 04/21/2024]
Abstract
Over four years have passed since the beginning of the COVID-19 pandemic. The scientific response has been rapid and effective, with many therapeutic monoclonal antibodies and small molecules developed for clinical use. However, given the ability for viruses to become resistant to antivirals, it is perhaps no surprise that the field has identified resistance to nearly all of these compounds. Here, we provide a comprehensive review of the resistance profile for each of these therapeutics. We hope that this resource provides an atlas for mutations to be aware of for each agent, particularly as a springboard for considerations for the next generation of antivirals. Finally, we discuss the outlook and thoughts for moving forward in how we continue to manage this, and the next, pandemic.
Collapse
Affiliation(s)
- Sho Iketani
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA; Division of Infectious Diseases, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - David D Ho
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA; Division of Infectious Diseases, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA; Department of Microbiology and Immunology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA.
| |
Collapse
|
14
|
Mulato A, Lansdon E, Aoyama R, Voigt J, Lee M, Liclican A, Lee G, Singer E, Stafford B, Gong R, Murray B, Chan J, Lee J, Xu Y, Ahmadyar S, Gonzalez A, Cho A, Stepan GJ, Schmitz U, Schultz B, Marchand B, Brumshtein B, Wang R, Yu H, Cihlar T, Xu L, Yant SR. Preclinical characterization of a non-peptidomimetic HIV protease inhibitor with improved metabolic stability. Antimicrob Agents Chemother 2024; 68:e0137323. [PMID: 38380945 PMCID: PMC10989020 DOI: 10.1128/aac.01373-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 01/17/2024] [Indexed: 02/22/2024] Open
Abstract
Protease inhibitors (PIs) remain an important component of antiretroviral therapy for the treatment of HIV-1 infection due to their high genetic barrier to resistance development. Nevertheless, the two most commonly prescribed HIV PIs, atazanavir and darunavir, still require co-administration with a pharmacokinetic boosting agent to maintain sufficient drug plasma levels which can lead to undesirable drug-drug interactions. Herein, we describe GS-9770, a novel investigational non-peptidomimetic HIV PI with unboosted once-daily oral dosing potential due to improvements in its metabolic stability and its pharmacokinetic properties in preclinical animal species. This compound demonstrates potent inhibitory activity and high on-target selectivity for recombinant HIV-1 protease versus other aspartic proteases tested. In cell culture, GS-9770 inhibits Gag polyprotein cleavage and shows nanomolar anti-HIV-1 potency in primary human cells permissive to HIV-1 infection and against a broad range of HIV subtypes. GS-9770 demonstrates an improved resistance profile against a panel of patient-derived HIV-1 isolates with resistance to atazanavir and darunavir. In resistance selection experiments, GS-9770 prevented the emergence of breakthrough HIV-1 variants at all fixed drug concentrations tested and required multiple protease substitutions to enable outgrowth of virus exposed to escalating concentrations of GS-9770. This compound also remained fully active against viruses resistant to drugs from other antiviral classes and showed no in vitro antagonism when combined pairwise with drugs from other antiretroviral classes. Collectively, these preclinical data identify GS-9770 as a potent, non-peptidomimetic once-daily oral HIV PI with potential to overcome the persistent requirement for pharmacological boosting with this class of antiretroviral agents.
Collapse
Affiliation(s)
- Andrew Mulato
- Department of Virology, Gilead Sciences, Foster City, California, USA
| | - Eric Lansdon
- Department of Structural Biology and Chemistry, Gilead Sciences, Foster City, California, USA
| | - Ron Aoyama
- Department of Drug Metabolism, Gilead Sciences, Foster City, California, USA
| | - Johannes Voigt
- Department of Structural Biology and Chemistry, Gilead Sciences, Foster City, California, USA
| | - Michael Lee
- Department of Discovery Sciences and Technology, Gilead Sciences, Foster City, California, USA
| | - Albert Liclican
- Department of Discovery Sciences and Technology, Gilead Sciences, Foster City, California, USA
| | - Gary Lee
- Department of Discovery Sciences and Technology, Gilead Sciences, Foster City, California, USA
| | - Eric Singer
- Department of Virology, Gilead Sciences, Foster City, California, USA
| | - Brian Stafford
- Department of Drug Metabolism, Gilead Sciences, Foster City, California, USA
| | - Ruoyu Gong
- Department of Discovery Sciences and Technology, Gilead Sciences, Foster City, California, USA
| | - Bernard Murray
- Department of Drug Metabolism, Gilead Sciences, Foster City, California, USA
| | - Julie Chan
- Department of Discovery Sciences and Technology, Gilead Sciences, Foster City, California, USA
| | - Johnny Lee
- Department of Discovery Sciences and Technology, Gilead Sciences, Foster City, California, USA
| | - Yili Xu
- Department of Discovery Sciences and Technology, Gilead Sciences, Foster City, California, USA
| | - Shekeba Ahmadyar
- Department of Discovery Sciences and Technology, Gilead Sciences, Foster City, California, USA
| | - Ana Gonzalez
- Department of Medicinal Chemistry, Gilead Sciences, Foster City, California, USA
| | - Aesop Cho
- Department of Medicinal Chemistry, Gilead Sciences, Foster City, California, USA
| | - George J. Stepan
- Department of Discovery Sciences and Technology, Gilead Sciences, Foster City, California, USA
| | - Uli Schmitz
- Department of Structural Biology and Chemistry, Gilead Sciences, Foster City, California, USA
| | - Brian Schultz
- Department of Discovery Sciences and Technology, Gilead Sciences, Foster City, California, USA
| | - Bruno Marchand
- Department of Discovery Sciences and Technology, Gilead Sciences, Foster City, California, USA
| | - Boris Brumshtein
- Department of Discovery Sciences and Technology, Gilead Sciences, Foster City, California, USA
| | - Ruth Wang
- Department of Discovery Sciences and Technology, Gilead Sciences, Foster City, California, USA
| | - Helen Yu
- Department of Discovery Sciences and Technology, Gilead Sciences, Foster City, California, USA
| | - Tomas Cihlar
- Department of Virology, Gilead Sciences, Foster City, California, USA
| | - Lianhong Xu
- Department of Medicinal Chemistry, Gilead Sciences, Foster City, California, USA
| | - Stephen R. Yant
- Department of Virology, Gilead Sciences, Foster City, California, USA
| |
Collapse
|
15
|
Husain A, Monga J, Narwal S, Singh G, Rashid M, Afzal O, Alatawi A, Almadani NM. Prodrug Rewards in Medicinal Chemistry: An Advance and Challenges Approach for Drug Designing. Chem Biodivers 2023; 20:e202301169. [PMID: 37833241 DOI: 10.1002/cbdv.202301169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/09/2023] [Accepted: 10/11/2023] [Indexed: 10/15/2023]
Abstract
This article emphasizes the importance of prodrugs and their diverse spectrum of effects in the field of developing novel drugs for a variety of biological applications. Prodrugs are chemicals that are supplied inactively, but then go through enzymatic and chemical transformation in vivo to release the active parent medication that can have the desired pharmacological effect. By adding an inactive chemical moiety, prodrugs are improved in a number of ways that contribute to their potency and durability. For the purpose of illustrating the usefulness of the prodrug approach, this review covers examples of prodrugs that have been made available or are now undergoing human trials. Additionally, it included lists of the most common functional groups, carrier linkers, and reactive chemicals that can be used to create prodrugs. The current study also provides a brief introduction, several chemical methods and modifications for creating prodrugs and mutual prodrugs, as well as an explanation of recent advancements and difficulties in the field of prodrug design. The primary chemical carriers employed in the creation of prodrugs, such as esters, amides, imides, NH-acidic carriers, amines, alcohols, carbonyl, carboxylic, and azo-linkages, are also discussed. This review also discusses glycosidic and triglyceride mutually activated prodrugs, which aim to deliver the drugs after bioconversion at the intended site of action. The article also discusses the extensive chemistry and wide variety of applications of recently approved prodrugs, such as antibacterial, anti-inflammatory, cardiovascular, antiplatelet, antihypertensive, atherosclerotic, antiviral, etc. In order to illustrate the prodrug and mutual drug concept's various applications and highlight its many triumphs in overcoming the formulation and delivery of problematic pharmaceuticals, this work represents a thorough guide that includes the synthetic moiety for the reader.
Collapse
Affiliation(s)
- Asif Husain
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110064, India
| | - Jyoti Monga
- Ch. Devi Lal College of Pharmacy, Jagadhri, 135003, Haryana, India
| | - Smita Narwal
- Global Research Institute of Pharmacy, Nachraun, Radaur, 135133, Haryana, India
| | - Gurvirender Singh
- Institute of Pharmaceutical Sciences, Kurukshetra University Kurukshetra-136119, Haryana, India
| | - Mohammad Rashid
- Department of Pharmacognosy and Pharmaceutical Chemistry, College of Dentistry and Pharmacy, Buraydah Private Colleges, Buraydah, 51418, Saudi Arabia
| | - Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj, 11942, Saudi Arabia
| | - Abdurahhman Alatawi
- Clinical Pharmacist, Pharmaceutical Care Department, King Fahad Specialized Hospital, Tabuk, 47717, Saudi Arabia
| | - Norah M Almadani
- Biochemistry Department, Faculty of Science, University of Tabuk, Tabuk, 47914, Saudi Arabia
| |
Collapse
|
16
|
Mackman RL, Kalla RV, Babusis D, Pitts J, Barrett KT, Chun K, Du Pont V, Rodriguez L, Moshiri J, Xu Y, Lee M, Lee G, Bleier B, Nguyen AQ, O'Keefe BM, Ambrosi A, Cook M, Yu J, Dempah KE, Bunyan E, Riola NC, Lu X, Liu R, Davie A, Hsiang TY, Dearing J, Vermillion M, Gale M, Niedziela-Majka A, Feng JY, Hedskog C, Bilello JP, Subramanian R, Cihlar T. Discovery of GS-5245 (Obeldesivir), an Oral Prodrug of Nucleoside GS-441524 That Exhibits Antiviral Efficacy in SARS-CoV-2-Infected African Green Monkeys. J Med Chem 2023; 66:11701-11717. [PMID: 37596939 PMCID: PMC11556372 DOI: 10.1021/acs.jmedchem.3c00750] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2023]
Abstract
Remdesivir 1 is an phosphoramidate prodrug that releases the monophosphate of nucleoside GS-441524 (2) into lung cells, thereby forming the bioactive triphosphate 2-NTP. 2-NTP, an analog of ATP, inhibits the SARS-CoV-2 RNA-dependent RNA polymerase replication and transcription of viral RNA. Strong clinical results for 1 have prompted interest in oral approaches to generate 2-NTP. Here, we describe the discovery of a 5'-isobutyryl ester prodrug of 2 (GS-5245, Obeldesivir, 3) that has low cellular cytotoxicity and 3-7-fold improved oral delivery of 2 in monkeys. Prodrug 3 is cleaved presystemically to provide high systemic exposures of 2 that overcome its less efficient metabolism to 2-NTP, leading to strong SARS-CoV-2 antiviral efficacy in an African green monkey infection model. Exposure-based SARS-CoV-2 efficacy relationships resulted in an estimated clinical dose of 350-400 mg twice daily. Importantly, all SARS-CoV-2 variants remain susceptible to 2, which supports development of 3 as a promising COVID-19 treatment.
Collapse
Affiliation(s)
- Richard L Mackman
- Medicinal Chemistry, Gilead Sciences Incorporated, 333 Lakeside Drive, Foster City, California 94404 United States
| | - Rao V Kalla
- Medicinal Chemistry, Gilead Sciences Incorporated, 333 Lakeside Drive, Foster City, California 94404 United States
| | - Darius Babusis
- Drug Metabolism, Gilead Sciences Incorporated, 333 Lakeside Drive, Foster City, California 94404 United States
| | - Jared Pitts
- Discovery Virology, Gilead Sciences Incorporated, 333 Lakeside Drive, Foster City, California 94404 United States
| | - Kimberly T Barrett
- Formulation and Process Development, Gilead Sciences Incorporated, 333 Lakeside Drive, Foster City, California 94404 United States
| | - Kwon Chun
- Medicinal Chemistry, Gilead Sciences Incorporated, 333 Lakeside Drive, Foster City, California 94404 United States
| | - Venice Du Pont
- Discovery Virology, Gilead Sciences Incorporated, 333 Lakeside Drive, Foster City, California 94404 United States
| | - Lauren Rodriguez
- Clinical Virology, Gilead Sciences Incorporated, 333 Lakeside Drive, Foster City, California 94404 United States
| | - Jasmine Moshiri
- Clinical Virology, Gilead Sciences Incorporated, 333 Lakeside Drive, Foster City, California 94404 United States
| | - Yili Xu
- Biochemistry, Gilead Sciences Incorporated, 333 Lakeside Drive, Foster City, California 94404 United States
| | - Michael Lee
- Biology, Gilead Sciences Incorporated, 333 Lakeside Drive, Foster City, California 94404 United States
| | - Gary Lee
- Biology, Gilead Sciences Incorporated, 333 Lakeside Drive, Foster City, California 94404 United States
| | - Blake Bleier
- Formulation and Process Development, Gilead Sciences Incorporated, 333 Lakeside Drive, Foster City, California 94404 United States
| | - Anh-Quan Nguyen
- Formulation and Process Development, Gilead Sciences Incorporated, 333 Lakeside Drive, Foster City, California 94404 United States
| | - B Michael O'Keefe
- Process Chemistry, Gilead Sciences Incorporated, 333 Lakeside Drive, Foster City, California 94404 United States
| | - Andrea Ambrosi
- Process Chemistry, Gilead Sciences Incorporated, 333 Lakeside Drive, Foster City, California 94404 United States
| | - Meredith Cook
- Process Chemistry, Gilead Sciences Incorporated, 333 Lakeside Drive, Foster City, California 94404 United States
| | - Joy Yu
- Process Chemistry, Gilead Sciences Incorporated, 333 Lakeside Drive, Foster City, California 94404 United States
| | - Kassibla Elodie Dempah
- Process Development, Gilead Sciences Incorporated, 333 Lakeside Drive, Foster City, California 94404 United States
| | - Elaine Bunyan
- Process Development, Gilead Sciences Incorporated, 333 Lakeside Drive, Foster City, California 94404 United States
| | - Nicholas C Riola
- Discovery Virology, Gilead Sciences Incorporated, 333 Lakeside Drive, Foster City, California 94404 United States
| | - Xianghan Lu
- Discovery Virology, Gilead Sciences Incorporated, 333 Lakeside Drive, Foster City, California 94404 United States
| | - Renmeng Liu
- Drug Metabolism, Gilead Sciences Incorporated, 333 Lakeside Drive, Foster City, California 94404 United States
| | - Ashley Davie
- Drug Metabolism, Gilead Sciences Incorporated, 333 Lakeside Drive, Foster City, California 94404 United States
| | - Tien-Ying Hsiang
- Center for Innate Immunity and Immune Disease, Department of Immunology, School of Medicine, University of Washington, Seattle, Washington 98109 United States
| | - Justin Dearing
- Lovelace Biomedical Research Institute, 2425 Ridgecrest Drive Southeast, Albuquerque, New Mexico 87108 United States
| | - Meghan Vermillion
- Lovelace Biomedical Research Institute, 2425 Ridgecrest Drive Southeast, Albuquerque, New Mexico 87108 United States
| | - Michael Gale
- Center for Innate Immunity and Immune Disease, Department of Immunology, School of Medicine, University of Washington, Seattle, Washington 98109 United States
| | - Anita Niedziela-Majka
- Biology, Gilead Sciences Incorporated, 333 Lakeside Drive, Foster City, California 94404 United States
| | - Joy Y Feng
- Biochemistry, Gilead Sciences Incorporated, 333 Lakeside Drive, Foster City, California 94404 United States
| | - Charlotte Hedskog
- Clinical Virology, Gilead Sciences Incorporated, 333 Lakeside Drive, Foster City, California 94404 United States
| | - John P Bilello
- Discovery Virology, Gilead Sciences Incorporated, 333 Lakeside Drive, Foster City, California 94404 United States
| | - Raju Subramanian
- Drug Metabolism, Gilead Sciences Incorporated, 333 Lakeside Drive, Foster City, California 94404 United States
| | - Tomas Cihlar
- Discovery Virology, Gilead Sciences Incorporated, 333 Lakeside Drive, Foster City, California 94404 United States
| |
Collapse
|
17
|
Karim M, Lo CW, Einav S. Preparing for the next viral threat with broad-spectrum antivirals. J Clin Invest 2023; 133:e170236. [PMID: 37259914 PMCID: PMC10232003 DOI: 10.1172/jci170236] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023] Open
Abstract
There is a large global unmet need for the development of countermeasures to combat hundreds of viruses known to cause human disease and for the establishment of a therapeutic portfolio for future pandemic preparedness. Most approved antiviral therapeutics target proteins encoded by a single virus, providing a narrow spectrum of coverage. This, combined with the slow pace and high cost of drug development, limits the scalability of this direct-acting antiviral (DAA) approach. Here, we summarize progress and challenges in the development of broad-spectrum antivirals that target either viral elements (proteins, genome structures, and lipid envelopes) or cellular proviral factors co-opted by multiple viruses via newly discovered compounds or repurposing of approved drugs. These strategies offer new means for developing therapeutics against both existing and emerging viral threats that complement DAAs.
Collapse
Affiliation(s)
- Marwah Karim
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, and
| | - Chieh-Wen Lo
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, and
| | - Shirit Einav
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, and
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA
- Chan Zuckerberg Biohub San Francisco, San Francisco, California, USA
| |
Collapse
|
18
|
De Clercq E. Hydrogen Bonding (Base Pairing) in Antiviral Activity. Viruses 2023; 15:v15051145. [PMID: 37243232 DOI: 10.3390/v15051145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/20/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
Base pairing based on hydrogen bonding has, since its inception, been crucial in the antiviral activity of arabinosyladenine, 2'-deoxyuridines (i.e., IDU, TFT, BVDU), acyclic nucleoside analogues (i.e., acyclovir) and nucleoside reverse transcriptase inhibitors (NRTIs). Base pairing based on hydrogen bonding also plays a key role in the mechanism of action of various acyclic nucleoside phosphonates (ANPs) such as adefovir, tenofovir, cidofovir and O-DAPYs, thus explaining their activity against a wide array of DNA viruses (human hepatitis B virus (HBV), human immunodeficiency (HIV) and human herpes viruses (i.e., human cytomegalovirus)). Hydrogen bonding (base pairing) also seems to be involved in the inhibitory activity of Cf1743 (and its prodrug FV-100) against varicella-zoster virus (VZV) and in the activity of sofosbuvir against hepatitis C virus and that of remdesivir against SARS-CoV-2 (COVID-19). Hydrogen bonding (base pairing) may also explain the broad-spectrum antiviral effects of ribavirin and favipiravir. This may lead to lethal mutagenesis (error catastrophe), as has been demonstrated with molnutegravir in its activity against SARS-CoV-2.
Collapse
Affiliation(s)
- Erik De Clercq
- Rega Institute for Medical Research, KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
19
|
Expanded profiling of Remdesivir as a broad-spectrum antiviral and low potential for interaction with other medications in vitro. Sci Rep 2023; 13:3131. [PMID: 36823196 PMCID: PMC9950143 DOI: 10.1038/s41598-023-29517-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 02/06/2023] [Indexed: 02/25/2023] Open
Abstract
Remdesivir (GS-5734; VEKLURY) is a single diastereomer monophosphoramidate prodrug of an adenosine analog (GS-441524). Remdesivir is taken up by target cells and metabolized in multiple steps to form the active nucleoside triphosphate (GS-443902), which acts as a potent inhibitor of viral RNA-dependent RNA polymerases. Remdesivir and GS-441524 have antiviral activity against multiple RNA viruses. Here, we expand the evaluation of remdesivir's antiviral activity to members of the families Flaviviridae, Picornaviridae, Filoviridae, Orthomyxoviridae, and Hepadnaviridae. Using cell-based assays, we show that remdesivir can inhibit infection of flaviviruses (such as dengue 1-4, West Nile, yellow fever, Zika viruses), picornaviruses (such as enterovirus and rhinovirus), and filoviruses (such as various Ebola, Marburg, and Sudan virus isolates, including novel geographic isolates), but is ineffective or is significantly less effective against orthomyxoviruses (influenza A and B viruses), or hepadnaviruses B, D, and E. In addition, remdesivir shows no antagonistic effect when combined with favipiravir, another broadly acting antiviral nucleoside analog, and has minimal interaction with a panel of concomitant medications. Our data further support remdesivir as a broad-spectrum antiviral agent that has the potential to address multiple unmet medical needs, including those related to antiviral pandemic preparedness.
Collapse
|
20
|
Yan VC, Barekatain Y, Lin YH, Satani N, Hammoudi N, Arthur K, Georgiou DK, Jiang Y, Sun Y, Marszalek JR, Millward SW, Muller FL. Comparative Pharmacology of a Bis-Pivaloyloxymethyl Phosphonate Prodrug Inhibitor of Enolase after Oral and Parenteral Administration. ACS Pharmacol Transl Sci 2023; 6:245-252. [PMID: 36798479 PMCID: PMC9926520 DOI: 10.1021/acsptsci.2c00216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Indexed: 01/08/2023]
Abstract
Metabolically labile prodrugs can experience stark differences in catabolism incurred by the chosen route of administration. This is especially true for phosph(on)ate prodrugs, in which successive promoiety removal transforms a lipophilic molecule into increasingly polar compounds. We previously described a phosphonate inhibitor of enolase (HEX) and its bis-pivaloyloxymethyl ester prodrug (POMHEX) capable of eliciting strong tumor regression in a murine model of enolase 1 (ENO1)-deleted glioblastoma following parenteral administration. Here, we characterize the pharmacokinetics and pharmacodynamics of these enolase inhibitors in vitro and in vivo after oral and parenteral administration. In support of the historical function of lipophilic prodrugs, the bis-POM prodrug significantly improves cell permeability of and rapid hydrolysis to the parent phosphonate, resulting in rapid intracellular loading of peripheral blood mononuclear cells in vitro and in vivo. We observe the influence of intracellular trapping in vivo on divergent pharmacokinetic profiles of POMHEX and its metabolites after oral and parenteral administration. This is a clear demonstration of the tissue reservoir effect hypothesized to explain phosph(on)ate prodrug pharmacokinetics but has heretofore not been explicitly demonstrated.
Collapse
Affiliation(s)
- Victoria C. Yan
- Department
of Cancer Systems Imaging, University of
Texas MD Anderson Cancer Center, Houston, Texas 77030-4000, United States
| | - Yasaman Barekatain
- Department
of Cancer Biology, University of Texas MD
Anderson Cancer Center, Houston, Texas 77030-4000, United States
| | - Yu-Hsi Lin
- Department
of Cancer Systems Imaging, University of
Texas MD Anderson Cancer Center, Houston, Texas 77030-4000, United States
| | - Nikunj Satani
- Department
of Cancer Systems Imaging, University of
Texas MD Anderson Cancer Center, Houston, Texas 77030-4000, United States
| | - Naima Hammoudi
- Department
of Cancer Systems Imaging, University of
Texas MD Anderson Cancer Center, Houston, Texas 77030-4000, United States
| | - Kenisha Arthur
- Department
of Cancer Systems Imaging, University of
Texas MD Anderson Cancer Center, Houston, Texas 77030-4000, United States
| | - Dimitra K. Georgiou
- Department
of Cancer Systems Imaging, University of
Texas MD Anderson Cancer Center, Houston, Texas 77030-4000, United States
| | - Yongying Jiang
- Institute
of Applied Cancer Science, University of
Texas MD Anderson Cancer Center, Houston, Texas 77030-4000, United States
| | - Yuting Sun
- Institute
of Applied Cancer Science, University of
Texas MD Anderson Cancer Center, Houston, Texas 77030-4000, United States
| | - Joseph R. Marszalek
- Center
for Co-Clinical Trials, University of Texas
MD Anderson Cancer Center, Houston, Texas 77030-4000, United States
| | - Steven W. Millward
- Department
of Cancer Systems Imaging, University of
Texas MD Anderson Cancer Center, Houston, Texas 77030-4000, United States
| | - Florian L. Muller
- Department
of Cancer Systems Imaging, University of
Texas MD Anderson Cancer Center, Houston, Texas 77030-4000, United States
| |
Collapse
|
21
|
Wang Z, Yang L, Song XQ. Oral GS-441524 derivatives: Next-generation inhibitors of SARS-CoV-2 RNA-dependent RNA polymerase. Front Immunol 2022; 13:1015355. [PMID: 36561747 PMCID: PMC9763260 DOI: 10.3389/fimmu.2022.1015355] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022] Open
Abstract
GS-441524, an RNA-dependent RNA polymerase (RdRp) inhibitor, is a 1'-CN-substituted adenine C-nucleoside analog with broad-spectrum antiviral activity. However, the low oral bioavailability of GS-441524 poses a challenge to its anti-SARS-CoV-2 efficacy. Remdesivir, the intravenously administered version (version 1.0) of GS-441524, is the first FDA-approved agent for SARS-CoV-2 treatment. However, clinical trials have presented conflicting evidence on the value of remdesivir in COVID-19. Therefore, oral GS-441524 derivatives (VV116, ATV006, and GS-621763; version 2.0, targeting highly conserved viral RdRp) could be considered as game-changers in treating COVID-19 because oral administration has the potential to maximize clinical benefits, including decreased duration of COVID-19 and reduced post-acute sequelae of SARS-CoV-2 infection, as well as limited side effects such as hepatic accumulation. This review summarizes the current research related to the oral derivatives of GS-441524, and provides important insights into the potential factors underlying the controversial observations regarding the clinical efficacy of remdesivir; overall, it offers an effective launching pad for developing an oral version of GS-441524.
Collapse
Affiliation(s)
- Zhonglei Wang
- Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, China,School of Pharmaceutical Sciences, Tsinghua University, Beijing, China,*Correspondence: Zhonglei Wang, ; Liyan Yang, ; Xian-qing Song,
| | - Liyan Yang
- Shandong Provincial Key Laboratory of Laser Polarization and Information Technology, School of Physics and Physical Engineering, Qufu Normal University, Qufu, China,*Correspondence: Zhonglei Wang, ; Liyan Yang, ; Xian-qing Song,
| | - Xian-qing Song
- General Surgery Department, Ningbo Fourth Hospital, Xiangshan, China,*Correspondence: Zhonglei Wang, ; Liyan Yang, ; Xian-qing Song,
| |
Collapse
|
22
|
Xu X, Chen Y, Lu X, Zhang W, Fang W, Yuan L, Wang X. An update on inhibitors targeting RNA-dependent RNA polymerase for COVID-19 treatment: Promises and challenges. Biochem Pharmacol 2022; 205:115279. [PMID: 36209840 PMCID: PMC9535928 DOI: 10.1016/j.bcp.2022.115279] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/27/2022] [Accepted: 09/27/2022] [Indexed: 01/18/2023]
Abstract
The highly transmissible variants of SARS-CoV-2, the causative pathogen of the COVID-19 pandemic, bring new waves of infection worldwide. Identification of effective therapeutic drugs to combat the COVID-19 pandemic is an urgent global need. RNA-dependent RNA polymerase (RdRp), an essential enzyme for viral RNA replication, is the most promising target for antiviral drug research since it has no counterpart in human cells and shows the highest conservation across coronaviruses. This review summarizes recent progress in studies of RdRp inhibitors, focusing on interactions between these inhibitors and the enzyme complex, based on structural analysis, and their effectiveness. In addition, we propose new possible strategies to address the shortcomings of current inhibitors, which may guide the development of novel efficient inhibitors to combat COVID-19.
Collapse
Affiliation(s)
- Xiaoying Xu
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Yuheng Chen
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Xinyu Lu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, China
| | - Wanlin Zhang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, China
| | - Wenxiu Fang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, China
| | - Luping Yuan
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, China
| | - Xiaoyan Wang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, China.
| |
Collapse
|
23
|
Hu H, Mady Traore MD, Li R, Yuan H, He M, Wen B, Gao W, Jonsson CB, Fitzpatrick EA, Sun D. Optimization of the Prodrug Moiety of Remdesivir to Improve Lung Exposure/Selectivity and Enhance Anti-SARS-CoV-2 Activity. J Med Chem 2022; 65:12044-12054. [PMID: 36070561 PMCID: PMC9469953 DOI: 10.1021/acs.jmedchem.2c00758] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Indexed: 01/08/2023]
Abstract
COVID-19 patients with severe symptoms still lack antiviral treatment options. Although remdesivir is the only FDA-approved drug for those patients, its efficacy is limited by premature hydrolysis to nucleoside (NUC), low accumulation in the disease-targeted tissue (lungs), and low antiviral potency. In this study, we synthesized a new series of remdesivir analogues by modifying the ProTide moiety. In comparison with remdesivir, the lead compound MMT5-14 showed 2- to 7-fold higher antiviral activity in four variants of SARS-CoV-2. By reducing premature hydrolysis in hamsters, MMT5-14 increased the prodrug concentration by 200- to 300-fold in the plasma and lungs but also enhanced lung accumulation of the active metabolite triphosphate nucleosides (NTP) by 5-fold. Compared to remdesivir, MMT5-14 also increased the intracellular uptake and activation in lung epithelial cells by 4- to 25-fold. These data suggest that MMT5-14 could be a potential antiviral drug to treat COVID-19 patients with severe symptoms.
Collapse
Affiliation(s)
- Hongxiang Hu
- Department of Pharmaceutical Sciences, College of
Pharmacy, University of Michigan, Ann Arbor, Michigan48109,
United States
| | - Mohamed Dit Mady Traore
- Department of Pharmaceutical Sciences, College of
Pharmacy, University of Michigan, Ann Arbor, Michigan48109,
United States
| | - Ruiting Li
- Department of Pharmaceutical Sciences, College of
Pharmacy, University of Michigan, Ann Arbor, Michigan48109,
United States
| | - Hebao Yuan
- Department of Pharmaceutical Sciences, College of
Pharmacy, University of Michigan, Ann Arbor, Michigan48109,
United States
| | - Miao He
- Department of Pharmaceutical Sciences, College of
Pharmacy, University of Michigan, Ann Arbor, Michigan48109,
United States
| | - Bo Wen
- Department of Pharmaceutical Sciences, College of
Pharmacy, University of Michigan, Ann Arbor, Michigan48109,
United States
| | - Wei Gao
- Department of Pharmaceutical Sciences, College of
Pharmacy, University of Michigan, Ann Arbor, Michigan48109,
United States
| | - Colleen B. Jonsson
- Department of Microbiology, Immunology and
Biochemistry and the Regional Biocontainment Laboratory, University of
Tennessee Health Science Center, Memphis, Tennessee38163, United
States
| | - Elizabeth A. Fitzpatrick
- Department of Microbiology, Immunology and
Biochemistry and the Regional Biocontainment Laboratory, University of
Tennessee Health Science Center, Memphis, Tennessee38163, United
States
| | - Duxin Sun
- Department of Pharmaceutical Sciences, College of
Pharmacy, University of Michigan, Ann Arbor, Michigan48109,
United States
| |
Collapse
|
24
|
Stevens LJ, Pruijssers AJ, Lee HW, Gordon CJ, Tchesnokov EP, Gribble J, George AS, Hughes TM, Lu X, Li J, Perry JK, Porter DP, Cihlar T, Sheahan TP, Baric RS, Götte M, Denison MR. Mutations in the SARS-CoV-2 RNA-dependent RNA polymerase confer resistance to remdesivir by distinct mechanisms. Sci Transl Med 2022; 14:eabo0718. [PMID: 35482820 PMCID: PMC9097878 DOI: 10.1126/scitranslmed.abo0718] [Citation(s) in RCA: 135] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 04/14/2022] [Indexed: 12/19/2022]
Abstract
The nucleoside analog remdesivir (RDV) is a Food and Drug Administration-approved antiviral for treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections. Thus, it is critical to understand factors that promote or prevent RDV resistance. We passaged SARS-CoV-2 in the presence of increasing concentrations of GS-441524, the parent nucleoside of RDV. After 13 passages, we isolated three viral lineages with phenotypic resistance as defined by increases in half-maximal effective concentration from 2.7- to 10.4-fold. Sequence analysis identified nonsynonymous mutations in nonstructural protein 12 RNA-dependent RNA polymerase (nsp12-RdRp): V166A, N198S, S759A, V792I, and C799F/R. Two lineages encoded the S759A substitution at the RdRp Ser759-Asp-Asp active motif. In one lineage, the V792I substitution emerged first and then combined with S759A. Introduction of S759A and V792I substitutions at homologous nsp12 positions in murine hepatitis virus demonstrated transferability across betacoronaviruses; introduction of these substitutions resulted in up to 38-fold RDV resistance and a replication defect. Biochemical analysis of SARS-CoV-2 RdRp encoding S759A demonstrated a roughly 10-fold decreased preference for RDV-triphosphate (RDV-TP) as a substrate, whereas nsp12-V792I diminished the uridine triphosphate concentration needed to overcome template-dependent inhibition associated with RDV. The in vitro-selected substitutions identified in this study were rare or not detected in the greater than 6 million publicly available nsp12-RdRp consensus sequences in the absence of RDV selection. The results define genetic and biochemical pathways to RDV resistance and emphasize the need for additional studies to define the potential for emergence of these or other RDV resistance mutations in clinical settings.
Collapse
Affiliation(s)
- Laura J. Stevens
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Andrea J. Pruijssers
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Nashville, TN, 37232, USA
| | - Hery W. Lee
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, T6G 2T9, CA
| | - Calvin J. Gordon
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, T6G 2T9, CA
| | - Egor P. Tchesnokov
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, T6G 2T9, CA
| | - Jennifer Gribble
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Amelia S. George
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Tia M. Hughes
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Xiaotao Lu
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Jiani Li
- Gilead Sciences, Inc, Foster City, CA, 94404, USA
| | | | | | - Tomas Cihlar
- Gilead Sciences, Inc, Foster City, CA, 94404, USA
| | - Timothy P. Sheahan
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Ralph S. Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Matthias Götte
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, T6G 2T9, CA
| | - Mark R. Denison
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Nashville, TN, 37232, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| |
Collapse
|
25
|
Pitts J, Babusis D, Vermillion MS, Subramanian R, Barrett K, Lye D, Ma B, Zhao X, Riola N, Xie X, Kajon A, Lu X, Bannister R, Shi PY, Toteva M, Porter DP, Smith BJ, Cihlar T, Mackman R, Bilello JP. Intravenous delivery of GS-441524 is efficacious in the African green monkey model of SARS-CoV-2 infection. Antiviral Res 2022; 203:105329. [PMID: 35525335 PMCID: PMC9068261 DOI: 10.1016/j.antiviral.2022.105329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 04/26/2022] [Accepted: 04/29/2022] [Indexed: 01/17/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of the COVID-19 pandemic, has infected over 260 million people over the past 2 years. Remdesivir (RDV, VEKLURY®) is currently the only antiviral therapy fully approved by the FDA for the treatment of COVID-19. The parent nucleoside of RDV, GS-441524, exhibits antiviral activity against numerous respiratory viruses including SARS-CoV-2, although at reduced in vitro potency compared to RDV in most assays. Here we find in both human alveolar and bronchial primary cells, GS-441524 is metabolized to the pharmacologically active GS-441524 triphosphate (TP) less efficiently than RDV, which correlates with a lower in vitro SARS-CoV-2 antiviral activity. In vivo, African green monkeys (AGM) orally dosed with GS-441524 yielded low plasma levels due to limited oral bioavailability of <10%. When GS-441524 was delivered via intravenous (IV) administration, although plasma concentrations of GS-441524 were significantly higher, lung TP levels were lower than observed from IV RDV. To determine the required systemic exposure of GS-441524 associated with in vivo antiviral efficacy, SARS-CoV-2 infected AGMs were treated with a once-daily IV dose of either 7.5 or 20 mg/kg GS-441524 or IV RDV for 5 days and compared to vehicle control. Despite the reduced lung TP formation compared to IV dosing of RDV, daily treatment with IV GS-441524 resulted in dose-dependent efficacy, with the 20 mg/kg GS-441524 treatment resulting in significant reductions of SARS-CoV-2 replication in the lower respiratory tract of infected animals. These findings demonstrate the in vivo SARS-CoV-2 antiviral efficacy of GS-441524 and support evaluation of its orally bioavailable prodrugs as potential therapies for COVID-19.
Collapse
Affiliation(s)
- Jared Pitts
- Gilead Sciences, 333 Lakeside Drive, Foster City, CA, 94404, USA
| | - Darius Babusis
- Gilead Sciences, 333 Lakeside Drive, Foster City, CA, 94404, USA
| | - Meghan S Vermillion
- Lovelace Biomedical Research Institute, 2425 Ridgecrest Drive, SE, Albuquerque, NM, 87108, USA
| | - Raju Subramanian
- Gilead Sciences, 333 Lakeside Drive, Foster City, CA, 94404, USA
| | - Kim Barrett
- Gilead Sciences, 333 Lakeside Drive, Foster City, CA, 94404, USA
| | - Diane Lye
- Gilead Sciences, 333 Lakeside Drive, Foster City, CA, 94404, USA
| | - Bin Ma
- Gilead Sciences, 333 Lakeside Drive, Foster City, CA, 94404, USA
| | - Xiaofeng Zhao
- Gilead Sciences, 333 Lakeside Drive, Foster City, CA, 94404, USA
| | - Nicholas Riola
- Gilead Sciences, 333 Lakeside Drive, Foster City, CA, 94404, USA
| | - Xuping Xie
- University of Texas Medical Branch - Department of Biochemistry and Molecular Biology, Galveston, TX, 94070, USA
| | - Adriana Kajon
- Lovelace Biomedical Research Institute, 2425 Ridgecrest Drive, SE, Albuquerque, NM, 87108, USA
| | - Xianghan Lu
- Gilead Sciences, 333 Lakeside Drive, Foster City, CA, 94404, USA
| | - Roy Bannister
- Gilead Sciences, 333 Lakeside Drive, Foster City, CA, 94404, USA
| | - Pei-Yong Shi
- University of Texas Medical Branch - Department of Biochemistry and Molecular Biology, Galveston, TX, 94070, USA
| | - Maria Toteva
- Gilead Sciences, 333 Lakeside Drive, Foster City, CA, 94404, USA
| | | | - Bill J Smith
- Gilead Sciences, 333 Lakeside Drive, Foster City, CA, 94404, USA
| | - Tomas Cihlar
- Gilead Sciences, 333 Lakeside Drive, Foster City, CA, 94404, USA
| | - Richard Mackman
- Gilead Sciences, 333 Lakeside Drive, Foster City, CA, 94404, USA
| | - John P Bilello
- Gilead Sciences, 333 Lakeside Drive, Foster City, CA, 94404, USA.
| |
Collapse
|
26
|
Cao L, Li Y, Yang S, Li G, Zhou Q, Sun J, Xu T, Yang Y, Liao R, Shi Y, Yang Y, Zhu T, Huang S, Ji Y, Cong F, Luo Y, Zhu Y, Luan H, Zhang H, Chen J, Liu X, Luo R, Liu L, Wang P, Yu Y, Xing F, Ke B, Zheng H, Deng X, Zhang W, Lin C, Shi M, Li CM, Zhang Y, Zhang L, Dai J, Lu H, Zhao J, Zhang X, Guo D. The adenosine analog prodrug ATV006 is orally bioavailable and has preclinical efficacy against parental SARS-CoV-2 and variants. Sci Transl Med 2022; 14:eabm7621. [PMID: 35579533 PMCID: PMC9161374 DOI: 10.1126/scitranslmed.abm7621] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus driving the ongoing coronavirus disease 2019 (COVID-19) pandemic, continues to rapidly evolve. Due to the limited efficacy of vaccination in prevention of SARS-CoV-2 transmission and continuous emergence of variants of concern (VOC), orally bioavailable and broadly efficacious antiviral drugs are urgently needed. Previously we showed that the parent nucleoside of remdesivir, GS-441524, possesses potent anti-SARS-CoV-2 activity. Herein, we report that esterification of the 5′-hydroxyl moieties of GS-441524 markedly improved antiviral potency. This 5′-hydroxyl-isobutyryl prodrug, ATV006, demonstrated excellent oral bioavailability in rats and cynomolgus monkeys and exhibited potent antiviral efficacy against different SARS-CoV-2 VOCs in vitro and in three mouse models. Oral administration of ATV006 reduced viral loads and alleviated lung damage when administered prophylactically and therapeutically to K18-hACE2 mice challenged with the Delta variant of SARS-CoV-2. These data indicate that ATV006 represents a promising oral antiviral drug candidate for SARS-CoV-2.
Collapse
Affiliation(s)
- Liu Cao
- Centre for Infection and Immunity Studies (CIIS), School of Medicine, Shenzhen Campus of Sun Yat-sen University, Guangdong 518107, China
| | - Yingjun Li
- Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Department of Chemistry, College of Science, Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Sidi Yang
- Centre for Infection and Immunity Studies (CIIS), School of Medicine, Shenzhen Campus of Sun Yat-sen University, Guangdong 518107, China
| | - Guanguan Li
- Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Department of Chemistry, College of Science, Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.,Medi-X Pingshan, Southern University of Science and Technology, Shenzhen, Guangdong 518118, China
| | - Qifan Zhou
- Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Department of Chemistry, College of Science, Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Jing Sun
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510182, China
| | - Tiefeng Xu
- Centre for Infection and Immunity Studies (CIIS), School of Medicine, Shenzhen Campus of Sun Yat-sen University, Guangdong 518107, China
| | - Yang Yang
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for infectious disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, Guangdong 518112, China
| | - Ruyan Liao
- Guangzhou Customs District Technology Center, Guangzhou, Guangdong 510623, China
| | - Yongxia Shi
- Guangzhou Customs District Technology Center, Guangzhou, Guangdong 510623, China
| | - Yujian Yang
- Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Department of Chemistry, College of Science, Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Tiaozhen Zhu
- Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Department of Chemistry, College of Science, Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Siyao Huang
- Centre for Infection and Immunity Studies (CIIS), School of Medicine, Shenzhen Campus of Sun Yat-sen University, Guangdong 518107, China
| | - Yanxi Ji
- Centre for Infection and Immunity Studies (CIIS), School of Medicine, Shenzhen Campus of Sun Yat-sen University, Guangdong 518107, China
| | - Feng Cong
- Guangdong Province Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, Guangdong 510663, China
| | - Yinzhu Luo
- Guangdong Province Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, Guangdong 510663, China
| | - Yujun Zhu
- Guangdong Province Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, Guangdong 510663, China
| | - Hemi Luan
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Huan Zhang
- Center for Disease Control and Prevention of Guangdong Province, Guangzhou, Guangdong 511430, China
| | - Jingdiao Chen
- Center for Disease Control and Prevention of Guangdong Province, Guangzhou, Guangdong 511430, China
| | - Xue Liu
- Centre for Infection and Immunity Studies (CIIS), School of Medicine, Shenzhen Campus of Sun Yat-sen University, Guangdong 518107, China
| | - Renru Luo
- Centre for Infection and Immunity Studies (CIIS), School of Medicine, Shenzhen Campus of Sun Yat-sen University, Guangdong 518107, China
| | - Lihong Liu
- Centre for Infection and Immunity Studies (CIIS), School of Medicine, Shenzhen Campus of Sun Yat-sen University, Guangdong 518107, China
| | - Ping Wang
- Medi-X Pingshan, Southern University of Science and Technology, Shenzhen, Guangdong 518118, China
| | - Yang Yu
- Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Department of Chemistry, College of Science, Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Fan Xing
- Centre for Infection and Immunity Studies (CIIS), School of Medicine, Shenzhen Campus of Sun Yat-sen University, Guangdong 518107, China
| | - Bixia Ke
- Center for Disease Control and Prevention of Guangdong Province, Guangzhou, Guangdong 511430, China
| | - Huanying Zheng
- Center for Disease Control and Prevention of Guangdong Province, Guangzhou, Guangdong 511430, China
| | - Xiaoling Deng
- Center for Disease Control and Prevention of Guangdong Province, Guangzhou, Guangdong 511430, China
| | - Wenyong Zhang
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Chuwen Lin
- Centre for Infection and Immunity Studies (CIIS), School of Medicine, Shenzhen Campus of Sun Yat-sen University, Guangdong 518107, China
| | - Mang Shi
- Centre for Infection and Immunity Studies (CIIS), School of Medicine, Shenzhen Campus of Sun Yat-sen University, Guangdong 518107, China
| | - Chun-Mei Li
- Centre for Infection and Immunity Studies (CIIS), School of Medicine, Shenzhen Campus of Sun Yat-sen University, Guangdong 518107, China
| | - Yu Zhang
- Guangzhou Customs District Technology Center, Guangzhou, Guangdong 510623, China
| | - Lu Zhang
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for infectious disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, Guangdong 518112, China
| | - Jun Dai
- Guangzhou Customs District Technology Center, Guangzhou, Guangdong 510623, China
| | - Hongzhou Lu
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for infectious disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, Guangdong 518112, China
| | - Jincun Zhao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510182, China.,Guangzhou Laboratory, Bio-island, Guangzhou, Guangdong 510320, People's Republic of China
| | - Xumu Zhang
- Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Department of Chemistry, College of Science, Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.,Medi-X Pingshan, Southern University of Science and Technology, Shenzhen, Guangdong 518118, China
| | - Deyin Guo
- Centre for Infection and Immunity Studies (CIIS), School of Medicine, Shenzhen Campus of Sun Yat-sen University, Guangdong 518107, China
| |
Collapse
|
27
|
Remdesivir and GS-441524 Retain Antiviral Activity against Delta, Omicron, and Other Emergent SARS-CoV-2 Variants. Antimicrob Agents Chemother 2022; 66:e0022222. [PMID: 35532238 PMCID: PMC9211395 DOI: 10.1128/aac.00222-22] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Genetic variation of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in the emergence and rapid spread of multiple variants throughout the pandemic, of which Omicron is currently the predominant variant circulating worldwide. SARS-CoV-2 variants of concern/variants of interest (VOC/VOI) have evidence of increased viral transmission, disease severity, or decreased effectiveness of vaccines and neutralizing antibodies. Remdesivir (RDV [VEKLURY]) is a nucleoside analog prodrug and the first FDA-approved antiviral treatment of COVID-19. Here, we present a comprehensive antiviral activity assessment of RDV and its parent nucleoside, GS-441524, against 10 current and former SARS-CoV-2 VOC/VOI clinical isolates by nucleoprotein enzyme-linked immunosorbent assay (ELISA) and plaque reduction assay. Delta and Omicron variants remained susceptible to RDV and GS-441524, with 50% effective concentration (EC50) values 0.30- to 0.62-fold of those observed against the ancestral WA1 isolate. All other tested variants exhibited EC50 values ranging from 0.13- to 2.3-fold of the observed EC50 values against WA1. Analysis of nearly 6 million publicly available variant isolate sequences confirmed that Nsp12, the RNA-dependent RNA polymerase (RdRp) target of RDV and GS-441524, is highly conserved across variants, with only 2 prevalent changes (P323L and G671S). Using recombinant viruses, both RDV and GS-441524 retained potency against all viruses containing frequent variant substitutions or their combination. Taken together, these results highlight the conserved nature of SARS-CoV-2 Nsp12 and provide evidence of sustained SARS-CoV-2 antiviral activity of RDV and GS-441524 across the tested variants. The observed pan-variant activity of RDV supports its continued use for the treatment of COVID-19 regardless of the SARS-CoV-2 variant.
Collapse
|
28
|
Schäfer A, Martinez DR, Won JJ, Meganck RM, Moreira FR, Brown AJ, Gully KL, Zweigart MR, Conrad WS, May SR, Dong S, Kalla R, Chun K, Du Pont V, Babusis D, Tang J, Murakami E, Subramanian R, Barrett KT, Bleier BJ, Bannister R, Feng JY, Bilello JP, Cihlar T, Mackman RL, Montgomery SA, Baric RS, Sheahan TP. Therapeutic treatment with an oral prodrug of the remdesivir parental nucleoside is protective against SARS-CoV-2 pathogenesis in mice. Sci Transl Med 2022; 14:eabm3410. [PMID: 35315683 PMCID: PMC8995034 DOI: 10.1126/scitranslmed.abm3410] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 03/16/2022] [Indexed: 12/19/2022]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic remains uncontrolled despite the rapid rollout of safe and effective severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines, underscoring the need to develop highly effective antivirals. In the setting of waning immunity from infection and vaccination, breakthrough infections are becoming increasingly common and treatment options remain limited. In addition, the emergence of SARS-CoV-2 variants of concern, with their potential to escape neutralization by therapeutic monoclonal antibodies, emphasizes the need to develop second-generation oral antivirals targeting highly conserved viral proteins that can be rapidly deployed to outpatients. Here, we demonstrate the in vitro antiviral activity and in vivo therapeutic efficacy of GS-621763, an orally bioavailable prodrug of GS-441524, the parent nucleoside of remdesivir, which targets the highly conserved virus RNA-dependent RNA polymerase. GS-621763 exhibited antiviral activity against SARS-CoV-2 in lung cell lines and two different human primary lung cell culture systems. GS-621763 was also potently antiviral against a genetically unrelated emerging coronavirus, Middle East respiratory syndrome CoV (MERS-CoV). The dose-proportional pharmacokinetic profile observed after oral administration of GS-621763 translated to dose-dependent antiviral activity in mice infected with SARS-CoV-2. Therapeutic GS-621763 administration reduced viral load and lung pathology; treatment also improved pulmonary function in COVID-19 mouse model. A direct comparison of GS-621763 with molnupiravir, an oral nucleoside analog antiviral that has recently received EUA approval, proved both drugs to be similarly efficacious in mice. These data support the exploration of GS-441524 oral prodrugs for the treatment of COVID-19.
Collapse
Affiliation(s)
- Alexandra Schäfer
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - David R. Martinez
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - John J. Won
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Rita M. Meganck
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Fernando R. Moreira
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Ariane J. Brown
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Kendra L. Gully
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Mark R. Zweigart
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - William S. Conrad
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Samantha R. May
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Stephanie Dong
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Rao Kalla
- Gilead Sciences, Inc, Foster City, CA, 94404, USA
| | - Kwon Chun
- Gilead Sciences, Inc, Foster City, CA, 94404, USA
| | | | | | | | | | | | | | | | | | - Joy Y. Feng
- Gilead Sciences, Inc, Foster City, CA, 94404, USA
| | | | - Tomas Cihlar
- Gilead Sciences, Inc, Foster City, CA, 94404, USA
| | | | - Stephanie A. Montgomery
- Department of Pathology and Laboratory Medicine, University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA
| | - Ralph S. Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Timothy P. Sheahan
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| |
Collapse
|
29
|
Zhang R, Zhang Y, Zheng W, Shang W, Wu Y, Li N, Xiong J, Jiang H, Shen J, Xiao G, Xie Y, Zhang L. Oral remdesivir derivative VV116 is a potent inhibitor of respiratory syncytial virus with efficacy in mouse model. Signal Transduct Target Ther 2022; 7:123. [PMID: 35429988 PMCID: PMC9012943 DOI: 10.1038/s41392-022-00963-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/10/2022] [Accepted: 03/10/2022] [Indexed: 11/10/2022] Open
|
30
|
Yan VC. Phosphoramidate Prodrugs Continue to Deliver: The Journey of Remdesivir (GS-5734) from the Liver to Peripheral Blood Mononuclear Cells. ACS Med Chem Lett 2022; 13:520-523. [PMID: 35450350 PMCID: PMC9014429 DOI: 10.1021/acsmedchemlett.2c00105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Remdesivir (GS-5734) is a monophenol, 2-ethylbutylalanine phosphoramidate prodrug of GS-441524 that is FDA-approved for the treatment of patients hospitalized for COVID-19. Despite showing strong, broad-spectrum antiviral activity in preclinical models, the clinical efficacy of remdesivir is mixed. This work highlights the pharmacodynamic discordance of remdesivir between humans and non-human primates, thereby demonstrating that non-human primate disease models overestimate the therapeutic efficacy of phosphoramidate prodrugs.
Collapse
Affiliation(s)
- Victoria C. Yan
- University of Texas MD Anderson Cancer
Center, Houston, Texas 77030, United States
| |
Collapse
|
31
|
Rasmussen HB, Thomsen R, Hansen PR. Nucleoside analog GS-441524: pharmacokinetics in different species, safety, and potential effectiveness against Covid-19. Pharmacol Res Perspect 2022; 10:e00945. [PMID: 35396928 PMCID: PMC8994193 DOI: 10.1002/prp2.945] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 02/12/2022] [Indexed: 12/28/2022] Open
Abstract
GS-441524, the parent nucleoside of remdesivir, has been proposed to be effective against Covid-19 based on in vitro studies and studies in animals. However, randomized clinical trials of the agent to treat Covid-19 have not been conducted. Here, we evaluated GS-441524 for Covid-19 treatment based on studies reporting pharmacokinetic parameters of the agent in mice, rats, cats, dogs, monkeys, and the single individual in the first-in-human trial supplemented with information about its activity against severe acute respiratory syndrome coronavirus 2 and safety. A dosing interval of 8 h was considered clinically relevant and used to calculate steady-state plasma concentrations of GS-441524. These ranged from 0.27 to 234.41 μM, reflecting differences in species, doses, and administration routes. Fifty percent maximal inhibitory concentrations of GS-441524 against severe acute respiratory syndrome coronavirus 2 ranged from 0.08 μM to above 10 μM with a median of 0.87 μM whereas concentrations required to produce 90% of the maximal inhibition of the virus varied from 0.18 µM to more than 20 µM with a median of 1.42 µM in the collected data. Most of these concentrations were substantially lower than the calculated steady-state plasma concentrations of the agent. Plasma exposures to orally administered GS-441524, calculated after normalization of doses, were larger for dogs, mice, and rats than cynomolgus monkeys and humans, probably reflecting interspecies differences in oral uptake with reported oral bioavailabilities below 8.0% in cynomolgus monkeys and values as high as 92% in dogs. Reported oral bioavailabilities in rodents ranged from 12% to 57%. Using different presumptions, we estimated human oral bioavailability of GS-441524 at 13% and 20%. Importantly, doses of GS-441524 lower than the 13 mg/kg dose used in the first-in-human trial may be effective against Covid-19. Also, GS-441524 appears to be well-tolerated. In conclusion, GS-441524 has potential for oral treatment of Covid-19.
Collapse
Affiliation(s)
- Henrik Berg Rasmussen
- Institute of Biological Psychiatry, Mental Health Centre Sct. Hans, Roskilde, Denmark.,Department of Science and Environment, Roskilde University Center, Roskilde, Denmark
| | - Ragnar Thomsen
- Section of Forensic Chemistry, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Peter Riis Hansen
- Department of Cardiology, Herlev and Gentofte Hospital, Hellerup, Denmark
| |
Collapse
|
32
|
Sierocki P, Gaillard K, Arellano Reyes RA, Donnart C, Lambert E, Grosse S, Arzel L, Tessier A, Guillemont J, Mathé-Allainmat M, Lebreton J. Synthesis of novel C-nucleoside analogues bearing an anomeric cyano and a 1,2,3-triazole nucleobase as potential antiviral agents. Org Biomol Chem 2022; 20:2715-2728. [PMID: 35293914 DOI: 10.1039/d1ob02451e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A linear sequence to access a novel series of C-nucleosides bearing a quaternary carbon at the anomeric position tethered to a 4-substituted 1,2,3-triazole ring is described. Most of the compounds were obtained from a C-1 alkynyl furanoside, by a tandem or two-step CuAAC/functionalisation sequence, along with a diastereoselective cyanation of the furanoside derivatives in acidic conditions.
Collapse
Affiliation(s)
- Pierre Sierocki
- Nantes Université, CNRS, Laboratoire CEISAM-UMR 6230, Faculté des Sciences et des Techniques, 2 rue de la Houssinière, BP 92208, 44322 Nantes Cedex 3, France.
| | - Krystal Gaillard
- Nantes Université, CNRS, Laboratoire CEISAM-UMR 6230, Faculté des Sciences et des Techniques, 2 rue de la Houssinière, BP 92208, 44322 Nantes Cedex 3, France.
| | - Ruben Arturo Arellano Reyes
- Nantes Université, CNRS, Laboratoire CEISAM-UMR 6230, Faculté des Sciences et des Techniques, 2 rue de la Houssinière, BP 92208, 44322 Nantes Cedex 3, France.
| | - Chloé Donnart
- Nantes Université, CNRS, Laboratoire CEISAM-UMR 6230, Faculté des Sciences et des Techniques, 2 rue de la Houssinière, BP 92208, 44322 Nantes Cedex 3, France.
| | - Emilie Lambert
- Janssen-Cilag, Campus de Maigremont BP615, F-27106 Val de Reuil, Cedex, France
| | - Sandrine Grosse
- Janssen Research & Development, Turnhotseweg 30, 2340 Beerse, Belgium
| | - Laurence Arzel
- Nantes Université, CNRS, Laboratoire CEISAM-UMR 6230, Faculté des Sciences et des Techniques, 2 rue de la Houssinière, BP 92208, 44322 Nantes Cedex 3, France.
| | - Arnaud Tessier
- Nantes Université, CNRS, Laboratoire CEISAM-UMR 6230, Faculté des Sciences et des Techniques, 2 rue de la Houssinière, BP 92208, 44322 Nantes Cedex 3, France.
| | - Jerome Guillemont
- Janssen-Cilag, Campus de Maigremont BP615, F-27106 Val de Reuil, Cedex, France
| | - Monique Mathé-Allainmat
- Nantes Université, CNRS, Laboratoire CEISAM-UMR 6230, Faculté des Sciences et des Techniques, 2 rue de la Houssinière, BP 92208, 44322 Nantes Cedex 3, France.
| | - Jacques Lebreton
- Nantes Université, CNRS, Laboratoire CEISAM-UMR 6230, Faculté des Sciences et des Techniques, 2 rue de la Houssinière, BP 92208, 44322 Nantes Cedex 3, France.
| |
Collapse
|
33
|
Mackman RL. Phosphoramidate Prodrugs Continue to Deliver, The Journey of Remdesivir (GS-5734) from RSV to SARS-CoV-2. ACS Med Chem Lett 2022; 13:338-347. [PMID: 35291757 PMCID: PMC8887656 DOI: 10.1021/acsmedchemlett.1c00624] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 02/03/2022] [Indexed: 12/24/2022] Open
Abstract
![]()
Remdesivir (GS-5734) is a monophenol,
2-ethylbutylalanine phosphoramidate
prodrug of a 1′-cyano-4-aza-7,9-dideazaadenosine C-nucleoside
(GS-441524) that is FDA approved for the treatment of hospitalized
patients with COVID-19. The prodrug, initially invented for respiratory
syncytial virus, was later found to have activity toward emerging
RNA viruses, including Ebola and coronaviruses. Remdesivir is among
the first examples of a phosphoramidate prodrug aimed at delivering
a nucleoside monophosphate into lung cells to efficiently generate
the nucleoside triphosphate inhibitor of viral RNA polymerases. With
remdesivir as the central case study, the present work describes the
antiviral potency and in vitro metabolism evidence for lung cell activation
of phosphoramidates, together with their in vivo pharmacokinetics,
lung distribution, and antiviral efficacy toward respiratory viruses.
The lung delivery of nucleoside monophosphate analogs using prodrugs
warrants further investigation toward the development of novel respiratory
antivirals.
Collapse
|
34
|
Cihlar T, Mackman RL. Journey of remdesivir from the inhibition of hepatitis C virus to the treatment of COVID-19. Antivir Ther 2022; 27:13596535221082773. [DOI: 10.1177/13596535221082773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
If a planned path reaches a dead-end, one can simply stop. Or one can turn around, walk back to the last intersection and take another path, or one can consider taking few paths in parallel. The last scenario is reflective of the journey of remdesivir, the first antiviral for the treatment of COVID-19, that was approved by FDA less than 10 months after the isolation of SARS-CoV-2, the virus responsible for the COVID-19 pandemic. As of January 2022, 10 million COVID-19 patients have been treated with remdesivir worldwide, but the journey of this molecule started more than a decade earlier with the search for a cure of hepatitis C virus. The development path of remdesivir before the emergence of COVID-19 represents a valuable example of a preemptive pandemic preparedness, but the pursuit of this path would not have been possible without sustaining support of John C. Martin, whom we will sorely miss for his piercing vision, uncompromising leadership, and genuine compassion for patients suffering around the world.
Collapse
|
35
|
Vermillion MS, Murakami E, Ma B, Pitts J, Tomkinson A, Rautiola D, Babusis D, Irshad H, Siegel D, Kim C, Zhao X, Niu C, Yang J, Gigliotti A, Kadrichu N, Bilello JP, Ellis S, Bannister R, Subramanian R, Smith B, Mackman RL, Lee WA, Kuehl PJ, Hartke J, Cihlar T, Porter DP. Inhaled remdesivir reduces viral burden in a nonhuman primate model of SARS-CoV-2 infection. Sci Transl Med 2022; 14:eabl8282. [PMID: 34968150 PMCID: PMC8961622 DOI: 10.1126/scitranslmed.abl8282] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 12/20/2021] [Indexed: 12/12/2022]
Abstract
Remdesivir (RDV) is a nucleotide analog prodrug with demonstrated clinical benefit in patients with coronavirus disease 2019 (COVID-19). In October 2020, the US FDA approved intravenous (IV) RDV as the first treatment for hospitalized COVID-19 patients. Furthermore, RDV has been approved or authorized for emergency use in more than 50 countries. To make RDV more convenient for non-hospitalized patients earlier in disease, alternative routes of administration are being evaluated. Here, we investigated the pharmacokinetics and efficacy of RDV administered by head dome inhalation in African green monkeys (AGM). Relative to an IV administration of RDV at 10 mg/kg, an approximately 20-fold lower dose administered by inhalation produced comparable concentrations of the pharmacologically active triphosphate in lower respiratory tract tissues. Distribution of the active triphosphate into the upper respiratory tract was also observed following inhaled RDV exposure. Inhalation RDV dosing resulted in lower systemic exposures to RDV and its metabolites as compared with IV RDV dosing. An efficacy study with repeated dosing of inhaled RDV in an AGM model of SARS-CoV-2 infection demonstrated reductions in viral replication in bronchoalveolar lavage fluid and respiratory tract tissues compared with placebo. Efficacy was observed with inhaled RDV administered once daily at a pulmonary deposited dose of 0.35 mg/kg beginning approximately 8 hours post-infection. Moreover, the efficacy of inhaled RDV was similar to that of IV RDV administered once at 10 mg/kg followed by 5 mg/kg daily in the same study. Together, these findings support further clinical development of inhalation RDV.
Collapse
Affiliation(s)
| | - Eisuke Murakami
- Gilead Sciences; 333 Lakeside Drive, Foster City, CA 94404, USA
| | - Bin Ma
- Gilead Sciences; 333 Lakeside Drive, Foster City, CA 94404, USA
| | - Jared Pitts
- Gilead Sciences; 333 Lakeside Drive, Foster City, CA 94404, USA
| | | | - Davin Rautiola
- Gilead Sciences; 333 Lakeside Drive, Foster City, CA 94404, USA
| | - Darius Babusis
- Gilead Sciences; 333 Lakeside Drive, Foster City, CA 94404, USA
| | - Hammad Irshad
- Lovelace Biomedical; 2425 Ridgecrest Drive, SE, Albuquerque, NM 87108, USA
| | - Dustin Siegel
- Gilead Sciences; 333 Lakeside Drive, Foster City, CA 94404, USA
| | - Cynthia Kim
- Gilead Sciences; 333 Lakeside Drive, Foster City, CA 94404, USA
| | - Xiaofeng Zhao
- Gilead Sciences; 333 Lakeside Drive, Foster City, CA 94404, USA
| | - Congrong Niu
- Gilead Sciences; 333 Lakeside Drive, Foster City, CA 94404, USA
| | - Jesse Yang
- Gilead Sciences; 333 Lakeside Drive, Foster City, CA 94404, USA
| | - Andrew Gigliotti
- Lovelace Biomedical; 2425 Ridgecrest Drive, SE, Albuquerque, NM 87108, USA
| | - Nani Kadrichu
- Inspired - Pulmonary Solutions; San Carlos, CA 94070, USA
| | - John P. Bilello
- Gilead Sciences; 333 Lakeside Drive, Foster City, CA 94404, USA
| | - Scott Ellis
- Gilead Sciences; 333 Lakeside Drive, Foster City, CA 94404, USA
| | - Roy Bannister
- Gilead Sciences; 333 Lakeside Drive, Foster City, CA 94404, USA
| | | | - Bill Smith
- Gilead Sciences; 333 Lakeside Drive, Foster City, CA 94404, USA
| | | | - William A. Lee
- Gilead Sciences; 333 Lakeside Drive, Foster City, CA 94404, USA
| | - Philip J. Kuehl
- Lovelace Biomedical; 2425 Ridgecrest Drive, SE, Albuquerque, NM 87108, USA
| | - Jim Hartke
- Gilead Sciences; 333 Lakeside Drive, Foster City, CA 94404, USA
| | - Tomas Cihlar
- Gilead Sciences; 333 Lakeside Drive, Foster City, CA 94404, USA
| | | |
Collapse
|
36
|
Lo MK, Shrivastava-Ranjan P, Chatterjee P, Flint M, Beadle JR, Valiaeva N, Murphy J, Schooley RT, Hostetler KY, Montgomery JM, Spiropoulou CF. Broad-Spectrum In Vitro Antiviral Activity of ODBG-P-RVn: An Orally-Available, Lipid-Modified Monophosphate Prodrug of Remdesivir Parent Nucleoside (GS-441524). Microbiol Spectr 2021; 9:e0153721. [PMID: 34817209 PMCID: PMC8612139 DOI: 10.1128/spectrum.01537-21] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 10/28/2021] [Indexed: 11/20/2022] Open
Abstract
The necessity for intravenous administration of remdesivir confines its utility for treatment of coronavirus disease 2019 (COVID-19) to hospitalized patients. We evaluated the broad-spectrum antiviral activity of ODBG-P-RVn, an orally available, lipid-modified monophosphate prodrug of the remdesivir parent nucleoside (GS-441524), against viruses that cause diseases of human public health concern, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). ODBG-P-RVn showed 20-fold greater antiviral activity than GS-441524 and had activity nearly equivalent to that of remdesivir in primary-like human small airway epithelial cells. Our results warrant in vivo efficacy evaluation of ODBG-P-RVn. IMPORTANCE While remdesivir remains one of the few drugs approved by the FDA to treat coronavirus disease 2019 (COVID-19), its intravenous route of administration limits its use to hospital settings. Optimizing the stability and absorption of remdesivir may lead to a more accessible and clinically potent therapeutic. Here, we describe an orally available lipid-modified version of remdesivir with activity nearly equivalent to that of remdesivir against emerging viruses that cause significant disease, including Ebola and Nipah viruses. Our work highlights the importance of such modifications to optimize drug delivery to relevant and appropriate human tissues that are most affected by such diseases.
Collapse
Affiliation(s)
- Michael K. Lo
- Viral Special Pathogens Branch, Centers for Disease Control and Prevention, Department of Health and Human Services, Atlanta, Georgia, USA
| | - Punya Shrivastava-Ranjan
- Viral Special Pathogens Branch, Centers for Disease Control and Prevention, Department of Health and Human Services, Atlanta, Georgia, USA
| | - Payel Chatterjee
- Viral Special Pathogens Branch, Centers for Disease Control and Prevention, Department of Health and Human Services, Atlanta, Georgia, USA
| | - Mike Flint
- Viral Special Pathogens Branch, Centers for Disease Control and Prevention, Department of Health and Human Services, Atlanta, Georgia, USA
| | - James R. Beadle
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - Nadejda Valiaeva
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - Joyce Murphy
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - Robert T. Schooley
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - Karl Y. Hostetler
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - Joel M. Montgomery
- Viral Special Pathogens Branch, Centers for Disease Control and Prevention, Department of Health and Human Services, Atlanta, Georgia, USA
| | - Christina F. Spiropoulou
- Viral Special Pathogens Branch, Centers for Disease Control and Prevention, Department of Health and Human Services, Atlanta, Georgia, USA
| |
Collapse
|
37
|
Wang Z, Yang L. Broad-spectrum prodrugs with anti-SARS-CoV-2 activities: Strategies, benefits, and challenges. J Med Virol 2021; 94:1373-1390. [PMID: 34897729 DOI: 10.1002/jmv.27517] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 01/18/2023]
Abstract
In this era, broad-spectrum prodrugs with anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) activities are gaining considerable attention owing to their potential clinical benefits and role in combating the fast-spreading coronavirus disease 2019 (COVID-19) pandemic. The last 2 years have seen a surge of reports on various broad-spectrum prodrugs against SARS-CoV-2, and in in vitro studies, animal models, and clinical practice. Currently, only remdesivir (with many controversies and limitations) has been approved by the U.S. FDA for the treatment of SARS-CoV-2 infection, and additional potent anti-SARS-CoV-2 drugs are urgently required to enrich the defense arsenals. The world has ubiquitously grappled with the COVID-19 pandemic, and the availability of broad-spectrum prodrugs provides great hope for us to subdue this global threat. This article reviews promising treatment strategies, antiviral mechanisms, potential benefits, and daunting clinical challenges of anti-SARS-CoV-2 agents to provide some important guidance for future clinical treatment.
Collapse
Affiliation(s)
- Zhonglei Wang
- Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong, P. R. China.,Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Tsinghua University, Beijing, P. R. China
| | - Liyan Yang
- Shandong Provincial Key Laboratory of Laser Polarization and Information Technology, School of Physics and Physical Engineering, Qufu Normal University, Qufu, Shandong, P. R. China
| |
Collapse
|
38
|
Cox RM, Wolf JD, Lieber CM, Sourimant J, Lin MJ, Babusis D, DuPont V, Chan J, Barrett KT, Lye D, Kalla R, Chun K, Mackman RL, Ye C, Cihlar T, Martinez-Sobrido L, Greninger AL, Bilello JP, Plemper RK. Oral prodrug of remdesivir parent GS-441524 is efficacious against SARS-CoV-2 in ferrets. Nat Commun 2021; 12:6415. [PMID: 34741049 PMCID: PMC8571282 DOI: 10.1038/s41467-021-26760-4] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/22/2021] [Indexed: 02/05/2023] Open
Abstract
Remdesivir is an antiviral approved for COVID-19 treatment, but its wider use is limited by intravenous delivery. An orally bioavailable remdesivir analog may boost therapeutic benefit by facilitating early administration to non-hospitalized patients. This study characterizes the anti-SARS-CoV-2 efficacy of GS-621763, an oral prodrug of remdesivir parent nucleoside GS-441524. Both GS-621763 and GS-441524 inhibit SARS-CoV-2, including variants of concern (VOC) in cell culture and human airway epithelium organoids. Oral GS-621763 is efficiently converted to plasma metabolite GS-441524, and in lungs to the triphosphate metabolite identical to that generated by remdesivir, demonstrating a consistent mechanism of activity. Twice-daily oral administration of 10 mg/kg GS-621763 reduces SARS-CoV-2 burden to near-undetectable levels in ferrets. When dosed therapeutically against VOC P.1 gamma γ, oral GS-621763 blocks virus replication and prevents transmission to untreated contact animals. These results demonstrate therapeutic efficacy of a much-needed orally bioavailable analog of remdesivir in a relevant animal model of SARS-CoV-2 infection. Remdesivir is an approved antiviral treatment for COVID-19, but it needs to be administered intravenously. Here, Cox et al. show that GS-621763, a prodrug of remdesivir parent nucleoside GS-441524 has good oral bioavailability and inhibits SARS-CoV-2 and variants of concerns in ferrets.
Collapse
Affiliation(s)
- Robert M Cox
- Center for Translational Antiviral Research, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Josef D Wolf
- Center for Translational Antiviral Research, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Carolin M Lieber
- Center for Translational Antiviral Research, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Julien Sourimant
- Center for Translational Antiviral Research, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Michelle J Lin
- Virology Division, Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | | | | | - Julie Chan
- Gilead Sciences Inc, Foster City, CA, USA
| | | | - Diane Lye
- Gilead Sciences Inc, Foster City, CA, USA
| | - Rao Kalla
- Gilead Sciences Inc, Foster City, CA, USA
| | - Kwon Chun
- Gilead Sciences Inc, Foster City, CA, USA
| | | | - Chengjin Ye
- Texas Biomedical Research Institute, San Antonio, TX, USA
| | | | | | - Alexander L Greninger
- Virology Division, Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | | | - Richard K Plemper
- Center for Translational Antiviral Research, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA.
| |
Collapse
|
39
|
Abstract
Remdesivir (GS-5734, Veklury®) has remained the only antiviral drug formally approved by the US FDA for the treatment of Covid-19 (SARS-CoV-2 infection). Its key structural features are the fact that it is a C-nucleoside (adenosine) analogue, contains a 1'-cyano function, and could be considered as a ProTide based on the presence of a phosphoramidate group. Its antiviral spectrum and activity in animal models have been well established and so has been its molecular mode of action as a delayed chain terminator of the viral RdRp (RNA-dependent RNA polymerase). Its clinical efficacy has been evaluated, but needs to be optimized with regard to timing, dosage and duration of treatment, and route of administration. Safety, toxicity and pharmacokinetics need to be further addressed, and so are its potential combinations with other drugs such as corticosteroids (i.e. dexamethasone) and ribavirin.
Collapse
|
40
|
Kim EH, Kim YI, Jang SG, Im M, Jeong K, Choi YK, Han HJ. Antiviral effects of human placenta hydrolysate (Laennec ®) against SARS-CoV-2 in vitro and in the ferret model. J Microbiol 2021; 59:1056-1062. [PMID: 34613605 PMCID: PMC8493534 DOI: 10.1007/s12275-021-1367-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/20/2021] [Accepted: 08/31/2021] [Indexed: 11/30/2022]
Abstract
The COVID-19 pandemic has caused unprecedented health, social, and economic crises worldwide. However, to date, there is an only a limited effective treatment for this disease. Human placenta hydrolysate (hPH) has previously been shown to be safe and to improve the health condition in patients with hyperferritinemia and COVID-19. In this study, we aimed to determine the antiviral effects of hPH against SARS-CoV-2 in vitro and in vivo models and compared with Remdesivir, an FDA-approved drug for COVID-19 treatment. To assess whether hPH inhibited SARS-CoV-2 replication, we determined the CC50, EC50, and selective index (SI) in Vero cells by infection with a SARS-CoV-2 at an MOI of 0.01. Further, groups of ferrets infected with 105.8 TCID50/ml of SARS-CoV-2 and treated with hPH at 2, 4, 6 dpi, and compared their clinical manifestation and virus titers in respiratory tracts with PBS control-treated group. The mRNA expression of immune-related cytokines was determined by qRT-PCR. hPH treatment attenuated virus replication in a dose-dependent manner in vitro. In a ferret infection study, treatment with hPH resulted in minimal bodyweight loss and attenuated virus replication in the nasal wash, turbinates, and lungs of infected ferrets. In addition, qRT-PCR results revealed that the hPH treatment remarkably upregulated the gene expression of type I (IFN-α and IFN-β) and II (IFN-γ) IFNs in SARS-CoV-2 infected ferrets. Our data collectively suggest that hPH has antiviral efficacy against SARS-CoV-2 and might be a promising therapeutic agent for the treatment of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Eun-Ha Kim
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, 28644, Republic of Korea.,Zoonotic Infectious Diseases Research Center, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Young-Il Kim
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, 28644, Republic of Korea.,Zoonotic Infectious Diseases Research Center, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Seung-Gyu Jang
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, 28644, Republic of Korea.,Zoonotic Infectious Diseases Research Center, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Minju Im
- GREENCROSS WellBeing Co., Ltd., Seoul, 07335, Republic of Korea
| | - Kyeongsoo Jeong
- GREENCROSS WellBeing Co., Ltd., Seoul, 07335, Republic of Korea
| | - Young Ki Choi
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, 28644, Republic of Korea. .,Zoonotic Infectious Diseases Research Center, Chungbuk National University, Cheongju, 28644, Republic of Korea.
| | - Hae-Jung Han
- GREENCROSS WellBeing Co., Ltd., Seoul, 07335, Republic of Korea.
| |
Collapse
|
41
|
Schäfer A, Martinez DR, Won JJ, Moreira FR, Brown AJ, Gully KL, Kalla R, Chun K, Du Pont V, Babusis D, Tang J, Murakami E, Subramanian R, Barrett KT, Bleier BJ, Bannister R, Feng JY, Bilello JP, Cihlar T, Mackman RL, Montgomery SA, Baric RS, Sheahan TP. Therapeutic efficacy of an oral nucleoside analog of remdesivir against SARS-CoV-2 pathogenesis in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.09.13.460111. [PMID: 34545367 PMCID: PMC8452096 DOI: 10.1101/2021.09.13.460111] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The COVID-19 pandemic remains uncontrolled despite the rapid rollout of safe and effective SARS-CoV-2 vaccines, underscoring the need to develop highly effective antivirals. In the setting of waning immunity from infection and vaccination, breakthrough infections are becoming increasingly common and treatment options remain limited. Additionally, the emergence of SARS-CoV-2 variants of concern with their potential to escape therapeutic monoclonal antibodies emphasizes the need to develop second-generation oral antivirals targeting highly conserved viral proteins that can be rapidly deployed to outpatients. Here, we demonstrate the in vitro antiviral activity and in vivo therapeutic efficacy of GS-621763, an orally bioavailable prodrug of GS-441524, the parental nucleoside of remdesivir, which targets the highly conserved RNA-dependent RNA polymerase. GS-621763 exhibited significant antiviral activity in lung cell lines and two different human primary lung cell culture systems. The dose-proportional pharmacokinetic profile observed after oral administration of GS-621763 translated to dose-dependent antiviral activity in mice infected with SARS-CoV-2. Therapeutic GS-621763 significantly reduced viral load, lung pathology, and improved pulmonary function in COVID-19 mouse model. A direct comparison of GS-621763 with molnupiravir, an oral nucleoside analog antiviral currently in human clinical trial, proved both drugs to be similarly efficacious. These data demonstrate that therapy with oral prodrugs of remdesivir can significantly improve outcomes in SARS-CoV-2 infected mice. Thus, GS-621763 supports the exploration of GS-441524 oral prodrugs for the treatment of COVID-19 in humans.
Collapse
Affiliation(s)
- Alexandra Schäfer
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- These authors contributed equally to this manuscript
| | - David R. Martinez
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- These authors contributed equally to this manuscript
| | - John J. Won
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Fernando R. Moreira
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ariane J. Brown
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kendra L. Gully
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Rao Kalla
- Gilead Sciences, Inc, Foster City, CA, USA
| | - Kwon Chun
- Gilead Sciences, Inc, Foster City, CA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | - Stephanie A. Montgomery
- Department of Pathology and Laboratory Medicine, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Ralph S. Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Timothy P. Sheahan
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
42
|
Lo MK, Shrivastava-Ranjan P, Chatterjee P, Flint M, Beadle JR, Valiaeva N, Schooley RT, Hostetler KY, Montgomery JM, Spiropoulou C. Broad-spectrum in vitro antiviral activity of ODBG-P-RVn: an orally-available, lipid-modified monophosphate prodrug of remdesivir parent nucleoside (GS-441524). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021. [PMID: 34401879 PMCID: PMC8366795 DOI: 10.1101/2021.08.06.455494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The intravenous administration of remdesivir for COVID-19 confines its utility to hospitalized patients. We evaluated the broad-spectrum antiviral activity of ODBG-P-RVn, an orally available, lipid-modified monophosphate prodrug of the remdesivir parent nucleoside (GS-441524) against viruses that cause diseases of human public health concern, including SARS-CoV-2. ODBG-P-RVn showed 20-fold greater antiviral activity than GS-441524 and had near-equivalent activity to remdesivir in primary-like human small airway epithelial cells. Our results warrant investigation of ODBG-P-RVn efficacy in vivo.
Collapse
|
43
|
Do TND, Donckers K, Vangeel L, Chatterjee AK, Gallay PA, Bobardt MD, Bilello JP, Cihlar T, De Jonghe S, Neyts J, Jochmans D. A robust SARS-CoV-2 replication model in primary human epithelial cells at the air liquid interface to assess antiviral agents. Antiviral Res 2021; 192:105122. [PMID: 34186107 PMCID: PMC8233549 DOI: 10.1016/j.antiviral.2021.105122] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 06/15/2021] [Accepted: 06/21/2021] [Indexed: 11/28/2022]
Abstract
There are, besides remdesivir, no approved antivirals for the treatment of SARS-CoV-2 infections. To aid in the search for antivirals against this virus, we explored the use of human tracheal airway epithelial cells (HtAEC) and human small airway epithelial cells (HsAEC) grown at the air-liquid interface (ALI). These cultures were infected at the apical side with one of two different SARS-CoV-2 isolates. Each virus was shown to replicate to high titers for extended periods of time (at least 8 days) and, in particular an isolate with the D614G in the spike (S) protein did so more efficiently at 35 °C than 37 °C. The effect of a selected panel of reference drugs that were added to the culture medium at the basolateral side of the system was explored. Remdesivir, GS-441524 (the parent nucleoside of remdesivir), EIDD-1931 (the parent nucleoside of molnupiravir) and IFN (β1 and λ1) all resulted in dose-dependent inhibition of viral RNA and infectious virus titers collected at the apical side. However, AT-511 (the free base form of AT-527 currently in clinical testing) failed to inhibit viral replication in these in vitro primary cell models. Together, these results provide a reference for further studies aimed at selecting SARS-CoV-2 inhibitors for further preclinical and clinical development.
Collapse
Affiliation(s)
- Thuc Nguyen Dan Do
- KU Leuven - Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Kim Donckers
- KU Leuven - Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Laura Vangeel
- KU Leuven - Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Arnab K Chatterjee
- CALIBR - Department of Medicinal Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Philippe A Gallay
- CALIBR - Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, USA
| | - Michael D Bobardt
- CALIBR - Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, USA
| | | | | | - Steven De Jonghe
- KU Leuven - Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Johan Neyts
- KU Leuven - Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Leuven, Belgium.
| | - Dirk Jochmans
- KU Leuven - Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Leuven, Belgium.
| |
Collapse
|
44
|
Why Remdesivir Failed: Preclinical Assumptions Overestimate the Clinical Efficacy of Remdesivir for COVID-19 and Ebola. Antimicrob Agents Chemother 2021; 65:e0111721. [PMID: 34252308 PMCID: PMC8448091 DOI: 10.1128/aac.01117-21] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Remdesivir is a nucleoside monophosphoramidate prodrug that has been FDA approved for coronavirus disease 2019 (COVID-19). However, the clinical efficacy of remdesivir for COVID-19 remains contentious, as several trials have not found statistically significant differences in either time to clinical improvement or mortality between remdesivir-treated and control groups. Similarly, the inability of remdesivir to provide a clinically significant benefit above other investigational agents in patients with Ebola contrasts with strong, curative preclinical data generated in rhesus macaque models. For both COVID-19 and Ebola, significant discordance between the robust preclinical data and remdesivir’s lackluster clinical performance have left many puzzled. Here, we critically evaluate the assumptions of the models underlying remdesivir’s promising preclinical data and show that such assumptions overpredict efficacy and minimize toxicity of remdesivir in humans. Had the limitations of in vitro drug efficacy testing and species differences in drug metabolism been considered, the underwhelming clinical performance of remdesivir for both COVID-19 and Ebola would have been fully anticipated.
Collapse
|
45
|
Groaz E, De Clercq E, Herdewijn P. Anno 2021: Which antivirals for the coming decade? ANNUAL REPORTS IN MEDICINAL CHEMISTRY 2021; 57:49-107. [PMID: 34744210 PMCID: PMC8563371 DOI: 10.1016/bs.armc.2021.09.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Despite considerable progress in the development of antiviral drugs, among which anti-immunodeficiency virus (HIV) and anti-hepatitis C virus (HCV) medications can be considered real success stories, many viral infections remain without an effective treatment. This not only applies to infectious outbreaks caused by zoonotic viruses that have recently spilled over into humans such as severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2), but also ancient viral diseases that have been brought under control by vaccination such as variola (smallpox), poliomyelitis, measles, and rabies. A largely unsolved problem are endemic respiratory infections due to influenza, respiratory syncytial virus (RSV), and rhinoviruses, whose associated morbidity will likely worsen with increasing air pollution. Furthermore, climate changes will expose industrialized countries to a dangerous resurgence of viral hemorrhagic fevers, which might also become global infections. Herein, we summarize the recent progress that has been made in the search for new antivirals against these different threats that the world population will need to confront with increasing frequency in the next decade.
Collapse
Affiliation(s)
- Elisabetta Groaz
- Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium,Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy,Corresponding author:
| | - Erik De Clercq
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Piet Herdewijn
- Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| |
Collapse
|