1
|
A family of amphiphilic dioxidovanadium(V) hydrazone complexes as potent carbonic anhydrase inhibitors along with anti-diabetic and cytotoxic activities. Biometals 2022; 35:499-517. [PMID: 35355153 DOI: 10.1007/s10534-022-00384-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 03/07/2022] [Indexed: 12/24/2022]
Abstract
A family of dioxidovanadium(V) complexes (1-4) of the type [Na(H2O)x]+[VVO2(HL1-4)]- (x = 4, 4.5 and 7) where HL2- represents the dianionic form of 2-hydroxybenzoylhydrazone of 2-hydroxyacetophenone (H2L1, complex 1), 2-hydroxy-5-methylacetophenone (H2L2, complex 2), 2-hydroxy-5-methoxyacetophenone (H2L3, complex 3) and 2-hydroxy-5-chloroacetophenone (H2L4, complex 4), have been synthesized and characterized by analytical and spectral methods. These complexes exhibited the potential abilities to suppress the erythrocytes carbonic anhydrase enzymatic activity in type 1 and type 2 diabetic patients (in vitro), promising antidiabetic activity against T2 diabetic mice (in vivo). They also exhibited significant cytotoxic activity against cervical cancer (SiHa) cells (in vitro) as the IC50 value of complexes 1, 2 and 4 is substantially lower than the value found for cisplatin while that of 3 is comparable and follow the order: 4 < 1 < 2 < 3 and can kill the cells by apoptosis via the generation of reactive oxygen species (ROS). The complexes are soluble both in water and octanol media and also non-toxic at working concentrations. The antidiabetic activity of these four complexes follows the order: 4 > 2 > 1 > 3 while both the carbonic anhydrase and cytotoxic activity follow the order: 4 > 1 > 2 > 3 suggesting that complex 4, containing electron withdrawing Cl atom is the most reactive while 3 with electron donating OCH3 group is the least reactive species. The molecular docking study on hCA-I and hCA-II demonstrates that complexes interact via hydrogen bonding as well as different types of π-stacking.
Collapse
|
2
|
Ma Y, Shi Y, Wu Q, Ma W. Epigallocatechin-3-gallate Alleviates Vanadium-Induced Reduction of Antioxidant Capacity via Keap1-Nrf2-sMaf Pathway in the Liver, Kidney, and Ovary of Laying Hens. Biol Trace Elem Res 2021; 199:2707-2716. [PMID: 33405082 DOI: 10.1007/s12011-020-02398-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/14/2020] [Indexed: 11/29/2022]
Abstract
This study evaluated the effect of epigallocatechin-3-gallate (EGCG) alleviating the reduction of antioxidant capacity induced by dietary vanadium (V) in the liver, kidney, and ovary of laying hens. Furthermore, Kelch-like ECH-associated protein 1(Keap1)-nuclear factor erythroid 2-related factor 2 (Nrf2)-small Maf proteins (sMaf) pathway was explored to reveal the molecular mechanism. A total of 768 40-week-old Hyline-Brown laying hens were randomly allocated to 4 groups with 8 pens per group and 24 hens per pen. The experimental groups were as follows: control (basal diet); V15, control + 15 mg/kg V; EGCG150, control + 150 mg/kg EGCG; V15 + EGCG150, V15 + 150 mg/kg EGCG. Our results revealed that dietary EGCG supplementation completely alleviated the V-induced reductions of hen-day egg production, average egg weight, Haugh unit, albumen height, eggshell strength, and eggshell thickness. Dietary EGCG supplementation completely prevented the V-induced reductions of serum follicle-stimulating hormone and luteinizing hormone levels. Besides, dietary EGCG supplementation reversed the V-induced increments of alanine aminotransferase (ALT), aspartate aminotransferase (AST), blood urea nitrogen (BUN), creatinine (Cr), and uric acid (UA). In addition, dietary EGCG supplementation partially alleviated the V-induced reductions of the enzyme activities and gene expressions of superoxidative dismutase (SOD), catalase (CAT), glutathione reductase (GR), and glutathione peroxidase (GSH-Px). Furthermore, dietary EGCG supplementation partially alleviated the V-induced reductions of Nrf2 and sMaf gene expressions, and the increments of Keap1 gene expression. In summary, EGCG partially alleviated V-induced reduction of antioxidant capacity through Keap1-Nrf2-sMaf pathway in the liver, kidney, and ovary of laying hens.
Collapse
Affiliation(s)
- Yan Ma
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471003, China.
| | - Yizhen Shi
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471003, China
| | - Qiujue Wu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471003, China
| | - Wenfeng Ma
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471003, China
| |
Collapse
|
3
|
Chiarelli R, Martino C, Roccheri MC, Cancemi P. Toxic effects induced by vanadium on sea urchin embryos. CHEMOSPHERE 2021; 274:129843. [PMID: 33561719 DOI: 10.1016/j.chemosphere.2021.129843] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/20/2021] [Accepted: 01/31/2021] [Indexed: 06/12/2023]
Abstract
Vanadium, a naturally occurring element widely distributed in soil, water and air, has received considerable interest because its compounds are often used in different applications, from industry to medicine. While the possible medical use of vanadium compounds is promising, its potential harmful effects on living organisms are still unclear. Here, for the first time, we provide a toxicological profile induced by vanadium on Paracentrotus lividus sea urchin embryos, reporting an integrated and comparative analysis of the detected effects reflecting vanadium-toxicity. At the morphological level we found a dose-dependent induction of altered phenotypes and of skeletal malformations. At the molecular levels, vanadium-exposed embryos showed the activation of the cellular stress response, in particular, autophagy and a high degree of cell-selective apoptosis in a dose-dependent manner. The stress response mediated by heat shock proteins seems to counteract the damage induced by low and intermediate concentrations of vanadium while the high cytotoxic concentrations induce more marked cell death mechanisms. Our findings, reporting different mechanisms of toxicity induced by vanadium, contribute to increase the knowledge on the possible threat of vanadium for marine organisms and for both environmental and human health.
Collapse
Affiliation(s)
- Roberto Chiarelli
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale Delle Scienze Building 16, Palermo, 90128, Italy.
| | - Chiara Martino
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale Delle Scienze Building 16, Palermo, 90128, Italy.
| | - Maria Carmela Roccheri
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale Delle Scienze Building 16, Palermo, 90128, Italy.
| | - Patrizia Cancemi
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale Delle Scienze Building 16, Palermo, 90128, Italy.
| |
Collapse
|
4
|
Nikitchenko YV, Klochkov VK, Kavok NS, Karpenko NA, Yefimova SL, Nikitchenko IV, Bozhkov AI. Age-Related Effects of Orthovanadate Nanoparticles Involve Activation of GSH-Dependent Antioxidant System in Liver Mitochondria. Biol Trace Elem Res 2021; 199:649-659. [PMID: 32447579 DOI: 10.1007/s12011-020-02196-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 05/14/2020] [Indexed: 12/21/2022]
Abstract
Vanadium is an important ultra-trace element nowadays attracting attention with particular emphasis on medical application. But the therapeutic application of vanadium-based drugs is still questionable and restricted due to some toxic side effects. It was found that unique redox properties of vanadium in nanoform provided antioxidant activity and prevented oxidative disturbance in cells in vitro. Though, on the organism level, ambiguous effects of vanadium-based nanoparticles were observed. In this study, the age-related features of prooxidant/antioxidant balance in blood serum and liver mitochondrial and postmitochondrial fractions of 3 and 18-month-old Wistar male rats treated with orthovanadate nanoparticles (GdVO4/Eu3+, 8 × 25 nm) within 2 months have been investigated. Prooxidant potential-related indexes were the content of lipid hydroperoxides as well as aconitase activity. Activity of glutathione peroxidase, glutathione-S-transferase, glutaredoxin, glutathione reductase, glucose-6-phosphate dehydrogenase, and NADPH-dependent isocitrate dehydrogenase designated the tissue antioxidant potential. Based on the obtained values, the integral index of the prooxidant/antioxidant balance-the reliability coefficient (Kr) has been calculated. The data show that due to activation some chain links of GSH-dependent antioxidant system, GdVO4/Eu3+ nanoparticles increase the reliability of the prooxidant-antioxidant balance in tissues and especially in the liver mitochondria of old animals (Kr in mitochondria of young rats was 2.94, and in mitochondria of old ones-9.83 conventional units). Detected in vitro glutathione peroxidase-like activity of the GdVO4/Eu3+ nanoparticles is supposed to be among factors increasing the reliability of the system. So, for the first time, the beneficial effect of the long-term orthovanadate nanoparticle consumption in old males has been discovered.
Collapse
Affiliation(s)
- Yuri V Nikitchenko
- Biology Research Institute, Karazin Kharkiv National University, pl. Svobody 4, Kharkiv, 61000, Ukraine
| | - Vladimir K Klochkov
- Institute for Scintillation Materials, National Academy of Sciences of Ukraine, 60 Nauky Ave., Kharkiv, 61072, Ukraine
| | - Nataliya S Kavok
- Institute for Scintillation Materials, National Academy of Sciences of Ukraine, 60 Nauky Ave., Kharkiv, 61072, Ukraine.
| | - Nina A Karpenko
- Institute for Scintillation Materials, National Academy of Sciences of Ukraine, 60 Nauky Ave., Kharkiv, 61072, Ukraine
| | - Svetlana L Yefimova
- Institute for Scintillation Materials, National Academy of Sciences of Ukraine, 60 Nauky Ave., Kharkiv, 61072, Ukraine
| | - Irina V Nikitchenko
- Biology Research Institute, Karazin Kharkiv National University, pl. Svobody 4, Kharkiv, 61000, Ukraine
| | - Anatoly I Bozhkov
- Biology Research Institute, Karazin Kharkiv National University, pl. Svobody 4, Kharkiv, 61000, Ukraine
| |
Collapse
|
5
|
Ścibior A, Pietrzyk Ł, Plewa Z, Skiba A. Vanadium: Risks and possible benefits in the light of a comprehensive overview of its pharmacotoxicological mechanisms and multi-applications with a summary of further research trends. J Trace Elem Med Biol 2020; 61:126508. [PMID: 32305626 PMCID: PMC7152879 DOI: 10.1016/j.jtemb.2020.126508] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 02/25/2020] [Accepted: 03/19/2020] [Indexed: 01/21/2023]
Abstract
BACKGROUND Vanadium (V) is an element with a wide range of effects on the mammalian organism. The ability of this metal to form organometallic compounds has contributed to the increase in the number of studies on the multidirectional biological activity of its various organic complexes in view of their application in medicine. OBJECTIVE This review aims at summarizing the current state of knowledge of the pharmacological potential of V and the mechanisms underlying its anti-viral, anti-bacterial, anti-parasitic, anti-fungal, anti-cancer, anti-diabetic, anti-hypercholesterolemic, cardioprotective, and neuroprotective activity as well as the mechanisms of appetite regulation related to the possibility of using this element in the treatment of obesity. The toxicological potential of V and the mechanisms of its toxic action, which have not been sufficiently recognized yet, as well as key information about the essentiality of this metal, its physiological role, and metabolism with certain aspects on the timeline is collected as well. The report also aims to review the use of V in the implantology and industrial sectors emphasizing the human health hazard as well as collect data on the directions of further research on V and its interactions with Mg along with their character. RESULTS AND CONCLUSIONS Multidirectional studies on V have shown that further analyses are still required for this element to be used as a metallodrug in the fight against certain life-threatening diseases. Studies on interactions of V with Mg, which showed that both elements are able to modulate the response in an interactive manner are needed as well, as the results of such investigations may help not only in recognizing new markers of V toxicity and clarify the underlying interactive mechanism between them, thus improving the medical application of the metals against modern-age diseases, but also they may help in development of principles of effective protection of humans against environmental/occupational V exposure.
Collapse
Key Words
- 3-HMG-CoA, 3-hydroxy-3-methyl-glutaryl-CoA
- AIDS, acquired immune deficiency syndrome
- ALB, albumin
- ALP, alkaline phosphatase
- AS, antioxidant status
- Akt, protein kinase B (PKB)
- AmD, Assoc American Dietetic Association
- Anti-B, anti-bacterial
- Anti-C, anti-cancer
- Anti-D, anti-diabetic
- Anti-F, anti-fungal
- Anti-O, anti-obesity
- Anti-P, anti-parasitic
- Anti-V, anti-viral
- Anti−HC, anti-hypercholesterolemic
- ApoA-I, apolipoprotein A
- ApoB, apolipoprotein B
- B, bone
- BCOV, bis(curcumino)oxavanadyl
- BEOV, bis(ethylmaltolato)oxovanadium
- BMOV, bis(maltolato)oxavanadium(IV)
- Bim, Blc-2 interacting mediator of cell death
- Biological role
- BrOP, bromoperoxidase
- C, cholesterol
- C/EBPα, CCAAT-enhancer-binding protein α
- CD4, CD4 receptor
- CH, cerebral hemisphere
- CHO-K1, Chinese hamster ovary cells
- CXCR-4, CXCR-4 chemokine co-receptor
- Cardio-P, cardioprotective
- Citrate-T, citrate transporter
- CoA, coenzyme A
- Cyt c, cytochrome c
- DM, diabetes mellitus
- ELI, extra low interstitial
- ERK, extracellular regulated kinase
- FHR, fructose hypertensive rats
- FKHR/FKHR1/AFX, class O members of the forkhead transcription factor family
- FLIP, FLICE-inhibitory protein
- FOXOs, forkhead box class O family member proteins
- FPP, farnesyl-pyrophosphate
- FasL, Fas ligand, FER: ferritin
- GI, gastrointestinal
- GLU, glucose
- GLUT-4, glucose transporter type 4
- GPP, geranyl-pyrophosphate
- GPT, glutamate-pyruvate transaminase
- GR, glutathione reductase
- GSH, reduced glutathione
- GSSG, disulfide glutathione
- HDL, high-density lipoproteins
- HDL-C, HDL cholesterol
- HIV, human immunodeficiency virus
- HMMF, high molecular mass fraction
- HOMA-IR, insulin resistance index
- Hb, hemoglobin
- HbF, hemoglobin fraction
- Hyper-LEP, hyperleptynemia
- IDDM, insulin-dependent diabetes mellitus
- IGF-IR, insulin-like growth factor receptor
- IL, interleukin
- INS, insulin
- INS-R, insulin resistance
- INS-S, insulin sensitivity
- IPP, isopentenyl-5-pyrophosphate
- IRS, insulin receptor tyrosine kinase substrate
- IgG, immunoglobulin G
- Industrial importance
- Interactions
- JAK2, Janus kinase 2
- K, kidney
- L, liver
- L-AA, L-ascorbic acid
- LDL, low-density lipoproteins
- LDL-C, LDL cholesterol
- LEP, leptin
- LEP-R, leptin resistance
- LEP-S, leptin sensitivity
- LEPS, the concentration of leptin in the serum
- LMMF, low molecular mass fraction
- LPL, lipoprotein lipase
- LPO, lipid peroxidation
- Lactate-T, lactate transporter
- M, mitochondrion
- MEK, ERK kinase activator
- MRC, mitochondrial respiratory chain
- NAC, N-acetylcysteine
- NEP, neutral endopeptidase
- NIDDM, noninsulin-dependent diabetes mellitus
- NO, nitric oxide
- NPY, neuropeptide Y
- NaVO3, sodium metavanadate
- Neuro-P, neuroprotective
- OXPHOS, oxidative phosphorylation
- Organic-AT, organic anion transporter
- Over-W, over-weight
- P, plasma
- PANC-1, pancreatic ductal adenocarcinoma cells
- PARP, poly (ADP-ribose) polymerase
- PLGA, (Poly)Lactide-co-Glycolide copolymer
- PO43−, phosphate ion
- PPARγ, peroxisome-activated receptor γ
- PTK, tyrosine protein kinase
- PTP, protein tyrosine phosphatase
- PTP-1B, protein tyrosine phosphatase 1B
- Pharmacological activity
- Pi3K, phosphoinositide 3-kinase (phosphatidylinositol 3-kinase)
- RBC, erythrocytes
- ROS, reactive oxygen species
- RT, reverse transcriptase
- SARS, severe acute respiratory syndrome
- SAcP, acid phosphatase secreted by Leshmania
- SC-Ti-6Al-4V, surface-coated Ti-6Al-4V
- SHR, spontaneously hypertensive rats
- SOD, superoxide dismutase
- STAT3, signal transducer/activator of transcription 3
- Sa, mean roughness
- Sq, root mean square roughness
- Sz, ten-point height
- TC, total cholesterol
- TG, triglycerides
- TS, transferrin saturation
- Tf, transferrin
- TfF, transferrin fraction
- TiO2, nHA:Ag-Ti-6Al-4V: titanium oxide-based coating containing hydroxyapatite nanoparticle and silver particles
- Top-IB, IB type topoisomerase
- Toxicological potential
- V, vanadium
- V-BrPO, vanadium bromoperoxidase
- V-DLC, diamond-like layer with vanadium
- V5+/V4+, pentavalent/tetravalent vanadium
- VO2+, vanadyl cation
- VO2+-FER, vanadyl-ferritin complex
- VO4-/VO3-, vanadate anion
- VO43-, vanadate ion
- VS, vanadyl sulfate
- Vanadium
- WB, whole blood
- ZDF rats, Zucker diabetic fatty rats
- ZF rats, Zucker fatty rats
- breakD, breakdown
- eNOS, endothelial nitric oxide synthase
- mo, months
- n-HA, nano-hydroxyapatite
- pRb, retinoblastoma protein
- wk, weeks
Collapse
Affiliation(s)
- Agnieszka Ścibior
- Laboratory of Oxidative Stress, Centre for Interdisciplinary Research, The John Paull II Catholic University of Lublin, Poland
| | - Łukasz Pietrzyk
- Laboratory of Oxidative Stress, Centre for Interdisciplinary Research, The John Paull II Catholic University of Lublin, Poland
- Department of Didactics and Medical Simulation, Chair of Anatomy, Medical University of Lublin, Poland
| | - Zbigniew Plewa
- Department of General, Oncological, and Minimally Invasive Surgery, 1 Military Clinical Hospital with the Outpatient Clinic in Lublin, Poland
| | - Andrzej Skiba
- Military Clinical Hospital with the Outpatient Clinic in Lublin, Poland
| |
Collapse
|
6
|
Boukhobza I, Crans DC. Application of HPLC to measure vanadium in environmental, biological and clinical matrices. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2017.10.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
|
7
|
Phan M, Watson MF, Alain T, Diallo JS. Oncolytic Viruses on Drugs: Achieving Higher Therapeutic Efficacy. ACS Infect Dis 2018; 4:1448-1467. [PMID: 30152676 DOI: 10.1021/acsinfecdis.8b00144] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Over the past 20 years there has been a dramatic expansion in the testing of oncolytic viruses (OVs) for the treatment of cancer. OVs are unique biotherapeutics that induce multimodal responses toward tumors, from direct cytopathic effects on cancer cells, to tumor associated blood vessel disruption, and ultimately potent stimulation of anti-tumor immune activation. These agents are highly targeted and can be efficacious as cancer treatments resulting in some patients experiencing complete tumor regression and even cures from OV monotherapy. However, most patients have limited responses with viral replication in tumors often found to be modest and transient. To augment OV replication, increase bystander killing of cancer cells, and/or stimulate stronger targeted anti-cancer immune responses, drug combination approaches have taken center stage for translation to the clinic. Here we comprehensively review drugs that have been combined with OVs to increase therapeutic efficacy, examining the proposed mechanisms of action, and we discuss trends in pharmaco-viral immunotherapeutic approaches currently being investigated.
Collapse
Affiliation(s)
- Michael Phan
- Center for Innovative Cancer Research, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, Ontario K1H 8L6, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Canada
| | - Margaret F. Watson
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Canada
- Children’s Hospital of Eastern Ontario Research Institute, 401 Smyth Road Research Building 2, Second Floor, Room 2119, Ottawa, Ontario K1H 8L1, Canada
| | - Tommy Alain
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Canada
- Children’s Hospital of Eastern Ontario Research Institute, 401 Smyth Road Research Building 2, Second Floor, Room 2119, Ottawa, Ontario K1H 8L1, Canada
| | - Jean-Simon Diallo
- Center for Innovative Cancer Research, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, Ontario K1H 8L6, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Canada
| |
Collapse
|
8
|
Hedberg YS, Žnidaršič M, Herting G, Milošev I, Odnevall Wallinder I. Mechanistic insight on the combined effect of albumin and hydrogen peroxide on surface oxide composition and extent of metal release from Ti6Al4V. J Biomed Mater Res B Appl Biomater 2018; 107:858-867. [PMID: 30102828 PMCID: PMC6586049 DOI: 10.1002/jbm.b.34182] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 05/03/2018] [Accepted: 05/28/2018] [Indexed: 11/06/2022]
Abstract
The titanium-aluminium (6 wt%)-vanadium (4 wt%) (Ti6Al4V) alloy is widely used as an orthopedic and dental implant material due to its high corrosion resistance in such environments. The corrosion resistance is usually determined by means of electrochemical methods, which may not be able to detect other chemical surface reactions. Literature findings report a synergistic effect of the combination of the abundant protein albumin and hydrogen peroxide (H2 O2 ) on the extent of metal release and corrosion of Ti6Al4V. The objectives of this study were to gain further mechanistic insight on the interplay of H2 O2 and albumin on the metal release process of Ti6Al4V with special focus on (1) kinetics and (2) H2 O2 and albumin concentrations. This was accomplished mainly by metal release and surface oxide composition investigations, which confirmed the combined effect of H2 O2 and albumin on the metal release process, although not detectable by electrochemical open circuit potential measurements. A concentration of 30 mM H2 O2 induced substantial changes in the surface oxide characteristics, an oxide which became thicker and enriched in aluminum. Bovine serum albumin (BSA) seemed to be able to deplete this aluminum content from the outermost surface or at least to delay its surface enrichment. This effect increased with increased BSA concentration, and for time periods longer than 24 h. This study hence suggests that short-term (accelerated) corrosion resistance measurements are not sufficient to predict potential health effects of Ti6Al4V alloys since also chemical dissolution mechanisms play a large role for metal release, possibly in a synergistic way. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B: 855-867, 2019.
Collapse
Affiliation(s)
- Yolanda S Hedberg
- Department of Chemistry, Division of Surface and Corrosion Science, KTH Royal Institute of Technology, Drottning Kristinas väg 51, SE-10044, Stockholm, Sweden
| | - Monika Žnidaršič
- Department of Chemistry, Division of Surface and Corrosion Science, KTH Royal Institute of Technology, Drottning Kristinas väg 51, SE-10044, Stockholm, Sweden.,Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI-1000, Ljubljana, Slovenia
| | - Gunilla Herting
- Department of Chemistry, Division of Surface and Corrosion Science, KTH Royal Institute of Technology, Drottning Kristinas väg 51, SE-10044, Stockholm, Sweden
| | - Ingrid Milošev
- Department of Physical and Organic Chemistry, Jožef Stefan Institute, Jamova c. 39, SI-1000, Ljubljana, Slovenia
| | - Inger Odnevall Wallinder
- Department of Chemistry, Division of Surface and Corrosion Science, KTH Royal Institute of Technology, Drottning Kristinas väg 51, SE-10044, Stockholm, Sweden
| |
Collapse
|
9
|
Vanadium Compounds as PTP Inhibitors. Molecules 2017; 22:molecules22122269. [PMID: 29257048 PMCID: PMC6150004 DOI: 10.3390/molecules22122269] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 12/14/2017] [Accepted: 12/15/2017] [Indexed: 02/08/2023] Open
Abstract
Phosphotyrosine signaling is regulated by the opposing actions of protein tyrosine kinases (PTKs) and protein tyrosine phosphatases (PTPs). Here we discuss the potential of vanadium derivatives as PTP enzyme inhibitors and metallotherapeutics. We describe how vanadate in the V oxidized state is thought to inhibit PTPs, thus acting as a pan-inhibitor of this enzyme superfamily. We discuss recent developments in the biological and biochemical actions of more complex vanadium derivatives, including decavanadate and in particular the growing number of oxidovanadium compounds with organic ligands. Pre-clinical studies involving these compounds are discussed in the anti-diabetic and anti-cancer contexts. Although in many cases PTP inhibition has been implicated, it is also clear that many such compounds have further biochemical effects in cells. There also remain concerns surrounding off-target toxicities and long-term use of vanadium compounds in vivo in humans, hindering their progress through clinical trials. Despite these current misgivings, interest in these chemicals continues and many believe they could still have therapeutic potential. If so, we argue that this field would benefit from greater focus on improving the delivery and tissue targeting of vanadium compounds in order to minimize off-target toxicities. This may then harness their full therapeutic potential.
Collapse
|
10
|
Synthesis and structural characterization of new oxovanadium(IV) complexes derived from azo-5-pyrazolone with prospective medical importance. J Mol Struct 2017. [DOI: 10.1016/j.molstruc.2016.08.026] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
11
|
Yuan ZH, Wang JP, Zhang KY, Ding XM, Bai SP, Zeng QF, Xuan Y, Su ZW. Effect of Vanadium and Tea Polyphenols on Intestinal Morphology, Microflora and Short-Chain Fatty Acid Profile of Laying Hens. Biol Trace Elem Res 2016; 174:419-427. [PMID: 27147433 DOI: 10.1007/s12011-016-0721-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 04/20/2016] [Indexed: 01/21/2023]
Abstract
Vanadium (V) is a trace element which can induce dysfunction of gastro-intestine and egg quality deterioration of laying hens. This study was conducted to determine the effect of tea polyphenols (TP) on intestinal morphology, microflora, and short-chain fatty acid (SCFA) profile of laying hens fed vanadium containing diets. A total of 120 Lohman laying hens (67-week-old) were randomly divided into 4 groups with 6 replicates and 5 birds each for a 35-day feeding trial. The dietary treatments were as follows: (1) control (CON), fed a basal diet; (2) vanadium treatment (V10), CON +10 mg V/kg; (3) TP treatment 1 (TP1): V10 + 600 mg TP/kg; (4) TP treatment 2 (TP2): V10 + 1000 mg TP/kg. Fed 10 mg V/kg diets to laying hens did not affect the cecum flora diversity index (H), degree of homogeneity (EH), and richness (S), but hens fed TP2 diet decreased the H, EH, and S (P < 0.05). The cecum butyrate acid concentration was lower in V10 treatment and higher in TP2 treatment (P < 0.05). Addition of 10 mg/kg V resulted in an increased (P < 0.01) duodenal cell apoptosis rate, and 1000 mg/kg TP supplementation overcame (P < 0.01) this reduction effect induced by vanadium. The results indicated that supplementation of 10 mg/kg vanadium increased duodenal cell apoptosis and reduced cecum butyrate acid content. Addition of 1000 mg/kg TP increased the SCFA production to affect cecum flora ecology and protected the duodenal cell from excess apoptosis caused by vanadium.
Collapse
Affiliation(s)
- Z H Yuan
- Institute of Animal Nutrition, Sichuan Agricultural University, Kechuang Feed Industry in Sichuan, Chengdu, Sichuan, 611130, China
| | - J P Wang
- Institute of Animal Nutrition, Sichuan Agricultural University, Kechuang Feed Industry in Sichuan, Chengdu, Sichuan, 611130, China.
| | - K Y Zhang
- Institute of Animal Nutrition, Sichuan Agricultural University, Kechuang Feed Industry in Sichuan, Chengdu, Sichuan, 611130, China
| | - X M Ding
- Institute of Animal Nutrition, Sichuan Agricultural University, Kechuang Feed Industry in Sichuan, Chengdu, Sichuan, 611130, China
| | - S P Bai
- Institute of Animal Nutrition, Sichuan Agricultural University, Kechuang Feed Industry in Sichuan, Chengdu, Sichuan, 611130, China
| | - Q F Zeng
- Institute of Animal Nutrition, Sichuan Agricultural University, Kechuang Feed Industry in Sichuan, Chengdu, Sichuan, 611130, China
| | - Y Xuan
- Institute of Animal Nutrition, Sichuan Agricultural University, Kechuang Feed Industry in Sichuan, Chengdu, Sichuan, 611130, China
| | - Z W Su
- Institute of Animal Nutrition, Sichuan Agricultural University, Kechuang Feed Industry in Sichuan, Chengdu, Sichuan, 611130, China
| |
Collapse
|
12
|
Vanadium (V) and magnesium (Mg) - In vivo interactions: A review. Chem Biol Interact 2016; 258:214-33. [PMID: 27620816 DOI: 10.1016/j.cbi.2016.09.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 08/26/2016] [Accepted: 09/08/2016] [Indexed: 02/08/2023]
Abstract
Vanadium (V) and magnesium (Mg) arouse interest of many research centres worldwide. Many aspects of their action have already been recognized but some of them have not been fully elucidated yet. Relatively little is known about the mechanisms of absorption, transport, and excretion of V. There is also a lack of sufficient data about the most sensitive biomarkers of V toxicity and the mechanisms of its toxic action, which have not been fully explained yet. There is also a lack of comprehensive research on the consequences, character, and mechanisms of mutual interactions of V (which has strong pro-oxidant properties) with elements with an antioxidant potential such as Mg, the recognition of which, besides the cognitive value, may have great practical importance. It should be highlighted that the question of interactions between elements is always up to date and it is still an important issue in toxicology. A comprehensive research on interactions of V with Mg can be particularly important in the studies of the usage of V (which has a narrow margin of safety) in the treatment of certain diseases in humans, especially diabetes, which is accompanied by changes in the level of Mg in the tissues and weakening of the antioxidant barrier and oxidative stress. Therefore, the aspect concerning the possible interaction of V (as a potent pro-oxidant) with Mg (as an antioxidant) was the subject of our special interest. In addition, the examination of the effects of the interactions between V and Mg is very important especially for extending the knowledge of the mechanism of the influence of V on the organism and a potential role of Mg (which is characterized by a wide therapeutic window) in prevention of V toxicity. This review summarizes the most important results obtained from our experiments in a rodent model referring to the interactions of V with Mg on the background of the in vivo experimental data published by other researchers of this issue. Our studies have shown that V and Mg supplied in combination are able to modulate the response in an interactive manner to produce a specific effect that is distinct from that observed during separate administration thereof. The present report also provides the most important information about the effects of the action of V and Mg with other metals.
Collapse
|
13
|
Sonet J, Bulteau AL, Chavatte L, García-Barrera T, Gómez-Ariza JL, Callejón-Leblic B, Nischwitz V, Theiner S, Galvez L, Koellensperger G, Keppler BK, Roman M, Barbante C, Neth K, Bornhorst J, Michalke B. Biomedical and Pharmaceutical Applications. Metallomics 2016. [DOI: 10.1002/9783527694907.ch13] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Jordan Sonet
- Centre National de Recherche Scientifique (CNRS)/Université de Pau et des Pays de l'Adour (UPPA), Unité Mixte de Recherche (UMR) 5254; Institut Pluridisciplinaire de Recherche sur l'Environnement et les Matériaux (IPREM), Laboratoire de Chimie Analytique Bio-Inorganique et Environnement (LCABIE); Technopôle Hélioparc Pau Pyrénées, 2 Avenue du Président Pierre Angot 64000 Pau France
| | - Anne-Laure Bulteau
- Centre National de Recherche Scientifique (CNRS)/Université de Pau et des Pays de l'Adour (UPPA), Unité Mixte de Recherche (UMR) 5254; Institut Pluridisciplinaire de Recherche sur l'Environnement et les Matériaux (IPREM), Laboratoire de Chimie Analytique Bio-Inorganique et Environnement (LCABIE); Technopôle Hélioparc Pau Pyrénées, 2 Avenue du Président Pierre Angot 64000 Pau France
| | - Laurent Chavatte
- Centre National de Recherche Scientifique (CNRS)/Université de Pau et des Pays de l'Adour (UPPA), Unité Mixte de Recherche (UMR) 5254; Institut Pluridisciplinaire de Recherche sur l'Environnement et les Matériaux (IPREM), Laboratoire de Chimie Analytique Bio-Inorganique et Environnement (LCABIE); Technopôle Hélioparc Pau Pyrénées, 2 Avenue du Président Pierre Angot 64000 Pau France
| | - Tamara García-Barrera
- University of Huelva; Department of Chemistry, Campus El Carmen; Fuerzas Armadas Ave 21007 Huelva Spain
| | - José Luis Gómez-Ariza
- University of Huelva, Research Center of Health and Environment (CYSMA); Campus El Carmen; Fuerzas Armadas Ave 21007 Huelva Spain
| | - Belén Callejón-Leblic
- University of Huelva; Department of Chemistry, Campus El Carmen; Fuerzas Armadas Ave 21007 Huelva Spain
| | - Volker Nischwitz
- Forschungszentrum Jülich; Central Institute for Engineering, Electronics and Analytics; Analytics (ZEA-3), Wilhelm-Johnen-Straße 52428 Jülich Germany
| | - Sarah Theiner
- University of Vienna; Department of Inorganic Chemistry; Waehringer Strasse 42 1090 Vienna Austria
| | - Luis Galvez
- University of Vienna, Research Platform ‘Translational Cancer Therapy Research’; Waehringer Strasse 42 1090 Vienna Austria
| | - Gunda Koellensperger
- University of Vienna, Department of Analytical Chemistry; Waehringer Strasse 38 1090 Vienna Austria
| | - Bernhard K. Keppler
- University of Vienna; Department of Inorganic Chemistry; Waehringer Strasse 42 1090 Vienna Austria
| | - Marco Roman
- Ca' Foscari University of Venice; Department of Environmental Sciences, Informatics and Statistics (DAIS); Via Torino 155 30172 Venice Italy
| | - Carlo Barbante
- National Research Council; Institute for the Dynamics of Environmental Processes (IDPA-CNR); Via Torino 155 30172 Venice Italy
| | - Katharina Neth
- Helmholtz Center Munich, German Research Center for Environmental Health GmbH; Research Unit: Analytical BioGeoChemistry; Ingolstädter Landstraße 1 85764 Neuherberg Germany
| | - Julia Bornhorst
- University of Potsdam; Department of Food Chemistry, Institute of Nutritional Science; Arthur-Scheunert-Allee 114-116 14558 Nuthetal Germany
| | - Bernhard Michalke
- Helmholtz Center Munich, German Research Center for Environmental Health GmbH; Research Unit: Analytical BioGeoChemistry; Ingolstädter Landstraße 1 85764 Neuherberg Germany
| |
Collapse
|
14
|
Domingo JL, Gómez M. Vanadium compounds for the treatment of human diabetes mellitus: A scientific curiosity? A review of thirty years of research. Food Chem Toxicol 2016; 95:137-41. [PMID: 27417449 DOI: 10.1016/j.fct.2016.07.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 07/06/2016] [Accepted: 07/08/2016] [Indexed: 10/21/2022]
Abstract
In the second part of the 1980s, and in the 1990s, a number of investigators demonstrated -mainly in streptozotocin-induced (STZ) diabetic rats-that the vanadate and vanadyl forms of vanadium possessed a number of insulin-like effects in various cells. It was hypothesized that oral vanadium could be an alternative treatment to parenteral insulin in the therapy of diabetes mellitus. However, the long-term and/or chronic administration of vanadium compounds should also mean tissue vanadium accumulation and risks of toxicity. The purpose of this review was to revise the current-state-of-the-art on the use of vanadium in the treatment of human diabetes. It has been conducted more than three decades after the first report on the beneficial insulin-mimetic effects of oral vanadium administration in STZ-diabetic rats. Although the antidiabetic effects of vanadium in STZ-diabetic rodents are well supported, in the few studies on human patients with positive results, that are available in the literature, vanadium compounds were administered during very short periods. We conclude that vanadium administration for the treatment of human diabetes is misplaced.
Collapse
Affiliation(s)
- José L Domingo
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Sant Llorenç 21, 43201, Reus, Catalonia, Spain.
| | - Mercedes Gómez
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Sant Llorenç 21, 43201, Reus, Catalonia, Spain
| |
Collapse
|
15
|
Yuan ZH, Zhang KY, Ding XM, Luo YH, Bai SP, Zeng QF, Wang JP. Effect of tea polyphenols on production performance, egg quality, and hepatic antioxidant status of laying hens in vanadium-containing diets. Poult Sci 2016; 95:1709-1717. [PMID: 27044874 DOI: 10.3382/ps/pew097] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 02/04/2016] [Indexed: 11/20/2022] Open
Abstract
This study was conducted to determine the effect of tea polyphenols (TP) on production performance, egg quality, and hepatic-antioxidant status of laying hens in vanadium-containing diets. A total of 300 Lohman laying hens (67 wk old) were used in a 1 plus 3 × 3 experiment design in which hens were given either a diet without vanadium and TP supplementation (control) or diets supplemented with 5, 10, or 15 mg V/kg and TP (0, 600, 1,000 mg/kg) diets for 8 wk, which included 2 phases: a 5-wk accumulation phase and a 3-wk depletion phase. During the accumulation phase, dietary vanadium addition decreased (linear, P < 0.01) albumen height and Haugh unit (HU), and TP supplementation mitigated (linear effect, P < 0.01) this reduction effect induced by vanadium. Eggshell thickness (linear, P < 0.01), redness (linear and quadratic, P < 0.05), and yellowness (linear and quadratic, P < 0.05) were decreased by vanadium and increased by the effect of TP when a vanadium-containing diet was fed. In the depletion phase, the bleaching effect on eggshells induced by vanadium disappeared one wk after vanadium withdrawal. Eggshell thickness, eggshell strength, albumen height, and HU were lower (P < 0.05) in the 15 mg/kg vanadium group compared with the control diet until 2 wk post vanadium challenge, but hens fed 15 mg/kg vanadium and 600 mg/kg TP showed no difference from the control diet only after 1 wk withdrawal. In the liver, the activity of glutathione S-transferases and glutathione peroxidase was increased (linear, P < 0.01) with the TP addition at 5 wk in the accumulation phase in the vanadium-containing diet; the malondialdehyde content increased (linear effect, P = 0.02) with the addition of vanadium. The results indicate that supplementation of 10 and 15 mg/kg vanadium resulted in reduced albumen quality, bleaching effect on eggshell color, and antioxidant stress in the liver. The effect of TP addition can prevent laying hens from the adverse effect of vanadium on egg quality, liver antioxidant stress and shorten the recovery time.
Collapse
Affiliation(s)
- Z H Yuan
- Institute of Animal Nutrition, Sichuan Agricultural University, Kechuang Feed Industry in Sichuan, Chengdu, Sichuan, China, 611130
| | - K Y Zhang
- Institute of Animal Nutrition, Sichuan Agricultural University, Kechuang Feed Industry in Sichuan, Chengdu, Sichuan, China, 611130
| | - X M Ding
- Institute of Animal Nutrition, Sichuan Agricultural University, Kechuang Feed Industry in Sichuan, Chengdu, Sichuan, China, 611130
| | - Y H Luo
- Institute of Animal Nutrition, Sichuan Agricultural University, Kechuang Feed Industry in Sichuan, Chengdu, Sichuan, China, 611130
| | - S P Bai
- Institute of Animal Nutrition, Sichuan Agricultural University, Kechuang Feed Industry in Sichuan, Chengdu, Sichuan, China, 611130
| | - Q F Zeng
- Institute of Animal Nutrition, Sichuan Agricultural University, Kechuang Feed Industry in Sichuan, Chengdu, Sichuan, China, 611130
| | - J P Wang
- Institute of Animal Nutrition, Sichuan Agricultural University, Kechuang Feed Industry in Sichuan, Chengdu, Sichuan, China, 611130.
| |
Collapse
|
16
|
Pessoa JC, Etcheverry S, Gambino D. Vanadium compounds in medicine. Coord Chem Rev 2015; 301:24-48. [PMID: 32226091 PMCID: PMC7094629 DOI: 10.1016/j.ccr.2014.12.002] [Citation(s) in RCA: 340] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 11/18/2014] [Accepted: 12/02/2014] [Indexed: 12/02/2022]
Abstract
Vanadium is a transition metal that, being ubiquitously distributed in soil, crude oil, water and air, also found roles in biological systems and is an essential element in most living beings. There are also several groups of organisms which accumulate vanadium, employing it in their biological processes. Vanadium being a biological relevant element, it is not surprising that many vanadium based therapeutic drugs have been proposed for the treatment of several types of diseases. Namely, vanadium compounds, in particular organic derivatives, have been proposed for the treatment of diabetes, of cancer and of diseases caused by parasites. In this work we review the medicinal applications proposed for vanadium compounds with particular emphasis on the more recent publications. In cells, partly due to the similarity of vanadate and phosphate, vanadium compounds activate numerous signaling pathways and transcription factors; this by itself potentiates application of vanadium-based therapeutics. Nevertheless, this non-specific bio-activity may also introduce several deleterious side effects as in addition, due to Fenton's type reactions or of the reaction with atmospheric O2, VCs may also generate reactive oxygen species, thereby introducing oxidative stress with consequences presently not well evaluated, particularly for long-term administration of vanadium to humans. Notwithstanding, the potential of vanadium compounds to treat type 2 diabetes is still an open question and therapies using vanadium compounds for e.g. antitumor and anti-parasitic related diseases remain promising.
Collapse
Affiliation(s)
- Joao Costa Pessoa
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Susana Etcheverry
- Cátedra de Bioquímica Patológica and CEQUINOR, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115 1900 La Plata, Argentina
| | - Dinorah Gambino
- Cátedra de Química Inorgánica, Facultad de Química, Universidad de la República, Gral. Flores 2124, 11800 Montevideo, Uruguay
| |
Collapse
|
17
|
Krośniak M, Francik R, Wojtanowska-Krośniak A, Tedeschi C, Krasoń-Nowak M, Chłopicka J, Gryboś R. Vanadium methyl-bipyridine organoligand and its influence on energy balance and organs mass. Biol Trace Elem Res 2014; 160:376-82. [PMID: 25015881 PMCID: PMC4127192 DOI: 10.1007/s12011-014-0064-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 07/01/2014] [Indexed: 12/01/2022]
Abstract
In the treatment of lifestyle diseases, including metabolic syndrome and type 2 diabetes, it is important to lower body mass and fat tissue, and consequently, to increase insulin-sensitivity. Unfortunately, it often happens that low-energy diet which would lower overweight is not observed and, thus, it does not bring the expected effects. This paper discusses the influence of three diets-control, high-fructose, and high-fatty diet-on absorption of energy from food in order to transform it into body mass. The kJ/g ratio which describes this process has been calculated. In the tested diets, the addition of fructose (79.13 ± 2.47 kJ/g) or fat (82.48 ± 2.28 kJ/g) results in higher transformation of energy into body mass than in the case of control diet (89.60 ± 1.86 kJ/g). The addition of Na[VO(O2)2(4,4′-Me2-2,2′-bpy)]•8H2O (where 4,4′-Me2-2,2′-bpy = 4,4′-dimethyl-2,2′-bipyridine) results in statistical increase of that ratio: fructose diet (86.88 ± 0.44 kJ/g), fat diet (104.68 ± 3.01 kJ/g), and control diet (115.98 ± 0.56 kJ/g), respectively. Fat diet statistically influences the decrease of kidney mass in comparison to the other diets. The application of the tested vanadium compound results also in the statistical decrease of the fatty liver caused by fructose and fat diet.
Collapse
Affiliation(s)
- Mirosław Krośniak
- Department of Food Chemistry and Nutrition, Jagiellonian University Medical College, 9 Medyczna Str, 30-688 Krakow, Poland
| | - Renata Francik
- Department of Bioorganic Chemistry, Jagiellonian University Medical College, 9 Medyczna Str, 30-688 Krakow, Poland
- State Higher Vocational School, Institute of Health, Staszica 1 Str, 33-300 Nowy Sącz, Poland
| | - Agnieszka Wojtanowska-Krośniak
- Department of Food Chemistry and Nutrition, Jagiellonian University Medical College, 9 Medyczna Str, 30-688 Krakow, Poland
| | - Cinzia Tedeschi
- Department of Food Chemistry and Nutrition, Student at the Faculty of Pharmacy Nutritional and Health Sciences–Calabria University, Arcavacata di Rende, Italy; participant of Erasmus Program in the, Jagiellonian University, Medical College, Krakow, Poland
| | - Małgorzata Krasoń-Nowak
- Department of Bioorganic Chemistry, Jagiellonian University Medical College, 9 Medyczna Str, 30-688 Krakow, Poland
| | - Joanna Chłopicka
- Department of Food Chemistry and Nutrition, Jagiellonian University Medical College, 9 Medyczna Str, 30-688 Krakow, Poland
| | - Ryszard Gryboś
- Faculty of Chemistry, Jagiellonian University, 3 Ingardena Str, 30-060 Krakow, Poland
| |
Collapse
|
18
|
Exposure to bis(maltolato)oxovanadium(IV) increases levels of hepcidin mRNA and impairs the homeostasis of iron but not that of manganese. Food Chem Toxicol 2014; 73:113-8. [PMID: 25168077 DOI: 10.1016/j.fct.2014.08.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 08/14/2014] [Accepted: 08/17/2014] [Indexed: 11/21/2022]
Abstract
The aim of this study was to examine whether alterations in iron homeostasis, caused by exposure to vanadium, are related to changes in the gene expression of hepatic hepcidin. Two groups of rats were examined: control and vanadium-exposed. Vanadium, as bis(maltolato)oxovanadium(IV) was supplied in the drinking water. The experiment had a duration of five weeks. Iron and manganese were measured in excreta, serum and tissues. Leptin, ferritin, IL-1β, IL-6, TNF-α, red blood cells, haemoglobin and haematocrit were determined. Protein carbonyl group levels and hepcidin gene expression were determined in the liver. In the vanadium-exposed rats, iron absorption, serum iron and leptin and all haematological parameters decreased. Levels of IL-6, TNF-α and ferritin in serum and of iron in the liver, spleen and heart increased. In the liver, levels of protein carbonyl groups and hepcidin mRNA were also higher in the vanadium-exposed group. Exposure to vanadium did not modify manganese homeostasis. The results obtained from this study provide the first evidence that bis(maltolato)oxovanadium(IV) produces an increase in the gene expression of the hepcidin, possibly caused by an inflammatory process. Both factors could be the cause of alterations in Fe homeostasis and the appearance of anaemia. However, Mn homeostasis was not affected.
Collapse
|
19
|
Valera P, Zavattari P, Albanese S, Cicchella D, Dinelli E, Lima A, De Vivo B. A correlation study between multiple sclerosis and type 1 diabetes incidences and geochemical data in Europe. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2014; 36:79-98. [PMID: 23567975 DOI: 10.1007/s10653-013-9520-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 03/25/2013] [Indexed: 06/02/2023]
Abstract
Complex multifactorial disorders usually arise in individuals genetically at risk in the presence of permissive environmental factors. For many of these diseases, predisposing gene variants are partly known while the identification of the environmental component is much more difficult. This study aims to investigate whether there are correlations between the incidence of two complex traits, multiple sclerosis and type 1 diabetes, and some chemical elements and compounds present in soils and stream sediments in Europe. Data were obtained from the published literature and analyzed by calculating the mean values of each element and of disease incidence for each Country, respectively, 17 for multiple sclerosis and 21 for type 1 diabetes. Correlation matrices and regression analyses were used in order to compare incidence data and geochemical data. R correlation index and significance were evaluated. The analyses performed in this study have revealed significant positive correlations between barium and sodium oxide on one hand and multiple sclerosis and diabetes incidences on the other hand that may suggest interactions to be evaluated between silicon-rich lithologies and/or marine environments. The negative correlations shown by cobalt, chromium and nickel (typical of silicon-poor environment), which in this case can be interpreted as protective effects against the two diseases onset, make the split between favorable and protective environments even more obvious. In conclusion, if other studies will confirm the involvement of the above elements and compounds in the etiology of these pathologies, then it will be possible to plan strategies to reduce the spread of these serious pandemics.
Collapse
Affiliation(s)
- Paolo Valera
- Department of Civil-Environmental Engineering and Architecture, University of Cagliari, Via Marengo 3, 09123, Cagliari, Italy,
| | | | | | | | | | | | | |
Collapse
|
20
|
Ozturk N, Olgar Y, Ozdemir S. Trace elements in diabetic cardiomyopathy: An electrophysiological overview. World J Diabetes 2013; 4:92-100. [PMID: 23961319 PMCID: PMC3746091 DOI: 10.4239/wjd.v4.i4.92] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 07/12/2013] [Accepted: 07/19/2013] [Indexed: 02/05/2023] Open
Abstract
There is a growing body of evidence that Diabetes Mellitus leads to a specific cardiomyopathy apart from vascular disease and bring about high morbidity and mortality throughout the world. Recent clinical and experimental studies have extensively demonstrated that this cardiomyopathy causes impaired cardiac performance manifested by early diastolic and late systolic dysfunction. This impaired cardiac performance most probably have emerged upon the expression and activity of regulatory proteins such as Na+/Ca2+ exchanger, sarcoplasmic reticulum Ca2+-ATPase, ryanodine receptor and phospholamban. Over years many therapeutic strategies have been recommended for treatment of diabetic cardiomyopathy. Lately, inorganic elements have been suggested to have anti-diabetic effects due to their suggested ability to regulate glucose homeostasis, reduce oxidative stress or suppress phosphatases. Recent findings have shown that trace elements exert many biological effects including insulin-mimetic or antioxidant activity and in this manner they have been recommended as potential candidates for treatment of diabetes-induced cardiac complications, an effect based on their modes of action. Some of these trace elements are known to play an essential role as component of enzymes and thus modulate the organ function in physiological and pathological conditions. Besides, they can also manipulate redox state of the channels via antioxidant properties and thus contribute to the regulation of [Ca2+]i homeostasis and cardiac ion channels. On account of little information about some trace elements, we discussed the effect of vanadium, selenium, zinc and tungstate on diabetic heart complications.
Collapse
|
21
|
Clark TA, Heyliger CE, Kopilas M, Edel AL, Junaid A, Aguilar F, Smyth DD, Thliveris JA, Merchant M, Kim HK, Pierce GN. A tea/vanadate decoction delivered orally over 14 months to diabetic rats induces long-term glycemic stability without organ toxicity. Metabolism 2012; 61:742-53. [PMID: 22146096 DOI: 10.1016/j.metabol.2011.10.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Revised: 09/20/2011] [Accepted: 10/13/2011] [Indexed: 01/28/2023]
Abstract
Vanadium can induce potent hypoglycemic effects in type 1 and type 2 diabetes mellitus animals, but toxic adverse effects have inhibited the translation of these findings. Administration of vanadate in a black tea decoction has shown impressive hypoglycemic effects without evidence of toxicity in short-term studies. The purpose of this study was to investigate the hypoglycemic action and the toxic adverse effects of a tea/vanadate (T/V) decoction in diabetic rats over a 14-month treatment period. Streptozotocin-induced type 1 diabetes mellitus rats were orally gavaged with 40 mg sodium vanadate in a black tea decoction only when blood glucose levels were greater than 10 mmol/L. Glycemic status and liver and kidney function were monitored over 14 months. All of the diabetic rats in this treatment group (n = 25) required treatment with the T/V decoction at the start of the study to reduce blood glucose levels to less than 10 mmol/L. Diarrhea was uncommon among the T/V-treated animals during the first week of T/V treatment and was absent thereafter. There was no evidence of liver or kidney dysfunction or injury. From 2 to 6 months, fewer animals required the T/V treatment to maintain their blood glucose levels. After 9 months of treatment, none of the diabetic animals required any T/V to maintain their blood glucose levels at less than 10 mmol/L. Oral administration of a T/V decoction provides safe, long-acting hypoglycemic effects in type 1 diabetes mellitus rats. The typical glycemic signs of diabetes were absent for the last 5 months of the study.
Collapse
Affiliation(s)
- Tod A Clark
- Department of Surgery, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada R3E OW3
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Fraqueza G, Ohlin CA, Casey WH, Aureliano M. Sarcoplasmic reticulum calcium ATPase interactions with decaniobate, decavanadate, vanadate, tungstate and molybdate. J Inorg Biochem 2012; 107:82-9. [PMID: 22178669 DOI: 10.1016/j.jinorgbio.2011.10.010] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Revised: 10/08/2011] [Accepted: 10/20/2011] [Indexed: 02/07/2023]
Abstract
Over the last few decades there has been increasing interest in oxometalate and polyoxometalate applications to medicine and pharmacology. This interest arose, at least in part, due to the properties of these classes of compounds as anti-cancer, anti-diabetic agents, and also for treatment of neurodegenerative diseases, among others. However, our understanding of the mechanism of action would be improved if biological models could be used to clarify potential toxicological effects in main cellular processes. Sarcoplasmic reticulum (SR) vesicles, containing a large amount of Ca(2+)-ATPase, an enzyme that accumulates calcium by active transport using ATP, have been suggested as a useful model to study the effects of oxometalates on calcium homeostasis. In the present article, it is shown that decavanadate, decaniobate, vanadate, tungstate and molybdate, all inhibited SR Ca(2+)-ATPase, with the following IC(50) values: 15, 35, 50, 400 μM and 45 mM, respectively. Decaniobate (Nb(10)), is the strongest P-type enzyme inhibitor, after decavanadate (V(10)). Atomic-absorption spectroscopy (AAS) analysis, indicates that decavanadate binds to the protein with a 1:1 decavanadate:Ca(2+)-ATPase stoichiometry. Furthermore, V(10) binds with similar extension to all the protein conformations, which occur during calcium translocation by active transport, namely E1, E1P, E2 and E2P, as analysed by AAS. In contrast, it was confirmed that the binding of monomeric vanadate (H(2)VO(4)(2-); V(1)) to the calcium pump is favoured only for the E2 and E2P conformations of the ATPase, whereas no significant amount of vanadate is bound to the E1 and E1P conformations. Scatchard plot analysis, confirmed a 1:1 ratio for decavanadate-Ca(2+)-ATPase, with a dissociation constant, k(d) of 1 μM(-1). The interaction of decavanadate V(10)O(28)(6-) (V(10)) with Ca(2+)-ATPase is prevented by the isostructural and isoelectronic decaniobate Nb(10)O(28)(6-) (Nb(10)), whereas no significant effects were detected with ATP or with heparin, a known competitive ATP binding molecule, suggesting that V(10) binds non-competitively, with respect to ATP, to the protein. Finally, it was shown that decaniobate inhibits SR Ca(2+)-ATPase activity in a non competitive type of inhibition, with respect to ATP. Taken together, these data demonstrate that decameric niobate and vanadate species are stronger inhibitors of the SR calcium ATPase than simple monomeric vanadate, tungstate and molybdate oxometalates, thus affecting calcium homeostasis, cell signalling and cell bioenergetics, as well many other cellular processes. The ability of these oxometalates to act either as phosphate analogues, as a transition-state analogue in enzyme-catalysed phosphoryl group transfer processes and as potentially nucleotide-dependent enzymes modulators or inhibitors, suggests that different oxometalates may reveal different mechanistic preferences in these classes of enzymes.
Collapse
Affiliation(s)
- Gil Fraqueza
- Department of Food Engineering, ISE, University of Algarve, 8005-139 Faro, Portugal
| | | | | | | |
Collapse
|
23
|
Deng Y, Cui H, Peng X, Fang J, Wang K, Cui W, Liu X. Dietary vanadium induces oxidative stress in the intestine of broilers. Biol Trace Elem Res 2012; 145:52-8. [PMID: 21809051 DOI: 10.1007/s12011-011-9163-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Accepted: 07/23/2011] [Indexed: 10/17/2022]
Abstract
The purpose of this study was to examine oxidative stress induced by dietary vanadium in the mucosa of different parts of intestine including duodenum, jejunum, ileum, and cecal tonsil. A total of 420 1-day-old avian broilers were divided into six groups and fed on a corn-soybean basal diet as control diet or the same basal diet supplemented with 5, 15, 30, 45, and 60 mg/kg vanadium as ammonium metavanadate. During the experimental period of 42 days, oxidative stress parameters were determined for both control and experimental groups. The results showed that malondialdehyde content was significantly higher (p < 0.05 or p < 0.01) in 30, 45, and 60 mg/kg groups than in control group. In contrast, the activities of superoxide dismutase, catalase, and glutathione peroxidase, and ability to inhibit hydroxyl radical, and glutathione hormone content were significantly decreased (p < 0.05 or p < 0.01) mainly in 45 and 60 mg/kg groups in comparison with those of control group. However, the abovementioned oxidative stress parameters were not significantly changed (p > 0.05) in 5 and 15 mg/kg groups. It was concluded that dietary vanadium in excess of 30 mg/kg could cause obvious oxidative stress in the intestinal mucosa, which could impact the antioxidant function of intestinal tract in broilers.
Collapse
Affiliation(s)
- Yuanxin Deng
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Yaan, Sichuan 625014, China
| | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
The main objective of here presented research is a design the scaffold/porous titanium (Ti) alloy based composite material demonstrating better biocompatibility, longer lifetime and bioactivity behaviour for load-bearing implants. The development of such material is proposed by making a number of consecutive tasks. Modelling the mechanical, biomechanical and biological behavior of porous titanium structure and an elaboration of results is performed by mathematical methods, including FEM and fuzzy logic. The development of selected Ti-13Zr-Nb alloy with designed porosity and no harmful effects is made by powder metallurgy (PM) with and without space holders, and by rapid prototyping with an use of selective laser melting (SLM). The development of an oxidation technology resulting in high corrosion resistance and bioactivity is carried out by electrochemical oxidation, gaseous oxidation and chemical oxidation, and their combination. The HA depositon is made by electrochemical and chemical (alternate immersion) methods. The core material is designed as a combination of natural polymer and bioceramics in order to allow slow dissolution followed by stepwise growth of bone tissue and angiogenesis, preventing local inflammation processes, and sustaining the mechanical strength close to that of non-porous material.
Collapse
|
25
|
Wei Y, Zhang C, Zhao P, Yang X, Wang K. A new salicylic acid-derivatized kojic acid vanadyl complex: Synthesis, characterization and anti-diabetic therapeutic potential. J Inorg Biochem 2011; 105:1081-5. [DOI: 10.1016/j.jinorgbio.2011.05.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Revised: 05/13/2011] [Accepted: 05/18/2011] [Indexed: 01/03/2023]
|
26
|
Mitchell E, Frisbie S, Sarkar B. Exposure to multiple metals from groundwater-a global crisis: geology, climate change, health effects, testing, and mitigation. Metallomics 2011; 3:874-908. [PMID: 21766119 DOI: 10.1039/c1mt00052g] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
This paper presents an overview of the global extent of naturally occurring toxic metals in groundwater. Adverse health effects attributed to the toxic metals most commonly found in groundwater are reviewed, as well as chemical, biochemical, and physiological interactions between these metals. Synergistic and antagonistic effects that have been reported between the toxic metals found in groundwater and the dietary trace elements are highlighted, and common behavioural, cultural, and dietary practices that are likely to significantly modify health risks due to use of metal-contaminated groundwater are reviewed. Methods for analytical testing of samples containing multiple metals are discussed, with special attention to analytical interferences between metals and reagents. An overview is presented of approaches to providing safe water when groundwater contains multiple metallic toxins.
Collapse
|
27
|
Cao YZ, Zhao HY, Bai FY, Xing YH, Wei DM, Niu SY, Shi Z. Aminoacid-derivatized oxidovanadium complexes: Synthesis, structure and bromination reaction activity. Inorganica Chim Acta 2011. [DOI: 10.1016/j.ica.2011.01.031] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
28
|
Scibior A, Zaporowska H, Niedźwiecka I. Lipid peroxidation in the kidney of rats treated with V and/or Mg in drinking water. J Appl Toxicol 2010; 30:487-96. [PMID: 20309841 DOI: 10.1002/jat.1520] [Citation(s) in RCA: 193] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Spontaneous and stimulated lipid peroxidation (LPO) after vanadate and magnesium treatment was studied in kidney supernatants obtained from outbred 5-month-old, albino male Wistar rats. The 2-month-old animals daily received: group I (control), deionized water to drink; group II, water solution of sodium metavanadate, NaVO(3) (SMV, 0.125 mg V ml(-1)); group III, water solution of magnesium sulfate, MgSO(4) (MS, 0.06 mg Mg ml(-1)); and group IV, water solution of SMV-MS at the same concentrations as in groups II and III for V and Mg, respectively, over a 12-week period. FeSO(4), NaVO(3) and MgSO(4) were selected as agents that may modify LPO process in in vitro conditions. Spontaneous malondialdehyde (MDA) levels in kidney supernatants increased significantly in the rats in groups II and IV, compared with groups I and III; and they were also significantly higher in all the groups of rats compared with the liver supernatants. The total antioxidant status (TAS) in groups II and IV tended to be higher too. Vanadium concentration in the kidney of the rats in groups II and IV increased, whereas the kidney Mg content in groups II, III and IV decreased, compared with levels in the liver. As the two-way ANOVA indicated, the changes in the basal MDA level, TAS and Mg concentration in the liver of rats at combined V and Mg application only resulted from independent action of V. As far as the in vitro results are concerned, in the supernatants obtained from the rats in groups II and IV, a significant increase in MDA level was demonstrated in the presence of 30 microm of exogenous FeSO(4) as well as 30, 100, 200 and 400 microm NaVO(3) and 100, 200, 400, 600, 800 and 1000 microm MgSO(4), compared with groups I and III. The 600, 800 and 1000 microm of exogenous MgSO(4) also significantly elevated MDA production in the supernatants obtained from the rats in group III, compared with spontaneously formed MDA in the same supernatants. The three-way ANOVA showed that the changes in LPO induced by in vitro treatment of kidney supernatants with exogenous Fe or V or Mg (600, 800 and 1000 microm) were a consequence of independent action of those metals and they also resulted from the interactions between exogenous Fe (Fe(exog)) and endogenous V (V(end)) and between V(end) and exogenous V (V(exog)). In conclusion, V (as NaVO(3)) consumed by the rats with drinking water at a dose of 12.9 mg V kg(-1) b.w. per 24 h for 12 weeks increased the basal LPO and markedly enhanced TAS in the renal tissue. Its pro-oxidant potential was also found in in vitro conditions. The Mg dose (6 mg Mg kg(-1) b.w. per 24 h) ingested by the rats together with V (12.7 mg V kg(-1) b.w. per 24 h) neither reduced nor intensified the spontaneous LPO, compared with V-only intoxicated animals; however, the stimulating effect of Mg on LPO was revealed in in vitro conditions.
Collapse
Affiliation(s)
- Agnieszka Scibior
- Department of Cell Biology, Institute of Environmental Protection, John Paul II Catholic University of Lublin, Lublin, Poland.
| | | | | |
Collapse
|
29
|
Scibior A, Zaporowska H. Effects of combined vanadate and magnesium treatment on erythrocyte antioxidant defence system in rats. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2010; 30:153-161. [PMID: 21787646 DOI: 10.1016/j.etap.2010.05.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Revised: 05/07/2010] [Accepted: 05/11/2010] [Indexed: 05/31/2023]
Abstract
The effect of vanadate and magnesium treatment on erythrocyte defence system was studied in outbred 2-month-old, albino male Wistar rats (14 rats/each group) which daily received: Group I (Control)-deionized water to drink; Group II-water solution of sodium metavanadate (NaVO(3); SMV) at a concentration of 0.125mgV/mL; Group III-water solution of magnesium sulfate (MgSO(4); MS) at a concentration of 0.06mgMg/mL, Group IV-water solution of SMV-MS at the same concentrations over a 12-week time. The fluid intake and the concentration of reduced glutathione (GSH) as well as the activity of Cu, Zn-superoxide dismutase (Cu, Zn-SOD), catalase (CAT) and glutathione reductase (GR) were significantly decreased in the rats receiving SMV alone (Group II) or in combination with MS (Group IV) compared with Groups I and III. The cellular glutathione peroxidase (cGSH-Px) activity was unchanged in all the treated groups. The activity of glutathione S-transferase (GST) fell in the animals in Group II, compared with the rats in Groups I, III and IV; whereas in the rats in Group III its activity was higher than in the control animals. These results showed that V (as SMV) consumed by the rats with drinking water at a dose of 12mgV/kg b.w./24h for 12 weeks may attenuate defence system in rats' erythrocytes (RBCs), which is probably a consequence of vanadium pro-oxidant potential. Therefore, reactive oxygen species (ROS) are suggested to be involved in the alterations in antioxidant defence system in these cells. Mg (as MS) at the dose ingested (6mgMg/kg b.w./24h) at co-exposure to SMV was not able to counteract its deleterious effect. The results also provide evidence that V-Mg interactions may be involved in the decrease of erythrocyte GR activity and Mg concentration in the plasma under concomitant treatment with both metals at the doses of 12.6mgV and 6mgMg/kg b.w./24h.
Collapse
Affiliation(s)
- Agnieszka Scibior
- Department of Cell Biology, Institute of Environmental Protection, John Paul II Catholic University of Lublin, Kraśnicka Ave 102, 20-718 Lublin, Poland
| | | |
Collapse
|
30
|
Scibior A, Zaporowska H, Niedźwiecka I. Lipid peroxidation in the liver of rats treated with V and/or Mg in drinking water. J Appl Toxicol 2010; 29:619-28. [PMID: 19557770 DOI: 10.1002/jat.1450] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The effect of V(5+) and Mg treatment on spontaneous and stimulated lipid peroxidation (LPO) was studied in liver supernatants obtained from outbred 5-month-old, albino male Wistar rats. The 2-month-old animals daily received deionized water to drink (control, group I); group II - water solution of NaVO(3) (SMV) at a concentration of 0.125 mg V ml(-1); group III - water solution of MgSO(4) (MS) at a concentration of 0.06 mg Mg ml(-1), group IV - water solution of SMV-MS at the same concentrations as in groups II and III for V and Mg, respectively, over a 12-week period. Three metal salts were selected as agents that may modify the LPO process (FeSO(4), NaVO(3) and MgSO(4)). V-intoxicated rats and those treated with V and Mg in combination had higher liver spontaneous malondialdehyde (MDA) formation, compared with the control and Mg-supplemented animals. In the same groups of animals the total antioxidant status (TAS) was also significantly lowered, in comparison with the control. In the supernatants obtained from the above-mentioned groups of rats a significant increase in MDA concentration was found in the presence of exogenous 30 microm FeSO(4) as well as 30, 100, 200 and 400 microm NaVO(3), compared with groups I and III. Significantly elevated MDA production was also observed in the supernatants obtained from the rats exposed to V and Mg in combination in the presence of exogenous 100 and 200 microm MgSO(4) in comparison with the control and group III as well as in the presence of exogenous 400 and 600 microm MgSO(4) compared only with group III. In vitro treatment with 1000 microm MgSO(4 )of control liver supernatants and those obtained from group III significantly enhanced MDA level, compared with spontaneous MDA formation. The two-way ANOVA indicated that the changes in the basal MDA level and in TAS in the rats at combined V and Mg application, were not due to V-Mg interaction, but resulted from independent action of V. In addition, the three-way ANOVA revealed that the changes in LPO induced by in vitro treatment of liver supernatants with exogenous Fe or V or Mg (600, 800 and 1000 microm) were a consequence of independent action of those metals and they also resulted from the interactions between Fe(exog) and V(end) and between V(end) and V(exog). In conclusion, V consumed by the rats with drinking water at a dose of 12 mg V kg(-1) body weight per 24 h for 12 weeks decreased TAS and enhanced spontaneous LPO in the hepatic tissue, which confirms its pro-oxidant potential, was also found in in vitro conditions with regard to LPO. Mg administered to rats in combination with V, at the concentration used, neither reduced nor intensified the basal LPO, compared with V-only treated animals; however, its stimulating effect on LPO was revealed in in vitro conditions, which requires further study.
Collapse
Affiliation(s)
- Agnieszka Scibior
- Department of Cell Biology, Institute of Environmental Protection, John Paul II Catholic University of Lublin, Kraśnicka Ave 102, 20-718 Lublin, Poland.
| | | | | |
Collapse
|
31
|
Two galactomannan preparations from seeds from Mimosa scabrella (bracatinga): Complexation with oxovanadium(IV/V) and cytotoxicity on HeLa cells. J Inorg Biochem 2009; 103:749-57. [DOI: 10.1016/j.jinorgbio.2009.01.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2008] [Revised: 01/19/2009] [Accepted: 01/19/2009] [Indexed: 12/19/2022]
|
32
|
Aureliano M, Crans DC. Decavanadate (V10 O28 6-) and oxovanadates: oxometalates with many biological activities. J Inorg Biochem 2009; 103:536-46. [PMID: 19110314 DOI: 10.1016/j.jinorgbio.2008.11.010] [Citation(s) in RCA: 190] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2008] [Revised: 11/10/2008] [Accepted: 11/18/2008] [Indexed: 02/07/2023]
Abstract
The decameric vanadate species V(10)O(28)(6-), also referred to as decavanadate, impact proteins, lipid structures and cellular function, and show some effects in vivo on oxidative stress processes and other biological properties. The mode of action of decavanadate in many biochemical systems depends, at least in part, on the charge and size of the species and in some cases competes with the simpler oxovanadate species. The orange decavanadate that contains 10 vanadium atoms is a stable species for several days at neutral pH, but at higher pH immediately converts to the structurally and functionally distinct lower oxovanadates such as the monomer, dimer or tetramer. Although the biological effects of vanadium are generally assumed to derive from monomeric vanadate or the vanadyl cation, we show in this review that not all effects can be attributed to these simple oxovanadate forms. This topic has not previously been reviewed although background information is available [D.C. Crans, Comments Inorg. Chem. 16 (1994) 35-76; M. Aureliano (Ed.), Vanadium Biochemistry, Research Signpost Publs., Kerala, India, 2007]. In addition to pumps, channels and metabotropic receptors, lipid structures represent potential biological targets for decavanadate and some examples have been reported. Decavanadate interact with enzymes, polyphosphate, nucleotide and inositol 3-phosphate binding sites in the substrate domain or in an allosteric site, in a complex manner. In mitochondria, where vanadium was shown to accumulate following decavanadate in vivo administration, nM concentration of decavanadate induces membrane depolarization in addition to inhibiting oxygen consumption, suggesting that mitochondria may be potential targets for decameric toxicity. In vivo effects of decavanadate in piscine models demonstrated that antioxidant stress markers, lipid peroxidation and vanadium subcellular distribution is dependent upon whether or not the solutions administered contain decavanadate. The present review summarizes the reports on biological effects of decavanadate and highlights the importance of considering decavanadate in evaluations of the biological effects of vanadium.
Collapse
Affiliation(s)
- Manuel Aureliano
- CCMar and Dept. Chemistry, Biochemistry and Pharmacy, FCT, University of Algarve, Faro, Portugal.
| | | |
Collapse
|
33
|
Effective control of blood glucose status and toxicity in streptozotocin-induced diabetic rats by orally administration of vanadate in an herbal decoction. Food Chem Toxicol 2008; 46:2996-3002. [DOI: 10.1016/j.fct.2008.05.040] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2008] [Revised: 05/28/2008] [Accepted: 05/29/2008] [Indexed: 11/20/2022]
|
34
|
Yanardag R, Demirci TB, Ulküseven B, Bolkent S, Tunali S, Bolkent S. Synthesis, characterization and antidiabetic properties of N(1)-2,4-dihydroxybenzylidene-N(4)-2-hydroxybenzylidene-S-methyl-thiosemicarbazidato-oxovanadium(IV). Eur J Med Chem 2008; 44:818-26. [PMID: 18621448 DOI: 10.1016/j.ejmech.2008.04.023] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2007] [Revised: 04/28/2008] [Accepted: 04/29/2008] [Indexed: 10/22/2022]
Abstract
A new oxovanadium(IV) chelate [VOL] (L: N(1)-2,4-dihydroxybenzylidene-N(4)-2-hydroxybenzylidene-S-methyl-thiosemicarbazidato) was synthesized and characterized by elemental analysis, conductivity and magnetic measurements, UV-vis, IR, EPR spectroscopy and mass spectrometry. The biochemical and immunohistochemical effects of the administration of the vanadium complex (VOL) into the pancreas of normal and streptozotocin-induced diabetic rats were profoundly investigated. The animals were randomly divided into four groups. Group I: control (intact) animals. Group II: control animals administered with VOL. Group III: STZ-induced diabetic animals. Group IV: STZ-induced diabetic animals administered with VOL. VOL was given to some of the experimental animals by gavage at a dose of 0.2mM/kg every day for 12 days. Blood samples were collected from animals, on 0 and 1, 6 and 12 days after STZ injection. On day 12, the pancreatic tissues were taken from the animals. The tissue sections were labelled with streptavidin biotin peroxidase technique for insulin. In the diabetic group, the blood glucose levels, aspartate and alanine transaminases, alkaline phosphatase activities were increased. But, in the diabetic+VOL groups, the blood glucose levels, aspartate and alanine transaminases, alkaline phosphatase activities were reduced. In the diabetic group, a decrease in the pancreatic glutathione levels, glutathione peroxidase and superoxide dismutase activities and an increase in the pancreatic lipid peroxidation level and catalase activities were observed. The administration of VOL to the diabetic rats reversed this diabetic effect due to its insulinomimetic effects. According to the immunohistochemical and biochemical results obtained, it was concluded that VOL can regenerate B cells of the pancreas in experimental diabetes and has an antidiabetic and protective effects on the pancreas.
Collapse
Affiliation(s)
- Refiye Yanardag
- Istanbul University, Faculty of Engineering, Department of Chemistry, Biochemistry Division, 34320 Avcilar, Istanbul, Turkey.
| | | | | | | | | | | |
Collapse
|
35
|
Scibior A, Zaporowska H. Effects of vanadium(V) and/or chromium(III) on L-ascorbic acid and glutathione as well as iron, zinc, and copper levels in rat liver and kidney. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2007; 70:696-704. [PMID: 17365624 DOI: 10.1080/15287390601187906] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
This study investigated the selected parameters of the antioxidant system in liver and kidney after in vivo administration of vanadium and/or chromium in rats. Outbred 2-mo-old albino male Wistar rats received drinking water for 12 wk with either sodium metavanadate (SMV; group II); chromium chloride (Cr; group III); or sodium metavanadate and chromium chloride (SMV-Cr; group IV); and group I (control) received deionized water. Chronic treatment with V alone or in combination with Cr produced a significant increase in kidney relative weight. Further, giving rats V alone also led to a significant elevation in liver relative weight. An increase in hepatic Fe concentration and renal Zn content occurred after treatment with V or Cr, respectively. The rats coadministered V and Cr had significantly higher levels of Fe in liver and Zn in kidneys. Simultaneous administration of these two elements resulted in a significant decrease in renal L-ascorbic acid concentration. V given alone significantly decreased GSH content and GSH/GSSG ratio in liver and kidney as well as increased GSSG concentration in liver, whereas Cr alone produced a significant decrease in GSH content in kidney and GSH/GSSG ratio in both organs. In the SMV-Cr-treated group a significant decrease in renal GSH concentration and GSH/GSSG ratio in both organs occurred. A significant increase in liver GSSG content was also found. The observed significant changes in kidney GSH content and in GSH/GSSG ratio in both rat tissues after Cr might result from the pro-oxidant actions of this metal. Thus, oxidative stress, which is a major pathway for V-induced toxicity, might also be associated with Cr(III)-induced adverse effects in rats.
Collapse
Affiliation(s)
- Agnieszka Scibior
- Department of Cell Biology, Institute of Environmental Protection, John Paul II Catholic University of Lublin, Lublin, Poland.
| | | |
Collapse
|
36
|
Scibior A, Zaporowska H, Ostrowski J. Selected haematological and biochemical parameters of blood in rats after subchronic administration of vanadium and/or magnesium in drinking water. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2006; 51:287-95. [PMID: 16783625 DOI: 10.1007/s00244-005-0126-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2005] [Accepted: 12/04/2005] [Indexed: 05/10/2023]
Abstract
The purpose of these studies was to evaluate the effect of selected vanadium and magnesium doses on certain haematological and biochemical blood parameters in rats. Outbred 2-month-old, albino male Wistar rats received for a period of 6 weeks, as a sole drinking liquid, the following water solutions: group II, sodium metavanadate (SMV) at a concentration of 0.125 mg V/mL; group III, magnesium sulphate (MS) at a concentration of 0.06 mg Mg/mL; and group IV, SMV-MS solution at the same concentrations. The control group received at this time deionized water to drink. It was calculated that group II ingested with drinking water about 10.7 mg V/kg b. w./24 h, group III 6 mg Mg/kg b. w./24 h, and group IV about 9 mg V and 4.5 mg Mg/kg b. w./24 h. The exposure to vanadium alone (group II) led to a statistically significant decrease in body weight gain, food and fluid intakes. Moreover, in the same group of rats a statistically significant decrease in the RBC count, Hb concentration, MCV, and MCH values was demonstrated. Additionally, a statistically significant decrease in the plasma L-ascorbic acid concentration and a significant increase in MDA concentration in blood in this group were found. Instead, after the administration of magnesium alone (group III), a statistically significant decrease in the fluid intake and in the L-ascorbic acid concentration in plasma was noted. Furthermore, in the same group of rats a statistically significant increase in Hb level and in the plasma magnesium concentration was demonstrated. Two-way analysis of variance (ANOVA) did not reveal the interactions between V and Mg.
Collapse
Affiliation(s)
- Agnieszka Scibior
- Department of Cell Biology, Institute of Environmental Protection, John Paul II Catholic University of Lublin, Kraśnicka Ave 102, 20-718, Lublin, Poland.
| | | | | |
Collapse
|
37
|
Barrio DA, Etcheverry SB. Vanadium and bone development: putative signaling pathwaysThis paper is one of a selection of papers published in this Special issue, entitled Second Messengers and Phosphoproteins—12th International Conference. Can J Physiol Pharmacol 2006; 84:677-86. [PMID: 16998531 DOI: 10.1139/y06-022] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Vanadium is a trace element present in practically all cells in plants and animals. It exerts interesting actions in living systems. At pharmacological doses, vanadium compounds display relevant biological actions such as mimicking insulin and growth factors as well as having osteogenic activity. Some vanadium compounds also show antitumoral properties. The importance of vanadium in bone arises from the studies developed to establish the essentiality of this element in animals and humans. Bone tissue, where the element seems to play an important role, accumulates great amounts of vanadium. This paper reviews the physiology of osteoblasts, the involvement of different growth factors on bone development, and the effects of vanadium derivatives on the skeletal system of animal models and bone-related cells. Two cellular lines are discussed in particular; one derived from a rat osteosarcoma (UMR106) and the other is a nontransformed osteoblast cell line (MC3T3-E1). The effects of different growth factors and their mechanisms of action in these cellular lines are reviewed. These models of osteoblasts are especially useful in understanding the intracellular signaling pathways of vanadium derivatives in hard tissues. Vanadium uses an intricate interplay of intracellular mechanisms to exert different biochemical and pharmacological actions. The effects of vanadium derivatives on some cellular signaling pathways related to insulin are compiled in this review. The comprehension of these intracellular signaling pathways may facilitate the design of vanadium compounds with promising therapeutic applications as well as the understanding of secondary side effects derived from the use of vanadium as a therapeutic agent.
Collapse
Affiliation(s)
- D A Barrio
- Cátedra de Bioquímica Patológica, Facultad de Ciencias Exactas, UNLP, 47 y 115 (1900) La Plata, Argentina
| | | |
Collapse
|
38
|
Barrio DA, Cattáneo ER, Apezteguía MC, Etcheverry SB. Vanadyl(IV) complexes with saccharides. Bioactivity in osteoblast-like cells in cultureThis paper is one of a selection of papers published in this Special issue, enititled Second Messengers and Phosphoproteins—12th International Conference. Can J Physiol Pharmacol 2006; 84:765-75. [PMID: 16998540 DOI: 10.1139/y06-021] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Complexes of vanadyl(IV) with 4 monosaccharides and 5 disaccharides were tested in 2 osteoblast-like cell lines (MC3T3E1 and UMR106). Many complexes caused stimulation of UMR106 proliferation (120% basal) in the range of 2.5 to 25 µmol/L. In the nontransformed osteoblasts, some vanadyl–saccharide complexes stimulated the mitogenesis (115% basal) in the same range of concentration. The glucose and sucrose complexes were the most efficient inhibitory agents (65% and 88% of inhibition vs. basal, respectively) for tumoral cells at 100 µmol/L. The galactose and turanose complexes exerted a similar effect in the nontransformed osteoblasts. On the other hand, all the complexes promoted the phosphorylation of the extracellular regulated kinases (ERKs). All together, these results indicate that the stimulation of ERKs is not the only factor that plays a role in the proliferative effects of vanadium derivatives since some compounds were inhibitory proliferating agents. Cell differentiation was evaluated by alkaline phosphatase specific activity and collagen synthesis in UMR106 cells. All the complexes inhibited alkaline phosphatase activity, with galactose complex as the most effective compound (IC50= 43 µmol/L). The complex with the trehalose TreVO was the most effective agent to stimulate collagen synthesis (142% basal) and glucose consumption (132% basal). A cytosolic tyrosine protein kinase and the kinase-3 of glycogen synthase seem to be involved in the stimulation of glucose consumption by vanadium derivatives. In this series, only TreVO gathered the characteristics of a good insulin mimetic and osteogenic drug. In addition, this complex was a good promoting agent of nontransformed osteoblast proliferation, whereas it inhibited tumoral osteoblasts. GluVO, the complex with glucose, was also more toxic for tumoral than for nontransformed cells. These 2 vanadium derivatives are good potential antitumoral drugs. All the results suggest that the biological effects of vanadium compounds are a complex phenomenon influenced by the complexation, the dose, and the nature of the ligands and the cells.
Collapse
Affiliation(s)
- Daniel A Barrio
- Cátedra de Bioquímica Patológica, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115 (1900) La Plata, Argentina
| | | | | | | |
Collapse
|
39
|
Adachi Y, Yoshida J, Kodera Y, Katoh A, Takada J, Sakurai H. Bis(allixinato)oxovanadium(IV) Complex Is a Potent Antidiabetic Agent: Studies on Structure−Activity Relationship for a Series of Hydroxypyrone−Vanadium Complexes. J Med Chem 2006; 49:3251-6. [PMID: 16722643 DOI: 10.1021/jm060229a] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
There is an urgent medical need for orally effective drugs to replace insulin injections for the treatment of diabetes mellitus. Vanadium complexes with insulin-mimetic activities have recently been proposed as candidates as new antidiabetic drugs. Following in vitro and in vivo studies on a group of bis(3-hydroxy-4-pyronato)oxovanadium(IV) (1) complexes with VO(O4) coordination mode, bis(allixinato)oxovanadium(IV) (3) which contains allixin, a garlic component, was found to be the most potent antidiabetic agent among them. Complex 3 with a high in vitro insulin-mimetic activity in terms of both free fatty acid (FFA)-release inhibitory and glucose-uptake enhancing activities in isolated rat adipocytes exhibited a high hypoglycemic effect in type 1 diabetic model mice by both intraperitoneal injections and oral administrations. Complex 3 is thus proposed to be one of the most effective candidates for antidiabetic therapy.
Collapse
Affiliation(s)
- Yusuke Adachi
- Department of Analytical and Bioinorganic Chemistry, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan
| | | | | | | | | | | |
Collapse
|
40
|
Scibior A, Zaporowska H, Ostrowski J, Banach A. Combined effect of vanadium(V) and chromium(III) on lipid peroxidation in liver and kidney of rats. Chem Biol Interact 2006; 159:213-22. [PMID: 16387290 DOI: 10.1016/j.cbi.2005.11.008] [Citation(s) in RCA: 215] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2005] [Revised: 11/22/2005] [Accepted: 11/28/2005] [Indexed: 11/17/2022]
Abstract
Since chromium(III) was demonstrated to have antioxidative action, we have decided to study the effect of this element on V-induced LPO in liver and kidney of rats. Outbred 2-month-old, albino male Wistar rats received daily, for a period of 12 weeks: group I (control), deionized water to drink; group II, sodium metavanadate (SMV) solution at a concentration of 0.100mgV/mL; group III, chromium chloride (CC) solution at a concentration of 0.004mgCr/mL and group IV, SMV-CC solution at a concentration of 0.100mgV and 0.004mgCr/mL. The particular experimental groups took up with drinking water about 8.6mgV/kg b.w./24h (group II), 0.4mgCr/kg b.w./24h (group III), 9mgV and 0.36mgCr/kg b.w./24h (group IV). The V- or Cr-treated groups had higher concentrations of these two elements in liver and kidney compared to the controls. The administration of vanadium alone caused a significant decrease in fluid intake and in body weight gain compared to the controls. In liver supernatants obtained from all tested rats a statistically significant increase in MDA concentration was demonstrated in spontaneous LPO in comparison with the control rats. Moreover, in rats intoxicated with vanadium alone a statistically significant increase in liver MDA level was observed in the presence of 100microM NaVO(3). Instead, in supernatants of liver received from rats treated with chromium alone, a statistically significant increase in MDA concentration in comparison with the controls was found in the presence of 400microM NaVO(3). In kidney supernatants obtained from rats treated with chromium alone, a statistically significant increase in lipid peroxidation was shown in the presence of 30microM FeSO(4) and 400microM NaVO(3). These results show that the tested doses of vanadium(V) and chromium(III) ingested by rats with their drinking water caused significant alterations in internal organs, especially in liver. Under the conditions of our experiment, Cr(III) did not demonstrate antioxidant action, it rather had an oxidant effect.
Collapse
Affiliation(s)
- Agnieszka Scibior
- Department of Cell Biology, Institute of Environmental Protection, Catholic University of Lublin, Kraśnicka Ave. 102, 20-718 Lublin, Poland.
| | | | | | | |
Collapse
|
41
|
Edel AL, Kopilas M, Clark TA, Aguilar F, Ganguly PK, Heyliger CE, Pierce GN. Short-term bioaccumulation of vanadium when ingested with a tea decoction in streptozotocin-induced diabetic rats. Metabolism 2006; 55:263-70. [PMID: 16423636 DOI: 10.1016/j.metabol.2005.08.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2005] [Accepted: 08/30/2005] [Indexed: 11/27/2022]
Abstract
Sodium orthovanadate suspended in a lichee black tea decoction effectively regulates blood glucose levels in rats with insulin-dependent, streptozotocin (STZ)-induced diabetes. The primary advantage of vanadate delivery with the tea decoction over conventional systems that use water suspensions of vanadate is a significant reduction in the toxic side effects of vanadate. It is unknown if the tea alters the bioavailability of vanadate. Male Sprague-Dawley rats were administered an intravenous injection of STZ to induce diabetes. Four days later, the diabetic rats were treated by oral gavage with 40 mg of Na-orthovanadate suspended in double-distilled, deionized water (V/H2O), tea/vanadate (TV) decoction, or were treated with the tea decoction alone. Vanadium concentrations were measured in blood and various tissues at 1 to 24 hours posttreatment using graphite furnace atomic absorption spectrophotometry. With the exception of bone, maximal vanadium concentration in plasma and tissue samples were observed 2 hours after ingestion, but steadily decreased after that. Plasma vanadium levels continued to decrease until 16 hours. In contrast, vanadium steadily accumulated in bone over the 24-hour period. Overall, rats treated with V/H2O contained similar or significantly higher concentrations of vanadium in all tissues compared with TV treatment. The pattern of vanadium accumulation was also similar over time in both treatment groups. Vanadium levels were highest in bone > kidney > liver > pancreas > lung > heart > muscle > brain in both TV- and V/H2O-treated animals. This study demonstrates that the accumulation of vanadium in diabetic rats is reduced when coadministered with a black tea decoction in comparison to administration of vanadium in water. However, this effect is unlikely to be of a magnitude to explain the full capacity of TV to reduce the toxic side effects of vanadate.
Collapse
Affiliation(s)
- Andrea L Edel
- National Centre for Agri-food Research in Medicine, St Boniface General Hospital Research Centre, Winnipeg, Manitoba, Canada R2H 2A6
| | | | | | | | | | | | | |
Collapse
|
42
|
Delgado TC, Tomaz AI, Correia I, Costa Pessoa J, Jones JG, Geraldes CFGC, Castro MMCA. Uptake and metabolic effects of insulin mimetic oxovanadium compounds in human erythrocytes. J Inorg Biochem 2005; 99:2328-39. [PMID: 16226808 DOI: 10.1016/j.jinorgbio.2005.08.014] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2005] [Revised: 08/01/2005] [Accepted: 08/26/2005] [Indexed: 11/26/2022]
Abstract
The uptake of the oxidation products of two oxovanadium(IV) compounds, [N,N'-ethylenebis(pyridoxylaminato)]oxovanadium(IV), V(IV)O(Rpyr(2)en), and bis-[3-hydroxy-1,2-dimethyl-4-pyridinonato]oxovanadium(IV), V(IV)O(dmpp)(2), by human erythrocytes was studied using (51)V and (1)H NMR and EPR spectroscopy. V(IV)O(Rpyr(2)en) in aerobic aqueous solution is oxidized to its V(V) counterpart and the neutral form slowly enters the cells by passive diffusion. In aerobic conditions, V(IV)O(dmpp)(2) originates V(V) complexes of 1:1 and 1:2 stoichiometry. The neutral 1:1 species is taken up by erythrocytes through passive diffusion in a temperature-dependent process; its depletion from the extracellular medium promotes the dissociation of the negatively charged 1:2 species, and the protonation of the negatively charged 1:1 species. The identity of these complexes is not maintained inside the cells, and the intracellular EPR spectra suggest N(2)O(2) or NO(3) intracellular coordinating environments. The oxidative stress induced by the oxovanadium compounds in erythrocytes was not significant at 1mM concentration, but was increased by both vanadate and oxidized V(IV)O(dmpp)(2) at 5mM. Only 1mM oxidized V(IV)O(dmpp)(2) significantly stimulated erythrocytes glucose intake (0.75+/-0.13 against 0.37+/-0.17mM/h found for the control, p<0.05).
Collapse
Affiliation(s)
- Teresa C Delgado
- Department of Biochemistry, Center of NMR Spectroscopy and Center for Neurosciences and Cell Biology, University of Coimbra, P.O. Box 3126, 3001-401 Coimbra, Portugal
| | | | | | | | | | | | | |
Collapse
|
43
|
Silvestre RA, Egido EM, Hernández R, Marco J. Tungstate stimulates insulin release and inhibits somatostatin output in the perfused rat pancreas. Eur J Pharmacol 2005; 519:127-34. [PMID: 16126195 DOI: 10.1016/j.ejphar.2005.06.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2005] [Revised: 06/14/2005] [Accepted: 06/21/2005] [Indexed: 11/21/2022]
Abstract
In the rat pancreas, infusion of sodium-tungstate stimulates basal insulin release in a dose-dependent manner. We have studied tungstate's effects on the insulin secretion elicited by various B-cell secretagogues. Somatostatin output was also measured. The study was performed in the perfused pancreas isolated from normal or somatostatin-depleted pancreases as induced by cysteamine pre-treatment. In control rats, tungstate co-infusion (5 mM) potentiated the insulin secretory responses to glucose (2.7-fold; P<0.01), arginine (2-fold; P<0.01), exendin-4 (3-fold; P<0.01), glucagon (4-fold; P<0.05), and tolbutamide (2-fold; P<0.01). It also inhibited the somatostatin secretory responses to glucose (90%; P<0.01), arginine (95%; P<0.01), glucagon (80%; P<0.025), exendin-4 (80%; P<0.05) and tolbutamide (85%; P<0.01). In somatostatin-depleted pancreases, the stimulatory effect of tungstate on basal insulin secretion and its potentiation of arginine-induced insulin output were comparable to those found in control rats. Our observations suggest an amplifying effect of tungstate on a common step in the insulin stimulus/secretion coupling process, and would rule out a paracrine effect mediated by the inhibition of somatostatin secretion induced by this compound.
Collapse
Affiliation(s)
- Ramona A Silvestre
- Hospital Universitario Puerta de Hierro and Department of Physiology, Universidad Autónoma de Madrid, San Martín de Porres 4, 28035 Madrid, Spain.
| | | | | | | |
Collapse
|
44
|
Clark TA, Edel AL, Heyliger CE, Pierce GN. Effective control of glycemic status and toxicity in Zucker diabetic fatty rats with an orally administered vanadate compound. Can J Physiol Pharmacol 2005; 82:888-94. [PMID: 15573149 DOI: 10.1139/y04-109] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A novel black tea decoction containing vanadate has successfully replaced insulin in a rat model of insulin-dependent diabetes but is untested in non-insulin-dependent diabetic animals. A tea-vanadate decoction (TV) containing 30 or 40 mg sodium orthovanadate was administered by oral gavage to two groups of Zucker diabetic fatty rats and a conventional water vehicle containing 30 or 40 mg of sodium orthovanadate to two others. In the latter group receiving the 30-mg dose, vanadate induced diarrhea in 50% of the rats and death in 10%. In contrast, TV-treated rats had no incidence of diarrhea and no deaths. Symptoms were more severe in both groups with higher vanadate doses, so these were discontinued. After approximately 16 weeks, the level of vanadium in plasma and tissue extracts was negligible in a further group of untreated rats but highly elevated after vanadate treatment. Vanadium levels were not significantly different between the TV-treated diabetic rats and the diabetic rats given vanadate in a water vehicle. Over the 115 days of the study, blood glucose levels increased from approximately 17 to 25 mmol/L in untreated diabetic rats. This was effectively lowered (to <10 mmol/L) by TV treatment. Fasting blood glucose levels were 5, 7, and 20 mmol/L in control (nondiabetic, untreated), TV-treated and untreated diabetic rats, respectively. Rats required treatment with TV for only approximately 50% of the days in the study. Increase in body mass during the study was significantly lower in untreated diabetic rats (despite higher food intake) than the other groups. Body mass gain and food intake were normal in TV-treated rats. Water intake was 28 mL/rat daily in control rats, 130 mL/rat daily in untreated diabetic rats, and 52 mL/rat daily in TV-treated diabetic rats. Plasma creatinine and aspartate aminotransferase levels were significantly depressed in untreated diabetic rats, and TV treatment normalized this. Our results demonstrate that a novel oral therapy containing black tea and vanadate possesses a striking capacity to regulate glucose and attenuates complications in a rat model of type II diabetes.
Collapse
Affiliation(s)
- Tod A Clark
- The National Centre for Agri-food Research in Medicine, St. Boniface General Hospital Research Centre, Department of Physiology, Faculty of Medicine, University of Manitoba, Winnipeg, Canada
| | | | | | | |
Collapse
|
45
|
Kordowiak AM, Goc A, Drozdowska E, Turyna B, Dabros W. Sodium orthovanadate exerts influence on liver Golgi complexes from control and streptozotocin-diabetic rats. J Inorg Biochem 2005; 99:1083-9. [PMID: 15833331 DOI: 10.1016/j.jinorgbio.2005.01.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2004] [Revised: 01/21/2005] [Accepted: 01/28/2005] [Indexed: 11/23/2022]
Abstract
The paper presents the effect of one-week 3mM sodium orthovanadate (Na3VO4) oral treatment of control and streptozotocin[STZ]-diabetic rats. The body weight decreased as compared with untreated control (C group) in both vanadate treated groups (C + V and D + V) and in diabetic untreated rats (D group)--in all cases p < 0.01. A similar tendency was demonstrated by the weight of the livers, which was statistically significant lower than in the controls (p < 0.01). The fluid and food intake were lower in comparison with control vanadium treated groups, in D + V as compared with D it was limited, however, not achieved control level. A high mortality rate, approx. 67%, after the administration of streptozotocin and vanadate (D + V group) was noted; such result had never been previously found within all study groups of rats. But the surviving rats show very good decreased (60%) free blood sugar levels, however euglycaemia was not achieved. The activity of galactosyltransferase, the Golgi complex marker enzyme in group D, was statistically lower than the controls (p < 0.001). Treatment of STZ-diabetic rats with orthovanadate did not increase the enzyme activity toward control level, in both diabetic groups (treated and untreated with Na3VO4) similar dispersion of individual results was found. Morphological study demonstrated, for the first time, no larger cellular lesion in C + V group. The Golgi complex was well developed; showed several cisterns at the trans side, which were grossly distended and contained electron-lucid floccular material. In D + V group typical, cylindrical forms of Golgi complexes predominated. These structures consisted of 3-4 almost practically non-distended cisterns. Also in this case, large, electron-dense vesicles were noted in the vicinity. In this group, small in size, myelin-like structures were also found. These structures might indicate a relatively small, but nevertheless clear damage of the internal membrane system. The external cistern of the cylindrical forms of Golgi complexes, which corresponded the trans side, was often markedly distended and formed a vacuole-like structure filled with electron lucent material; the structure itself sometimes looked empty. Multi-vesicular structures were observed also in this case, but they were seen much more rarely.
Collapse
Affiliation(s)
- Anna M Kordowiak
- Department of General Biochemistry, Faculty of Biotechnology, Jagiellonian University, 16 Grzegorzecka St., 31-531 Cracow, Poland.
| | | | | | | | | |
Collapse
|
46
|
Kammerer M, Mastain O, Le Dréan-Quenech'du S, Pouliquen H, Larhantec M. Liver and kidney concentrations of vanadium in oiled seabirds after the Erika wreck. THE SCIENCE OF THE TOTAL ENVIRONMENT 2004; 333:295-301. [PMID: 15364536 DOI: 10.1016/j.scitotenv.2004.05.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Vanadium was measured by atomic absorption spectrophotometry in the liver and kidney of several oiled seabirds that were stranded on the French Atlantic coasts after the Erika wreck and died in wildlife care Centers. Estimated averages were 30 to 77 ng g(-1) wet weight (ww) in the liver and 52 to 72 ng g(-1) wet weight in the kidney. These concentrations were not higher in oiled birds than in dead birds found later, without visible traces of petroleum on beaches not affected by the Erika pollution. Vanadium hepatic and renal concentrations do not seem to be appropriate biomarkers for recent exposure to fuel in seabirds.
Collapse
Affiliation(s)
- M Kammerer
- Unité de Pharmacologie et Toxicologie, Ecole Nationale Vétérinaire de Nantes-BP 40706-44307 Nantes Cedex 3, France.
| | | | | | | | | |
Collapse
|
47
|
Clark TA, Heyliger CE, Edel AL, Goel DP, Pierce GN. Codelivery of a tea extract prevents morbidity and mortality associated with oral vanadate therapy in streptozotocin-induced diabetic rats. Metabolism 2004; 53:1145-51. [PMID: 15334376 DOI: 10.1016/j.metabol.2004.03.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Oral administration of vanadate has a strong hypoglycemic effect but results in toxic side effects like life-threatening diarrhea. Tea is known to have potent antidiarrhea effects. We investigated the potential of suspending the vanadate in a tea decoction to reduce the diarrheatic action of vanadate. A concentrated extract of Lichee black tea was, therefore, added to sodium orthovanadate. Streptozotocin (STZ)-induced diabetic rats were orally gavaged with vanadate suspended in water or in the tea decoction, or with the tea extract alone. Blood glucose levels were assessed daily over 11 weeks with levels greater than 10 mmol/L warranting therapeutic intervention. Both the vanadate/water and vanadate/tea solutions acutely reduced blood glucose. The tea extract alone had no effect. The majority of vanadate/water-treated rats developed diarrhea and mortality rates approached 40%. Vanadate/tea-treated diabetic rats experienced no diarrhea or mortality and liver and kidney analyses (plasma ALT and creatinine, blood urea nitrogen [BUN], and urine-specific gravity) were normal. Animals treated with vanadate/tea retained blood glucose levels less than 10 mmol/L for an average of 24 consecutive days without subsequent treatments. Cataract formation was completely prevented. The mechanism of action of vanadate may have involved beta-cell stimulation because vanadate/tea-treated diabetic rats exhibited normal plasma insulin levels. In summary, because of its long-lasting effects, oral administration, and lack of side effects, vanadate/tea represents a potentially important alternative therapy for an insulin-deficient diabetic state.
Collapse
Affiliation(s)
- Tod A Clark
- The National Centre for Agrifood Research in Medicine, University of Mannitoba, Winnipeg, Canada
| | | | | | | | | |
Collapse
|
48
|
Rumora L, Barisić K, Maysinger D, Zanić Grubisić T. BpV (phen) induces apoptosis of RINm5F cells by modulation of MAPKs and MKP-1. Biochem Biophys Res Commun 2003; 300:877-83. [PMID: 12559954 DOI: 10.1016/s0006-291x(02)02952-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We investigated the mechanism of toxicity of peroxovanadium complex bpV (phen) in RINm5F cells. Treatment with bpV (phen) provoked cell death, predominantly by apoptosis. This compound induced strong and sustained JNK and p38 MAPK activation. However, ERK phosphorylation was not affected. The level of expression of MAPK phosphatase MKP-1 was suppressed after bpV (phen) treatment. In addition, this compound did not stimulate proteolytic processing of procaspase-3, suggesting that caspase-3 is not activated during the course of bpV (phen)-induced apoptosis. A correlative inhibition of JNK activation by immunosuppressive drug FK 506 induced ERK activation and MKP-1 expression, and suppressed RINm5F cell death. A specific p38 inhibitor SB 203580 also stimulated ERK activation and cell survival. Furthermore, simultaneous pretreatment with both FK 506 and SB 203580 almost completely abolished cell death. Thus, our results suggest that stress kinases and MKP-1 have a role in bpV (phen)-induced apoptosis of RINm5F cells.
Collapse
Affiliation(s)
- Lada Rumora
- Department of Medical Biochemistry and Haematology, Faculty of Pharmacy and Biochemistry, Domagojeva 2, 10 000 Zagreb, Croatia.
| | | | | | | |
Collapse
|
49
|
Cortizo MS, Alessandrini JL, Etcheverr SB, Cortizo AM. A vanadium/aspirin complex controlled release using a poly(beta-propiolactone) film. Effects on osteosarcoma cells. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2002; 12:945-59. [PMID: 11787522 DOI: 10.1163/156856201753252499] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A delivery system for vanadium was developed using poly(beta-propiolactone) (PbetaPL) films. The release kinetics of a complex of vanadium (IV) with aspirin (VOAspi) was evaluated with films prepared from polymers of different molecular weights, as well as with variable drug load. A sustained release of vanadium over 7 days was achieved. The drug release kinetics depends on contributions from two factors: (a) diffusion of the drug; and (b) erosion of the PbetaPL film. The experimental data at an early stage of release were fitted with a diffusion model, which allowed determination of the diffusion coefficient of the drug. VOAspi does not show strong interaction with the polymer, as demonstrated by the low apparent partition coefficient (approximately 10(-2)). UMR106 osteosarcoma cells were used as a model to evaluate the anticarcinogenic effects of the VOAspi released from the PbetaPPL film. VOAspi-PbetaPL film inhibited cell proliferation in a dose-response manner and induced formation of approximately half of the thiobarbituric acid reactive substances (TBARS), an index of lipid peroxidation. compared to that with free VOAspi in solution. The unloaded PbetaPL film did not generate cytotoxicity, as evaluated by cell growth and TBARS. Thus, the polymer-embedded VOAspi retained the antiproliferative effects showing lower cytotoxicity than the free drug. Results with VOAspi-PbetaPL films suggest that this delivery system may have promising biomedical and therapeutic applications.
Collapse
Affiliation(s)
- M S Cortizo
- INIFTA, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Argentina.
| | | | | | | |
Collapse
|
50
|
Abstract
Vanadium compounds exert preventive effects against chemical carcinogenesis on animals, by modifying, mainly, various xenobiotic enzymes, inhibiting, thus, carcinogen-derived active metabolites. Studies on various cell lines reveal that vanadium exerts its antitumor effects through inhibition of cellular tyrosine phosphatases and/or activation of tyrosine phosphorylases. Both effects activate signal transduction pathways leading either to apoptosis and/or to activation of tumor suppressor genes. Furthermore, vanadium compounds may induce cell-cycle arrest and/or cytotoxic effects through DNA cleavage and fragmentation and plasma membrane lipoperoxidation. Reactive oxygen species generated by Fenton-like reactions and/or during the intracellular reduction of V(V) to V(IV) by, mainly, NADPH, participate to the majority of the vanadium-induced intracellular events. Vanadium may also exert inhibitory effects on cancer cell metastatic potential through modulation of cellular adhesive molecules, and reverse antineoplastic drug resistance. It also possesses low toxicity that, in combination with the synthesis of new, more potent and better tolerated complexes, may establish vanadium as an effective non-platinum, metal antitumor agent.
Collapse
Affiliation(s)
- Angelos M Evangelou
- Faculty of Medicine, Laboratory of Physiology, University of Ioannina, Ioannina, Greece.
| |
Collapse
|