1
|
Bhanpattanakul S, Tharasanit T, Buranapraditkun S, Sailasuta A, Nakagawa T, Kaewamatawong T. Modulation of MHC expression by interferon-gamma and its influence on PBMC-mediated cytotoxicity in canine mast cell tumour cells. Sci Rep 2024; 14:17837. [PMID: 39090190 PMCID: PMC11294481 DOI: 10.1038/s41598-024-68789-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024] Open
Abstract
Immunotherapy is a promising alternative treatment for canine mast cell tumour (MCT). However, evasion of immune recognition by downregulating major histocompatibility complex (MHC) molecules might decline treatment efficiency. Enhancing MHC expression through interferon-gamma (IFN-γ) is crucial for effective immunotherapy. In-house and reference canine MCT cell lines derived from different tissue origins were used. The impacts of IFN-γ treatment on cell viability, expression levels of MHC molecules, as well as cell apoptosis were evaluated through the MTT assay, RT-qPCR and flow cytometry. The results revealed that IFN-γ treatment significantly influenced the viability of canine MCT cell lines, with varying responses observed among different cell lines. Notably, IFN-γ treatment increased the expression of MHC I and MHC II, potentially enhancing immune recognition and MCT cell clearance. Flow cytometry analysis in PBMCs-mediated cytotoxicity assays showed no significant differences in overall apoptosis between IFN-γ treated and untreated canine MCT cell lines across various target-to-effector ratios. However, a trend towards higher percentages of late and total apoptotic cells was observed in the IFN-γ treated C18 and CMMC cell lines, but not in the VIMC and CoMS cell lines. These results indicate a variable response to IFN-γ treatment among different canine MCT cell lines. In summary, our study suggests IFN-γ's potential therapeutic role in enhancing immune recognition and clearance of MCT cells by upregulating MHC expression and possibly promoting apoptosis, despite variable responses across different cell lines. Further investigations are necessary to elucidate the underlying mechanisms and evaluate IFN-γ's efficacy in in vivo models.
Collapse
Affiliation(s)
- Sudchaya Bhanpattanakul
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Theerawat Tharasanit
- Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Veterinary Clinical Stem Cells and Bioengineering Research Unit, Chulalongkorn University, Bangkok, Thailand
| | - Supranee Buranapraditkun
- Division of Allergy and Clinical Immunology, Department of Medicine, Faculty of Medicine, King Chulalongkorn Memorial Hospital, Chulalongkorn University, Thai Red Cross Society, Bangkok, 10330, Thailand
- Center of Excellence in Thai Pediatric Gastroenterology, Hepatology and Immunology (TPGHAI), Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Achariya Sailasuta
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Takayuki Nakagawa
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Theerayuth Kaewamatawong
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.
- Center of Excellence for Companion Animal Cancer (CE-CAC), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
2
|
Zhou Y, Wang D, Zhou L, Zhou N, Wang Z, Chen J, Pang R, Fu H, Huang Q, Dong F, Cheng H, Zhang H, Tang K, Ma J, Lv J, Cheng T, Fiskesund R, Zhang X, Huang B. Cell softness renders cytotoxic T lymphocytes and T leukemic cells resistant to perforin-mediated killing. Nat Commun 2024; 15:1405. [PMID: 38360940 PMCID: PMC10869718 DOI: 10.1038/s41467-024-45750-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 02/03/2024] [Indexed: 02/17/2024] Open
Abstract
Mechanical force contributes to perforin pore formation at immune synapses, thus facilitating the cytotoxic T lymphocytes (CTL)-mediated killing of tumor cells in a unidirectional fashion. How such mechanical cues affect CTL evasion of perforin-mediated autolysis remains unclear. Here we show that activated CTLs use their softness to evade perforin-mediated autolysis, which, however, is shared by T leukemic cells to evade CTL killing. Downregulation of filamin A is identified to induce softness via ZAP70-mediated YAP Y357 phosphorylation and activation. Despite the requirements of YAP in both cell types for softness induction, CTLs are more resistant to YAP inhibitors than malignant T cells, potentially due to the higher expression of the drug-resistant transporter, MDR1, in CTLs. As a result, moderate inhibition of YAP stiffens malignant T cells but spares CTLs, thus allowing CTLs to cytolyze malignant cells without autolysis. Our findings thus hint a mechanical force-based immunotherapeutic strategy against T cell leukemia.
Collapse
Affiliation(s)
- Yabo Zhou
- Department of Immunology & National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College, Beijing, China
| | - Dianheng Wang
- Department of Immunology & National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College, Beijing, China
| | - Li Zhou
- Department of Immunology & National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College, Beijing, China
| | - Nannan Zhou
- Department of Immunology & National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College, Beijing, China
| | - Zhenfeng Wang
- Department of Immunology & National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College, Beijing, China
| | - Jie Chen
- Department of Immunology & National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College, Beijing, China
| | - Ruiyang Pang
- Department of Immunology & National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College, Beijing, China
| | - Haixia Fu
- Peking University People's Hospital, National Clinical Research Center for Hematologic Disease; Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University Institute of Hematology, Beijing, China
| | - Qiusha Huang
- Peking University People's Hospital, National Clinical Research Center for Hematologic Disease; Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University Institute of Hematology, Beijing, China
| | - Fang Dong
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Hui Cheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Huafeng Zhang
- Department of Pathology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ke Tang
- Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jingwei Ma
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiadi Lv
- Department of Immunology & National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College, Beijing, China
| | - Tao Cheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Roland Fiskesund
- Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
- Department of Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Xiaohui Zhang
- Peking University People's Hospital, National Clinical Research Center for Hematologic Disease; Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University Institute of Hematology, Beijing, China.
| | - Bo Huang
- Department of Immunology & National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College, Beijing, China.
- Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
3
|
García-Álvarez MA, Cervera L, Valero Y, González-Fernández C, Mercado L, Chaves-Pozo E, Cuesta A. Regulation and distribution of European sea bass perforins point to their role in the adaptive cytotoxic response against NNV. FISH & SHELLFISH IMMUNOLOGY 2024; 144:109244. [PMID: 38000653 DOI: 10.1016/j.fsi.2023.109244] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/09/2023] [Accepted: 11/20/2023] [Indexed: 11/26/2023]
Abstract
Cell-mediated cytotoxicity is a complex immune mechanism that involves the release of several killing molecules, being perforin (PRF) one of the most important effector players. Perforin is synthesized by T lymphocytes and natural killer cells in mammals and responsible for the formation of pores on the target cell membrane during the killing process. Although perforin has been extensively studied in higher vertebrates, this knowledge is very limited in fish. Therefore, in this study we have identified four prf genes in European sea bass (Dicentrarchus labrax) and evaluated their mRNA levels. All sea bass prf genes showed the typical and conserved domains of its human orthologue and were closely clustered by the phylogenetic analysis. In addition, all genes showed constitutive and ubiquitous tissular expression, being prf1.9 gene the most highly expressed in immune tissues. Subsequently, in vitro stimulation of head-kidney (HK) cells with phytohemagglutinin, a T-cell activator, showed an increase of all prf gene levels, except for prf1.3 gene. European sea bass HK cells increased the transcription of prf1.2 and prf1.9 during the innate cell-mediated cytotoxic activity against xenogeneic target cells. In addition, sea bass infected with nodavirus (NNV) showed a similar expression pattern of all prf in HK and brain at 15 days post-infection, except for prf1.3 gene and in the gonad. Finally, the use of a polyclonal antibody against PRF1.9 showed an increase of positive cells in HK, brain and gonad from NNV-infected fish. Taken together, the data seem to indicate that all prf genes, except prf1.3, appear to be involved in the European sea bass immunity, and probably in the cell-mediated cytotoxic response, with PRF1.9 playing the most important role against nodavirus. The involvement of the PRFs and the CMC activity in the vertical transmission success of the virus is also discussed.
Collapse
Affiliation(s)
- Miguel A García-Álvarez
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, 30100, Murcia, Spain; Physiology and Welfare of Marine Species Group (PHYSIS), Centro Oceanográfico de Murcia, Instituto Español de Oceanografía (COMU-IEO), CSIC, Carretera de la Azohía s/n. 30860, Puerto de Mazarrón, Murcia, Spain
| | - Laura Cervera
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, 30100, Murcia, Spain; Physiology and Welfare of Marine Species Group (PHYSIS), Centro Oceanográfico de Murcia, Instituto Español de Oceanografía (COMU-IEO), CSIC, Carretera de la Azohía s/n. 30860, Puerto de Mazarrón, Murcia, Spain
| | - Yulema Valero
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, 30100, Murcia, Spain
| | - Carmen González-Fernández
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, 30100, Murcia, Spain; INRAE, UR RiverLy, Laboratoire d'écotoxicologie, F-69625, Villeurbanne, France
| | - Luis Mercado
- Grupo de Marcadores Inmunológicos, Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Elena Chaves-Pozo
- Physiology and Welfare of Marine Species Group (PHYSIS), Centro Oceanográfico de Murcia, Instituto Español de Oceanografía (COMU-IEO), CSIC, Carretera de la Azohía s/n. 30860, Puerto de Mazarrón, Murcia, Spain
| | - Alberto Cuesta
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, 30100, Murcia, Spain.
| |
Collapse
|
4
|
Cho Y, Kim J, Park J, Doh J. Surface nanotopography and cell shape modulate tumor cell susceptibility to NK cell cytotoxicity. MATERIALS HORIZONS 2023; 10:4532-4540. [PMID: 37559559 DOI: 10.1039/d3mh00367a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
Natural killer (NK) cells are innate cytotoxic lymphocytes exerting cytotoxicity against virally infected cells and tumor cells. NK cell cytotoxicity is primarily determined by biochemical signals received from ligands expressed on target cell surfaces, but it is also possible that biophysical environments of tumor cells, such as nanoscale surface topography typically existing on extracellular matrixes (ECMs) or cell morphology determined by ECM spaces or cell density, regulate NK cell cytotoxicity. In this study, micro/nanofabrication technology was applied to examine this possibility. Tumor cells were plated on flat or nanogrooved surfaces, or micropatterned into circular or elliptical geometries, and the effects of surface topography and tumor cell morphology on NK cell cytotoxicity were investigated. NK cells exhibited significantly higher cytotoxicity against tumor cells on nanogrooved surfaces or tumor cells in elliptical patterns than tumor cells on flat surfaces or tumor cells in circular patterns, respectively. The amounts of stress fiber formation in tumor cells positively correlated with NK cell cytotoxicity, indicating that increased cellular tension of tumor cells, either mediated by nanogrooved surfaces or elongated morphologies, was a key factor regulating NK cell cytotoxicity. These results may provide insight into the design of NK cell-based cancer immunotherapy.
Collapse
Affiliation(s)
- Yongbum Cho
- School of Interdisciplinary Bioscience and Bioengineering (I-Bio), Pohang University of Science and Technology, 77, Cheongam-ro, Pohang, Gyeongbuk, 37673, Republic of Korea
| | - JangHyuk Kim
- Department of Materials Science and Engineering, Seoul National University, Seoul, South Korea.
| | - Jeehun Park
- SOFT Foundry Institute, Seoul National University, Seoul, South Korea.
| | - Junsang Doh
- Department of Materials Science and Engineering, Seoul National University, Seoul, South Korea.
- SOFT Foundry Institute, Seoul National University, Seoul, South Korea.
- Institute of Engineering Research, BioMAX, Seoul National University, Seoul, South Korea
| |
Collapse
|
5
|
Hong E, Barczak W, Park S, Heo JS, Ooshima A, Munro S, Hong CP, Park J, An H, Park JO, Park SH, La Thangue NB, Kim SJ. Combination treatment of T1-44, a PRMT5 inhibitor with Vactosertib, an inhibitor of TGF-β signaling, inhibits invasion and prolongs survival in a mouse model of pancreatic tumors. Cell Death Dis 2023; 14:93. [PMID: 36765032 PMCID: PMC9918730 DOI: 10.1038/s41419-023-05630-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 01/29/2023] [Accepted: 01/30/2023] [Indexed: 02/12/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the most lethal type of cancer and the third leading cause of cancer death with the lowest 5-year survival rate. Heterogeneity, difficulty in diagnosis, and rapid metastatic progression are the causes of high mortality in pancreatic cancer. Recent studies have shown that Protein arginine methyltransferase 5 (PRMT5) is overexpressed in pancreatic cancers, and these patients have a worse prognosis. Recently, PRMT5 as an anti-cancer target has gained considerable interest. In this study, we investigated whether inhibition of PRMT5 activity was synergistic with blockade of TGF-β1 signaling, which plays an important role in the construction of the desmoplastic matrix in pancreatic cancer and induces therapeutic vulnerability. Compared with T1-44, a selective inhibitor of PRMT5 activity, the combination of T1-44 with the TGF-β1 signaling inhibitor Vactosertib significantly reduced tumor size and surrounding tissue invasion and significantly improved long-term survival. RNA sequencing analysis of mouse tumors revealed that the combination of T1-44 and Vactosertib significantly altered the expression of genes involved in cancer progression, such as cell migration, extracellular matrix, and apoptotic processes. In particular, the expression of Btg2, known as a tumor suppressor factor in various cancers, was markedly induced by combination treatment. Ectopic overexpression of Btg2 inhibited the EMT response, blocking cell migration, and promoted cancer cell death. These data demonstrate that the combination therapy of T1-44 with Vactosertib is synergistic for pancreatic cancer, suggesting that this novel combination therapy has value in the treatment strategy of patients with pancreatic cancer.
Collapse
Affiliation(s)
- Eunji Hong
- GILO Institute, GILO Foundation, Seoul, Republic of Korea
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Gyeonggi-do, Republic of Korea
| | - Wojciech Barczak
- Laboratory of Cancer Biology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Old Road Campus, Oxford, UK
| | - Sujin Park
- GILO Institute, GILO Foundation, Seoul, Republic of Korea
| | - Jin Sun Heo
- GILO Institute, GILO Foundation, Seoul, Republic of Korea
| | - Akira Ooshima
- GILO Institute, GILO Foundation, Seoul, Republic of Korea
| | - Shonagh Munro
- Argonaut Therapeutics Ltd, Magdalen Centre, Oxford Science Park, Oxford, UK
| | | | - Jinah Park
- GILO Institute, GILO Foundation, Seoul, Republic of Korea
| | - Haein An
- GILO Institute, GILO Foundation, Seoul, Republic of Korea
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Gyeonggi-do, Republic of Korea
| | - Joon Oh Park
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Seok Hee Park
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Gyeonggi-do, Republic of Korea
| | - Nick B La Thangue
- Laboratory of Cancer Biology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Old Road Campus, Oxford, UK
| | - Seong-Jin Kim
- GILO Institute, GILO Foundation, Seoul, Republic of Korea.
- Medpacto Inc., Seoul, Republic of Korea.
| |
Collapse
|
6
|
Planas R, Felber M, Vavassori S, Pachlopnik Schmid J. The hyperinflammatory spectrum: from defects in cytotoxicity to cytokine control. Front Immunol 2023; 14:1163316. [PMID: 37187762 PMCID: PMC10175623 DOI: 10.3389/fimmu.2023.1163316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/11/2023] [Indexed: 05/17/2023] Open
Abstract
Cytotoxic lymphocytes kill target cells through polarized release of the content of cytotoxic granules towards the target cell. The importance of this cytotoxic pathway in immune regulation is evidenced by the severe and often fatal condition, known as hemophagocytic lymphohistiocytosis (HLH) that occurs in mice and humans with inborn errors of lymphocyte cytotoxic function. The clinical and preclinical data indicate that the damage seen in severe, virally triggered HLH is due to an overwhelming immune system reaction and not the direct effects of the virus per se. The main HLH-disease mechanism, which links impaired cytotoxicity to excessive release of pro-inflammatory cytokines is a prolongation of the synapse time between the cytotoxic effector cell and the target cell, which prompts the former to secrete larger amounts of cytokines (including interferon gamma) that activate macrophages. We and others have identified novel genetic HLH spectrum disorders. In the present update, we position these newly reported molecular causes, including CD48-haploinsufficiency and ZNFX1-deficiency, within the pathogenic pathways that lead to HLH. These genetic defects have consequences on the cellular level on a gradient model ranging from impaired lymphocyte cytotoxicity to intrinsic activation of macrophages and virally infected cells. Altogether, it is clear that target cells and macrophages may play an independent role and are not passive bystanders in the pathogenesis of HLH. Understanding these processes which lead to immune dysregulation may pave the way to novel ideas for medical intervention in HLH and virally triggered hypercytokinemia.
Collapse
Affiliation(s)
- Raquel Planas
- Division of Immunology, University Children’s Hospital Zurich, Zurich, Switzerland
- Department of Cell Biology, Physiology and Immunology, University of Barcelona, Barcelona, Spain
| | - Matthias Felber
- Division of Immunology, University Children’s Hospital Zurich, Zurich, Switzerland
| | - Stefano Vavassori
- Division of Immunology, University Children’s Hospital Zurich, Zurich, Switzerland
| | - Jana Pachlopnik Schmid
- Division of Immunology, University Children’s Hospital Zurich, Zurich, Switzerland
- Pediatric Immunology, University of Zurich, Zurich, Switzerland
- *Correspondence: Jana Pachlopnik Schmid,
| |
Collapse
|
7
|
Shiralipour A, Khorsand B, Jafari L, Salehi M, Kazemi M, Zahiri J, Jajarmi V, Kazemi B. Identifying Key Lysosome-Related Genes Associated with Drug-Resistant Breast Cancer Using Computational and Systems Biology Approach. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2022; 21:e130342. [PMID: 36915401 PMCID: PMC10007991 DOI: 10.5812/ijpr-130342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/11/2022] [Accepted: 09/18/2022] [Indexed: 11/17/2022]
Abstract
Background Drug resistance in breast cancer is an unsolved problem in treating patients. It has been recently discussed that lysosomes contribute to the invasion and angiogenesis of cancer cells. There is evidence that lysosomes can also cause multi-drug resistance. We analyzed this emerging concept in breast cancer through computational and systems biology approaches. Objectives We aimed to identify the key lysosome-related genes associated with drug-resistant breast cancer. Methods All genes contributing to the structure and function of lysosomes were inquired through the Human Lysosome Gene Database. The prioritized top 51 genes from the provided lists of Endeavour, ToppGene, and GPSy as prioritization tools were selected. All lysosomal genes and 12 breast cancer-related genes aligned to identify the most similar genes to breast cancer-related genes. Different centralities were applied to score each human protein to calculate the most central lysosomal genes in the human protein-protein interaction (PPI) network. Common genes were extracted from the results of the mentioned methods as a selected gene set. For Gene Ontology enrichment, the selected gene set was analyzed by WebGestalt, DAVID, and KOBAS. The PPI network was constructed via the STRING database. The PPI network was analyzed utilizing Cytoscape for topology network interaction and CytoHubba to extract hub genes. Results Based on biological studies, literature reviews, and comparing all mentioned analyzing methods, six genes were introduced as essential in breast cancer. This computational approach to all lysosome-related genes suggested that candidate genes include PRF1, TLR9, CLTC, GJA1, AP3B1, and RPTOR. The analyses of these six genes suggest that they may have a crucial role in breast cancer development, which has rarely been evaluated. These genes have a potential therapeutic implication for new drug discovery for chemo-resistant breast cancer. Conclusions The present work focused on all the functional and structural lysosome-related genes associated with breast cancer. It revealed the top six lysosome hub genes that might serve as therapeutic targets in drug-resistant breast cancer. Since these genes play a pivotal role in the structure and function of lysosomes, targeting them can effectively overcome drug resistance.
Collapse
Affiliation(s)
- Aref Shiralipour
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Babak Khorsand
- Computer Engineering Department, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Leila Jafari
- Bioinformatics and Computational Omics Lab (BioCOOL), Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University (TMU), Tehran, Iran
| | - Mohammad Salehi
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahsa Kazemi
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Javad Zahiri
- Department of Neurosciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0662, USA
| | - Vahid Jajarmi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Corresponding Author: Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Bahram Kazemi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Corresponding Author: Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Paolino J, Berliner N, Degar B. Hemophagocytic lymphohistiocytosis as an etiology of bone marrow failure. Front Oncol 2022; 12:1016318. [PMID: 36387094 PMCID: PMC9647152 DOI: 10.3389/fonc.2022.1016318] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 09/27/2022] [Indexed: 11/13/2022] Open
Abstract
Hemophagocytic lymphohistiocytosis (HLH) is a syndrome of multiorgan system dysfunction that is caused by hypercytokinemia and persistent activation of cytotoxic T lymphocytes and macrophages. A nearly ubiquitous finding and a diagnostic criterion of HLH is the presence of cytopenias in ≥ 2 cell lines. The mechanism of cytopenias in HLH is multifactorial but appears to be predominantly driven by suppression of hematopoiesis by pro-inflammatory cytokines and, to some extent, by consumptive hemophagocytosis. Recognition of cytopenias as a manifestation of HLH is an important consideration for patients with bone marrow failure of unclear etiology.
Collapse
Affiliation(s)
- Jonathan Paolino
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States
| | - Nancy Berliner
- Division of Hematology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Barbara Degar
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States,*Correspondence: Barbara Degar,
| |
Collapse
|
9
|
Pașatu‑Cornea AM, Ciciu E, Tuță LA. Perforin: An intriguing protein in allograft rejection immunology (Review). Exp Ther Med 2022; 24:519. [DOI: 10.3892/etm.2022.11446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 10/05/2021] [Indexed: 11/06/2022] Open
Affiliation(s)
| | - Elena Ciciu
- Department of Nephrology, Constanta County Emergency Hospital, 900591 Constanta, Romania
| | - Liliana-Ana Tuță
- Department of Nephrology, Constanta County Emergency Hospital, 900591 Constanta, Romania
| |
Collapse
|
10
|
Zhang Z, Yang A, Chaurasiya S, Park AK, Lu J, Kim SI, Warner SG, Yuan YC, Liu Z, Han H, Von Hoff D, Fong Y, Woo Y. CF33-hNIS-antiPDL1 virus primes pancreatic ductal adenocarcinoma for enhanced anti-PD-L1 therapy. Cancer Gene Ther 2022; 29:722-733. [PMID: 34108669 PMCID: PMC8896143 DOI: 10.1038/s41417-021-00350-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 05/10/2021] [Accepted: 05/18/2021] [Indexed: 02/06/2023]
Abstract
Immunotherapeutic strategies that combine oncolytic virus (OV) and immune checkpoint inhibitors have the potential to overcome treatment resistance in pancreatic ductal adenocarcinoma (PDAC), one of the least immunogenic solid tumors. Oncolytic viral chimera, CF33-hNIS-antiPDL1 genetically modified to express anti-human PD-L1 antibody and CF33-hNIS-Δ without the anti-PD-L1 gene, were used to investigate the immunogenic effects of OVs and virus-delivered anti-PD-L1 in PDAC in vitro. Western blot, flow cytometry, and immunofluorescence microscopy were used to evaluate the effects of CF33-hNIS-Δ and IFNγ on PD-L1 upregulation in AsPC-1 and BxPC-3 cells, and CF33-hNIS-antiPDL1 production of anti-PD-L1 and surface PD-L1 blockade of AsPC-1 and BxPC-3 with or without cocultured activated T cells. The cytosolic and cell surface levels of PD-L1 in PDAC cell lines varied; only BxPC-3 showed high cell surface expression. Treatment of these cells with CF33-hNIS-Δ and IFNγ significantly upregulated PD-L1 expression and translocation of PD-L1 from the cytosol onto the cell surface. Following coculture of activated T cells and BxPC-3 with CF33-hNIS-antiPDL1, the cell surface PD-L1 blockade on BxPC-3 cells by virus-delivered anti-PD-L1 antibody increased granzyme B release and prevented virus-induced decrease of perforin release from activated CD8+ T cells. Our results suggest that CF33-IOVs can prime immune checkpoint inhibition of PDAC and enhance antitumor immune killing.
Collapse
Affiliation(s)
- Zhifang Zhang
- Department of Surgery, City of Hope National Medical Center, Duarte, CA, USA
| | - Annie Yang
- Department of Surgery, City of Hope National Medical Center, Duarte, CA, USA
| | | | - Anthony K Park
- Cancer Immunotherapeutics Program, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, USA
| | - Jianming Lu
- Department of Surgery, City of Hope National Medical Center, Duarte, CA, USA
| | - Sang-In Kim
- Department of Surgery, City of Hope National Medical Center, Duarte, CA, USA
| | - Susanne G Warner
- Department of Surgery, City of Hope National Medical Center, Duarte, CA, USA
- Cancer Immunotherapeutics Program, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, USA
| | - Yate-Ching Yuan
- Division of Translational Bioinformatics, Center for Informatics, City of Hope National Medical Center, Duarte, CA, USA
| | - Zheng Liu
- Division of Translational Bioinformatics, Center for Informatics, City of Hope National Medical Center, Duarte, CA, USA
| | - Haiyong Han
- The Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Daniel Von Hoff
- The Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Yuman Fong
- Department of Surgery, City of Hope National Medical Center, Duarte, CA, USA
| | - Yanghee Woo
- Department of Surgery, City of Hope National Medical Center, Duarte, CA, USA.
- Cancer Immunotherapeutics Program, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, USA.
| |
Collapse
|
11
|
Zhou Y, Fu HC, Wang YY, Huang HZ, Fu XZ, Li NQ. The dynamic immune responses of Mandarin fish (Siniperca chuatsi) to ISKNV in early infection based on full-length transcriptome analysis and weighted gene co-expression network analysis. FISH & SHELLFISH IMMUNOLOGY 2022; 122:191-205. [PMID: 35158068 DOI: 10.1016/j.fsi.2022.02.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 05/26/2023]
Abstract
Mandarin fish (Siniperca chuatsi) been seriously harmed by infectious spleen and kidney necrosis virus (ISKNV) in recent years, but the early immune response mechanism of infection is still unknown. Here, we performed RNA sequencing on the spleens of mandarin fish infected with ISKNV at 0, 12, 24, 48, and 72 h post-infection (hpi) using short-read Illumina RNA sequencing and long-read Pacific Biosciences isoform sequencing to generate a full-length transcriptome. The immune responses of mandarin fish infected with ISKNV at the molecular level were characterized by RNA-seq analysis and weighted gene co-expression network analysis (WGCNA). A total of 26,528 full-length transcript sequences were obtained. There were 2,729 (1,680 up-regulated and 1,112 down-regulated), 1,874 (1,136 up-regulated and 738 down-regulated), 2,032 (1,158 up-regulated and 847 down-regulated), and 4,176 (2,233 up-regulated and 1,943 down-regulated) differentially expressed genes (DEGs) in mandarin fish at 12, 24, 48, and 72 hpi, compared with uninfected fish, respectively. A total of four modules of co-expressed DEGs identified by WGCNA were significantly positively correlated to the four time points after infection, respectively. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that the immune-related DEGs in all these modules were mainly enriched in Phagosome, Endocytosis, Herpes simplex infection, and Cytokine-cytokine receptor interaction pathways. Further analysis showed that oher signaling pathways, including CAMs, NOD-like receptor and ER protein processing, Intestinal immune network for IgA production, TLR pathway, and Apoptosis significantly enriched in four modules corresponding to 12, 24, 48, and 72 hpi respectively, had specifically participated in the immune response. Hub genes identified based on the high-degree nodes in the WGCN, including CAM3, IL-8, CCL21, STING, SNX1, PFR and TBK1, and some DEGs such as MHCI, MHCII, TfR, STING, TNF α, TBK1, IRF1, and NF-kB, BCR, IgA and Bcl-XL had involved in dynamic molecular response of mandarin fish to ISKNV infection. In sum, this study provides a set of full-length transcriptome of the spleen tissue of mandarin fish for the first time and revealed a group of immune genes and pathways involved in different temporal responses to ISKNV infection, which has implications for resource conservation and aiding the development of strategies to prevent virus early infection for mandarin fish.
Collapse
Affiliation(s)
- Yu Zhou
- School of Basic Medicine and Biological Sciences, Fisheries Research Institute, Soochow University, Suzhou, 215123, China
| | - Huang-Cui Fu
- School of Basic Medicine and Biological Sciences, Fisheries Research Institute, Soochow University, Suzhou, 215123, China
| | - Ying-Ying Wang
- School of Basic Medicine and Biological Sciences, Fisheries Research Institute, Soochow University, Suzhou, 215123, China
| | - He-Zhong Huang
- School of Basic Medicine and Biological Sciences, Fisheries Research Institute, Soochow University, Suzhou, 215123, China.
| | - Xiao-Zhe Fu
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immune Technology, Guangdong Provinces, Guangzhou, 510380, China
| | - Ning-Qiu Li
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immune Technology, Guangdong Provinces, Guangzhou, 510380, China
| |
Collapse
|
12
|
Ivanova ME, Lukoyanova N, Malhotra S, Topf M, Trapani JA, Voskoboinik I, Saibil HR. The pore conformation of lymphocyte perforin. SCIENCE ADVANCES 2022; 8:eabk3147. [PMID: 35148176 PMCID: PMC8836823 DOI: 10.1126/sciadv.abk3147] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 12/17/2021] [Indexed: 05/05/2023]
Abstract
Perforin is a pore-forming protein that facilitates rapid killing of pathogen-infected or cancerous cells by the immune system. Perforin is released from cytotoxic lymphocytes, together with proapoptotic granzymes, to bind to a target cell membrane where it oligomerizes and forms pores. The pores allow granzyme entry, which rapidly triggers the apoptotic death of the target cell. Here, we present a 4-Å resolution cryo-electron microscopy structure of the perforin pore, revealing previously unidentified inter- and intramolecular interactions stabilizing the assembly. During pore formation, the helix-turn-helix motif moves away from the bend in the central β sheet to form an intermolecular contact. Cryo-electron tomography shows that prepores form on the membrane surface with minimal conformational changes. Our findings suggest the sequence of conformational changes underlying oligomerization and membrane insertion, and explain how several pathogenic mutations affect function.
Collapse
Affiliation(s)
- Marina E. Ivanova
- Institute of Structural and Molecular Biology, Birkbeck, University of London, Malet St, London WC1E 7HX, UK
- Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK
| | - Natalya Lukoyanova
- Institute of Structural and Molecular Biology, Birkbeck, University of London, Malet St, London WC1E 7HX, UK
| | - Sony Malhotra
- Institute of Structural and Molecular Biology, Birkbeck, University of London, Malet St, London WC1E 7HX, UK
- Scientific Computing Department, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Fermi Ave, Harwell, Didcot OX11 0QX, UK
| | - Maya Topf
- Institute of Structural and Molecular Biology, Birkbeck, University of London, Malet St, London WC1E 7HX, UK
- Centre for Structural Systems Biology, Leibniz-Institut für Experimentelle Virologie and Universitätsklinikum Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Joseph A. Trapani
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
| | - Ilia Voskoboinik
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
| | - Helen R. Saibil
- Institute of Structural and Molecular Biology, Birkbeck, University of London, Malet St, London WC1E 7HX, UK
| |
Collapse
|
13
|
Gene therapy of prostate cancer using liposomes containing perforin expression vector driven by the promoter of prostate-specific antigen gene. Sci Rep 2022; 12:1442. [PMID: 35087064 PMCID: PMC8795355 DOI: 10.1038/s41598-021-03324-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 11/30/2021] [Indexed: 12/30/2022] Open
Abstract
Perforin secreted from cytotoxic lymphocytes plays a critical role in cancer immunosurveillance. The aim of this study was to investigate the therapeutic potential of liposomes containing perforin expression vector driven by the promotor of prostate-specific antigen (PSA). The anti-tumor effect of perforin was analyzed using prostate cancer (PC) PC-3 cells in which perforin expression was controlled by Tet-on system (PC-3PRF cells). Liposomes encapsulating PSA promoter-driven perforin expression vector (pLipo) were constructed for its specific expression in PC. The anti-tumor effect of pLipo was evaluated in vitro using docetaxel-resistant PC 22Rv1 PC cell line, 22Rv1DR, and PC-3 cells in the presence of human peripheral blood mono nuclear cells (PBMCs) and also in vivo using male nude mice bearing 22Rv1DR cell-derived tumor xenograft. Induction of perforin significantly inhibited growth of PC-3PRF cells. Treatment with pLipo induced perforin expression in 22Rv1DR cells expressing PSA but not in PC-3 cells lacking it. Treatment with pLipo at a low concentration was prone to inhibit growth of both cell lines and significantly inhibited growth of 22Rv1DR cells when co-incubated with PBMCs. The combined use of pLipo at a high concentration with PBMCs showed nearly complete inhibition of 22Rv1DR cell growth. Intravenous administration of pLipo via tail vein increased the level of perforin in tumor and serum and significantly decreased the tumor volume. Our results suggest that liposome-mediated PC-specific expression of perforin could be a novel therapy for advanced PC.
Collapse
|
14
|
Schmitz T, Hoffmann V, Olliges E, Bobinger A, Popovici R, Nößner E, Meissner K. Reduced frequency of perforin-positive CD8+ T cells in menstrual effluent of endometriosis patients. J Reprod Immunol 2021; 148:103424. [PMID: 34563756 DOI: 10.1016/j.jri.2021.103424] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 08/20/2021] [Accepted: 09/15/2021] [Indexed: 01/21/2023]
Abstract
Endometriosis is a widespread disease and commonly reduces the life quality of those affected. Scientific literature indicates different underlying immunological changes. Frequently examined tissues are peripheral blood, endometrial tissue and peritoneal fluid. Yet, knowledge on immunological differences in menstrual effluent (ME) is scarce. In this study, between January 2018 and August 2019, 12 women with endometriosis (rASRM classification: stages I-IV) and 11 healthy controls were included. ME was collected using menstrual cups and venous blood samples (PB) were taken. Mononuclear cells were obtained from ME (MMC) and PB (PBMC) and analyzed using flow cytometry. Concentrations of cell adhesion molecules (ICAM-I and VCAM-I) and cytokines (IL-6, IL-8 and TNF-α) were measured using ELISA. CD8 + T cells obtained from ME were significantly less often perforin-positive in women with endometriosis compared to healthy controls. A comparison between MMC and PBMC revealed that MMC contained significantly less T cells and more B cells. The CD4/CD8 ratio was significantly higher in MMC, and Tregs were significantly less frequently in MMC. In ME, T cells and NK cells expressed significantly more CD69. NK cells obtained from ME were predominantly CD56bright/CD16dim and had a lower frequency of perforin + cells compared to PBMC NK cells. Moreover, ICAM-1 plasma levels were significantly reduced in women with endometriosis compared to healthy controls. In conclusion, CD8 + T cells obtained from the ME were significantly less perforin-positive in endometriosis patients indicating a reduced cytotoxic potential. MMC are distinctively different from PBMC and, thus, seem to be of endometrial origin.
Collapse
Affiliation(s)
- Timo Schmitz
- Institute of Medical Psychology, Medical Faculty, LMU Munich, Germany; Chair of Epidemiology, University of Augsburg, University Hospital Augsburg, Augsburg, Germany.
| | - Verena Hoffmann
- Institute of Medical Psychology, Medical Faculty, LMU Munich, Germany
| | - Elisabeth Olliges
- Institute of Medical Psychology, Medical Faculty, LMU Munich, Germany; Division of Health Promotion, Coburg University of Applied Sciences, Coburg, Germany
| | - Alina Bobinger
- Institute of Medical Psychology, Medical Faculty, LMU Munich, Germany; Division of Health Promotion, Coburg University of Applied Sciences, Coburg, Germany
| | - Roxana Popovici
- kïz, Munich, Germany; Department of Gynecologic Endocrinology and Fertility Disorders, Heidelberg University Women's Hospital, Heidelberg, Germany
| | - Elfriede Nößner
- Immunoanalytics Research Group Tissue Control of Immunocytes, Helmholtz Zentrum München, Munich, Germany
| | - Karin Meissner
- Institute of Medical Psychology, Medical Faculty, LMU Munich, Germany; Division of Health Promotion, Coburg University of Applied Sciences, Coburg, Germany.
| |
Collapse
|
15
|
Dhatchinamoorthy K, Colbert JD, Rock KL. Cancer Immune Evasion Through Loss of MHC Class I Antigen Presentation. Front Immunol 2021; 12:636568. [PMID: 33767702 PMCID: PMC7986854 DOI: 10.3389/fimmu.2021.636568] [Citation(s) in RCA: 492] [Impact Index Per Article: 123.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/05/2021] [Indexed: 02/03/2023] Open
Abstract
Major histocompatibility class I (MHC I) molecules bind peptides derived from a cell's expressed genes and then transport and display this antigenic information on the cell surface. This allows CD8 T cells to identify pathological cells that are synthesizing abnormal proteins, such as cancers that are expressing mutated proteins. In order for many cancers to arise and progress, they need to evolve mechanisms to avoid elimination by CD8 T cells. MHC I molecules are not essential for cell survival and therefore one mechanism by which cancers can evade immune control is by losing MHC I antigen presentation machinery (APM). Not only will this impair the ability of natural immune responses to control cancers, but also frustrate immunotherapies that work by re-invigorating anti-tumor CD8 T cells, such as checkpoint blockade. Here we review the evidence that loss of MHC I antigen presentation is a frequent occurrence in many cancers. We discuss new insights into some common underlying mechanisms through which some cancers inactivate the MHC I pathway and consider some possible strategies to overcome this limitation in ways that could restore immune control of tumors and improve immunotherapy.
Collapse
|
16
|
Zhang Z, Yu Q, Zhang X, Wang X, Su Y, He W, Li J, Wan H, Jing X. Electroacupuncture regulates inflammatory cytokines by activating the vagus nerve to enhance antitumor immunity in mice with breast tumors. Life Sci 2021; 272:119259. [PMID: 33636172 DOI: 10.1016/j.lfs.2021.119259] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 02/08/2021] [Accepted: 02/14/2021] [Indexed: 12/15/2022]
Abstract
AIMS The aim of this study was to explore the potential effect of electroacupuncture (EA) at ST36 on mice bearing breast tumors by regulating inflammatory cytokines to enhance antitumor immunity via vagus nerve. MATERIALS AND METHODS Female BALB/c mice were implanted with 4T1-luc2 breast tumor cells to establish a murine mammary cancer model. Tumor growth was evaluated by tumor volume, weight and bioluminescence imaging. Inflammatory conditions in serum and tumor tissue were assessed by cytokines (IL-1β, TNF-α and IL-10) and HE staining. Proportions and functions of CD8+ T cells, NK cells and MDSCs were identified by flow cytometry and western blot. Involvement of vagal efferent components was confirmed by ChAT and c-Fos double labeling immunohistochemistry in dorsal motor nucleus of vagus (DMV). Subdiaphragmatic vagotomy was employed to determine if the effect of EA was mediated by vagus nerve. KEY FINDINGS EA at ST36 reduced the volume and weight of tumors within 22 days after implantation. Proinflammatory cytokines IL-1β and TNF-α in serum, tumor and local inflammatory infiltration were obviously attenuated after EA. Meanwhile, EA intervention significantly augmented the proportion and cytolytic function of CD8+ T cells and NK cells, along with a decline in the accumulation and immunosuppressive activities of MDSCs. Finally, c-Fos expression in ChAT+ neurons in DMV increased following EA, and the ameliorating effect of EA was obviously blocked by subdiaphragmatic vagotomy. SIGNIFICANCE EA intervention relieved tumor progression in breast tumor-bearing mice by alleviating inflammation and enhancing antitumor immunity, which was mediated by eliciting efferent vagus nerve activity.
Collapse
Affiliation(s)
- Zhiyun Zhang
- Department of Neurobiology and Acupuncture Research, the Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou 310053, China; Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Qingquan Yu
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xiaoning Zhang
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xiaoyu Wang
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yangshuai Su
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Wei He
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jie Li
- Guanganmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100043, China
| | - Hongye Wan
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Xianghong Jing
- Department of Neurobiology and Acupuncture Research, the Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou 310053, China; Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|
17
|
Choi KM, Cho DH, Joo MS, Choi HS, Kim MS, Han HJ, Cho MY, Hwang SD, Kim DH, Park CI. Functional characterization and gene expression profile of perforin-2 in starry flounder (Platichthys stellatus). FISH & SHELLFISH IMMUNOLOGY 2020; 107:511-518. [PMID: 33217563 DOI: 10.1016/j.fsi.2020.11.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/26/2020] [Accepted: 11/09/2020] [Indexed: 06/11/2023]
Abstract
The membrane attack complex/perforin (MACPF) superfamily consists of multifunctional proteins that form pores on the membrane surface of microorganisms to induce their death and have various immune-related functions. PFN2 is a perforin-like protein with an MACPF domain, and humans with deficient PFN2 levels have increased susceptibility to bacterial infection, which can lead to fatal consequences for some patients. Therefore, in this study, we confirmed the antimicrobial function of PFN2 in starry flounder (Platichthys stellatus). The molecular properties were confirmed based on the verified amino acid sequence of PsPFN2. In addition, the expression characteristics of tissue-specific and pathogen-specific PsPFN2 mRNA were also confirmed. The recombinant protein was produced using Escherichia coli, and the antimicrobial activity was then confirmed. The coding sequence of PFN2 (PsPFN2) in P. stellatus consists of 710 residues. The MACPF domain was conserved throughout evolution, as shown by multiple sequence alignment and phylogenetic analysis. PsPFN2 mRNA is abundantly distributed in immune-related organs such as the spleen and gills of healthy starry flounder, and significant expression changes were confirmed after artificial infection by bacteria or viruses. We cloned the MACPF domain region of PFN2 to produce a recombinant protein (rPFN2) and confirmed its antibacterial effect against a wide range of bacterial species and the parasite (Miamiensis avidus).
Collapse
Affiliation(s)
- Kwang-Min Choi
- Department of Marine Biology & Aquaculture, College of Marine Science, Gyeongsang National University, 455, Tongyeong, 650-160, Republic of Korea
| | - Dong-Hee Cho
- Department of Marine Biology & Aquaculture, College of Marine Science, Gyeongsang National University, 455, Tongyeong, 650-160, Republic of Korea
| | - Min-Soo Joo
- Department of Marine Biology & Aquaculture, College of Marine Science, Gyeongsang National University, 455, Tongyeong, 650-160, Republic of Korea
| | - Hye-Sung Choi
- Pathology Research Division, National Institute of Fisheries Science, 408-1 Sirang-ri, Gijang-up, Gijang-gun, Busan, 46083, Republic of Korea
| | - Myoung Sug Kim
- Pathology Research Division, National Institute of Fisheries Science, 408-1 Sirang-ri, Gijang-up, Gijang-gun, Busan, 46083, Republic of Korea
| | - Hyun-Ja Han
- Pathology Research Division, National Institute of Fisheries Science, 408-1 Sirang-ri, Gijang-up, Gijang-gun, Busan, 46083, Republic of Korea
| | - Mi Young Cho
- Pathology Research Division, National Institute of Fisheries Science, 408-1 Sirang-ri, Gijang-up, Gijang-gun, Busan, 46083, Republic of Korea
| | - Seong Don Hwang
- Pathology Research Division, National Institute of Fisheries Science, 408-1 Sirang-ri, Gijang-up, Gijang-gun, Busan, 46083, Republic of Korea
| | - Do-Hyung Kim
- Department of Aquatic Life Medicine, College of Fisheries Science, Pukyong National University, 45, Yongso-ro, Nam-Gu., Busan, Republic of Korea.
| | - Chan-Il Park
- Department of Marine Biology & Aquaculture, College of Marine Science, Gyeongsang National University, 455, Tongyeong, 650-160, Republic of Korea.
| |
Collapse
|
18
|
Krawczyk PA, Laub M, Kozik P. To Kill But Not Be Killed: Controlling the Activity of Mammalian Pore-Forming Proteins. Front Immunol 2020; 11:601405. [PMID: 33281828 PMCID: PMC7691655 DOI: 10.3389/fimmu.2020.601405] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 10/20/2020] [Indexed: 01/01/2023] Open
Abstract
Pore-forming proteins (PFPs) are present in all domains of life, and play an important role in host-pathogen warfare and in the elimination of cancers. They can be employed to deliver specific effectors across membranes, to disrupt membrane integrity interfering with cell homeostasis, and to lyse membranes either destroying intracellular organelles or entire cells. Considering the destructive potential of PFPs, it is perhaps not surprising that mechanisms controlling their activity are remarkably complex, especially in multicellular organisms. Mammalian PFPs discovered to date include the complement membrane attack complex (MAC), perforins, as well as gasdermins. While the primary function of perforin-1 and gasdermins is to eliminate infected or cancerous host cells, perforin-2 and MAC can target pathogens directly. Yet, all mammalian PFPs are in principle capable of generating pores in membranes of healthy host cells which-if uncontrolled-could have dire, and potentially lethal consequences. In this review, we will highlight the strategies employed to protect the host from destruction by endogenous PFPs, while enabling timely and efficient elimination of target cells.
Collapse
Affiliation(s)
- Patrycja A Krawczyk
- MRC Laboratory of Molecular Biology, Protein and Nucleic Acid Chemistry Division, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Marco Laub
- MRC Laboratory of Molecular Biology, Protein and Nucleic Acid Chemistry Division, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Patrycja Kozik
- MRC Laboratory of Molecular Biology, Protein and Nucleic Acid Chemistry Division, Cambridge Biomedical Campus, Cambridge, United Kingdom
| |
Collapse
|
19
|
Mastio J, Saeed MB, Wurzer H, Krecke M, Westerberg LS, Thomas C. Higher Incidence of B Cell Malignancies in Primary Immunodeficiencies: A Combination of Intrinsic Genomic Instability and Exocytosis Defects at the Immunological Synapse. Front Immunol 2020; 11:581119. [PMID: 33240268 PMCID: PMC7680899 DOI: 10.3389/fimmu.2020.581119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 10/09/2020] [Indexed: 12/11/2022] Open
Abstract
Congenital defects of the immune system called primary immunodeficiency disorders (PID) describe a group of diseases characterized by a decrease, an absence, or a malfunction of at least one part of the immune system. As a result, PID patients are more prone to develop life-threatening complications, including cancer. PID currently include over 400 different disorders, however, the variety of PID-related cancers is narrow. We discuss here reasons for this clinical phenotype. Namely, PID can lead to cell intrinsic failure to control cell transformation, failure to activate tumor surveillance by cytotoxic cells or both. As the most frequent tumors seen among PID patients stem from faulty lymphocyte development leading to leukemia and lymphoma, we focus on the extensive genomic alterations needed to create the vast diversity of B and T lymphocytes with potential to recognize any pathogen and why defects in these processes lead to malignancies in the immunodeficient environment of PID patients. In the second part of the review, we discuss PID affecting tumor surveillance and especially membrane trafficking defects caused by altered exocytosis and regulation of the actin cytoskeleton. As an impairment of these membrane trafficking pathways often results in dysfunctional effector immune cells, tumor cell immune evasion is elevated in PID. By considering new anti-cancer treatment concepts, such as transfer of genetically engineered immune cells, restoration of anti-tumor immunity in PID patients could be an approach to complement standard therapies.
Collapse
Affiliation(s)
- Jérôme Mastio
- Department of Oncology, Cytoskeleton and Cancer Progression, Luxembourg Institute of Health, Luxembourg City, Luxembourg
| | - Mezida B Saeed
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Hannah Wurzer
- Department of Oncology, Cytoskeleton and Cancer Progression, Luxembourg Institute of Health, Luxembourg City, Luxembourg
| | - Max Krecke
- Department of Oncology, Cytoskeleton and Cancer Progression, Luxembourg Institute of Health, Luxembourg City, Luxembourg
| | - Lisa S Westerberg
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Clément Thomas
- Department of Oncology, Cytoskeleton and Cancer Progression, Luxembourg Institute of Health, Luxembourg City, Luxembourg
| |
Collapse
|
20
|
Tampio J, Huttunen J, Montaser A, Huttunen KM. Targeting of Perforin Inhibitor into the Brain Parenchyma Via a Prodrug Approach Can Decrease Oxidative Stress and Neuroinflammation and Improve Cell Survival. Mol Neurobiol 2020; 57:4563-4577. [PMID: 32754897 PMCID: PMC7515946 DOI: 10.1007/s12035-020-02045-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 07/28/2020] [Indexed: 12/31/2022]
Abstract
The cytolytic protein perforin has a crucial role in infections and tumor surveillance. Recently, it has also been associated with many brain diseases, such as neurodegenerative diseases and stroke. Therefore, inhibitors of perforin have attracted interest as novel drug candidates. We have previously reported that converting a perforin inhibitor into an L-type amino acid transporter 1 (LAT1)-utilizing prodrug can improve the compound's brain drug delivery not only across the blood-brain barrier (BBB) but also into the brain parenchymal cells: neurons, astrocytes, and microglia. The present study evaluated whether the increased uptake into mouse primary cortical astrocytes and subsequently improvements in the cellular bioavailability of this brain-targeted perforin inhibitor prodrug could enhance its pharmacological effects, such as inhibition of production of caspase-3/-7, lipid peroxidation products and prostaglandin E2 (PGE2) in the lipopolysaccharide (LPS)-induced neuroinflammation mouse model. It was demonstrated that increased brain and cellular drug delivery could improve the ability of perforin inhibitors to elicit their pharmacological effects in the brain at nano- to picomolar levels. Furthermore, the prodrug displayed multifunctional properties since it also inhibited the activity of several key enzymes related to Alzheimer's disease (AD), such as the β-site amyloid precursor protein (APP) cleaving enzyme 1 (BACE1), acetylcholinesterase (AChE), and most probably also cyclooxygenases (COX) at micromolar concentrations. Therefore, this prodrug is a potential drug candidate for preventing Aβ-accumulation and ACh-depletion in addition to combatting neuroinflammation, oxidative stress, and neural apoptosis within the brain. Graphical abstract.
Collapse
Affiliation(s)
- Janne Tampio
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Johanna Huttunen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Ahmed Montaser
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Kristiina M Huttunen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland.
| |
Collapse
|
21
|
Ota T, Fukui T, Nakahara Y, Takeda T, Uchino J, Mouri T, Kudo K, Nakajima S, Suzumura T, Fukuoka M. Serum immune modulators during the first cycle of anti-PD-1 antibody therapy in non-small cell lung cancer: Perforin as a biomarker. Thorac Cancer 2020; 11:3223-3233. [PMID: 32915511 PMCID: PMC7606020 DOI: 10.1111/1759-7714.13650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 08/16/2020] [Accepted: 08/17/2020] [Indexed: 12/26/2022] Open
Abstract
Background Currently used biomarkers for immunotherapy are inadequate because they are only based on tumor properties. In view of microenvironment changes by tumors, host immunity should be considered, which may result in identifying more accurate and easily detectable biomarkers for daily clinical practice. Here, we assessed serum immune‐modulating factor levels for the response to anti‐PD‐1 antibodies during the first cycle in non‐small cell lung cancer (NSCLC) patients. Methods Serum was collected from patients with advanced NSCLC treated with nivolumab or pembrolizumab at several time points during the first cycle. We applied the enzyme‐linked immunosorbent assays (ELISAs) and multiplex assays to measure the levels of immune modulators. Results A total of 40 patients treated with nivolumab and 26 patients treated with pembrolizumab were studied. By ELISA, serum perforin, but not granzyme B, was measured in all samples. By multiplex assay, 10 immune modulators, including granzyme B, were measured in some, but not all, samples. Serum baseline perforin levels were strongly associated with increased progression‐free survival (PFS) and overall survival (OS) times. Sequential changes in perforin levels during the first cycle were weakly associated with the clinical outcome. Conclusions Serum baseline perforin levels may be used to predict the prognosis of NSCLC patients treated with anti‐PD‐1 antibody therapy. Key points To identify a useful predictive marker for anti‐PD‐1 antibody therapy, using blood samples might be helpful. Serum baseline perforin levels were closely associated with prognosis with anti‐PD‐1 antibody therapy in non‐small cell lung cancer.
Collapse
Affiliation(s)
- Takayo Ota
- Department of Medical Oncology, Izumi City General Hospital, Osaka, Japan
| | - Tomoya Fukui
- Department of Respiratory Medicine, Kitasato University School of Medicine, Sagamihara, Japan
| | - Yoshiro Nakahara
- Department of Respiratory Medicine, Kitasato University School of Medicine, Sagamihara, Japan.,Department of Thoracic Oncology, Kanagawa Cancer Center, Yokohama, Japan
| | - Takayuki Takeda
- Department of Respiratory Medicine, Japanese Red Cross Kyoto Daini Hospital, Kyoto, Japan.,Department of Respiratory Medicine, Uji-Tokushukai Medical Center, Kyoto, Japan
| | - Junji Uchino
- Department of Pulmonary Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Takako Mouri
- Department of Pulmonary Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Keita Kudo
- Department of Medical Oncology and Respiratory Medicine, National Hospital Organization Osaka Minami Medical Center, Osaka, Japan
| | - Saki Nakajima
- Department of Medical Oncology and Respiratory Medicine, National Hospital Organization Osaka Minami Medical Center, Osaka, Japan
| | - Tomohiro Suzumura
- Department of Clinical Oncology, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Masahiro Fukuoka
- Department of Medical Oncology, Izumi City General Hospital, Osaka, Japan
| |
Collapse
|
22
|
Saeed MB, Record J, Westerberg LS. Two sides of the coin: Cytoskeletal regulation of immune synapses in cancer and primary immune deficiencies. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 356:1-97. [DOI: 10.1016/bs.ircmb.2020.06.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
23
|
Jaworowska A, Pastorczak A, Trelinska J, Wypyszczak K, Borowiec M, Fendler W, Sedek L, Szczepanski T, Ploski R, Młynarski W. Perforin gene variation influences survival in childhood acute lymphoblastic leukemia. Leuk Res 2018; 65:29-33. [PMID: 29304394 DOI: 10.1016/j.leukres.2017.12.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 11/05/2017] [Accepted: 12/31/2017] [Indexed: 10/18/2022]
Abstract
Although a growing body of data links mutations in the perforin gene with increased susceptibility to hematologic malignancies, no studies discuss their influence on the clinical course of such diseases. The present study examines the impact of perforin gene variation on the clinical outcome in acute lymphoblastic leukemia (ALL) patients. The study enrolled 312 children aged 1-18 years, treated for ALL. PRF1 gene variants were analyzed through direct DNA sequencing. Variation in rs885822 was found to be associated with overall survival: patients carrying the GG genotype demonstrated a significantly increased risk of death compared to those carrying the A allele, independently of ALL risk groups (HR 3.13, 95%CI 1.16-7.8, p = 0.014). The effect was even more pronounced in high-risk ALL patients (p = 0.006). On the other hand, the presence of the rs35947132 minor A allele was slightly protective with regard to overall prognosis (p = 0.047). No differences in relapse-free survival were observed with regard to genotypes. The results of the study may imply that perforin gene variation has a role in modifying mortality in childhood ALL.
Collapse
Affiliation(s)
- Aleksandra Jaworowska
- Department of Pediatrics, Oncology, Hematology and Diabetology, Medical University of Lodz, Lodz, Poland
| | - Agata Pastorczak
- Department of Pediatrics, Oncology, Hematology and Diabetology, Medical University of Lodz, Lodz, Poland
| | - Joanna Trelinska
- Department of Pediatrics, Oncology, Hematology and Diabetology, Medical University of Lodz, Lodz, Poland
| | - Kamila Wypyszczak
- Department of Pediatrics, Oncology, Hematology and Diabetology, Medical University of Lodz, Lodz, Poland
| | - Maciej Borowiec
- Department of Clinical Genetics, Medical University of Lodz, Lodz, Poland
| | - Wojciech Fendler
- Department of Pediatrics, Oncology, Hematology and Diabetology, Medical University of Lodz, Lodz, Poland; Department of Biostatistics & Translational Medicine, Medical University of Lodz, Poland
| | - Lukasz Sedek
- Department of Pediatric Hematology and Oncology, Zabrze, Medical University of Silesia, Katowice, Poland
| | - Tomasz Szczepanski
- Department of Pediatric Hematology and Oncology, Zabrze, Medical University of Silesia, Katowice, Poland
| | - Rafal Ploski
- Department of Clinical Genetics, Medical University of Warsaw, Poland
| | - Wojciech Młynarski
- Department of Pediatrics, Oncology, Hematology and Diabetology, Medical University of Lodz, Lodz, Poland.
| |
Collapse
|
24
|
Willenbring RC, Ikeda Y, Pease LR, Johnson AJ. Human perforin gene variation is geographically distributed. Mol Genet Genomic Med 2017; 6:44-55. [PMID: 29216683 PMCID: PMC5823683 DOI: 10.1002/mgg3.344] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 09/28/2017] [Accepted: 10/09/2017] [Indexed: 01/14/2023] Open
Abstract
Background Deleterious mutations in PRF1 result in lethal, childhood disease, familial hemophagocytic lymphohistiocytosis type 2 (FHL 2). However, not all mutations in PRF1 are deleterious and result in FHL 2. Currently, these nondeleterious mutations are being investigated in the onset of numerous disorders, such as lymphomas and diabetes. Yet, there is still an overwhelmingly large amount of PRF1 mutations that are not associated with disease. Methods We conducted a post hoc analysis of the PRF1 mutations in the coding region using the recently published Exome Aggregation Consortium genomes, Leiden Open Variation Database, NCBI SNP database, and primary literature to better understand PRF1 variation in the human population. Results This study catalogs 460 PRF1 mutations in the coding region, and demonstrates PRF1 is more variant then previously predicted. We identify key PRF1 mutations with high allelic frequency and are only found in certain populations. Additionally, we define PRF1SNVs are geographically distributed. Conclusions This study concludes with a novel hypothesis that nondeleterious mutation in PRF1, which decreases perforin expression and/or activity, may be an example of selective advantage in the context of environmental stressors prevalent near the equator. Our studies illustrate how perforin deficiency can be protective from injuries resulting in blood–brain barrier (BBB) disruption.
Collapse
Affiliation(s)
- Robin C Willenbring
- Mayo Clinic Graduate School of Biomedical Sciences, College of Medicine, Mayo Clinic, Rochester, MN, USA.,Department of Immunology, Mayo Clinic, Rochester, MN, USA
| | - Yasuhiro Ikeda
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Larry R Pease
- Department of Immunology, Mayo Clinic, Rochester, MN, USA
| | - Aaron J Johnson
- Department of Immunology, Mayo Clinic, Rochester, MN, USA.,Department of Neurology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
25
|
Sepulveda FE, de Saint Basile G. Hemophagocytic syndrome: primary forms and predisposing conditions. Curr Opin Immunol 2017; 49:20-26. [PMID: 28866302 DOI: 10.1016/j.coi.2017.08.004] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 08/12/2017] [Indexed: 12/18/2022]
Abstract
Hemophagocytic lymphohistiocytosis (HLH, also referred to a hemophagocytic syndrome) is a life-threatening condition in which uncontrolled activation of lymphocytes and macrophages, and thus the secretion of large amounts of inflammatory cytokines, leads to a severe hyperinflammatory state. Over the last few decades, researchers have characterized primary forms of HLH caused by genetic defects that impair lymphocytes' cytotoxic machinery. Other genetic causes of HLH not related to impaired cytotoxicity have also recently been identified. Furthermore, the so-called 'acquired' forms of HLH are encountered in the context of severe infections, autoimmune and autoinflammatory diseases, malignancy, and metabolic disorders, and may also be associated with primary immunodeficiencies. This implies that a variety of disease mechanisms can lead to HLH. Today's research seeks to gain a better understanding of the various pathogenetic and environmental factors that converge to induce HLH.
Collapse
Affiliation(s)
- Fernando E Sepulveda
- INSERM UMR1163, Laboratory of Normal and Pathological Homeostasis of the Immune System, Paris F-75015, France; Paris Descartes University-Sorbonne Paris Cité, Imagine Institute, Paris F-75015, France
| | - Geneviève de Saint Basile
- INSERM UMR1163, Laboratory of Normal and Pathological Homeostasis of the Immune System, Paris F-75015, France; Paris Descartes University-Sorbonne Paris Cité, Imagine Institute, Paris F-75015, France; Centre d'Etudes des Déficites Immunitaires, Assistance Publique-Hôpitaux de Paris, F-75015, France.
| |
Collapse
|
26
|
Curti V, Di Lorenzo A, Dacrema M, Xiao J, Nabavi SM, Daglia M. In vitro polyphenol effects on apoptosis: An update of literature data. Semin Cancer Biol 2017; 46:119-131. [PMID: 28830771 DOI: 10.1016/j.semcancer.2017.08.005] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 06/07/2017] [Accepted: 08/09/2017] [Indexed: 02/08/2023]
Abstract
Polyphenols are secondary plant metabolites which have been studied extensively for their health-promoting properties, and which could also exert pharmacological activities ranging from anti-inflammatory effects, to cytotoxic activity against cancer cells. The main mechanism for programmed cell death is represented by apoptosis, and its dysregulation is involved in the etiopathology of cancer. As such, substances able to induce apoptosis in cancer cells could be used as new anticancer agents. The aim of this paper is to review literature data on the apoptotic effects of polyphenols and the molecular mechanisms through which they induce these effects in cancer cells. In addition, a brief summary of the new delivery forms used to increase the bioavailability, and clinical impact of polyphenols is provided. The studies reported show that many polyphenol rich plant extracts, originating from food and herbal medicine, as well as isolated polyphenols administered individually or in combination, can regulate cell apoptosis primarily through intrinsic and extrinsic mechanisms of action in in vitro conditions. Due to these promising results, the use of polyphenols in the treatment of cancer should therefore be deeply investigated. In particular, because of the low number of clinical trials, further studies are required to evaluate the anticancer activity of polyphenols in in vivo conditions.
Collapse
Affiliation(s)
- Valeria Curti
- Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy; KOLINPHARMA S.p.A., Lainate, Corso Europa 5, 20020 Lainate, Italy
| | - Arianna Di Lorenzo
- Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy; KOLINPHARMA S.p.A., Lainate, Corso Europa 5, 20020 Lainate, Italy
| | - Marco Dacrema
- Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Jianbo Xiao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Avenida da Universidade, Taipa, Macau
| | - Sayed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, PO Box 19395 5487, Iran.
| | - Maria Daglia
- Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy.
| |
Collapse
|
27
|
Gray PE, Shadur B, Russell S, Mitchell R, Buckley M, Gallagher K, Andrews I, Thia K, Trapani JA, Kirk EP, Voskoboinik I. Late-Onset Non-HLH Presentations of Growth Arrest, Inflammatory Arachnoiditis, and Severe Infectious Mononucleosis, in Siblings with Hypomorphic Defects in UNC13D. Front Immunol 2017; 8:944. [PMID: 28848550 PMCID: PMC5552658 DOI: 10.3389/fimmu.2017.00944] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Accepted: 07/24/2017] [Indexed: 12/13/2022] Open
Abstract
Bi-allelic null mutations affecting UNC13D, STXBP2, or STX11 result in defects of lymphocyte cytotoxic degranulation and commonly cause familial hemophagocytic lymphohistiocytosis (FHL) in early life. Patients with partial loss of function are increasingly being diagnosed after presenting with alternative features of this disease, or with HLH later in life. Here, we studied two sisters with lymphocyte degranulation defects secondary to compound heterozygote missense variants in UNC13D. The older sibling presented aged 11 with linear growth arrest and delayed puberty, 2 years prior to developing transient ischemic attacks secondary to neuroinflammation and hypogammaglobulinemia, but no FHL symptoms. Her geno-identical younger sister was initially asymptomatic but then presented at the same age with severe EBV-driven infectious mononucleosis, which was treated aggressively and did not progress to HLH. The sisters had similar natural killer cell degranulation; however, while cytotoxic activity was moderately reduced in the asymptomatic patient, it was completely absent in both siblings during active disease. Following allogeneic bone marrow transplantation at the age of 15, the older child has completely recovered NK cell cytotoxicity, is asymptomatic, and has experienced an exceptional compensatory growth spurt. Her younger sister was also successfully transplanted and is currently disease free. The current study reveals previously unappreciated manifestations of FHL in patients who inherited hypomorphic gene variants and also raises the important question of whether a threshold of minimum NK function can be defined that should protect a patient from serious disease manifestations such as HLH.
Collapse
Affiliation(s)
- Paul Edgar Gray
- Department of Immunology and Infectious Diseases, Sydney Children's Hospital, Randwick, NSW, Australia
| | - Bella Shadur
- Department of Immunology and Infectious Diseases, Sydney Children's Hospital, Randwick, NSW, Australia
| | - Susan Russell
- Kids Cancer Centre, Sydney Children's Hospital, Randwick, NSW, Australia
| | - Richard Mitchell
- Kids Cancer Centre, Sydney Children's Hospital, Randwick, NSW, Australia
| | - Michael Buckley
- Genetics Laboratory, South Eastern Area Laboratory Services, Randwick, NSW, Australia
| | - Kerri Gallagher
- Department of Immunology, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Ian Andrews
- Department of Neurology, Sydney Children's Hospital, Randwick, NSW, Australia
| | - Kevin Thia
- Cancer Cell Death Laboratory, Cancer Immunology Research, Peter MacCallum Cancer Centre, Melbourne VIC, Australia
| | - Joseph A Trapani
- Cancer Cell Death Laboratory, Cancer Immunology Research, Peter MacCallum Cancer Centre, Melbourne VIC, Australia
| | - Edwin Philip Kirk
- Centre for Clinical Genetics, Sydney Children's Hospital, Randwick, NSW, Australia
| | - Ilia Voskoboinik
- Killer Cell Biology Laboratory, Cancer Immunology Research, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| |
Collapse
|
28
|
Finding a Balance between Protection and Pathology: The Dual Role of Perforin in Human Disease. Int J Mol Sci 2017; 18:ijms18081608. [PMID: 28757574 PMCID: PMC5578000 DOI: 10.3390/ijms18081608] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 07/20/2017] [Accepted: 07/20/2017] [Indexed: 01/08/2023] Open
Abstract
Perforin is critical for controlling viral infection and tumor surveillance. Clinically, mutations in perforin are viewed as unfavorable, as lack of this pore-forming protein results in lethal, childhood disease, familial hemophagocytic lymphohistiocytosis type 2 (FHL 2). However, many mutations in the coding region of PRF1 are not yet associated with disease. Animal models of viral-associated blood–brain barrier (BBB) disruption and experimental cerebral malaria (ECM) have identified perforin as critical for inducing pathologic central nervous system CNS vascular permeability. This review focuses on the role of perforin in both protecting and promoting human disease. It concludes with a novel hypothesis that diversity observed in the PRF1 gene may be an example of selective advantage that protects an individual from perforin-mediated pathology, such as BBB disruption.
Collapse
|
29
|
Souza BMB, De Vito FB, Calado ML, Silva MV, Oliveira LR, Rodrigues-Júnior V, Moraes-Souza H. Evaluation of the cytotoxic response mediated by perforin and granzyme B in patients with non-Hodgkin lymphoma. Leuk Lymphoma 2017; 59:214-220. [PMID: 28679297 DOI: 10.1080/10428194.2017.1341978] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
This study quantified the perforin and granzyme B in patients with non-Hodgkin lymphoma (NHL) at the time of diagnosis. Protein quantification was performed by flow cytometry. NHL patients had a higher number of cytotoxic T lymphocytes (CTLs) expressing perforin as well as a greater number of activated CTLs than the control group. However, intracellular perforin levels in natural killer cells were lower in the NHL patients compared to the control group. Quantitative real time PCR showed that patients had more expression of perforin and granzyme B transcripts compared to the control group. In addition, patients who had expression of both genes below the median found for the NHL group had lower survival rates. Considering this, we believe that perforin and granzyme B are potential prognostic markers in NHL and thus it is fundamental to pay attention to their expressions in these patients.
Collapse
Affiliation(s)
- Bruna Maria Bereta Souza
- a Disciplina de Hematologia e Hemoterapia , Universidade Federal do Triangulo Mineiro , Uberaba , Brazil
| | | | - Marianna Licati Calado
- a Disciplina de Hematologia e Hemoterapia , Universidade Federal do Triangulo Mineiro , Uberaba , Brazil
| | - Marcos Vinícius Silva
- b Disciplina de Imunologia , Universidade Federal do Triangulo Mineiro , Uberaba , Brazil
| | | | | | - Helio Moraes-Souza
- a Disciplina de Hematologia e Hemoterapia , Universidade Federal do Triangulo Mineiro , Uberaba , Brazil
| |
Collapse
|
30
|
Willenbring RC, Jin F, Hinton DJ, Hansen M, Choi DS, Pavelko KD, Johnson AJ. Modulatory effects of perforin gene dosage on pathogen-associated blood-brain barrier (BBB) disruption. J Neuroinflammation 2016; 13:222. [PMID: 27576583 PMCID: PMC5006384 DOI: 10.1186/s12974-016-0673-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 08/17/2016] [Indexed: 11/12/2022] Open
Abstract
Background CD8 T cell-mediated blood-brain barrier (BBB) disruption is dependent on the effector molecule perforin. Human perforin has extensive single nucleotide variants (SNVs), the significance of which is not fully understood. These SNVs can result in reduced, but not ablated, perforin activity or expression. However, complete loss of perforin expression or activity results in the lethal disease familial hemophagocytic lymphohistiocytosis type 2 (FHL 2). In this study, we address the hypothesis that a single perforin allele can alter the severity of BBB disruption in vivo using a well-established model of CNS vascular permeability in C57Bl/6 mice. The results of this study provide insight into the significance of perforin SNVs in the human population. Methods We isolated the effect a single perforin allele has on CNS vascular permeability through the use of perforin-heterozygous (perforin+/−) C57BL/6 mice in the peptide-induced fatal syndrome (PIFS) model of immune-mediated BBB disruption. Seven days following Theiler’s murine encephalomyelitis virus (TMEV) CNS infection, neuroinflammation and TMEV viral control were assessed through flow cytometric analysis and quantitative real-time PCR of the viral genome, respectively. Following immune-mediated BBB disruption, gadolinium-enhanced T1-weighted MRI, with 3D volumetric analysis, and confocal microscopy were used to define CNS vascular permeability. Finally, the open field behavior test was used to assess locomotor activity of mice following immune-mediated BBB disruption. Results Perforin-null mice had negligible CNS vascular permeability. Perforin-WT mice have extensive CNS vascular permeability. Interestingly, perforin-heterozygous mice had an intermediate level of CNS vascular permeability as measured by both gadolinium-enhanced T1-weighted MRI and fibrinogen leakage in the brain parenchyma. Differences in BBB disruption were not a result of increased CNS immune infiltrate. Additionally, TMEV was controlled in a perforin dose-dependent manner. Furthermore, a single perforin allele is sufficient to induce locomotor deficit during immune-mediated BBB disruption. Conclusions Perforin modulates BBB disruption in a dose-dependent manner. This study demonstrates a potentially advantageous role for decreased perforin expression in reducing BBB disruption. This study also provides insight into the effect SNVs in a single perforin allele could have on functional deficit in neurological disease.
Collapse
Affiliation(s)
- Robin C Willenbring
- Mayo Graduate School, Mayo Clinic, Rochester, MN, USA.,Department of Immunology, Mayo Clinic, Rochester, MN, USA
| | - Fang Jin
- Department of Immunology, Mayo Clinic, Rochester, MN, USA
| | - David J Hinton
- Mayo Graduate School, Mayo Clinic, Rochester, MN, USA.,Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Mike Hansen
- Department of Immunology, Mayo Clinic, Rochester, MN, USA
| | - Doo-Sup Choi
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | | | - Aaron J Johnson
- Department of Immunology, Mayo Clinic, Rochester, MN, USA. .,Department of Neurology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
31
|
Khalifa RH, Bahgat DMR, Darwish HAH, Shahin RMH. Significant association between FasL gene -844T/C polymorphism and risk to hepatocellular carcinoma in Egyptian patients. Immunol Lett 2016; 172:84-8. [PMID: 26891954 DOI: 10.1016/j.imlet.2016.02.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 02/12/2016] [Accepted: 02/12/2016] [Indexed: 01/14/2023]
Abstract
Fas/Fas ligand (FasL) system is the most critical apoptotic signaling entity in the extrinsic apoptotic pathway; hence mutations affecting this pathway may prevent the immune system from the removal of newly-formed tumor cells, and thus lead to tumor formation. The present study investigated the association between the FasL -844T/C polymorphism and the risk of hepatocellular carcinoma (HCC) in a cohort of Egyptian patients and explored the relationship of various clinical and pathological parameters with this single nucleotide polymorphism (SNP). Blood samples were withdrawn from hundred HCC patients and 100 age-, sex- and ethnically matched controls. The FasL -844T/C (rs763110) gene polymorphism was typed from genomic DNA using polymerase chain reaction restriction fragment length polymorphism (PCR-RFLP) assay. Genotype distributions and allelic frequencies between patients and control subjects showed that the TT homozygous patients were two times more likely to develop HCC (p=0.011). Also, the T allele was found to be a significant risk factor for the disease (OR 1.970, 95% CI 1.250-3.105, p=0.003). No association was detected between different parameters of the disease and the SNP. For the first time, our results suggest that the -844T/C polymorphism in the FasL gene confers risk to HCC. The alarming increase in the incidence of HCC in Egypt encourages further studies to document our results in a larger sample, and recommends more genetic studies hoping to define a genomic risk prediction specific to this cancer in our population.
Collapse
Affiliation(s)
- Rania H Khalifa
- Department of Clinical & Chemical Pathology, Kasr Al-Ainy, School of Medicine, Cairo University, Egypt.
| | - Dina M Rasheed Bahgat
- Department of Clinical & Chemical Pathology, Kasr Al-Ainy, School of Medicine, Cairo University, Egypt
| | | | | |
Collapse
|
32
|
|
33
|
House IG, Thia K, Brennan AJ, Tothill R, Dobrovic A, Yeh WZ, Saffery R, Chatterton Z, Trapani JA, Voskoboinik I. Heterozygosity for the common perforin mutation, p.A91V, impairs the cytotoxicity of primary natural killer cells from healthy individuals. Immunol Cell Biol 2015; 93:575-80. [DOI: 10.1038/icb.2015.1] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 12/19/2014] [Accepted: 12/21/2014] [Indexed: 02/07/2023]
Affiliation(s)
- Imran G House
- Cancer Immunology Program, Peter MacCallum Cancer Centre East Melbourne Victoria Australia
- Sir Peter MacCallum Department of Oncology Parkville Victoria Australia
- Department of Pathology, University of Melbourne Parkville Victoria Australia
| | - Kevin Thia
- Cancer Immunology Program, Peter MacCallum Cancer Centre East Melbourne Victoria Australia
| | - Amelia J Brennan
- Cancer Immunology Program, Peter MacCallum Cancer Centre East Melbourne Victoria Australia
| | - Richard Tothill
- Cancer Immunology Program, Peter MacCallum Cancer Centre East Melbourne Victoria Australia
- Department of Pathology, University of Melbourne Parkville Victoria Australia
| | - Alexander Dobrovic
- Ludwig Institute for Cancer Research, Olivia Newton‐John Cancer and Wellness Centre Heidelberg (Melbourne) Victoria Australia
| | - Wei Z Yeh
- Cancer Immunology Program, Peter MacCallum Cancer Centre East Melbourne Victoria Australia
| | - Richard Saffery
- Murdoch Children's Research Institute; Department of Paediatrics; The University of Melbourne; Royal Children's Hospital Melbourne Victoria Australia
| | - Zac Chatterton
- Murdoch Children's Research Institute; Department of Paediatrics; The University of Melbourne; Royal Children's Hospital Melbourne Victoria Australia
| | - Joseph A Trapani
- Cancer Immunology Program, Peter MacCallum Cancer Centre East Melbourne Victoria Australia
- Sir Peter MacCallum Department of Oncology Parkville Victoria Australia
- Department of Pathology, University of Melbourne Parkville Victoria Australia
- Department of Immunology and Microbiology Parkville Victoria Australia
| | - Ilia Voskoboinik
- Cancer Immunology Program, Peter MacCallum Cancer Centre East Melbourne Victoria Australia
- Sir Peter MacCallum Department of Oncology Parkville Victoria Australia
- Department of Pathology, University of Melbourne Parkville Victoria Australia
- Department of Genetics, University of Melbourne Parkville Victoria Australia
| |
Collapse
|
34
|
Lalaoui N, Lindqvist LM, Sandow JJ, Ekert PG. The molecular relationships between apoptosis, autophagy and necroptosis. Semin Cell Dev Biol 2015; 39:63-9. [PMID: 25736836 DOI: 10.1016/j.semcdb.2015.02.003] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 01/30/2015] [Accepted: 02/02/2015] [Indexed: 02/08/2023]
Abstract
Cells are constantly subjected to a vast range of potentially lethal insults, which may activate specific molecular pathways that have evolved to kill the cell. Cell death pathways are defined partly by their morphology, and more specifically by the molecules that regulate and enact them. As these pathways become more thoroughly characterized, interesting molecular links between them have emerged, some still controversial and others hinting at the physiological and pathophysiological roles these death pathways play. We describe specific molecular programs controlling cell death, with a focus on some of the distinct features of the pathways and the molecular links between them.
Collapse
Affiliation(s)
- Najoua Lalaoui
- Division of Cell Signalling and Cell Death, Walter and Eliza Hall Institute, 1G Royal Parade, Parkville, Victoria 3050, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria 3050, Australia.
| | - Lisa M Lindqvist
- Division of Cell Signalling and Cell Death, Walter and Eliza Hall Institute, 1G Royal Parade, Parkville, Victoria 3050, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria 3050, Australia.
| | - Jarrod J Sandow
- Division of Cell Signalling and Cell Death, Walter and Eliza Hall Institute, 1G Royal Parade, Parkville, Victoria 3050, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria 3050, Australia.
| | - Paul G Ekert
- Division of Cell Signalling and Cell Death, Walter and Eliza Hall Institute, 1G Royal Parade, Parkville, Victoria 3050, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria 3050, Australia; Murdoch Childrens Research Institute, Royal Children's Hospital, Flemington Rd, Parkville, Victoria 3052, Australia; Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Flemington Rd, Parkville, Victoria 3052, Australia.
| |
Collapse
|
35
|
Benito-Martin A, Di Giannatale A, Ceder S, Peinado H. The new deal: a potential role for secreted vesicles in innate immunity and tumor progression. Front Immunol 2015; 6:66. [PMID: 25759690 PMCID: PMC4338782 DOI: 10.3389/fimmu.2015.00066] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Accepted: 02/02/2015] [Indexed: 12/30/2022] Open
Abstract
Tumors must evade the immune system to survive and metastasize, although the mechanisms that lead to tumor immunoediting and their evasion of immune surveillance are far from clear. The first line of defense against metastatic invasion is the innate immune system that provides immediate defense through humoral immunity and cell-mediated components, mast cells, neutrophils, macrophages, and other myeloid-derived cells that protect the organism against foreign invaders. Therefore, tumors must employ different strategies to evade such immune responses or to modulate their environment, and they must do so prior metastasizing. Exosomes and other secreted vesicles can be used for cell–cell communication during tumor progression by promoting the horizontal transfer of information. In this review, we will analyze the role of such extracellular vesicles during tumor progression, summarizing the role of secreted vesicles in the crosstalk between the tumor and the innate immune system.
Collapse
Affiliation(s)
- Alberto Benito-Martin
- Children's Cancer and Blood Foundation Laboratories, Department of Pediatrics, Weill Cornell Medical College , New York, NY , USA
| | - Angela Di Giannatale
- Children's Cancer and Blood Foundation Laboratories, Department of Pediatrics, Weill Cornell Medical College , New York, NY , USA
| | - Sophia Ceder
- Department of Oncology and Pathology, Karolinska Institutet , Stockholm , Sweden
| | - Héctor Peinado
- Children's Cancer and Blood Foundation Laboratories, Department of Pediatrics, Weill Cornell Medical College , New York, NY , USA ; Microenvironment and Metastasis Laboratory, Department of Molecular Oncology, Spanish National Cancer Research Centre (CNIO) , Madrid , Spain
| |
Collapse
|
36
|
Brennan AJ, House IG, Oliaro J, Ramsbottom KM, Hagn M, Yagita H, Trapani JA, Voskoboinik I. A method for detecting intracellular perforin in mouse lymphocytes. THE JOURNAL OF IMMUNOLOGY 2014; 193:5744-50. [PMID: 25348626 DOI: 10.4049/jimmunol.1402207] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cytotoxic lymphocytes destroy pathogen-infected and transformed cells through the cytotoxic granule exocytosis death pathway, which is dependent on the delivery of proapoptotic granzymes into the target cell cytosol by the pore-forming protein, perforin. Despite the importance of mouse models in understanding the role of cytotoxic lymphocytes in immune-mediated disease and their role in cancer immune surveillance, no reliable intracellular detection method exists for mouse perforin. Consequently, rapid, flow-based assessment of cytotoxic potential has been problematic, and complex assays of function are generally required. In this study, we have developed a novel method for detecting perforin in primary mouse cytotoxic T lymphocytes by immunofluorescence and flow cytometry. We used this new technique to validate perforin colocalization with granzyme B in cytotoxic granules polarized to the immunological synapse, and to assess the expression of perforin in cytotoxic T lymphocytes at various stages of activation. The sensitivity of this technique also allowed us to distinguish perforin levels in Prf1(+/+) and Prf1(+/-) mice. This new methodology will have broad applications and contribute to advances within the fields of lymphocyte biology, infectious disease, and cancer.
Collapse
Affiliation(s)
- Amelia J Brennan
- Cancer Immunology Program, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia;
| | - Imran G House
- Cancer Immunology Program, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Jane Oliaro
- Cancer Immunology Program, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Kelly M Ramsbottom
- Cancer Immunology Program, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia
| | - Magdalena Hagn
- Cancer Immunology Program, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia
| | - Hideo Yagita
- Department of Immunology, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| | - Joseph A Trapani
- Cancer Immunology Program, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria 3010, Australia; Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Ilia Voskoboinik
- Cancer Immunology Program, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria 3010, Australia; Department of Pathology, University of Melbourne, Parkville, Victoria 3010, Australia; and Department of Genetics, University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
37
|
Ding Q, Yang LY. Perforin gene mutations in 77 Chinese patients with lymphomas. World J Emerg Med 2014; 4:128-32. [PMID: 25215106 PMCID: PMC4129835 DOI: 10.5847/wjem.j.issn.1920-8642.2013.02.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 04/04/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND: Perforin gene (PRF1) mutations have been reported in patients with lymphoma, but the prevalence and characteristics of PRF1 mutation have not been identified in Chinese patients with lymphoma. METHODS: Seventy-seven patients with lymphoma, including 6 patients with Hodgkin lymphoma and 71 patients with non-Hodgkin lymphoma, were recruited. DNA samples from peripheral blood were used for PRF1 mutation detection by the PCR-sequencing method. RESULTS: Eleven novel PRF1 mutations were found in 8 of the 77 patients with lymphoma. Biallelic or compound monoallelic missense mutations in 3 patients indicated the severe impairment of perforin function, monoallelic missense mutations in 3 patients possibly contributed a genetic predisposition to malignancies, and synonymous mutations in 2 patients showed unknown significance. CONCLUSIONS: The frequency of EBV infection was similar in lymphoma patients with PRF1 mutations and those without the mutations. The same PRF1 mutations were also found in DNA samples from nails or hair follicles from 4 patients with PRF1 mutations, suggesting that these mutations may be of germ-line origin.
Collapse
Affiliation(s)
- Qi Ding
- Department of Hematology, Peking University First Hospital, Beijing, China
| | - Li-Yun Yang
- Department of Hematology, Peking University First Hospital, Beijing, China ; Department of Clinical Laboratory, General Hospital of Armed Police, Beijing, China
| |
Collapse
|
38
|
Cichocki F, Schlums H, Li H, Stache V, Holmes T, Lenvik TR, Chiang SCC, Miller JS, Meeths M, Anderson SK, Bryceson YT. Transcriptional regulation of Munc13-4 expression in cytotoxic lymphocytes is disrupted by an intronic mutation associated with a primary immunodeficiency. J Exp Med 2014; 211:1079-91. [PMID: 24842371 PMCID: PMC4042637 DOI: 10.1084/jem.20131131] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 04/11/2014] [Indexed: 11/16/2022] Open
Abstract
Autosomal recessive mutations in UNC13D, the gene that encodes Munc13-4, are associated with familial hemophagocytic lymphohistiocytosis type 3 (FHL3). Munc13-4 expression is obligatory for exocytosis of lytic granules, facilitating cytotoxicity by T cells and natural killer (NK) cells. The mechanisms regulating Munc13-4 expression are unknown. Here, we report that Munc13-4 is highly expressed in differentiated human NK cells and effector CD8(+) T lymphocytes. A UNC13D c.118-308C>T mutation, causative of FHL3, disrupted binding of the ETS family member ELF1 to a conserved intronic sequence. This mutation impairs UNC13D intron 1 recruitment of STAT4 and the chromatin remodeling complex component BRG1, diminishing active histone modifications at the locus. The intronic sequence acted as an overall enhancer of Munc13-4 expression in cytotoxic lymphocytes in addition to representing an alternative promoter encoding a novel Munc13-4 isoform. Mechanistically, T cell receptor engagement facilitated STAT4-dependent Munc13-4 expression in naive CD8(+) T lymphocytes. Collectively, our data demonstrates how chromatin remodeling within an evolutionarily conserved regulatory element in intron 1 of UNC13D regulates the induction of Munc13-4 expression in cytotoxic lymphocytes and suggests that an alternative Munc13-4 isoform is required for lymphocyte cytotoxicity. Thus, mutations associated with primary immunodeficiencies may cause disease by disrupting transcription factor binding.
Collapse
Affiliation(s)
- Frank Cichocki
- Centre for Infectious Medicine, Department of Medicine; Clinical Genetics Unit, Department of Molecular Medicine and Surgery, and Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, 141 86 Stockholm, Sweden Division of Hematology, Oncology and Transplantation, University of Minnesota Cancer Center, Minneapolis, MN 55455
| | - Heinrich Schlums
- Centre for Infectious Medicine, Department of Medicine; Clinical Genetics Unit, Department of Molecular Medicine and Surgery, and Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, 141 86 Stockholm, Sweden
| | - Hongchuan Li
- Basic Science Program, Leidos Biomedical Research, Inc., Laboratory of Experimental Immunology, SAIC-Frederick Inc., Frederick National Laboratory, Frederick, MD 21702
| | - Vanessa Stache
- Centre for Infectious Medicine, Department of Medicine; Clinical Genetics Unit, Department of Molecular Medicine and Surgery, and Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, 141 86 Stockholm, Sweden
| | - Timothy Holmes
- Centre for Infectious Medicine, Department of Medicine; Clinical Genetics Unit, Department of Molecular Medicine and Surgery, and Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, 141 86 Stockholm, Sweden
| | - Todd R Lenvik
- Division of Hematology, Oncology and Transplantation, University of Minnesota Cancer Center, Minneapolis, MN 55455
| | - Samuel C C Chiang
- Centre for Infectious Medicine, Department of Medicine; Clinical Genetics Unit, Department of Molecular Medicine and Surgery, and Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, 141 86 Stockholm, Sweden
| | - Jeffrey S Miller
- Division of Hematology, Oncology and Transplantation, University of Minnesota Cancer Center, Minneapolis, MN 55455
| | - Marie Meeths
- Centre for Infectious Medicine, Department of Medicine; Clinical Genetics Unit, Department of Molecular Medicine and Surgery, and Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, 141 86 Stockholm, Sweden Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Karolinska University Hospital Solna, 171 76 Stockholm, Sweden
| | - Stephen K Anderson
- Basic Science Program, Leidos Biomedical Research, Inc., Laboratory of Experimental Immunology, SAIC-Frederick Inc., Frederick National Laboratory, Frederick, MD 21702
| | - Yenan T Bryceson
- Centre for Infectious Medicine, Department of Medicine; Clinical Genetics Unit, Department of Molecular Medicine and Surgery, and Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, 141 86 Stockholm, Sweden Broegelmann Research Laboratory, Clinical Institute, University of Bergen, N-5021 Bergen, Norway
| |
Collapse
|
39
|
Manso R, Rodríguez-Pinilla SM, Lombardia L, Ruiz de Garibay G, del Mar López M, Requena L, Sánchez L, Sánchez-Beato M, Piris MÁ. An A91V SNP in the perforin gene is frequently found in NK/T-cell lymphomas. PLoS One 2014; 9:e91521. [PMID: 24632576 PMCID: PMC3954696 DOI: 10.1371/journal.pone.0091521] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 02/12/2014] [Indexed: 12/24/2022] Open
Abstract
NK/T-cell lymphoma (NKTCL) is the most frequent EBV-related NK/T-cell disease. Its clinical manifestations overlap with those of familial haemophagocytic lymphohistiocytosis (FHLH). Since PERFORIN (PRF1) mutations are present in FHLH, we analysed its role in a series of 12 nasal and 12 extranasal-NKTCLs. 12.5% of the tumours and 25% of the nasal-origin cases had the well-known g.272C>T(p.Ala91Val) pathogenic SNP, which confers a poor prognosis. Two of these cases had a double-CD4/CD8-positive immunophenotype, although no correlation was found with perforin protein expression. p53 was overexpressed in 20% of the tumoral samples, 80% of which were of extranasal origin, while none showed PRF1 SNVs. These results suggest that nasal and extranasal NKTCLs have different biological backgrounds, although this requires validation.
Collapse
Affiliation(s)
- Rebeca Manso
- Pathology Department, Fundación Jiménez Díaz, Madrid, Spain
| | - Socorro María Rodríguez-Pinilla
- Pathology Department, Fundación Jiménez Díaz, Madrid, Spain
- Molecular Pathology Programme, Lymphoma Group, CNIO, Madrid, Spain
- * E-mail:
| | - Luis Lombardia
- Clinical Research Programme, Molecular Diagnostics Clinical Research Unit, CNIO, Madrid, Spain
| | - Gorka Ruiz de Garibay
- Molecular Pathology Programme, Lymphoma Group, CNIO, Madrid, Spain
- Clinical Immunology Department, Hospital Clínico de San Carlos, Madrid, Spain
| | - Maria del Mar López
- Molecular Pathology Programme, Lymphoma Group, CNIO, Madrid, Spain
- Biotechnology Programme, Monoclonal Antibodies Unit, CNIO, Madrid, Spain
| | - Luis Requena
- Dermatology Department, Fundación Jimenez Díaz, Madrid, Spain
| | - Lydia Sánchez
- Biotechnology Programme, Immunohistochemistry Unit, CNIO, Madrid, Spain
| | - Margarita Sánchez-Beato
- Molecular Pathology Programme, Lymphoma Group, CNIO, Madrid, Spain
- Oncology-Haematology Area, Instituto Investigación Sanitaria, Hospital Universitario Puerta de Hierro-Majadahonda, Madrid, Spain
| | - Miguel Ángel Piris
- Molecular Pathology Programme, Lymphoma Group, CNIO, Madrid, Spain
- Pathology Department, Hospital Universitario Marqués de Valdecilla, Universidad de Cantabria, IFIMAV, Santander, Spain
| |
Collapse
|
40
|
Jansen R, Batista S, Brooks AI, Tischfield JA, Willemsen G, van Grootheest G, Hottenga JJ, Milaneschi Y, Mbarek H, Madar V, Peyrot W, Vink JM, Verweij CL, de Geus EJC, Smit JH, Wright FA, Sullivan PF, Boomsma DI, Penninx BWJH. Sex differences in the human peripheral blood transcriptome. BMC Genomics 2014; 15:33. [PMID: 24438232 PMCID: PMC3904696 DOI: 10.1186/1471-2164-15-33] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 01/14/2014] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Genomes of men and women differ in only a limited number of genes located on the sex chromosomes, whereas the transcriptome is far more sex-specific. Identification of sex-biased gene expression will contribute to understanding the molecular basis of sex-differences in complex traits and common diseases. RESULTS Sex differences in the human peripheral blood transcriptome were characterized using microarrays in 5,241 subjects, accounting for menopause status and hormonal contraceptive use. Sex-specific expression was observed for 582 autosomal genes, of which 57.7% was upregulated in women (female-biased genes). Female-biased genes were enriched for several immune system GO categories, genes linked to rheumatoid arthritis (16%) and genes regulated by estrogen (18%). Male-biased genes were enriched for genes linked to renal cancer (9%). Sex-differences in gene expression were smaller in postmenopausal women, larger in women using hormonal contraceptives and not caused by sex-specific eQTLs, confirming the role of estrogen in regulating sex-biased genes. CONCLUSIONS This study indicates that sex-bias in gene expression is extensive and may underlie sex-differences in the prevalence of common diseases.
Collapse
Affiliation(s)
- Rick Jansen
- Department of Psychiatry, VU University Medical Center, Neuroscience Campus Amsterdam, Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Granzyme M: behind enemy lines. Cell Death Differ 2014; 21:359-68. [PMID: 24413154 DOI: 10.1038/cdd.2013.189] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 11/12/2013] [Accepted: 11/27/2013] [Indexed: 11/08/2022] Open
Abstract
The granule-exocytosis pathway is the major mechanism via which cytotoxic lymphocytes eliminate virus-infected and tumor cells. In this pathway, cytotoxic lymphocytes release granules containing the pore-forming protein perforin and a family of serine proteases known as granzymes into the immunological synapse. Pore-formation by perforin facilitates entry of granzymes into the target cell, where they can activate various (death) pathways. Humans express five different granzymes, of which granzymes A and B have been most extensively characterized. However, much less is known about granzyme M (GrM). Recently, structural analysis and advanced proteomics approaches have determined the primary and extended specificity of GrM. GrM functions have expanded over the past few years: not only can GrM efficiently induce cell death in tumor cells, it can also inhibit cytomegalovirus replication in a noncytotoxic manner. Finally, a role for GrM in lipopolysaccharide-induced inflammatory responses has been proposed. In this review, we recapitulate the current status of GrM expression, substrate specificity, functions, and inhibitors.
Collapse
|
42
|
Abstract
Natural killer (NK) cells and cytotoxic T lymphocytes (CTL) use a highly toxic pore-forming protein perforin (PFN) to destroy cells infected with intracellular pathogens and cells with pre-cancerous transformations. However, mutations of PFN and defects in its expression can cause an abnormal function of the immune system and difficulties in elimination of altered cells. As discussed in this chapter, deficiency of PFN due to the mutations of its gene, PFN1, can be associated with malignancies and severe immune disorders such as familial hemophagocytic lymphohistiocytosis (FHL) and macrophage activation syndrome. On the other hand, overactivity of PFN can turn the immune system against autologous cells resulting in other diseases such as systemic lupus erythematosus, polymyositis, rheumatoid arthritis and cutaneous inflammation. PFN also has a crucial role in the cellular rejection of solid organ allografts and destruction of pancreatic β-cells resulting in type 1 diabetes. These facts highlight the importance of understanding the biochemical characteristics of PFN.
Collapse
Affiliation(s)
- Omar Naneh
- Laboratory for Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia
| | | | | |
Collapse
|
43
|
An O, Gursoy A, Gurgey A, Keskin O. Structural and functional analysis of perforin mutations in association with clinical data of familial hemophagocytic lymphohistiocytosis type 2 (FHL2) patients. Protein Sci 2013; 22:823-39. [PMID: 23592409 DOI: 10.1002/pro.2265] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Revised: 03/28/2013] [Accepted: 04/03/2013] [Indexed: 11/07/2022]
Abstract
Perforin plays a key role in the immune system via pore formation at the target cell membrane in the elimination of virus-infected and transformed cells. A vast number of observed mutations in perforin impair this mechanism resulting in a rare but fatal disease, familial hemophagocytic lymphohistiocytosis type 2 (FHL2). Here we report a comprehensive in silico structural analysis of a collection of 76 missense perforin mutations based on a proposed pore model. In our model, perforin monomers oligomerize having cyclic symmetry in consistent with previously found experimental constraints yet having flexibility in the size of the pore and the number of monomers involved. Clusters of the mutations on the model map to three distinct functional regions of the perforin. Calculated stability (free energy) changes show that the mutations mainly destabilize the protein structure, interestingly however, A91V polymorphism, leads to a more stable one. Structural characteristics of mutations help explain the severe functional consequences on perforin deficient patients. Our study provides a structural approach to the mutation effects on the perforin oligomerization and impaired cytotoxic function in FHL2 patients.
Collapse
Affiliation(s)
- Omer An
- Center for Computational Biology and Bioinformatics, College of Engineering, Koc University, Rumelifeneri Yolu, Sariyer, Istanbul, Turkey
| | | | | | | |
Collapse
|
44
|
Ives ML, Ma CS, Palendira U, Chan A, Bustamante J, Boisson-Dupuis S, Arkwright PD, Engelhard D, Averbuch D, Magdorf K, Roesler J, Peake J, Wong M, Adelstein S, Choo S, Smart JM, French MA, Fulcher DA, Cook MC, Picard C, Durandy A, Tsumura M, Kobayashi M, Uzel G, Casanova JL, Tangye SG, Deenick EK. Signal transducer and activator of transcription 3 (STAT3) mutations underlying autosomal dominant hyper-IgE syndrome impair human CD8(+) T-cell memory formation and function. J Allergy Clin Immunol 2013; 132:400-11.e9. [PMID: 23830147 PMCID: PMC3785237 DOI: 10.1016/j.jaci.2013.05.029] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 05/16/2013] [Accepted: 05/16/2013] [Indexed: 12/15/2022]
Abstract
BACKGROUND The capacity of CD8(+) T cells to control infections and mediate antitumor immunity requires the development and survival of effector and memory cells. IL-21 has emerged as a potent inducer of CD8(+) T-cell effector function and memory development in mouse models of infectious disease. However, the role of IL-21 and associated signaling pathways in protective CD8(+) T-cell immunity in human subjects is unknown. OBJECTIVE We sought to determine which signaling pathways mediate the effects of IL-21 on human CD8(+) T cells and whether defects in these pathways contribute to disease pathogenesis in patients with primary immunodeficiencies caused by mutations in components of the IL-21 signaling cascade. METHODS Human primary immunodeficiencies resulting from monogenic mutations provide a unique opportunity to assess the requirement for particular molecules in regulating human lymphocyte function. Lymphocytes from patients with loss-of-function mutations in signal transducer and activator of transcription 1 (STAT1), STAT3, or IL-21 receptor (IL21R) were used to assess the respective roles of these genes in human CD8(+) T-cell differentiation in vivo and in vitro. RESULTS Mutations in STAT3 and IL21R, but not STAT1, led to a decrease in multiple memory CD8(+) T-cell subsets in vivo, indicating that STAT3 signaling, possibly downstream of IL-21R, regulates the memory cell pool. Furthermore, STAT3 was important for inducing the lytic machinery in IL-21-stimulated naive CD8(+) T cells. However, this defect was overcome by T-cell receptor engagement. CONCLUSION The IL-21R/STAT3 pathway is required for many aspects of human CD8(+) T-cell behavior but in some cases can be compensated by other signals. This helps explain the relatively mild susceptibility to viral disease observed in STAT3- and IL-21R-deficient subjects.
Collapse
Affiliation(s)
- Megan L Ives
- Immunology Research Program, Garvan Institute of Medical Research, Darlinghurst, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Modulation of tumor immunity by soluble and membrane-bound molecules at the immunological synapse. Clin Dev Immunol 2013; 2013:450291. [PMID: 23533456 PMCID: PMC3606757 DOI: 10.1155/2013/450291] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Accepted: 01/15/2013] [Indexed: 12/31/2022]
Abstract
To circumvent pathology caused by infectious microbes and tumor growth, the host immune system must constantly clear harmful microorganisms and potentially malignant transformed cells. This task is accomplished in part by T-cells, which can directly kill infected or tumorigenic cells. A crucial event determining the recognition and elimination of detrimental cells is antigen recognition by the T cell receptor (TCR) expressed on the surface of T cells. Upon binding of the TCR to cognate peptide-MHC complexes presented on the surface of antigen presenting cells (APCs), a specialized supramolecular structure known as the immunological synapse (IS) assembles at the T cell-APC interface. Such a structure involves massive redistribution of membrane proteins, including TCR/pMHC complexes, modulatory receptor pairs, and adhesion molecules. Furthermore, assembly of the immunological synapse leads to intracellular events that modulate and define the magnitude and characteristics of the T cell response. Here, we discuss recent literature on the regulation and assembly of IS and the mechanisms evolved by tumors to modulate its function to escape T cell cytotoxicity, as well as novel strategies targeting the IS for therapy.
Collapse
|
46
|
Lopez JA, Brennan AJ, Whisstock JC, Voskoboinik I, Trapani JA. Protecting a serial killer: pathways for perforin trafficking and self-defence ensure sequential target cell death. Trends Immunol 2012; 33:406-12. [PMID: 22608996 DOI: 10.1016/j.it.2012.04.001] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Revised: 03/14/2012] [Accepted: 04/02/2012] [Indexed: 11/28/2022]
Abstract
Considerable progress has been made in understanding how cytotoxic lymphocytes use the highly toxic pore-forming protein perforin to eliminate dangerous cells, while remaining refractory to lysis. At least two mechanisms jointly preserve the killer cell: the C-terminal residues of perforin dictate its rapid export from the endoplasmic reticulum (ER), whose milieu otherwise favours pore formation; perforin is then stored in secretory granules whose acidity prevent its oligomerisation. Following exocytosis, perforin delivers the proapoptotic protease, granzyme B, into the target cell by disrupting its plasma membrane. Although the precise mechanism of perforin/granzyme synergy remains controversial, the recently defined crystal structure of the perforin monomer and cryo-electron microscopy (EM) of the entire pore suggest that passive transmembrane granzyme diffusion is the dominant proapoptotic mechanism.
Collapse
Affiliation(s)
- Jamie A Lopez
- Peter MacCallum Cancer Centre, East Melbourne, 3002, Victoria, Australia
| | | | | | | | | |
Collapse
|
47
|
Spicer JA, Huttunen KM, Miller CK, Denny WA, Ciccone A, Browne KA, Trapani JA. Inhibition of the pore-forming protein perforin by a series of aryl-substituted isobenzofuran-1(3H)-ones. Bioorg Med Chem 2011; 20:1319-36. [PMID: 22244072 DOI: 10.1016/j.bmc.2011.12.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2011] [Revised: 12/05/2011] [Accepted: 12/07/2011] [Indexed: 12/28/2022]
Abstract
An aryl-substituted isobenzofuran-1(3H)-one lead compound was identified from a high throughput screen designed to find inhibitors of the lymphocyte pore-forming protein perforin. A series of analogs were then designed and prepared, exploring structure-activity relationships through variation of 2-thioxoimidazolidin-4-one and furan subunits on an isobenzofuranone core. The ability of the resulting compounds to inhibit the lytic activity of both isolated perforin protein and perforin delivered in situ by intact KHYG-1 natural killer effector cells was determined. Several compounds showed excellent activity at concentrations that were non-toxic to the killer cells. This series represents a significant improvement on previous classes of compounds, being substantially more potent and largely retaining activity in the presence of serum.
Collapse
Affiliation(s)
- Julie A Spicer
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
Mutations in the perforin gene (PRF1) are a common cause of the fatal immune dysregulation disorder, familial hemophagocytic lymphohistiocytosis (type 2 FHL, FHL2). Here we report a female infant born with biallelic PRF1 mutations: a novel substitution, D49N, and a previously identified in-frame deletion, K285del. We assessed the effects of each mutation on the cytotoxicity of human NK cells in which the expression of endogenous perforin was ablated with miR30-based short hairpin (sh) RNAs. Both mutations were detrimental for function, thereby explaining the clinically severe presentation and rapidly fatal outcome. We demonstrate that D49N exerts its deleterious effect by generating an additional (third) N-linked glycosylation site, resulting in protein misfolding and degradation in the killer cell. Our data provide a rationale for treating some cases of type 2 familial hemophagocytic lymphohistiocytosis, based on the pharmacologic inhibition or modification of glycosylation.
Collapse
|
49
|
Rizzo A, Pallone F, Monteleone G, Fantini MC. Intestinal inflammation and colorectal cancer: A double-edged sword? World J Gastroenterol 2011; 17:3092-100. [PMID: 21912451 PMCID: PMC3158408 DOI: 10.3748/wjg.v17.i26.3092] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2010] [Revised: 09/30/2010] [Accepted: 10/07/2010] [Indexed: 02/06/2023] Open
Abstract
Chronic inflammation is thought to be the leading cause of many human cancers including colorectal cancer (CRC). Accordingly, epidemiologic and clinical studies indicate that patients affected by ulcerative colitis and Crohn’s disease, the two major forms of inflammatory bowel disease, have an increased risk of developing CRC. In recent years, the role of immune cells and their products have been shown to be pivotal in initiation and progression of colitis-associated CRC. On the other hand, activation of the immune system has been shown to cause dysplastic cell elimination and cancer suppression in other settings. Clinical and experimental data herein reviewed, while confirming chronic inflammation as a risk factor for colon carcinogenesis, do not completely rule out the possibility that under certain conditions the chronic activation of the mucosal immune system might protect from colonic dysplasia.
Collapse
|
50
|
Brennan AJ, Chia J, Browne KA, Ciccone A, Ellis S, Lopez JA, Susanto O, Verschoor S, Yagita H, Whisstock JC, Trapani JA, Voskoboinik I. Protection from endogenous perforin: glycans and the C terminus regulate exocytic trafficking in cytotoxic lymphocytes. Immunity 2011; 34:879-92. [PMID: 21658975 DOI: 10.1016/j.immuni.2011.04.007] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Revised: 01/18/2011] [Accepted: 04/07/2011] [Indexed: 11/15/2022]
Abstract
Cytotoxic lymphocyte-mediated apoptosis is dependent on the delivery of perforin to secretory granules and its ability to form calcium-dependent pores in the target cell after granule exocytosis. It is unclear how cytotoxic lymphocytes synthesize and store perforin without incurring damage or death. We discovered that the extreme C terminus of perforin was essential for rapid trafficking from the endoplasmic reticulum to the Golgi compartment. Substitution of the C-terminal tryptophan residue resulted in retention of perforin in the ER followed by calcium-dependent toxic activity that eliminated host cells. We also found that N-linked glycosylation of perforin was critical for transport from the Golgi to secretory granules. Overall, an intact C terminus and N-linked glycosylation provide accurate and efficient export of perforin from the endoplasmic reticulum to the secretory granules and are critical for cytotoxic lymphocyte survival.
Collapse
Affiliation(s)
- Amelia J Brennan
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, 3002, Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|