1
|
Ungvari Z, Kunutsor SK. Coffee consumption and cardiometabolic health: a comprehensive review of the evidence. GeroScience 2024; 46:6473-6510. [PMID: 38963648 PMCID: PMC11493900 DOI: 10.1007/s11357-024-01262-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 06/21/2024] [Indexed: 07/05/2024] Open
Abstract
This review provides a comprehensive synthesis of longitudinal observational and interventional studies on the cardiometabolic effects of coffee consumption. It explores biological mechanisms, and clinical and policy implications, and highlights gaps in the evidence while suggesting future research directions. It also reviews evidence on the causal relationships between coffee consumption and cardiometabolic outcomes from Mendelian randomization (MR) studies. Findings indicate that while coffee may cause short-term increases in blood pressure, it does not contribute to long-term hypertension risk. There is limited evidence indicating that coffee intake might reduce the risk of metabolic syndrome and non-alcoholic fatty liver disease. Furthermore, coffee consumption is consistently linked with reduced risks of type 2 diabetes (T2D) and chronic kidney disease (CKD), showing dose-response relationships. The relationship between coffee and cardiovascular disease is complex, showing potential stroke prevention benefits but ambiguous effects on coronary heart disease. Moderate coffee consumption, typically ranging from 1 to 5 cups per day, is linked to a reduced risk of heart failure, while its impact on atrial fibrillation remains inconclusive. Furthermore, coffee consumption is associated with a lower risk of all-cause mortality, following a U-shaped pattern, with the largest risk reduction observed at moderate consumption levels. Except for T2D and CKD, MR studies do not robustly support a causal link between coffee consumption and adverse cardiometabolic outcomes. The potential beneficial effects of coffee on cardiometabolic health are consistent across age, sex, geographical regions, and coffee subtypes and are multi-dimensional, involving antioxidative, anti-inflammatory, lipid-modulating, insulin-sensitizing, and thermogenic effects. Based on its beneficial effects on cardiometabolic health and fundamental biological processes involved in aging, moderate coffee consumption has the potential to contribute to extending the healthspan and increasing longevity. The findings underscore the need for future research to understand the underlying mechanisms and refine health recommendations regarding coffee consumption.
Collapse
Affiliation(s)
- Zoltan Ungvari
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral College/Department of Preventive Medicine and Public Health, Semmelweis University, Budapest, Hungary
| | - Setor K Kunutsor
- Leicester Real World Evidence Unit, Diabetes Research Centre, University of Leicester, Leicester General Hospital, Gwendolen Road, Leicester, LE5 4WP, UK.
- Section of Cardiology, Department of Internal Medicine, Rady Faculty of Health Sciences, University of Manitoba, Saint Boniface Hospital, Winnipeg, MB, R2H 2A6, Canada.
| |
Collapse
|
2
|
Nguyen V, Taine EG, Meng D, Cui T, Tan W. Chlorogenic Acid: A Systematic Review on the Biological Functions, Mechanistic Actions, and Therapeutic Potentials. Nutrients 2024; 16:924. [PMID: 38612964 PMCID: PMC11013850 DOI: 10.3390/nu16070924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/14/2024] Open
Abstract
Chlorogenic acid (CGA) is a type of polyphenol compound found in rich concentrations in many plants such as green coffee beans. As an active natural substance, CGA exerts diverse therapeutic effects in response to a variety of pathological challenges, particularly conditions associated with chronic metabolic diseases and age-related disorders. It shows multidimensional functions, including neuroprotection for neurodegenerative disorders and diabetic peripheral neuropathy, anti-inflammation, anti-oxidation, anti-pathogens, mitigation of cardiovascular disorders, skin diseases, diabetes mellitus, liver and kidney injuries, and anti-tumor activities. Mechanistically, its integrative functions act through the modulation of anti-inflammation/oxidation and metabolic homeostasis. It can thwart inflammatory constituents at multiple levels such as curtailing NF-kB pathways to neutralize primitive inflammatory factors, hindering inflammatory propagation, and alleviating inflammation-related tissue injury. It concurrently raises pivotal antioxidants by activating the Nrf2 pathway, thus scavenging excessive cellular free radicals. It elevates AMPK pathways for the maintenance and restoration of metabolic homeostasis of glucose and lipids. Additionally, CGA shows functions of neuromodulation by targeting neuroreceptors and ion channels. In this review, we systematically recapitulate CGA's pharmacological activities, medicinal properties, and mechanistic actions as a potential therapeutic agent. Further studies for defining its specific targeting molecules, improving its bioavailability, and validating its clinical efficacy are required to corroborate the therapeutic effects of CGA.
Collapse
Affiliation(s)
- Vi Nguyen
- Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, SC 29209, USA;
| | | | - Dehao Meng
- Applied Physics Program, California State University San Marcos, San Marcos, CA 92096, USA
| | - Taixing Cui
- Dalton Cardiovascular Research Center, Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, MO 65211, USA;
| | - Wenbin Tan
- Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, SC 29209, USA;
- Department of Biomedical Engineering, College of Engineering and Computing, University of South Carolina, Columbia, SC 29208, USA
| |
Collapse
|
3
|
Khalili-Moghadam S, Hedayati M, Golzarand M, Mirmiran P. Effects of green coffee aqueous extract supplementation on glycemic indices, lipid profile, CRP, and malondialdehyde in patients with type 2 diabetes: a randomized, double-blind, placebo-controlled trial. Front Nutr 2023; 10:1241844. [PMID: 38035358 PMCID: PMC10687413 DOI: 10.3389/fnut.2023.1241844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 11/03/2023] [Indexed: 12/02/2023] Open
Abstract
Background/objectives Studies have reported the health benefits of green coffee extract (GCE) in experimental models. In the current study, we aimed to determine whether supplementation with GCE improves glycemic indices, inflammation, and oxidative stress in patients with type 2 diabetes (T2D). Methods and study design This randomized, double-blind, placebo-controlled trial included 44 patients (26 male and 18 female) with T2D and overweight/obesity. After blocked randomization, patients received either capsules containing 400 mg GCE twice per day (n = 22) or a placebo (n = 22) and were followed for 10 weeks. In this study, glycemic indices, lipid profiles, anthropometric examinations, blood pressure, high-sensitivity C-reactive protein (hs-CRP), and malondialdehyde (MDA) were measured twice; at baseline and at the end of the study. Results After 10 weeks of supplementation, GCE supplementation significantly reduced body weight (p = 0.04) and body mass index (BMI) (p = 0.03) compared to the placebo. The intention-to-treat (ITT) analysis indicated patients in the GCE group had a lower fasting blood glucose (FBG) concentration compared to the placebo group; however, this decreasing was marginally significant (8.48 ± 8.41 vs. 1.70 ± 5.82 mg/dL, p = 0.05). There was no significant difference in insulin levels and HOMA-IR between the groups. At the end of the study, significant changes in systolic blood pressure (SBP) (p = 0.01), triglyceride (TG) level (p = 0.02), high-density lipoprotein (HDL) (p = 0.001), and TG-to-HDL ratio (p = 0.001) were found between the intervention and placebo groups. Our trial indicated GCE supplementation had no effect on diastolic blood pressure (DBP), low-density lipoprotein (LDL), or total cholesterol. During the supplementation period, the hs-CRP level significantly decreased in the GCE group compared to the placebo group (p = 0.02). No significant changes were observed in the MDA level between the two groups at the end of the study (p = 0.54). Conclusion Our findings showed beneficial effects of GCE on SBP, TG, hs-CRP, and HDL levels in patients with T2D and overweight/obesity over a 10-week period of supplementation.Clinical trial registration:https://en.irct.ir/trial/48549, identifier [IRCT20090203001640N18].
Collapse
Affiliation(s)
- Sajad Khalili-Moghadam
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, National Nutrition and Food Technology, Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Hedayati
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdieh Golzarand
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parvin Mirmiran
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, National Nutrition and Food Technology, Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Mohanta YK, Mishra AK, Nongbet A, Chakrabartty I, Mahanta S, Sarma B, Panda J, Panda SK. Potential use of the Asteraceae family as a cure for diabetes: A review of ethnopharmacology to modern day drug and nutraceuticals developments. Front Pharmacol 2023; 14:1153600. [PMID: 37608892 PMCID: PMC10441548 DOI: 10.3389/fphar.2023.1153600] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 06/29/2023] [Indexed: 08/24/2023] Open
Abstract
The diabetes-associated mortality rate is increasing annually, along with the severity of its accompanying disorders that impair human health. Worldwide, several medicinal plants are frequently urged for the management of diabetes. Reports are available on the use of medicinal plants by traditional healers for their blood-sugar-lowering effects, along with scientific evidence to support such claims. The Asteraceae family is one of the most diverse flowering plants, with about 1,690 genera and 32,000 species. Since ancient times, people have consumed various herbs of the Asteraceae family as food and employed them as medicine. Despite the wide variety of members within the family, most of them are rich in naturally occurring polysaccharides that possess potent prebiotic effects, which trigger their use as potential nutraceuticals. This review provides detailed information on the reported Asteraceae plants traditionally used as antidiabetic agents, with a major focus on the plants of this family that are known to exert antioxidant, hepatoprotective, vasodilation, and wound healing effects, which further action for the prevention of major diseases like cardiovascular disease (CVD), liver cirrhosis, and diabetes mellitus (DM). Moreover, this review highlights the potential of Asteraceae plants to counteract diabetic conditions when used as food and nutraceuticals. The information documented in this review article can serve as a pioneer for developing research initiatives directed at the exploration of Asteraceae and, at the forefront, the development of a botanical drug for the treatment of DM.
Collapse
Affiliation(s)
- Yugal Kishore Mohanta
- Nano-biotechnology and Translational Knowledge Laboratory, Department of Applied Biology, School of Biological Sciences, University of Science and Technology Meghalaya (USTM), Techno City, Meghalaya, India
- Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, kelambakkam, Tamil Nadu, India
| | | | - Amilia Nongbet
- Department of Botany, School of Biological Sciences, University of Science and Technology Meghalaya (USTM), Techno City, Meghalaya, India
| | - Ishani Chakrabartty
- Learning and Development Solutions, Indegene Pvt. Ltd., Manyata Tech Park, Bangalore, India
| | - Saurov Mahanta
- Guwahati Centre, National Institute of Electronics and Information Technology (NIELIT), Guwahati, Assam, India
| | - Bhaskar Sarma
- Department of Botany, Dhemaji College, Dhemaji, Assam, India
| | - Jibanjyoti Panda
- Nano-biotechnology and Translational Knowledge Laboratory, Department of Applied Biology, School of Biological Sciences, University of Science and Technology Meghalaya (USTM), Techno City, Meghalaya, India
| | - Sujogya Kumar Panda
- Center of Environment Climate Change and Public Health, RUSA 2.0, Utkal University, Bhubaneswar, Odisha, India
| |
Collapse
|
5
|
Machado F, Coimbra MA, Castillo MDD, Coreta-Gomes F. Mechanisms of action of coffee bioactive compounds - a key to unveil the coffee paradox. Crit Rev Food Sci Nutr 2023; 64:10164-10186. [PMID: 37338423 DOI: 10.1080/10408398.2023.2221734] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
The knowledge of the relationship between the chemical structure of food components with their mechanisms of action is crucial for the understanding of diet health benefits. This review relates the chemical variability present in coffee beverages with the mechanisms involved in key physiological events, supporting coffee as a polyvalent functional food. Coffee intake has been related with several health-promoting properties such as neuroprotective (caffeine, chlorogenic acids and melanoidins), anti-inflammatory (caffeine, chlorogenic acids, melanoidins, diterpenes), microbiota modulation (polysaccharides, melanoidins, chlorogenic acids), immunostimulatory (polysaccharides), antidiabetic (trigonelline, chlorogenic acids), antihypertensive (chlorogenic acids) and hypocholesterolemic (polysaccharides, chlorogenic acids, lipids). Nevertheless, caffeine and diterpenes are coffee components with ambivalent effects on health. Additionally, a large range of potentially harmful compounds, including acrylamide, hydroxymethylfurfural, furan, and advanced glycation end products, are formed during the roasting of coffee and are present in the beverages. However, coffee beverages are part of the daily human dietary healthy habits, configuring a coffee paradox.
Collapse
Affiliation(s)
- Fernanda Machado
- LAQV-REQUIMTE, Chemistry Department, University of Aveiro, Aveiro, Portugal
| | - Manuel A Coimbra
- LAQV-REQUIMTE, Chemistry Department, University of Aveiro, Aveiro, Portugal
| | | | - Filipe Coreta-Gomes
- LAQV-REQUIMTE, Chemistry Department, University of Aveiro, Aveiro, Portugal
- Department of Chemistry, Coimbra Chemistry Centre - Institute of Molecular Sciences (CQC-IMS), University of Coimbra, Coimbra, Portugal
| |
Collapse
|
6
|
Domínguez-López I, Lozano-Castellón J, Vallverdú-Queralt A, Jáuregui O, Martínez-González MÁ, Hu FB, Fitó M, Ros E, Estruch R, Lamuela-Raventós RM. Urinary metabolomics of phenolic compounds reveals biomarkers of type-2 diabetes within the PREDIMED trial. Biomed Pharmacother 2023; 162:114703. [PMID: 37062219 DOI: 10.1016/j.biopha.2023.114703] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 04/18/2023] Open
Abstract
BACKGROUND Phenolic compounds have been associated with protective effects against type-2 diabetes (T2D). We used a metabolomics approach to determine urinary phenolic metabolites associated with T2D and fasting plasma glucose. METHODS This case-control study within the PREDIMED trial included 200 participants at high cardiovascular risk, 102 of whom were diagnosed with T2D. A panel of urinary phenolic compounds were analysed using a novel method based on liquid chromatography coupled to mass spectrometry. Multivariate statistics and adjusted logistic regressions were applied to determine the most discriminant compounds and their association with T2D. The relationship between the discriminant phenolic compounds and plasma glucose was assessed using multivariable linear regressions. RESULTS A total of 41 phenolic compounds were modeled in the orthogonal projection to latent structures discriminant analysis, and after applying adjusted logistic regressions two were selected as discriminant: dihydrocaffeic acid (OR = 0.22 (CI 95 %: 0.09; 0.52) per 1-SD, p-value = 0.021) and genistein diglucuronide (OR = 0.72 (CI 95%: 0.59; 0.88) per 1-SD, p-value = 0.021). Both metabolites were associated with a lower risk of suffering from T2D, but only dihydrocaffeic acid was inversely associated with plasma glucose (β = -17.12 (95 % CI: -29.92; -4.32) mg/dL per 1-SD, p-value = 0.009). CONCLUSIONS A novel method using a metabolomics approach was developed to analyse a panel of urinary phenolic compounds for potential associations with T2D, and two metabolites, dihydrocaffeic acid and genistein diglucuronide, were found to be associated with a lower risk of this condition.
Collapse
Affiliation(s)
- Inés Domínguez-López
- Polyphenol Research Group, Departament de Nutrició, Ciències de l'Alimentació i Gastronomia, Universitat de Barcelon (UB), Av. de Joan XXII, 27-31, 08028 Barcelona, Spain; Institut de Nutrició i Seguretat Alimentària (INSA), Universitat de Barcelona (UB), Santa Coloma de Gramanet, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Julián Lozano-Castellón
- Polyphenol Research Group, Departament de Nutrició, Ciències de l'Alimentació i Gastronomia, Universitat de Barcelon (UB), Av. de Joan XXII, 27-31, 08028 Barcelona, Spain; Institut de Nutrició i Seguretat Alimentària (INSA), Universitat de Barcelona (UB), Santa Coloma de Gramanet, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Anna Vallverdú-Queralt
- Polyphenol Research Group, Departament de Nutrició, Ciències de l'Alimentació i Gastronomia, Universitat de Barcelon (UB), Av. de Joan XXII, 27-31, 08028 Barcelona, Spain; Institut de Nutrició i Seguretat Alimentària (INSA), Universitat de Barcelona (UB), Santa Coloma de Gramanet, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Olga Jáuregui
- Centres Científics i Tecnològics de la Universitat de Barcelona (CCiTUB), 08028 Barcelona, Spain
| | - Miguel Ángel Martínez-González
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain; Department of Preventive Medicine and Public Health, University of Navarra, IdiSNA, 31008 Pamplona, Spain
| | - Frank B Hu
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Montserrat Fitó
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain; Unit of Cardiovascular Risk and Nutrition, Institut Hospital del Mar de Investigaciones Médicas (IMIM), 08007 Barcelona, Spain
| | - Emilio Ros
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain; Department of Endocrinology, Hospital Clinic, IDIBAPS, Barcelona, Spain
| | - Ramon Estruch
- Institut de Nutrició i Seguretat Alimentària (INSA), Universitat de Barcelona (UB), Santa Coloma de Gramanet, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain; Department of Internal Medicine, Hospital Clinic, Institut d'Investigació Biomèdica August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Rosa M Lamuela-Raventós
- Polyphenol Research Group, Departament de Nutrició, Ciències de l'Alimentació i Gastronomia, Universitat de Barcelon (UB), Av. de Joan XXII, 27-31, 08028 Barcelona, Spain; Institut de Nutrició i Seguretat Alimentària (INSA), Universitat de Barcelona (UB), Santa Coloma de Gramanet, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain.
| |
Collapse
|
7
|
Barrea L, Pugliese G, Frias-Toral E, El Ghoch M, Castellucci B, Chapela SP, Carignano MDLA, Laudisio D, Savastano S, Colao A, Muscogiuri G. Coffee consumption, health benefits and side effects: a narrative review and update for dietitians and nutritionists. Crit Rev Food Sci Nutr 2023; 63:1238-1261. [PMID: 34455881 DOI: 10.1080/10408398.2021.1963207] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Coffee is one of the most popular beverages worldwide; however, its impact on health outcomes and adverse effects is not fully understood. The current review aims to establish an update about the benefits of coffee consumption on health outcomes highlighting its side effects, and finally coming up with an attempt to provide some recommendations on its doses. A literature review using the PubMed/Medline database was carried out and the data were summarized by applying a narrative approach using the available evidence based on the literature. The main findings were the following: first, coffee may contribute to the prevention of inflammatory and oxidative stress-related diseases, such as obesity, metabolic syndrome and type 2 diabetes; second, coffee consumption seems to be associated with a lower incidence of several types of cancer and with a reduction in the risk of all-cause mortality; finally, the consumption of up to 400 mg/day (1-4 cups per day) of caffeine is safe. However, the time gap between coffee consumption and some drugs should be taken into account in order to avoid interaction. However, most of the data were based on cross-sectional or/and observational studies highlighting an association of coffee intake and health outcomes; thus, randomized controlled studies are needed in order to identify a causality link.
Collapse
Affiliation(s)
- Luigi Barrea
- Dipartimento di Scienze Umanistiche, Università Telematica Pegaso, Via Porzio, Centro Direzionale, isola F2, 80143 Napoli, Italy
- Centro Italiano per la cura e il Benessere del paziente con Obesità (C.I.B.O), Endocrinology Unit, Department of Clinical Medicine and Surgery, University Medical School of Naples, Via Sergio Pansini 5, 80131 Naples, Italy
| | - Gabriella Pugliese
- Centro Italiano per la cura e il Benessere del paziente con Obesità (C.I.B.O), Endocrinology Unit, Department of Clinical Medicine and Surgery, University Medical School of Naples, Via Sergio Pansini 5, 80131 Naples, Italy
- Dipartimento di Medicina Clinica e Chirurgia, Unit of Endocrinology, Federico II University Medical School of Naples, Via Sergio Pansini 5, 80131 Naples, Italy
| | - Evelyn Frias-Toral
- School of Medicine, Universidad Católica Santiago de Guayaquil, Guayaquil, Ecuador
| | - Marwan El Ghoch
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Beirut Arab University, P.O. Box 11-5020 Riad El Solh, Beirut 11072809, Lebanon
| | - Bianca Castellucci
- Centro Italiano per la cura e il Benessere del paziente con Obesità (C.I.B.O), Endocrinology Unit, Department of Clinical Medicine and Surgery, University Medical School of Naples, Via Sergio Pansini 5, 80131 Naples, Italy
| | - Sebastián Pablo Chapela
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Buenos Aires, Argentina
- Hospital Británico de Buenos Aires, Departamento de Terapia Intensiva, Buenos Aires, Argentina
| | | | - Daniela Laudisio
- Centro Italiano per la cura e il Benessere del paziente con Obesità (C.I.B.O), Endocrinology Unit, Department of Clinical Medicine and Surgery, University Medical School of Naples, Via Sergio Pansini 5, 80131 Naples, Italy
- Dipartimento di Medicina Clinica e Chirurgia, Unit of Endocrinology, Federico II University Medical School of Naples, Via Sergio Pansini 5, 80131 Naples, Italy
| | - Silvia Savastano
- Centro Italiano per la cura e il Benessere del paziente con Obesità (C.I.B.O), Endocrinology Unit, Department of Clinical Medicine and Surgery, University Medical School of Naples, Via Sergio Pansini 5, 80131 Naples, Italy
- Dipartimento di Medicina Clinica e Chirurgia, Unit of Endocrinology, Federico II University Medical School of Naples, Via Sergio Pansini 5, 80131 Naples, Italy
| | - Annamaria Colao
- Centro Italiano per la cura e il Benessere del paziente con Obesità (C.I.B.O), Endocrinology Unit, Department of Clinical Medicine and Surgery, University Medical School of Naples, Via Sergio Pansini 5, 80131 Naples, Italy
- Dipartimento di Medicina Clinica e Chirurgia, Unit of Endocrinology, Federico II University Medical School of Naples, Via Sergio Pansini 5, 80131 Naples, Italy
- Cattedra Unesco "Educazione alla salute e allo sviluppo sostenibile", University Federico II, Naples, Italy
| | - Giovanna Muscogiuri
- Centro Italiano per la cura e il Benessere del paziente con Obesità (C.I.B.O), Endocrinology Unit, Department of Clinical Medicine and Surgery, University Medical School of Naples, Via Sergio Pansini 5, 80131 Naples, Italy
- Dipartimento di Medicina Clinica e Chirurgia, Unit of Endocrinology, Federico II University Medical School of Naples, Via Sergio Pansini 5, 80131 Naples, Italy
- Cattedra Unesco "Educazione alla salute e allo sviluppo sostenibile", University Federico II, Naples, Italy
| |
Collapse
|
8
|
Bahmannia M, Azizzade M, Heydari S, Nasrollahzadeh J, Rabiei S, Naja F, Sheikhi Mobarakeh Z, Hejazi J, Hejazi E. Effects of decaffeinated green coffee extract supplementation on anthropometric indices, blood glucose, leptin, adiponectin and neuropeptide Y (NPY) in breast cancer survivors: a randomized clinical trial. Food Funct 2022; 13:10347-10356. [PMID: 36134465 DOI: 10.1039/d2fo00983h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Objective: This study aimed to evaluate the effects of decaffeinated green coffee extract (DGCE) supplementation on anthropometric indices, blood glucose, leptin, adiponectin, and neuropeptide Y (NPY) in breast cancer survivors with obesity. Method: A total of 44 breast cancer survivors with obesity aged between 18 and 70 years and with a mean body mass index (BMI) of 31.62 ± 4.97 kg m-2 participated in this double-blind randomized clinical trial. Eligible patients were randomized to the intervention (n = 22) and control (n = 22) groups. They received two 400 mg capsules of DGCE or two identical placebos daily for 12 weeks. Serum concentrations of leptin, adiponectin, NPY, fasting blood sugar, insulin, and homeostatic model assessment for insulin resistance (HOMA-IR) were measured at the baseline and after completion of the intervention. Also, weight, waist circumference, fat percentage, muscle percentage, and visceral fat were measured. Results: There were no significant differences in terms of changes of anthropometric indices and concentrations of leptin, adiponectin, NPY, and blood sugar between the two studied groups. Conclusion: Supplementation with DGCE in breast cancer survivors with obesity had no significant effect on anthropometric indices and blood glucose, leptin, adiponectin, and NPY levels.
Collapse
Affiliation(s)
- Mahsa Bahmannia
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Maryam Azizzade
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran. .,Student Research Committee, Department and Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sahar Heydari
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran. .,Student Research Committee, Department and Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Javad Nasrollahzadeh
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Samira Rabiei
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Farah Naja
- Department of Nutrition and Food Sciences, Faculty of Agricultural and Food Sciences, American University of Beirut, Beirut, Lebanon
| | - Zahra Sheikhi Mobarakeh
- Quality of life Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Iran.
| | - Jalal Hejazi
- Department of Nutrition, Faculty of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Ehsan Hejazi
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Claxton DP, Overway EM, Oeser JK, O'Brien RM, Mchaourab HS. Biophysical and functional properties of purified glucose-6-phosphatase catalytic subunit 1. J Biol Chem 2021; 298:101520. [PMID: 34952005 PMCID: PMC8753184 DOI: 10.1016/j.jbc.2021.101520] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/10/2021] [Accepted: 12/17/2021] [Indexed: 11/18/2022] Open
Abstract
Glucose-6-phosphatase catalytic subunit 1 (G6PC1) plays a critical role in hepatic glucose production during fasting by mediating the terminal step of the gluconeogenesis and glycogenolysis pathways. In concert with accessory transport proteins, this membrane-integrated enzyme catalyzes glucose production from glucose-6-phosphate (G6P) to support blood glucose homeostasis. Consistent with its metabolic function, dysregulation of G6PC1 gene expression contributes to diabetes, and mutations that impair phosphohydrolase activity form the clinical basis of glycogen storage disease type 1a. Despite its relevance to health and disease, a comprehensive view of G6PC1 structure and mechanism has been limited by the absence of expression and purification strategies that isolate the enzyme in a functional form. In this report, we apply a suite of biophysical and biochemical tools to fingerprint the in vitro attributes of catalytically active G6PC1 solubilized in lauryl maltose neopentyl glycol (LMNG) detergent micelles. When purified from Sf9 insect cell membranes, the glycosylated mouse ortholog (mG6PC1) recapitulated functional properties observed previously in intact hepatic microsomes and displayed the highest specific activity reported to date. Additionally, our results establish a direct correlation between the catalytic and structural stability of mG6PC1, which is underscored by the enhanced thermostability conferred by phosphatidylcholine and the cholesterol analog cholesteryl hemisuccinate. In contrast, the N96A variant, which blocks N-linked glycosylation, reduced thermostability. The methodologies described here overcome long-standing obstacles in the field and lay the necessary groundwork for a detailed analysis of the mechanistic structural biology of G6PC1 and its role in complex metabolic disorders.
Collapse
Affiliation(s)
- Derek P Claxton
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA.
| | - Emily M Overway
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - James K Oeser
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Richard M O'Brien
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Hassane S Mchaourab
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
10
|
Prunus avium L. (Sweet Cherry) By-Products: A Source of Phenolic Compounds with Antioxidant and Anti-Hyperglycemic Properties—A Review. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11188516] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Prunus avium L. (sweet cherry) is one of the most appreciated fruit due to its organoleptic and nutritional value. Interestingly, cherry leaves, stems, and flowers are agri-food by-products rich in bioactive compounds that are mostly still unexploited. Stems and leaves have been used in folk medicine since ancient times. Recently, cherry flowers have also proved to be an interesting source of compounds with therapeutic properties. Phenolic compounds, namely hydroxycinnamic acids and flavonoids, are the most present phytochemicals in P. avium fruits and their by-products. These compounds have shown a good antioxidant potential to prevent oxidative stress-related diseases and glycemic control, fundamental in preventing and controlling diabetes mellitus. The present review summarizes the main phenolics found in P. avium stems, leaves, and flowers as compared to their fruits and describes their antioxidant and anti-hyperglycemic properties. Thus, these by-products are an accessible and low-cost source of bioactive constituents with interesting health-promoting properties, making their use promising in diabetes therapy.
Collapse
|
11
|
Serina JJC, Castilho PCMF. Using polyphenols as a relevant therapy to diabetes and its complications, a review. Crit Rev Food Sci Nutr 2021; 62:8355-8387. [PMID: 34028316 DOI: 10.1080/10408398.2021.1927977] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Diabetes is currently a worldwide health concern. Hyperglycemia, hypertension, obesity, and oxidative stress are the major risk factors that inevitably lead to all the complications from diabetes. These complications severely impact the quality of life of patients, and they can be managed, reduced, or even reverted by several polyphenols, plant extracts and foods rich in these compounds. The goal of this review is to approach diabetes not as a single condition but rather an interconnected combination of risk factors and complications. This work shows that polyphenols have multi target action and effects and they have been systematically proven to be relevant in the reduction of each risk factor and improvement of associated complication.
Collapse
|
12
|
Therapeutic Potential of Polyphenols in the Management of Diabetic Neuropathy. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:9940169. [PMID: 34093722 PMCID: PMC8137294 DOI: 10.1155/2021/9940169] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 04/27/2021] [Indexed: 12/12/2022]
Abstract
Diabetic neuropathy (DN) is a common and serious diabetes-associated complication that primarily takes place because of neuronal dysfunction in patients with diabetes. Use of current therapeutic agents in DN treatment is quite challenging because of their severe adverse effects. Therefore, there is an increased need of identifying new safe and effective therapeutic agents. DN complications are associated with poor glycemic control and metabolic imbalances, primarily oxidative stress (OS) and inflammation. Various mediators and signaling pathways such as glutamate pathway, activation of channels, trophic factors, inflammation, OS, advanced glycation end products, and polyol pathway have a significant contribution to the progression and pathogenesis of DN. It has been indicated that polyphenols have the potential to affect DN pathogenesis and could be used as potential alternative therapy. Several polyphenols including kolaviron, resveratrol, naringenin, quercetin, kaempferol, and curcumin have been administered in patients with DN. Furthermore, chlorogenic acid can provide protection against glutamate neurotoxicity via its hydrolysate, caffeoyl acid group, and caffeic acid through regulating the entry of calcium into neurons. Epigallocatechin-3-gallate treatment can protect motor neurons by regulating the glutamate level. It has been demonstrated that these polyphenols can be promising in combating DN-associated damaging pathways. In this article, we have summarized DN-associated metabolic pathways and clinical manifestations. Finally, we have also focused on the roles of polyphenols in the treatment of DN.
Collapse
|
13
|
Matacchione G, Gurău F, Baldoni S, Prattichizzo F, Silvestrini A, Giuliani A, Pugnaloni A, Espinosa E, Amenta F, Bonafè M, Procopio AD, Rippo MR, Olivieri F, Sabbatinelli J. Pleiotropic effects of polyphenols on glucose and lipid metabolism: Focus on clinical trials. Ageing Res Rev 2020; 61:101074. [PMID: 32335301 DOI: 10.1016/j.arr.2020.101074] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 03/03/2020] [Accepted: 04/13/2020] [Indexed: 12/18/2022]
Abstract
Epidemiological evidence from observational studies suggests that dietary polyphenols (PPs) - phytochemicals found in a variety of plant-based foods - can reduce the risk of developing type 2 diabetes mellitus (T2DM). Clinical trials have also indicated that PPs may help manage the two key features of T2DM, hyperglycemia and dyslipidemia. Since the incidence of T2DM is dramatically increasing worldwide, identifying food-based approaches that can reduce the risk of developing it and help manage its main risk factors in early-stage disease has clinical and socioeconomic relevance. After a brief overview of current epidemiological data on the incidence of T2DM in individuals consuming PP-rich diets, we review the evidence from clinical trials investigating PP-enriched foods and/or PP-based nutraceutical compounds, report their main results, and highlight the knowledge gaps that should be bridged to enhance our understanding of the role of PPs in T2DM development and management.
Collapse
|
14
|
Asbaghi O, Sadeghian M, Nasiri M, Khodadost M, Shokri A, Panahande B, Pirouzi A, Sadeghi O. The effects of green coffee extract supplementation on glycemic indices and lipid profile in adults: a systematic review and dose-response meta-analysis of clinical trials. Nutr J 2020; 19:71. [PMID: 32665012 PMCID: PMC7362645 DOI: 10.1186/s12937-020-00587-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 07/07/2020] [Indexed: 12/17/2022] Open
Abstract
Background The role of coffee consumption in the risk of cardiovascular diseases has been debated for many years. The current study aimed to summarize earlier evidence on the effects of green coffee extract (GCE) supplementation on glycemic indices and lipid profile. Methods We searched available online databases for relevant clinical trials published up to October 2019. All clinical trials investigating the effect of GCE supplementation, compared with a control group, on fasting blood glucose (FBG), serum insulin, total cholesterol (TC), triglyceride (TG), low-density lipoprotein (LDL), and high-density lipoprotein (HDL) were included. Overall, 14 clinical trials with a total sample size of 766 participants were included in the current meta-analysis. Results We found a significant reducing effect of GCE supplementation on FBG (weighted mean difference (WMD): -2.35, 95% CI: − 3.78, − 0.92 mg/dL, P = 0.001) and serum insulin (WMD: -0.63, 95% CI: − 1.11, − 0.15 μU/L, P = 0.01). With regard to lipid profile, we observed a significant reduction only in serum levels of TC following GCE supplementation in the overall meta-analysis (WMD: -4.51, 95% CI: − 8.39, − 0.64, P = 0.02). However, subgroup analysis showed a significant reduction in serum TG in studies enrolled both genders. Also, such a significant reduction was seen in serum levels of LDL and HDL when the analyses confined to studies with intervention duration of ≥8 weeks and those included female subjects. In the non-linear dose-response analyses, we found that the effects of chlorogenic acid (CGA) dosage, the main polyphenol in GCE, on FBG, TG and HDL were in the non-linear fashions. Conclusion In conclusion, we found that GCE supplementation improved FBG and serum levels of insulin and TC. Also, there was a significant improvement in other markers of lipid profile in some subgroups of clinical trials.
Collapse
Affiliation(s)
- Omid Asbaghi
- Nutritional Health Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Mehdi Sadeghian
- Department of Nutrition, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Morteza Nasiri
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Operating Room Nursing, School of Nursing and Midwifery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahmoud Khodadost
- Department of Epidemiology, School of Public Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Epidemiology, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Azad Shokri
- Social Determinants of Health Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Bahman Panahande
- Department of Nutrition, School of Health, Yasuj University of Medical Sciences, Yasuj, Iran
| | | | - Omid Sadeghi
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran. .,Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
15
|
Use of Chlorogenic Acid against Diabetes Mellitus and Its Complications. J Immunol Res 2020; 2020:9680508. [PMID: 32566690 PMCID: PMC7275206 DOI: 10.1155/2020/9680508] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/27/2020] [Accepted: 05/04/2020] [Indexed: 01/11/2023] Open
Abstract
Chlorogenic acid (CA) is a phenolic compound commonly found in human plant-based diets. CA is the main component of many traditional Chinese medicine preparations, and in recent years, it has been found to have hypoglycemic, hypolipidemic, anti-inflammatory, antioxidant, and other pharmacological properties. Specifically, CA relieves the effects of, and prevents, diabetes mellitus (DM). In addition, CA is also beneficial against complications arising from DM, such as diabetic nephropathy (DN), diabetic retinopathy (DR), and diabetic peripheral neuropathy (DPN). Herein, we review the use of CA in the prevention and treatment of DM and its complications, providing a background for further research and medical uses.
Collapse
|
16
|
Morvaridi M, Rayyani E, Jaafari M, Khiabani A, Rahimlou M. The effect of green coffee extract supplementation on cardio metabolic risk factors: a systematic review and meta-analysis of randomized controlled trials. J Diabetes Metab Disord 2020; 19:645-660. [PMID: 32550217 DOI: 10.1007/s40200-020-00536-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 04/28/2020] [Indexed: 02/07/2023]
Abstract
Purpose Considering the present controversies on the association between green coffee supplementation and cardio metabolic risk factors, this systematic review and meta-analysis was conducted to evaluate the effect of green coffee supplementation on cardio metabolic risk factors. Method A systematic literature search was performed throughout the PubMed, Embase, Scopus, and Web of Science databases up to October 2019. As a result, all randomized controlled trials over the effect of green coffee supplementation on fasting blood sugar (FBS), insulin, triglyceride, high-density lipoprotein (HDL), low-density lipoprotein (LDL), C - reactive protein (CRP), and homeostatic model assessment for insulin resistance (HOMA-IR) in adults were examined. Data were extracted from the relevant studies and analyzed using the random-effect or pooled model and standardized mean difference (SMD) with 95% confidence interval (CI). Results After excluding the irrelevant articles, 27 studies were included in the final analysis. Pooled results revealed that green coffee supplementation significantly reduced FBS (WMD = -2.28, 95% CI: -4.49 to -0.07, P = 0.043), insulin (WMD = -0.53, 95% CI: -0.93 to -0.14, P = 0.008), and triglyceride (WMD = -9.28, 95% CI: -14.93 to - 3.63, P = 0.001). Furthermore, green coffee supplementation increased the HDL levels (WMD = 1.33, 95% CI: 0.08 to 2.58, P = 0.037). However, the changes in HOMA-IR, LDL, and CRP levels were not significant (P > 0.05). Conclusion This meta-analysis indicated that green coffee supplementation significantly decreased FBS, insulin, and triglyceride, but improved HDL. No statistically significant improvement was found in HOMA-IR, LDL, and CRP indices following the green coffee supplementation.
Collapse
Affiliation(s)
- Mehrnaz Morvaridi
- School of Paramedicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Elham Rayyani
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Malihe Jaafari
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Alireza Khiabani
- School of medicine, Bam University of Medical Sciences, Bam, Iran
| | - Mehran Rahimlou
- Student Research Committee, School of medicine, Bam University of Medical Sciences, Bam, Iran
| |
Collapse
|
17
|
Sun C, Zhao C, Guven EC, Paoli P, Simal‐Gandara J, Ramkumar KM, Wang S, Buleu F, Pah A, Turi V, Damian G, Dragan S, Tomas M, Khan W, Wang M, Delmas D, Portillo MP, Dar P, Chen L, Xiao J. Dietary polyphenols as antidiabetic agents: Advances and opportunities. FOOD FRONTIERS 2020. [DOI: 10.1002/fft2.15] [Citation(s) in RCA: 145] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- Chongde Sun
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology Zhejiang University Hangzhou China
| | - Chao Zhao
- College of Food Science Fujian Agriculture and Forestry University Fuzhou China
- State Key Laboratory of Quality Research in Chinese Medicine Institute of Chinese Medical Sciences University of Macau Macau China
| | - Esra Capanoglu Guven
- Department of Food Engineering Faculty of Chemical and Metallurgical Engineering İstanbul Technical University Istanbul Turkey
| | - Paolo Paoli
- Department of Biomedical, Experimental, and Clinical Sciences University of Florence Florence Italy
| | - Jesus Simal‐Gandara
- Nutrition and Bromatology Group Department of Analytical Chemistry and Food Science Faculty of Food Science and Technology University of Vigo ‐ Ourense Campus Ourense Spain
| | - Kunka Mohanram Ramkumar
- Life Science Division SRM Research Institute SRM University Kattankulathur India
- Department of Biotechnology School of Bio‐engineering SRM University Kattankulathur India
| | - Shengpeng Wang
- State Key Laboratory of Quality Research in Chinese Medicine Institute of Chinese Medical Sciences University of Macau Macau China
| | - Florina Buleu
- Centre for Interdisciplinary Research & Department of Cardiology University of Medicine and Pharmacy Victor Babes Timisoara Romania
| | - Ana Pah
- Centre for Interdisciplinary Research & Department of Cardiology University of Medicine and Pharmacy Victor Babes Timisoara Romania
| | - Vladiana Turi
- Centre for Interdisciplinary Research & Department of Cardiology University of Medicine and Pharmacy Victor Babes Timisoara Romania
| | - Georgiana Damian
- Centre for Interdisciplinary Research & Department of Cardiology University of Medicine and Pharmacy Victor Babes Timisoara Romania
| | - Simona Dragan
- Centre for Interdisciplinary Research & Department of Cardiology University of Medicine and Pharmacy Victor Babes Timisoara Romania
| | - Merve Tomas
- Faculty of Engineering and Natural Sciences Food Engineering Department Istanbul Sabahattin Zaim University Istanbul Turkey
| | - Washim Khan
- National Center for Natural Products Research School of Pharmacy The University of Mississippi, University Mississippi
| | - Mingfu Wang
- School of Biological Sciences The University of Hong Kong Pokfulam Hong Kong
| | - Dominique Delmas
- INSERM U866 Research Center Université de Bourgogne Franche‐Comté Dijon France
- INSERM Research Center U1231 – Cancer and Adaptive Immune Response Team Bioactive Molecules and Health Research Group Dijon France
- Centre Anticancéreux Georges François Leclerc Center Dijon France
| | - Maria Puy Portillo
- Nutrition and Obesity Group Department of Nutrition and Food Science Faculty of Pharmacy and Lucio Lascaray Research Institute University of País Vasco (UPV/EHU) Vitoria‐Gasteiz Spain
- CIBEROBN Physiopathology of Obesity and Nutrition Institute of Health Carlos III (ISCIII) Vitoria‐Gasteiz Spain
| | - Parsa Dar
- State Key Laboratory of Quality Research in Chinese Medicine Institute of Chinese Medical Sciences University of Macau Macau China
| | - Lei Chen
- College of Food Science Fujian Agriculture and Forestry University Fuzhou China
| | - Jianbo Xiao
- State Key Laboratory of Quality Research in Chinese Medicine Institute of Chinese Medical Sciences University of Macau Macau China
| |
Collapse
|
18
|
Hu GL, Wang X, Zhang L, Qiu MH. The sources and mechanisms of bioactive ingredients in coffee. Food Funct 2019; 10:3113-3126. [PMID: 31166336 DOI: 10.1039/c9fo00288j] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Coffee bioactive components include caffeine, chlorogenic acids (CGAs), trigonelline, tryptophan alkaloids, diterpenes and other secondary metabolites. During roasting, coffee metabolites undergo complex Maillard reactions, producing melanoidins and other degradation products, the most controversial among which is acrylamide, an ingredient widely found in baked food and listed as a second class carcinogen. Green and roasted coffee ingredients have good biological activities for the prevention of cardiovascular disease, and antibacterial, anti-diabetic, neuroprotection, and anti-cancer activities. To better understand the relationship between coffee ingredients and human health, and to effectively use the active ingredients, it is essential to understand the sources of coffee active ingredients and their mechanisms of action in the organism. This paper systematizes the available information and provides a critical overview of the sources of coffee active ingredients and the mechanisms of action in vivo or in vitro, and their combined effects on common human diseases.
Collapse
Affiliation(s)
- G L Hu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China.
| | | | | | | |
Collapse
|
19
|
Gorji Z, Varkaneh HK, Talaei S, Nazary-Vannani A, Clark CCT, Fatahi S, Rahmani J, Salamat S, Zhang Y. The effect of green-coffee extract supplementation on obesity: A systematic review and dose-response meta-analysis of randomized controlled trials. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 63:153018. [PMID: 31398662 DOI: 10.1016/j.phymed.2019.153018] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 07/03/2019] [Accepted: 07/04/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Given that the most recent systematic review investigating Green-Coffee Extract (GCE) as a weight loss facilitator was nearly a decade ago and that the authors reported there no consensus on the effect of GCE/CGA (Chlorogenic acids) on body composition indices, a comprehensive systematic review and dose-response meta-analysis of all available randomized controlled trial (RCTs) was undertaken to examine the effect of GCE and CGA intervention on body weight (BW), body mass index (BMI) and waist circumference (WC) in adults. METHODS We conducted a systematic search of all available randomized controlled trials (RCTs) performed up to June 2019 in the following electronic databases: PubMed, Scopus and Google Scholar. RCTs that investigated the effect GCE/CGA Supplementation on BW, BMI and WC in adults were included for final analysis. The pooled weight mean difference (WMD) of included studies was estimated using a random-effects model. RESULTS A total of 13 articles with 16 RCTs were included in the meta-analysis. Results revealed significant reduction in BMI (WMD: -0.403 kg/m2, 95% CI: -0.800, -0.005, p = 0.047) and no significant change in BW (WMD: -0.585 kg, 95% CI: -1.498, 0.329, p = 0.210) and WC (WMD: -0.847 cm, 95% CI: -1.764, 0.071, p = 0.070). In the subgroup analysis, studies that were conducted on baseline BMI ≥25 kg/m2 revealed a significant greater reduction in body weight and BMI than those performed on baseline BMI <25 kg/m2. Moreover, short supplementation periods of less than 4 weeks had no effect. CONCLUSION The results of current meta-analysis study support the use of GCE supplementation for the improvement of obesity indices, with sub-group analysis highlighting greater improvements in individuals with a starting BMI ≥25 kg/m2.
Collapse
Affiliation(s)
- Zahra Gorji
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Hamed Kord Varkaneh
- Student Research Committee, Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sam Talaei
- School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Nazary-Vannani
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran; Students' Scientific Research Center (SSRC), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Cain C T Clark
- Centre for Sport, Exercise and Life Sciences, Coventry University, Coventry, CV15FB, UK
| | - Somaye Fatahi
- Student Research Committee, Faculty of Public Health Branch, Iran University of Medical Sciences, Tehran, Iran
| | - Jamal Rahmani
- Student Research Committee, Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shekoufeh Salamat
- Nutrition and Metabolic Disease Research Center, Ahvaz Jundishapour University of Medical Sciences, Iran
| | - Yong Zhang
- Department of Nutrition and Food Hygiene, School of Public Health and Health Management, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
20
|
Yi R, Zhang J, Sun P, Qian Y, Zhao X. Protective Effects of Kuding Tea ( Ilex kudingcha C. J. Tseng) Polyphenols on UVB-Induced Skin Aging in SKH1 Hairless Mice. Molecules 2019; 24:molecules24061016. [PMID: 30871261 PMCID: PMC6470819 DOI: 10.3390/molecules24061016] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 03/08/2019] [Accepted: 03/11/2019] [Indexed: 12/19/2022] Open
Abstract
In this study, the protective effects of Kuding tea polyphenols (KTPs) on ultraviolet B (UVB)-induced skin injury of SKH1 hairless mice were studied. The ion precipitation method was used for extraction of polyphenols from Kuding tea. High-performance liquid chromatography showed that KTPs contains chlorogenic acid, cryptochlorogenic acid, isochlorogenic acid B, isochlorogenic acid A, and isochlorogenic acid C. SKH1 hairless mice were induced skin aging using 2.0 mW/s intensity of 90 mJ/cm2 UV light once a day for seven weeks. The 2.5% and 5% KTPs solution was smeared on 2 cm2 of back skin of skin aging mice twice a day. Mouse experiments showed that KTP strongly increased the serum levels of total superoxide dismutase (T-SOD) and catalase (CAT) and reduced those of malondialdehyde, interleukin 6 (IL-6), IL-1β, and tumor necrosis factor alpha (TNF-α) in mice with UVB-induced skin damage. KTP also increased the levels of type 1 collagen (Col I), hydroxyproline, and hyaluronic acid and reduced those of Col III and hydrogen peroxide in the damaged skin tissues of mice. Pathological observations of tissues stained with H & E, Masson’s trichrome, Verhoeff, and toluidine blue showed that KTPs could protect skin cells, collagen, and elastin and decrease the number of mast cells, thus inhibiting skin damage. Quantitative PCR and western blot assays showed that KTP upregulated the mRNA and protein expression of tissue inhibitor of metalloproteinase 1 (TIMP-1), TIMP-2, copper/zinc-SOD, manganese-SOD, CAT, and glutathione peroxidase and downregulated the expression of matrix metalloproteinase 2 (MMP-2) and MMP-9. In addition, the same concentration of KTP had stronger protective effects than vitamin C. The results of this study demonstrate that KTPs have good skin protective effects, as they are able to inhibit UVB-induced skin damage.
Collapse
Affiliation(s)
- Ruokun Yi
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing 400067, China.
- Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing 400067, China.
- Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing 400067, China.
| | - Jing Zhang
- Environment and Quality Inspection College, Chongqing Chemical Industry Vocational College, Chongqing 401228, China.
| | - Peng Sun
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing 400067, China.
- Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing 400067, China.
- Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing 400067, China.
| | - Yu Qian
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing 400067, China.
- Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing 400067, China.
- Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing 400067, China.
| | - Xin Zhao
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing 400067, China.
- Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing 400067, China.
- Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing 400067, China.
| |
Collapse
|
21
|
Priftis A, Mitsiou D, Halabalaki M, Ntasi G, Stagos D, Skaltsounis LA, Kouretas D. Roasting has a distinct effect on the antimutagenic activity of coffee varieties. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2018; 829-830:33-42. [DOI: 10.1016/j.mrgentox.2018.03.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 03/08/2018] [Accepted: 03/09/2018] [Indexed: 01/11/2023]
|
22
|
Priftis A, Angeli-Terzidou AE, Veskoukis AS, Spandidos DA, Kouretas D. Cell‑specific and roasting‑dependent regulation of the Keap1/Nrf2 pathway by coffee extracts. Mol Med Rep 2018; 17:8325-8331. [PMID: 29693701 PMCID: PMC5984008 DOI: 10.3892/mmr.2018.8924] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 04/24/2018] [Indexed: 01/11/2023] Open
Abstract
Coffee is a popular beverage that contains various bioactive compounds. However, its molecular mechanism of action is not fully elucidated. In this context, two previously characterized coffee extracts, a lightly roasted and the corresponding green one, were investigated for their effect on nuclear factor erythroid 2-related factor 2 (Nrf2) target gene expression in myoblasts and endothelial cells using quantitative PCR. The tested concentrations were non-cytotoxic and led to improved redox cell status, as was evident by increased reduced glutathione (GSH) levels. In both cell lines, the roasted extract upregulated gene expression more readily than its green counterpart leading to increased NAD(P)H quinone dehydrogenase 1 and γ-glutamyl cysteine ligase catalytic subunit, among others. The green extract had a mixed effect on the endothelial cells, while, as regards the myoblasts it caused the downregulation of some Nrf-target genes. Therefore, a potential dose- and roasting-dependent mechanism is proposed in the current study, accounting for coffee's antioxidant activity.
Collapse
Affiliation(s)
- Alexandros Priftis
- Department of Biochemistry and Biotechnology, University of Thessaly, 41500 Larissa, Greece
| | | | - Aristidis S Veskoukis
- Department of Biochemistry and Biotechnology, University of Thessaly, 41500 Larissa, Greece
| | - Demetrios A Spandidos
- Laboratory of Clinical Virology, University of Crete, Medical School, 71409 Heraklion, Crete, Greece
| | - Dimitrios Kouretas
- Department of Biochemistry and Biotechnology, University of Thessaly, 41500 Larissa, Greece
| |
Collapse
|
23
|
Roasted and green coffee extracts show antioxidant and cytotoxic activity in myoblast and endothelial cell lines in a cell specific manner. Food Chem Toxicol 2018; 114:119-127. [DOI: 10.1016/j.fct.2018.02.029] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 02/09/2018] [Accepted: 02/11/2018] [Indexed: 12/27/2022]
|
24
|
Effects of green coffee extract supplementation on anthropometric indices, glycaemic control, blood pressure, lipid profile, insulin resistance and appetite in patients with the metabolic syndrome: a randomised clinical trial. Br J Nutr 2018; 119:250-258. [DOI: 10.1017/s0007114517003439] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
AbstractThis study was conducted to elucidate the effects of decaffeinated green coffee bean extract (GCE) on anthropometric indices, glycaemic control, blood pressure, lipid profile, insulin resistance and appetite in patients with the metabolic syndrome (Mets). Subjects were randomly allocated to consume 400 mg GCE or placebo capsules twice per d for 8 weeks. Both groups were advised to follow an energy balanced diet. After GCE supplementation, systolic blood pressure (SBP) significantly reduced compared with the placebo group (−13·76 (sd 8·48) v. −6·56 (sd 9·58) mmHg, P=0·01). Also, GCE treatment significantly reduced fasting blood glucose (FBS) (−5·15 (sd 60·22) v. 29·42 (sd 40·01) mg/dl (−0·28 (SD 3·34) v. 1·63 (SD 2·22) mmol/l); P=0·03) and homoeostatic model of assessment of insulin resistance in comparison to placebo (−1·41 (sd 3·33) v. 1·23 (sd 3·84), P=0·02). In addition, waist circumference (−2·40 (sd 2·54) v. −0·66 (sd 1·17) cm, P=0·009) and appetite score (−1·44 (sd 1·72) v. −0·2 (sd 1·32), P=0·01) of the individuals supplemented with GCE indicated a significant decline. Besides, weight and BMI reduction in the intervention group was almost twice as much as the placebo group; however, this discrepancy was marginally significant (weight: −2·08 (sd 2·11) v. −0·92 (sd 1·30) kg, P=0·05). No difference was observed in terms of glycated Hb (HbA1c) percentage and lipid profile parameters between the two groups. To sum up, GCE administration had an ameliorating effect on some of the Mets components such as high SBP, high FBS and Mets main aetiological factors including insulin resistance and abdominal obesity. Furthermore, GCE supplementation could reduce appetite level.
Collapse
|
25
|
Han J, Niu ST, Liu Y, Gan L, Wang T, Lu CD, Yuan T. Robustanoids A and B, two novel pyrrolo[2,3-b]indole alkaloids from Coffea canephora: isolation and total synthesis. Org Chem Front 2018. [DOI: 10.1039/c7qo00931c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Two novel pyrrolo[2,3-b]indole alkaloids were isolated from Coffea canephora beans; their structures were confirmed by total synthesis.
Collapse
Affiliation(s)
- Jianxin Han
- The Key Laboratory of Plant Resources and Chemistry of Arid Zone
- State Key Laboratory of Xinjiang Indigenous Medicinal Plants Resource Utilization
- Xinjiang Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Urumqi 830011
| | - Sheng-Tong Niu
- The Key Laboratory of Plant Resources and Chemistry of Arid Zone
- State Key Laboratory of Xinjiang Indigenous Medicinal Plants Resource Utilization
- Xinjiang Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Urumqi 830011
| | - Yushuang Liu
- The Key Laboratory of Plant Resources and Chemistry of Arid Zone
- State Key Laboratory of Xinjiang Indigenous Medicinal Plants Resource Utilization
- Xinjiang Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Urumqi 830011
| | - Lishe Gan
- College of Pharmaceutical Sciences
- Zhejiang University
- Hangzhou 310058
- China
| | - Tianfu Wang
- The Key Laboratory of Plant Resources and Chemistry of Arid Zone
- State Key Laboratory of Xinjiang Indigenous Medicinal Plants Resource Utilization
- Xinjiang Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Urumqi 830011
| | - Chong-Dao Lu
- The Key Laboratory of Plant Resources and Chemistry of Arid Zone
- State Key Laboratory of Xinjiang Indigenous Medicinal Plants Resource Utilization
- Xinjiang Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Urumqi 830011
| | - Tao Yuan
- The Key Laboratory of Plant Resources and Chemistry of Arid Zone
- State Key Laboratory of Xinjiang Indigenous Medicinal Plants Resource Utilization
- Xinjiang Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Urumqi 830011
| |
Collapse
|
26
|
Priftis A, Goutzourelas N, Halabalaki M, Ntasi G, Stagos D, Amoutzias GD, Skaltsounis LA, Kouretas D. Effect of polyphenols from coffee and grape on gene expression in myoblasts. Mech Ageing Dev 2017; 172:115-122. [PMID: 29174054 DOI: 10.1016/j.mad.2017.11.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 11/15/2017] [Accepted: 11/16/2017] [Indexed: 12/21/2022]
Abstract
Coffee and grape contain various bioactive compounds like polyphenols that may exert beneficial effects, especially antioxidant activity, on human health upon consumption. However, the molecular mechanisms through which these effects are achieved are not fully elucidated. Thus, in the present study in order to investigate these mechanisms, a whole genome expression DNA microarray analysis was carried out in myoblasts treated with polyphenols of coffee and grape pomace at concentrations that improved the redox status. Grape was composed of catechin, epicatechin, cyanidin, malvidin, delphinidin, petunidin, myrtillin, kuromanin, oenin, peonidin, quercetin, gallic acid and caftaric acid as LC-MS revealed, with a total polyphenolic content (TPC) of 648 mg of gallic acid equivalents/g of dry matter. Coffee had a TPC of 42.61 mg GAE/g coffee and was composed of 3-chlorogenic acid (16.61 mg/g), 4- and 5-chlorogenic acids (13.62 mg/g), as UHPLC-HRMS revealed. According to the results, grape polyphenols altered mainly the expression of cytoskeleton and differentiation-associated genes, while coffee compounds had a more profound effect, on the expression levels of many metabolic and antioxidant genes possibly through the nuclear factor (erythroid-derived 2) like-2 (Nrf2) pathway.
Collapse
Affiliation(s)
- Alexandros Priftis
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, 41221, Greece
| | - Nikolaos Goutzourelas
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, 41221, Greece
| | - Maria Halabalaki
- Division of Pharmacognosy and Natural Product Chemistry, Department of Pharmacy, University of Athens, Panepistimiopolis, Zografou, 15771, Athens, Greece
| | - Georgia Ntasi
- PharmaGnose S.A., Papathanasiou 24, 34100, Chalkida, Euboea, Greece
| | - Dimitrios Stagos
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, 41221, Greece
| | - Grigorios D Amoutzias
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, 41221, Greece
| | - Leandros A Skaltsounis
- Division of Pharmacognosy and Natural Product Chemistry, Department of Pharmacy, University of Athens, Panepistimiopolis, Zografou, 15771, Athens, Greece
| | - Dimitrios Kouretas
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, 41221, Greece.
| |
Collapse
|
27
|
Mehta V, Verma P, Sharma N, Sharma A, Thakur A, Malairaman U. Quercetin, ascorbic acid, caffeine and ellagic acid are more efficient than rosiglitazone, metformin and glimepiride in interfering with pathways leading to the development of neurological complications associated with diabetes: A comparative in-vitro study. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.bfopcu.2016.12.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
28
|
Priftis A, Papikinos K, Koukoulanaki M, Kerasioti E, Stagos D, Konstantinopoulos K, Spandidos DA, Kermenidou M, Karakitsios S, Sarigiannis D, Tsatsakis AM, Kouretas D. Development of an assay to assess genotoxicity by particulate matter extract. Mol Med Rep 2017; 15:1738-1746. [PMID: 28260086 PMCID: PMC5365018 DOI: 10.3892/mmr.2017.6171] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 01/30/2017] [Indexed: 01/11/2023] Open
Abstract
The current study describes a method for assessing the oxidative potential of common environmental stressors (ambient air particulate matter), using a plasmid relaxation assay where the extract caused single-strand breaks, easily visualised through electrophoresis. This assay utilises a miniscule amount (11 µg) of particulate matter (PM) extract compared to other, cell-based methods (~3,000 µg). The negative impact of air pollution on human health has been extensively recognised. Among the air pollutants, PM plays an eminent role, as reflected in the broad scientific interest. PM toxicity highly depends on its composition (metals and organic compounds), which in turn has been linked to multiple health effects (such as cardiorespiratory diseases and cancer) through multiple toxicity mechanisms; the induction of oxidative stress is considered a major mechanism among these. In this study, the PM levels, oxidative potential, cytotoxicity and genotoxicity of PM in the region of Larissa, Greece were examined using the plasmid relaxation assay. Finally, coffee extracts from different varieties, derived from both green and roasted seeds, were examined for their ability to inhibit PM-induced DNA damage. These extracts also exerted an inhibitory effect on xanthine oxidase and catalase, but had no effect against superoxide dismutase. Overall, this study highlights the importance of assays for assessing the oxidative potential of widespread environmental stressors (PM), as well as the antioxidant capacity of beverages and food items, with the highlight being the development of a plasmid relaxation assay to assess the genotoxicity caused by PM using only a miniscule amount.
Collapse
Affiliation(s)
- Alexandros Priftis
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa 41221, Greece
| | - Konstantinos Papikinos
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa 41221, Greece
| | - Marina Koukoulanaki
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa 41221, Greece
| | - Efthalia Kerasioti
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa 41221, Greece
| | - Dimitrios Stagos
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa 41221, Greece
| | | | - Demetrios A Spandidos
- Laboratory of Clinical Virology, University of Crete, Medical School, Heraklion 71409, Greece
| | - Marianthi Kermenidou
- Aristotle University of Thessaloniki, Department of Chemical Engineering, Environmental Engineering Laboratory, Thessaloniki 54124, Greece
| | - Spyros Karakitsios
- Aristotle University of Thessaloniki, Department of Chemical Engineering, Environmental Engineering Laboratory, Thessaloniki 54124, Greece
| | - Dimosthenis Sarigiannis
- Aristotle University of Thessaloniki, Department of Chemical Engineering, Environmental Engineering Laboratory, Thessaloniki 54124, Greece
| | - Aristides M Tsatsakis
- Department of Forensic Sciences and Toxicology, Medical School, University of Crete, Heraklion 71003, Greece
| | - Demetrios Kouretas
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa 41221, Greece
| |
Collapse
|
29
|
Performance review of a fast HPLC-UV method for the quantification of chlorogenic acids in green coffee bean extracts. Talanta 2016; 154:481-5. [DOI: 10.1016/j.talanta.2016.03.101] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 03/30/2016] [Accepted: 03/31/2016] [Indexed: 11/18/2022]
|
30
|
Zhou Y, Ruan Z, Wen Y, Yang Y, Mi S, Zhou L, Wu X, Ding S, Deng Z, Wu G, Yin Y. Chlorogenic acid from honeysuckle improves hepatic lipid dysregulation and modulates hepatic fatty acid composition in rats with chronic endotoxin infusion. J Clin Biochem Nutr 2016; 58:146-55. [PMID: 27013782 PMCID: PMC4788397 DOI: 10.3164/jcbn.14-138] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 06/30/2015] [Indexed: 12/12/2022] Open
Abstract
Chlorogenic acid as a natural hydroxycinnamic acid has protective effect for liver. Endotoxin induced metabolic disorder, such as lipid dysregulation and hyperlipidemia. In this study, we investigated the effect of chlorogenic acid in rats with chronic endotoxin infusion. The Sprague-Dawley rats with lipid metabolic disorder (LD group) were intraperitoneally injected endotoxin. And the rats of chlorogenic acid-LD group were daily received chlorogenic acid by intragastric administration. In chlorogenic acid-LD group, the area of visceral adipocyte was decreased and liver injury was ameliorated, as compared to LD group. In chlorogenic acid-LD group, serum triglycerides, free fatty acids, hepatic triglycerides and cholesterol were decreased, the proportion of C20:1, C24:1 and C18:3n-6, Δ9-18 and Δ6-desaturase activity index in the liver were decreased, and the proportion of C18:3n-3 acid was increased, compared to the LD group. Moreover, levels of phosphorylated AMP-activated protein kinase, carnitine palmitoyltransferase-I, and fatty acid β-oxidation were increased in chlorogenic acid-LD group compared to LD rats, whereas levels of fatty acid synthase and acetyl-CoA carboxylase were decreased. These findings demonstrate that chlorogenic acid effectively improves hepatic lipid dysregulation in rats by regulating fatty acid metabolism enzymes, stimulating AMP-activated protein kinase activation, and modulating levels of hepatic fatty acids.
Collapse
Affiliation(s)
- Yan Zhou
- State Key Laboratory of Food Science and Technology and College of Food Science, Nanchang University, Nanchang 330047, China
| | - Zheng Ruan
- State Key Laboratory of Food Science and Technology and College of Food Science, Nanchang University, Nanchang 330047, China
| | - Yanmei Wen
- State Key Laboratory of Food Science and Technology and College of Food Science, Nanchang University, Nanchang 330047, China
| | - Yuhui Yang
- State Key Laboratory of Food Science and Technology and College of Food Science, Nanchang University, Nanchang 330047, China
| | - Shumei Mi
- State Key Laboratory of Food Science and Technology and College of Food Science, Nanchang University, Nanchang 330047, China
| | - Lili Zhou
- State Key Laboratory of Food Science and Technology and College of Food Science, Nanchang University, Nanchang 330047, China
| | - Xin Wu
- State Key Laboratory of Food Science and Technology and College of Food Science, Nanchang University, Nanchang 330047, China; Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Sheng Ding
- Institute of Nutrition and Food Safety, Center for Disease Control and Prevention of Jiangxi Province, Nanchang 330029, China
| | - Zeyuan Deng
- State Key Laboratory of Food Science and Technology and College of Food Science, Nanchang University, Nanchang 330047, China
| | - Guoyao Wu
- Department of Animal Science, Faculty of Nutrition, Texas A&M University, College Station 77843-2471, USA
| | - Yulong Yin
- State Key Laboratory of Food Science and Technology and College of Food Science, Nanchang University, Nanchang 330047, China; Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| |
Collapse
|
31
|
Regazzoni L, Saligari F, Marinello C, Rossoni G, Aldini G, Carini M, Orioli M. Coffee silver skin as a source of polyphenols: High resolution mass spectrometric profiling of components and antioxidant activity. J Funct Foods 2016. [DOI: 10.1016/j.jff.2015.11.027] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
32
|
Coffee provides a natural multitarget pharmacopeia against the hallmarks of cancer. GENES AND NUTRITION 2015; 10:51. [PMID: 26577824 DOI: 10.1007/s12263-015-0501-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 10/29/2015] [Indexed: 12/13/2022]
Abstract
Coffee is the second most popular beverage in the world after water with a consumption of approximately two billion cups per day. Due to its low cost and ease of preparation, it is consumed in almost all countries and by all social classes of the population through different modes of preparation. Despites its simple appearance, a cup of coffee is in fact a complex mixture that contains hundreds of molecules, the composition and concentration of which vary widely and depend on factors including the origin of the coffee tree or its metabolism. Although an excessive consumption of coffee can be harmful, many molecules that are present in this black decoction exert anticancer properties. This review aims to describe the different primary coffee-containing substances that exert chemopreventive and bioactive activities against the different hallmarks and enabling characteristics of cancer, thus explaining the anticancer health benefit of black coffee.
Collapse
|
33
|
Priftis A, Stagos D, Konstantinopoulos K, Tsitsimpikou C, Spandidos DA, Tsatsakis AM, Tzatzarakis MN, Kouretas D. Comparison of antioxidant activity between green and roasted coffee beans using molecular methods. Mol Med Rep 2015; 12:7293-302. [PMID: 26458565 PMCID: PMC4626150 DOI: 10.3892/mmr.2015.4377] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 09/28/2015] [Indexed: 12/19/2022] Open
Abstract
Coffee is one of the most popular and widely consumed beverages worldwide due to its pleasant taste and aroma. A number of studies have been performed to elucidate the possible beneficial effects of coffee consumption on human health and have shown that coffee exhibits potent antioxidant activity, which may be attributed mainly to its polyphenolic content. However, there is also evidence to suggest that coffee roasting (the procedure which turns green coffee beans to the dark, roasted ones from which the beverage derives) may alter the polyphenolic profile of the beans (e.g., via the Maillard reaction) and, concomitantly, their antioxidant activity. In the present study, the antioxidant activity of 13 coffee varieties was examined in both green and roasted coffee bean extracts using 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2′-azinobis-(3-eth-ylbenzothiazoline-6-sulfonic acid) (ABTS•+) radical scavenging assays. In addition, 5 selected varieties were also examined for their protective effects against peroxyl and hydroxyl radical-induced DNA strand cleavage. Finally, C2C12 murine myoblasts were treated with non-cytotoxic concentrations of the most potent extract in order to examine its effects on the cellular redox status by measuring the glutathione (GSH) and reactive oxygen species (ROS) levels by flow cytometry. Our results revealed that, in 8 out of the 13 coffee varieties, roasting increased free radical scavenging activity as shown by DPPH and ABTS•+ assays. Moreover, we found that when one coffee variety was roasted for different amounts of time, the increase in the antioxidant activity depended on the roasting time. By contrast, in 5 varieties, roasting reduced the antioxidant activity. Similar differences between the roasted and green beans were also observed in the free radical-induced DNA strand cleavage assay. The observed differences in the antioxidant activity between the different coffee varieties may be attributed to their varying polyphenolic content and composition, as well as to the different molecules produced during roasting. In addition, in the cell culture assay, the tested coffee extract led to increased GSH levels in a dose-dependent manner, indicating the enhancement of cellular antioxidant mechanisms.
Collapse
Affiliation(s)
- Alexandros Priftis
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa 41221, Greece
| | - Dimitrios Stagos
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa 41221, Greece
| | | | - Christina Tsitsimpikou
- Department of Dangerous Substances, Mixtures and Articles, Directorate of Environment, General Chemical State Laboratory of Greece, Athens 11521, Greece
| | - Demetrios A Spandidos
- Laboratory of Clinical Virology, University of Crete, Medical School, Heraklion 71409, Greece
| | - Aristides M Tsatsakis
- Department of Forensic Sciences and Toxicology, Medical School, University of Crete, Heraklion 71003, Greece
| | - Manolis N Tzatzarakis
- Department of Forensic Sciences and Toxicology, Medical School, University of Crete, Heraklion 71003, Greece
| | - Demetrios Kouretas
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa 41221, Greece
| |
Collapse
|
34
|
Dong W, Tan L, Zhao J, Hu R, Lu M. Characterization of Fatty Acid, Amino Acid and Volatile Compound Compositions and Bioactive Components of Seven Coffee (Coffea robusta) Cultivars Grown in Hainan Province, China. Molecules 2015; 20:16687-708. [PMID: 26389867 PMCID: PMC6332462 DOI: 10.3390/molecules200916687] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 08/26/2015] [Accepted: 09/02/2015] [Indexed: 12/02/2022] Open
Abstract
Compositions of fatty acid, amino acids, and volatile compound were investigated in green coffee beans of seven cultivars of Coffearobusta grown in Hainan Province, China. The chlorogenic acids, trigonelline, caffeine, total lipid, and total protein contents as well as color parameters were measured. Chemometric techniques, principal component analysis (PCA), hierarchical cluster analysis (HCA), and analysis of one-way variance (ANOVA) were performed on the complete data set to reveal chemical differences among all cultivars and identify markers characteristic of a particular botanical origin of the coffee. The major fatty acids of coffee were linoleic acid, palmitic acid, oleic acid, and arachic acid. Leucine (0.84 g/100 g DW), lysine (0.63 g/100 g DW), and arginine (0.61 g/100 g DW) were the predominant essential amino acids (EAAs) in the coffee samples. Seventy-nine volatile compounds were identified and semi-quantified by HS-SPME/GC-MS. PCA of the complete data matrix demonstrated that there were significant differences among all cultivars, HCA supported the results of PCA and achieved a satisfactory classification performance.
Collapse
Affiliation(s)
- Wenjiang Dong
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS), Wanning 571533, Hainan, China.
- National Center of Important Tropical Crops Engineering and Technology Research, Wanning 571533, Hainan, China.
| | - Lehe Tan
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS), Wanning 571533, Hainan, China.
- National Center of Important Tropical Crops Engineering and Technology Research, Wanning 571533, Hainan, China.
| | - Jianping Zhao
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS), Wanning 571533, Hainan, China.
- National Center of Important Tropical Crops Engineering and Technology Research, Wanning 571533, Hainan, China.
| | - Rongsuo Hu
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS), Wanning 571533, Hainan, China.
- National Center of Important Tropical Crops Engineering and Technology Research, Wanning 571533, Hainan, China.
| | - Minquan Lu
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS), Wanning 571533, Hainan, China.
- National Center of Important Tropical Crops Engineering and Technology Research, Wanning 571533, Hainan, China.
| |
Collapse
|
35
|
Rakvaag E, Dragsted LO. Acute effects of light and dark roasted coffee on glucose tolerance: a randomized, controlled crossover trial in healthy volunteers. Eur J Nutr 2015; 55:2221-30. [PMID: 26342706 DOI: 10.1007/s00394-015-1032-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 08/26/2015] [Indexed: 12/17/2022]
Abstract
PURPOSE Epidemiological evidence suggests that coffee consumption is associated with a lower risk of type 2 diabetes. Coffee contains caffeine and several other components that may modulate glucose regulation. The chlorogenic acids (CGA) in coffee have been indicated as constituents that may help to normalize the acute glucose response after a carbohydrate challenge. The aim of this study was to investigate whether two coffee beverages that differ in CGA content due to different roasting degrees will differentially affect glucose regulation. METHODS In a controlled crossover trial, 11 healthy fasted volunteers consumed 300 mL of either light (LIR) or dark (DAR) roasted coffee, or water, followed 30 min later by a 75-g oral glucose tolerance test (OGTT). Blood samples were drawn at baseline, 30, 60, and 120 min. Differences in glucose and insulin responses and insulin sensitivity index (ISI) were analyzed. The CGA and caffeine contents in the coffees were analyzed using UPLC-MS/MS. RESULTS No differences in glucose area under the curve (AUC) were found between treatments. Glucose concentrations were higher at 60 min after ingestion of DAR compared with water, while ingestion of LIR showed similar glucose concentrations as ingestion of water. Insulin AUC was higher after ingestion of DAR compared with water, and both coffees raised insulin concentrations and reduced ISI compared with water, with no difference between the two coffees. CONCLUSION Two coffees with different CGA contents did not differentially affect glucose or insulin responses during an OGTT, but both increased the insulin response compared with water.
Collapse
Affiliation(s)
- Elin Rakvaag
- Institute for Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Rolighedsvej 26, 1958, Frederiksberg C, Denmark
| | - Lars Ove Dragsted
- Institute for Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Rolighedsvej 26, 1958, Frederiksberg C, Denmark.
| |
Collapse
|
36
|
Waterman C, Rojas-Silva P, Tumer TB, Kuhn P, Richard AJ, Wicks S, Stephens JM, Wang Z, Mynatt R, Cefalu W, Raskin I. Isothiocyanate-rich Moringa oleifera extract reduces weight gain, insulin resistance, and hepatic gluconeogenesis in mice. Mol Nutr Food Res 2015; 59:1013-24. [PMID: 25620073 DOI: 10.1002/mnfr.201400679] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 12/22/2014] [Accepted: 12/23/2014] [Indexed: 01/02/2023]
Abstract
SCOPE Moringa oleifera (moringa) is tropical plant traditionally used as an antidiabetic food. It produces structurally unique and chemically stable moringa isothiocyanates (MICs) that were evaluated for their therapeutic use in vivo. METHODS AND RESULTS C57BL/6L mice fed very high fat diet (VHFD) supplemented with 5% moringa concentrate (MC, delivering 66 mg/kg/d of MICs) accumulated fat mass, had improved glucose tolerance and insulin signaling, and did not develop fatty liver disease compared to VHFD-fed mice. MC-fed group also had reduced plasma insulin, leptin, resistin, cholesterol, IL-1β, TNFα, and lower hepatic glucose-6-phosphatase (G6P) expression. In hepatoma cells, MC and MICs at low micromolar concentrations inhibited gluconeogenesis and G6P expression. MICs and MC effects on lipolysis in vitro and on thermogenic and lipolytic genes in adipose tissue in vivo argued these are not likely primary targets for the anti-obesity and anti-diabetic effects observed. CONCLUSION Data suggest that MICs are the main anti-obesity and anti-diabetic bioactives of MC, and that they exert their effects by inhibiting rate-limiting steps in liver gluconeogenesis resulting in direct or indirect increase in insulin signaling and sensitivity. These conclusions suggest that MC may be an effective dietary food for the prevention and treatment of obesity and type 2 diabetes.
Collapse
Affiliation(s)
- Carrie Waterman
- Department of Plant Biology and Pathology, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Patricio Rojas-Silva
- Department of Plant Biology and Pathology, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Tugba Boyunegmez Tumer
- Department of Plant Biology and Pathology, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA.,Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| | - Peter Kuhn
- Department of Plant Biology and Pathology, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | | | - Shawna Wicks
- Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | | | - Zhong Wang
- Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - Randy Mynatt
- Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - William Cefalu
- Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - Ilya Raskin
- Department of Plant Biology and Pathology, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| |
Collapse
|
37
|
In vivo anti-diabetic potential of chlorogenic acid as a consequence of synergism with other phenolic compounds? Br J Nutr 2015; 113:546-7. [PMID: 25662006 DOI: 10.1017/s0007114514004085] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
38
|
Cao J, Li X, Liu Y, Leng F, Li X, Sun C, Chen K. Bioassay-Based Isolation and Identification of Phenolics from Sweet Cherry That Promote Active Glucose Consumption by HepG2 Cells. J Food Sci 2015; 80:C234-40. [DOI: 10.1111/1750-3841.12743] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 10/22/2014] [Indexed: 12/26/2022]
Affiliation(s)
- Jinping Cao
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth; Development and Quality Improvement; Zhejiang University; Zijingang Campus; Hangzhou 310058 PR China
| | - Xin Li
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth; Development and Quality Improvement; Zhejiang University; Zijingang Campus; Hangzhou 310058 PR China
| | - Yunxi Liu
- Institute of Pharmacology & Toxicology and Biochemical Pharmaceutics; College of Pharmaceutical Sciences; Zhejiang University; Zijingang Campus; Hangzhou 310058 PR China
| | - Feng Leng
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth; Development and Quality Improvement; Zhejiang University; Zijingang Campus; Hangzhou 310058 PR China
| | - Xian Li
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth; Development and Quality Improvement; Zhejiang University; Zijingang Campus; Hangzhou 310058 PR China
| | - Chongde Sun
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth; Development and Quality Improvement; Zhejiang University; Zijingang Campus; Hangzhou 310058 PR China
| | - Kunsong Chen
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth; Development and Quality Improvement; Zhejiang University; Zijingang Campus; Hangzhou 310058 PR China
| |
Collapse
|
39
|
Akash MSH, Rehman K, Chen S. Effects of coffee on type 2 diabetes mellitus. Nutrition 2014; 30:755-63. [DOI: 10.1016/j.nut.2013.11.020] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Revised: 11/05/2013] [Accepted: 11/08/2013] [Indexed: 12/13/2022]
|
40
|
Lecoultre V, Carrel G, Egli L, Binnert C, Boss A, MacMillan EL, Kreis R, Boesch C, Darimont C, Tappy L. Coffee consumption attenuates short-term fructose-induced liver insulin resistance in healthy men. Am J Clin Nutr 2014; 99:268-75. [PMID: 24257718 DOI: 10.3945/ajcn.113.069526] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Epidemiologic and experimental data have suggested that chlorogenic acid, which is a polyphenol contained in green coffee beans, prevents diet-induced hepatic steatosis and insulin resistance. OBJECTIVE We assessed whether the consumption of chlorogenic acid-rich coffee attenuates the effects of short-term fructose overfeeding, dietary conditions known to increase intrahepatocellular lipids (IHCLs), and blood triglyceride concentrations and to decrease hepatic insulin sensitivity in healthy humans. DESIGN Effects of 3 different coffees were assessed in 10 healthy volunteers in a randomized, controlled, crossover trial. IHCLs, hepatic glucose production (HGP) (by 6,6-d2 glucose dilution), and fasting lipid oxidation were measured after 14 d of consumption of caffeinated coffee high in chlorogenic acid (C-HCA), decaffeinated coffee high in chlorogenic acid, or decaffeinated coffee with regular amounts of chlorogenic acid (D-RCA); during the last 6 d of the study, the weight-maintenance diet of subjects was supplemented with 4 g fructose · kg(-1) · d(-1) (total energy intake ± SD: 143 ± 1% of weight-maintenance requirements). All participants were also studied without coffee supplementation, either with 4 g fructose · kg(-1) · d(-1) (high fructose only) or without high fructose (control). RESULTS Compared with the control diet, the high-fructose diet significantly increased IHCLs by 102 ± 36% and HGP by 16 ± 3% and decreased fasting lipid oxidation by 100 ± 29% (all P < 0.05). All 3 coffees significantly decreased HGP. Fasting lipid oxidation increased with C-HCA and D-RCA (P < 0.05). None of the 3 coffees significantly altered IHCLs. CONCLUSIONS Coffee consumption attenuates hepatic insulin resistance but not the increase of IHCLs induced by fructose overfeeding. This effect does not appear to be mediated by differences in the caffeine or chlorogenic acid content. This trial was registered at clinicaltrials.gov as NCT00827450.
Collapse
Affiliation(s)
- Virgile Lecoultre
- Department of Physiology, University of Lausanne, Lausanne, Switzerland (VL, GC, LE, C Binnert, and LT); the Service of Internal Medicine (GC) and the Service of Endocrinology, Diabetes and Metabolism (LT); Lausanne University Hospital, Lausanne, Switzerland; the Department of Clinical Research and Institute of Diagnostic, Interventional, and Pediatric Radiology, University Bern, Bern, Switzerland (AB, ELM, RK, and C Boesch); and Nutrition & Health Research, Nestlé Research Center, Nestec SA, Lausanne, Switzerland (C Binnert and CD)
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Kim SJ, Quan HY, Jeong KJ, Kim DY, Kim GW, Jo HK, Chung SH. Beneficial effect of betulinic acid on hyperglycemia via suppression of hepatic glucose production. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:434-442. [PMID: 24354358 DOI: 10.1021/jf4030739] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The inhibitory effect of betulinic acid (BA) on hepatic glucose production was examined in HepG2 cells and high fat diet (HFD)-fed ICR mice. BA significantly inhibited the hepatic glucose production (HGP) and gene expression levels of PGC-1α, PEPCK, and G6Pase. BA activated AMPK and suppressed the expression level of phosphorylated CREB. These effects were all abolished in the presence of compound C (an AMPK inhibitor). Moreover, inhibition of AMPK by overexpression of dominant negative AMPK prevented BA from suppression of HGP, indicating that the inhibitory effect of BA on HGP is AMPK-dependent. In addition, BA markedly phosphorylated CAMKK, and phosphorylation of AMPK and ACC, and suppression of HGP were all reversed in the presence of STO-609 (a CAMKK inhibitor), suggesting that CAMKK is an upstream kinase for AMPK. In an animal study, HFD-fed ICR mice were orally administered with 5 or 10 mg of BA per kg (B5 and B10) for three weeks. Plasma glucose, triglyceride, and the insulin resistance index of the B10 group were decreased by 34%, 59%, and 38%, respectively. In a pyruvate tolerance test, pyruvate-induced glucose excursion was decreased by 27% when mice were pretreated with 10 mg/kg of BA. In summary, BA effectively ameliorates hyperglycemia through inhibition of hepatic gluconeogenesis via modulating the CAMKK-AMPK-CREB signaling pathway.
Collapse
Affiliation(s)
- Soo Jung Kim
- Department of Pharmacology and Clinical Pharmacy, College of Pharmacy, Kyung Hee University , 1 Hoegi-dong, Dongdaemun-gu, Seoul 130-701, Korea
| | | | | | | | | | | | | |
Collapse
|
42
|
Jang H, Ahn HR, Jo H, Kim KA, Lee EH, Lee KW, Jung SH, Lee CY. Chlorogenic acid and coffee prevent hypoxia-induced retinal degeneration. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:182-191. [PMID: 24295042 DOI: 10.1021/jf404285v] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
This study explored whether chlorogenic acid (CGA) and coffee have protective effects against retinal degeneration. Under hypoxic conditions, the viability of transformed retinal ganglion (RGC-5) cells was significantly reduced by treatment with the nitric oxide (NO) donor S-nitroso-N-acetylpenicillamine (SNAP). However, pretreatment with CGA attenuated cell death in a concentration-dependent manner. In addition, CGA prevented the up-regulation of apoptotic proteins such as Bad and cleaved caspase-3. Similar beneficial effects of both CGA and coffee extracts were observed in mice that had undergone an optic nerve crush (ONC) procedure. CGA and coffee extract reduced cell death by preventing the down-regulation of Thy-1. Our in vitro and in vivo studies demonstrated that coffee and its major component, CGA, significantly reduce apoptosis of retinal cells induced by hypoxia and NO, and that coffee consumption may help in preventing retinal degeneration.
Collapse
Affiliation(s)
- Holim Jang
- Department of Food Science, Cornell University , Ithaca, New York 14850, United States
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Flanagan J, Bily A, Rolland Y, Roller M. Lipolytic activity of Svetol®, a decaffeinated green coffee bean extract. Phytother Res 2013; 28:946-8. [PMID: 24338784 DOI: 10.1002/ptr.5085] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 10/15/2013] [Accepted: 10/31/2013] [Indexed: 11/09/2022]
Abstract
The beneficial health effects of chlorogenic acids (CGAs), major components of coffee beans, are well known and have been attributed to multiple mechanisms of action. However, the lipolytic activity of CGAs does not appear to have been reported. We studied the effects of varying concentrations of Svetol®, a decaffeinated green coffee bean extract enriched in CGAs, on the liberation of free fatty acids from human adipocytes following short-term (2 h) and long-term (192 h) exposure. The results showed that although lipolytic activity observed following short-term incubation could be tentatively linked to residual caffeine traces in the sample, longer-term exposure clearly showed the effects of Svetol® on release of free fatty acids, and this effect was not due to caffeine. The results of this study provide a further mechanism by which to explain the long-term health benefits of CGAs and Svetol®.
Collapse
Affiliation(s)
- John Flanagan
- Naturex SA, Site d'Agroparc BP 1218, 84911, Avignon Cedex 9, France
| | | | | | | |
Collapse
|
44
|
Lacroix IME, Li-Chan ECY. Overview of food products and dietary constituents with antidiabetic properties and their putative mechanisms of action: a natural approach to complement pharmacotherapy in the management of diabetes. Mol Nutr Food Res 2013; 58:61-78. [PMID: 23943383 DOI: 10.1002/mnfr.201300223] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 06/10/2013] [Accepted: 06/13/2013] [Indexed: 01/05/2023]
Abstract
Diabetes is one of the fastest growing chronic, noncommunicable diseases worldwide. Currently, 11 major classes of pharmacotherapy are available for the management of this metabolic disorder. However, the usage of these drugs is often associated with undesirable side effects, including weight gain and hypoglycemia. There is thus a need for new, safe and effective treatment strategies. Diet is known to play a major role in the prevention and management of diabetes. Numerous studies have reported the putative association of the consumption of specific food products, or their constituents, with the incidence of diabetes, and mounting evidence now suggests that some dietary factors can improve glycemic regulation. Foods and dietary constituents, similar to synthetic drugs, have been shown to modulate hormones, enzymes, and organ systems involved in carbohydrate metabolism. The present article reviews the major classes and modes of action of antidiabetic drugs, and examines the evidence on food products and dietary factors with antidiabetic properties as well as their plausible mechanisms of action. The findings suggest potential use of dietary constituents as a complementary approach to pharmacotherapy in the prevention and/or management of diabetes, but further research is necessary to identify the active components and evaluate their efficacy and safety.
Collapse
Affiliation(s)
- Isabelle M E Lacroix
- Faculty of Land & Food Systems, Food Nutrition & Health Program, The University of British Columbia, Vancouver, BC, Canada
| | | |
Collapse
|
45
|
Mullen W, Nemzer B, Stalmach A, Ali S, Combet E. Polyphenolic and hydroxycinnamate contents of whole coffee fruits from China, India, and Mexico. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:5298-5309. [PMID: 23650984 DOI: 10.1021/jf4003126] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Air-dried whole coffee fruits, beans, and husks from China, India, and Mexico were analyzed for their chlorogenic acids (CGA), caffeine, and polyphenolic content. Analysis was by HPLC and Orbitrap exact mass spectrometry. Total phenol, total flavonol, and antioxidant capacity were measured. The hydroxycinnamate profile consisted of caffeoylquinic acids, feruloyquinic acids, dicaffeoylquinic acids, and caffeoyl-feruloylquinic acids. A range of flavan-3-ols as well as flavonol conjugates were detected. The CGA content was similar for both Mexican and Indian coffee fruits but was much lower in the samples from China. Highest levels of flavan-3-ols were found in the Indian samples, whereas the Mexican samples contained the highest flavonols. Amounts of CGAs in the beans were similar to those in the whole fruits, but flavan-3-ols and flavonols were not detected. The husks contained the same range of polyphenols as those in the whole fruits. The highest levels of caffeine were found in the Robusta samples.
Collapse
Affiliation(s)
- W Mullen
- College of Medical, Veterinary and Life Sciences, University of Glasgow , University Avenue, Glasgow G12 8QQ, United Kingdom
| | | | | | | | | |
Collapse
|
46
|
Multiple roles of glucose-6-phosphatases in pathophysiology. Biochim Biophys Acta Gen Subj 2013; 1830:2608-18. [DOI: 10.1016/j.bbagen.2012.12.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 12/11/2012] [Accepted: 12/13/2012] [Indexed: 12/28/2022]
|
47
|
Abstract
Coffee consumption has been associated with a lower risk of type 2 diabetes. This association does not depend on race, gender, geographic distribution of the study populations, or the type of coffee consumed (i.e., caffeinated or decaffeinated). This review discusses the strength of this relationship, examines the possibility that the pattern of coffee consumption could influence the association, and evaluates the possible relationship between coffee consumption and other risk factors associated with diabetes. Particular attention is paid to the identification, on the basis of the scientific evidence, of the possible mechanisms by which coffee components might affect diabetes development, especially in light of the paradoxical effect of caffeine on glucose metabolism. In addition to the role of coffee in reducing the risk of developing type 2 diabetes, the possible role of coffee in the course of the illness is explored. Finally, the possibility that coffee can also affect the risk of other forms of diabetes (e.g., type 1 diabetes and gestational diabetes) is examined.
Collapse
Affiliation(s)
- Fausta Natella
- The National Research Institute on Food and Nutrition, Via Ardeatina 546, 00178 Rome, Italy.
| | | |
Collapse
|
48
|
Farrell TL, Poquet L, Dew TP, Barber S, Williamson G. Predicting Phenolic Acid Absorption in Caco-2 Cells: A Theoretical Permeability Model and Mechanistic Study. Drug Metab Dispos 2011; 40:397-406. [DOI: 10.1124/dmd.111.041665] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
49
|
Farrell TL, Dew TP, Poquet L, Hanson P, Williamson G. Absorption and Metabolism of Chlorogenic Acids in Cultured Gastric Epithelial Monolayers. Drug Metab Dispos 2011; 39:2338-46. [DOI: 10.1124/dmd.111.040147] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
50
|
Ma C, Dastmalchi K, Whitaker BD, Kennelly EJ. Two new antioxidant malonated caffeoylquinic acid isomers in fruits of wild eggplant relatives. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:9645-51. [PMID: 21800866 DOI: 10.1021/jf202028y] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Fruits of the cultivated eggplant species Solanum melongena and its wild relative Solanum incanum have a high content of hydroxycinnamic acid conjugates, which are implicated in the human health benefits of various fruits and vegetables. Monocaffeoylquinic acid esters, in particular 5-O-(E)-caffeoylquinic acid, are usually predominant in solanaceous fruits and tubers. Two closely related caffeoylquinic acid derivatives with longer C(18) HPLC retention times than those of monocaffeoylquinic acids are minor constituents in cultivated eggplant fruit. In a prior study, the two compounds were tentatively identified as 3-O-acetyl- and 4-O-acetyl-5-O-(E)-caffeoylquinic acids and composed ≤2% of the total hydroxycinnamic acid conjugates in fruit of most S. melongena accessions. It was recently found that the pair of these caffeoylquinic acid derivatives can compose 15-25% of the total hydroxycinnamic acid conjugates in fruits of S. incanum and wild S. melongena. This facilitated C(18) HPLC isolation and structural elucidation using (1)H and (13)C NMR techniques and HR-ToF-MS. The isomeric compounds were identified as 3-O-malonyl-5-O-(E)-caffeoylquinic acid (isomer 1) and 4-O-(E)-caffeoyl-5-O-malonylquinic acid (isomer 2). Both exhibited free radical scavenging activity, albeit about 4-fold lower than that of the flavonol quercetin dihydrate. By contrast, the iron chelation activities of isomers 1 and 2, respectively, were about 3- and 6-fold greater than that of quercetin dihydrate. Reports of malonylhydroxycinnamoylquinic acids are rare, and only a few of these compounds have been structurally elucidated using both NMR and MS techniques. To the authors' knowledge, these two malonylcaffeoylquinic acid isomers have not previously been reported.
Collapse
Affiliation(s)
- Chunhui Ma
- Department of Biological Sciences, Lehman College and The Graduate Center, The City University of New York, 250 Bedford Park Boulevard West, Bronx, New York 10468, United States
| | | | | | | |
Collapse
|