1
|
Jahan-Mihan A, Leftwich J, Berg K, Labyak C, Nodarse RR, Allen S, Griggs J. The Impact of Parental Preconception Nutrition, Body Weight, and Exercise Habits on Offspring Health Outcomes: A Narrative Review. Nutrients 2024; 16:4276. [PMID: 39770898 PMCID: PMC11678361 DOI: 10.3390/nu16244276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/06/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
An increasing number of studies highlight the critical role of both maternal and paternal nutrition and body weight before conception in shaping offspring health. Traditionally, research has focused on maternal factors, particularly in utero exposures, as key determinants of chronic disease development. However, emerging evidence underscores the significant influence of paternal preconception health on offspring metabolic outcomes. While maternal health remains vital, with preconception nutrition playing a pivotal role in fetal development, paternal obesity and poor nutrition are linked to increased risks of metabolic disorders, including type 2 diabetes and cardiovascular disease in children. This narrative review aims to synthesize recent findings on the effects of both maternal and paternal preconception health, emphasizing the need for integrated early interventions. The literature search utilized PubMed, UNF One Search, and Google Scholar, focusing on RCTs; cohort, retrospective, and animal studies; and systematic reviews, excluding non-English and non-peer-reviewed articles. The findings of this review indicate that paternal effects are mediated by epigenetic changes in sperm, such as DNA methylation and non-coding RNA, which influence gene expression in offspring. Nutrient imbalances during preconception in both parents can lead to low birth weight and increased metabolic disease risk, while deficiencies in folic acid, iron, iodine, and vitamin D are linked to developmental disorders. Additionally, maternal obesity elevates the risk of chronic diseases in children. Future research should prioritize human studies to explore the influence of parental nutrition, body weight, and lifestyle on offspring health, ensuring findings are applicable across diverse populations. By addressing both maternal and paternal factors, healthcare providers can better reduce the prevalence of metabolic syndrome and its associated risks in future generations.
Collapse
Affiliation(s)
- Alireza Jahan-Mihan
- Department of Nutrition and Dietetics, University of North Florida, 1 UNF Dr., Jacksonville, FL 32224, USA; (J.L.); (K.B.); (C.L.); (R.R.N.)
| | - Jamisha Leftwich
- Department of Nutrition and Dietetics, University of North Florida, 1 UNF Dr., Jacksonville, FL 32224, USA; (J.L.); (K.B.); (C.L.); (R.R.N.)
| | - Kristin Berg
- Department of Nutrition and Dietetics, University of North Florida, 1 UNF Dr., Jacksonville, FL 32224, USA; (J.L.); (K.B.); (C.L.); (R.R.N.)
| | - Corinne Labyak
- Department of Nutrition and Dietetics, University of North Florida, 1 UNF Dr., Jacksonville, FL 32224, USA; (J.L.); (K.B.); (C.L.); (R.R.N.)
| | - Reniel R. Nodarse
- Department of Nutrition and Dietetics, University of North Florida, 1 UNF Dr., Jacksonville, FL 32224, USA; (J.L.); (K.B.); (C.L.); (R.R.N.)
| | - Sarah Allen
- Greenleaf Behavioral Health, 2209 Pineview Dr., Valdosta, GA 31602, USA;
| | | |
Collapse
|
2
|
Pastore A, Badolati N, Manfrevola F, Sagliocchi S, Laurenzi V, Musto G, Porreca V, Murolo M, Chioccarelli T, Ciampaglia R, Vellecco V, Bucci M, Dentice M, Cobellis G, Stornaiuolo M. N-acetyl-L-cysteine reduces testis ROS in obese fathers but fails in protecting offspring from acquisition of epigenetic traits at cyp19a1 and IGF11/H19 ICR loci. Front Cell Dev Biol 2024; 12:1450580. [PMID: 39493346 PMCID: PMC11527676 DOI: 10.3389/fcell.2024.1450580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 10/10/2024] [Indexed: 11/05/2024] Open
Abstract
Introduction Paternal nutrition before conception has a marked impact on offspring's risk of developing metabolic disorders during adulthood. Research on human cohorts and animal models has shown that paternal obesity alters sperm epigenetics (DNA methylation, protamine-to-histone replacement, and non-coding RNA content), leading to adverse health outcomes in the offspring. So far, the mechanistic events that translate paternal nutrition into sperm epigenetic changes remain unclear. High-fat diet (HFD)-driven paternal obesity increases gonadic Reactive Oxygen Species (ROS), which modulate enzymes involved in epigenetic modifications of DNA during spermatogenesis. Thus, the gonadic pool of ROS might be responsible for transducing paternal health status to the zygote through germ cells. Methods The involvement of ROS in paternal intergenerational transmission was assessed by modulating the gonadic ROS content in male mice. Testicular oxidative stress induced by HFD was counterbalanced by N-acetylcysteine (NAC), an antioxidant precursor of GSH. The sires were divided into four feeding groups: i) control diet; ii) HFD; iii) control diet in the presence of NAC; and iv) HFD in the presence of NAC. After 8 weeks, males were mated with females that were fed a control diet. Antioxidant treatment was then evaluated in terms of preventing the HFD-induced transmission of dysmetabolic traits from obese fathers to their offspring. The offspring were weaned onto a regular control diet until week 16 and then underwent metabolic evaluation. The methylation status of the genomic region IGFII/H19 and cyp19a1 in the offspring gDNA was also assessed using Sanger sequencing and methylation-dependent qPCR. Results Supplementation with NAC protected sires from HFD-induced weight gain, hyperinsulinemia, and glucose intolerance. NAC reduced oxidative stress in the gonads of obese fathers and improved sperm viability. However, NAC did not prevent the transmission of epigenetic modifications from father to offspring. Male offspring of HFD-fed fathers, regardless of NAC treatment, exhibited hyperinsulinemia, glucose intolerance, and hypoandrogenism. Additionally, they showed altered methylation at the epigenetically controlled loci IGFII/H19 and cy19a1. Conclusion Although NAC supplementation improved the health status and sperm quality of HFD-fed male mice, it did not prevent the epigenetic transmission of metabolic disorders to their offspring. Different NAC dosages and antioxidants other than NAC might represent alternatives to stop the intergenerational transmission of paternal dysmetabolic traits.
Collapse
Affiliation(s)
- Arianna Pastore
- Department of Pharmacy, University of Naples “Federico II”, Naples, Italy
| | - Nadia Badolati
- Department of Pharmacy, University of Naples “Federico II”, Naples, Italy
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Francesco Manfrevola
- Department of Experimental Medicine, University della Campania “Luigi Vanvitelli”, Naples, Italy
| | | | - Valentina Laurenzi
- Department of Pharmacy, University of Naples “Federico II”, Naples, Italy
| | - Giorgia Musto
- Department of Pharmacy, University of Naples “Federico II”, Naples, Italy
| | - Veronica Porreca
- Department of Experimental Medicine, University della Campania “Luigi Vanvitelli”, Naples, Italy
| | - Melania Murolo
- Department of Clinical Medicine and Surgery, Naples, Italy
| | - Teresa Chioccarelli
- Department of Experimental Medicine, University della Campania “Luigi Vanvitelli”, Naples, Italy
| | - Roberto Ciampaglia
- Department of Pharmacy, University of Naples “Federico II”, Naples, Italy
| | - Valentina Vellecco
- Department of Pharmacy, University of Naples “Federico II”, Naples, Italy
| | - Mariarosaria Bucci
- Department of Pharmacy, University of Naples “Federico II”, Naples, Italy
| | - Monica Dentice
- Department of Clinical Medicine and Surgery, Naples, Italy
| | - Gilda Cobellis
- Department of Experimental Medicine, University della Campania “Luigi Vanvitelli”, Naples, Italy
| | | |
Collapse
|
3
|
Negi CK, Bláhová L, Phan A, Bajard L, Blaha L. Triphenyl Phosphate Alters Methyltransferase Expression and Induces Genome-Wide Aberrant DNA Methylation in Zebrafish Larvae. Chem Res Toxicol 2024; 37:1549-1561. [PMID: 39205618 PMCID: PMC11409374 DOI: 10.1021/acs.chemrestox.4c00223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Emerging environmental contaminants, organophosphate flame retardants (OPFRs), pose significant threats to ecosystems and human health. Despite numerous studies reporting the toxic effects of OPFRs, research on their epigenetic alterations remains limited. In this study, we investigated the effects of exposure to 2-ethylhexyl diphenyl phosphate (EHDPP), tricresyl phosphate (TMPP), and triphenyl phosphate (TPHP) on DNA methylation patterns during zebrafish embryonic development. We assessed general toxicity and morphological changes, measured global DNA methylation and hydroxymethylation levels, and evaluated DNA methyltransferase (DNMT) enzyme activity, as well as mRNA expression of DNMTs and ten-eleven translocation (TET) methylcytosine dioxygenase genes. Additionally, we analyzed genome-wide methylation patterns in zebrafish larvae using reduced-representation bisulfite sequencing. Our morphological assessment revealed no general toxicity, but a statistically significant yet subtle decrease in body length following exposure to TMPP and EHDPP, along with a reduction in head height after TPHP exposure, was observed. Eye diameter and head width were unaffected by any of the OPFRs. There were no significant changes in global DNA methylation levels in any exposure group, and TMPP showed no clear effect on DNMT expression. However, EHDPP significantly decreased only DNMT1 expression, while TPHP exposure reduced the expression of several DNMT orthologues and TETs in zebrafish larvae, leading to genome-wide aberrant DNA methylation. Differential methylation occurred primarily in introns (43%) and intergenic regions (37%), with 9% and 10% occurring in exons and promoter regions, respectively. Pathway enrichment analysis of differentially methylated region-associated genes indicated that TPHP exposure enhanced several biological and molecular functions corresponding to metabolism and neurological development. KEGG enrichment analysis further revealed TPHP-mediated potential effects on several signaling pathways including TGFβ, cytokine, and insulin signaling. This study identifies specific changes in DNA methylation in zebrafish larvae after TPHP exposure and brings novel insights into the epigenetic mode of action of TPHP.
Collapse
Affiliation(s)
- Chander K Negi
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, 611 37 Brno, Czech Republic
| | - Lucie Bláhová
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, 611 37 Brno, Czech Republic
| | - Audrey Phan
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, 611 37 Brno, Czech Republic
| | - Lola Bajard
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, 611 37 Brno, Czech Republic
| | - Ludek Blaha
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, 611 37 Brno, Czech Republic
| |
Collapse
|
4
|
Farooqi IS, Xu Y. Translational potential of mouse models of human metabolic disease. Cell 2024; 187:4129-4143. [PMID: 39067442 DOI: 10.1016/j.cell.2024.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/05/2024] [Accepted: 07/05/2024] [Indexed: 07/30/2024]
Abstract
Obesity causes significant morbidity and mortality globally. Research in the last three decades has delivered a step-change in our understanding of the fundamental mechanisms that regulate energy homeostasis, building on foundational discoveries in mouse models of metabolic disease. However, not all findings made in rodents have translated to humans, hampering drug discovery in this field. Here, we review how studies in mice and humans have informed our current framework for understanding energy homeostasis, discuss their challenges and limitations, and offer a perspective on how human studies may play an increasingly important role in the discovery of disease mechanisms and identification of therapeutic targets in the future.
Collapse
Affiliation(s)
- I Sadaf Farooqi
- University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science and NIHR Cambridge Biomedical Research Centre, Cambridge, UK.
| | - Yong Xu
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Department of Molecular and Cellular Biology and Department of Medicine, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
5
|
Walker CG, Thayer ZM, Marks EJ, Ly KN, Pillai A, Waldie K, Underwood L, Snell RG, Knowles SD, Cha JE, Morton SMB. Association between maternal depression symptoms and child telomere length. J Psychiatr Res 2024; 174:319-325. [PMID: 38685189 DOI: 10.1016/j.jpsychires.2024.04.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 04/09/2024] [Accepted: 04/19/2024] [Indexed: 05/02/2024]
Abstract
The biological mechanisms that explain how adverse early life events influence adult disease risk are poorly understood. One proposed mechanism is via the induction of accelerated biological aging, for which telomere length is considered a biomarker. We aimed to determine if maternal depression pre- and post-partum was associated with telomere length in children at 4 years of age (n = 4299). Mothers completed structured questionnaires assessing depression during pregnancy (Edinburgh Depression Scale), at 9 months (Edinburgh Depression Scale), and at 54 months postpartum (Patient Health Questionnaire 9). Regression methods were used to investigate the relationship between telomere length (DNA from saliva) and maternal depression score recorded at each stage. Significant covariates included in the final model were: maternal age at pregnancy; child sex; child ethnicity; gestational age group, and rurality group. Child telomere length was found to be longer if their mother had a higher depression score at both postpartum time points tested (9 months of age; coefficient 0.003, SE = 0.001, P = 0.01, 54 months of age; coefficient 0.003, SE = 0.002, P = 0.02). Although these findings seem paradoxical, increased telomere length may be an adaptive response to early life stressors. We propose several testable hypotheses for these results and to determine if the positive association between depression and telomere length is a developmental adaptation or an indirect consequence of environmental factors.
Collapse
Affiliation(s)
- Caroline G Walker
- Centre for Longitudinal Research - He Ara ki Mua and Growing Up in New Zealand, University of Auckland, New Zealand.
| | - Zaneta M Thayer
- Department of Anthropology, Dartmouth College, Hanover, NH, USA
| | - Emma J Marks
- Centre for Longitudinal Research - He Ara ki Mua and Growing Up in New Zealand, University of Auckland, New Zealand
| | - Kien N Ly
- Centre for Longitudinal Research - He Ara ki Mua and Growing Up in New Zealand, University of Auckland, New Zealand
| | - Avinesh Pillai
- Centre for Longitudinal Research - He Ara ki Mua and Growing Up in New Zealand, University of Auckland, New Zealand; Department of Statistics, University of Auckland, Auckland, New Zealand
| | - Karen Waldie
- Centre for Longitudinal Research - He Ara ki Mua and Growing Up in New Zealand, University of Auckland, New Zealand; School of Psychology, University of Auckland, Auckland, New Zealand
| | - Lisa Underwood
- Centre for Longitudinal Research - He Ara ki Mua and Growing Up in New Zealand, University of Auckland, New Zealand
| | - Russell G Snell
- School of Biological Sciences, Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Sarah D Knowles
- Centre for Longitudinal Research - He Ara ki Mua and Growing Up in New Zealand, University of Auckland, New Zealand; Auckland Museum, Auckland, New Zealand
| | - Jane E Cha
- Centre for Longitudinal Research - He Ara ki Mua and Growing Up in New Zealand, University of Auckland, New Zealand
| | - Susan M B Morton
- Centre for Longitudinal Research - He Ara ki Mua and Growing Up in New Zealand, University of Auckland, New Zealand
| |
Collapse
|
6
|
Mas-Parés B, Xargay-Torrent S, Gómez-Vilarrubla A, Carreras-Badosa G, Prats-Puig A, De Zegher F, Ibáñez L, Bassols J, López-Bermejo A. Gestational Weight Gain Relates to DNA Methylation in Umbilical Cord, Which, In Turn, Associates with Offspring Obesity-Related Parameters. Nutrients 2023; 15:3175. [PMID: 37513594 PMCID: PMC10386148 DOI: 10.3390/nu15143175] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/12/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Excessive gestational weight gain (GWG) has a negative impact on offspring's health. Epigenetic modifications mediate these associations by causing changes in gene expression. We studied the association between GWG and DNA methylation in umbilical cord tissue; and determined whether the DNA methylation and the expression of corresponding annotated genes were associated with obesity-related parameters in offspring at 6 years of age. The methylated CpG sites (CpGs) associated with GWG were identified in umbilical cord tissue by genome-wide DNA methylation (n = 24). Twelve top CpGs were validated in a wider sample by pyrosequencing (n = 87), and the expression of their 5 annotated genes (SETD8, TMEM214, SLIT3, RPTOR, and HOXC8) was assessed by RT-PCR. Pyrosequencing results validated the association of SETD8, SLIT3, and RPTOR methylation with GWG and showed that higher levels of SETD8 and RPTOR methylation and lower levels of SLIT3 methylation relate to a higher risk of obesity in the offspring. The association of SETD8 and SLIT3 gene expression with offspring outcomes paralleled the association of methylation levels in opposite directions. Epigenetic changes in the umbilical cord tissue could explain, in part, the relationship between GWG and offspring obesity risk and be early biomarkers for the prevention of overweight and obesity in childhood.
Collapse
Affiliation(s)
- Berta Mas-Parés
- Pediatric Endocrinology Research Group, (Girona Biomedical Research Institute) IDIBGI, 17190 Salt, Spain
| | - Sílvia Xargay-Torrent
- Pediatric Endocrinology Research Group, (Girona Biomedical Research Institute) IDIBGI, 17190 Salt, Spain
| | - Ariadna Gómez-Vilarrubla
- Materno-Fetal Metabolic Research Group, (Girona Biomedical Research Institute) IDIBGI, 17190 Salt, Spain
| | - Gemma Carreras-Badosa
- Pediatric Endocrinology Research Group, (Girona Biomedical Research Institute) IDIBGI, 17190 Salt, Spain
| | - Anna Prats-Puig
- University School of Health and Sport (EUSES), University of Girona, 17190 Salt, Spain
| | - Francis De Zegher
- Department of Development & Regeneration, University of Leuven, 3000 Leuven, Belgium
| | - Lourdes Ibáñez
- Endocrinology Department, Research Institute Sant Joan de Déu, University of Barcelona, 08950 Esplugues, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), ISCIII, 28029 Madrid, Spain
| | - Judit Bassols
- Materno-Fetal Metabolic Research Group, (Girona Biomedical Research Institute) IDIBGI, 17190 Salt, Spain
| | - Abel López-Bermejo
- Pediatric Endocrinology Research Group, (Girona Biomedical Research Institute) IDIBGI, 17190 Salt, Spain
- Department of Pediatrics, Dr. Josep Trueta Hospital, 17007 Girona, Spain
- Department of Medical Sciences, University of Girona, 17003 Girona, Spain
| |
Collapse
|
7
|
Yaskolka Meir A, Huang W, Cao T, Hong X, Wang G, Pearson C, Adams WG, Wang X, Liang L. Umbilical cord DNA methylation is associated with body mass index trajectories from birth to adolescence. EBioMedicine 2023; 91:104550. [PMID: 37088033 PMCID: PMC10141503 DOI: 10.1016/j.ebiom.2023.104550] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 02/27/2023] [Accepted: 03/15/2023] [Indexed: 04/25/2023] Open
Abstract
BACKGROUND DNA methylation (DNAm) in cord blood has been associated with various prenatal factors and birth outcomes. This study sought to fill an important knowledge gap: the link of cord DNAm with child postnatal growth trajectories from birth to age 18 years (y). METHODS Using data from a US predominantly urban, low-income, multi-ethnic birth cohort (N = 831), we first applied non-parametric methods to identify body-mass-index percentile (BMIPCT) trajectories from birth to age 18 y (the outcome); then, conducted epigenome-wide association study (EWAS) of the outcome, interrogating over 700,000 CpG sites profiled by the Illumina Infinium MethylationEPIC BeadChip. Multivariate linear regression models and likelihood ratio tests (LRT) were applied to examine the DNAm-outcome association in the overall sample and sex strata. FINDINGS We identified four distinct patterns of BMIPCT trajectories: normal weight (NW), Early overweight or obesity (OWO), Late OWO, and normal to very late OWO. DNAm at CpG18582997 annotated to TPGS1, CpG15241084 of TLR7, and cg24350936 of RAB31 were associated with BMIPCT at birth-to-3 y, 10 y, and 14 y, respectively (LRT FDR < 0.05 for all). INTERPRETATION In this prospective birth cohort study, we identified 4 distinct and robust patterns of growth trajectories from birth to 18 y, which were associated with variations in cord blood DNAm at genes implicated in inflammation induction pathways. These findings, if further replicated, raise the possibility that these DNAm markers along with early assessment of BMIPCT trajectories may help identify young children at high-risk for obesity later in life. FUNDING Detailed in the Acknowledgements section.
Collapse
Affiliation(s)
- Anat Yaskolka Meir
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, 655 Huntington Avenue, Building II, 2nd Floor, Boston, MA 02115, USA
| | - Wanyu Huang
- Department of Population, Family and Reproductive Health, Center on the Early Life Origins of Disease, John Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA; Department of Civil and Systems Engineering, Johns Hopkins University Whiting School of Engineering, Baltimore, MD 21218, USA
| | - Tingyi Cao
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, 655 Huntington Avenue, Building II, 4th Floor, Boston, MA 02115, USA
| | - Xiumei Hong
- Department of Population, Family and Reproductive Health, Center on the Early Life Origins of Disease, John Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Guoying Wang
- Department of Population, Family and Reproductive Health, Center on the Early Life Origins of Disease, John Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Colleen Pearson
- Department of Pediatrics, Boston University School of Medicine and Boston Medical Center, 1 Boston Medical Center Pl, Boston, MA 02118, USA
| | - William G Adams
- Department of Pediatrics, Boston University School of Medicine and Boston Medical Center, 1 Boston Medical Center Pl, Boston, MA 02118, USA
| | - Xiaobin Wang
- Department of Population, Family and Reproductive Health, Center on the Early Life Origins of Disease, John Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA; Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - Liming Liang
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, 655 Huntington Avenue, Building II, 2nd Floor, Boston, MA 02115, USA; Department of Biostatistics, Harvard T.H. Chan School of Public Health, 655 Huntington Avenue, Building II, 4th Floor, Boston, MA 02115, USA.
| |
Collapse
|
8
|
Eagleton SG, Shriver LH, Buehler C, Wideman L, Leerkes EM. Longitudinal Associations Among Food Insecurity During Pregnancy, Parental Mental Health Symptoms, Controlling Feeding Styles, and Infant Food Responsiveness. J Nutr 2023; 152:2659-2668. [PMID: 36166350 PMCID: PMC9840003 DOI: 10.1093/jn/nxac225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 09/09/2022] [Accepted: 09/23/2022] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Research is needed to identify pathways by which household food insecurity (FI) contributes to parental controlling feeding styles and infant food responsiveness, 2 factors that play a role in shaping obesity risk across infancy and early childhood. OBJECTIVES This longitudinal study tested the hypothesis that prenatal FI would be positively associated with higher infant food responsiveness via greater parental mental health symptomatology and controlling feeding styles (pressuring, restrictive). METHODS Participants included a community sample of 170 birth parents and their infants participating in an ongoing longitudinal study. Parents self-reported household FI and mental health symptoms (depression and anxiety) during pregnancy. Postnatally, parents reported their mental health symptoms, their use of controlling feeding styles, and infant food responsiveness. Path analyses with bias-corrected 95% bootstrapped CIs tested direct and indirect associations between prenatal FI and infant food responsiveness. RESULTS Prenatal FI was indirectly associated with higher infant food responsiveness via greater parental mental health symptomatology and pressuring to finish (b = 0.01; 95% CI: 0.001, 0.025). Prenatal FI was associated with greater parental mental health symptomatology across the peripartum period (β = 0.54; P < 0.001), which in turn was associated with more pressuring to finish at 2 months pospartum (β = 0.29; P = 0.01) and higher infant food responsiveness at 6 months (β = 0.17; P = 0.04). There were no direct effects of prenatal FI on controlling feedings styles or infant food responsiveness. CONCLUSIONS Our findings point to parental mental health as a potential pathway by which FI may be associated with obesity-promoting parental feeding styles and infant appetitive behaviors. In addition to ensuring reliable access to enough quality food during pregnancy, multipronged assistance that promotes emotional well-being during the peripartum period and clinical guidance on noncontrolling feeding styles could benefit parent and infant health and well-being.
Collapse
Affiliation(s)
- Sally G Eagleton
- Human Development and Family Studies, University of North Carolina Greensboro, Greensboro, NC, USA
| | - Lenka H Shriver
- Department of Nutrition, University of North Carolina Greensboro, Greensboro, NC, USA
| | - Cheryl Buehler
- Human Development and Family Studies, University of North Carolina Greensboro, Greensboro, NC, USA
| | - Laurie Wideman
- Department of Kinesiology, University of North Carolina Greensboro, Greensboro, NC, USA
| | - Esther M Leerkes
- Human Development and Family Studies, University of North Carolina Greensboro, Greensboro, NC, USA
| |
Collapse
|
9
|
Delahunt A, Conway MC, Callaghan SL, Brien EC, Geraghty AA, Reilly SL, McDonnell CM, Mehegan J, McAuliffe FM. Maternal dietary quality during pregnancy and child appetitive traits at 5-years-old: Findings from the ROLO longitudinal birth cohort study. Appetite 2022; 179:106291. [DOI: 10.1016/j.appet.2022.106291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 08/16/2022] [Accepted: 08/26/2022] [Indexed: 11/02/2022]
|
10
|
Wilson DK, Zarrett N, Sweeney AM. The Importance of Addressing Multilevel Transactional Influences of Childhood Obesity to Inform Future Health Behavior Interventions. Pediatr Clin North Am 2022; 69:657-669. [PMID: 35934492 DOI: 10.1016/j.pcl.2022.04.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We provide a transactional model of health for understanding the early risk of obesity in youth. This model argues that positive health is construed through the choices and actions that youth take within the range of resources and constraints of their biological and contextual situations across time. Social, cognitive, affective, and behavioral regulatory/motivational processes within the child mediate the relation between life experiences and health outcomes and obesity pathways are influenced by cumulative risk or protective processes for health promotion/compromising behaviors influencing health. We provide evidence-based examples of multilevel approaches to obesity prevention and treatment and highlight recommendations for future health behavior interventions.
Collapse
Affiliation(s)
- Dawn K Wilson
- Department of Psychology, Barnwell College, University of South Carolina, Columbia, SC 29208, USA.
| | - Nicole Zarrett
- Department of Psychology, Barnwell College, University of South Carolina, Columbia, SC 29208, USA
| | - Allison M Sweeney
- College of Nursing, University of South Carolina, 1601 Greene Street, Columbia, SC 29208, USA
| |
Collapse
|
11
|
Noroozzadeh M, Rahmati M, Behboudi-Gandevani S, Ramezani Tehrani F. Maternal hyperandrogenism is associated with a higher risk of type 2 diabetes mellitus and overweight in adolescent and adult female offspring: a long-term population-based follow-up study. J Endocrinol Invest 2022; 45:963-972. [PMID: 35043365 DOI: 10.1007/s40618-021-01721-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 12/06/2021] [Indexed: 10/19/2022]
Abstract
PURPOSE Adverse intrauterine environment may predispose offspring to cardio-metabolic dysfunction in later life. In this study, we aimed to investigate the effects of maternal hyperandrogenism (MH) on cardio-metabolic risk factors in female offspring in later life. METHODS This prospective population-based study included 211 female offspring with MH and 757 female offspring without MH (controls). Both groups were followed from baseline to the date of incidence of events, censoring, or end of the study period, whichever came first. Age scaled unadjusted and adjusted cox regression models were applied to assess the hazard ratios (HR) and 95% confidence intervals (CIs) for the association of MH with pre-diabetes (pre-DM), type 2 diabetes mellitus (T2DM), overweight and obesity in offspring of both groups. Statistical analysis was performed using the software package STATA; significance level was set at P < 0.05. RESULTS This study revealed a higher risk of T2DM (unadjusted HR 2.67, 95% CI 1.33-5.36) and overweight (unadjusted HR 1.41, 95% CI 1.06-1.88) in female offspring with MH, compared to controls. Results remained unchanged after adjustment for potential confounders including body mass index, education, physical activity, mother's age at delivery, birth weight, and childhood obesity. However, no significant difference was observed in the risk of pre-DM and obesity in females with MH, compared to controls in both unadjusted and adjusted models. CONCLUSION This pioneer study with a long-term follow-up demonstrated that MH increases the risk of developing T2DM and being overweight in female offspring in later life. Further long-term population-based studies are needed to confirm these findings.
Collapse
Affiliation(s)
- M Noroozzadeh
- Reproductive Endocrinology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, 23 Parvaneh, Yaman Street, Velenjak, Tehran, 1985717413, Iran
| | - M Rahmati
- Reproductive Endocrinology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, 23 Parvaneh, Yaman Street, Velenjak, Tehran, 1985717413, Iran
| | | | - F Ramezani Tehrani
- Reproductive Endocrinology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, 23 Parvaneh, Yaman Street, Velenjak, Tehran, 1985717413, Iran.
| |
Collapse
|
12
|
Laajala E, Halla-Aho V, Grönroos T, Kalim UU, Vähä-Mäkilä M, Nurmio M, Kallionpää H, Lietzén N, Mykkänen J, Rasool O, Toppari J, Orešič M, Knip M, Lund R, Lahesmaa R, Lähdesmäki H. Permutation-based significance analysis reduces the type 1 error rate in bisulfite sequencing data analysis of human umbilical cord blood samples. Epigenetics 2022; 17:1608-1627. [PMID: 35246015 DOI: 10.1080/15592294.2022.2044127] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
DNA methylation patterns are largely established in-utero and might mediate the impacts of in-utero conditions on later health outcomes. Associations between perinatal DNA methylation marks and pregnancy-related variables, such as maternal age and gestational weight gain, have been earlier studied with methylation microarrays, which typically cover less than 2% of human CpG sites. To detect such associations outside these regions, we chose the bisulphite sequencing approach. We collected and curated clinical data on 200 newborn infants; whose umbilical cord blood samples were analysed with the reduced representation bisulphite sequencing (RRBS) method. A generalized linear mixed-effects model was fit for each high coverage CpG site, followed by spatial and multiple testing adjustment of P values to identify differentially methylated cytosines (DMCs) and regions (DMRs) associated with clinical variables, such as maternal age, mode of delivery, and birth weight. Type 1 error rate was then evaluated with a permutation analysis. We discovered a strong inflation of spatially adjusted P values through the permutation analysis, which we then applied for empirical type 1 error control. The inflation of P values was caused by a common method for spatial adjustment and DMR detection, implemented in tools comb-p and RADMeth. Based on empirically estimated significance thresholds, very little differential methylation was associated with any of the studied clinical variables, other than sex. With this analysis workflow, the sex-associated differentially methylated regions were highly reproducible across studies, technologies, and statistical models.
Collapse
Affiliation(s)
- Essi Laajala
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland.,InFLAMES Research Flagship Center, University of Turku, Turku Finland.,Turku Doctoral Programme of Molecular Medicine, University of Turku, Turku, Finland.,Department of Computer Science, Aalto University, Espoo, Finland
| | - Viivi Halla-Aho
- Department of Computer Science, Aalto University, Espoo, Finland
| | - Toni Grönroos
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland.,InFLAMES Research Flagship Center, University of Turku, Turku Finland
| | - Ubaid Ullah Kalim
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland.,InFLAMES Research Flagship Center, University of Turku, Turku Finland
| | - Mari Vähä-Mäkilä
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Mirja Nurmio
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Henna Kallionpää
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Niina Lietzén
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Juha Mykkänen
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland.,Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland
| | - Omid Rasool
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland.,InFLAMES Research Flagship Center, University of Turku, Turku Finland
| | - Jorma Toppari
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland.,Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland.,Department of Pediatrics, Turku University Hospital, Turku, Finland
| | - Matej Orešič
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland.,InFLAMES Research Flagship Center, University of Turku, Turku Finland.,School of Medical Sciences, Örebro University, Örebro, Sweden
| | - Mikael Knip
- Pediatric Research Center, Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Center for Child Health Research, Tampere University Hospital, Tampere, Finland
| | - Riikka Lund
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Riitta Lahesmaa
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland.,InFLAMES Research Flagship Center, University of Turku, Turku Finland.,Institute of Biomedicine, University of Turku, Turku, Finland
| | - Harri Lähdesmäki
- Department of Computer Science, Aalto University, Espoo, Finland
| |
Collapse
|
13
|
Yao J, Ziapour A, Abbas J, Toraji R, NeJhaddadgar N. Assessing puberty-related health needs among 10–15-year-old boys: A cross-sectional study approach. Arch Pediatr 2022; 29:307-311. [DOI: 10.1016/j.arcped.2021.11.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 10/02/2021] [Accepted: 11/30/2021] [Indexed: 11/24/2022]
|
14
|
Hunter KE, Johnson BJ, Askie L, Golley RK, Baur LA, Marschner IC, Taylor RW, Wolfenden L, Wood CT, Mihrshahi S, Hayes AJ, Rissel C, Robledo KP, O'Connor DA, Espinoza D, Staub LP, Chadwick P, Taki S, Barba A, Libesman S, Aberoumand M, Smith WA, Sue-See M, Hesketh KD, Thomson JL, Bryant M, Paul IM, Verbestel V, Stough CO, Wen LM, Larsen JK, O'Reilly SL, Wasser HM, Savage JS, Ong KK, Salvy SJ, Messito MJ, Gross RS, Karssen LT, Rasmussen FE, Campbell K, Linares AM, Øverby NC, Palacios C, Joshipura KJ, González Acero C, Lakshman R, Thompson AL, Maffeis C, Oken E, Ghaderi A, Campos Rivera M, Pérez-Expósito AB, Banna JC, de la Haye K, Goran M, Røed M, Anzman-Frasca S, Taylor BJ, Seidler AL. Transforming Obesity Prevention for CHILDren (TOPCHILD) Collaboration: protocol for a systematic review with individual participant data meta-analysis of behavioural interventions for the prevention of early childhood obesity. BMJ Open 2022; 12:e048166. [PMID: 35058256 PMCID: PMC8783820 DOI: 10.1136/bmjopen-2020-048166] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 11/18/2021] [Indexed: 02/04/2023] Open
Abstract
INTRODUCTION Behavioural interventions in early life appear to show some effect in reducing childhood overweight and obesity. However, uncertainty remains regarding their overall effectiveness, and whether effectiveness differs among key subgroups. These evidence gaps have prompted an increase in very early childhood obesity prevention trials worldwide. Combining the individual participant data (IPD) from these trials will enhance statistical power to determine overall effectiveness and enable examination of individual and trial-level subgroups. We present a protocol for a systematic review with IPD meta-analysis to evaluate the effectiveness of obesity prevention interventions commencing antenatally or in the first year after birth, and to explore whether there are differential effects among key subgroups. METHODS AND ANALYSIS Systematic searches of Medline, Embase, Cochrane Central Register of Controlled Trials, Cumulative Index to Nursing and Allied Health Literature (CINAHL), PsycInfo and trial registries for all ongoing and completed randomised controlled trials evaluating behavioural interventions for the prevention of early childhood obesity have been completed up to March 2021 and will be updated annually to include additional trials. Eligible trialists will be asked to share their IPD; if unavailable, aggregate data will be used where possible. An IPD meta-analysis and a nested prospective meta-analysis will be performed using methodologies recommended by the Cochrane Collaboration. The primary outcome will be body mass index z-score at age 24±6 months using WHO Growth Standards, and effect differences will be explored among prespecified individual and trial-level subgroups. Secondary outcomes include other child weight-related measures, infant feeding, dietary intake, physical activity, sedentary behaviours, sleep, parenting measures and adverse events. ETHICS AND DISSEMINATION Approved by The University of Sydney Human Research Ethics Committee (2020/273) and Flinders University Social and Behavioural Research Ethics Committee (HREC CIA2133-1). Results will be relevant to clinicians, child health services, researchers, policy-makers and families, and will be disseminated via publications, presentations and media releases. PROSPERO REGISTRATION NUMBER CRD42020177408.
Collapse
Affiliation(s)
- Kylie E Hunter
- NHMRC Clinical Trials Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Brittany J Johnson
- Caring Futures Institute, College of Nursing and Health Sciences, Flinders University, Adelaide, South Australia, Australia
| | - Lisa Askie
- NHMRC Clinical Trials Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Rebecca K Golley
- Caring Futures Institute, College of Nursing and Health Sciences, Flinders University, Adelaide, South Australia, Australia
| | - Louise A Baur
- Children's Hospital Westmead Clinical School, The University of Sydney, Westmead, New South Wales, Australia
| | - Ian C Marschner
- NHMRC Clinical Trials Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Rachael W Taylor
- Department of Medicine, University of Otago, Dunedin, New Zealand
| | - Luke Wolfenden
- School of Medicine and Public Health, The University of Newcastle, Callaghan, New South Wales, Australia
| | - Charles T Wood
- School of Medicine, Duke University, Durham, North Carolina, USA
| | - Seema Mihrshahi
- Department of Health Systems and Populations, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Alison J Hayes
- School of Public Health, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Chris Rissel
- School of Public Health, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Kristy P Robledo
- NHMRC Clinical Trials Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Denise A O'Connor
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Clayton, Victoria, Australia
- Monash Department of Clinical Epidemiology, Cabrini Institute, Malvern, Victoria, Australia
| | - David Espinoza
- NHMRC Clinical Trials Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Lukas P Staub
- NHMRC Clinical Trials Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Paul Chadwick
- Centre For Behaviour Change, University College London, London, UK
| | - Sarah Taki
- School of Public Health, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
- Population Health Research and Evaluation Hub, Sydney Local Health District, Camperdown, New South Wales, Australia
| | - Angie Barba
- NHMRC Clinical Trials Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Sol Libesman
- NHMRC Clinical Trials Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Mason Aberoumand
- NHMRC Clinical Trials Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Wendy A Smith
- Canterbury Community Health Centre, Sydney Local Health District, Campsie, New South Wales, Australia
- Consumer Representative, Sydney, New South Wales, Australia
| | | | - Kylie D Hesketh
- Institute for Physical Activity and Nutrition, Deakin University, Geelong, Victoria, Australia
| | | | - Maria Bryant
- Department of Health Sciences and the Hull York Medical School, University of York, York, UK
| | - Ian M Paul
- Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Vera Verbestel
- Department of Rehabilitation Sciences, Ghent University, Ghent, Belgium
| | | | - Li Ming Wen
- School of Public Health, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
- Population Health Research and Evaluation Hub, Sydney Local Health District, Camperdown, New South Wales, Australia
| | - Junilla K Larsen
- Behavioural Science Institute, Radboud Universiteit, Nijmegen, The Netherlands
| | - Sharleen L O'Reilly
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - Heather M Wasser
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jennifer S Savage
- Department of Nutritional Sciences & Center for Childhood Obesity Research, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Ken K Ong
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
| | - Sarah-Jeanne Salvy
- Research Center for Health Equity, Cedars-Sinai Medical Center, West Hollywood, California, USA
| | - Mary Jo Messito
- Grossman School of Medicine, New York University, New York, New York, USA
| | - Rachel S Gross
- Grossman School of Medicine, New York University, New York, New York, USA
| | - Levie T Karssen
- Behavioural Science Institute, Radboud Universiteit, Nijmegen, The Netherlands
| | - Finn E Rasmussen
- Department of Global Public Health, Karolinska Institute, Stockholm, Sweden
| | - Karen Campbell
- Institute for Physical Activity and Nutrition, Deakin University, Geelong, Victoria, Australia
| | - Ana Maria Linares
- College of Nursing, University of Kentucky, Lexington, Kentucky, USA
| | - Nina Cecilie Øverby
- Faculty of Health and Sport Sciences, Department of Nutrition and Public Health, University of Agder, Kristiansand, Vest-Agder, Norway
| | - Cristina Palacios
- Department of Dietetics and Nutrition, Robert Stempel College of Public Health & Social Work, Florida International University, Miami, Florida, USA
| | - Kaumudi J Joshipura
- Department of Epidemiology, Harvard University T H Chan School of Public Health, Boston, Massachusetts, USA
- Center for Clinical Research and Health Promotion, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico, USA
| | - Carolina González Acero
- Social Protection and Health Division, Inter-American Development Bank, Santo Domingo, Distrito Nacional, Dominican Republic
| | | | - Amanda L Thompson
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Anthropology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Claudio Maffeis
- Pediatric Diabetes and Metabolic Disorders Unit, University of Verona, Verona, Italy
| | - Emily Oken
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, Massachusetts, USA
| | - Ata Ghaderi
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | | | - Ana B Pérez-Expósito
- Social Protection and Health Division, Inter-American Development Bank, Washington, District of Columbia, USA
| | - Jinan C Banna
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii, Honolulu, Hawaii, USA
| | - Kayla de la Haye
- Department of Preventive Medicine, University of Southern California, Los Angeles, California, USA
| | - Michael Goran
- Department of Preventive Medicine, University of Southern California, Los Angeles, California, USA
| | - Margrethe Røed
- Faculty of Health and Sport Sciences, Department of Nutrition and Public Health, University of Agder, Kristiansand, Vest-Agder, Norway
| | - Stephanie Anzman-Frasca
- Department of Pediatrics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA
| | - Barry J Taylor
- Better Start National Science Challenge, University of Otago, Dunedin, New Zealand
| | - Anna Lene Seidler
- NHMRC Clinical Trials Centre, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
15
|
Halabian R, Valizadeh Arshad, Ahmadi A, Saeedi P, Azimzadeh Jamalkandi S, Alivand MR. Laboratory methods to decipher epigenetic signatures: a comparative review. Cell Mol Biol Lett 2021; 26:46. [PMID: 34763654 PMCID: PMC8582164 DOI: 10.1186/s11658-021-00290-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 10/28/2021] [Indexed: 12/15/2022] Open
Abstract
Epigenetics refers to nucleotide sequence-independent events, and heritable changes, including DNA methylation and histone modification (as the two main processes), contributing to the phenotypic features of the cell. Both genetics and epigenetics contribute to determining the outcome of regulatory gene expression systems. Indeed, the flexibility of epigenetic effects and stability of genetic coding lead to gene regulation complexity in response signals. Since some epigenetic changes are significant in abnormalities such as cancers and neurodegenerative diseases, the initial changes, dynamic and reversible properties, and diagnostic potential of epigenomic phenomena are subject to epigenome-wide association studies (EWAS) for therapeutic aims. Based on recent studies, methodological developments are necessary to improve epigenetic research. As a result, several methods have been developed to explore epigenetic alterations at low, medium, and high scales, focusing on DNA methylation and histone modification detection. In this research field, bisulfite-, enzyme sensitivity- and antibody specificity-based techniques are used for DNA methylation, whereas histone modifications are gained based on antibody recognition. This review provides a mechanism-based understanding and comparative overview of the most common techniques for detecting the status of epigenetic effects, including DNA methylation and histone modifications, for applicable approaches from low- to high-throughput scales.
Collapse
Affiliation(s)
- Raheleh Halabian
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Valizadeh Arshad
- Department of Stem Cell and Developmental Biology, Cell Science Research Center, Royan Institute For Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Ali Ahmadi
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Pardis Saeedi
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Sadegh Azimzadeh Jamalkandi
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Mollasadra Ave., 14359-16471, Tehran, Iran.
| | - Mohammad Reza Alivand
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
16
|
Affiliation(s)
- Jan Komdeur
- Groningen Institute for Evolutionary Life Sciences (GELIFES) University of Groningen Groningen The Netherlands
| | - Long Ma
- Groningen Institute for Evolutionary Life Sciences (GELIFES) University of Groningen Groningen The Netherlands
| |
Collapse
|
17
|
Association between parental and offspring BMI: results from EPACI Portugal 2012. Public Health Nutr 2021; 24:2798-2807. [PMID: 33843556 PMCID: PMC9884752 DOI: 10.1017/s1368980021001543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE To assess the longitudinal association between parental BMI and offspring's BMI, in EPACI Portugal 2012. DESIGN Longitudinal study with retrospective collection of children's anthropometry data since birth. Children's anthropometric data were gathered from individual child health bulletins, and parents' anthropometrics were self-reported. Children's and parents' BMI were classified according to WHO cut-offs. Linear mixed models with random intercept and slope for age were applied to quantify the association between parental BMI and children BMI Z-score (zBMI). SETTING EPACI Portugal 2012. PARTICIPANTS Representative sample from the Portuguese population (n 2230) aged from 12 to 36 months. RESULTS 58·9 % of the fathers and 35·6 % of the mothers were overweight (OW) or obese. Prevalence of infants who were, at least, at risk of OW increased from 17·0 % to 30·3 % since birth to 12 months. About half of the mothers with pre-pregnancy OW and obesity (OB) gained gestational weight above the recommendations. The children from mothers with gestational weight gain (GWG) below the recommendations showed a -0·15 SD lower zBMI (95 % CI -0·23, -0·06) in early life, comparing with mothers within GWG recommendations. Children of obese mothers were more likely to present a higher zBMI (0·24 SD, 95 % CI 0·13, 0·35) throughout the first months of life. CONCLUSIONS A high prevalence of OW and OB was observed in Portuguese young adults and toddlers. Mothers' pre-pregnancy BMI and insufficient GWG had a direct effect on offspring BMI. Early effective interventions are needed in order to prevent the transgenerational transmission of OB.
Collapse
|
18
|
Quevedo Alves F, Reuter CP, Neumann I, Todendi PF, Brand C, Latosinski Matos W, Brazo-Sayavera J, Renner JDP, de Moura Valim AR. Relationship between rs9939609 FTO polymorphism with waist circumference and body fat is moderated by ponderal index at birth in youth. Am J Hum Biol 2021; 34:e23575. [PMID: 33590567 DOI: 10.1002/ajhb.23575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 01/13/2021] [Accepted: 01/22/2021] [Indexed: 11/08/2022] Open
Abstract
OBJECTIVE The goal of this study was to analyze whether the relationship between the rs9939609 polymorphism of the fat mass and obesity-associated gene (FTO) with nutritional status is moderated by the ponderal index (PI) at birth in children and adolescents. METHODS A cross-sectional study evaluated 382 schoolchildren aged 6-17 years. Anthropometric variables such as waist circumference (WC), body mass index (BMI) and body fat percentage (BF%) were used to assess nutritional status. Weight and height at birth were used for the PI calculation, which was divided into tertiles (lower, middle and upper). To compare the continuous variables between genotypes of the rs9939609 polymorphism, a recessive model (TT/AT vs. AA) and covariance analysis (ANCOVA) were used. RESULTS The AA genotype of the rs9939609 polymorphism was associated with higher WC in schoolchildren born with lower PI (β = 4.40; p = .048). However, for BF%, the genotype association was found in the upper PI tertile (β = 7.35; p = .040). CONCLUSION The relationship between WC and BF% with rs9939609 polymorphism (FTO) seems to be moderated by PI at birth. This is an important insight, since the data for intrauterine growth, genetic factors and the presence of obesity in children and adolescents are still contradictory.
Collapse
Affiliation(s)
- Fernanda Quevedo Alves
- Graduate Program in Health Promotion, University of Santa Cruz do Sul, Santa Cruz do Sul, Rio Grande do Sul, Brazil
| | - Cézane Priscila Reuter
- Department of Health Sciences, Graduate Program in Health Promotion, University of Santa Cruz do Sul, Santa Cruz do Sul, Rio Grande do Sul, Brazil
| | - Igor Neumann
- University of Santa Cruz do Sul, Rio Grande do Sul, Brazil
| | - Pâmela Ferreira Todendi
- Graduate Program in Endocrinology, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Caroline Brand
- Department of Health Sciences, Graduate Program in Health Promotion, University of Santa Cruz do Sul, Santa Cruz do Sul, Rio Grande do Sul, Brazil
| | | | - Javier Brazo-Sayavera
- Polo de Desarrollo Universitario EFISAL. Centro Universitario Regional Noreste, Universidad de la República, Rivera, Uruguay
| | - Jane Dagmar Pollo Renner
- Department of Life Sciences. Graduate Program in Health Promotion, University of Santa Cruz do Sul, Santa Cruz do Sul, Rio Grande do Sul, Brazil
| | - Andréia Rosane de Moura Valim
- Department of Life Sciences. Graduate Program in Health Promotion, University of Santa Cruz do Sul, Santa Cruz do Sul, Rio Grande do Sul, Brazil
| |
Collapse
|
19
|
Dennis CL, Marini F, Dick JA, Atkinson S, Barrett J, Bell R, Berard A, Berger H, Brown HK, Constantin E, Da Costa D, Feller A, Guttmann A, Janus M, Joseph KS, Jüni P, Kimmins S, Letourneau N, Li P, Lye S, Maguire JL, Matthews SG, Millar D, Misita D, Murphy K, Nuyt AM, O'Connor DL, Parekh RS, Paterson A, Puts M, Ray J, Roumeliotis P, Scherer S, Sellen D, Semenic S, Shah PS, Smith GN, Stremler R, Szatmari P, Telnner D, Thorpe K, Tremblay MS, Vigod S, Walker M, Birken C. Protocol for a randomised trial evaluating a preconception-early childhood telephone-based intervention with tailored e-health resources for women and their partners to optimise growth and development among children in Canada: a Healthy Life Trajectory Initiative (HeLTI Canada). BMJ Open 2021; 11:e046311. [PMID: 33568380 PMCID: PMC7878148 DOI: 10.1136/bmjopen-2020-046311] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
INTRODUCTION The 'Developmental Origins of Health and Disease' hypothesis suggests that a healthy trajectory of growth and development in pregnancy and early childhood is necessary for optimal health, development and lifetime well-being. The purpose of this paper is to present the protocol for a randomised controlled trial evaluating a preconception-early childhood telephone-based intervention with tailored e-health resources for women and their partners to optimise growth and development among children in Canada: a Healthy Life Trajectory Initiative (HeLTI Canada). The primary objective of HeLTI Canada is to determine whether a 4-phase 'preconception to early childhood' lifecourse intervention can reduce the rate of child overweight and obesity. Secondary objectives include improved child: (1) growth trajectories; (2) cardiometabolic risk factors; (3) health behaviours, including nutrition, physical activity, sedentary behaviour and sleep; and (4) development and school readiness at age 5 years. METHOD AND ANALYSIS A randomised controlled multicentre trial will be conducted in two of Canada's highly populous provinces-Alberta and Ontario-with 786 nulliparous (15%) and 4444 primiparous (85%) women, their partners and, when possible, the first 'sibling child.' The intervention is telephone-based collaborative care delivered by experienced public health nurses trained in healthy conversation skills that includes detailed risk assessments, individualised structured management plans, scheduled follow-up calls, and access to a web-based app with individualised, evidence-based resources. An 'index child' conceived after randomisation will be followed until age 5 years and assessed for the primary and secondary outcomes. Pregnancy, infancy (age 2 years) and parental outcomes across time will also be assessed. ETHICS AND DISSEMINATION The study has received approval from Clinical Trials Ontario (CTO 1776). The findings will be published in peer-reviewed journals and disseminated to policymakers at local, national and international agencies. Findings will also be shared with study participants and their communities. TRIAL REGISTRATION NUMBER ISRCTN13308752; Pre-results.
Collapse
Affiliation(s)
- Cindy-Lee Dennis
- Lawrence S. Bloomburg Faculty of Nursing, University of Toronto, Toronto, Ontario, Canada
- St Michael's Hospital, Toronto, Ontario, Canada
| | | | - Jennifer Abbass Dick
- Faculty of Health Sciences, University of Ontario Institute of Technology, Oshawa, Ontario, Canada
| | - Stephanie Atkinson
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| | - Jon Barrett
- Department of Obstetrics and Gynecology, University of Toronto, Toronto, Ontario, Canada
- Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Rhonda Bell
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Anick Berard
- Faculty of Pharmacy, University of Montreal, Montreal, Québec, Canada
- Saint Justine Hospital, Montreal, Québec, Canada
| | - Howard Berger
- St Michael's Hospital, Toronto, Ontario, Canada
- Department of Obstetrics and Gynecology, University of Toronto, Toronto, Ontario, Canada
| | - Hillary K Brown
- Department of Health & Society (Scarborough Campus), University of Toronto, Toronto, Ontario, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Evelyn Constantin
- Department of Pediatrics, McGill University, Montreal, Québec, Canada
- McGill University Health Centre, Montreal, Ontario, Canada
| | - Deborah Da Costa
- McGill University Health Centre, Montreal, Ontario, Canada
- School of Physical and Occupational Therapy, McGill University, Montreal, Québec, Canada
| | - Andrea Feller
- Niagara Region Public Health, Thorold, Ontario, Canada
| | - Astrid Guttmann
- Institute for Clinical Evaluative Sciences, Toronto, Ontario, Canada
- The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Magdalena Janus
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada
| | - K S Joseph
- Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Peter Jüni
- St Michael's Hospital, Toronto, Ontario, Canada
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Sarah Kimmins
- Department of Animal Science, McGill University, Montreal, Québec, Canada
| | | | - Patricia Li
- Department of Pediatrics, McGill University, Montreal, Québec, Canada
| | - Stephen Lye
- Lunenfeld-Tanenbaum Research Institute, Toronto, Ontario, Canada
| | - Jonathon L Maguire
- St Michael's Hospital, Toronto, Ontario, Canada
- Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Stephen G Matthews
- Lunenfeld-Tanenbaum Research Institute, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - David Millar
- Monarch Maternal and Newborn Health Centre, Ottawa, Ontario, Canada
| | - Dragana Misita
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Kellie Murphy
- Department of Obstetrics and Gynecology, University of Toronto, Toronto, Ontario, Canada
- Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Anne Monique Nuyt
- Saint Justine Hospital, Montreal, Québec, Canada
- Department of Pediatrics, McGill University, Montreal, Québec, Canada
| | - Deborah L O'Connor
- The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Rulan Savita Parekh
- The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Andrew Paterson
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
- The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Martine Puts
- Lawrence S. Bloomburg Faculty of Nursing, University of Toronto, Toronto, Ontario, Canada
| | - Joel Ray
- St Michael's Hospital, Toronto, Ontario, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
- Institute for Clinical Evaluative Sciences, Toronto, Ontario, Canada
| | | | - Stephen Scherer
- The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Daniel Sellen
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
- Department of Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Sonia Semenic
- McGill University Health Centre, Montreal, Ontario, Canada
- Ingram School of Nursing, McGill University, Montreal, Québec, Canada
| | - Prakesh S Shah
- Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada
- Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Graeme N Smith
- Department of Obstetrics and Gynecology, Queen's University, Kingston, Ontario, Canada
| | - Robyn Stremler
- Lawrence S. Bloomburg Faculty of Nursing, University of Toronto, Toronto, Ontario, Canada
- The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Peter Szatmari
- The Hospital for Sick Children, Toronto, Ontario, Canada
- Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Deanna Telnner
- Department of Family and Community Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Kevin Thorpe
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Mark S Tremblay
- Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada
- Department of Pediatrics, University of Ottawa, Ottawa, Ontario, Canada
| | - Simone Vigod
- Institute for Clinical Evaluative Sciences, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
- Women's College Hospital, Toronto, Ontario, Canada
| | - Mark Walker
- Department of Obstetrics and Gynecology, University of Ottawa, Ottawa, Ontario, Canada
- The Ottawa Hospital, Ottawa, Ontario, Canada
| | - Catherine Birken
- The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
20
|
Mukonowenzou NC, Dangarembizi R, Chivandi E, Nkomozepi P, Erlwanger KH. Administration of ursolic acid to new-born pups prevents dietary fructose-induced non-alcoholic fatty liver disease in Sprague Dawley rats. J Dev Orig Health Dis 2021; 12:101-112. [PMID: 32188531 DOI: 10.1017/s2040174420000124] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Overconsumption of fructose time dependently induces the development of non-alcoholic fatty liver disease (NAFLD). We investigated whether ursolic acid (UA) intake by new-born rats would protect against fructose-induced NAFLD. One hundred and seven male and female Sprague Dawley rat pups were randomly grouped and gavaged (10 ml/kg body weight) with either 0.5% dimethylsulphoxide (vehicle control), 0.05% UA, 50% fructose mixed with UA (0.05%) or 50% fructose alone, from postnatal day 6 (P6) to P20. Post-weaning (P21-P69), the rats received normal rat chow (NRC) and water to drink. On P70, the rats in each group were continued on water or 20% fructose to drink, as a secondary high fructose diet during adulthood. After 8 weeks, body mass, food and fluid intake, circulating metabolites, visceral adiposity, surrogate markers of liver function and indices of NAFLD were determined. Food intake was reduced as a result of fructose feeding in both male and female rats (p < 0.0001). Fructose consumption in adulthood significantly increased fluid intake and visceral adiposity in female rats (p < 0.05) and had no apparent effects in male rats (p > 0.05). In both sexes of rats, fructose had no significant (p > 0.05) effects on body mass, circulating metabolites, total calorie intake and surrogate markers of hepatic function. Fructose consumption in both early life and adulthood in female rats promoted hepatic lipid accumulation (p < 0.001), hypertrophy, microvesicular and macrovesicular steatosis (p < 0.05). Early-life UA intake significantly (p < 0.001) reduced fructose-induced hepatic lipid accumulation in both male and female rats. Administration of UA during periods of developmental plasticity shows prophylactic potential against dietary fructose-induced NAFLD.
Collapse
Affiliation(s)
- Nyasha C Mukonowenzou
- Department of Anatomy and Physiology, Faculty of Medicine, National University of Science and Technology, Box AC 939, Ascot, Bulawayo, Zimbabwe
- School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg, 2193, South Africa
| | - Rachael Dangarembizi
- Department of Anatomy and Physiology, Faculty of Medicine, National University of Science and Technology, Box AC 939, Ascot, Bulawayo, Zimbabwe
- School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg, 2193, South Africa
| | - Eliton Chivandi
- School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg, 2193, South Africa
| | - Pilani Nkomozepi
- Department of Human Anatomy and Physiology, Faculty of Health Sciences, University of Johannesburg, 37 Nind Street, Doornfontein, Johannesburg, South Africa
| | - Kennedy H Erlwanger
- School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg, 2193, South Africa
| |
Collapse
|
21
|
Zhang Q, Xiao X, Zheng J, Li M, Yu M, Ping F, Wang T, Wang X. Maternal High-Fat Diet Disturbs the DNA Methylation Profile in the Brown Adipose Tissue of Offspring Mice. Front Endocrinol (Lausanne) 2021; 12:705827. [PMID: 34690924 PMCID: PMC8531551 DOI: 10.3389/fendo.2021.705827] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/30/2021] [Indexed: 12/18/2022] Open
Abstract
The prevalence of obesity has become a threatening global public health issue. The consequence of obesity is abnormal energy metabolism. Unlike white adipose tissue (WAT), brown adipose tissue (BAT) has a unique role in nonshivering thermogenesis. Lipids and glucose are consumed to maintain energy and metabolic homeostasis in BAT. Recently, accumulating evidence has indicated that exposure to excess maternal energy intake affects energy metabolism in offspring throughout their life. However, whether excess intrauterine energy intake influences BAT metabolism in adulthood is not clear. In this study, mouse dams were exposed to excess energy intake by feeding a high-fat diet (HFD) before and during pregnancy and lactation. The histology of BAT was assessed by hematoxylin and eosin staining. The genome-wide methylation profile of BAT was determined by a DNA methylation array, and specific site DNA methylation was quantitatively analyzed by methylated DNA immunoprecipitation (MeDIP) qPCR. We found that intrauterine exposure to a high-energy diet resulted in blood lipid panel disorders and impaired the BAT structure. Higher methylation levels of genes involved in thermogenesis and fatty acid oxidation (FAO) in BAT, such as Acaa2, Acsl1, and Cox7a1, were found in 16-week-old offspring from mothers fed with HFD. Furthermore, the expression of Acaa2, Acsl1, and Cox7a1 was down-regulated by intrauterine exposure to excess energy intake. In summary, our results reveal that excess maternal energy leads to a long-term disorder of BAT in offspring that involves the activation of DNA methylation of BAT-specific genes involved in fatty acid oxidation and thermogenesis.
Collapse
|
22
|
Moreno-Fernandez J, Ochoa JJ, Lopez-Frias M, Diaz-Castro J. Impact of Early Nutrition, Physical Activity and Sleep on the Fetal Programming of Disease in the Pregnancy: A Narrative Review. Nutrients 2020; 12:nu12123900. [PMID: 33419354 PMCID: PMC7766505 DOI: 10.3390/nu12123900] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 12/13/2022] Open
Abstract
Early programming is the adaptation process by which nutrition and environmental factors alter development pathways during prenatal growth, inducing changes in postnatal metabolism and diseases. The aim of this narrative review, is evaluating the current knowledge in the scientific literature on the effects of nutrition, environmental factors, physical activity and sleep on development pathways. If in utero adaptations were incorrect, this would cause a mismatch between prenatal programming and adulthood. Adequate caloric intake, protein, mineral, vitamin, and long-chain fatty acids, have been noted for their relevance in the offspring brain functions and behavior. Fetus undernutrition/malnutrition causes a delay in growth and have detrimental effects on the development and subsequent functioning of the organs. Pregnancy is a particularly vulnerable period for the development of food preferences and for modifications in the emotional response. Maternal obesity increases the risk of developing perinatal complications and delivery by cesarean section and has long-term implications in the development of metabolic diseases. Physical exercise during pregnancy contributes to overall improved health post-partum. It is also interesting to highlight the relevance of sleep problems during pregnancy, which influence adequate growth and fetal development. Taking into account these considerations, we conclude that nutrition and metabolic factors during early life play a key role of health promotion and public health nutrition programs worldwide to improve the health of the offspring and the health costs of hospitalization.
Collapse
Affiliation(s)
- Jorge Moreno-Fernandez
- Department of Physiology, Faculty of Pharmacy, Campus Universitario de Cartuja, E-18071 Granada, Spain; (J.M.-F.); (M.L.-F.); (J.D.-C.)
- Institute of Nutrition and Food Technology “José Mataix Verdú”, University of Granada, E-18071 Granada, Spain
| | - Julio J. Ochoa
- Department of Physiology, Faculty of Pharmacy, Campus Universitario de Cartuja, E-18071 Granada, Spain; (J.M.-F.); (M.L.-F.); (J.D.-C.)
- Institute of Nutrition and Food Technology “José Mataix Verdú”, University of Granada, E-18071 Granada, Spain
- Correspondence: ; Tel.: +34-958-241-000 (ext. 20317)
| | - Magdalena Lopez-Frias
- Department of Physiology, Faculty of Pharmacy, Campus Universitario de Cartuja, E-18071 Granada, Spain; (J.M.-F.); (M.L.-F.); (J.D.-C.)
- Institute of Nutrition and Food Technology “José Mataix Verdú”, University of Granada, E-18071 Granada, Spain
| | - Javier Diaz-Castro
- Department of Physiology, Faculty of Pharmacy, Campus Universitario de Cartuja, E-18071 Granada, Spain; (J.M.-F.); (M.L.-F.); (J.D.-C.)
- Institute of Nutrition and Food Technology “José Mataix Verdú”, University of Granada, E-18071 Granada, Spain
| |
Collapse
|
23
|
Agnihotri N, Øverby NC, Bere E, Wills AK, Brantsaeter AL, Hillesund ER. Childhood adherence to a potentially healthy and sustainable Nordic diet and later overweight: The Norwegian Mother, Father and Child Cohort Study (MoBa). MATERNAL AND CHILD NUTRITION 2020; 17:e13101. [PMID: 33103349 PMCID: PMC7988855 DOI: 10.1111/mcn.13101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/28/2020] [Accepted: 09/29/2020] [Indexed: 12/19/2022]
Abstract
The New Nordic Diet (NND) is a potentially healthy and sustainable dietary pattern represented by locally available and traditionally consumed foods in the Northern countries. The diet has been commonly examined in adult populations, but less is known regarding its potential associations with overweight/obesity in children. We have previously developed child diet scores measuring compliance to the NND at child age 6 and 18 months and 3 and 7 years. In this study, we aimed to describe child and maternal characteristics and assess potential associations between the age‐specific diet scores and child overweight at 8 years. This study is based on the Norwegian Mother, Father and Child Cohort Study (MoBa), including 14,989 mother–child pairs and uses data from the Medical Birth Registry of Norway (MBRN). The scores measured NND compliance as a total score and categorized into low, medium and high NND compliance at each age point. Using logistic regression models, we investigated the association between each age‐specific score and the odds of overweight at 8 years. In crude analyses, adherence to the NND at 6 months was inversely associated with odds of overweight at 8 years in the continuous score (odds ratio = 0.95, 95% CI [0.91, 0.98]) and when comparing high versus low NND adherence (odds ratio = 0.81, 95% CI [0.70, 0.94]). The association was almost entirely attenuated in the adjusted models. In conclusion, child NND adherence up to 7 years of age was not associated with odds of overweight at 8 years in adjusted analyses.
Collapse
Affiliation(s)
- Neha Agnihotri
- Department of Nutrition and Public Health, University of Agder, Kristiansand, Norway
| | - Nina Cecilie Øverby
- Department of Nutrition and Public Health, University of Agder, Kristiansand, Norway
| | - Elling Bere
- Department of Health and Inequalities and Centre for Evaluation of Public Health Measures, Norwegian Institute of Public Health, Oslo, Norway.,Department of Sport Science and Physical Education, University of Agder, Kristiansand, Norway
| | | | - Anne Lise Brantsaeter
- Division of Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | | |
Collapse
|
24
|
Daniels LA, Mallan KM, Jansen E, Nicholson JM, Magarey AM, Thorpe K. Comparison of Early Feeding Practices in Mother-Father Dyads and Possible Generalization of an Efficacious Maternal Intervention to Fathers' Feeding Practices: A Secondary Analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17176075. [PMID: 32825517 PMCID: PMC7504426 DOI: 10.3390/ijerph17176075] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 08/17/2020] [Indexed: 01/26/2023]
Abstract
To compare feeding practices within mother-father dyads and explore whether outcomes of an efficacious intervention for mothers generalised to fathers' feeding practices. The NOURISH RCT evaluated an early feeding intervention that promoted positive feeding practices to support development of healthy eating habits and growth. The intervention was delivered to first-time mothers via 2 × 12 week modules commencing when children were 4 and 14 months. Mothers self-reported feeding practice outcomes at child age 2 years using validated scales (1 = low to 5 = high) from the Child Feeding Questionnaire (CFQ). Nine months later, an independent cross-sectional descriptive study to investigate fathers' feeding practices was initiated. Fathers were recruited by contacting (via letter) mothers participating in two pre-existing studies, including the NOURISH trial. Fathers completed a feeding practices questionnaire, similar to that used for NOURISH outcome assessments. Seventy-five fathers recruited via the NOURISH cohort (21% response) returned questionnaires. Response data from this subset of fathers were then linked to the corresponding NOURISH maternal data. Complete data were available from 70 dyads. Compared with mothers, fathers self-reported higher concern about child overweight (2.2 vs. 1.3), restriction (3.6 vs. 2.9) and pressure (2.6 vs. 2.1), all p < 0.001. Fathers whose partners were allocated to the intervention group used less pressure (mean difference 0.46, p = 0.045) and were more willing to let the child decide how much to eat (-0.51, p = 0.032). Fathers' higher concern about child weight and more frequent use of non-responsive feeding practices, when compared with mothers, identify them as potentially potent contributors to child feeding. This preliminary evidence for modest generalisation of an efficacious maternal intervention to apparent effects on some paternal feeding practices speaks to the importance and promise of including fathers in early feeding interventions.
Collapse
Affiliation(s)
- Lynne A. Daniels
- School of Exercise and Nutrition Sciences, Queensland University of Technology, Brisbane, QLD 4059, Australia;
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD 4059, Australia
- Correspondence: (L.A.D.); (E.J.); Tel.: +61-403-984-611 (L.A.D.)
| | - Kimberley M. Mallan
- School of Exercise and Nutrition Sciences, Queensland University of Technology, Brisbane, QLD 4059, Australia;
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD 4059, Australia
- School of Behavioural and Health Sciences, Australian Catholic University, Brisbane, QLD, 4014, Australia
| | - Elena Jansen
- School of Exercise and Nutrition Sciences, Queensland University of Technology, Brisbane, QLD 4059, Australia;
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD 4059, Australia
- School of Medicine, Johns Hopkins University, Baltimore, MD 21287, USA
- Correspondence: (L.A.D.); (E.J.); Tel.: +61-403-984-611 (L.A.D.)
| | - Jan M. Nicholson
- Judith Lumley Centre, College of Science, Health and Engineering, La Trobe University, Melbourne, VIC 3086, Australia;
| | - Anthea M. Magarey
- Nutrition and Dietetics, School of Health Sciences, Flinders University, Adelaide, SA 5001, Australia;
| | - Karen Thorpe
- School of Psychology and Counselling, Queensland University of Technology, Brisbane, QLD 4059, Australia;
- Institute for Social Science Research, The University of Queensland, Brisbane, QLD 4068, Australia
| |
Collapse
|
25
|
Hoyle AS, Menezes ACB, Nelson MA, Swanson KC, Vonnahme KA, Berg EP, Ward AK. Fetal expression of genes related to metabolic function is impacted by supplementation of ground beef and sucrose during gestation in a swine model. J Anim Sci 2020; 98:skaa232. [PMID: 32687162 PMCID: PMC7431213 DOI: 10.1093/jas/skaa232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/14/2020] [Indexed: 11/13/2022] Open
Abstract
To determine the effects of maternal supplementation on the mRNA abundance of genes associated with metabolic function in fetal muscle and liver, pregnant sows (Landrace × Yorkshire; initial body weight (BW) 221.58 ± 33.26 kg; n = 21) fed a complete gestation diet (corn-soybean meal based diet, CSM) were randomly assigned to 1 of 4 isocaloric supplementation treatments: control (CON, 378 g/d CSM, n = 5), sucrose (SUGAR, 255 g/d crystalized sugar, n = 5), cooked ground beef (BEEF, 330 g/d n = 6), or BEEF + SUGAR (B+S, 165 g/d cooked ground beef and 129 g/d crystalized sugar, n = 5), from days 40 to 110 of gestation. Sows were euthanized on day 111 of gestation. Two male and 2 female fetuses of median BW were selected from each litter, and samples of the longissimus dorsi muscle and liver were collected. Relative transcript level was quantified via qPCR with HPRT1 as the reference gene for both muscle and liver samples. The following genes were selected and analyzed in the muscle: IGF1R, IGF2, IGF2R, GYS-1, IRS-1, INSR, SREBP-1C, and LEPR; while the following were analyzed in the liver: IGF2, IGF2R, FBFase, G6PC, PC, PCK1, FGF21, and LIPC. No effect of fetal sex by maternal treatment interaction was observed in mRNA abundance of any of the genes evaluated (P > 0.11). In muscle, the maternal nutritional treatment influenced (P = 0.02) IGF2 mRNA abundance, with B+S and SUGAR fetuses having lower abundance than CON, which was not different from BEEF. Additionally, SREBP-1 mRNA abundance was greater (P < 0.01) for B+S compared with CON, BEEF, or SUGAR fetuses; and females tended (P = 0.06) to have an increased abundance of SREBP-1 than males. In fetal liver, IGF2R mRNA abundance was greater (P = 0.01) for CON and BEEF than SUGAR and B+S; while FBPase mRNA abundance was greater (P = 0.03) for B+S compared with the other groups. In addition, maternal nutritional tended (P = 0.06) to influence LIPC mRNA abundance, with increased abundance in CON compared with SUGAR and B+S. These data indicate limited changes in transcript abundance due to substitution of supplemental sugar by ground beef during mid to late gestation. However, the differential expression of FBPase and SREBP-1c in response to the simultaneous supplementation of sucrose and ground beef warrants further investigations, since these genes may play important roles in determining the offspring susceptibility to metabolic diseases.
Collapse
Affiliation(s)
- Ashley S Hoyle
- Department of Animal Sciences, North Dakota State University, Fargo, ND
| | | | - Megan A Nelson
- Department of Animal Sciences, North Dakota State University, Fargo, ND
| | - Kendall C Swanson
- Department of Animal Sciences, North Dakota State University, Fargo, ND
| | | | - Eric P Berg
- Department of Animal Sciences, North Dakota State University, Fargo, ND
| | - Alison K Ward
- Department of Animal Sciences, North Dakota State University, Fargo, ND
| |
Collapse
|
26
|
Qualls-Creekmore E, Marlatt KL, Aarts E, Bruce-Keller A, Church TS, Clément K, Fisher JO, Gordon-Larsen P, Morrison CD, Raybould HE, Ryan DH, Schauer PR, Spector AC, Spetter MS, Stuber GD, Berthoud HR, Ravussin E. What Should I Eat and Why? The Environmental, Genetic, and Behavioral Determinants of Food Choice: Summary from a Pennington Scientific Symposium. Obesity (Silver Spring) 2020; 28:1386-1396. [PMID: 32520444 PMCID: PMC7501251 DOI: 10.1002/oby.22806] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/29/2020] [Accepted: 03/09/2020] [Indexed: 12/17/2022]
Abstract
This review details the proceedings of a Pennington Biomedical scientific symposium titled, "What Should I Eat and Why? The Environmental, Genetic, and Behavioral Determinants of Food Choice." The symposium was designed to review the literature about energy homeostasis, particularly related to food choice and feeding behaviors, from psychology to physiology. This review discusses the intrinsic determinants of food choice, including biological mechanisms (genetics), peripheral and central signals, brain correlates, and the potential role of the microbiome. This review also address the extrinsic determinants (environment) of food choice within our physical and social environments. Finally, this review reports the current treatment practices for the clinical management of eating-induced overweight and obesity. An improved understanding of these determinants will inform best practices for the clinical treatment and prevention of obesity. Strategies paired with systemic shifts in our public health policies and changes in our "obesogenic" environment will be most effective at attenuating the obesity epidemic.
Collapse
Affiliation(s)
- Emily Qualls-Creekmore
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, USA
| | - Kara L. Marlatt
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, USA
| | - Esther Aarts
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Annadora Bruce-Keller
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, USA
| | - Tim S. Church
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, USA
- ACAP Health, Dallas, TX, USA
| | - Karine Clément
- Sorbonne Université, INSERM, Nutrition and Obesity: Systemic Approaches (NutriOmics) Research Unit, Paris, France
- Assistance Publique Hôpitaux de Paris, Nutrition e, Pitié-Salpêtrière Hospital, 47-83 bd de l’Hôpital, Paris, France
| | - Jennifer O. Fisher
- Center for Obesity Research and Education, Temple University, Philadelphia, PA, USA
| | - Penny Gordon-Larsen
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Christopher D. Morrison
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, USA
| | - Helen E. Raybould
- Department of Anatomy, Physiology, Cell Biology, UC Davis School of Veterinary Medicine, Davis, CA, USA
| | - Donna H. Ryan
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, USA
| | - Philip R. Schauer
- Bariatric and Metabolic Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Alan C. Spector
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL, USA
| | - Maartje S. Spetter
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Germany; School of Psychology, University of Birmingham, Edgbaston, Birmingham, UK
| | - Garret D. Stuber
- Departments of Anesthesiology, Pain Medicine & Pharmacology, University of Washington, Seattle, WA, USA
| | - Hans-Rudolf Berthoud
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, USA
| | - Eric Ravussin
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, USA
| |
Collapse
|
27
|
De La Chesnaye E, Manuel-Apolinar L, Damasio L, Castrejón E, López-Ballesteros R, Revilla-Monsalve MC, Méndez JP. The gonadal expression pattern of lipocalin‑2 and 24p3 receptor is modified in the gonads of the offspring of obese rats. Mol Med Rep 2020; 22:1409-1419. [PMID: 32627017 PMCID: PMC7339820 DOI: 10.3892/mmr.2020.11226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 03/26/2020] [Indexed: 11/05/2022] Open
Abstract
Obesity represents a global health and economic burden, affecting millions of individuals worldwide. This pathology is associated with a chronic low-grade inflammatory state that is partially responsible for the development of other cardiometabolic complications. Clinical studies have reported an association between high circulating levels of lipocalin-2 (Lcn2) and increased body weight. Additionally, there is scientific evidence demonstrating the impact of maternal obesity on fetal programming. The latter and the fact that the authors previously found that Lcn2 and its receptor (24p3R) are expressed in the gonads of wild-type rats, led to the analysis of their mRNA profile and cellular localization in gonads collected from the offspring of obese rats at 21 days postconception (dpc), and 0, 2, 4, 6, 12, 20 and 30 days postnatal (dpn) in the present study. Semi-quantitative PCR revealed a statistically significant downregulation of Lcn2 and 24p3R mRNA at 21 dpc in the ovaries (P<0.01) and testicles (P<0.001) of the offspring of obese mothers. At 30 dpn, the relative expression of Lcn2 mRNA decreased significantly in the ovaries of the experimental group (P<0.05), while Lcn2 mRNA expression was not detectable in testicles. Regarding 24p3R, its mRNA was only significantly decreased at 21 dpc in ovaries of pups of obese mothers. At 30 dpn, the change in females was not significant. Conversely, in testicles, 24p3R mRNA levels increased slightly in the experimental group at 30 dpn. The Lcn2 protein signal was less intense in gonadal tissue sections from 30 dpn offspring of obese rats (P<0.001), whereas the 24p3R signal was downregulated in ovaries (P<0.001) and slightly upregulated in testicles. It was concluded that maternal obesity changes the expression of Lcn2 and 24p3R in the gonads of the offspring of obese rats, possibly through fetal programming. The consequences of this dysregulation for the offspring's gonadal function remains to be determined.
Collapse
Affiliation(s)
- Elsa De La Chesnaye
- Cardiovascular and Metabolic Diseases Research Unit, Mexican Social Security Institute, Mexico City 06720, Mexico
| | - Leticia Manuel-Apolinar
- Endocrine Research Unit, National Medical Center, Mexican Social Security Institute, Mexico City 06720, Mexico
| | - Leticia Damasio
- Endocrine Research Unit, National Medical Center, Mexican Social Security Institute, Mexico City 06720, Mexico
| | - Edgar Castrejón
- Department of Biochemistry Diagnostics, Faculty of Higher Education, Cuautitlán Izcalli Campus, National Autonomous University of Mexico, State of Mexico 54714, Mexico
| | - Rebeca López-Ballesteros
- Department of Biochemistry Diagnostics, Faculty of Higher Education, Cuautitlán Izcalli Campus, National Autonomous University of Mexico, State of Mexico 54714, Mexico
| | | | - Juan Pablo Méndez
- Peripheral Obesity Research Unit, Faculty of Medicine, National Autonomous University of Mexico, Mexico City 14000, Mexico
| |
Collapse
|
28
|
Zaltz DA, Hecht AA, Pate RR, Neelon B, O'Neill JR, Benjamin-Neelon SE. Participation in the Child and Adult Care Food Program is associated with fewer barriers to serving healthier foods in early care and education. BMC Public Health 2020; 20:856. [PMID: 32503568 PMCID: PMC7275407 DOI: 10.1186/s12889-020-08712-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 04/15/2020] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Early care and education (ECE) is an important setting for influencing young children's dietary intake. There are several factors associated with barriers to healthy eating in ECE, and recent evidence suggests that participation in the Child and Adult Care Food Program (CACFP), the primary national food assistance program in ECE, may be associated with fewer barriers to serving healthier foods. However, no prior studies have examined differences between CACFP participants and non-participants across a large, multi-state sample. This is the first study to examine the association between CACFP participation and barriers to serving healthier foods in ECE using a random sample of directors from two regions across the country. METHODS We conducted a cross-sectional survey among a random sample of child care center directors from four states (Massachusetts, North Carolina, Rhode Island, and South Carolina). We conducted logistic and Poisson regression to calculate the odds and incidence rate ratios of reporting 1) no barriers, 2) specific barriers (e.g., cost), and 3) the total number of barriers, by CACFP status, adjusting for covariates of interest. RESULTS We received 713 surveys (36% response rate). About half (55%) of centers participated in CACFP. The most prevalent reported barriers to serving healthier foods were cost (42%) and children's food preferences (19%). Directors from CACFP centers were twice as likely to report no barriers, compared to directors from non-CACFP centers (OR 2.03; 95% CI [1.36, 3.04]; p < 0.01). Directors from CACFP centers were less likely to report cost as a barrier (OR = 0.46; 95% [CI 0.31, 0.67]; p < 0.001), and reported fewer barriers overall (IRR = 0.77; 95% CI [0.64, 0.92]; p < 0.01), compared to directors from non-CACFP centers. CONCLUSIONS CACFP directors reported fewer barriers to serving healthier foods in child care centers. Still, cost and children's food preferences are persistent barriers to serving healthier foods in ECE. Future research should evaluate characteristics of CACFP participation that may alleviate these barriers, and whether barriers emerge or persist following 2017 rule changes to CACFP nutrition standards.
Collapse
Affiliation(s)
- Daniel A Zaltz
- Department of Health, Behavior and Society, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe St, Baltimore, MD, 21205, USA.
| | - Amelie A Hecht
- Department of Health Policy and Management, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe St, Baltimore, MD, 21205, USA
| | - Russell R Pate
- Department of Exercise Science, University of South Carolina Arnold School of Public Health, 921 Assembly St, Columbia, SC, 29208, USA
| | - Brian Neelon
- Division of Biostatistics, Department of Public Health Sciences, Medical University of South Carolina, 135 Cannon St, Charleston, SC, 29425, USA
| | - Jennifer R O'Neill
- Department of Exercise Science, University of South Carolina Arnold School of Public Health, 921 Assembly St, Columbia, SC, 29208, USA
| | - Sara E Benjamin-Neelon
- Department of Health, Behavior and Society, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe St, Baltimore, MD, 21205, USA
| |
Collapse
|
29
|
Mediation Analysis Supports a Causal Relationship between Maternal Hyperglycemia and Placental DNA Methylation Variations at the Leptin Gene Locus and Cord Blood Leptin Levels. Int J Mol Sci 2020; 21:ijms21010329. [PMID: 31947745 PMCID: PMC6982090 DOI: 10.3390/ijms21010329] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/18/2019] [Accepted: 12/31/2019] [Indexed: 12/02/2022] Open
Abstract
Changes in fetal DNA methylation (DNAm) of the leptin (LEP) gene have been associated with exposure to maternal hyperglycemia, but their links with childhood obesity risk are still unclear. We investigated the association between maternal hyperglycemia, placental LEP DNAm (25 5′-C-phosphate-G-3′ (CpG) sites), neonatal leptinemia, and adiposity (i.e., BMI and skinfold thickness (ST) (subscapular (SS) + triceps (TR) skinfold measures, and the ratio of SS:TR) at 3-years-old, in 259 mother–child dyads, from Gen3G birth cohort. We conducted multivariate linear analyses adjusted for gestational age at birth, sex of the child, age at follow-up, and cellular heterogeneity. We assessed the causal role of DNAm in the association between maternal glycemia and childhood outcomes, using mediation analysis. We found three CpGs associated with neonatal leptinemia (p ≤ 0.002). Of these, cg05136031 and cg15758240 were also associated with BMI (β = −2.69, p = 0.05) and fat distribution (β = −0.581, p = 0.05) at 3-years-old, respectively. Maternal glycemia was associated with DNAm at cg15758240 (β = −0.01, p = 0.04) and neonatal leptinemia (β = 0.19, p = 0.004). DNAm levels at cg15758240 mediates 0.8% of the association between maternal glycemia and neonatal leptinemia (p < 0.001). Our results support that DNAm regulation of the leptin pathway in response to maternal glycemia might be involved in programming adiposity in childhood.
Collapse
|
30
|
Teixeira PDS, Ramos-Lobo AM, Furigo IC, Donato J. Brain STAT5 Modulates Long-Term Metabolic and Epigenetic Changes Induced by Pregnancy and Lactation in Female Mice. Endocrinology 2019; 160:2903-2917. [PMID: 31599926 DOI: 10.1210/en.2019-00639] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 10/04/2019] [Indexed: 12/18/2022]
Abstract
Several metabolic and behavioral adaptations that emerge during pregnancy remain present after weaning. Thus, reproductive experience causes long-lasting metabolic programming, particularly in the brain. However, the isolate effects of pregnancy or lactation and the molecular mechanisms involved in these long-term modifications are currently unknown. In the current study, we investigated the role of brain signal transducer and activator of transcription-5 (STAT5), a key transcription factor recruited by hormones highly secreted during gestation or lactation, for the long-term adaptations induced by reproductive experience. In control mice, pregnancy followed by lactation led to increased body adiposity and reduced ambulatory activity later in life. Additionally, pregnancy+lactation induced long-term epigenetic modifications in the brain: we observed upregulation in hypothalamic expression of histone deacetylases and reduced numbers of neurons with histone H3 acetylation in the paraventricular, arcuate, and ventromedial nuclei. Remarkably, brain-specific STAT5 ablation prevented all metabolic and epigenetic changes observed in reproductively experienced control female mice. Nonetheless, brain-specific STAT5 knockout (KO) mice that had the experience of pregnancy but did not lactate showed increased body weight and reduced energy expenditure later in life, whereas pregnancy KO and pregnancy+lactation KO mice exhibited improved insulin sensitivity compared with virgin KO mice. In summary, lactation is necessary for the long-lasting metabolic effects observed in reproductively experienced female mice. In addition, epigenetic mechanisms involving histone acetylation in neuronal populations related to energy balance regulation are possibly associated with these long-term consequences. Finally, our findings highlighted the key role played by brain STAT5 signaling for the chronic metabolic and epigenetic changes induced by pregnancy and lactation.
Collapse
Affiliation(s)
- Pryscila D S Teixeira
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Angela M Ramos-Lobo
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Isadora C Furigo
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Jose Donato
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
31
|
DNA methylation at LRP1 gene locus mediates the association between maternal total cholesterol changes in pregnancy and cord blood leptin levels. J Dev Orig Health Dis 2019; 11:369-378. [PMID: 31753053 DOI: 10.1017/s204017441900076x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Placental lipids transfer is essential for optimal fetal development, and alterations of these mechanisms could lead to a higher risk of adverse birth outcomes. Low-density lipoprotein receptor (LDLR), LDL receptor-related protein 1 (LRP1), and scavenger receptor class B type 1 (SCARB1) genes are encoding lipoprotein receptors expressed in the placenta where they participate in cholesterol exchange from maternal to fetal circulation. The aim of this study was thus to investigate the association between maternal lipid changes occurring in pregnancy, placental DNA methylation (DNAm) variations at LDLR, LRP1, and SCARB1 gene loci, and newborn's anthropometric profile at birth. Sixty-nine normoglycemic women were followed from the first trimester of pregnancy until delivery. Placental DNAm was quantified at 43 Cytosine-phosphate-Guanines (CpGs) at LDLR, LRP1, and SCARB1 gene loci using pyrosequencing: 4 CpGs were retained for further analysis. Maternal clinical data were collected at each trimester of pregnancy. Newborns' data were collected from medical records. Statistical models included minimally newborn sex and gestational and maternal age. Maternal total cholesterol changes during pregnancy (ΔT3-T1) were correlated with DNAm variations at LDLR (r = -0.32, p = 0.01) and LRP1 (r = 0.34, p = 0.007). DNAm at these loci was also correlated with newborns' cord blood triglyceride and leptin levels. Mediation analysis supports a causal relationship between maternal cholesterol changes, DNAm levels at LRP1 locus, and cord blood leptin concentration (pmediation = 0.02). These results suggest that LRP1 DNAm link maternal blood cholesterol changes in pregnancy and offspring adiposity at birth, which provide support for a better follow-up of blood lipids in pregnancy.
Collapse
|
32
|
Van Winkle LJ, Ryznar R. One-Carbon Metabolism Regulates Embryonic Stem Cell Fate Through Epigenetic DNA and Histone Modifications: Implications for Transgenerational Metabolic Disorders in Adults. Front Cell Dev Biol 2019; 7:300. [PMID: 31824950 PMCID: PMC6882271 DOI: 10.3389/fcell.2019.00300] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 11/08/2019] [Indexed: 12/13/2022] Open
Abstract
Human (h) and mouse (m) embryonic stem (ES) cells need specific amino acids to proliferate. mES cells require threonine (Thr) metabolism for epigenetic histone modifications. Thr is converted to glycine and acetyl CoA, and the glycine is metabolized specifically to regulate trimethylation of lysine (Lys) residue 4 in histone H3 (H3K4me3). DNA methylation and methylation of other H3 Lys residues remain unimpaired by Thr deprivation in mES cell culture medium. Similarly, hES cells require methionine (Met) to maintain the Met-SAM (S-adenosyl methionine) cycle of 1-carbon metabolism also for H3K4me3 formation. H3K4me3 is needed specifically to regulate and maintain both mES and hES cell proliferation and their pluripotent states. Better understanding of this regulation is essential since treatment of human diseases and disorders will increasingly involve hES cells. Furthermore, since ES cells are derived from their progenitor cells in preimplantation blastocysts, they serve as models of 1-carbon metabolism in these precursors of all mammalian tissues and organs. One-carbon metabolism challenges, such as a maternal low protein diet (LPD) during preimplantation blastocyst development, contribute to development of metabolic syndrome and related abnormalities in adults. These 1-carbon metabolism challenges result in altered epigenetic DNA and histone modifications in ES progenitor cells and the tissues and organs to which they develop. Moreover, the modified histones could have extracellular as well as intracellular effects, since histones are secreted in uterine fluid and influence early embryo development. Hence, the mechanisms and transgenerational implications of these altered epigenetic DNA and histone modifications warrant concerted further study.
Collapse
Affiliation(s)
- Lon J Van Winkle
- Department of Biochemistry, Midwestern University, Downers Grove, IL, United States.,Department of Medical Humanities, Rocky Vista University, Parker, CO, United States
| | - Rebecca Ryznar
- Molecular Biology, Department of Biomedical Sciences, Rocky Vista University, Parker, CO, United States
| |
Collapse
|
33
|
Daniels L. Feeding Practices and Parenting: A Pathway to Child Health and Family Happiness. ANNALS OF NUTRITION AND METABOLISM 2019; 74 Suppl 2:29-42. [DOI: 10.1159/000499145] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Feeding and parenting are inextricably linked. The complex bidirectional interactions between parent feeding practices and child eating behaviour shape the early feeding environment which in turn interacts with genetic predispositions to lay the foundation for life-long eating habits and health outcomes. Parent feeding and child (and parent) eating are central to the fabric of family life and are strongly rooted in culture and tradition. Yet, many parents experience stress and anxiety related to this ubiquitous parenting task and perceive their child as a “fussy eater” or a “difficult feeder.” Parents commonly misinterpret heritable and developmentally “normal” child eating behaviour, such as food refusal, as cause for concern. In an effort to get their child to “eat well” they respond with coercive feeding practices, such as pressure, reward and restriction. Emotional feeding that uses food to comfort, distract, calm or shape behaviour is also common. Although well intentioned, these non-responsive, parent- rather than child-centred feeding practices are ineffective, even counterproductive. They teach children to eat for reasons unrelated to appetite and, hence, more than they need and fail to support development of healthy food preferences and appetite regulation. Early feeding interventions are needed that assist parents to understand normal child eating behaviour and promote responsive feeding practices and effective food parenting. The aim of this chapter is to review (1) “normal” eating behaviour of young children, (2) the range of feeding practices and strategies that parents use to respond to and try to shape these behaviours, (3) evidence for approaches to feeding young children that have potential to reduce conflict related to child feeding and promote life-long healthy eating patterns that are a key determinant of long-term health and well-being and (4) to provide an overview of an early feeding intervention, NOURISH, which demonstrated a positive impact on maternal feeding practices and potentially reduced parent anxiety and stress related to feeding.
Collapse
|
34
|
Ramos-Lobo AM, Teixeira PD, Furigo IC, Melo HM, de M Lyra E Silva N, De Felice FG, Donato J. Long-term consequences of the absence of leptin signaling in early life. eLife 2019; 8:40970. [PMID: 30694175 PMCID: PMC6384028 DOI: 10.7554/elife.40970] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 01/28/2019] [Indexed: 12/11/2022] Open
Abstract
Leptin regulates energy balance and also exhibits neurotrophic effects during critical developmental periods. However, the actual role of leptin during development is not yet fully understood. To uncover the importance of leptin in early life, the present study restored leptin signaling either at the fourth or tenth week of age in mice formerly null for the leptin receptor (LepR) gene. We found that some defects previously considered irreversible due to neonatal deficiency of leptin signaling, including the poor development of arcuate nucleus neural projections, were recovered by LepR reactivation in adulthood. However, LepR deficiency in early life led to irreversible obesity via suppression of energy expenditure. LepR reactivation in adulthood also led to persistent reduction in hypothalamic Pomc, Cartpt and Prlh mRNA expression and to defects in the reproductive system and brain growth. Our findings revealed that early defects in leptin signaling cause permanent metabolic, neuroendocrine and developmental problems. Leptin is a hormone that keeps us healthy in many ways. It regulates our body weight by reining in our appetite and fine-tuning the energy we burn, and it helps us establish and maintain our fertility. It also participates in brain development. Leptin performs these roles by attaching to specific receptors in nerve cells and relaying relevant information to the brain. Early events can trigger life-long changes in the way our body works, a process called metabolic programming. Leptin is believed to participate in this reprogramming mechanism, but its role remains uncertain. In particular, it is still unclear which leptin-driven changes are permanent, and which ones are reversible. Being able to distinguish between the two types of alterations would help to better grasp the role leptin plays in early development. Here, Ramos-Lobo et al. examined genetically engineered mice born without a working leptin receptor. These animals were impervious to the effects of leptin. Then, once the rodents were adults, they were treated with a drug that restored their leptin receptors, making them sensitive to the hormone again. These experiments revealed that mice without leptin receptors during early life developed obesity, were less able to lose weight and burned less energy. Their reproductive success was also compromised. Finally, the lack of leptin during development caused permanent reduction of the animals’ brains, and changes in the activity of certain genes in the organ. The work by Ramos-Lobo et al. indicates that in mice, lacking leptin sensibility early in life conditions the body to permanently become ‘thrifty’, burning less energy and making it harder to lose weight. It is rare for humans to be born completely without leptin activity. Yet, having too much or too little food as a baby affects the level of the hormone, or our sensitivity to it: this may permanently change the way our bodies manage energy. Ultimately, learning more about these mechanisms could help us ward off or treat obesity.
Collapse
Affiliation(s)
- Angela M Ramos-Lobo
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Pryscila Ds Teixeira
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Isadora C Furigo
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Helen M Melo
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Natalia de M Lyra E Silva
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Centre for Neuroscience Studies, Department of Psychiatry, Queen's University, Kingston, Canada
| | - Fernanda G De Felice
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jose Donato
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
35
|
Lakshman R, Sharp SJ, Whittle F, Schiff A, Hardeman W, Irvine L, Wilson E, Griffin SJ, Ong KK. Randomised controlled trial of a theory-based behavioural intervention to reduce formula milk intake. Arch Dis Child 2018; 103:1054-1060. [PMID: 29760009 PMCID: PMC6225804 DOI: 10.1136/archdischild-2018-314784] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 03/28/2018] [Accepted: 04/20/2018] [Indexed: 01/23/2023]
Abstract
OBJECTIVE To assess the efficacy of a theory-based behavioural intervention to prevent rapid weight gain in formula milk-fed infants. DESIGN In this single (assessor) blind, randomised controlled trial, 669 healthy full-term infants receiving formula milk within 14 weeks of birth were individually randomised to intervention (n=340) or attention-matched control (n=329) groups. The intervention aimed to reduce formula milk intakes, and promote responsive feeding and growth monitoring to prevent rapid weight gain (≥+0.67 SD scores (SDS)). It was delivered to mothers by trained facilitators up to infant age 6 months through three face-to-face contacts, two telephone contacts and written materials. RESULTS Retention was 93% (622) at 6 months, 88% (586) at 12 months and 94% attended ≥4/5 sessions. The intervention strengthened maternal attitudes to following infant feeding recommendations, reduced reported milk intakes at ages 3 (-14%; intervention vs control infants), 4 (-12%), 5 (-9%) and 6 (-7%) months, slowed initial infant weight gain from baseline to 6 months (mean change 0.32 vs 0.42 SDS, baseline-adjusted difference (intervention vs control) -0.08 (95% CI -0.17 to -0.004) SDS), but had no effect on the primary outcome of weight gain to 12 months (baseline-adjusted difference -0.04 (-0.17, 0.10) SDS). By 12 months, 40.3% of infants in the intervention group and 45.9% in the control group showed rapid weight gain (OR 0.84, 95% CI 0.59 to 1.17). CONCLUSIONS Despite reducing milk intakes and initial weight gain, the intervention did not alter the high prevalence of rapid weight gain to age 12 months suggesting the need for sustained intervention. TRIAL REGISTRATION NUMBER ISRCTN20814693.
Collapse
Affiliation(s)
- Rajalakshmi Lakshman
- MRC Epidemiology Unit and UKCRC Centre of Excellence in Diet and Activity Research (CEDAR), University of Cambridge, Cambridge, UK
| | - Stephen J Sharp
- MRC Epidemiology Unit and UKCRC Centre of Excellence in Diet and Activity Research (CEDAR), University of Cambridge, Cambridge, UK
| | - Fiona Whittle
- MRC Epidemiology Unit and UKCRC Centre of Excellence in Diet and Activity Research (CEDAR), University of Cambridge, Cambridge, UK
| | - Annie Schiff
- MRC Epidemiology Unit and UKCRC Centre of Excellence in Diet and Activity Research (CEDAR), University of Cambridge, Cambridge, UK
| | - Wendy Hardeman
- Health Promotion Research Group, School of Health Sciences, University of East Anglia, Norwich, UK
| | - Lisa Irvine
- Norwich Medical School, University of East Anglia, Norwich, UK
| | - Ed Wilson
- Cambridge Centre for Health Services Research, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Simon J Griffin
- Department of Paediatrics, University of Cambridge, Cambridge, UK
- Primary Care Research Unit, Institute of Public Health, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Ken K Ong
- MRC Epidemiology Unit and UKCRC Centre of Excellence in Diet and Activity Research (CEDAR), University of Cambridge, Cambridge, UK
- Department of Paediatrics, University of Cambridge, Cambridge, UK
| |
Collapse
|
36
|
Devenish G, Ytterstad E, Begley A, Do L, Scott J. Intake, sources, and determinants of free sugars intake in Australian children aged 12-14 months. MATERNAL AND CHILD NUTRITION 2018; 15:e12692. [PMID: 30225982 DOI: 10.1111/mcn.12692] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 08/14/2018] [Accepted: 09/10/2018] [Indexed: 12/21/2022]
Abstract
The consumption of free sugars is directly associated with adiposity and dental caries in early childhood; however, intake data in the first 2 years of life are limited. This cross-sectional analysis aims to identify major food sources of free sugars for Australian children aged 12-14 months and investigate factors associated with meeting the World Health Organisation (WHO) Guideline for sugars intake. Three days of nonconsecutive dietary data were collected via a 24-hr recall and 2-day food record for 828 participants. Usual intake of energy, total sugars, and free sugars were estimated, along with food group contributions to free sugars. Multiple logistic regression analysis was used to investigate factors associated with exceeding the WHO conservative recommendation that <5% of energy should come from free sugars. Mean free sugars intake was 8.8 (SD 7.7, IQR 3.7-11.6) g/day, contributing 3.6% (SD 2.8, IQR 1.6-4.8) of energy. Only 2.4% of participants exceeded the WHO recommendation that <10% of energy should come from free sugars, with 22.8% of participants exceeding the <5% recommendation. Children from households with greater socio-economic disadvantage (IRSAD <5, OR = 1.94) and in the lowest income bracket (OR = 2.10) were more likely to have intakes ≥5% of energy. Major food sources of free sugars were commercial infant foods (26.6%), cereal-based products (19.7%), namely, sweet biscuits (8.3%) and cakes (7.6%), followed by yoghurt (9.6%), and fruit and vegetable beverages (7.4%). These findings highlight the substantial contribution of infant foods to free sugars intakes and provide further evidence that dietary intakes are influenced by social determinants.
Collapse
Affiliation(s)
- Gemma Devenish
- School of Public Health, Curtin University, Perth, Western Australia, Australia
| | - Elinor Ytterstad
- Department of Mathematics and Statistics, UiT The Arctic University of Norway, Tromsø, Norway
| | - Andrea Begley
- School of Public Health, Curtin University, Perth, Western Australia, Australia
| | - Loc Do
- Australian Research Centre for Population Oral Health, The University of Adelaide, Adelaide, South Australia, Australia
| | - Jane Scott
- School of Public Health, Curtin University, Perth, Western Australia, Australia
| |
Collapse
|
37
|
Vaiserman AM. Birth weight predicts aging trajectory: A hypothesis. Mech Ageing Dev 2018; 173:61-70. [PMID: 29626501 DOI: 10.1016/j.mad.2018.04.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 03/10/2018] [Accepted: 04/03/2018] [Indexed: 01/26/2023]
Abstract
Increasing evidence suggests that risk for age-related disease and longevity can be programmed early in life. In human populations, convincing evidence has been accumulated indicating that intrauterine growth restriction (IUGR) resulting in low birth weight (<2.5 kg) followed by postnatal catch-up growth is associated with various aspects of metabolic syndrome, type 2 diabetes and cardiovascular disease in adulthood. Fetal macrosomia (birth weight > 4.5 kg), by contrast, is associated with high risk of non-diabetic obesity and cancers in later life. Developmental modification of epigenetic patterns is considered to be a central mechanism in determining such developmentally programmed phenotypes. Growth hormone/insulin-like growth factor (GH/IGF) axis is likely a key driver of these processes. In this review, evidence is discussed that suggests that different aging trajectories can be realized depending on developmentally programmed life-course dynamics of IGF-1. In this hypothetical scenario, IUGR-induced deficit of IGF-1 causes "diabetic" aging trajectory associated with various metabolic disorders in adulthood, while fetal macrosomia-induced excessive levels of IGF-1 lead to "cancerous" aging trajectory. If the above reasoning is correct, then both low and high birth weights are predictors of short life expectancy, while the normal birth weight is a predictor of "normal" aging and maximum longevity.
Collapse
Affiliation(s)
- Alexander M Vaiserman
- Institute of Gerontology NAMS of Ukraine, Vyshgorodskaya st. 67, Kiev 04114, Ukraine.
| |
Collapse
|
38
|
Rudolph MC, Jackman MR, Presby DM, Houck JA, Webb PG, Johnson GC, Soderborg TK, de la Houssaye BA, Yang IV, Friedman JE, MacLean PS. Low Neonatal Plasma n-6/n-3 PUFA Ratios Regulate Offspring Adipogenic Potential and Condition Adult Obesity Resistance. Diabetes 2018; 67:651-661. [PMID: 29138256 PMCID: PMC5860857 DOI: 10.2337/db17-0890] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 11/06/2017] [Indexed: 01/08/2023]
Abstract
Adipose tissue expansion progresses rapidly during postnatal life, influenced by both prenatal maternal factors and postnatal developmental cues. The ratio of omega-6 (n-6) relative to n-3 polyunsaturated fatty acids (PUFAs) is believed to regulate perinatal adipogenesis, but the cellular mechanisms and long-term effects are not well understood. We lowered the fetal and postnatal n-6/n-3 PUFA ratio exposure in wild-type offspring under standard maternal dietary fat amounts to test the effects of low n-6/n-3 ratios on offspring adipogenesis and adipogenic potential. Relative to wild-type pups receiving high perinatal n-6/n-3 ratios, subcutaneous adipose tissue in 14-day-old wild-type pups receiving low n-6/n-3 ratios had more adipocytes that were smaller in size; decreased Pparγ2, Fabp4, and Plin1; several lipid metabolism mRNAs; coincident hypermethylation of the PPARγ2 proximal promoter; and elevated circulating adiponectin. As adults, offspring that received low perinatal n-6/n-3 ratios were diet-induced obesity (DIO) resistant and had a lower positive energy balance and energy intake, greater lipid fuel preference and non-resting energy expenditure, one-half the body fat, and better glucose clearance. Together, the findings support a model in which low early-life n-6/n-3 ratios remodel adipose morphology to increase circulating adiponectin, resulting in a persistent adult phenotype with improved metabolic flexibility that prevents DIO.
Collapse
Affiliation(s)
- Michael C Rudolph
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado School of Medicine, Aurora, CO
| | - Matthew R Jackman
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado School of Medicine, Aurora, CO
| | - David M Presby
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado School of Medicine, Aurora, CO
| | - Julie A Houck
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado School of Medicine, Aurora, CO
| | - Patricia G Webb
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado School of Medicine, Aurora, CO
| | - Ginger C Johnson
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado School of Medicine, Aurora, CO
| | - Taylor K Soderborg
- Department of Pediatrics, Section of Neonatology, University of Colorado School of Medicine, Aurora, CO
| | - Becky A de la Houssaye
- Department of Pediatrics, Section of Neonatology, University of Colorado School of Medicine, Aurora, CO
| | - Ivana V Yang
- Division of Biomedical Informatics and Personalized Medicine, University of Colorado School of Medicine, Aurora, CO
| | - Jacob E Friedman
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado School of Medicine, Aurora, CO
- Department of Pediatrics, Section of Neonatology, University of Colorado School of Medicine, Aurora, CO
| | - Paul S MacLean
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado School of Medicine, Aurora, CO
| |
Collapse
|
39
|
Epigenetic modulation of Fgf21 in the perinatal mouse liver ameliorates diet-induced obesity in adulthood. Nat Commun 2018; 9:636. [PMID: 29434210 PMCID: PMC5809372 DOI: 10.1038/s41467-018-03038-w] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Accepted: 01/15/2018] [Indexed: 01/03/2023] Open
Abstract
The nutritional environment to which animals are exposed in early life can lead to epigenetic changes in the genome that influence the risk of obesity in later life. Here, we demonstrate that the fibroblast growth factor-21 gene (Fgf21) is subject to peroxisome proliferator-activated receptor (PPAR) α-dependent DNA demethylation in the liver during the postnatal period. Reductions in Fgf21 methylation can be enhanced via pharmacologic activation of PPARα during the suckling period. We also reveal that the DNA methylation status of Fgf21, once established in early life, is relatively stable and persists into adulthood. Reduced DNA methylation is associated with enhanced induction of hepatic FGF21 expression after PPARα activation, which may partly explain the attenuation of diet-induced obesity in adulthood. We propose that Fgf21 methylation represents a form of epigenetic memory that persists into adulthood, and it may have a role in the developmental programming of obesity.
Collapse
|
40
|
Li Y, Feng Q, Guo M, Wang Y, Jiang Y, Xing J. Genome-wide survey reveals dynamic effects of folate supplement on DNA methylation and gene expression during C2C12 differentiation. Physiol Genomics 2018; 50:158-168. [PMID: 29341861 DOI: 10.1152/physiolgenomics.00094.2017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Folic acid supplements taken during pregnancy can prevent neural tube defects and other developmental abnormalities. Here, we explored the effects of folate supplementation on gene expression and DNA methylation during C2C12 differentiation. Based on the folic acid concentration, this study comprised three groups: low folate (L), normal folate (N), and high-folate supplement (H). Our analyses revealed that differentiation and the mRNA expression of the gene myogenin in C2C12 cell were enhanced by folic acid; however, the overall methylation percentage in myogenin promoter between different treatment groups was not significantly different ( P > 0.05). The results of MeDIP-chip showed that hundreds of differentially methylated regions (DMRs) were identified between every two groups in both promoter and CpG islands, respectively. Genes with DMRs between N and L groups were mainly enriched in the processes of cell differentiation and cell development, whereas those with DMRs between H and N groups were frequently enriched in cellular process/cycle and cell metabolic processes. In addition, correlation analysis between methylation profile and expression profile revealed that some genes were regulated by methylation status directly. Together, these analyses suggest that folate deficiency and supplementation can influence the differentiation, genome-wide DNA methylation level and the expression of myogenesis-related genes including myogenin in the C2C12 cell line.
Collapse
Affiliation(s)
- Yi Li
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an City, Shandong Province, China
| | - Qiang Feng
- The Central Hospital of Taian, Tai'an, Shandong , China
| | - Miao Guo
- Taishan Medical University, Tai'an, Shandong , China
| | - Yuding Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an City, Shandong Province, China
| | - Yunliang Jiang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an City, Shandong Province, China
| | - Jinyi Xing
- School of Life Science, Linyi University, Linyi, Shandong , China
| |
Collapse
|
41
|
Cui X, You L, Zhu L, Wang X, Zhou Y, Li Y, Wen J, Xia Y, Wang X, Ji C, Guo X. Change in circulating microRNA profile of obese children indicates future risk of adult diabetes. Metabolism 2018; 78:95-105. [PMID: 28966078 DOI: 10.1016/j.metabol.2017.09.006] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 09/08/2017] [Accepted: 09/23/2017] [Indexed: 12/28/2022]
Abstract
PURPOSE Childhood obesity increases susceptibility to type 2 diabetes (T2D) in adults. Circulating microRNAs (miRNAs) in serum have been proposed as potential diagnostic biomarkers, and they may contribute to the progression toward T2D. Here, we investigated the possibility of predicting the future risk of adult T2D in obese children by using circulating miRNAs. BASIC PROCEDURES We performed miRNA high-throughput sequencing to screen relevant circulating miRNAs in obese children. The expression patterns of targeted miRNAs were further explored in obese children and adults with T2D. To investigate the underlying contributions of these miRNAs to the development of T2D, we detected the impacts of the candidate miRNAs on preadipocyte proliferation, insulin secretion by pancreatic β-cell, and glucose uptake by skeletal muscle cells. MAIN FINDINGS Three miRNAs (miR-486, miR-146b and miR-15b), whose expression in the circulation was most dramatically augmented in obese children and adult T2D patients, were selected for further investigation. Of these 3 miRNAs, miR-486 was implicated in accelerating preadipocyte proliferation and myotube glucose intolerance, miR-146b and miR-15b were engaged in the suppression of high concentration glucose-induced pancreatic insulin secretion, and they all contributed to the pathological processes of obesity and T2D. PRINCIPAL CONCLUSIONS Our results provide a better understanding of the role of circulating miRNAs, particularly miR-486, miR-146b and miR-15b, in predicting the future risk of T2D in obese children.
Collapse
Affiliation(s)
- Xianwei Cui
- Nanjing Maternal and Child Health Medical Institute, Nanjing Maternal and Child Health Hospital, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu 210004, China
| | - Lianghui You
- Nanjing Maternal and Child Health Medical Institute, Nanjing Maternal and Child Health Hospital, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu 210004, China
| | - Lijun Zhu
- Nanjing Maternal and Child Health Medical Institute, Nanjing Maternal and Child Health Hospital, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu 210004, China
| | - Xing Wang
- Nanjing Maternal and Child Health Medical Institute, Nanjing Maternal and Child Health Hospital, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu 210004, China
| | - Yahui Zhou
- Nanjing Maternal and Child Health Medical Institute, Nanjing Maternal and Child Health Hospital, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu 210004, China
| | - Yun Li
- Nanjing Maternal and Child Health Medical Institute, Nanjing Maternal and Child Health Hospital, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu 210004, China
| | - Juan Wen
- Nanjing Maternal and Child Health Medical Institute, Nanjing Maternal and Child Health Hospital, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu 210004, China
| | - Yankai Xia
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Xinru Wang
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Chenbo Ji
- Nanjing Maternal and Child Health Medical Institute, Nanjing Maternal and Child Health Hospital, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu 210004, China.
| | - Xirong Guo
- Nanjing Maternal and Child Health Medical Institute, Nanjing Maternal and Child Health Hospital, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu 210004, China.
| |
Collapse
|
42
|
Antenatal corticosteroids and outcomes of preterm small-for-gestational-age neonates in a single medical center. Obstet Gynecol Sci 2017; 61:7-13. [PMID: 29372144 PMCID: PMC5780323 DOI: 10.5468/ogs.2018.61.1.7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 06/11/2017] [Accepted: 06/13/2017] [Indexed: 12/03/2022] Open
Abstract
Objective This study investigated the effect of an antenatal corticosteroid (ACS) in preterm small-for-gestational-age (SGA) neonate. Methods This study was a retrospective cohort study. We compared women who received ACS with unexposed controls and evaluated neonatal complications among those having a singleton SGA neonate born between 29 and 34 complete gestational weeks. The neonates born after 32 weeks of gestation were divided into subgroups. Multivariable logistic regression analysis was performed. Results A total 82 of the preterm infants met inclusion criteria; 57 (69.5%) were born after 32 weeks of gestation. There were no significant differences in terms of mechanical ventilation, seizure, intracranial hemorrhage, retinopathy of prematurity, necrotizing enterocolitis, feeding difficulty, and neonatal mortality between infants whose mothers received ACS ant those whose mothers did not (all P>0.05). However, newborns whose mothers received ACS exhibited a significantly increased risk of developing respiratory distress syndrome (RDS) (adjusted odds ratio [aOR], 3.271; 95% confidence interval [CI], 1.038–10.305; P=0.043). In case of neonates born beyond 32 weeks of gestation, the risk of neonatal hypoglycemia was significantly higher in women receiving ACS after controlling for confounding factors (aOR, 5.832; 95% CI, 1.096–31.031; P=0.039). Conclusion ACS did not improve neonatal morbidities, in SGA neonates delivered between 29 and 34 gestational weeks. Rather, ACS could increase the risk of RDS. In cases of SGA neonate delivered between 32 and 34 complete gestational weeks, the risk of hypoglycemia was significantly increased. The use of ACS in women with preterm SGA infants needs to be evaluated further, especially after 32 weeks' gestation.
Collapse
|
43
|
Effects of maternal obesity on Wharton's Jelly mesenchymal stromal cells. Sci Rep 2017; 7:17595. [PMID: 29242640 PMCID: PMC5730612 DOI: 10.1038/s41598-017-18034-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 12/05/2017] [Indexed: 01/03/2023] Open
Abstract
We investigated whether maternal metabolic environment affects mesenchymal stromal/stem cells (MSCs) from umbilical cord’s Wharton’s Jelly (WJ) on a molecular level, and potentially render them unsuitable for clinical use in multiple recipients. In this pilot study on umbilical cords post partum from healthy non-obese (BMI = 19–25; n = 7) and obese (BMI ≥ 30; n = 7) donors undergoing elective Cesarean section, we found that WJ MSC from obese donors showed slower population doubling and a stronger immunosuppressive activity. Genome-wide DNA methylation of triple positive (CD73+CD90+CD105+) WJ MSCs found 67 genes with at least one CpG site where the methylation difference was ≥0.2 in four or more obese donors. Only one gene, PNPLA7, demonstrated significant difference on methylome, transcriptome and protein level. Although the number of analysed donors is limited, our data suggest that the altered metabolic environment related to excessive body weight might bear consequences on the WJ MSCs.
Collapse
|
44
|
Olatunji LA, Usman TO, Akinade AI, Adeyanju OA, Kim I, Soladoye AO. Low-dose spironolactone ameliorates insulin resistance and suppresses elevated plasminogen activator inhibitor-1 during gestational testosterone exposure. Arch Physiol Biochem 2017; 123:286-292. [PMID: 28480754 DOI: 10.1080/13813455.2017.1320681] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
CONTEXT Elevated gestational circulating testosterone has been associated with pathological pregnancies that increase the risk of development of cardiometabolic disorder in later life. OBJECTIVE We hypothesised that gestational testosterone exposure, in late pregnancy, causes glucose deregulation and atherogenic dyslipidaemia that would be accompanied by high plasminogen activator inhibitor-1 (PAI-1). The study also hypothesise that low-dose spironolactone treatment would ameliorate these effects. METHODS Pregnant Wistar rats received vehicle, testosterone (0.5 mg/kg; sc), spironolactone (0.5 mg/kg, po) or testosterone and spironolactone daily between gestational days 15 and 19. RESULTS Gestational testosterone exposure led to increased HOMA-IR, circulating insulin, testosterone, 1-h post-load glucose, atherogenic dyslipidaemia, PLR, PAI-1 and MDA. However, all these effects, except that of circulating testosterone, were ameliorated by spironolactone. CONCLUSIONS These results demonstrate that low-dose spironolactone ameliorates glucose deregulation and atherogenic dyslipidaemia during elevated gestational testosterone exposure, at least in part, by suppressing elevated PAI-1.
Collapse
Affiliation(s)
- Lawrence A Olatunji
- a Department of Physiology, Cardiovascular Research Laboratory , College of Health Sciences, University of Ilorin , Ilorin , Nigeria
| | - Taofeek O Usman
- a Department of Physiology, Cardiovascular Research Laboratory , College of Health Sciences, University of Ilorin , Ilorin , Nigeria
- b Department of Physiology, Cardiovascular Unit, College of Health sciences , Osun State University , Osogbo , Nigeria
| | - Aminat I Akinade
- a Department of Physiology, Cardiovascular Research Laboratory , College of Health Sciences, University of Ilorin , Ilorin , Nigeria
| | - Oluwaseun A Adeyanju
- a Department of Physiology, Cardiovascular Research Laboratory , College of Health Sciences, University of Ilorin , Ilorin , Nigeria
| | - InKyeom Kim
- c Department of Pharmacology, Cardiovascular Research Institute , Kyungpook National University School of Medicine , Daegu , Republic of Korea
| | - Ayodele O Soladoye
- a Department of Physiology, Cardiovascular Research Laboratory , College of Health Sciences, University of Ilorin , Ilorin , Nigeria
| |
Collapse
|
45
|
Sharp GC, Salas LA, Monnereau C, Allard C, Yousefi P, Everson TM, Bohlin J, Xu Z, Huang RC, Reese SE, Xu CJ, Baïz N, Hoyo C, Agha G, Roy R, Holloway JW, Ghantous A, Merid SK, Bakulski KM, Küpers LK, Zhang H, Richmond RC, Page CM, Duijts L, Lie RT, Melton PE, Vonk JM, Nohr EA, Williams-DeVane C, Huen K, Rifas-Shiman SL, Ruiz-Arenas C, Gonseth S, Rezwan FI, Herceg Z, Ekström S, Croen L, Falahi F, Perron P, Karagas MR, Quraishi BM, Suderman M, Magnus MC, Jaddoe VWV, Taylor JA, Anderson D, Zhao S, Smit HA, Josey MJ, Bradman A, Baccarelli AA, Bustamante M, Håberg SE, Pershagen G, Hertz-Picciotto I, Newschaffer C, Corpeleijn E, Bouchard L, Lawlor DA, Maguire RL, Barcellos LF, Davey Smith G, Eskenazi B, Karmaus W, Marsit CJ, Hivert MF, Snieder H, Fallin MD, Melén E, Munthe-Kaas MC, Arshad H, Wiemels JL, Annesi-Maesano I, Vrijheid M, Oken E, Holland N, Murphy SK, Sørensen TIA, Koppelman GH, Newnham JP, Wilcox AJ, Nystad W, London SJ, Felix JF, Relton CL. Maternal BMI at the start of pregnancy and offspring epigenome-wide DNA methylation: findings from the pregnancy and childhood epigenetics (PACE) consortium. Hum Mol Genet 2017; 26:4067-4085. [PMID: 29016858 PMCID: PMC5656174 DOI: 10.1093/hmg/ddx290] [Citation(s) in RCA: 161] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 06/23/2017] [Accepted: 07/17/2017] [Indexed: 12/16/2022] Open
Abstract
Pre-pregnancy maternal obesity is associated with adverse offspring outcomes at birth and later in life. Individual studies have shown that epigenetic modifications such as DNA methylation could contribute. Within the Pregnancy and Childhood Epigenetics (PACE) Consortium, we meta-analysed the association between pre-pregnancy maternal BMI and methylation at over 450,000 sites in newborn blood DNA, across 19 cohorts (9,340 mother-newborn pairs). We attempted to infer causality by comparing the effects of maternal versus paternal BMI and incorporating genetic variation. In four additional cohorts (1,817 mother-child pairs), we meta-analysed the association between maternal BMI at the start of pregnancy and blood methylation in adolescents. In newborns, maternal BMI was associated with small (<0.2% per BMI unit (1 kg/m2), P < 1.06 × 10-7) methylation variation at 9,044 sites throughout the genome. Adjustment for estimated cell proportions greatly attenuated the number of significant CpGs to 104, including 86 sites common to the unadjusted model. At 72/86 sites, the direction of the association was the same in newborns and adolescents, suggesting persistence of signals. However, we found evidence for acausal intrauterine effect of maternal BMI on newborn methylation at just 8/86 sites. In conclusion, this well-powered analysis identified robust associations between maternal adiposity and variations in newborn blood DNA methylation, but these small effects may be better explained by genetic or lifestyle factors than a causal intrauterine mechanism. This highlights the need for large-scale collaborative approaches and the application of causal inference techniques in epigenetic epidemiology.
Collapse
Affiliation(s)
- Gemma C Sharp
- MRC Integrative Epidemiology Unit
- School of Social and Community Medicine
- School of Oral and Dental Sciences, University of Bristol, Bristol, UK
| | - Lucas A Salas
- ISGlobal, Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Claire Monnereau
- The Generation R Study Group
- Department of Epidemiology
- Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Catherine Allard
- Centre de Recherche du Centre Hospitalier, Université de Sherbrooke, QC, Canada
| | - Paul Yousefi
- Center for Environmental Research and Children's Health (CERCH), School of Public Health, University of California Berkeley
| | - Todd M Everson
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Jon Bohlin
- Department of Infection Epidemiology and Modeling, Norwegian Institute of Public Health, Oslo, Norway
| | - Zongli Xu
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA
| | - Rae-Chi Huang
- Telethon Kids Institute, University of Western Australia, Crawley, WA 6009, Australia
| | - Sarah E Reese
- National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA
| | - Cheng-Jian Xu
- Department of Pulmonology, GRIAC Research Institute
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Nour Baïz
- Epidemiology of Allergic and Respiratory Diseases Department (EPAR), Sorbonne Université, UPMC Univ Paris 06, INSERM, Pierre Louis Institute of Epidemiology and Public Health, Saint-Antoine Medical School, Paris, France
| | - Cathrine Hoyo
- Department of Biological Sciences
- Center for Human Health and the Environment, North Carolina State University, NC, USA
| | - Golareh Agha
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Ritu Roy
- University of California San Francisco, CA, USA
- HDF Comprehensive Cancer Center, University of California, San Francisco, CA, USA
- Computational Biology Core
| | - John W Holloway
- Human Development & Health, Faculty of Medicine, University of Southampton, UK
| | - Akram Ghantous
- Epigenetics Group, International Agency for Research on Cancer, Lyon, France
| | - Simon K Merid
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Kelly M Bakulski
- Department of Epidemiology, School of Public Health, University of Michigan, MI, USA
| | - Leanne K Küpers
- MRC Integrative Epidemiology Unit
- School of Social and Community Medicine
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Hongmei Zhang
- Division of Epidemiology, Biostatistics, and Environmental Health Sciences, School of Public Health, University of Memphis, Memphis, TN, USA
| | - Rebecca C Richmond
- MRC Integrative Epidemiology Unit
- School of Social and Community Medicine
| | - Christian M Page
- Department of Non-Communicable Disease, Norwegian Institute of Public Health, Oslo, Norway
| | - Liesbeth Duijts
- The Generation R Study Group
- Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Rolv T Lie
- Department of Global Public Health and Primary Care, University of Bergen, Norway
- Medical Birth Registry of Norway, Norwegian Institute of Public Health, Bergen, Norway
| | - Phillip E Melton
- The Curtin UWA Centre for Genetic Origins of Health and Disease, Faculty of Health Sciences, Curtin University Health Sciences, Curtin University and Faculty of Medicine Dentistry & Health Sciences, The University of Western Australia, Perth, Australia
- Faculty of Medicine Dentistry & Health Sciences, The University of Western Australia, Perth, Australia
| | - Judith M Vonk
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, GRIAC Research Institute Groningen, The Netherlands
| | - Ellen A Nohr
- Research Unit for Gynaecology and Obstetrics, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | | | - Karen Huen
- Center for Environmental Research and Children's Health (CERCH), School of Public Health, University of California Berkeley
| | - Sheryl L Rifas-Shiman
- Obesity Prevention Program, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, USA
| | - Carlos Ruiz-Arenas
- ISGlobal, Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
| | - Semira Gonseth
- Department of Epidemiology and Biostatistics, University of California San Francisco, CA, USA
- School of Public Health, University of California Berkeley, CA, USA
| | - Faisal I Rezwan
- Human Development & Health, Faculty of Medicine, University of Southampton, UK
| | - Zdenko Herceg
- Epigenetics Group, International Agency for Research on Cancer, Lyon, France
| | - Sandra Ekström
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Lisa Croen
- Division of Research, Kaiser Permanente Northern California, CA, UDA
| | - Fahimeh Falahi
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Patrice Perron
- Centre de Recherche du Centre Hospitalier, Université de Sherbrooke, QC, Canada
- Department of Medicine, Université de Sherbrooke, QC, Canada
| | - Margaret R Karagas
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
- Children's Environmental Health & Disease Prevention Research Center at Dartmouth, Hanover, NH, USA
| | - Bilal M Quraishi
- Division of Epidemiology, Biostatistics, and Environmental Health Sciences, School of Public Health, University of Memphis, Memphis, TN, USA
| | - Matthew Suderman
- MRC Integrative Epidemiology Unit
- School of Social and Community Medicine
| | - Maria C Magnus
- MRC Integrative Epidemiology Unit
- School of Social and Community Medicine
- Department of Non-Communicable Disease, Norwegian Institute of Public Health, Oslo, Norway
| | - Vincent W V Jaddoe
- The Generation R Study Group
- Department of Epidemiology
- Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Jack A Taylor
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA
- Laboratory of Molecular Carcinogenesis, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA
| | - Denise Anderson
- Telethon Kids Institute, University of Western Australia, Crawley, WA 6009, Australia
| | - Shanshan Zhao
- National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA
| | - Henriette A Smit
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, The Netherlands
| | - Michele J Josey
- Department of Biological & Biomedical Sciences, North Carolina Central University, Durham, NC, USA
- Epidemiology and Biostatistics Department, University of South Carolina (Columbia), SC, USA
| | - Asa Bradman
- Center for Environmental Research and Children's Health (CERCH), School of Public Health, University of California Berkeley
| | - Andrea A Baccarelli
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Mariona Bustamante
- ISGlobal, Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Siri E Håberg
- Domain of Mental and Physical Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Göran Pershagen
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Center for Occupational and Environmental Medicine, Stockholm County Council, Stockholm, Sweden
| | - Irva Hertz-Picciotto
- Department of Public Health, School of Medicine, University of California, Davis, CA, USA
| | - Craig Newschaffer
- AJ Drexel Autism Institute, Drexel University, Philadelphia, PA, USA
| | - Eva Corpeleijn
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Luigi Bouchard
- Department of Biochemistry, Université de Sherbrooke, QC, Canada
- ECOGENE-21 and Lipid Clinic, Chicoutimi Hospital, Saguenay, QC, Canada
| | - Debbie A Lawlor
- MRC Integrative Epidemiology Unit
- School of Social and Community Medicine
| | - Rachel L Maguire
- Department of Biological Sciences
- Department of Community and Family Medicine, Duke University Medical Center, Durham, NC, USA
| | - Lisa F Barcellos
- Center for Environmental Research and Children's Health (CERCH), School of Public Health, University of California Berkeley
| | - George Davey Smith
- MRC Integrative Epidemiology Unit
- School of Social and Community Medicine
| | - Brenda Eskenazi
- Center for Environmental Research and Children's Health (CERCH), School of Public Health, University of California Berkeley
| | - Wilfried Karmaus
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Carmen J Marsit
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Marie-France Hivert
- Obesity Prevention Program, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, USA
- Department of Medicine, Université de Sherbrooke, QC, Canada
- Diabetes Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Harold Snieder
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - M Daniele Fallin
- Department of Mental Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Erik Melén
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Center for Occupational and Environmental Medicine, Stockholm County Council, Stockholm, Sweden
- Sachs’ Children’s Hospital, South General Hospital, Stockholm, Sweden
| | - Monica C Munthe-Kaas
- Department of Pediatric and Adolescent Medicine, Oslo University Hospital, Norway
- Norwegian Institute of Public Health, Oslo Norway
| | - Hasan Arshad
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- NIHR Respiratory Biomedical Research Unit, University Hospital Southampton, Southampton, UK
- The David Hide Asthma and Allergy Research Centre, Isle of Wight, UK
| | - Joseph L Wiemels
- Department of Epidemiology and Biostatistics, University of California San Francisco, CA, USA
| | - Isabella Annesi-Maesano
- Epidemiology of Allergic and Respiratory Diseases Department (EPAR), Sorbonne Université, UPMC Univ Paris 06, INSERM, Pierre Louis Institute of Epidemiology and Public Health, Saint-Antoine Medical School, Paris, France
| | - Martine Vrijheid
- ISGlobal, Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
| | - Emily Oken
- Obesity Prevention Program, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, USA
| | - Nina Holland
- Center for Environmental Research and Children's Health (CERCH), School of Public Health, University of California Berkeley
| | - Susan K Murphy
- Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, NC, USA
| | - Thorkild I A Sørensen
- MRC Integrative Epidemiology Unit
- Novo Nordisk Foundation Center for Basic Metabolic Research, Section on Metabolic Genetics, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Epidemiology, Bispebjerg and Frederiksberg Hospital, The Capital Region, Copenhagen, Denmark
| | - Gerard H Koppelman
- Department of Paediatric Pulmonology and Paediatric Allergy, University of Groningen, University Medical Center Groningen, Beatrix Children’s Hospital, GRIAC Research Institute, Groningen, the Netherlands
| | - John P Newnham
- School of Women's and Infants' Health, The University of Western Australia, Crawley, WA 6009, Australia
| | - Allen J Wilcox
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA
| | - Wenche Nystad
- Department of Non-Communicable Disease, Norwegian Institute of Public Health, Oslo, Norway
| | - Stephanie J London
- National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA
| | - Janine F Felix
- The Generation R Study Group
- Department of Epidemiology
- Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Caroline L Relton
- MRC Integrative Epidemiology Unit
- School of Social and Community Medicine
| |
Collapse
|
46
|
Schwartz MW, Seeley RJ, Zeltser LM, Drewnowski A, Ravussin E, Redman LM, Leibel RL. Obesity Pathogenesis: An Endocrine Society Scientific Statement. Endocr Rev 2017; 38:267-296. [PMID: 28898979 PMCID: PMC5546881 DOI: 10.1210/er.2017-00111] [Citation(s) in RCA: 415] [Impact Index Per Article: 51.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 05/12/2017] [Indexed: 02/07/2023]
Abstract
Obesity is among the most common and costly chronic disorders worldwide. Estimates suggest that in the United States obesity affects one-third of adults, accounts for up to one-third of total mortality, is concentrated among lower income groups, and increasingly affects children as well as adults. A lack of effective options for long-term weight reduction magnifies the enormity of this problem; individuals who successfully complete behavioral and dietary weight-loss programs eventually regain most of the lost weight. We included evidence from basic science, clinical, and epidemiological literature to assess current knowledge regarding mechanisms underlying excess body-fat accumulation, the biological defense of excess fat mass, and the tendency for lost weight to be regained. A major area of emphasis is the science of energy homeostasis, the biological process that maintains weight stability by actively matching energy intake to energy expenditure over time. Growing evidence suggests that obesity is a disorder of the energy homeostasis system, rather than simply arising from the passive accumulation of excess weight. We need to elucidate the mechanisms underlying this "upward setting" or "resetting" of the defended level of body-fat mass, whether inherited or acquired. The ongoing study of how genetic, developmental, and environmental forces affect the energy homeostasis system will help us better understand these mechanisms and are therefore a major focus of this statement. The scientific goal is to elucidate obesity pathogenesis so as to better inform treatment, public policy, advocacy, and awareness of obesity in ways that ultimately diminish its public health and economic consequences.
Collapse
Affiliation(s)
| | - Randy J Seeley
- Department of Surgery, University of Michigan, Ann Arbor, Michigan 48109
| | - Lori M Zeltser
- Naomi Berrie Diabetes Center and Department of Pathology and Cell Biology, Columbia University, New York, New York 10032
| | - Adam Drewnowski
- Center for Public Health Nutrition, University of Washington, Seattle, Washington 98195
| | - Eric Ravussin
- John S. McIlhenny Skeletal Muscle Physiology Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana 70808
| | - Leanne M Redman
- John S. McIlhenny Skeletal Muscle Physiology Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana 70808
| | - Rudolph L Leibel
- Naomi Berrie Diabetes Center and Department of Pathology and Cell Biology, Columbia University, New York, New York 10032.,Division of Molecular Genetics, Department of Pediatrics, Columbia University, New York, New York 10032
| |
Collapse
|
47
|
Tellechea ML, Mensegue MF, Pirola CJ. The Association between High Fat Diet around Gestation and Metabolic Syndrome-related Phenotypes in Rats: A Systematic Review and Meta-Analysis. Sci Rep 2017; 7:5086. [PMID: 28698653 PMCID: PMC5506021 DOI: 10.1038/s41598-017-05344-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 05/16/2017] [Indexed: 12/12/2022] Open
Abstract
Numerous rodent studies have evaluated the effects of a maternal high-fat diet (HFD) on later in life susceptibility to Metabolic Syndrome (MetS) with varying results. Our aim was to quantitatively synthesize the available data on effects of maternal HFD around gestation on offspring's body mass, body fat, plasma leptin, glucose, insulin, lipids and systolic blood pressure (SBP). Literature was screened and summary estimates of the effect of maternal HFD on outcomes were calculated by using fixed- or random-effects models. 362 effect sizes from 68 studies together with relevant moderators were collected. We found that maternal HFD is statistically associated with higher body fat, body weight, leptin, glucose, insulin and triglycerides levels, together with increased SBP in offspring later in life. Our analysis also revealed non-significant overall effect on offspring's HDL-cholesterol. A main source of variation among studies emerged from rat strain and lard-based diet type. Strain and sex -specific effects on particular data subsets were detected. Recommendations are suggested for future research in the field of developmental programming of the MetS. Despite significant heterogeneity, our meta-analysis confirms that maternal HFD had long-term metabolic effects in offspring.
Collapse
Affiliation(s)
- Mariana L Tellechea
- University of Buenos Aires, Institute of Medical Research A Lanari, Buenos Aires, Argentina. .,National Scientific and Technical Research Council (CONICET) - University of Buenos Aires, Institute of Medical Research (IDIM), Department of Molecular Genetics and Biology of Complex Diseases, Buenos Aires, Argentina.
| | - Melisa F Mensegue
- University of Buenos Aires, Institute of Medical Research A Lanari, Buenos Aires, Argentina.,National Scientific and Technical Research Council (CONICET) - University of Buenos Aires, Institute of Medical Research (IDIM), Department of Molecular Genetics and Biology of Complex Diseases, Buenos Aires, Argentina
| | - Carlos J Pirola
- University of Buenos Aires, Institute of Medical Research A Lanari, Buenos Aires, Argentina. .,National Scientific and Technical Research Council (CONICET) - University of Buenos Aires, Institute of Medical Research (IDIM), Department of Molecular Genetics and Biology of Complex Diseases, Buenos Aires, Argentina.
| |
Collapse
|
48
|
de Luca A, Hankard R, Borys JM, Sinnett D, Marcil V, Levy E. Nutriepigenomics and malnutrition. Epigenomics 2017; 9:893-917. [DOI: 10.2217/epi-2016-0168] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Epigenetics is defined as the modulation of gene expression without changes to the underlying DNA sequence. Epigenetic alterations, as a consequence of in utero malnutrition, may play a role in susceptibility to develop adulthood diseases and inheritance. However, the mechanistic link between epigenetic modifications and abnormalities in nutrition remains elusive. This review provides an update on the association of suboptimal nutritional environment and the high propensity to produce adult-onset chronic illnesses with a particular focus on modifications in genome functions that occur without alterations to the DNA sequence. We will mention the drivers of the phenotype and pattern of epigenetic markers set down during the reprogramming along with novel preventative and therapeutic strategies. New knowledge of epigenetic alterations is opening a gate toward personalized medicine.
Collapse
Affiliation(s)
- Arnaud de Luca
- Research Center, Sainte-Justine University Hospital Center, Montreal, Quebec H3T 1C5, Canada
- INSERM, U 1069, F-37044 Tours, France
| | - Regis Hankard
- INSERM, U 1069, F-37044 Tours, France
- François Rabelais University, F-37000 Tours, France
| | | | - Daniel Sinnett
- Research Center, Sainte-Justine University Hospital Center, Montreal, Quebec H3T 1C5, Canada
- Department of Pediatrics, Faculty of Medicine, University of Montreal, Montreal, Quebec H3T 1J4, Canada
| | - Valérie Marcil
- Research Center, Sainte-Justine University Hospital Center, Montreal, Quebec H3T 1C5, Canada
- Department of Nutrition, Faculty of Medicine, University of Montréal, Montreal, Quebec H3T 1J4, Canada
| | - Emile Levy
- Research Center, Sainte-Justine University Hospital Center, Montreal, Quebec H3T 1C5, Canada
- EPODE International Network, F-75017 Paris, France
- Department of Nutrition, Faculty of Medicine, University of Montréal, Montreal, Quebec H3T 1J4, Canada
| |
Collapse
|
49
|
Hansen NS, Strasko KS, Hjort L, Kelstrup L, Houshmand-Øregaard A, Schrölkamp M, Schultz HS, Scheele C, Pedersen BK, Ling C, Clausen TD, Damm P, Vaag A, Broholm C. Fetal Hyperglycemia Changes Human Preadipocyte Function in Adult Life. J Clin Endocrinol Metab 2017; 102:1141-1150. [PMID: 28204515 DOI: 10.1210/jc.2016-3907] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Accepted: 02/08/2017] [Indexed: 12/22/2022]
Abstract
CONTEXT Offspring of women with gestational diabetes (O-GDM) or type 1 diabetes mellitus (O-T1DM) have been exposed to hyperglycemia in utero and have an increased risk of developing metabolic disease in adulthood. DESIGN In total, we recruited 206 adult offspring comprising the two fetal hyperglycemic groups, O-GDM and O-T1DM, and, as a control group, offspring from the background population (O-BP). Subcutaneous fat biopsies were obtained and preadipocyte cell cultures were established from adult male O-GDM (n = 18, age 30.1 ± 2.5 years), O-T1DM (n = 18, age 31.6 ± 2.2 years), and O-BP (n = 16; age, 31.5 ± 2.7 years) and cultured in vitro. MAIN OUTCOME MEASURES First, we studied in vivo adipocyte histology. Second, we studied in vitro preadipocyte leptin secretion, gene expression, and LEP DNA methylation. This was studied in combination with in vitro preadipocyte lipogenesis, lipolysis, and mitochondrial respiration. RESULTS We show that subcutaneous adipocytes from O-GDM are enlarged compared with O-BP adipocytes. Preadipocytes isolated from male O-GDM and O-T1DM and cultured in vitro displayed decreased LEP promoter methylation, increased leptin gene expression, and elevated leptin secretion throughout differentiation, compared with adipocytes established from male O-BP. In addition, the preadipocytes demonstrated functional defects including decreased maximal mitochondrial capacity with increased lipolysis and decreased ability to store fatty acids when challenged with 3 days of extra fatty acid supply. CONCLUSIONS Taken together, these findings show that intrinsic epigenetic and functional changes exist in preadipocyte cultures from individuals exposed to fetal hyperglycemia who are at increased risk of developing metabolic disease.
Collapse
Affiliation(s)
- Ninna Schiøler Hansen
- Department of Endocrinology, Diabetes and Metabolism, Rigshospitalet, Copenhagen, 2200 Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 1165 Denmark
- Danish PhD School of Molecular Metabolism, Odense, 5000 Denmark
| | - Klaudia Stanislawa Strasko
- Department of Endocrinology, Diabetes and Metabolism, Rigshospitalet, Copenhagen, 2200 Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 1165 Denmark
| | - Line Hjort
- Department of Endocrinology, Diabetes and Metabolism, Rigshospitalet, Copenhagen, 2200 Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 1165 Denmark
- The Danish Diabetes Academy, Odense, 5000 Denmark
| | - Louise Kelstrup
- Center for Pregnant Women with Diabetes, Department of Obstetrics, Copenhagen, 2200 Denmark
| | - Azadeh Houshmand-Øregaard
- Department of Endocrinology, Diabetes and Metabolism, Rigshospitalet, Copenhagen, 2200 Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 1165 Denmark
- Center for Pregnant Women with Diabetes, Department of Obstetrics, Copenhagen, 2200 Denmark
- Novo Nordisk A/S, Søborg, 2860 Denmark
| | - Maren Schrölkamp
- Department of Endocrinology, Diabetes and Metabolism, Rigshospitalet, Copenhagen, 2200 Denmark
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Department of Infectious Diseases, Rigshospitalet, University of Copenhagen, Copenhagen, 2200 Denmark
| | - Heidi Schiøler Schultz
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Department of Infectious Diseases, Rigshospitalet, University of Copenhagen, Copenhagen, 2200 Denmark
| | | | | | - Charlotte Ling
- Department of Clinical Sciences, Epigenetics and Diabetes, Lund University Diabetes Centre, CRC, Malmö, SE-221 00 Sweden
| | | | - Peter Damm
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 1165 Denmark
- Center for Pregnant Women with Diabetes, Department of Obstetrics, Copenhagen, 2200 Denmark
| | - Allan Vaag
- Department of Endocrinology, Diabetes and Metabolism, Rigshospitalet, Copenhagen, 2200 Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 1165 Denmark
- Astra Zeneca, Göteborg, SE-431 50 Sweden
| | - Christa Broholm
- Department of Endocrinology, Diabetes and Metabolism, Rigshospitalet, Copenhagen, 2200 Denmark
| |
Collapse
|
50
|
Lin X, Lim IY, Wu Y, Teh AL, Chen L, Aris IM, Soh SE, Tint MT, MacIsaac JL, Morin AM, Yap F, Tan KH, Saw SM, Kobor MS, Meaney MJ, Godfrey KM, Chong YS, Holbrook JD, Lee YS, Gluckman PD, Karnani N. Developmental pathways to adiposity begin before birth and are influenced by genotype, prenatal environment and epigenome. BMC Med 2017; 15:50. [PMID: 28264723 PMCID: PMC5340003 DOI: 10.1186/s12916-017-0800-1] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 01/21/2017] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Obesity is an escalating health problem worldwide, and hence the causes underlying its development are of primary importance to public health. There is growing evidence that suboptimal intrauterine environment can perturb the metabolic programing of the growing fetus, thereby increasing the risk of developing obesity in later life. However, the link between early exposures in the womb, genetic susceptibility, and perturbed epigenome on metabolic health is not well understood. In this study, we shed more light on this aspect by performing a comprehensive analysis on the effects of variation in prenatal environment, neonatal methylome, and genotype on birth weight and adiposity in early childhood. METHODS In a prospective mother-offspring cohort (N = 987), we interrogated the effects of 30 variables that influence the prenatal environment, umbilical cord DNA methylation, and genotype on offspring weight and adiposity, over the period from birth to 48 months. This is an interim analysis on an ongoing cohort study. RESULTS Eleven of 30 prenatal environments, including maternal adiposity, smoking, blood glucose and plasma unsaturated fatty acid levels, were associated with birth weight. Polygenic risk scores derived from genetic association studies on adult adiposity were also associated with birth weight and child adiposity, indicating an overlap between the genetic pathways influencing metabolic health in early and later life. Neonatal methylation markers from seven gene loci (ANK3, CDKN2B, CACNA1G, IGDCC4, P4HA3, ZNF423 and MIRLET7BHG) were significantly associated with birth weight, with a subset of these in genes previously implicated in metabolic pathways in humans and in animal models. Methylation levels at three of seven birth weight-linked loci showed significant association with prenatal environment, but none were affected by polygenic risk score. Six of these birth weight-linked loci continued to show a longitudinal association with offspring size and/or adiposity in early childhood. CONCLUSIONS This study provides further evidence that developmental pathways to adiposity begin before birth and are influenced by environmental, genetic and epigenetic factors. These pathways can have a lasting effect on offspring size, adiposity and future metabolic outcomes, and offer new opportunities for risk stratification and prevention of obesity. CLINICAL TRIAL REGISTRATION This birth cohort is a prospective observational study, designed to study the developmental origins of health and disease, and was retrospectively registered on 1 July 2010 under the identifier NCT01174875 .
Collapse
Affiliation(s)
- Xinyi Lin
- Singapore Institute for Clinical Sciences, A*STAR, 30 Medical Drive, Singapore, 117609, Singapore
| | - Ives Yubin Lim
- Singapore Institute for Clinical Sciences, A*STAR, 30 Medical Drive, Singapore, 117609, Singapore.,Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Yonghui Wu
- Singapore Institute for Clinical Sciences, A*STAR, 30 Medical Drive, Singapore, 117609, Singapore
| | - Ai Ling Teh
- Singapore Institute for Clinical Sciences, A*STAR, 30 Medical Drive, Singapore, 117609, Singapore
| | - Li Chen
- Singapore Institute for Clinical Sciences, A*STAR, 30 Medical Drive, Singapore, 117609, Singapore
| | - Izzuddin M Aris
- Singapore Institute for Clinical Sciences, A*STAR, 30 Medical Drive, Singapore, 117609, Singapore
| | - Shu E Soh
- Singapore Institute for Clinical Sciences, A*STAR, 30 Medical Drive, Singapore, 117609, Singapore.,Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Mya Thway Tint
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore.,Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Julia L MacIsaac
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada
| | - Alexander M Morin
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada
| | - Fabian Yap
- KK Women's and Children's Hospital, Singapore, 229899, Singapore
| | - Kok Hian Tan
- KK Women's and Children's Hospital, Singapore, 229899, Singapore
| | - Seang Mei Saw
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, 117597, Singapore.,Singapore Eye Research Institute, Singapore, 169856, Singapore.,Duke NUS Medical School, Singapore, 169857, Singapore
| | - Michael S Kobor
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada
| | - Michael J Meaney
- Singapore Institute for Clinical Sciences, A*STAR, 30 Medical Drive, Singapore, 117609, Singapore.,Ludmer Centre for Neuroinformatics and Mental Health, Douglas University Mental Health Institute, McGill University, Montreal, Quebec, H4H 1R3, Canada
| | - Keith M Godfrey
- MRC Lifecourse Epidemiology Unit and NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, SO16 6YD, UK
| | - Yap Seng Chong
- Singapore Institute for Clinical Sciences, A*STAR, 30 Medical Drive, Singapore, 117609, Singapore.,Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Joanna D Holbrook
- Singapore Institute for Clinical Sciences, A*STAR, 30 Medical Drive, Singapore, 117609, Singapore
| | - Yung Seng Lee
- Singapore Institute for Clinical Sciences, A*STAR, 30 Medical Drive, Singapore, 117609, Singapore.,Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore.,Division of Paediatric Endocrinology and Diabetes, Khoo Teck Puat-National University Children's Medical Institute, National University Health System, Singapore, 119228, Singapore
| | - Peter D Gluckman
- Singapore Institute for Clinical Sciences, A*STAR, 30 Medical Drive, Singapore, 117609, Singapore.,Centre for Human Evolution, Adaptation and Disease, Liggins Institute, University of Auckland, Auckland, 1142, New Zealand
| | - Neerja Karnani
- Singapore Institute for Clinical Sciences, A*STAR, 30 Medical Drive, Singapore, 117609, Singapore. .,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore.
| | | |
Collapse
|