1
|
Paul S, Hussain NAS, Lillico DME, Suara MA, Ganiyu SO, Gamal El-Din M, Stafford JL. Examining the immunotoxicity of oil sands process affected waters using a human macrophage cell line. Toxicology 2023; 500:153680. [PMID: 38006929 DOI: 10.1016/j.tox.2023.153680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/09/2023] [Accepted: 11/21/2023] [Indexed: 11/27/2023]
Abstract
Oil sands process affected water (OSPW) is produced during the surface mining of the oil sands bitumen deposits in Northern Alberta. OSPW contains variable quantities of organic and inorganic components causing toxic effects on living organisms. Advanced Oxidation Processes (AOPs) are widely used to degrade toxic organic components from OSPW including naphthenic acids (NAs). However, there is no established biological procedure to assess the effectiveness of the remediation processes. Our previous study showed that human macrophage cells (THP-1) can be used as a bioindicator system to evaluate the effectiveness of OSPW treatments through examining the proinflammatory gene transcription levels. In the present study, we investigated the immunotoxicological changes in THP-1 cells following exposure to untreated and AOP-treated OSPW. Specifically, using proinflammatory cytokine protein secretion assays we showed that AOP treatment significantly abrogates the ability of OSPW to induce the secretion of IL-1β, IL-6, IL-8, TNF-α, IL-1Ra and MCP-1. By measuring transcriptional activity as well as surface protein expression levels, we also showed that two select immune cell surface markers, CD40 and CD54, were significantly elevated following OSPW exposure. However, AOP treatments abolished the immunostimulatory properties of OSPW to enhance the surface expression of these immune proteins. Finally, a transcriptome-based approach was used to examine the proinflammatory effects of OSPW as well as the abrogation of immunotoxicity following AOP treatments. Overall, this research shows how a human macrophage cell-based biomonitoring system serves as an effective in vitro tool to study the immunotoxicity of OSPW samples before and after targeted remediation strategies.
Collapse
Affiliation(s)
- Sunanda Paul
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Nora A S Hussain
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Dustin M E Lillico
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Monsuru A Suara
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
| | - Soliu O Ganiyu
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
| | - Mohamed Gamal El-Din
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
| | - James L Stafford
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada.
| |
Collapse
|
2
|
Xia XH, Liang N, Ma XY, Qin L, Wang SY, Chang ZJ. Inhibition of the NF-κB signaling pathway affects gonadal differentiation and leads to male bias in Paramisgurnus dabryanus. Theriogenology 2023; 207:82-95. [PMID: 37269599 DOI: 10.1016/j.theriogenology.2023.05.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/19/2023] [Accepted: 05/20/2023] [Indexed: 06/05/2023]
Abstract
In recent years, sex-controlled breeding has emerged as an effective strategy to enhance the yields of economic animals with different growth characteristics, while increasing the economic benefits of aquaculture. It is known that the NF-κB pathway participates in gonadal differentiation and reproduction. Therefore, we used the large-scale loach as a research model for the present study and selected an effective inhibitor of the NF-κB signaling pathway (QNZ). This, to investigates the impacts of the NF-κB signaling pathway on gonadal differentiation during a critical period of gonad development and after maturation. Simultaneously, the sex ratio bias and the reproductive capacities of adult fish were analyzed. Our results indicated that the inhibition of the NF-κB signaling pathway influenced the expression of genes related to gonad development, regulated the gene expression related to the brain-gonad-liver axis of juvenile loaches, and finally impacted the gonadal differentiation of the large-scale loach and promoted a male-biased sex ratio. Meanwhile, high QNZ concentrations affected the reproductive abilities of adult loaches and inhibited the growth performance of offspring. Thus, our results deepened the exploration of sex control in fish and provided a certain research basis for the sustainable development of the aquaculture industry.
Collapse
Affiliation(s)
- Xiao-Hua Xia
- College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, China.
| | - Ning Liang
- College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, China.
| | - Xiao-Yu Ma
- College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, China.
| | - Lu Qin
- College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, China.
| | - Song-Yun Wang
- College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, China.
| | - Zhong-Jie Chang
- College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, China.
| |
Collapse
|
3
|
Robinson CE, Elvidge CK, Frank RA, Headley JV, Hewitt LM, Little AG, Robinson SA, Trudeau VL, Vander Meulen IJ, Orihel DM. Naphthenic acid fraction compounds reduce the reproductive success of wood frogs (Rana sylvatica) by affecting offspring viability. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120455. [PMID: 36270565 DOI: 10.1016/j.envpol.2022.120455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/07/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
Understanding the toxicity of organic compounds in oil sands process-affected water (OSPW) is necessary to inform the development of environmental guidelines related to wastewater management in Canada's oil sands region. In the present study, we investigated the effects of naphthenic acid fraction compounds (NAFCs), one of the most toxic components of OSPW, on mating behaviour, fertility, and offspring viability in the wood frog (Rana sylvatica). Wild adult wood frogs were exposed separately from the opposite sex to 0, 5, or 10 mg/L of OSPW-derived NAFCs for 24 h and then combined in outdoor lake water mesocosms containing the same NAFC concentrations (n = 2 males and 1 female per mesocosm, n = 3 mesocosms per treatment). Mating events were recorded for 48 h and egg masses were measured to determine adult fertility. NAFC exposure had no significant effect on mating behaviour (probability of amplexus and oviposition, amplexus and oviposition latency, total duration of amplexus and number of amplectic events) or fertility (fertilization success and clutch size). Tadpoles (50 individuals per mesocosm at hatching, and 15 individuals per mesocosm from 42 d post-hatch) were reared in the same mesocosms under chronic NAFC exposure until metamorphic climax (61-85 d after hatching). Offspring exposed to 10 mg/L NAFCs during development were less likely to survive and complete metamorphosis, grew at a reduced rate, and displayed more frequent morphological abnormalities. These abnormalities included limb anomalies at metamorphosis, described for the first time after NAFC exposure. The results of this study suggest that NAFCs reduce wood frog reproductive success through declines in offspring viability and therefore raise the concern that exposure to NAFCs during reproduction and development may affect the recruitment of native amphibian populations in the oil sands region.
Collapse
Affiliation(s)
- C E Robinson
- Department of Biology, Queen's University; Kingston, Ontario, K7L 3N6, Canada
| | - C K Elvidge
- Department of Biology, Queen's University; Kingston, Ontario, K7L 3N6, Canada
| | - R A Frank
- Water Science and Technology Directorate, Environment and Climate Change Canada, Burlington, Ontario, L7S 1A1, Canada
| | - J V Headley
- Watershed Hydrology and Ecology Research Division, Environment and Climate Change Canada, Saskatoon, Saskatchewan, S7N 3H5, Canada
| | - L M Hewitt
- Water Science and Technology Directorate, Environment and Climate Change Canada, Burlington, Ontario, L7S 1A1, Canada
| | - A G Little
- Department of Biology, Queen's University; Kingston, Ontario, K7L 3N6, Canada
| | - S A Robinson
- Ecotoxicoloy and Wildlife Health Division, Environment and Climate Change Canada, Ottawa, K1A 0H3, Ontario, Canada
| | - V L Trudeau
- Department of Biology, University of Ottawa; Ottawa, Ontario, K1N 6N5, Canada
| | - I J Vander Meulen
- Watershed Hydrology and Ecology Research Division, Environment and Climate Change Canada, Saskatoon, Saskatchewan, S7N 3H5, Canada; Department of Civil, Geological and Environmental Engineering, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5A9, Canada
| | - D M Orihel
- Department of Biology, Queen's University; Kingston, Ontario, K7L 3N6, Canada; School of Environmental Studies, Queen's University; Kingston, Ontario, K7L 3N6, Canada.
| |
Collapse
|
4
|
Park CB, Kim GE, Kim YJ, On J, Park CG, Kwon YS, Pyo H, Yeom DH, Cho SH. Reproductive dysfunction linked to alteration of endocrine activities in zebrafish exposed to mono-(2-ethylhexyl) phthalate (MEHP). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:114362. [PMID: 32806436 DOI: 10.1016/j.envpol.2020.114362] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 01/27/2020] [Accepted: 03/10/2020] [Indexed: 06/11/2023]
Abstract
This study aimed to investigate the effect of mono-(2-ethylhexyl) phthalate (MEHP), one of the major phthalate metabolites that are widespread in aquatic environments, on reproductive dysfunction, particularly on endocrine activity in adult male and female zebrafish. For 21 days, the zebrafish were exposed to test concentrations of MEHP (0, 2, 10, and 50 μg/mL) that were determined based on the effective concentrations (ECx) for zebrafish embryos. Exposure to 50 μg/mL MEHP in female zebrafish significantly decreased the number of ovulated eggs as well as the hepatic VTG mRNA abundance when those of the control group. Meanwhile, in female zebrafish, the biosynthetic concentrations of 17β-estradiol (E2) and the metabolic ratio of androgen to estrogen were remarkably increased in all MEHP exposed group compared with those in the control group, along with the elevated levels of cortisol. However, no significant difference was observed between these parameters in male zebrafishes. Therefore, exposure to MEHP causes reproductive dysfunction in female zebrafishes and this phenomenon can be attributed to the alteration in endocrine activities. Moreover, the reproductive dysfunction in MEHP-exposed female zebrafishes may be closely associated with stress responses, such as elevated cortisol levels. To further understand the effect of MEHP on the reproductive activities of fish, follow-up studies are required to determine the interactions between endocrine activities and stress responses. Overall, this study provides a response biomarker for assessing reproductive toxicity of endocrine disruptors that can serve as a methodological approach for an alternative to chronic toxicity testing.
Collapse
Affiliation(s)
- Chang-Beom Park
- Gyeongnam Department of Environmental Toxicology and Chemistry, Korea Institute of Toxicology (KIT), Gyeonsangnam-do, 52834, Republic of Korea
| | - Go-Eun Kim
- Gyeongnam Department of Environmental Toxicology and Chemistry, Korea Institute of Toxicology (KIT), Gyeonsangnam-do, 52834, Republic of Korea
| | - Young Jun Kim
- Environmental Safety Group, Korea Institute of Science and Technology (KIST) Europe, Saarbrücken, 661c23, Germany
| | - Jiwon On
- Department of Chemistry, Korea University, Seoul, 02792, Republic of Korea; Molecular Recognition Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Chang-Gyun Park
- Environmental Safety Group, Korea Institute of Science and Technology (KIST) Europe, Saarbrücken, 661c23, Germany
| | - Young-Sang Kwon
- Gyeongnam Department of Environmental Toxicology and Chemistry, Korea Institute of Toxicology (KIT), Gyeonsangnam-do, 52834, Republic of Korea
| | - Heesoo Pyo
- Molecular Recognition Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Dong-Huk Yeom
- Gyeongnam Department of Environmental Toxicology and Chemistry, Korea Institute of Toxicology (KIT), Gyeonsangnam-do, 52834, Republic of Korea
| | - Sung-Hee Cho
- Chemical Analysis Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon, 34114, Republic of Korea.
| |
Collapse
|
5
|
Morandi G, Wiseman S, Sun C, Martin JW, Giesy JP. Effects of chemical fractions from an oil sands end-pit lake on reproduction of fathead minnows. CHEMOSPHERE 2020; 249:126073. [PMID: 32088464 DOI: 10.1016/j.chemosphere.2020.126073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 01/24/2020] [Accepted: 01/29/2020] [Indexed: 06/10/2023]
Abstract
Oil sands process-affected water (OSPW) is a byproduct of bitumen extraction in the surface-mining oil sands industry in Alberta, Canada. Organic compounds in OSPW can be acutely or chronically toxic to aquatic organisms, so part of a long-term strategy for remediation of OSPW is ageing of water in artificial lakes, termed end-pit lakes. BaseMine Lake (BML) is the first oil sands end-pit lake, commissioned in 2012. At the time of its establishment, an effects-directed analysis of BML-OSPW showed that naphthenic acids and polar organic chemical species containing sulfur or nitrogen contributed to its acute lethality. However, the chronic toxicity of these same chemical fractions has not yet been investigated. In this work, the short-term fathead minnow reproductive bioassay was used to assess endocrine-system effects of two fractions of BML-OSPW collected in 2015. One of the fractions (F1) contained predominantly naphthenic acids, while the other (F2) contained non-acidic polar organic chemical species. Exposure of minnows to F1 or F2 at concentrations equivalent to 25% (v/v) of the 2015 BML-OSPW sample (5-15% of the 2012 BML-OSPW sample) did not alter reproductive performance, fertilization success, or concentrations of sex steroids in female or male minnows. Additionally, there were no significant differences in fertility, hatching success, or incidence of morphological indices of embryos collected on day 7 or 14 from exposed breeding trios. However, exposure of male fathead minnow to 25% (v/v) intact 2015 BML-OSPW resulted in a significantly greater hepatosomatic index. Exposure of fathead minnow to refined fractions of dissolved organic chemicals in 2015 BML-OSPW, or a 25% (v/v) of the intact mixture did not affect fertility or fecundity as measured by use of the 21-day reproductive bioassay. These data will be useful in setting future threshold criteria for OSPW reclamation and treatment.
Collapse
Affiliation(s)
- Garrett Morandi
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | - Steve Wiseman
- Department of Biological Sciences and Water Institute for Sustainable Environments (WISE), University of Lethbridge, Lethbridge, AB, T1K 3M4, Canada
| | - Chenxing Sun
- Department of Laboratory Medicine and Pathology, Division of Analytical and Environmental Chemistry, University of Alberta, Edmonton, AB, Canada; Environmental Monitoring and Science Division, Alberta Environment and Parks, Edmonton, AB, T5J 5C6, Canada
| | - Jonathan W Martin
- Department of Laboratory Medicine and Pathology, Division of Analytical and Environmental Chemistry, University of Alberta, Edmonton, AB, Canada; SciLifeLab, Department of Environmental Science, Stockholm University, Stockholm, 114 18, Sweden
| | - John P Giesy
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada; Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, SK, Canada; Department of Zoology and Center for Integrative Toxicology, Michigan State University, East Lansing, MI, USA; Department of Environmental Sciences, Baylor University, Waco, TX, USA.
| |
Collapse
|
6
|
White KB, Liber K. Chronic Toxicity of Surface Water from a Canadian Oil Sands End Pit Lake to the Freshwater Invertebrates Chironomus dilutus and Ceriodaphnia dubia. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2020; 78:439-450. [PMID: 32077988 DOI: 10.1007/s00244-020-00720-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 02/07/2020] [Indexed: 06/10/2023]
Abstract
Permanent reclamation of tailings generated by surface mining in the Canadian oil sands may be achieved through the creation of end pit lakes (EPLs) in which tailings are stored in mined-out pits and capped with water. However, these tailings contain high concentrations of dissolved organics, metals, and salts, and thus surface water quality of EPLs is a significant concern. This is the first study to investigate the chronic toxicity of surface water from Base Mine Lake (BML), the Canadian oil sands first large-scale EPL, to aquatic invertebrates that play a vital role in the early development of aquatic ecosystems (Chironomus dilutus and Ceriodaphnia dubia). After exposure of C. dilutus larvae for 23 days and C. dubia neonates for 8 days, no mortality was observed in any treatment with whole BML surface water. However, the emergence of C. dilutus adults was delayed by nearly 1 week, and their survival was significantly reduced (36%) compared with the controls. Reproduction (fecundity) of C. dubia was reduced by 20% after exposure to 2014 BML surface water; however, the effect was not observed after exposure to BML surface water collected a year later in 2015. Despite some adverse effects, the results of this study indicate that BML surface water quality is improving over time and is able to support certain salt-tolerant aquatic organisms. Because salinity within BML will persist for decades without manual intervention, the ecological development of the lake will likely resemble that of a brackish or estuarine ecosystem with reduced diversity.
Collapse
Affiliation(s)
- Kevin B White
- Toxicology Centre, University of Saskatchewan, 44 Campus Dr., Saskatoon, SK, S7N 5B3, Canada
| | - Karsten Liber
- Toxicology Centre, University of Saskatchewan, 44 Campus Dr., Saskatoon, SK, S7N 5B3, Canada.
- School of Environment and Sustainability, University of Saskatchewan, 117 Science Place, Saskatoon, SK, S7N 5C8, Canada.
| |
Collapse
|
7
|
Yang L, Shen Q, Zeng T, Li J, Li W, Wang Y. Enrichment of imidacloprid and its metabolites in lizards and its toxic effects on gonads. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 258:113748. [PMID: 31874432 DOI: 10.1016/j.envpol.2019.113748] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 12/05/2019] [Accepted: 12/06/2019] [Indexed: 06/10/2023]
Abstract
Soil contaminants can cause direct harm to lizards due to their regular swallowing of soil particles. As the world's fastest growing insecticide with long half-life in soil, the endocrine disrupting effect of neonicotinoids on lizards deserves more attention. In this report, we assessed the endocrine disrupting effect of imidacloprid on Eremias argus during 28 days of continuous exposure. Among the imidacloprid and its metabolites, only the metabolite 6-chloropyridic acid had a significant accumulation in the gonads and was positively correlated with its blood concentration. Imidacloprid might cause endocrine disrupting effects on lizards in two ways. First, the desnitro metabolites of imidacloprid could accumulate in the brain, inhibited the secretion of gonadotropin-releasing hormone, and ultimately affected the feedback regulation of hypothalamic-pituitary-gonadal related hormones. Secondly, imidacloprid severely inhibited the gene expression of the corresponding enzymes in the gonadal anti-oxidative stress system, causing histological damage to the gonads and ultimately affecting gonadal function. Specifically, exposure to imidacloprid resulted in abnormal arrangement of spermatogenic epithelial epithelium, hyperplasia of epididymal wall, and oligospermia of male lizard. Meanwhile, gene expressions of cyp17, cyp19, and hsd17β were severely inhibited in the imidacloprid exposure group, consistent with decreased levels of testosterone and estradiol in plasma. Imidacloprid exposure could cause insufficient androgen secretion and less spermatogenesis in male lizards. The risk of imidacloprid exposure to female lizards was not as severe as that of male lizards, but it still inhibited the expression of cyp19 in the ovaries and led to a decrease in the synthesis of estradiol. This study firstly reported the endocrine disruption of imidacloprid to lizards, providing new data for limiting the use of neonicotinoids.
Collapse
Affiliation(s)
- Lu Yang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing, 100085, PR China; University of Chinese Academy of Sciences, Yuquan RD 19A, Beijing, 100049, PR China
| | - Qiuxuan Shen
- Beijing Jingshan School Chaoyang Campus, Beijing, 100012, PR China
| | - Tao Zeng
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, PR China
| | - Jianzhong Li
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing, 100085, PR China
| | - Wei Li
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing, 100085, PR China
| | - Yinghuan Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing, 100085, PR China.
| |
Collapse
|
8
|
Philibert DA, Lyons DD, Qin R, Huang R, El-Din MG, Tierney KB. Persistent and transgenerational effects of raw and ozonated oil sands process-affected water exposure on a model vertebrate, the zebrafish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 693:133611. [PMID: 31634996 DOI: 10.1016/j.scitotenv.2019.133611] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 07/24/2019] [Accepted: 07/25/2019] [Indexed: 06/10/2023]
Abstract
Exposure to oil sands process-affected water (OSPW), a by-product of Canadian oil sands mining operations, can cause both acute and chronic adverse effects in aquatic life. Ozonation effectively degrades naphthenic acids in OSPW, mitigating some of the toxicological effects of exposure. In this study we examined the effect of developmental exposure to raw and ozonated OSPW had on the breeding success, prey capture, and alarm cue response in fish months/years after exposure and the transgenerational effect exposure had on gene expression, global DNA methylation, and larval basal activity. Exposure to raw and ozonated OSPW had no effect on breeding success, and global DNA methylation. Exposure altered the expression of vtg and nkx2.5 in the unexposed F1 generation. Exposure to both raw and ozonated OSPW had a transgenerational impact on larval activity levels, anxiety behaviors, and maximum swim speed compared to the control population. Prey capture success was unaffected, however, the variability in the behavioral responses to the introduction of prey was decreased. Fish developmentally exposed to either treatment were less active before exposure and did not have an anxiety response to the alarm cue hypoxanthine-3-n-oxide. Though ozonation was able to mitigate some of the effects of OSPW exposure, further studies are needed to understand the transgenerational effects and the implications of exposure on complex fish behaviors.
Collapse
Affiliation(s)
- Danielle A Philibert
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada.
| | - Danielle D Lyons
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Rui Qin
- Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Rongfu Huang
- Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Mohamed Gamal El-Din
- Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Ketih B Tierney
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada; School of Public Health, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| |
Collapse
|
9
|
Tanna RN, Redman AD, Frank RA, Arciszewski TJ, Zubot WA, Wrona FJ, Brogly JA, Munkittrick KR. Overview of Existing Science to Inform Oil Sands Process Water Release: A Technical Workshop Summary. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2019; 15:519-527. [PMID: 30908840 DOI: 10.1002/ieam.4149] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 02/04/2019] [Accepted: 03/12/2019] [Indexed: 06/09/2023]
Abstract
The extraction of oil sands from mining operations in the Athabasca Oil Sands Region uses an alkaline hot water extraction process. The oil sands process water (OSPW) is recycled to facilitate material transport (e.g., ore and tailings), process cooling, and is also reused in the extraction process. The industry has expanded since commercial mining began in 1967 and companies have been accumulating increasing inventories of OSPW. Short- and long-term sustainable water management practices require the ability to return treated water to the environment. The safe release of OSPW needs to be based on sound science and engineering practices to ensure downstream protection of ecological and human health. A significant body of research has contributed to the understanding of the chemistry and toxicity of OSPW. A multistakeholder science workshop was held in September 2017 to summarize the state of science on the toxicity and chemistry of OSPW. The goal of the workshop was to review completed research in the areas of toxicology, chemical analysis, and monitoring to support the release of treated oil sands water. A key outcome from the workshop was identifying research needs to inform future water management practices required to support OSPW return. Another key outcome of the workshop was the recognition that methods are sufficiently developed to characterize chemical and toxicological characteristics of OSPW to address and close knowledge gaps. Industry, government, and local indigenous stakeholders have proceeded to utilize these insights in reviewing policy and regulations. Integr Environ Assess Manag 2019;15:519-527. © 2019 SETAC.
Collapse
Affiliation(s)
| | - Aaron D Redman
- ExxonMobil Biomedical Sciences, Annandale, New Jersey, USA
| | - Richard A Frank
- Water Science and Technology Directorate, Environment Canada, Burlington, Ontario
| | - Tim J Arciszewski
- Alberta Environment and Parks, Environmental Monitoring and Science Division, Calgary, Alberta, Canada
| | - Warren A Zubot
- Syncrude Canada Ltd, Edmonton Research Centre, Edmonton, Alberta
| | - Frederick J Wrona
- Environmental Monitoring and Science Division, Alberta Environment and Parks, Government of Alberta, Edmonton, Alberta, Canada
| | - John A Brogly
- Canada's Oil Sands Innovation Alliance, Calgary, Alberta
| | - Kelly R Munkittrick
- Cold Regions and Water Initiatives, Wilfrid Laurier University, Waterloo, Ontario, Canada
| |
Collapse
|
10
|
Li C, Fu L, Lillico DME, Belosevic M, Stafford JL, Gamal El-Din M. Exposure to Organic Fraction Extracted from Oil Sands Process-Affected Water Has Negligible Impact on Pregnancy and Lactation of Mice. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:7083-7094. [PMID: 31117544 DOI: 10.1021/acs.est.9b01965] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Dissolved organic compounds are major contaminants in oil sands process-affected water (OSPW), of which naphthenic acids (NAs) are one of the main persistent toxicants. In the present study, we explore the toxic effects of the organic fraction extracted from OSPW (OSPW-OF) in mice during pregnancy and lactation. Here, we report that acute oral exposure of female Balb/c mice during gestation, and subchronic exposure throughout gestation and lactation to OSPW-OF (containing naturally occurring levels of NAs found in tailings ponds), had negligible effects on their reproductive performance. Specifically, mating behavior, pregnancy success, embryonic implantation, gestation period, litter size, and offspring viability were not affected by OSPW-OF containing up to 55 mg/L NAs. OSPW-OF exposure also did not affect plasma concentrations of pregnancy-associated hormones or pro- and anti-inflammatory cytokines, and it had minimal effects on liver stress gene expression. This study presents the first comprehensive in vivo analysis of mammalian toxicity associated with OSPW-OF exposure. Overall, our results suggest that the risk of acute and subchronic toxicity to mice exposed to OSPW-OF at environmentally relevant concentrations of NAs in contaminated drinking water is likely negligible.
Collapse
Affiliation(s)
- Chao Li
- Department of Civil and Environmental Engineering , University of Alberta , Edmonton , Alberta Canada T6G 1H9
| | - Li Fu
- Department of Civil and Environmental Engineering , University of Alberta , Edmonton , Alberta Canada T6G 1H9
- Department of Biological Sciences , University of Alberta , Edmonton , Alberta Canada T6G 2E9
| | - Dustin M E Lillico
- Department of Biological Sciences , University of Alberta , Edmonton , Alberta Canada T6G 2E9
| | - Miodrag Belosevic
- Department of Biological Sciences , University of Alberta , Edmonton , Alberta Canada T6G 2E9
| | - James L Stafford
- Department of Biological Sciences , University of Alberta , Edmonton , Alberta Canada T6G 2E9
| | - Mohamed Gamal El-Din
- Department of Civil and Environmental Engineering , University of Alberta , Edmonton , Alberta Canada T6G 1H9
| |
Collapse
|
11
|
Wang Y, Zhang Y, Zeng T, Li W, Yang L, Guo B. Accumulation and toxicity of thiamethoxam and its metabolite clothianidin to the gonads of Eremias argus. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 667:586-593. [PMID: 30833257 DOI: 10.1016/j.scitotenv.2019.02.419] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 02/25/2019] [Accepted: 02/26/2019] [Indexed: 06/09/2023]
Abstract
The endocrine disrupting effect of pesticides is considered to be an important factor in the decline of reptile populations. The large-scale application of neonicotinoids in the environment poses a potential threat to small farmland lizards Eremias argus. In this study, we evaluated the disruption effects of thiamethoxam and its metabolite clothianidin on the endocrine disruption of Eremias argus during 28 d exposure. Thiamethoxam and clothianidin could accumulate in the testis and ovary. Adequate blood exchange was the main cause of thiamethoxam and clothianidin accumulation in the gonads. The production of clothianidin aggravated the effect of endocrine disruption to lizards. Thiamethoxam/clothianidin exhibited two distinct ways of interfering with the endocrine disruption of the male and female lizards. Thiamethoxam/clothianidin significantly up-regulated the expression of cyp17 and cyp19 genes in the testis, which ultimately led to a significant decrease in testosterone levels and a significant increase in the 17-estradiol concentrations in plasma. The expression of the estrogen receptor gene in the liver was also significantly increased in male lizards. The significant declines in testosterone and prostaglandin D2 levels in the plasma indicated that thiamethoxam and clothianidin could cause androgen deficiency in male lizards. Meanwhile, in female lizards, thiamethoxam/clothianidin increased the expression of hsd17β gene in the ovary, causing an increase in testosterone levels in the plasma and an up-regulation of androgen receptor expression in the liver. The effects of thiamethoxam and clothianidin on male lizards were more pronounced. This study verified the possible endocrine disrupting effects of neonicotinoids and provided a new perspective for the study of global recession of reptiles.
Collapse
Affiliation(s)
- Yinghuan Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing 100085, PR China.
| | - Yang Zhang
- Benxi Institute for Drug Control, No.31 Shengli Road, Mingshan District, Benxi 117000, PR China
| | - Tao Zeng
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Wei Li
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing 100085, PR China
| | - Lu Yang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing 100085, PR China
| | - Baoyuan Guo
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing 100085, PR China
| |
Collapse
|
12
|
He Y, Zhang Y, Martin JW, Alessi DS, Giesy JP, Goss GG. In vitro assessment of endocrine disrupting potential of organic fractions extracted from hydraulic fracturing flowback and produced water (HF-FPW). ENVIRONMENT INTERNATIONAL 2018; 121:824-831. [PMID: 30342413 DOI: 10.1016/j.envint.2018.10.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 09/11/2018] [Accepted: 10/10/2018] [Indexed: 06/08/2023]
Abstract
Potential effects of horizontal drilling combined with high-volume hydraulic fracturing (HF) have drawn significant public concern, especially on the handling, treatment, and disposal of HF flowback and produced water (HF-FPW). Previous studies indicated HF-FPW could significantly disrupt biotransformation and expressions of genes related to the endocrine system. This study focused on effects of organic extracts of HF-FPW on receptor binding activity using several transactivation assays. Six HF-FPW samples were collected from 2 wells (Well A and Well B, 3 time points at each well). These were separated by filtration into aqueous (W) and particulate (S) phases, and organics were extracted from all 12 subsamples. Of all the tested fractions, sample B1-S had the greatest Σ13PAH (11,000 ng/L) and B3-S has the greatest Σ4alkyl-PAHs (16,000 ng/L). Nuclear receptor binding activity of all the extracts on aryl hydrocarbon receptor (AhR), estrogen receptor (ER), and androgen receptor (AR) were screened using H4IIE-luc, MVLN-luc, and MDA-kb2 cells, respectively. FPWs from various HF wells exhibited distinct nuclear receptor binding effects. The strongest AhR agonist activity was detected in B3-S, with 450 ± 20 μg BaP/L equivalency at 5 × exposure. The greatest ER agonist activity was detected in A1-W, with 5.3 ± 0.9 nM E2 equivalency at 10× exposures. There is a decreasing trend in ER agonist activity from A1 to A3 in both aqueous and particulate fractions from Well A, while there is an increasing trend in ER agonist activity from B1 to B3 in aqueous fractions from Well B. This study provides novel information on the sources of endocrine disruptive potentials in various HF-FPW considering both temporal and spatial variability. Results suggest that reclamation or remediation and risk assessment of HF-FPW spills likely requires multiple strategies including understanding the properties of each spill with respect to fractured geological formation and physiochemical properties of the injected fluid.
Collapse
Affiliation(s)
- Yuhe He
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada.
| | - Yifeng Zhang
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta T6G 2G3, Canada
| | - Jonathan W Martin
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta T6G 2G3, Canada
| | - Daniel S Alessi
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta T6G 2E3, Canada
| | - John P Giesy
- Department of Veterinary Biomedical Sciences and Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada; State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; School of Biological Sciences, University of Hong Kong, Hong Kong, China; Global Institute for Water Security, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Greg G Goss
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada.
| |
Collapse
|
13
|
White KB, Liber K. Early chemical and toxicological risk characterization of inorganic constituents in surface water from the Canadian oil sands first large-scale end pit lake. CHEMOSPHERE 2018; 211:745-757. [PMID: 30099159 DOI: 10.1016/j.chemosphere.2018.07.059] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 07/10/2018] [Accepted: 07/11/2018] [Indexed: 06/08/2023]
Abstract
End pit lakes (EPLs) have been proposed as a method for the long-term reclamation of process water and fluid fine tailings (FFT) produced from surface mining within the Canadian oil sands. These waste products contain elevated concentrations of dissolved organics, metals, and salts which reduce surface water quality and are toxic to aquatic organisms. This study measured the concentrations of inorganic constituents in surface water from the industry's first large-scale EPL over the course of a three-year period (2014-2016). The toxicological risk was subsequently assessed to identify constituents of concern that may impair surface water quality necessary for the development of a functional aquatic ecosystem or for release to the surrounding environment. Changes in surface water concentrations over the three-year period were strongly correlated with hydrological processes occurring within the lake: advective-diffusive chemical influx from FFT pore water to the overlying surface water was offset by efflux via continuous manual pumping (freshwater in, process water out). These processes resulted in a net dilution effect of approximately 5-10% per year, however, a significant chemical mass is expected to persist within the underlying FFT. Elevated salinity (as Na+, Cl-, HCO3-) and concentrations of boron and nickel were predicted to pose very high toxicological risk to aquatic organisms. Despite these risks, the discovery of wild Daphnia pulex in the August 2016 sample suggested that surface water quality was sufficient to support populations of certain salt-tolerant zooplankton and primary producers. However, the time required for development into a robust aquatic ecosystem remains unknown.
Collapse
Affiliation(s)
- Kevin B White
- Toxicology Centre, University of Saskatchewan, 44 Campus Dr., Saskatoon, SK, S7N 5B3, Canada
| | - Karsten Liber
- Toxicology Centre, University of Saskatchewan, 44 Campus Dr., Saskatoon, SK, S7N 5B3, Canada; School of Environment and Sustainability, University of Saskatchewan, 117 Science Place, Saskatoon, SK, S7N 5C8, Canada.
| |
Collapse
|
14
|
Lyons DD, Philibert DA, Zablocki T, Qin R, Huang R, Gamal El-Din M, Tierney KB. Assessment of raw and ozonated oil sands process-affected water exposure in developing zebrafish: Associating morphological changes with gene expression. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 241:959-968. [PMID: 30029330 DOI: 10.1016/j.envpol.2018.02.092] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 01/17/2018] [Accepted: 02/04/2018] [Indexed: 06/08/2023]
Abstract
With the ever-increasing amounts of oil sands process-affected water (OSPW) accumulating from Canada's oil sands operations, its eventual release must be considered. As OSPW has been found to be both acutely and chronically toxic to aquatic organisms, remediation processes must be developed to lower its toxicity. Ozone treatment is currently being studied as a tool to facilitate the removal of organic constituents associated with toxicity. Biomarkers (e.g. gene expression) are commonly used when studying the effects of environmental contaminants, however, they are not always indicative of adverse effects at the whole organism level. In this study, we assessed the effects of OSPW exposure on developing zebrafish by linking gene expression to relevant cellular and whole organism level endpoints. We also investigated whether or not ozone treatment decreased biomarkers and any associated toxicity observed from OSPW exposure. The concentrations of classical naphthenic acids in the raw and ozonated OSPW used in this study were 16.9 mg/L and 0.6 mg/L, respectively. Ozone treatment reduced the total amount of naphthenic acids (NAs) in the OSPW sample by 92%. We found that exposure to both raw and ozonated OSPW had no effect on the survival of zebrafish embryos. The expression levels of biotransformation genes CYP1A and CYP1B were induced by raw OSPW exposure, with CYP1B being more highly expressed than CYP1A. In contrast, ozonated OSPW exposure did not increase the expression of CYP1A and only slightly induced CYP1B. A decrease in cardiac development and function genes (NKX2.5 and APT2a2a) was not associates with large changes in heart rate, arrhythmia or heart size. We did not find any indications of craniofacial abnormalities or of increased occurrence of apoptotic cells. Overall, our study found that OSPW was not overtly toxic to zebrafish embryos.
Collapse
Affiliation(s)
- Danielle D Lyons
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, T6G 2E9, Canada.
| | - Danielle A Philibert
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, T6G 2E9, Canada
| | - Taylor Zablocki
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, T6G 2E9, Canada
| | - Rui Qin
- Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, T6G 2E9, Canada
| | - Rongfu Huang
- Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, T6G 2E9, Canada
| | - Mohamed Gamal El-Din
- Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, T6G 2E9, Canada
| | - Keith B Tierney
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, T6G 2E9, Canada; School of Public Health, University of Alberta, Edmonton, Alberta, T6G 2E9, Canada
| |
Collapse
|
15
|
Lyons DD, Morrison C, Philibert DA, Gamal El-Din M, Tierney KB. Growth and recovery of zebrafish embryos after developmental exposure to raw and ozonated oil sands process-affected water. CHEMOSPHERE 2018; 206:405-413. [PMID: 29758497 DOI: 10.1016/j.chemosphere.2018.05.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 05/03/2018] [Accepted: 05/04/2018] [Indexed: 06/08/2023]
Abstract
Due to the increasing volume of oil sands process-affect water (OSPW) and its toxicity to aquatic organisms, it is important to fully understand its effects and study remediation processes that will enable its release to the environment. Ozone treatment is currently being considered as a tool to expedite remediation, as it is known to degrade toxic organic compounds present in OSPW. In this study, we aimed to measure the effects of OSPW exposure on the growth, development and recovery of zebrafish (Danio rerio) embryos. We also used ozone-treated OSPW to determine whether ozonation negated any effects of raw OSPW exposure. As biomarkers of exposure, we assessed the expression of genes involved in neurodevelopment (ngn1, neuroD), estrogenicity (vtg), oxidative stress (sod1), and biotransformation (cyp1a, cyp1b). Our study found that exposure to both raw and ozonated OSPW did not impair growth of zebrafish embryos, however, otoliths of exposed embryos were smaller than those of control embryos. The expression levels of both cyp1a and cyp1b were induced by raw OSPW exposure. However, after the exposure period, expression levels of these genes returned to control levels within two days of residence in clean water. We found no changes in the expression levels of ngn1, neuroD and vtg genes with exposure to treated or untreated OSPW. Overall, our study found that raw OSPW exposure did not have many negative effects on zebrafish embryos and embryos appeared to recover relatively quickly after exposure ended. Furthermore, ozone treatment decreased the induction of cyp1a and cyp1b.
Collapse
Affiliation(s)
- Danielle D Lyons
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada.
| | - Christie Morrison
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Danielle A Philibert
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Mohamed Gamal El-Din
- Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Keith B Tierney
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada; School of Public Health, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| |
Collapse
|
16
|
Zhang L, Zhang Y, Gamal El-Din M. Degradation of recalcitrant naphthenic acids from raw and ozonated oil sands process-affected waters by a semi-passive biofiltration process. WATER RESEARCH 2018; 133:310-318. [PMID: 29407712 DOI: 10.1016/j.watres.2018.01.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 12/08/2017] [Accepted: 01/01/2018] [Indexed: 06/07/2023]
Abstract
In this study, a fixed-bed biofiltration system (biofilter) that utilized indigenous microorganisms was developed for the reclamation of oil sands process-affected water (OSPW). With the assistance of quantitative polymerase chain reaction (qPCR) and confocal laser scanning microscopy (CLSM), indigenous microorganisms from OSPW were able to attach to the surface of sand media and form biofilms. The number of total bacteria on the biofilter media reached a steady state (109/g) after 23 days of operation. Ultra Performance Liquid Chromatography/High Resolution Mass Spectrometry (UPLC/HRMS) analysis showed that 21.8% of the classical naphthenic acids (NAs) removal was achieved through the circulation of raw OSPW on the biofilter for 8 times (equivalent to a hydraulic retention time of 16 h). When ozonation with utilized ozone dose of 30 mg/L was applied as pretreatment, the classical NAs in the ozonated OSPW were removed by 89.3% with an accelerated biodegradation rate of 0.5 mg/L/h. Compared with other biofilm reactors such as moving bed biofilm reactor (MBBR), ozonation pretreatment could benefit the biodegradation of NAs in the biofilter more (classical NA removal: 89.3% vs. 34.4%), especially for those with high carbon number and cyclicity. The combined ozonation-biofiltration process could remove 92.7% of classical NAs from raw OSPW in 16 h. Although both ozonation and biofiltration alone did not show degradation of oxidized NAs from raw OSPW, the combined process led to a 52.9% and 42.6% removal for O3-NAs and O4-NAs, respectively, which were the dominant oxidized NA species in OSPW. Metagenomic sequencing analysis showed that Rhodococcus was the dominant bacterial genus on the sand media, which may play a crucial role during the NA biodegradation. With the advantage of high NA removal efficiency, the combined ozonation-biofiltration process is a promising approach for NA degradation and shows high potential to be scaled up for in-situ OSPW treatment.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Yanyan Zhang
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada; Department of Civil Engineering, New Mexico State University, Las Cruces, NM 88003, United States
| | - Mohamed Gamal El-Din
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada.
| |
Collapse
|
17
|
He Y, Sun C, Zhang Y, Folkerts EJ, Martin JW, Goss GG. Developmental Toxicity of the Organic Fraction from Hydraulic Fracturing Flowback and Produced Waters to Early Life Stages of Zebrafish ( Danio rerio). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:3820-3830. [PMID: 29376370 DOI: 10.1021/acs.est.7b06557] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Hydraulic fracturing (HF) has emerged as a major recovery method of unconventional oil and gas reservoirs and concerns have been raised regarding the environmental impact of releases of Flowback and Produced Water (FPW) to aquatic ecosystems. To investigate potential effects of HF-FPW on fish embryo development, HF-FPW samples were collected from two different wells and the organic fractions were isolated from both aqueous and particle phases to eliminate the confounding effects of high salinity. Each organic extract was characterized by non-target analysis with HPLC-Orbitrap-MS, with targeted analysis for polycyclic aromatic hydrocarbons provided as markers of petroleum-affected water. The organic profiles differed between samples, including PAHs and alkyl PAHs, and major substances identified by non-target analysis included polyethylene glycols, alkyl ethoxylates, octylphenol ethoxylates, and other high molecular weight (C49-79) ethylene oxide polymeric material. Zebrafish embryos were exposed to various concentrations of FPW organic extracts to investigate acute (7-day) and developmental toxicity in early life stages. The acute toxicity (LD50) of the extracted FPW fractions ranged from 2.8× to 26× the original organic content. Each extracted FPW fraction significantly increased spinal malformation, pericardial edema, and delayed hatch in exposed embryos and altered the expression of a suite of target genes related to biotransformation, oxidative stress, and endocrine-mediation in developing zebrafish embryos. These results provide novel information on the variation of organic profiles and developmental toxicity among different sources and fractions of HF-FPWs.
Collapse
Affiliation(s)
- Yuhe He
- Department of Biological Sciences , University of Alberta , Edmonton , Alberta T6G 2E9 , Canada
| | - Chenxing Sun
- Department of Laboratory Medicine and Pathology , University of Alberta , Edmonton , Alberta T6G 2G3 , Canada
| | - Yifeng Zhang
- Department of Laboratory Medicine and Pathology , University of Alberta , Edmonton , Alberta T6G 2G3 , Canada
| | - Erik J Folkerts
- Department of Biological Sciences , University of Alberta , Edmonton , Alberta T6G 2E9 , Canada
| | - Jonathan W Martin
- Department of Laboratory Medicine and Pathology , University of Alberta , Edmonton , Alberta T6G 2G3 , Canada
| | - Greg G Goss
- Department of Biological Sciences , University of Alberta , Edmonton , Alberta T6G 2E9 , Canada
| |
Collapse
|
18
|
Liu X, Jung D, Zhou K, Lee S, Noh K, Khim JS, Giesy JP, Yim UH, Shim WJ, Choi K. Characterization of endocrine disruption potentials of coastal sediments of Taean, Korea employing H295R and MVLN assays-Reconnaissance at 5years after Hebei Spirit oil spill. MARINE POLLUTION BULLETIN 2018; 127:264-272. [PMID: 29475662 DOI: 10.1016/j.marpolbul.2017.11.055] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 11/19/2017] [Accepted: 11/23/2017] [Indexed: 06/08/2023]
Abstract
Endocrine disrupting potentials were assessed for sediment samples collected near Hebei Spirit oil spill (HSOS) site, between December 2007 and January 2012. For comparison, major crude oil (CO) of HSOS, or its weathered form were assessed. Both raw extracts (REs) and their fractionated samples were tested using H295R and MVLNluc bioassays. In H295R cells, REs of crude and weathered oil (WO), and nine of 14 sediments significantly increased E2 levels, which were correlated with the concentrations of PAHs. Steroidogenic disruption potentials of the sediments generally decreased over time. Among silica fractions of all REs, aromatic hydrocarbons (F2) and polar compounds (F3) caused greater E2 levels. While, in MVLN cell bioassay, only three of 14 sediment REs showed estrogen receptor binding potencies, and no temporal trend was observed. In conclusion, oil spill can cause endocrine disruption in the affected ecosystem through steroidogenic alteration for years, and such potencies attenuate over time.
Collapse
Affiliation(s)
- Xiaoshan Liu
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Guangdong, China
| | - Dawoon Jung
- School of Public Health & Institute of Health and Environment, Seoul National University, Seoul, Republic of Korea; Korea Environment Institute, Sejong, Republic of Korea
| | - Kairu Zhou
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Guangdong, China
| | - Sangwoo Lee
- School of Public Health & Institute of Health and Environment, Seoul National University, Seoul, Republic of Korea; Korea Institute of Toxicology, Daejeon, Republic of Korea
| | - Kiwan Noh
- School of Public Health & Institute of Health and Environment, Seoul National University, Seoul, Republic of Korea
| | - Jong Seong Khim
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul, Republic of Korea
| | - John P Giesy
- Department of Veterinary Biomedical Sciences & Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | - Un Hyuk Yim
- Oil and POPs Research Group, Korea Institute of Ocean Science and Technology (KIOST), Geoje, Republic of Korea
| | - Won Joon Shim
- Oil and POPs Research Group, Korea Institute of Ocean Science and Technology (KIOST), Geoje, Republic of Korea
| | - Kyungho Choi
- School of Public Health & Institute of Health and Environment, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
19
|
Li C, Fu L, Stafford J, Belosevic M, Gamal El-Din M. The toxicity of oil sands process-affected water (OSPW): A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 601-602:1785-1802. [PMID: 28618666 DOI: 10.1016/j.scitotenv.2017.06.024] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Revised: 06/02/2017] [Accepted: 06/03/2017] [Indexed: 06/07/2023]
Abstract
Large volumes of oil sands process-affected water (OSPW) are produced by the surface-mining oil sands industry in Alberta. Both laboratory and field studies have demonstrated that the exposure to OSPW leads to many physiological changes in a variety of organisms. Adverse effects include compromised immunological function, developmental delays, impaired reproduction, disrupted endocrine system, and higher prevalence of tissue-specific pathological manifestations. The composition of OSPW varies with several factors such as ore sources, mining process, and tailings management practices. Differences in water characteristics have confounded interpretation or comparison of OSPW toxicity across studies. Research on individual fractions extracted from OSPW has helped identify some target pollutants. Naphthenic acids (NAs) are considered as the major toxic components in OSPW, exhibiting toxic effects through multiple modes of action including narcosis and endocrine disruption. Other pollutants, like polycyclic aromatic hydrocarbons (PAHs), metals, and ions may also contribute to the overall OSPW toxicity. Studies have been conducted on OSPW as a whole complex effluent mixture, with consideration of the presence of unidentified components, and the interactions (potential synergistic or antagonistic reactions) among chemicals. This review summarizes the toxicological data derived from in vitro and in vivo exposure studies using different OSPW types, and different taxa of organisms. In general, toxicity of OSPW was found to be dependent on the OSPW type and concentration, duration of exposures (acute versus sub chronic), and organism studied.
Collapse
Affiliation(s)
- Chao Li
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB T6G1H9, Canada
| | - Li Fu
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G2E9, Canada
| | - James Stafford
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G2E9, Canada
| | - Miodrag Belosevic
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G2E9, Canada.
| | - Mohamed Gamal El-Din
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB T6G1H9, Canada.
| |
Collapse
|
20
|
Morandi GD, Wiseman SB, Guan M, Zhang XW, Martin JW, Giesy JP. Elucidating mechanisms of toxic action of dissolved organic chemicals in oil sands process-affected water (OSPW). CHEMOSPHERE 2017; 186:893-900. [PMID: 28830063 DOI: 10.1016/j.chemosphere.2017.08.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/13/2017] [Accepted: 08/06/2017] [Indexed: 06/07/2023]
Abstract
Oil sands process-affected water (OSPW) is generated during extraction of bitumen in the surface-mining oil sands industry in Alberta, Canada, and is acutely and chronically toxic to aquatic organisms. It is known that dissolved organic compounds in OSPW are responsible for most toxic effects, but knowledge of the specific mechanism(s) of toxicity, is limited. Using bioassay-based effects-directed analysis, the dissolved organic fraction of OSPW has previously been fractionated, ultimately producing refined samples of dissolved organic chemicals in OSPW, each with distinct chemical profiles. Using the Escherichia coli K-12 strain MG1655 gene reporter live cell array, the present study investigated relationships between toxic potencies of each fraction, expression of genes and characterization of chemicals in each of five acutely toxic and one non-toxic extract of OSPW derived by use of effects-directed analysis. Effects on expressions of genes related to response to oxidative stress, protein stress and DNA damage were indicative of exposure to acutely toxic extracts of OSPW. Additionally, six genes were uniquely responsive to acutely toxic extracts of OSPW. Evidence presented supports a role for sulphur- and nitrogen-containing chemical classes in the toxicity of extracts of OSPW.
Collapse
Affiliation(s)
- Garrett D Morandi
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK S7N 5B3, Canada
| | - Steve B Wiseman
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK S7N 5B3, Canada; Department of Biological Sciences and Water Institute for Sustainable Environments (WISE), University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Miao Guan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Xiaowei W Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China.
| | - Jonathan W Martin
- Division of Analytical and Environmental Toxicology, University of Alberta, Edmonton, AB T6G 2G3, Canada; Department of Environmental Sciences and Analytical Chemistry, Stockholm University, Stockholm, 114 18, Sweden
| | - John P Giesy
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK S7N 5B3, Canada; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China; Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, SK S7N 5B3, Canada; Zoology Department, Center for Integrative Toxicology, Michigan State University, East Lansing, MI 48824, USA; School of Biological Sciences, University of Hong Kong, 999077, Hong Kong Special Administrative Region.
| |
Collapse
|
21
|
Lari E, Steinkey D, Mohaddes E, Pyle GG. Investigating the chronic effects of oil sands process-affected water on growth and fitness of Daphnia magna Straus 1820. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 595:594-600. [PMID: 28399498 DOI: 10.1016/j.scitotenv.2017.03.239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 03/25/2017] [Accepted: 03/26/2017] [Indexed: 06/07/2023]
Abstract
The increasing amount of stored oil sands process-affected water (OSPW), a primary by-product of oil sands mining, is an environmental concern. In the present study, we investigated the chronic effects of OSPW on growth, reproduction, and macronutrient content in Daphnia magna. To do so, we exposed D. magna to 1 and 10% OSPW (a mixture of three OSPW samples provided by major oil sands mining operators in northern Alberta) for ten days. We measured the number of the neonates produced daily in each group throughout the exposure. At the end of the exposure, we measured the mass and length of the exposed daphniids and neonates. We also measured the carbohydrate, lipid, and protein content of exposed daphniids. In the 10% OSPW group, we observed a significant reduction in all of the measured endpoints except for body length and carbohydrate and protein content of exposed daphniids. In the 1% OSPW group, on the other hand, we found a reduction only in lipid content of exposed daphniids as compared to the control group. The results of the present study demonstrated that chronic exposure to 10% OSPW affects growth and fitness of D. magna, probably due to a reduction in energy intake that causes daphniids to deplete their energy reserves.
Collapse
Affiliation(s)
- Ebrahim Lari
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada.
| | - Dylan Steinkey
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Effat Mohaddes
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Greg G Pyle
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| |
Collapse
|
22
|
Sun J, Peng H, Alharbi HA, Jones PD, Giesy JP, Wiseman SB. Identification of Chemicals that Cause Oxidative Stress in Oil Sands Process-Affected Water. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:8773-8781. [PMID: 28661683 DOI: 10.1021/acs.est.7b01987] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Oil sands process-affected water (OSPW) has been reported to cause oxidative stress in organisms, yet the causative agents remain unknown. In this study, a high-throughput in vitro Nrf2 reporter system was used, to determine chemicals in OSPW that cause oxidative stress. Five fractions, with increasing polarity, of the dissolved organic phase of OSPW were generated by use of solid phase extraction cartridges. The greatest response of Nrf2 was elicited by F2 (2.7 ± 0.1-fold), consistent with greater hydroperoxidation of lipids in embryos of Japanese medaka (Oryzias latipes) exposed to F2. Classic naphthenic acids were mainly eluted in F1, and should not be causative chemicals. When F2 was fractionated into 60 subfractions by use of HPLC, significant activation of Nrf2 was observed in three grouped fractions: F2.8 (1.30 ± 0.01-fold), F2.16 (1.34 ± 0.05-fold), and F2.25 (1.28 ± 0.15-fold). 54 compounds were predicted to be potential chemicals causing Nrf2 response, predominated by SO3+ and O3+ species. By use of high-resolution MS2 spectra, these SO3+ and O3+ species were identified as hydroxylated aldehydes. This study demonstrated that polyoxygenated chemicals, rather than classic NAs, were the major chemicals responsible for oxidative stress in the aqueous phase of OSPW.
Collapse
Affiliation(s)
- Jianxian Sun
- Toxicology Centre, University of Saskatchewan , 44 Campus Drive, Saskatoon, Saskatchewan Canada
| | - Hui Peng
- Toxicology Centre, University of Saskatchewan , 44 Campus Drive, Saskatoon, Saskatchewan Canada
| | - Hattan A Alharbi
- Toxicology Centre, University of Saskatchewan , 44 Campus Drive, Saskatoon, Saskatchewan Canada
| | - Paul D Jones
- Toxicology Centre, University of Saskatchewan , 44 Campus Drive, Saskatoon, Saskatchewan Canada
- School of Environment and Sustainability, 117 Science Place, Saskatoon, Saskatchewan Canada
| | - John P Giesy
- Toxicology Centre, University of Saskatchewan , 44 Campus Drive, Saskatoon, Saskatchewan Canada
- School of Environment and Sustainability, 117 Science Place, Saskatoon, Saskatchewan Canada
- Department of Veterinary Biomedical Sciences, University of Saskatchewan , Saskatoon, Saskatchewan Canada
- Zoology Department, Center for Integrative Toxicology, Michigan State University , East Lansing, Michigan United States
- School of Biological Sciences, University of Hong Kong, Hong Kong Special Administrative Region, People's Republic of China
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University , Nanjing, People's Republic of China
- Biology Department, Hong Kong Baptist University , Hong Kong, SAR, China
| | - Steve B Wiseman
- Department of Biological Sciences, University of Lethbridge , Lethbridge, Alberta T1K 3M4, Canada
| |
Collapse
|
23
|
Reichert M, Blunt B, Gabruch T, Zerulla T, Ralph A, Gamal El-Din M, Sutherland BR, Tierney KB. Sensory and Behavioral Responses of a Model Fish to Oil Sands Process-Affected Water with and without Treatment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:7128-7137. [PMID: 28525709 DOI: 10.1021/acs.est.7b01650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
If oil sands process-affected water (OSPW) is to be returned to the environment, a desire is that it not adversely affect aquatic life. We investigated whether a relevant model fish (rainbow trout, Oncorhynchus mykiss) could detect OSPW using its olfactory sense (smell) and whether exposure to it would result in behavioral changes. We also investigated whether ozonation of OSPW, which lowers the concentration of organic compounds attributed with toxicity (naphthenic acids), would ameliorate any observed adverse effects. We found that OSPW, regardless of ozonation, evoked olfactory tissue responses similar to those expected of natural odorants, suggesting that fish could smell OSPW. In 30 min OSPW exposures, olfactory responses to a food odorant and a pheromone were reduced to a similar degree by OSPW, again regardless of ozonation. However, olfactory responses returned within minutes of exposure cessation. In contrast, in longer (7 d) exposures, olfactory responses remained impaired, but not in fish that had received ozone-treated OSPW. In the behavioral assay, fish avoided an introduced plume of OSPW, and this response was not affected by ozonation. Taken together, our data suggest that fish smell OSPW, that they may use this sense to mount an avoidance response, and that, if they cannot avoid it, their sensory responses may be impaired, unless the OSPW has received some remediation.
Collapse
Affiliation(s)
- Megan Reichert
- Department of Biological Sciences, University of Alberta T6G 2E9, Edmonton, Alberta, Canada
| | - Brian Blunt
- Department of Biological Sciences, University of Alberta T6G 2E9, Edmonton, Alberta, Canada
| | - Tia Gabruch
- Department of Biological Sciences, University of Alberta T6G 2E9, Edmonton, Alberta, Canada
| | - Tanja Zerulla
- Department of Biological Sciences, University of Alberta T6G 2E9, Edmonton, Alberta, Canada
| | - Allison Ralph
- Department of Biological Sciences, University of Alberta T6G 2E9, Edmonton, Alberta, Canada
| | - Mohamed Gamal El-Din
- Department of Civil & Environmental Engineering, University of Alberta T6G 1H9, Edmonton, Alberta, Canada
| | - Bruce R Sutherland
- Department of Physics and of Earth & Atmospheric Sciences, University of Alberta T6G 2E1, Edmonton, Alberta, Canada
| | - Keith B Tierney
- Department of Biological Sciences, University of Alberta T6G 2E9, Edmonton, Alberta, Canada
- School of Public Health, University of Alberta T6G 1C9, Edmonton, Alberta, Canada
| |
Collapse
|
24
|
Lari E, Pyle GG. Rainbow trout (Oncorhynchus mykiss) detection, avoidance, and chemosensory effects of oil sands process-affected water. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 225:40-46. [PMID: 28347902 DOI: 10.1016/j.envpol.2017.03.041] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 03/16/2017] [Accepted: 03/18/2017] [Indexed: 06/06/2023]
Abstract
Oil sands process-affected water (OSPW) - a byproduct of the oil sands industry in Northern Alberta, Canada - is currently stored in on-site tailings ponds. The goal of the present study was to investigate the interaction of OSPW with the olfactory system and olfactory-mediated behaviours of fish upon the first encounter with OSPW. The response of rainbow trout (Oncorhynchus mykiss) to different concentrations (0.1, 1, and 10%) of OSPW was studied using a choice maze and electro-olfactography (EOG), respectively. The results of the present study showed that rainbow trout are capable of detecting and avoiding OSPW at a concentration as low as 0.1%. Exposure to 1% OSPW impaired (i.e. reduced sensitivity) the olfactory response of rainbow trout to alarm and food cues within 5 min or less. The results of the present study demonstrated that fish could detect and avoid minute concentrations of OSPW. However, if fish were exposed to OSPW-contaminated water and unable to escape, their olfaction would be impaired.
Collapse
Affiliation(s)
- Ebrahim Lari
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, T1K 3M4, Canada.
| | - Greg G Pyle
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, T1K 3M4, Canada
| |
Collapse
|
25
|
Truter JC, van Wyk JH, Oberholster PJ, Botha AM, Mokwena LM. An evaluation of the endocrine disruptive potential of crude oil water accommodated fractions and crude oil contaminated surface water to freshwater organisms using in vitro and in vivo approaches. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2017; 36:1330-1342. [PMID: 27787904 DOI: 10.1002/etc.3665] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 07/20/2016] [Accepted: 10/25/2016] [Indexed: 06/06/2023]
Abstract
Knowledge regarding the potential impacts of crude oil on endocrine signaling in freshwater aquatic vertebrates is limited. The expression of selected genes as biomarkers for altered endocrine signaling was studied in African clawed frog, Xenopus laevis, tadpoles and juvenile Mozambique tilapia, Oreochromis mossambicus, exposed to weathered bunker and unweathered refinery crude oil water accommodated fractions (WAFs). In addition, the expression of the aforementioned genes was quantified in X. laevis tadpoles exposed to surface water collected from the proximity of an underground oil bunker. The (anti)estrogenicity and (anti)androgenicity of crude oil, crude oil WAFs, and surface water were furthermore evaluated using recombinant yeast. Thyroid hormone receptor beta expression was significantly down-regulated in X. laevis in response to both oil WAF types, whereas a further thyroid linked gene, type 2 deiodinase, was up-regulated in O. mossambicus exposed to a high concentration of bunker oil WAF. In addition, both WAFs altered the expression of the adipogenesis-linked peroxisome proliferator-activated receptor gamma in X. laevis. The crude oil and WAFs exhibited antiestrogenic and antiandrogenic activity in vitro. However, O. mossambicus androgen receptor 2 was the only gene, representing the reproductive system, significantly affected by WAF exposure. Estrogenicity, antiestrogenicity, and antiandrogenicity were detected in surface water samples; however, no significant changes were observed in the expression of any of the genes evaluated in X. laevis exposed to surface water. The responses varied among the 2 model organisms used, as well as among the 2 types of crude oil. Nonetheless, the data provide evidence that crude oil pollution may lead to adverse health effects in freshwater fish and amphibians as a result of altered endocrine signaling. Environ Toxicol Chem 2017;36:1330-1342. © 2016 SETAC.
Collapse
Affiliation(s)
- J Christoff Truter
- Department of Botany and Zoology, Stellenbosch University, Stellenbosch, South Africa
| | - Johannes H van Wyk
- Department of Botany and Zoology, Stellenbosch University, Stellenbosch, South Africa
| | - Paul J Oberholster
- Department of Botany and Zoology, Stellenbosch University, Stellenbosch, South Africa
- CSIR Natural Resources and the Environment, Stellenbosch, South Africa
| | - Anna-Maria Botha
- Department of Genetics, Stellenbosch University, Stellenbosch, South Africa
| | - Lucky M Mokwena
- Central Analytical Facility, Mass Spectrometry Unit, University of Stellenbosch, Stellenbosch, South Africa
| |
Collapse
|
26
|
He Y, Flynn SL, Folkerts EJ, Zhang Y, Ruan D, Alessi DS, Martin JW, Goss GG. Chemical and toxicological characterizations of hydraulic fracturing flowback and produced water. WATER RESEARCH 2017; 114:78-87. [PMID: 28229951 DOI: 10.1016/j.watres.2017.02.027] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 02/08/2017] [Accepted: 02/12/2017] [Indexed: 05/23/2023]
Abstract
Hydraulic fracturing (HF) has emerged as a major method of unconventional oil and gas recovery. The toxicity of hydraulic fracturing flowback and produced water (HF-FPW) has not been previously reported and is complicated by the combined complexity of organic and inorganic constituents in HF fluids and deep formation water. In this study, we characterized the solids, salts, and organic signatures in an HF-FPW sample from the Duvernay Formation, Alberta, Canada. Untargeted HPLC-Orbitrap revealed numerous unknown dissolved polar organics. Among the most prominent peaks, a substituted tri-phenyl phosphate was identified which is likely an oxidation product of a common polymer antioxidant. Acute toxicity of zebrafish embryo was attributable to high salinity and organic contaminants in HF-FPW with LC50 values ranging from 0.6% to 3.9%, depending on the HF-FPW fractions and embryo developmental stages. Induction of ethoxyresorufin-O-deethylase (EROD) activity was detected, due in part to polycyclic aromatic hydrocarbons (PAHs), and suspended solids might have a synergistic effect on EROD induction. This study demonstrates that toxicological profiling of real HF-FPW sample presents great challenges for assessing the potential risks and impacts posed by HF-FPW spills.
Collapse
Affiliation(s)
- Yuhe He
- Department of Biological Sciences, University of Alberta, Edmonton, T6G 2E9 Alberta, Canada
| | - Shannon L Flynn
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, T6G 2E9 Alberta, Canada
| | - Erik J Folkerts
- Department of Biological Sciences, University of Alberta, Edmonton, T6G 2E9 Alberta, Canada
| | - Yifeng Zhang
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, T6G 2E9 Alberta, Canada
| | - Dongliang Ruan
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, T6G 2E9 Alberta, Canada
| | - Daniel S Alessi
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, T6G 2E9 Alberta, Canada
| | - Jonathan W Martin
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, T6G 2E9 Alberta, Canada
| | - Greg G Goss
- Department of Biological Sciences, University of Alberta, Edmonton, T6G 2E9 Alberta, Canada.
| |
Collapse
|
27
|
Li J, Chang J, Li W, Guo B, Li J, Wang H. Disruption of sex-hormone levels and steroidogenic-related gene expression on Mongolia Racerunner (Eremias argus) after exposure to triadimefon and its enantiomers. CHEMOSPHERE 2017; 171:554-563. [PMID: 28039834 DOI: 10.1016/j.chemosphere.2016.12.096] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 11/21/2016] [Accepted: 12/20/2016] [Indexed: 06/06/2023]
Abstract
Triadimefon (TF) is a widely used chiral fungicide with one chiral centre and two enantiomers (TF1 and TF2). However, little is reported about the ecological toxicity of reptiles on an enantioselective level. TF is a potential endocrine disruptor that may interfere with sex steroid hormones, such as testosterone (T) and 17beta-estradiol (E2). In our study, the lizards Mongolia Racerunner (Eremias argus) were orally exposed to TF and its enantiomers for 21 days. Plasma sex steroid hormones and steroidogenic-related genes, including 17-beta-hydroxysteroid (hsd17β), cytochrome P450 enzymes (cyp19 and cyp17), and steroid hormone receptors (erα and Ar) were evaluated. After exposure, the plasma testosterone level in the 100 mg/kgbw group was elevated, while the oestradiol level was reduced. This phenomenon may be caused by the transformation of cyp19, which may inhibit the conversion of testosterone to oestradiol and affect sexual behaviour. In addition, the two enantiomers have different effects on hormone levels, which testified to the previously reported biotoxic dissimilarity between TF1 and TF2 in organisms. Furthermore, the cyp19 mRNA level in liver and gonad of the TF2 and TF group (100 mg/kgbw) were significantly down-regulated, while the cyp17 and hsd17β mRNA levels were up-regulated. The expression of erα and Ar mRNA levels were up-regulated in males but not in females, which may indicate that TF has sex differences on these two genes. As seen from the above results, TF and its enantiomers may have endocrine-disrupting effects on lizards (E. argus) by acting sensitively on sex steroid hormones and steroidogenic-related genes.
Collapse
Affiliation(s)
- Jitong Li
- Research Center for Eco-Environmental Science, Chinese Academy of Sciences, Shuangqing Rd 18, Beijing 100085, China; University of Chinese Academy of Sciences, Yuquan Rd 19A, Beijing, 100049, China
| | - Jing Chang
- Research Center for Eco-Environmental Science, Chinese Academy of Sciences, Shuangqing Rd 18, Beijing 100085, China; University of Chinese Academy of Sciences, Yuquan Rd 19A, Beijing, 100049, China
| | - Wei Li
- Research Center for Eco-Environmental Science, Chinese Academy of Sciences, Shuangqing Rd 18, Beijing 100085, China
| | - Baoyuan Guo
- Research Center for Eco-Environmental Science, Chinese Academy of Sciences, Shuangqing Rd 18, Beijing 100085, China
| | - Jianzhong Li
- Research Center for Eco-Environmental Science, Chinese Academy of Sciences, Shuangqing Rd 18, Beijing 100085, China
| | - Huili Wang
- Research Center for Eco-Environmental Science, Chinese Academy of Sciences, Shuangqing Rd 18, Beijing 100085, China.
| |
Collapse
|
28
|
He Y, Folkerts EJ, Zhang Y, Martin JW, Alessi DS, Goss GG. Effects on Biotransformation, Oxidative Stress, and Endocrine Disruption in Rainbow Trout (Oncorhynchus mykiss) Exposed to Hydraulic Fracturing Flowback and Produced Water. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:940-947. [PMID: 27973770 DOI: 10.1021/acs.est.6b04695] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The effects of hydraulic fracturing (HF) flowback and produced water (HF-FPW), a complex saline mixture of injected HF fluids and deep formation water that return to the surface, was examined in rainbow trout (Oncorhynchus mykiss). Exposure to HF-FPWs resulted in significant induction of ethoxyresorufin-O-deethylase (EROD) activity in both liver and gill tissues. Increased lipid peroxidation via oxidative stress was also detected by thiobarbituric acid reactive substances (TBARS) assay. The mRNA expressions of a battery of genes related to biotransformation, oxidative stress, and endocrine disruption were also measured using quantitative real-time polymerase chain reaction (Q-RT-PCR). The increased expression of cyp1a (2.49 ± 0.28-fold), udpgt (2.01 ± 0.31-fold), sod (1.67 ± 0.09-fold), and gpx (1.58 ± 0.10-fold) in raw sample exposure group (7.5%) indicated elevated metabolic enzyme activity, likely through the aryl hydrocarbon receptor pathway, and generation of reactive oxygen species. In addition, the elevated vtg and era2 expression demonstrated endocrine disrupting potential exerted by HF-FPW in rainbow trout. The overall results suggested HF-FPW could cause significant adverse effects on fish, and the organic contents might play the major role in its toxicity. Future studies are needed to help fully determine the toxic mechanism(s) of HF-FPW on freshwater fish, and aid in establishing monitoring, treatment, and remediation protocols for HF-FPW.
Collapse
Affiliation(s)
- Yuhe He
- Department of Biological Sciences, ‡Department of Laboratory Medicine and Pathology and §Department of Earth and Atmospheric Sciences, University of Alberta , Edmonton, Alberta Canada , T6G 2E9
| | - Erik J Folkerts
- Department of Biological Sciences, ‡Department of Laboratory Medicine and Pathology and §Department of Earth and Atmospheric Sciences, University of Alberta , Edmonton, Alberta Canada , T6G 2E9
| | - Yifeng Zhang
- Department of Biological Sciences, ‡Department of Laboratory Medicine and Pathology and §Department of Earth and Atmospheric Sciences, University of Alberta , Edmonton, Alberta Canada , T6G 2E9
| | - Jonathan W Martin
- Department of Biological Sciences, ‡Department of Laboratory Medicine and Pathology and §Department of Earth and Atmospheric Sciences, University of Alberta , Edmonton, Alberta Canada , T6G 2E9
| | - Daniel S Alessi
- Department of Biological Sciences, ‡Department of Laboratory Medicine and Pathology and §Department of Earth and Atmospheric Sciences, University of Alberta , Edmonton, Alberta Canada , T6G 2E9
| | - Greg G Goss
- Department of Biological Sciences, ‡Department of Laboratory Medicine and Pathology and §Department of Earth and Atmospheric Sciences, University of Alberta , Edmonton, Alberta Canada , T6G 2E9
| |
Collapse
|
29
|
Marentette JR, Sarty K, Cowie AM, Frank RA, Hewitt LM, Parrott JL, Martyniuk CJ. Molecular responses of Walleye (Sander vitreus) embryos to naphthenic acid fraction components extracted from fresh oil sands process-affected water. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 182:11-19. [PMID: 27842271 DOI: 10.1016/j.aquatox.2016.11.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 11/02/2016] [Accepted: 11/03/2016] [Indexed: 06/06/2023]
Abstract
Naphthenic acid fraction components (NAFCs) are constituents of oil sands process-affected water (OSPW), which is generated as a result of unconventional oil production via surface mining in the Athabasca oil sands region. NAFCs are often considered to be major drivers of OSPW toxicity to various taxa, including fishes. However, the molecular targets of these complex mixtures are not fully elucidated. Here we examined the effects in walleye (Sander vitreus) embryos after exposure to NAFCs extracted from fresh OSPW. Eleutheroembryos (exposed to 0, 4.2 or 8.3mg/L NAFCs from 1day post-fertilization to hatch) were subsampled, measured for growth and deformities, and molecular responses were assessed via real-time polymerase chain reaction (PCR). Fourteen genes were evaluated, with a focus on the aryl-hydrocarbon receptor (AhR) - cytochrome P450 pathway (arnt, cyp1a1), the oxidative stress axis (cat, gst, sod, gpx1b), apoptosis (e.g. casp3, bax and p53), growth factor signaling (e.g. insulin-like growth factors igf1, igf1b, and igf1bp), and tissue differentiation (vim). NAFC exposure was associated with an increase in the expression of cyp1a1, and a decrease in gpx1b and ribosomal protein rps40. These results indicate that NAFC effects on walleye early-life stages may be mediated through oxidative stress via pathways that include AhR.
Collapse
Affiliation(s)
- Julie R Marentette
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, Burlington, ON, Canada
| | - Kathleena Sarty
- Department of Biology, University of New Brunswick, Saint John, Canada
| | - Andrew M Cowie
- Department of Biology, University of New Brunswick, Saint John, Canada
| | - Richard A Frank
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, Burlington, ON, Canada
| | - L Mark Hewitt
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, Burlington, ON, Canada
| | - Joanne L Parrott
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, Burlington, ON, Canada
| | | |
Collapse
|
30
|
Alharbi HA, Alcorn J, Al-Mousa A, Giesy JP, Wiseman SB. Toxicokinetics and toxicodynamics of chlorpyrifos is altered in embryos of Japanese medaka exposed to oil sands process-affected water: evidence for inhibition of P-glycoprotein. J Appl Toxicol 2016; 37:591-601. [DOI: 10.1002/jat.3397] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 09/06/2016] [Accepted: 09/06/2016] [Indexed: 02/03/2023]
Affiliation(s)
| | - Jane Alcorn
- Toxicology Centre; University of Saskatchewan; Saskatoon SK Canada
- College of Pharmacy and Nutrition; University of Saskatchewan; Saskatoon SK Canada
| | - Ahmed Al-Mousa
- College of Pharmacy and Nutrition; University of Saskatchewan; Saskatoon SK Canada
| | - John P. Giesy
- Toxicology Centre; University of Saskatchewan; Saskatoon SK Canada
- Department of Veterinary Biomedical Sciences; University of Saskatchewan; Saskatoon SK Canada
- Zoology Department, Center for Integrative Toxicology; Michigan State University; East Lansing MI USA
- School of Biological Sciences; University of Hong Kong, Hong Kong Special Administrative Region; People's Republic of China
| | - Steve B. Wiseman
- Toxicology Centre; University of Saskatchewan; Saskatoon SK Canada
| |
Collapse
|
31
|
Shu Z, Singh A, Klamerth N, McPhedran K, Bolton JR, Belosevic M, Gamal El-Din M. Pilot-scale UV/H2O2 advanced oxidation process for municipal reuse water: Assessing micropollutant degradation and estrogenic impacts on goldfish (Carassius auratus L.). WATER RESEARCH 2016; 101:157-166. [PMID: 27262120 DOI: 10.1016/j.watres.2016.05.079] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 04/15/2016] [Accepted: 05/24/2016] [Indexed: 06/05/2023]
Abstract
Low concentrations (ng/L-μg/L) of emerging micropollutant contaminants in municipal wastewater treatment plant effluents affect the possibility to reuse these waters. Many of those micropollutants elicit endocrine disrupting effects in aquatic organisms resulting in an alteration of the endocrine system. A potential candidate for tertiary municipal wastewater treatment of these micropollutants is ultraviolet (UV)/hydrogen peroxide (H2O2) as an advanced oxidation process (AOP) which was currently applied to treat the secondary effluent of the Gold Bar Wastewater Treatment Plant (GBWWTP) in Edmonton, AB, Canada. A new approach is presented to predict the fluence-based degradation rate constants (kf') of environmentally occurring micropollutants including carbamazepine [(0.87-1.39) × 10(-3) cm(2)/mJ] and 2,4-Dichlorophenoxyacetic acid (2,4-D) [(0.60-0.91) × 10(-3) cm(2)/mJ for 2,4-D] in a medium pressure (MP) UV/H2O2 system based on a previous bench-scale investigation. Rather than using removal rates, this approach can be used to estimate the performance of the MP UV/H2O2 process for degrading trace contaminants of concern found in municipal wastewater. In addition to the ability to track contaminant removal/degradation, evaluation of the MP UV/H2O2 process was also accomplished by identifying critical ecotoxicological endpoints (i.e., estrogenicity) of the treated wastewater. Using quantitative PCR, mRNA levels of estrogen-responsive (ER) genes ERα1, ERα2, ERβ1, ERβ2 and NPR as well as two aromatase encoding genes (CYP19a and CYP19b) in goldfish (Carassius auratus L.) were measured during exposure to the GBWWTP effluent before and after MP UV/H2O2 treatment (a fluence of 1000 mJ/cm(2) and 20 mg/L of H2O2) in spring, summer and fall. Elevated expression of estrogen-responsive genes in goldfish exposed to UV/H2O2 treated effluent (a 7-day exposure) suggested that the UV/H2O2 process may induce acute estrogenic disruption to goldfish principally because of the possible formation of various oxidation by-products. However, prolonged exposure of goldfish (60 days) in UV/H2O2 treated effluent showed a restoration trend of ER gene expressions, especially in the summer. Collectively, our findings provide valuable indications regarding the long-term in vivo assessment of the MP UV/H2O2 process for removing/degrading endocrine disrupting compounds detected in the municipal wastewater effluents.
Collapse
Affiliation(s)
- Zengquan Shu
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB, T6G 1H9, Canada
| | - Arvinder Singh
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB, T6G 1H9, Canada; Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2W2, Canada
| | - Nikolaus Klamerth
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB, T6G 1H9, Canada
| | - Kerry McPhedran
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB, T6G 1H9, Canada; Department of Civil and Geological Engineering, University of Saskatchewan, Saskatoon, SK, S7N 5A9, Canada
| | - James R Bolton
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB, T6G 1H9, Canada
| | - Miodrag Belosevic
- Department of Civil and Geological Engineering, University of Saskatchewan, Saskatoon, SK, S7N 5A9, Canada
| | - Mohamed Gamal El-Din
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB, T6G 1H9, Canada.
| |
Collapse
|
32
|
Morandi GD, Zhang K, Wiseman SB, Pereira ADS, Martin JW, Giesy JP. Effect of Lipid Partitioning on Predictions of Acute Toxicity of Oil Sands Process Affected Water to Embryos of Fathead Minnow (Pimephales promelas). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:8858-8866. [PMID: 27420640 DOI: 10.1021/acs.est.6b01481] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Dissolved organic compounds in oil sands process affected water (OSPW) are known to be responsible for most of its toxicity to aquatic organisms, but the complexity of this mixture prevents use of traditional bottom-up approaches for predicting toxicities of mixtures. Therefore, a top-down approach to predict toxicity of the dissolved organic fraction of OSPW was developed and tested. Accurate masses (i.e., m/z) determined by ultrahigh resolution mass spectrometry in negative and positive ionization modes were used to assign empirical chemical formulas to each chemical species in the mixture. For each chemical species, a predictive measure of lipid accumulation was estimated by stir-bar sorptive extraction (SBSE) to poly(dimethyl)siloxane, or by partitioning to solid-supported lipid membranes (SSLM). A narcosis mode of action was assumed and the target-lipid model was used to estimate potencies of mixtures by assuming strict additivity. A model developed using a combination of the SBSE and SSLM lipid partitioning estimates, whereby the accumulation of chemicals to neutral and polar lipids was explicitly considered, was best for predicting empirical values of LC50 in 96-h acute toxicity tests with embryos of fathead minnow (Pimephales promelas). Model predictions were within 4-fold of observed toxicity for 75% of OSPW samples, and within 8.5-fold for all samples tested, which is comparable to the range of interlaboratory variability for in vivo toxicity testing.
Collapse
Affiliation(s)
- Garrett D Morandi
- Toxicology Centre, University of Saskatchewan , Saskatoon, Saskatchewan S7N 5A2, Canada
| | - Kun Zhang
- Division of Analytical and Environmental Toxicology, University of Alberta , Edmonton, Alberta Canada
| | - Steve B Wiseman
- Toxicology Centre, University of Saskatchewan , Saskatoon, Saskatchewan S7N 5A2, Canada
| | | | - Jonathan W Martin
- Division of Analytical and Environmental Toxicology, University of Alberta , Edmonton, Alberta Canada
| | - John P Giesy
- Toxicology Centre, University of Saskatchewan , Saskatoon, Saskatchewan S7N 5A2, Canada
- Department of Veterinary Biomedical Sciences, University of Saskatchewan , Saskatoon, Saskatchewan S7N 5A2, Canada
- Department of Zoology, and Center for Integrative Toxicology, Michigan State University , East Lansing, Michigan 48823, United States
- School of Biological Sciences, University of Hong Kong , Hong Kong, SAR China
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University , Nanjing 210023, People's Republic of China
| |
Collapse
|
33
|
Alharbi HA, Morandi G, Giesy JP, Wiseman SB. Effect of oil sands process-affected water on toxicity of retene to early life-stages of Japanese medaka (Oryzias latipes). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 176:1-9. [PMID: 27104238 DOI: 10.1016/j.aquatox.2016.04.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 04/09/2016] [Accepted: 04/11/2016] [Indexed: 06/05/2023]
Abstract
Toxicity of oil sands process-affected water (OSPW) to aquatic organisms has been studied, but effects of co-exposure to OSPW and polycyclic-aromatic hydrocarbons (PAHs), which are an important class of chemicals in tailings ponds used to store OSPW, has not been investigated. The goal of the current study was to determine if organic compounds extracted from the aqueous phase of relatively fresh OSPW from Base-Mine Lake (BML-OSPW) or aged OSPW from Pond 9 experimental reclamation pond (P9-OSPW) modulated toxic potency of the model alkyl-PAH, retene, to early life-stages of Japanese medaka (Oryzias latipes). Embryos were exposed to retene by use of a partition controlled delivery (PCD) system made of polydimethylsiloxane (PDMS) until day of hatch. Incidences of pericardial edema and expression of CYP1A were not significantly greater in larvae exposed only to dissolved organic compounds from either OSPW but were significantly greater in larvae exposed only to retene. Expression of CYP1A and incidences of pericardial edema were significantly greater in larvae co-exposed to retene and 5×equivalent of dissolved organic compounds from BML-OSPW compared to retene alone. However, there was no effect of co-exposure to retene and either a 1×equivalent of dissolved organic compounds from BML-OSPW or 5×equivalent of dissolved organic compounds from P9-OSPW. While there was evidence that exposure to 5×equivalent of dissolved organic compounds from BML-OSPW caused oxidative stress, there was no evidence of this effect in larvae exposed only to retene or co-exposed to retene and a 5×equivalent of dissolved organic compounds from BML-OSPW. These results suggest that oxidative stress is not a mechanism of pericardial edema in early-life stages of Japanese medaka. Relatively fresh OSPW from Base Mine Lake might influence toxicity of alkylated-PAHs to early life stages of fishes but this effect would not be expected to occur at current concentrations of OSPW and is attenuated by aging of OSPW.
Collapse
Affiliation(s)
- Hattan A Alharbi
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | - Garrett Morandi
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | - John P Giesy
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada,; Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, SK, Canada; Zoology Department, Center for Integrative Toxicology, Michigan State University, East Lansing, MI, USA; School of Biological Sciences, University of Hong Kong, Hong Kong Special Administrative Region, People's Republic of China; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, People's Republic of China.
| | - Steve B Wiseman
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada,.
| |
Collapse
|
34
|
Dang Y, Wang J, Giesy JP, Liu C. Responses of the zebrafish hypothalamic-pituitary-gonadal-liver axis PCR array to prochloraz are dependent on timing of sampling. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 175:154-159. [PMID: 27055099 DOI: 10.1016/j.aquatox.2016.03.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Revised: 03/24/2016] [Accepted: 03/28/2016] [Indexed: 06/05/2023]
Abstract
A PCR array, based on expression of genes along the hypothalamic-pituitary-gonadal-liver (HPGL) axis of fish, has been suggested as a useful method for screening of endocrine-disrupting chemicals (EDCs). However, effects of circadian rhythm on responses of the HPGL axis to exposure to chemicals were unknown. In this study, profiles of expression of genes along the HPGL axis and concentrations of 17β-estradiol (E2) in blood plasma of female zebrafish were compared at two sampling times of day (8:00 AM and 7:00 PM). Prochloraz (PCZ) was selected as a model chemical to evaluate differences in responses of the HPGL axis at these two times of day. Profiles of responses of concentrations of E2 in plasma and expressions of genes along the HPGL axis genes were different between the two times of sampling. Concentrations of E2 were less, and abundances of mRNA for several genes along the HPGL axis were significantly greater or lesser when samples were collected at 7:00 PM than they were when samples were collected at 8:00 AM. Exposure to three concentrations of PCZ (3, 30 or 300μg/L) for 48h resulted in significantly lesser concentrations of plasma E2 and caused compensatory up-regulation of genes included in hypothalamus, pituitary and ovary. Expressions of genes along the HPGL were more responsive to PCZ at 8:00 AM than they were when samples were collected at 7:00 PM. Correlations among parameters in samples collected at the two times indicated the effects might be due to different concentrations of E2 in plasma due to exposure to PCZ.
Collapse
Affiliation(s)
- Yao Dang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Jianghua Wang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - John P Giesy
- School of Biological Sciences, University of Hong Kong, Hong Kong Special Administrative Region, China; Department of Veterinary Biomedical Sciences and Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B3, Canada; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, China
| | - Chunsheng Liu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; Collaborative Innovation Center for Efficient and Health Production of Fisheries in Hunan Province, Hunan Changde 415000, China.
| |
Collapse
|
35
|
Dissanayake A, Scarlett AG, Jha AN. Diamondoid naphthenic acids cause in vivo genetic damage in gills and haemocytes of marine mussels. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:7060-7066. [PMID: 26884235 DOI: 10.1007/s11356-016-6268-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 02/08/2016] [Indexed: 06/05/2023]
Abstract
Diamondoids are polycyclic saturated hydrocarbons that possess a cage-like carbon skeleton approaching that of diamond. These 'nano-diamonds' are used in a range of industries including nanotechnologies and biomedicine. Diamondoids were thought to be highly resistant to degradation, but their presumed degradation acid products have now been found in oil sands process-affected waters (OSPW) and numerous crude oils. Recently, a diamondoid-related structure, 3-noradamantane carboxylic acid, was reported to cause genetic damage in trout hepatocytes under in vitro conditions. This particular compound has never been reported in the environment but led us to hypothesise that other more environmentally relevant diamondoid acids could also be genotoxic. We carried out in vivo exposures (3 days, semi-static) of marine mussels to two environmentally relevant diamondoid acids, 1-adamantane carboxylic acid and 3,5-dimethyladamantane carboxylic acid plus 3-noradamantane carboxylic acid with genotoxic damage assessed using the Comet assay. An initial screening test confirmed that these acids displayed varying degrees of genotoxicity to haemocytes (increased DNA damage above that of controls) when exposed in vivo to a concentration of 30 μmol L(-1). In a further test focused on 1-adamantane carboxylic acid with varying concentrations (0.6, 6 and 30 μmol L(-1)), significant (P < 0.05%) DNA damage was observed in different target cells (viz. gills and haemocytes) at 0.6 μmol L(-1). Such a level of induced genetic damage was similar to that observed following exposure to a known genotoxin, benzo(a)pyrene (exposure concentration, 0.8 μmol L(-1)). These findings may have implications for a range of worldwide industries including oil extraction, nanotechnology and biomedicine.
Collapse
Affiliation(s)
- Awantha Dissanayake
- School of Biological Sciences, Plymouth University, Plymouth, PL4 8AA, Devon, UK
| | - Alan G Scarlett
- Petroleum and Environmental Geochemistry Group, Biogeochemistry Research Centre, Plymouth University, Drake Circus, Plymouth, Devon, PL4 8AA, UK.
- WA-Organic and Isotope Geochemistry Centre, The Institute for Geoscience Research, Department of Chemistry, Curtin University, Building 500, Kent Street, G.P.O. Box U1987, Perth, WA, 6845, Australia.
| | - Awadhesh N Jha
- School of Biological Sciences, Plymouth University, Plymouth, PL4 8AA, Devon, UK
| |
Collapse
|
36
|
Simmons DBD, Sherry JP. Plasma proteome profiles of White Sucker (Catostomus commersonii) from the Athabasca River within the oil sands deposit. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2016; 19:181-189. [PMID: 27013027 DOI: 10.1016/j.cbd.2016.03.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 02/22/2016] [Accepted: 03/06/2016] [Indexed: 12/12/2022]
Abstract
There are questions about the potential for oil sands related chemicals to enter the Athabasca River, whether from tailing ponds, atmospheric deposition, precipitation, or transport of mining dust, at concentrations sufficient to negatively impact the health of biota. We applied shotgun proteomics to generate protein profiles of mature male and female White Sucker (Catostomus commersonii) that were collected from various sites along the main stem of the Athabasca River in 2011 and 2012. On average, 399±131 (standard deviation) proteins were identified in fish plasma from each location in both years. Ingenuity Pathway Analysis software was used to determine the proteins' core functions and to compare the datasets by location, year, and sex. Principal component analysis (PCA) was used to determine if variation in the number of proteins related to a core function among all male and female individuals from both sampling years was affected by location. The core biological functions of plasma proteins that were common to both sampling years for males and females from each location were also estimated separately (based on Ingenuity's Knowledge Base). PCA revealed site-specific differences in the functional characteristics of the plasma proteome from white sucker sampled from downstream of oil sands extraction facilities compared with fish from upstream. Plasma proteins that were unique to fish downstream of oil sands extraction were related to lipid metabolism, small molecule biochemistry, vitamin and mineral metabolism, endocrine system disorders, skeletal and muscular development and function, neoplasia, carcinomas, and gastrointestinal disease.
Collapse
Affiliation(s)
- Denina B D Simmons
- Aquatic Contaminants Research Division, Environment Canada, Burlington, Ontario, Canada
| | - James P Sherry
- Aquatic Contaminants Research Division, Environment Canada, Burlington, Ontario, Canada
| |
Collapse
|
37
|
Lari E, Wiseman S, Mohaddes E, Morandi G, Alharbi H, Pyle GG. Determining the effect of oil sands process-affected water on grazing behaviour of Daphnia magna, long-term consequences, and mechanism. CHEMOSPHERE 2016; 146:362-370. [PMID: 26735738 DOI: 10.1016/j.chemosphere.2015.12.037] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 12/08/2015] [Accepted: 12/10/2015] [Indexed: 06/05/2023]
Abstract
Oil sands process-affected water (OSPW) is a byproduct of the extraction of bitumen in the surface-mining oil sands industry and is currently stored in on-site tailings ponds. OSPW from three oil sands companies were studied to capture some of the variability associated with OSPW characteristics. To investigate the effect and mechanism(s) of effect of OSPW on feeding behaviour, Daphnia magna were exposed to low OSPW concentrations for 24 h and monitored for their feeding rate, olfactory response and swimming activity. The Al and Si content, which are indicators of suspended particulate matter in D. magna exposed to OSPW were investigated using energy-dispersive X-ray (EDX) spectroscopy. In long-term experiments, effects of exposure to OSPW for 21 days on feeding behaviour, growth, and reproduction of D. magna were evaluated. Feeding rates were similar among the three exposure populations, yielding a 24 h IC50 of 5.3% OSPW. Results of behavioural assays suggest that OSPW impairs the chemosensory function and reduces the total activity of D. magna. In EDX spectroscopy, Al and Si were detected in the body of the exposed D. magna, suggesting that D. magna filter clay particles from the OSPW solution. Results of the long-term exposure showed that OSPW significantly inhibits feeding behaviour, suppresses growth, and reduces reproductive output of D. magna. There were no differences in the toxicity of the three samples of OSPW, which was in agreement with the fact that there were no differences in the species of dissolved organic compounds in the OSPW samples.
Collapse
Affiliation(s)
- Ebrahim Lari
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, T1K 3M4, Canada
| | - Steve Wiseman
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, S7N 5B3, Canada
| | - Effat Mohaddes
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, T1K 3M4, Canada
| | - Garrett Morandi
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, S7N 5B3, Canada
| | - Hattan Alharbi
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, S7N 5B3, Canada
| | - Greg G Pyle
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, T1K 3M4, Canada.
| |
Collapse
|
38
|
Alharbi HA, Saunders DMV, Al-Mousa A, Alcorn J, Pereira AS, Martin JW, Giesy JP, Wiseman SB. Inhibition of ABC transport proteins by oil sands process affected water. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 170:81-88. [PMID: 26650706 DOI: 10.1016/j.aquatox.2015.11.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 11/13/2015] [Accepted: 11/14/2015] [Indexed: 06/05/2023]
Abstract
The ATP-binding cassette (ABC) superfamily of transporter proteins is important for detoxification of xenobiotics. For example, ABC transporters from the multidrug-resistance protein (MRP) subfamily are important for excretion of polycyclic aromatic hydrocarbons (PAHs) and their metabolites. Effects of chemicals in the water soluble organic fraction of relatively fresh oil sands process affected water (OSPW) from Base Mine Lake (BML-OSPW) and aged OSPW from Pond 9 (P9-OSPW) on the activity of MRP transporters were investigated in vivo by use of Japanese medaka at the fry stage of development. Activities of MRPs were monitored by use of the lipophilic dye calcein, which is transported from cells by ABC proteins, including MRPs. To begin to identify chemicals that might inhibit activity of MRPs, BML-OSPW and P9-OSPW were fractionated into acidic, basic, and neutral fractions by use of mixed-mode sorbents. Chemical compositions of fractions were determined by use of ultrahigh resolution orbitrap mass spectrometry in ESI(+) and ESI(-) mode. Greater amounts of calcein were retained in fry exposed to BML-OSPW at concentration equivalents greater than 1× (i.e., full strength). The neutral and basic fractions of BML-OSPW, but not the acidic fraction, caused greater retention of calcein. Exposure to P9-OSPW did not affect the amount of calcein in fry. Neutral and basic fractions of BML-OSPW contained relatively greater amounts of several oxygen-, sulfur, and nitrogen-containing chemical species that might inhibit MRPs, such as O(+), SO(+), and NO(+) chemical species, although secondary fractionation will be required to conclusively identify the most potent inhibitors. Naphthenic acids (O2(-)), which were dominant in the acidic fraction, did not appear to be the cause of the inhibition. This is the first study to demonstrate that chemicals in the water soluble organic fraction of OSPW inhibit activity of this important class of proteins. However, aging of OSPW attenuates this effect and inhibition of the activity of MRPs by OSPW from Base Mine Lake does not occur at environmentally relevantconcentrations.
Collapse
Affiliation(s)
- Hattan A Alharbi
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | | | - Ahmed Al-Mousa
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | - Jane Alcorn
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada; College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | - Alberto S Pereira
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, Edmonton, AB, Canada
| | - Jonathan W Martin
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, Edmonton, AB, Canada
| | - John P Giesy
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada; Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, SK, Canada; Zoology Department, Center for Integrative Toxicology, Michigan State University, East Lansing, MI, USA; School of Biological Sciences, University of Hong Kong, Hong Kong Special Administrative Region, People's Republic of China; Department of Biology, Hong Kong Baptist University, Kowloon, Hong Kong Special Administrative Region, People's Republic of China; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, People's Republic of China.
| | - Steve B Wiseman
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada.
| |
Collapse
|
39
|
Wang J, Cao X, Sun J, Huang Y, Tang X. Disruption of endocrine function in H295R cell in vitro and in zebrafish in vivo by naphthenic acids. JOURNAL OF HAZARDOUS MATERIALS 2015; 299:1-9. [PMID: 26073515 DOI: 10.1016/j.jhazmat.2015.06.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 06/01/2015] [Accepted: 06/02/2015] [Indexed: 06/04/2023]
Abstract
Oil sands process-affected water (OSPW) have been reported to exhibit endocrine disrupting effects on aquatic organisms. Although the responsible compounds are unknown, naphthenic acids (NAs) have been considered to be implicated. The current study was designed to investigate the endocrine disruption of OSPW extracted NAs (OS-NAs) and commercial NAs (C-NAs) using a combination of in vitro and in vivo assays. The effects of OS-NAs and C-NAs on steroidogenesis were assessed both at hormone levels and expression levels of hormone-related genes in the H295R cells. The transcriptions of biomarker genes involved in endocrine systems in zebrafish larvae were investigated to detect the effects of OS-NAs and C-NAs on endocrine function in vivo. Exposure to OS-NAs and C-NAs significantly increased production of 17β-estradiol (E2) and progesterone (P4), and decreased production of testosterone (T). Both OS-NAs and C-NAs significantly induced the expression of several genes involved in steroidogenesis. The abundances of transcripts of biomarker gene CYP19b, ERα, and VTG were significantly up-regulated in zebrafish larvae exposed to OS-NAs and C-NAs, which indicated that NAs had negative effects on estrogen-responsive gene transcription in vivo. These results indicated that NAs should be partly responsible for the endocrine disrupting effects of OSPW.
Collapse
Affiliation(s)
- Jie Wang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Xiaofeng Cao
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Jinhua Sun
- Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yi Huang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| | - Xiaoyan Tang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
40
|
Quesnel DM, Oldenburg TBP, Larter SR, Gieg LM, Chua G. Biostimulation of Oil Sands Process-Affected Water with Phosphate Yields Removal of Sulfur-Containing Organics and Detoxification. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:13012-13020. [PMID: 26448451 DOI: 10.1021/acs.est.5b01391] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The ability to mitigate toxicity of oil sands process-affected water (OSPW) for return into the environment is an important issue for effective tailings management in Alberta, Canada. OSPW toxicity has been linked to classical naphthenic acids (NAs), but the toxic contribution of other acid-extractable organics (AEOs) remains unknown. Here, we examine the potential for in situ bioremediation of OSPW AEOs by indigenous algae. Phosphate biostimulation was performed in OSPW to promote the growth of indigenous photosynthetic microorganisms and subsequent toxicity and chemical changes were determined. After 12 weeks, the AEO fraction of phosphate-biostimulated OSPW was significantly less toxic to the fission yeast Schizosaccharomyces pombe than unstimulated OSPW. Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) analysis of the AEO fraction in phosphate-biostimulated OSPW showed decreased levels of SO3 class compounds, including a subset that may represent linear arylsulfonates. A screen with S. pombe transcription factor mutant strains for growth sensitivity to the AEO fraction or sodium dodecylbenzenesulfonate revealed a mode of toxic action consistent with oxidative stress and detrimental effects on cellular membranes. These findings demonstrate a potential algal-based in situ bioremediation strategy for OSPW AEOs and uncover a link between toxicity and AEOs other than classical NAs.
Collapse
Affiliation(s)
- Dean M Quesnel
- Department of Biological Sciences, and ‡PRG, Department of Geosciences, University of Calgary , 2500 University Drive NW, Calgary, Alberta Canada T2N 1N4
| | - Thomas B P Oldenburg
- Department of Biological Sciences, and ‡PRG, Department of Geosciences, University of Calgary , 2500 University Drive NW, Calgary, Alberta Canada T2N 1N4
| | - Stephen R Larter
- Department of Biological Sciences, and ‡PRG, Department of Geosciences, University of Calgary , 2500 University Drive NW, Calgary, Alberta Canada T2N 1N4
| | - Lisa M Gieg
- Department of Biological Sciences, and ‡PRG, Department of Geosciences, University of Calgary , 2500 University Drive NW, Calgary, Alberta Canada T2N 1N4
| | - Gordon Chua
- Department of Biological Sciences, and ‡PRG, Department of Geosciences, University of Calgary , 2500 University Drive NW, Calgary, Alberta Canada T2N 1N4
| |
Collapse
|
41
|
Morandi GD, Wiseman SB, Pereira A, Mankidy R, Gault IGM, Martin JW, Giesy JP. Effects-Directed Analysis of Dissolved Organic Compounds in Oil Sands Process-Affected Water. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:12395-12404. [PMID: 26381019 DOI: 10.1021/acs.est.5b02586] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Acute toxicity of oil sands process-affected water (OSPW) is caused by its complex mixture of bitumen-derived organics, but the specific chemical classes that are most toxic have not been demonstrated. Here, effects-directed analysis was used to determine the most acutely toxic chemical classes in OSPW collected from the world's first oil sands end-pit lake. Three sequential rounds of fractionation, chemical analysis (ultrahigh resolution mass spectrometry), and acute toxicity testing (96 h fathead minnow embryo lethality and 15 min Microtox bioassay) were conducted. Following primary fractionation, toxicity was primarily attributable to the neutral extractable fraction (F1-NE), containing 27% of original organics mass. In secondary fractionation, F1-NE was subfractionated by alkaline water washing, and toxicity was primarily isolated to the ionizable fraction (F2-NE2), containing 18.5% of the original organic mass. In the final round, chromatographic subfractionation of F2-NE2 resulted in two toxic fractions, with the most potent (F3-NE2a, 11% of original organic mass) containing predominantly naphthenic acids (O2(-)). The less-toxic fraction (F3-NE2b, 8% of original organic mass) contained predominantly nonacid species (O(+), O2(+), SO(+), NO(+)). Evidence supports naphthenic acids as among the most acutely toxic chemical classes in OSPW, but nonacidic species also contribute to acute toxicity of OSPW.
Collapse
Affiliation(s)
- Garrett D Morandi
- Toxicology Centre, University of Saskatchewan , Saskatoon, Saskatchewan S7N 5B3, Canada
| | - Steve B Wiseman
- Toxicology Centre, University of Saskatchewan , Saskatoon, Saskatchewan S7N 5B3, Canada
| | - Alberto Pereira
- Division of Analytical and Environmental Toxicology, University of Alberta , Edmonton, Alberta T6G 2G3, Canada
| | - Rishikesh Mankidy
- Toxicology Centre, University of Saskatchewan , Saskatoon, Saskatchewan S7N 5B3, Canada
| | - Ian G M Gault
- Division of Analytical and Environmental Toxicology, University of Alberta , Edmonton, Alberta T6G 2G3, Canada
| | - Jonathan W Martin
- Division of Analytical and Environmental Toxicology, University of Alberta , Edmonton, Alberta T6G 2G3, Canada
| | - John P Giesy
- Toxicology Centre, University of Saskatchewan , Saskatoon, Saskatchewan S7N 5B3, Canada
- Department of Veterinary Biomedical Sciences, University of Saskatchewan , Saskatoon, Saskatchewan S7N 5B4, Canada
- Department of Zoology, and Center for Integrative Toxicology, Michigan State University , East Lansing, Michigan 48824, United States
- Department of Biology & Chemistry and State Key Laboratory for Marine Pollution, City University of Hong Kong , Kowloon, Hong Kong Special Administrative Region (SAR), People's Republic of China
- School of Biological Sciences, The University of Hong Kong , Hong Kong SAR, People's Republic of China
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University , Nanjing 210023, People's Republic of China
- Department of Biology, Hong Kong Baptist University , Hong Kong SAR, People's Republic of China
| |
Collapse
|
42
|
Wang J, Cao X, Sun J, Chai L, Huang Y, Tang X. Transcriptional responses of earthworm (Eisenia fetida) exposed to naphthenic acids in soil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2015; 204:264-270. [PMID: 25984985 DOI: 10.1016/j.envpol.2015.05.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Revised: 04/30/2015] [Accepted: 05/02/2015] [Indexed: 06/04/2023]
Abstract
In this study, earthworms (Eisenia fetida) were exposed to commercial NAs contaminated soil, and changes in the levels of reactive oxygen species (ROS) and gene expressions of their defense system were monitored. The effects on the gene expression involved in reproduction and carcinogenesis were also evaluated. Significant increases in ROS levels was observed in NAs exposure groups, and the superoxide dismutase (SOD) and catalase (CAT) genes were both up-regulated at low and medium exposure doses, which implied NAs might exert toxicity by oxidative stress. The transcription of CRT and HSP70 coincided with oxidative stress, which implied both chaperones perform important functions in the protection against oxidative toxicity. The upregulation of TCTP gene indicated a potential adverse effect of NAs to terrestrial organisms through induction of carcinogenesis, and the downregulation of ANN gene indicated that NAs might potentially result in deleterious reproduction effects.
Collapse
Affiliation(s)
- Jie Wang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Xiaofeng Cao
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Jinhua Sun
- Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Liwei Chai
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Yi Huang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| | - Xiaoyan Tang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
43
|
Zhang Y, McPhedran KN, Gamal El-Din M. Pseudomonads biodegradation of aromatic compounds in oil sands process-affected water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 521-522:59-67. [PMID: 25828413 DOI: 10.1016/j.scitotenv.2015.03.068] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 03/17/2015] [Accepted: 03/17/2015] [Indexed: 06/04/2023]
Abstract
Aromatic naphthenic acids (NAs) have been shown to be more toxic than the classical NAs found in oil sands process-affected water (OSPW). To reduce this toxicity, Pseudomonas fluorescens and Pseudomonas putida were used to determine their ability to biodegrade aromatic compounds including treatments considering the impacts of external carbon and iron addition. Results showed that with added carbon P. fluorescens and P. putida have the capability of biodegrading these aromatics. In the presence of external carbon, gene expression of a functional PAH-ring hydroxylating dioxygenase (PAH-RHDα) was determined through reverse transcription real-time PCR, suggesting active degradation of OSPW aromatic compounds. Although no significant classical NAs removal was observed during this process, toxicity was reduced by 49.3% under optimal conditions. OSPW toxicity was eliminated with the combination of ozonation at a dose of 80 mg/L followed by biodegradation, indicating that it is a promising combined OSPW treatment approach for the safe discharge to the aquatic environment.
Collapse
Affiliation(s)
- Yanyan Zhang
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 2W2, Canada
| | - Kerry N McPhedran
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 2W2, Canada
| | - Mohamed Gamal El-Din
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 2W2, Canada.
| |
Collapse
|
44
|
Marentette JR, Frank RA, Bartlett AJ, Gillis PL, Hewitt LM, Peru KM, Headley JV, Brunswick P, Shang D, Parrott JL. Toxicity of naphthenic acid fraction components extracted from fresh and aged oil sands process-affected waters, and commercial naphthenic acid mixtures, to fathead minnow (Pimephales promelas) embryos. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2015; 164:108-117. [PMID: 25957715 DOI: 10.1016/j.aquatox.2015.04.024] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 04/21/2015] [Accepted: 04/22/2015] [Indexed: 06/04/2023]
Abstract
Naphthenic acids (NAs) are constituents of oil sands process-affected water (OSPW). These compounds can be both toxic and persistent and thus are a primary concern for the ultimate remediation of tailings ponds in northern Alberta's oil sands regions. Recent research has focused on the toxicity of NAs to the highly vulnerable early life-stages of fish. Here we examined fathead minnow embryonic survival, growth and deformities after exposure to extracted NA fraction components (NAFCs), from fresh and aged oil sands process-affected water (OSPW), as well as commercially available NA mixtures. Commercial NA mixtures were dominated by acyclic O2 species, while NAFCs from OSPW were dominated by bi- and tricyclic O2 species. Fathead minnow embryos less than 24h old were reared in tissue culture plates terminating at hatch. Both NAFC and commercial NA mixtures reduced hatch success, although NAFCs from OSPW were less toxic (EC50=5-12mg/L, nominal concentrations) than commercial NAs (2mg/L, nominal concentrations). The toxicities of NAFCs from aged and fresh OSPW were similar. Embryonic heart rates at 2 days post-fertilization (dpf) declined with increasing NAFC exposure, paralleling patterns of hatch success and rates of cardiovascular abnormalities (e.g., pericardial edemas) at hatch. Finfold deformities increased in exposures to commercial NA mixtures, not NAFCs. Thus, commercial NA mixtures are not appropriate surrogates for NAFC toxicity. Further work clarifying the mechanisms of action of NAFCs in OSPW, as well as comparisons with additional aged sources of OSPW, is merited.
Collapse
Affiliation(s)
- Julie R Marentette
- Water Science and Technology Directorate, Environment Canada, Burlington, ON, Canada
| | - Richard A Frank
- Water Science and Technology Directorate, Environment Canada, Burlington, ON, Canada
| | - Adrienne J Bartlett
- Water Science and Technology Directorate, Environment Canada, Burlington, ON, Canada
| | - Patricia L Gillis
- Water Science and Technology Directorate, Environment Canada, Burlington, ON, Canada
| | - L Mark Hewitt
- Water Science and Technology Directorate, Environment Canada, Burlington, ON, Canada
| | - Kerry M Peru
- Water Science and Technology Directorate, Environment Canada, Saskatoon, SK, Canada
| | - John V Headley
- Water Science and Technology Directorate, Environment Canada, Saskatoon, SK, Canada
| | - Pamela Brunswick
- Water Science and Technology Directorate, Environment Canada, Vancouver, BC, Canada
| | - Dayue Shang
- Water Science and Technology Directorate, Environment Canada, Vancouver, BC, Canada
| | - Joanne L Parrott
- Water Science and Technology Directorate, Environment Canada, Burlington, ON, Canada.
| |
Collapse
|
45
|
Leclair LA, Pohler L, Wiseman SB, He Y, Arens CJ, Giesy JP, Scully S, Wagner BD, van den Heuvel MR, Hogan NS. In vitro assessment of endocrine disrupting potential of naphthenic Acid fractions derived from oil sands-influenced water. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:5743-5752. [PMID: 25835061 DOI: 10.1021/acs.est.5b00077] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Oil sands-influenced process waters have been observed to cause reproductive effects and to induced CYP1A activity in fishes; however, little progress has been made in determining causative agents. Naphthenic acids (NAs) are the predominant organic compounds in process-affected waters, but due to the complexity of the mixture, it has been difficult to examine causal linkages in fishes. The aim of this study was to use in vitro assays specific to reproductive and CYP1A mechanisms to determine if specific acid extractable fractions of NAs obtained from oil sands-influenced water are active toward reproductive processes or interact with the Ah receptor responsible for CYP1A activity. NAs were extracted from aged oil sands-influenced waters by use of acid precipitation, and the mixture was fractionated into three acidic and one neutral fraction. The four fractions were examined for Ah receptor-mediated potency by use of the H4IIE-luc bioassay, effects on production of steroid hormones by use of the H295R steroidogenesis assay, and sex steroid receptor binding activity using the yeast estrogen screen and yeast androgen screen. The mixtures were characterized by high resolution mass spectrometry, (1)H nuclear magnetic resonance, and attenuated total reflectance infrared spectroscopy. The neutral fraction elicited Ah-receptor mediated activity after 24 h but not after 48 or 72 h. None of the fractions contained measurable levels of estrogen or androgen receptor agonists nor did they cause reductions in steroidogenesis. A number of fractions showed antiestrogenic or antiandrogenicity potency, with the neutral and main acidic fractions being the most potent. Neutral aromatic compounds are likely responsible for the CYP1A activity observed. Direct estrogenic, androgenic, or steroidogenic mechanisms are unlikely for NAs based on these results, but NAs act as potent antiandrogen or antiestrogens.
Collapse
Affiliation(s)
- Liane A Leclair
- †Canadian Rivers Institute, University of Prince Edward Island, Charlottetown, Prince Edward Island C1A 4P3, Canada
| | - Lani Pohler
- ‡Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B3, Canada
| | - Steve B Wiseman
- ‡Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B3, Canada
| | - Yuhe He
- ‡Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B3, Canada
| | - Collin J Arens
- †Canadian Rivers Institute, University of Prince Edward Island, Charlottetown, Prince Edward Island C1A 4P3, Canada
| | - John P Giesy
- ‡Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B3, Canada
- §Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B4, Canada
| | - Stephen Scully
- ⊥Department of Chemistry, University of Prince Edward Island, Charlottetown, Prince Edward Island C1A 4P3, Canada
| | - Brian D Wagner
- ⊥Department of Chemistry, University of Prince Edward Island, Charlottetown, Prince Edward Island C1A 4P3, Canada
| | - Michael R van den Heuvel
- †Canadian Rivers Institute, University of Prince Edward Island, Charlottetown, Prince Edward Island C1A 4P3, Canada
| | - Natacha S Hogan
- ‡Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B3, Canada
- ∥Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5A8, Canada
| |
Collapse
|
46
|
Pereira AS, Martin JW. Exploring the complexity of oil sands process-affected water by high efficiency supercritical fluid chromatography/orbitrap mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2015; 29:735-744. [PMID: 26406488 DOI: 10.1002/rcm.7156] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 01/22/2015] [Accepted: 01/24/2015] [Indexed: 06/05/2023]
Abstract
RATIONALE Approximately 1 billion m(3) of oil sands process-affected water (OSPW) is currently stored in tailings ponds in Northern Alberta, Canada. The dissolved organic compounds in OSPW have been termed a supercomplex mixture of bitumen-derived substances and continuing efforts to understand its underlying chemical composition are important for evaluating its environmental hazards. METHODS Packed column supercritical fluid chromatography (SFC) was applied to OSPW analysis for the first time. By combining four columns in series (each 25 cm × 4.6 mm I.D., 5.0 µm bare silica) approximately 80,000 plates were achieved on a 1 m column. Using a simple fixed restrictor, the SFC eluent was coupled directly to ultrahigh-resolution orbitrap mass spectrometry (SFC/Orbitrap-MS). RESULTS SFC/Orbitrap-MS, with positive and negative atmospheric pressure chemical ionization (APCI +/-), revealed the partial or full chromatographic separation of isomers for a wide array of chemical species, including naphthenic acids (Cn H2n + Z O2 ) and unknown sulfur- and nitrogen-containing molecules. For smaller compounds (e.g. naphthenic acids where n ≤10), or for larger structurally constrained compounds (e.g. C16 naphthenic acid with 9 double-bond equivalents), apparent baseline resolution of many isomers was possible. Isomer-specific MS/MS experiments furthermore allowed characterization of functional groups in novel species. For example, in APCI+ mode, up to 16 isomers of C6 H11 ON were revealed to have amide and amino functionalities. CONCLUSIONS This combination of high efficiency chromatography and ultra-high mass resolution detection resulted in a powerful method with capabilities for characterizing or 'fingerprinting' unknown species with little interference. The method has great promise for environmental monitoring and forensics in the oil sands region, as well as for further studies on the composition of dissolved organic compounds in OSPW.
Collapse
Affiliation(s)
- A S Pereira
- Division of Analytical & Environmental Toxicology, Department of Laboratory Medicine & Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, T6G 2G3, Canada
| | - J W Martin
- Division of Analytical & Environmental Toxicology, Department of Laboratory Medicine & Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, T6G 2G3, Canada
| |
Collapse
|
47
|
Saunders DMV, Podaima M, Wiseman S, Giesy JP. Effects of the brominated flame retardant TBCO on fecundity and profiles of transcripts of the HPGL-axis in Japanese medaka. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2015; 160:180-187. [PMID: 25646719 DOI: 10.1016/j.aquatox.2015.01.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 01/20/2015] [Accepted: 01/21/2015] [Indexed: 06/04/2023]
Abstract
The novel brominated flame retardant, 1,2,5,6-tetrabromocyclooctane (TBCO) is an additive flame retardant which is marketed under the trade name Saytex BCL-48. TBCO has recently been investigated as a potential alternative to the major use brominated flame retardant, hexabromocyclododecane (HBCD), which could have major implications for significant increases in amounts of TBCO used. Yet there is a lack of information regarding potential toxicities of TBCO. Recently, results of in vitro experiments have demonstrated the potential of TBCO to modulate endocrine function through interaction with estrogen and androgen receptors and via alterations to the synthesis of 17-β-estradiol and testosterone. Further research is required to determine potential endocrine disrupting effects of TBCO in vivo. In this experiment a 21-day fecundity assay with Japanese medaka (Oryzias latipes) was conducted to examine endocrine disrupting effects of TBCO in vivo. Medaka were fed a diet containing either 607 or 58μg TBCO/g food, wet mass (wm). Fecundity, measured as cumulative deposition of eggs and fertilization of eggs, as well as abundances of transcripts of 34 genes along the hypothalamus-pituitary-gonadal-liver (HPGL) axis were measured as indicators of holistic endocrine disruption and to determine mechanisms of effects, respectively. Cumulative fecundity was 18% lesser by medaka exposed to 58μg TBCO/g, wm food. However, fecundity of medaka exposed to 607μg TBCO/g, wm food was not significantly different from that of controls. Organ-specific and dose-dependent alterations to abundances of transcripts were observed in male and female medaka. A pattern of down-regulation of expression of genes involved in steroidogenesis, metabolism of cholesterol, and regulatory feedback mechanisms was observed in gonads from male and female medaka which had been exposed to the greater concentration of TBCO. However, these effects on expression of genes were not manifested in effects on fertilization of eggs or fecundity. In livers from male and female medaka exposed to the lesser concentration of TBCO greater expression of genes that respond to exposure to estrogens, including vitellogenin II, choriogenin H, and ERα, were observed. The results reported here confirm the endocrine disrupting potential of TBCO and elucidate potential mechanisms of effects which include specific patterns of alterations to abundances of transcripts of genes in the gonad and liver of medaka.
Collapse
Affiliation(s)
- David M V Saunders
- Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK S7N 5B3, Canada.
| | - Michelle Podaima
- Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK S7N 5B3, Canada
| | - Steve Wiseman
- Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK S7N 5B3, Canada
| | - John P Giesy
- Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK S7N 5B3, Canada; Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, SK S7N 5B3, Canada; Zoology Department, Center for Integrative Toxicology, Michigan State University, East Lansing, MI, USA; Department of Biology and Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China; School of Biological Sciences, University of Hong Kong, Hong Kong, China; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, People's Republic of China
| |
Collapse
|
48
|
Klamerth N, Moreira J, Li C, Singh A, McPhedran KN, Chelme-Ayala P, Belosevic M, Gamal El-Din M. Effect of ozonation on the naphthenic acids' speciation and toxicity of pH-dependent organic extracts of oil sands process-affected water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 506-507:66-75. [PMID: 25460940 DOI: 10.1016/j.scitotenv.2014.10.103] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Revised: 10/22/2014] [Accepted: 10/28/2014] [Indexed: 06/04/2023]
Abstract
The presence of naphthenic acids (NAs) and other organic constituents in oil sands process-affected water (OSPW) stored in tailings ponds, poses a serious environmental threat due to their potential toxicity to aquatic organisms and wild life. In this work, four fractions of OSPW, extracted by dichloromethane at different pHs, were ozonated to determine the ozone impact on NAs degradation. Extracts distributions showed that high carbon number NAs (14-22) were associated with higher pH fractions (pH>7) and smaller carbon number NAs (7-13) with lower pH fractions (pH≤7). Extracts showed similar hydrogen deficiency (Z-number) patterns centered on Z=6. Analysis of the speciation of NAs and oxidized NAs in the four fractions showed that ozonation degraded most NAs (55% to 98%). Despite the high degradation levels, there was still significant toxicity of the fractions toward goldfish macrophages and measurable toxicity toward Vibrio fischeri. The toxicity of such a complex matrix as OSPW may be attributed to other organic compounds and degradation by-products not currently detected. Thus, there is a need to elucidate which compounds are responsible for the remaining OSPW toxicity and to determine if combined processes, such as ozonation followed by biological treatment, are able to completely detoxify OSPW. This work is taking the first steps into this direction, narrowing down the range of compounds which might be responsible for the toxicity.
Collapse
Affiliation(s)
- Nikolaus Klamerth
- Department of Civil and Environmental Engineering, 3-133 Markin/CNRL Natural Resources Engineering Facility, University of Alberta, Edmonton, Alberta T6G 2W2, Canada
| | - Jesús Moreira
- Department of Civil and Environmental Engineering, 3-133 Markin/CNRL Natural Resources Engineering Facility, University of Alberta, Edmonton, Alberta T6G 2W2, Canada
| | - Chao Li
- Department of Civil and Environmental Engineering, 3-133 Markin/CNRL Natural Resources Engineering Facility, University of Alberta, Edmonton, Alberta T6G 2W2, Canada; Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Arvinder Singh
- Department of Civil and Environmental Engineering, 3-133 Markin/CNRL Natural Resources Engineering Facility, University of Alberta, Edmonton, Alberta T6G 2W2, Canada; Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Kerry N McPhedran
- Department of Civil and Environmental Engineering, 3-133 Markin/CNRL Natural Resources Engineering Facility, University of Alberta, Edmonton, Alberta T6G 2W2, Canada
| | - Pamela Chelme-Ayala
- Department of Civil and Environmental Engineering, 3-133 Markin/CNRL Natural Resources Engineering Facility, University of Alberta, Edmonton, Alberta T6G 2W2, Canada
| | - Miodrag Belosevic
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Mohamed Gamal El-Din
- Department of Civil and Environmental Engineering, 3-133 Markin/CNRL Natural Resources Engineering Facility, University of Alberta, Edmonton, Alberta T6G 2W2, Canada.
| |
Collapse
|
49
|
Saunders DMV, Podaima M, Codling G, Giesy JP, Wiseman S. A mixture of the novel brominated flame retardants TBPH and TBB affects fecundity and transcript profiles of the HPGL-axis in Japanese medaka. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2015; 158:14-21. [PMID: 25461741 DOI: 10.1016/j.aquatox.2014.10.019] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Revised: 10/21/2014] [Accepted: 10/23/2014] [Indexed: 06/04/2023]
Abstract
The novel brominated flame retardants (NBFRs), bis(2-ethylhexyl)-2,3,4,5-tetrabromophthalate (TBPH) and 2-ethylhexyl-2,3,4,5 tetrabromobenzoate (TBB) are components of the flame retardant mixture Firemaster 550 and both TBPH and TBB have recently been listed as high production volume chemicals by the US EPA. These NBFRs have been detected in several environmental matrices but very little is known about their toxic effects or potencies. Results of in vitro assays demonstrated potentials of these NBFRs to modulate endocrine function through interactions with estrogen (ER) and androgen receptors (AR) and via alterations to synthesis of 17-β-estradiol (E2) and testosterone (T), but in vivo effects of these chemicals on organisms are not known. Therefore a 21-day short term fish fecundity assay with Japanese medaka (Oryzias latipes) was conducted to investigate if these NBFRs affect endocrine function in vivo. Medaka were fed a diet containing either 1422 TBPH:1474 TBB or 138:144 μg/g food, wet weight (w/w). Cumulative production of eggs was used as a measure of fecundity and abundances of transcripts of 34 genes along the hypothalamus-pituitary-gonadal-liver (HPGL) axis were quantified to determine mechanisms of observed effects. Cumulative fecundity was impaired by 32% in medaka exposed to the greatest dose of the mixture of TBPH/TBB. A pattern of global down-regulation of gene transcription at all levels of the HPGL axis was observed, but effects were sex-specific. In female medaka the abundance of transcripts of ERβ was lesser in livers, while abundances of transcripts of VTG II and CHG H were greater. In male medaka, abundances of transcripts of ERα, ERβ, and ARα were lesser in gonads and abundances of transcripts of ERβ and ARα were lesser in brain. Abundances of transcripts of genes encoding proteins for synthesis of cholesterol (HMGR), transport of cholesterol (HDLR), and sex hormone steroidogenesis (CYP 17 and 3β-HSD) were significantly lesser in male medaka, which might have implications for concentrations of sex hormones. The results of this study demonstrate that exposure to components of the flame retardant mixture Firemaster(®) 550 has the potential to impair the reproductive axis of fishes.
Collapse
Affiliation(s)
- David M V Saunders
- Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK, Canada S7N 5B3.
| | - Michelle Podaima
- Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK, Canada S7N 5B3
| | - Garry Codling
- Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK, Canada S7N 5B3
| | - John P Giesy
- Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK, Canada S7N 5B3; Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, SK, Canada S7N 5B3; Zoology Department, Center for Integrative Toxicology, Michigan State University, East Lansing, MI, USA; Department of Biology and Chemistry, City University of Hong Kong, Kowloon, Hong Kong Special Administrative Region; School of Biological Sciences, University of Hong Kong, Hong Kong Special Administrative Region; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, People's Republic of China
| | - Steve Wiseman
- Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK, Canada S7N 5B3
| |
Collapse
|
50
|
Shu Z, Li C, Belosevic M, Bolton JR, El-Din MG. Application of a solar UV/chlorine advanced oxidation process to oil sands process-affected water remediation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:9692-9701. [PMID: 25051215 DOI: 10.1021/es5017558] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The solar UV/chlorine process has emerged as a novel advanced oxidation process for industrial and municipal wastewaters. Currently, its practical application to oil sands process-affected water (OSPW) remediation has been studied to treat fresh OSPW retained in large tailings ponds, which can cause significant adverse environmental impacts on ground and surface waters in Northern Alberta, Canada. Degradation of naphthenic acids (NAs) and fluorophore organic compounds in OSPW was investigated. In a laboratory-scale UV/chlorine treatment, the NAs degradation was clearly structure-dependent and hydroxyl radical-based. In terms of the NAs degradation rate, the raw OSPW (pH ∼ 8.3) rates were higher than those at an alkaline condition (pH = 10). Under actual sunlight, direct solar photolysis partially degraded fluorophore organic compounds, as indicated by the qualitative synchronous fluorescence spectra (SFS) of the OSPW, but did not impact NAs degradation. The solar/chlorine process effectively removed NAs (75-84% removal) and fluorophore organic compounds in OSPW in the presence of 200 or 300 mg L(-1) OCl(-). The acute toxicity of OSPW toward Vibrio fischeri was reduced after the solar/chlorine treatment. However, the OSPW toxicity toward goldfish primary kidney macrophages after solar/chlorine treatment showed no obvious toxicity reduction versus that of untreated OSPW, which warrants further study for process optimization.
Collapse
Affiliation(s)
- Zengquan Shu
- Department of Civil and Environmental Engineering, University of Alberta , 9105 116th Street, Edmonton, Alberta, Canada T6G 2W2
| | | | | | | | | |
Collapse
|